WorldWideScience

Sample records for line shapes obtained

  1. Spectral Line Shapes. Proceedings

    International Nuclear Information System (INIS)

    Zoppi, M.; Ulivi, L.

    1997-01-01

    These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple-free and ultra-fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction-induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energy Science and Technology database

  2. Calculation of the line shapes of radiators immersed in plasma

    International Nuclear Information System (INIS)

    Hayrapetian, A.S.

    1987-01-01

    This work reports the results of theoretical calculations of line shapes of radiators immersed in plasma. The fluctuating electric field of the plasma perturbs the atomic structure of the immersed ions or atoms. The perturbed line shape is an important diagnostic tool for the temperature and density measurements of plasma. The line-shape calculation here is done by first deriving the line-shape expression, then it is shown that the problem is equivalent to calculating the temperature Green's function of the bound electron. The total Hamiltonian of the system includes the atomic, plasma, and atom-plasma parts. The temperature Green's function is calculated perturbatively by expanding in orders of atom-plasma interaction. By solving a Dyson equation, the dressed Green's functions of the bound electrons are obtained. At this point, the line shape is calculated by an analytic continuation from the complex frequency plane to real line. To derive the atomic electron Green's function, the momentum integral in the self-energy is approximated by a Riemann sum. With this approximation, the algebraic form of the line shape is obtained for an undetermined number of terms in the Riemann sum. Numerical calculation of line shape is done by using this result

  3. A universal representation of Rydberg spectral line shapes in plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Stamm, R.; Talin, B.; Bureyeva, L.; Lisitsa, V. S.

    2001-01-01

    A universal representation of Rydberg atom line shapes in plasmas is obtained. It bases on analytical formulas for intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principle quantum numbers n, n'>>1, Δn=n-n'<< n and the frequency fluctuation model (FFM) for account of ion thermal motion effects. The line shapes are presented in a universal manner as functions of plasma temperatures and densities

  4. Autoionization spectral line shapes in dense plasmas

    International Nuclear Information System (INIS)

    Rosmej, F.B.; Hoffmann, D.H.H.; Faenov, A.Ya.; Pikuz, T.A.; Suess, W.; Geissel, M.

    2001-01-01

    The distortion of resonance line shapes due to the accumulation of a large number of satellite transitions is discovered by means of X-ray optical methods with simultaneous high spectral (λ/δλ≅8000) and spatial resolution (δx≅7 μm). Disappearance of the He α resonance line emission near the target surface is observed while Rydberg satellite intensity accumulates near the resonance line position. He β and He γ resonance line shapes are also shown to be seriously affected by opacity, higher-order line emissions from autoionizing states and inhomogeneous spatial emission. Opposite to resonance line emissions the He β satellites originate only from a very narrow spatial interval. New temperature and density diagnostics employing the 1s2131' and 1s3131'-satellites are developed. Moreover, even-J components of the satellite line emissions were resolved in the present high resolution experiments. Line transitions from the autoionizing states 1s2131' are therefore also proposed for space resolved Stark broadening analysis and local high density probing. Theorists are encouraged to provide accurate Stark broadening data for the transitions 1s2131 ' →1s 2 21+hv

  5. Anisotropic Hanle line shape via magnetothermoelectric phenomena

    NARCIS (Netherlands)

    Das, Kumar; Dejene, Fasil; van Wees, Bart; Vera Marun, Ivan

    2016-01-01

    We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times

  6. Spectral Line Shapes in Plasmas and Gases

    International Nuclear Information System (INIS)

    Oks, E.; Dalimier, D.; Stamm, R.; Stehle, CH.; Gonzalez, M.A.

    2011-01-01

    The subject of spectral line shapes (SLS), a.k.a. spectral line broadening, which embraces both shapes and shifts of spectral lines, is of both fundamental and practical importance. On the fundamental side, the study of the spectral line profiles reveals the underlying atomic and molecular interactions. On the practical side, the spectral line profiles are employed as powerful diagnostic tools for various media, such as neutral gases, technological gas discharges, magnetically confined plasmas for fusion, laser- and Z-pinch-produced plasmas (for fusion and other purposes), astrophysical plasmas (most importantly, solar plasmas), and planetary atmospheres. The research area covered by this special issue includes both the SLS dominated by various electric fields (including electron and ion micro fields in strongly ionized plasmas) and the SLS controlled by neutral particles. In the physical slang, the former is called plasma broadening while the latter is called neutral broadening (of course, the results of neutral broadening apply also to the spectral line broadening in neutral gases)

  7. Line Shape Variability in a Sample of AGN with Broad Lines

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We give here a comparative review of the line shape variability in a sample of five type 1 AGNs, those with broad emission lines in their spectra, of the data obtained from the international long-term optical monitoring campaign coordinated by the Special Astrophysical Observatory of the Russian Academy ...

  8. EVo: Net Shape RTM Production Line

    Directory of Open Access Journals (Sweden)

    Sven Torstrick

    2016-04-01

    Full Text Available EVo research platform is operated by the Center for Lightweight-Production-Technology of the German Aerospace Center in Stade. Its objective is technology demonstration of a fully automated RTM (Resin Transfer Molding production line for composite parts in large quantities. Process steps include cutting and ply handling, draping, stacking, hot-forming, preform-trimming to net shape, resin injection, curing and demolding.

  9. Chemical exchange effects in spectral line shapes

    International Nuclear Information System (INIS)

    Diaz, M.A.; Veguillas, J.

    1990-01-01

    A theory of spectral-line shapes has been extended to the case in which relaxation broadening may be influenced by reactive interactions. This extension is valid for gaseous systems in the same way it is valid for condensed media, and particularly, for such chemical mechanisms as isomerizations. The dependence of the spectral rate on the chemical exchange rate is clarified. Finally, a discussion concerning the above aspects and their applications has been included. (author)

  10. Rules of thumb for the Z line shape

    International Nuclear Information System (INIS)

    Beenakker, W.; Berends, F.A.; Marck, S.C. van der

    1990-01-01

    In this paper the theoretical parameters of the Z line shape, such as M Z and Γ Z , and the one photon exchange diagram are related to a set of parameters characterizing the experimental line shape. The latter are the peak height σ max , peak position √S max and half peak positions √S ± . The rules of thumb are accurate within 10 MeV. As a result we obtain approximate formulae which express M Z and Γ Z in the measured √S max and √S + -√S - . (orig.)

  11. Study of the Auger line shape of polyethylene and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M; Pepper, S V

    1984-03-01

    The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account according to the theories of Cini and Sawatzky and Lenselink.

  12. New luminescence lines in nanodiamonds obtained by chemical vapor deposition

    Science.gov (United States)

    Golubev, V. G.; Grudinkin, S. A.; Davydov, V. Yu.; Smirnov, A. N.; Feoktistov, N. A.

    2017-12-01

    The spectral characteristics of the photoluminescence lines detected for nanodiamonds obtained by the reactive ion etching of diamond particles in oxygen plasma, deposited by chemical vapor deposition on a silicon substrate, are studied. At room temperature, narrow lines are observed in the visible and infrared spectral regions, with a full width at half-maximum in the range of 1-2 nm at an almost complete absence of a broadband photoluminescence background signal. At decreasing temperature, the lines narrowed to 0.2-0.6 nm at T = 79 K, and the minimum line width was 0.055 nm at T = 10 K. With increasing temperature, the narrow lines shifted to the long-wavelength region of the spectrum, and their intensity decreased.

  13. Use of Green functions in line shape problems in nuclear Magnetic resonance

    International Nuclear Information System (INIS)

    Martin, M.; Moreno, J.A.

    1982-01-01

    A method based on the two times Green function formalism is presented. It permits the straightforward determination of the line shape in Magnetic Resonance experiments together with its temperature behavior. Model calculations are made on a two-spin system attached to a one-dimensional rotor obtaining the temperature dependence of its Magnetic Resonance line shape and second moment

  14. Evaluation of quinua lines obtained trough mutagenesis and conventional methods

    International Nuclear Information System (INIS)

    De la Cruz, E.; Garcia, J. M; Gonzalez, J.; Brunner, I.; Rubluo, A.; Guadarrama, S

    2001-01-01

    Chenopodium quinoa is an ancient crop that due to its hardiness, nutritive value, and ability to strive under marginal conditions is considered as a crop for modern times, considering the current demands of highly nutritive products obtained through sustainable agricultural practices. The research on quinua began in Mexico in the early eighties, considering it as an alternative crop to peasants living in impoverished regions, characterised by marginal soils. Research institutions such as the Instituto de Investigacion Agricola del Estado de Mexico (ICAMEX), Colegio de Postgraduados and Universidad Autonoma Chapingo, began to evaluate varieties from South-America and eventually established a breeding programme on quinua. One goal of the quinua research programme in Mexico is the reduction of saponin content, so a mutation breeding approach was designed in the early nineties being the Instituto Nacional de Investigaciones Nucleares (ININ) involved. In the 1999-2000 period, field trials of low saponin putative mutants obtained through irradiation of Barandales variety were performed, including also elite lines supplied by the National Germplasm Bank (NGB) at Chapingo, Mexico. The results from this trials indicate that the low saponin content character in the putative mutants remains in the M5 generation. Also eleven early maturing lines were detected. Climatic conditions prevalent in that period exhibited the resistance of quinua to spring frosts, furthermore, the evaluation of advanced lines from the (NGB) showed high variability regarding to morphological, agronomic and seed quality characters which Hill allow us to advance in the search for superior quinua lines

  15. Effects of collisions on linear and non-linear spectroscopic line shapes

    International Nuclear Information System (INIS)

    Berman, P.R.

    1978-01-01

    A fundamental physical problem is the determination of atom-atom, atom-molecule and molecule-molecule differential and total scattering cross sections. In this work, a technique for studying atomic and molecular collisions using spectroscopic line shape analysis is discussed. Collisions occurring within an atomic or molecular sample influence the sample's absorptive or emissive properties. Consequently the line shapes associated with the linear or non-linear absorption of external fields by an atomic system reflect the collisional processes occurring in the gas. Explicit line shape expressions are derived characterizing linear or saturated absorption by two-or three-level 'active' atoms which are undergoing collisions with perturber atoms. The line shapes may be broadened, shifted, narrowed, or distorted as a result of collisions which may be 'phase-interrupting' or 'velocity-changing' in nature. Systematic line shape studies can be used to obtain information on both the differential and total active atom-perturber scattering cross sections. (Auth.)

  16. Modeling of hydrogen Stark line shapes with kinetic theory methods

    Science.gov (United States)

    Rosato, J.; Capes, H.; Stamm, R.

    2012-12-01

    The unified formalism for Stark line shapes is revisited and extended to non-binary interactions between an emitter and the surrounding perturbers. The accuracy of this theory is examined through comparisons with ab initio numerical simulations.

  17. Spectral line shape simulation for electron stark-broadening of ion emitters in plasmas

    International Nuclear Information System (INIS)

    Dufour, Emmanuelle; Calisti, Annette; Talin, Bernard; Gigosos, Marco A.; Gonzalez, Manuel A.; Dufty, Jim W.

    2002-01-01

    Electron broadening for ions in plasmas is investigated in the framework of a simplified semi-classical model involving an ionic emitter imbedded in an electron gas. A regularized Coulomb potential that removes the divergence at short distances is postulated for the ion-electron interaction. Line shape simulations based on Molecular Dynamics for the ion impurity and the electrons, accounting for all the correlations, are reported. Comparisons with line shapes obtained with a quasi-particle model show expected correlation effects. Through an analysis of the results with the line shape code PPP, it is inferred that the correlation effect results mainly from the microfield dynamic properties

  18. Line-shape asymmetry of water vapor absorption lines in the 720-nm wavelength region

    Science.gov (United States)

    Grossmann, Benoist E.; Browell, Edward V.

    1991-01-01

    Spectral line-shape analyses were performed for water vapor lines broadened by argon, oxygen, and xenon in the 720-nm wavelength region. A line-shape asymmetry was observed, which is attributed to statistical dependence or correlation between velocity- and state-changing collisions. The generalized (asymmetric) Galatry profile, which results from the soft-collision profile and includes correlation between velocity- and state-changing collisions, was fitted to the observed line shapes and was found to compare favorably with the observed data. The most prominent asymmetries were observed with xenon as the buffer gas.

  19. Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons

    Science.gov (United States)

    Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.

    2008-10-01

    We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.

  20. Modeling Self-Occlusions/Disocclusions in Dynamic Shape and Appearance Tracking for Obtaining Precise Shape

    KAUST Repository

    Yang, Yanchao

    2013-05-01

    We present a method to determine the precise shape of a dynamic object from video. This problem is fundamental to computer vision, and has a number of applications, for example, 3D video/cinema post-production, activity recognition and augmented reality. Current tracking algorithms that determine precise shape can be roughly divided into two categories: 1) Global statistics partitioning methods, where the shape of the object is determined by discriminating global image statistics, and 2) Joint shape and appearance matching methods, where a template of the object from the previous frame is matched to the next image. The former is limited in cases of complex object appearance and cluttered background, where global statistics cannot distinguish between the object and background. The latter is able to cope with complex appearance and a cluttered background, but is limited in cases of camera viewpoint change and object articulation, which induce self-occlusions and self-disocclusions of the object of interest. The purpose of this thesis is to model self-occlusion/disocclusion phenomena in a joint shape and appearance tracking framework. We derive a non-linear dynamic model of the object shape and appearance taking into account occlusion phenomena, which is then used to infer self-occlusions/disocclusions, shape and appearance of the object in a variational optimization framework. To ensure robustness to other unmodeled phenomena that are present in real-video sequences, the Kalman filter is used for appearance updating. Experiments show that our method, which incorporates the modeling of self-occlusion/disocclusion, increases the accuracy of shape estimation in situations of viewpoint change and articulation, and out-performs current state-of-the-art methods for shape tracking.

  1. Modern quantum kinetic theory and spectral line shapes

    International Nuclear Information System (INIS)

    Monchick, L.

    1991-01-01

    The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs

  2. Ideal Coulomb Plasma Approximation in Line Shape Models: Problematic Issues

    Directory of Open Access Journals (Sweden)

    Joel Rosato

    2014-06-01

    Full Text Available In weakly coupled plasmas, it is common to describe the microfield using a Debye model. We examine here an “artificial” ideal one-component plasma with an infinite Debye length, which has been used for the test of line shape codes. We show that the infinite Debye length assumption can lead to a misinterpretation of numerical simulations results, in particular regarding the convergence of calculations. Our discussion is done within an analytical collision operator model developed for hydrogen line shapes in near-impact regimes. When properly employed, this model can serve as a reference for testing the convergence of simulations.

  3. Modeling Self-Occlusions/Disocclusions in Dynamic Shape and Appearance Tracking for Obtaining Precise Shape

    KAUST Repository

    Yang, Yanchao

    2013-01-01

    We present a method to determine the precise shape of a dynamic object from video. This problem is fundamental to computer vision, and has a number of applications, for example, 3D video/cinema post-production, activity recognition and augmented

  4. Laser line shape and spectral density of frequency noise

    International Nuclear Information System (INIS)

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-01-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise

  5. The Effects of Different Electrode Types for Obtaining Surface Machining Shape on Shape Memory Alloy Using Electrochemical Machining

    Science.gov (United States)

    Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.

    2017-06-01

    Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.

  6. Coil extensions improve line shapes by removing field distortions

    Science.gov (United States)

    Conradi, Mark S.; Altobelli, Stephen A.; McDowell, Andrew F.

    2018-06-01

    The static magnetic susceptibility of the rf coil can substantially distort the field B0 and be a dominant source of line broadening. A scaling argument shows that this may be a particular problem in microcoil NMR. We propose coil extensions to reduce the distortion. The actual rf coil is extended to a much longer overall length by abutted coil segments that do not carry rf current. The result is a long and nearly uniform sheath of copper wire, in terms of the static susceptibility. The line shape improvement is demonstrated at 43.9 MHz and in simulation calculations.

  7. Suitable spectral line shape calculations for inertial confinement plasma diagnosis

    International Nuclear Information System (INIS)

    Lambert, D.; Louis-Jacquet, M.

    1982-09-01

    In plasma confinement experiments, the knowledge of the plasma state at the maximum compression time would be of utmost interest. For quite many experiments, this time can correspond to a stationary state during which the X emission conditions for a moderate Z element are maximum. Since this diagnosis mean deals with emission only, we need to get rid of reabsorption problems, since their calculation depends on the use of an ionization-excitation plasma model. That is the reason why we focus our attention onto the aspects of spectroscopic theory which control the low reabsorption line shapes - from high values of n - and more precisely the lesser reabsorbed parts of the line shapes - the wings instead of the center

  8. First observation of the Λ(1405) line shape in electroproduction

    Science.gov (United States)

    Lu, H. Y.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.

    2013-10-01

    We report the first observation of the line shape of the Λ(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K+Λ(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0line shape. In our fits, the line shape corresponds approximately to predictions of a two-pole meson-baryon picture of the Λ(1405), with a lower mass pole near 1368 MeV/c2 and a higher mass pole near 1423 MeV/c2. Furthermore, with increasing photon virtuality the mass distribution shifts toward the higher mass pole.

  9. Theory of direct-interband-transition line shapes based on Mori's method

    International Nuclear Information System (INIS)

    Sam Nyung Yi; Jai Yon Ryu; Ok Hee Chung; Joung Young Sug; Sang Don Choi; Yeon Choon Chung

    1987-01-01

    A theory of direct interband optical transition in the electron-phonon system is introduced on the basis of the Kubo formalism and by using Mori's method of calculation. The line shape functions are introduced in two different ways and are compared with those obtained by Choi and Chung based on Argyres and Sigel's projection technique

  10. Line shapes of atomic-candle-type Rabi resonances

    International Nuclear Information System (INIS)

    Coffer, J.G.; Camparo, J.C.; Sickmiller, B.; Presser, A.

    2002-01-01

    When atoms interact with a phase-modulated field, the probability of finding the atom in the excited-state oscillates at the second harmonic of the modulation frequency, 2ω m . The amplitude of this oscillating probability is a resonant function of the Rabi frequency Ω, and this is termed a β Rabi resonance. In this work, we examine the line shape of the β Rabi resonance both theoretically and experimentally. We find that a small-signal theory of the β-Rabi-resonance condition captures much of the line shape's character, and, in particular, that the resonance's 'line Q' (i.e., 2δΩ 1/2 /Ω) is proportional to the modulation frequency. This result can be applied to the atomic candle, where β Rabi resonances are employed to stabilize field strength. Considering our results in the context of developing an optical atomic candle, we find that a free-running diode laser's intensity noise could be improved by orders of magnitude using the atomic candle concept

  11. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  12. NMRKIN: Simulating line shapes from two-dimensional spectra of proteins upon ligand binding

    International Nuclear Information System (INIS)

    Guenther, Ulrich L.; Schaffhausen, Brian

    2002-01-01

    The analysis of the shape of signals in NMR spectra is a powerful tool to study exchange and reaction kinetics. Line shapes in two-dimensional spectra of proteins recorded for titrations with ligands provide information about binding rates observed at individual residues. Here we describe a fast method to simulate a series of line shapes derived from two-dimensional spectra of a protein during a ligand titration. This procedure, which takes the mutual effects of two dimensions into account, has been implemented in MATLAB as an add-on to NMRLab (Guenther et al., 2000). In addition, more complex kinetic models, including sequential and parallel reactions, were simulated to demonstrate common features of more complex line shapes which could be encountered in protein-ligand interactions. As an example of this method, we describe its application to line shapes obtained for a titration of the p85 N-SH2 domain of PI3-kinase with a peptide derived from polyomavirus middle T antigen (MT)

  13. PREFACE: XXII International Conference on Spectral Line Shapes 2014

    Science.gov (United States)

    Parigger, C. G.

    2014-11-01

    The 22nd International Conference on Spectral Line Shapes (ICSLS) was convened at The University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee, USA, during June 1 to 6, 2014. A variety of topics of interest to the line shape community were addressed during invited and contributed oral and poster presentations. General categories of the ICSLS 2014 scientific contents included Astrophysics, Biomedical Physics, High and Low Temperature Plasma Physics, Magnetic Fusion Physics, Neutrals Atomic-Molecular-Optical (AMO) Physics, and Applied Physics. Research interests at UTSI and at the Center for Laser Applications (CLA) focus on Applied Physics and Plasma Physics areas such as laser-induced breakdown spectroscopy, spectroscopy with ultra-short light pulses, combustion diagnostics, to name a few. Consequently, the presentations during the conference addressed a variety of these topics. Attendance at the conference included researchers from North America, Africa, Asia and Europe, with an international representation showing 250 authors and co-authors with over 25 different citizenships, and 100 participants at the Conference. Figure 1 shows a photo of Conference attendees. The schedule included 82 contributions, 41 oral and 41 poster presentations. The 29 invited, 12 contributed oral and 41 contributed poster presentations were selected following communication with the international organizing committee members. A smart phone ''app'' was also utilized, thanks to Elsevier, to communicate electronic versions of the posters during the conference. Special thanks go to the members of the international and local committees for their work in organizing the 22nd ICSLS. In addition, thank you notes also go to the peer reviewers for the proceedings. Following the success of the IOP: Journal of Physics Conference Series selected for the 21st ICSLS publication, the proceedings papers report ongoing research activities. Papers submitted amount to 68 in number, or 83% of

  14. Toeless pulse shaping with a single delay-line network

    International Nuclear Information System (INIS)

    Tauhata, L.; Binns, D.C.

    1976-04-01

    New unipolar delay-line clippers producing negligible cancellation remnant have been developed. Near perfect clipping is achieved using a combination of several types of coaxial cable tranformers working as a phase inverter, a new pulse adder, or an impedance transformer. Only passive elements are used in the bridge network. The construction is simple and the performance is extremely stable and wide in dynamic range and frequency band width. Completely symmetrical bipolar pulses are also easily obtained using this technique

  15. On the Determination of the Blank Shape Contour for Thin Precision Parts Obtained by Stamping

    International Nuclear Information System (INIS)

    Azaouzi, M.; Delameziere, A.; Naceur, H.; Batoz, J. L.; Sibaud, D.; Belouettar, S.

    2007-01-01

    The present study deals with the 'automatic' determination of the initial blank shape contour for 3D thin metallic precision parts obtained by stamping, knowing the 3D CAD geometry of the final part (the desired product). The forming process can involve several steps presented in this paper that consists in applying a heuristic method of optimization to find out the initial blank shape of thin precision metallic part in order to obtain a final part, with a required 3D geometry (specified). The purpose of the present approach is to replace the experimental trial and error optimization method used currently, which is expensive and time consuming. The principle of the 'heuristic' optimization method is to first estimate the blank shape using the Inverse Approach, then to compensate the shape error calculated in each node of the blank contour. The 'heuristic' optimization loop is done using a precise incremental code (Abaqus Explicit or Stampack) and, the iterations loop is stopped when the shape errors are within some initially fixed tolerances. The method is tested in the case of a special stamping process where the parts are pressed in one or more steps using a manual press, without blank holder and by the mean of tools having complex shape. The sensitivities of the process parameters regarding the optimal solution are investigated

  16. Nuclear magnetic resonance line-shape analysis and determination of exchange rates

    International Nuclear Information System (INIS)

    Rao, B.D.

    1989-01-01

    The fact that chemical exchange processes occur at rates that cover a broad range and produce readily detectable effects on the spectrum is one of the attractive features of high-resolution NMR. The description of these line shapes in the presence of spin-spin coupling requires the density matrix theory which is rather complex. Analysis of the line shapes usually needs computer simulations and is capable of providing reliable information on the exchange rates as well as spectral parameters in the absence of exchange. Simplified procedures, ignoring spin-spin coupling, often result in deviations in these exchange and spectral parameters determined. A step-by-step procedure is detailed in this chapter for setting up the matrices required for computing the line shapes of exchanges involving weakly coupled spin systems on the basis of the density matrix theory without the need for a detailed understanding of the theory. A knowledge of the energy level structure and allowed transitions in the NMR spectra of the individual weakly coupled spin systems is all that is required. The procedure is amenable to numerical computation. The group of illustrative examples chosen to demonstrate the development of the computational tools cover some of the commonly encountered cases of exchange from simple systems to rather complex ones. Such exchanges occur frequently in biological molecules, especially those involving enzyme-substrate complexes. In cases where the experimental line shapes are obtained with respectable precision, and the relevant exchange processes are unambiguously identifiable, the computer simulation method of line-shape analysis is capable of providing useful and incisive information. The example of the 31P exchanges in the adenylate kinase is illustrative of this point

  17. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    International Nuclear Information System (INIS)

    Dighe, P.M.; Das, D.

    2015-01-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10 4 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors

  18. Theory of strongly saturated double-resonance line shapes in arbitrary angular momentum states of molecules

    International Nuclear Information System (INIS)

    Galbraith, H.W.; Dubs, M.; Steinfeld, J.I.

    1982-01-01

    We calculate the steady-state probe absorption line-shape function for a strongly driven, Zeeman-degenerate molecular system. The probe laser is treated to lowest order while the pump laser is dealt with to all orders. We obtain the probe line shape for the cases of parallel and perpendicular linear polarization of the two lasers. As expected, the effects of M degeneracy, as well as differences due to the relative laser polarizations, are most pronounced when Doppler broadening is not important. However, even in the presence of large Doppler broadening we find a narrowing of the population hole by including the Zeeman degeneracy and a further narrowing if perpendicular laser polarizations are used

  19. PREFACE: XXI International Conference on Spectral Line Shapes (ICSLS 2012)

    Science.gov (United States)

    Devdariani, Alexander Z.

    2012-12-01

    The 21st International Conference on Spectral Line Shapes, ICSLS, was held in the historic main building of St Petersburg State University (St. Petersburg, Russia) on 3-9 June 2012. The event continued the tradition started in 1978 in Meudon Observatory in Paris. Representatives of line shape physics have since met every two years in different locations in Europe and North America. The most recent events were held in St John's, Newfoundland, Canada (2010), Valladolid, Spain (2008), and Auburn, AL (USA). Traditionally, the conferences consider experimental and theoretical issues of studying spectral line shapes, diagnostic utilization of spectral line profiles observed in absorption, emission or scattering of electromagnetic radiation by atoms, molecules, and clusters in different environments, including neutral environments, laboratory low and fusion plasmas, astrophysical conditions, and planetary atmospheres. The Conference was attended by over 100 professionals from Europe, Asia, America, Africa and New Zealand. The conference program was put together in such a way so as to exclude any parallel sessions. Five afternoon sessions featured 19 invited talks and 20 oral contributions, and two evening sessions offered 61 poster presentations, including post-deadline posters. This setup allowed for a relaxed and unhurried discussion of results and facilitated productive networking. The invited talks were selected by recommendation of members of the International Scientific Committee. The Organizers would like to thank all the members of the International Scientific Committee for their proposals on the agenda and their valuable advice. When considering candidates for oral contributions, the organizers took into account the suggestions and preferences of potential conference participants. When selecting the theses of poster presentations, the organizers focused on the topics in line with the theme of the conference and studies with well-formulated results. It must be

  20. The Number of Neutrinos and the Z Line Shape

    CERN Document Server

    Blondel, Alain

    2016-01-01

    The Standard Theory can fit any number of fermion families, as long as the number of leptons and quark families are the same. At the time of the conception of LEP, the number of such families was unknown, and it was feared that the Z resonance would be washed out by decaying into so many families of neutrinos! It took only a few weeks in the fall of 1989 to determine that the number is three. The next six years (from 1990 to 1995) were largely devoted to the accurate determination of the Z line shape, with a precision that outperformed the most optimistic expectations by a factor of 10. The tale of these measurements is a bona fide mystery novel, the precession of electrons being strangely perturbed by natural phenomena, such as tides, rain, hydroelectric power, fast trains, not to mention vertical electrostatic separators. The number hidden in the loops of this treasure hunt was 179, the first estimate of the mass of the top quark; then, once that was found, where predicted, the next number was close to zero...

  1. CdTe reflection anisotropy line shape fitting

    International Nuclear Information System (INIS)

    Molina-Contreras, J.R.

    2010-01-01

    In this paper, an empirical novel plane-wave time dependent ensemble is introduced to fit the RA, the reflectance (R) and the imaginary part of the dielectric function oscillation measured around the E 1 and E 1 + Δ 1 transition region in II-VI semiconductors. By applying the new plane-wave time dependent ensemble to the measured spectrum for a (0 0 1) oriented CdTe undoped commercial wafer, crystallized in a zinc-blende structure, a very good agreement was found between the measured spectrum and the fitting. In addition to this, the reliability of the plane-wave time dependent ensemble was probed, by comparing the results with the calculated fitting in terms of a Fourier series and in terms of a six-order polynomial fit. Our analysis suggests, that the experimental oscillation in the line shape of the RA cannot be fitted with a Fourier series using harmonics multiples of the number which dominates the measured RA spectra in the argument of the plane-wave ensemble.

  2. Fracture behaviour of Cu-Al-Ni shape memory alloys obtained by powder metallurgy

    International Nuclear Information System (INIS)

    Rodriguez, P. P.; Perez-Saez, R. B.; Recarte, V.; San Juan, J.M.; Ruano, O. A.; No, M. L.

    2001-01-01

    Polycrystalline Cu-Al-Ni shape memory alloys have been scarcely employed for technological applications due to their high brittleness. The development of a new elaboration technique based on powder metallurgy has recently overcome this problem, through the improvement of the ductility of the produced alloys without affecting its shape memory properties. The fracture behaviour of an alloy obtained using the elaboration technique has been studied by means of Scanning Electron Microscopy and mechanical testing. The results show a ductile fracture with a maximum strain close to 13%, which is the best fracture behaviour obtained for Cu-Al-Ni polycrystals. The microstructure of such alloys ha been studied by means of Transmission Electron Microscopy, showing a poligonyzed structure in which martensite plated passing through the subboundaries easily. (Author) 19 refs

  3. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    International Nuclear Information System (INIS)

    Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés

    2015-01-01

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions

  4. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co [Department of Physics, Universidad Nacional de Colombia, Bogota (Colombia); Arango, Carlos A. [Department of Chemical Sciences, Universidad Icesi, Cali (Colombia); Reyes, Andrés [Department of Chemistry, Universidad Nacional de Colombia, Bogota (Colombia)

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  5. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    Directory of Open Access Journals (Sweden)

    Martina Gerken

    2013-06-01

    Full Text Available Multiferroic composite magnetoelectric (ME sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line

  6. Shape of the Hα emission line in non resonant charge exchange in hydrogen plasmas

    International Nuclear Information System (INIS)

    Susino Bueno, A.; Zurro Hernandez, B.

    1977-01-01

    The Hα line shape emitted from a maxwellian hydrogen plasma and produced by non resonant change exchange has been calculated. Its explicit shape depends on the ion temperature, on background neutral energy and on the relative shape of the collision cross section. A comparison between theoretical and experimental shapes of the Hα line is carried out to check the model and to deduce the ion plasma temperature. (author) [es

  7. Stochastic theory of relaxation and collisional broadening of spectral line shapes

    International Nuclear Information System (INIS)

    Faid, K.

    1986-01-01

    A complete stochastic theory of relaxation is developed in terms of a homogeneous equation for the averaged density matrix of a system immersed in a thermal bath. This theory is then used as the basis of a new stochastic approach to the phenomenon of collisional broadening of spectral line shapes. Single-photon and multiphoton processes are studied. The features of a line shape are linked by simple expressions to the statistical properties of a stochastic hermitian Hamiltonian. The ordinary line shape predicted by Kubo's approach is generalized. The present approach predicts broadening as well as asymmetry and shift. A representation of line shapes in multiphoton processes by diagrams is also developed

  8. Electromagnetically induced transparency line shapes for large probe fields and optically thick media

    International Nuclear Information System (INIS)

    Pack, M. V.; Camacho, R. M.; Howell, J. C.

    2007-01-01

    We calculate the line shape and linewidths for electromagnetically induced transparency (EIT) in optically thick, Doppler broadened media (buffer gasses are also considered). In generalizing the definition of the EIT linewidth to optically thick media, we find two different linewidth definitions apply depending on whether the experiment is pulsed or continuous wave (cw). Using the cw definition for the EIT line shape we derive analytic expressions describing the linewidth as a function of optical depth. We also review the EIT line shapes in optically thin media and provide physical arguments for how the line shapes change as a function of various parameters

  9. Obtaining the Bunch Shape in a Linac from Beam Spectrum Measurements

    International Nuclear Information System (INIS)

    Bane, Karl LF

    1999-01-01

    In linacs with high single-bunch charge, and tight tolerances for energy spread and emittance growth, controlling the short-range wakefield effects becomes extremely important. The effects of the wakefields, in turn, depend on the bunch length and also on the bunch shape. It was shown in the linac of the Stanford Linear Collider (SLC), for example, that by shaping the bunch, the final rms energy spread could be greatly reduced, compared to for the standard Gaussian bunch shape[1]. Therefore, in machines with high single-bunch charge, a method of measuring bunch shape can be an important beam diagnostic. In a linac with low single-bunch charge, the longitudinal bunch shape can be obtained relatively easily from a single measurement of the beam's final energy spectrum, provided that the final to initial energy ratio is large. One merely shifts the average phase of the beam, so that it rides off-crest sufficiently to induce an energy variation that is monotonic with longitudinal position. Then, by knowing the initial and final energies, the rf wave number, and the average beam phase, one can directly map the spectrum into the bunch shape. In a linac with high single-bunch charge, however, due to the effect of the longitudinal wakefield, this method either does not work at all, or it requires such a large shift in beam phase as to become impractical. In earlier work[2],[3] it was shown that, even when wakefields are important, if one measures the final beam spectrum for two different (properly chosen) values of beam phase, then one can again obtain the bunch shape, and--as a by-product--also the form of the wakefield induced voltage; this method was then illustrated using data from the linac of the SLC. These SLC measurements, however, had been performed with the machine in a special configuration, where the current was low; in addition, the noise the data was low and the measured spectra were smooth distributions. Under normal SLC conditions, however, the currents

  10. Analysis of Hα(Dα) Line Shape Xu Wei & Li Yan

    Indian Academy of Sciences (India)

    Abstract. The particles energy distribution is derived directly from the Hα(Dα) line shape, which is measured by two sets of OMA. The dissociative excitation of molecular is dominating when the local elec- tron temperature is >10eV. The Dα line shape is also simulated by the Monte–Carlo method, the molecular dissociation ...

  11. Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications

    DEFF Research Database (Denmark)

    Stadler, Robert; Markussen, Troels

    2011-01-01

    Asymmetric line shapes can occur in the transmission function describing electron transport in the vicinity of a minimum caused by quantum interference effects. Such asymmetry can be used to increase the thermoelectric efficiency of molecular junctions. So far, however, asymmetric line shapes hav...... calculations for a variety of t-stub molecules and also address their suitability for thermoelectric applications....

  12. Techniques for obtaining velocity distributions of atoms or ions from Doppler-broadened spectral line profiles

    International Nuclear Information System (INIS)

    Moran, T.G.

    1986-12-01

    Analysis of the doppler-broadened profiles of spectral lines radiated by atoms or ions in plasmas yields information about their velocity distributions. Researchers have analysed profiles of lines radiated by atoms in isotropic velocity distributions in several ways, one being the inversion of the integral equation which relates the velocity distribution to the line profile. This inversion formula was derived for a separate application and was given to within an arbitrary multiplicative constant. This paper presents a new derivation which obtains the inversion exactly, using a method which is easily generalized for determination of anisotropic velocity distribution functions. The technique to obtain an anisotropic velocity distribution function from line profiles measured at different angles is outlined

  13. Precise predictions of H2O line shapes over a wide pressure range using simulations corrected by a single measurement

    Science.gov (United States)

    Ngo, N. H.; Nguyen, H. T.; Tran, H.

    2018-03-01

    In this work, we show that precise predictions of the shapes of H2O rovibrational lines broadened by N2, over a wide pressure range, can be made using simulations corrected by a single measurement. For that, we use the partially-correlated speed-dependent Keilson-Storer (pcsdKS) model whose parameters are deduced from molecular dynamics simulations and semi-classical calculations. This model takes into account the collision-induced velocity-changes effects, the speed dependences of the collisional line width and shift as well as the correlation between velocity and internal-state changes. For each considered transition, the model is corrected by using a parameter deduced from its broadening coefficient measured for a single pressure. The corrected-pcsdKS model is then used to simulate spectra for a wide pressure range. Direct comparisons of the corrected-pcsdKS calculated and measured spectra of 5 rovibrational lines of H2O for various pressures, from 0.1 to 1.2 atm, show very good agreements. Their maximum differences are in most cases well below 1%, much smaller than residuals obtained when fitting the measurements with the Voigt line shape. This shows that the present procedure can be used to predict H2O line shapes for various pressure conditions and thus the simulated spectra can be used to deduce the refined line-shape parameters to complete spectroscopic databases, in the absence of relevant experimental values.

  14. Line width and line shape analysis in the inductively coupled plasma by high resolution Fourier transform spectrometry

    International Nuclear Information System (INIS)

    Faires, L.M.; Palmer, B.A.; Brault, J.W.

    1984-01-01

    High resolution Fourier transform spectrometry has been used to perform line width and line shape analysis of eighty-one iron I emision lines in the spectral range 290 to 390nm originating in the normal analytical zone of an inductively coupled plasma. Computer programs using non-linear least squares fitting techniques for line shape analysis were applied to the fully resolved spectra to determine Gaussian and Lorentzian components of the total observed line width. The effect of noise in the spectrum on the precision of the line fitting technique was assessed, and the importance of signal to noise ratio for line shape analysis is discussed. Translational (Doppler) temperatures were calculated from the Gaussian components of the line width and were found to be on the order of 6300 0 K. The excitation temperature of iron I was also determined from the same spectral data by the spectroscopic slope method based on the Einstein-Boltzmann expression for spectral intensity and was found to be on the order of 4700 0 K. 31 references

  15. Shape of the nuclear magnetic resonance line in anisotropic superconductors with an irregular vortex lattice

    International Nuclear Information System (INIS)

    Minkin, A.V.; Tsarevskij, S.L.

    2006-01-01

    For high-temperature superconductors the shape of a NMR spectrum line is built regarding for variation of inhomogeneity of irregular vortex lattice magnetic field near superconductor surface. It is shown that the shape of a NMR line is not simply widened but noticeably varies depending on the degree of irregularity of a superconductor vortex lattice. This variation is associated with a local symmetry decrease in an irregular vortex lattice of the superconductor. Taking into account these circumstances may considerably change conclusions about the type of a vortex lattice and superconductor parameters which are commonly gained from NMR line shape analysis [ru

  16. Shape effect in FMR of Ni-Co-Mn-In layers obtained by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Dubiel Łukasz

    2017-01-01

    Full Text Available We have studied thin layers of Ni50-xCoxMn50-yIny alloys on (001 Si substrate obtained by pulsed laser deposition method (PLD using YAG Nd3+ laser operating at second harmonic. The target was bulk Ni50-xCoxMn50-yIny (x = 5, y = 14.5 alloy prepared by induction melting of pure elements under argon atmosphere. Magnetic properties were investigated on Bruker X band EPR spectrometer (9.36 GHz at room temperature. The magnetic resonance spectrum consists of non-symmetric lines with resonance field within wide field range (2500-4800 Gs depending on the orientation of the static field in the plane perpendicular to the layer. Calculated spectroscopic splitting factor g = 2.09.

  17. Determination of the meniscus shape of a negative ion beam from an experimentally obtained beam profile

    Science.gov (United States)

    Ichikawa, M.; Kojima, A.; Chitarin, G.; Agostinetti, P.; Aprile, D.; Baltador, C.; Barbisan, M.; Delogu, R.; Hiratsuka, J.; Marconato, N.; Nishikiori, R.; Pimazzoni, A.; Sartori, E.; Serianni, G.; Tobari, H.; Umeda, N.; Veltri, P.; Watanabe, K.; Yoshida, M.; Antoni, V.; Kashiwagi, M.

    2017-08-01

    In order to understand the physics mechanism of a negative ion extraction in negative ion sources, an emission surface of the negative ions around an aperture at a plasma grid, so-called a meniscus, has been analyzed by an inverse calculation of the negative ion trajectory in a two dimensional beam analysis code. In this method, the meniscus is defined as the final position of the negative ion trajectories which are inversely calculated from the measured beam profile to the plasma grid. In a case of the volume-produced negative ions, the calculated meniscus by the inverse calculation was similar to that obtained in conventional beam simulation codes for positive ion extractions such as BEAMORBT and SLACCAD. The negative ion current density was uniform along the meniscus. This indicates that the negative ions produced in the plasma are transported to the plasma grid uniformly as considered in the transportation of the positive ions. However, in a surface production case of negative ions, where the negative ions are generated near the plasma grid with lower work function by seeding cesium, the current density in the peripheral region of the meniscus close to the plasma grid surface was estimated to be 2 times larger than the center region, which suggested that the extraction process of the surface-produced negative ions was much different with that for the positive ions. Because this non-uniform profile of the current density made the meniscus shape strongly concave, the beam extracted from the peripheral region could have a large divergence angle, which might be one of origins of so-called beam halo. This is the first results of the determination of the meniscus based on the experiment, which is useful to improve the prediction of the meniscus shape and heat loads based on the beam trajectories including beam halo.

  18. From global to local statistical shape priors novel methods to obtain accurate reconstruction results with a limited amount of training shapes

    CERN Document Server

    Last, Carsten

    2017-01-01

    This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.

  19. Resistively detected NMR line shapes in a quasi-one-dimensional electron system

    Science.gov (United States)

    Fauzi, M. H.; Singha, A.; Sahdan, M. F.; Takahashi, M.; Sato, K.; Nagase, K.; Muralidharan, B.; Hirayama, Y.

    2017-06-01

    We observe variation in the resistively detected nuclear magnetic resonance (RDNMR) line shapes in quantum Hall breakdown. The breakdown occurs locally in a gate-defined quantum point contact (QPC) region. Of particular interest is the observation of a dispersive line shape occurring when the bulk two-dimensional electron gas (2DEG) set to νb=2 and the QPC filling factor to the vicinity of νQPC=1 , strikingly resemble the dispersive line shape observed on a 2D quantum Hall state. This previously unobserved line shape in a QPC points to a simultaneous occurrence of two hyperfine-mediated spin flip-flop processes within the QPC. Those events give rise to two different sets of nuclei polarized in the opposite direction and positioned at a separate region with different degrees of electronic spin polarization.

  20. Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures

    Directory of Open Access Journals (Sweden)

    Rosa Maria da Rocha

    2005-06-01

    Full Text Available Research in the preparation of ceramics from polymeric precursors is giving rise to increased interest in ceramic technology because it allows the use of several promising polymer forming techniques. In this work ceramic composite pieces were obtained by pyrolysis of a compacted mixture of a polysiloxane resin and alumina/silicon powder. The mixture consists of 60 vol% of the polymer phase and 40 vol% of the filler in a 1:1 ratio for alumina/silicon, which was hot pressed to crosslink the polymer, thus forming a compact body. This green body was trimmed into different geometries and pyrolised in nitrogen atmosphere at temperatures up to 1600 °C. X-ray diffraction analysis indicated the formation of phases such as mullite and Si2ON2 during pyrolysis, that result from reactions between fillers, polymer decomposition products and nitrogen atmosphere. The porosity was found to be less than 20% and the mass loss around 10%. The complex geometry was maintained after pyrolysis and shrinkage was approximately 8%, proving pyrolisis to be a suitable process to form near-net-shaped bulk ceramic components.

  1. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.

    2012-02-02

    This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes. © 2012 Springer Science+Business Media B.V.

  2. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.; Berger, M. A.

    2012-01-01

    of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions

  3. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    International Nuclear Information System (INIS)

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-01-01

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  4. Raman study of pressure effects on frequencies and isotropic line shapes in liquid acetone

    International Nuclear Information System (INIS)

    Schindler, W.; Sharko, P.T.; Jonas, J.

    1982-01-01

    The Raman line shape of the symmetric C = O stretching band at 1710 cm -1 has been measured in liquid acetone as a function of pressure from 1 bar to 4 kbar over the temperature range from -25 to 50 0 C. The experimental data obtained show several unusual features. First, there is a frequency difference of about 7 cm -1 between the polarized and depolarized components. Sceond, the isotropic linewidth GAMMA/sub iso/ decreases with increasing density, in contrast to the opposite trend usually found in other liquids. Third, the second moment M 2 (V) of the isotropic band appears to decrease with increasing density. The consideration of the experimental linewidth and frequency data leads to a conclusion that intermolecular dipole--dipole coupling between polar acetone molecules are responsible for the observed unusual behavior of , GAMMA/sub iso/, and M 2

  5. Dependency of non-homogeneity energy dispersion on absorbance line-shape of luminescent polymers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Castanheira da, E-mail: mar_castanheira@yahoo.com.br [Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, CP 500, 69915-900 Rio Branco, AC (Brazil); Instituto de Física, Universidade Federal de Uberlândia, CP 593, 38400-902 Uberlândia, MG (Brazil); Santos Silva, H.; Silva, R.A.; Marletta, Alexandre [Instituto de Física, Universidade Federal de Uberlândia, CP 593, 38400-902 Uberlândia, MG (Brazil)

    2013-01-16

    In this paper, we study the importance of the non-homogeneity energy dispersion on absorption line-shape of luminescent polymers. The optical transition probability was calculated based on the molecular exciton model, Franck–Condon states, Gaussian distribution of non-entangled chains with conjugate degree n, semi-empirical parameterization of energy gap, electric dipole moment, and electron-vibrational mode coupling. Based on the approach of the energy gap functional dependence 1/n, the inclusion of the non-homogeneity energy dispersion 1/n{sup 2} is essential to obtain good experimental data agreement, mainly, where the absorption spectra display peaks width of about 65 meV. For unresolved absorption spectra, such as those observed for a large number of conjugated polymers processed via spin-coating technique, for example, the non-homogeneity energy dispersion parameterization is not significant. Results were supported by the application of the model for poly (p-phenylene vinylene) films.

  6. Spectral line shapes in linear absorption and two-dimensional spectroscopy with skewed frequency distributions

    NARCIS (Netherlands)

    Farag, Marwa H.; Hoenders, Bernhard J.; Knoester, Jasper; Jansen, Thomas L. C.

    2017-01-01

    The effect of Gaussian dynamics on the line shapes in linear absorption and two-dimensional correlation spectroscopy is well understood as the second-order cumulant expansion provides exact spectra. Gaussian solvent dynamics can be well analyzed using slope line analysis of two-dimensional

  7. Obtaining macroscopic quantities for the contact line problem from Density Functional Theory using asymptotic methods

    Science.gov (United States)

    Sibley, David; Nold, Andreas; Kalliadasis, Serafim

    2015-11-01

    Density Functional Theory (DFT), a statistical mechanics of fluids approach, captures microscopic details of the fluid density structure in the vicinity of contact lines, as seen in computations in our recent study. Contact lines describe the location where interfaces between two fluids meet solid substrates, and have stimulated a wealth of research due to both their ubiquity in nature and technological applications and also due to their rich multiscale behaviour. Whilst progress can be made computationally to capture the microscopic to mesoscopic structure from DFT, complete analytical results to fully bridge to the macroscale are lacking. In this work, we describe our efforts to bring asymptotic methods to DFT to obtain results for contact angles and other macroscopic quantities in various parameter regimes. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.

  8. Autism as a contingency-shaped disorder of verbal behavior: Evidence obtained and evidence needed.

    Science.gov (United States)

    Hixson, Michael D

    2004-01-01

    Drash and Tudor's argument that autism is a contingency-shaped disorder of verbal behavior is logical and consistent with behavioral principles, but the argument's premises have no direct empirical support and some conflicting evidence. The quantity and quality of research needed to support such a theory is compared to that found in the area of antisocial behavior in children, which has considerable evidence for a contingency-shaped etiology. Even if autism is largely inherited, this does not weaken the necessity or importance of behavioral intervention. Drash and Tudor's paper may serve a useful function by outlining areas in need of further study because a great deal more research is needed on how the early environment shapes the language, cognitive, and behavioral development of children.

  9. Heuristics comparison for u-shaped assembly line balancing in the apparel factory

    Directory of Open Access Journals (Sweden)

    Nuchsara Kriengkorakot

    2014-06-01

    Full Text Available In recent year, many industries have adopted a Just-in-time (JIT approach to manufacturing. One of the important changes resulting from JIT implementation is the replacement of the traditional straight lines with Ushaped assembly lines. The important characteristic of these new configurations is that multiskilled workers perform various tasks of different stations along the production line. This research is to improve the assembly line balancing in apparel factory in case study of T-shirt style 53287. The efficiency of production line was 55.48%, the factory balanced line with the traditional method in straight line. Then, the u-shaped assembly line balancing problem (UALBP is to be performed instead of straight line. By using the heuristics of Maximum Task Time, Minimum Task Time, Maximum Ranked Positional Weight (RPWmax and Greedy Randomized to determine the optimal solutions related to the number of stations and line efficiency. The results indicate that two heuristics have given the good solution which have produced by the use of Maximum Task Time and Greedy Randomized. The minimum number of stations have reduced from 17 stations to 11 stations in UALB and the line efficiency was increased from 55.48% to 85.75%. The U-line configuration frequently improves the line efficiency and has fewer work stations compared to the traditional lines.

  10. Linear headache: a recurrent unilateral head pain circumscribed in a line-shaped area.

    Science.gov (United States)

    Wang, Yu; Tian, Miao-Miao; Wang, Xian-Hong; Zhu, Xiao-Qun; Liu, Ying; Lu, Ya-Nan; Pan, Qing-Qing

    2014-06-26

    A headache circumscribed in a line-shaped area but not confined to the territory of one particular nerve had ever been described in Epicrania Fugax (EF) of which the head pain is moving and ultrashort. In a 25-month period from Feb 2012 to Mar 2014, we encountered 12 patients with a paroxysmal motionless head pain restricted in a linear trajectory. The head pain trajectory was similar to that of EF, but its all other features obviously different from those of EF. We named this distinctive but undescribed type of headache linear headache (LH). A detailed clinical feature of the headache was obtained in all cases to differentiate with EF, trigeminal autonomic cephalalgias (TACs) and cranial neuralgia. Similarities and differences in clinical features were compared between LH and migraine. The twelve LH patients (mean age 43.9 ± 12.2) complained of a recurrent, moderate to severe, distending (n = 9), pressure-like (n = 3) or pulsating (n = 3) pain within a strictly unilateral line-shaped area. The painful line is distributed from occipital or occipitocervical region to the ipsilateral eye (n = 5), forehead (n = 6) or parietal region (n = 1). The pain line has a trajecory similar to that of EF but no characteristics of moving. The headache duration would be ranged from five minutes to three days, but usually from half day to one day in most cases (n = 8). Six patients had the accompaniment of nausea with or without vomiting, and two patients had the accompaniment of ipsilateral dizziness. The attacks could be either spontaneous (n = 10) or triggered by noise, depression and resting after physical activity (n = 1), or by stress and staying up late (n = 1). The frequency of attacks was variable. The patients had well response to flunarizine, sodium valproate and amitriptyline but not to carbamazepine or oxcarbazepine. LH is different from EF, trigeminal autonomic cephalalgias (TACs) and cranial neuralgia, but it had couple of features similar to that of migraine. The

  11. Structure, shape, and evolution of radiatively accelerated QSO emission-line clouds

    International Nuclear Information System (INIS)

    Blumenthal, G.R.; Mathews, W.G.

    1979-01-01

    The possibility that the broad emission-line regions of QSOs and active galactic nuclei are formed by a multitude of small clouds which are radiatively accelerated is discussed. Although this model is by no means certain at present, it has four virtues: (1) Observed emission-line widths can be produced with observationally allowed electron densities, UV luminosities, and ionization levels. (2) The acceleration force is coherent in each cloud are found. (3) Reasonable line profiles can result for all emission lines. (4) Photoionization of hydrogen accounts for both heating and acceleration of the emission-line gas. A self-consistent model is developed for the structure, shape, and evolution of radiatively accelerated clouds. The shape varies with cloud mass, and two distinct types of clouds. Fully ionized clouds of very low mass approach a nearly spherical shape. However, all clouds having masses greater than some critical mass adopt a ''pancake'' shape. The condition for constant cloud mass in the cloud frame is shown to be equivalent to the equation of motion of a cloud in the rest frame of the QSO. The emission-line profiles can be sensitive to radial variations in the properties of the intercloud medium, and those properties that correspond to observed profiles are discussed. Finally, the covering factor of a system of pancake clouds is estimated along with the total number of clouds required--approximately 10 14 clouds in each QSO

  12. Design of Miniaturized 10dB Wideband Branch Line Coupler Using Dual and T-Shape Transmission Lines

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2018-04-01

    Full Text Available This paper presents a design mechanism of miniaturized wideband branch line coupler (BLC with loose coupling of 10 dB. Dual transmission lines are used as a feed network which provides a size reduction of 32% with a fractional bandwidth (FBW of 60% for 10±0.5 dB coupling but return loss performance is found to be poor in the operating band. For further improvement of return loss performance as well as for size reduction of the BLC, a T- shape transmission lines are used instead of series quarter wavelength transmission lines, and hence the overall size reduction of around 44% with FBW of 50.4% is achieved. The return loss and isolation performance is found to be les than 15 dB in the entire operating band (2.5–4.1 GHz with respect to design frequency 3G Hz. The proposed BLC is analyzed, fabricated and tested.

  13. Transformation lines in an Fe-Cr-Ni-Mn-Si polycrystalline shape memory alloy

    International Nuclear Information System (INIS)

    Tanaka, Kikuaki; Hayashi, Toshimitsu; Fischer, F.D.; Buchmayr, B.

    1994-01-01

    Transformation lines, the martensite/austenite start and finish conditions in the stress-temperature plane, are determined in an Fe-Cr-Ni-Mn-Si polycrystalline shape memory alloy with two different experimental procedures. The transformation lines are shown to be almost linear with nearly the same slope. The martensitic transformation zone and the reverse transformation zone do not coincide, and the reverse transformation zone is very wide; T Af -T As ∼ 180 K. The strong dependence on the preloading of the transformation lines, especially of the reverse transformation lines, is examined. (orig.)

  14. Drifter technique: a new method to obtain metaphases in Hep-2 cell line cultures

    Directory of Open Access Journals (Sweden)

    Eleonidas Moura Lima

    2005-07-01

    Full Text Available The Hep-2 cell line is derived from laryngeal carcinoma cells and is often utilized as a model in carcinogenesis and mutagenesis tests. To evaluate the proliferative potential of this line, we developed a cytogenetic methodology (drifter technique to obtain metaphases from cells that loose cellular adhesion when they underwent mitosis in culture. By this procedure, 2000 cells were counted, resulting in a mitotic index (MI of 22.2%. Although this MI was not statistically different from the one obtained using either a classical cytogenetic method or a cell synchronization technique, the drifter technique has the advantage of not requiring the use of some reagents for the obtention of metaphases and also of diminishing the consumption of maintenance reagents for this cell line.A linhagem celular Hep-2 é formada por células de carcinoma da laringe e é muito utilizada em modelos de carcinogênese e mutagenêse. Para avaliar o potencial proliferativo desta linhagem, desenvolvemos uma metodologia citogenética (técnica do sobrenadante para obtenção de metáfases a partir de células que, ao entrarem em mitose, perdem adesão celular, ficando em suspensão no meio de cultura. Através deste procedimento, foram contadas 2000 células, correspondendo a um índice mitótico (IM de 22.2% . Apesar de o IM obtido por esta técnica não ter sido estatisticamente diferente do IM obtido por outras metodologias citogenéticas clássicas, a técnica do sobrenadante é vantajosa porque elimina o uso de alguns reagentes utilizados na obtenção de metáfases e também diminui o consumo de reagentes de manutenção desta linhagem.

  15. Auxiliary collimating device for obtaining irradiation fields of any shape for high energy radiotherapy apparatus

    International Nuclear Information System (INIS)

    Piret, P.; Fraikin, H.; Hubert, A.

    1976-01-01

    An auxiliary collimator is added to the main collimator of a radiotherapy apparatus and comprises a master-container filled with mercury and a localizing container containing a block of nonabsorbent material having a predetermined shape; means being provided for automatically positioning these containers with respect to the main collimator and for allowing the mercury to enter the localizing container when once it has taken its working position

  16. In-Situ Three-Dimensional Shape Rendering from Strain Values Obtained Through Optical Fiber Sensors

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    A method and system for rendering the shape of a multi-core optical fiber or multi-fiber bundle in three-dimensional space in real time based on measured fiber strain data. Three optical fiber cores arc arranged in parallel at 120.degree. intervals about a central axis. A series of longitudinally co-located strain sensor triplets, typically fiber Bragg gratings, are positioned along the length of each fiber at known intervals. A tunable laser interrogates the sensors to detect strain on the fiber cores. Software determines the strain magnitude (.DELTA.L/L) for each fiber at a given triplet, but then applies beam theory to calculate curvature, beading angle and torsion of the fiber bundle, and from there it determines the shape of the fiber in s Cartesian coordinate system by solving a series of ordinary differential equations expanded from the Frenet-Serrat equations. This approach eliminates the need for computationally time-intensive curve-tilting and allows the three-dimensional shape of the optical fiber assembly to be displayed in real-time.

  17. Line Shape Modeling for the Diagnostic of the Electron Density in a Corona Discharge

    Directory of Open Access Journals (Sweden)

    Joël Rosato

    2017-09-01

    Full Text Available We present an analysis of spectra observed in a corona discharge designed for the study of dielectrics in electrical engineering. The medium is a gas of helium and the discharge was performed at the vicinity of a tip electrode under high voltage. The shape of helium lines is dominated by the Stark broadening due to the plasma microfield. Using a computer simulation method, we examine the sensitivity of the He 492 nm line shape to the electron density. Our results indicate the possibility of a density diagnostic based on passive spectroscopy. The influence of collisional broadening due to interactions between the emitters and neutrals is discussed.

  18. Effect of weld line shape on material flow during friction stir welding of aluminum and steel

    International Nuclear Information System (INIS)

    Yasui, Toshiaki; Ando, Naoyuki; Morinaka, Shinpei; Mizushima, Hiroki; Fukumoto, Masahiro

    2014-01-01

    The effect of weld line shape on material flow during the friction stir welding of aluminum and steel was investigated. The material flow velocity was evaluated with simulated experiments using plasticine as the simulant material. The validity of the simulated experiments was verified by the marker material experiments on aluminum. The circumferential velocity of material around the probe increased with the depth from the weld surface. The effect is significant in cases where the advancing side is located on the outside of curve and those with higher curvature. Thus, there is an influence of weld line shape on material flow

  19. Experimental verification of the line-shape distortion in resonance Auger spectra

    International Nuclear Information System (INIS)

    Aksela, S.; Kukk, E.; Aksela, H.; Svensson, S.

    1995-01-01

    When the mean excitation energy and the width of a broad photon band are varied the Kr 3d 5/2 -1 5p→4p -2 5p resonance Auger electron lines show strong asymmetry and their average kinetic energies shift. Even extra peaks appear. Our results demonstrate experimentally, for the first time, that the incident photon energy distribution has very crucial importance on the resonance Auger line shape and thus on the reliable data analysis of complicated Auger spectra

  20. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  1. Distribution of smile line, gingival angle and tooth shape among the Saudi Arabian subpopulation and their association with gingival biotype.

    Science.gov (United States)

    AlQahtani, Nabeeh A; Haralur, Satheesh B; AlMaqbol, Mohammad; AlMufarrij, Ali Jubran; Al Dera, Ahmed Ali; Al-Qarni, Mohammed

    2016-04-01

    To determine the occurrence of smile line and maxillary tooth shape in the Saudi Arabian subpopulation, and to estimate the association between these parameters with gingival biotype. On the fulfillment of selection criteria, total 315 patients belong to Saudi Arabian ethnic group were randomly selected. Two frontal photographs of the patients were acquired. The tooth morphology, gingival angle, and smile line classification were determined with ImageJ image analyzing software. The gingival biotype was assessed by probe transparency method. The obtained data were analyzed with SPSS 19 (IBM Corporation, New York, USA) software to determine the frequency and association between other parameters and gingival biotype. Among the clinical parameters evaluated, the tapering tooth morphology (56.8%), thick gingival biotype (53%), and average smile line (57.5%) was more prevalent. The statistically significant association was found between thick gingival biotype and the square tooth, high smile line. The high gingival angle was associated with thin gingival biotype. The study results indicate the existence of an association between tooth shape, smile line, and gingival angle with gingival biotype.

  2. Centrifuge Controlled Shape Tuning of Biosynthesized Gold Nanoparticles Obtained from Plumbago zeylanica Leaf Extract.

    Science.gov (United States)

    Ankamwar, Balaprasad; Pansare, Sachin; Sur, Ujjal Kumar

    2017-02-01

    Development of cost-efficient and eco-friendly biogenic synthetic protocols for the green synthesis of biocompatible metal nanoparticles has become popular among researchers in recent years. The biogenic synthesis of these nanoparticles and their potential biomedical applications introduces the concept of nanobiotechnology, which has become the latest fascinating area of research. The lower cost and lesser side effects as compare to chemical methods of synthesis are the main advantages of biosynthesis. In the present investigation, aqueous leaf extract of Plumbago zeylanica had been used to synthesize anisotropic gold nanoparticles. The as-synthesized gold nanoparticles were centrifuged at 5000 and 10000 rpm and compared both pellets using UV-visible spectroscopy, XRD, FTIR and TEM techniques. We have studied here the effect of speed of centrifugation on the yield, shape, size as well as size distribution of as synthesized gold nanoparticles.

  3. OI Fluorescent Line Contamination in Soft X-Ray Diffuse Background Obtained with Suzaku/XIS

    OpenAIRE

    Sekiya, Norio; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Takei, Yoh

    2014-01-01

    The quantitative measurement of OVII line intensity is a powerful method for understanding the soft X-ray diffuse background. By systematically analyzing the OVII line intensity in 145 high-latitude Suzaku/XIS observations, the flux of OI fluorescent line in the XIS spectrum, contaminating the OVII line, is found to have an increasing trend with time especially after 2011. For these observations, the OVII line intensity would be overestimated unless taking into consideration the OI fluorescen...

  4. High-spin isomer in 211Rn, and the shape of the yrast line

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Fahlander, C.; Poletti, A.R.

    1981-08-01

    High spin yrast states in 211 Rn have been identified. A 61/2 - , 380 ns isomer found at 8856 keV is characterised as a core-excited configuration. The average shape of the yrast line shows a smooth behaviour with spin, in contrast to its neighbour 212 Rn. This difference is attributed to the presence of the neutron hole

  5. Deterministic Line-Shape Programming of Silicon Nanowires for Extremely Stretchable Springs and Electronics.

    Science.gov (United States)

    Xue, Zhaoguo; Sun, Mei; Dong, Taige; Tang, Zhiqiang; Zhao, Yaolong; Wang, Junzhuan; Wei, Xianlong; Yu, Linwei; Chen, Qing; Xu, Jun; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere

    2017-12-13

    Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current-voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.

  6. Intensity and shape of spectral lines from laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jamelot, G; Jaegle, P; Carillon, A; Wehenkel, C [Centre National de la Recherche Scientifique, 91 - Orsay (France); Paris-11 Univ., 91 - Orsay (France); Ecole Polytechnique, 91 - Palaiseau (France))

    1979-01-01

    In starting from spectral studies of multicharged ions in dense laser-produced plasmas, the main processes which determine the intensity and the shape of lines in the X-UV range are described. The role of radiation transfer is underlined. Intensity anomalies resulting from occurrence of population inversions are considered and a recent experiment performed for investigating such anomalies is described.

  7. Measurement of the $\\Sigma \\pi$ photoproduction line shapes near the $\\Lambda(1405)$

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, K; Adhikari, K P; Adikaram, D; Aghasyan, M; Anderson, M D; Anefalos Pereira, S; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Bellis, M; Biselli, A S; Bono, J; Boiarinov, S; Briscoe, W J; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Cole, P L; Collins, P; Crede, V; D& #x27; Angelo, A; Dashyan, N; De Sanctis, E; De Vita, R; Deur, A; Dey, B; Djalali, C; Doughty, R; Dupre, R; Egiyan, H; El Fassi, L; Eugenio, P; Fedotov, G; Fegan, S; Fersch, R; Fleming, J A; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Heddle, D; Hicks, K; Ho, D; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Keller, D; Khandaker, M; Khertarpal, P; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, A; Kubarovsky, V; Kuleshov, S V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I.J. D; Markov, N; Mayer, M; McCracken, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mirazita, M; Mineeva, T; Mokeev, V; Montgomery, R A; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Nasseripour, R; Nepali, C S; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Phelps, E; Phillips, J J; Pisano, S; Pivnyuk, N; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Protopopescu, D; Rimal, D; Ripani, M; Ritchie, B G; Rosner, G; Rossi, P; Sabatio, F; Saini, M S; Salgado, C; Schott, D; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, E S; Smith, G D; Sober, D I; Stepanyan, S S; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Tang, W; Taylor, S; Taylor, C E; Tian, Ye; Tkachenko, S; Torayev, B; Ungaro, M; Vernarsky, B; Vlassov, A V; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P

    2013-03-01

    The reaction {gamma} + p -> K{sup +} + {Sigma} + {p}i was used to determine the invariant mass distributions or "line shapes" of the {Sigma}{sup +} {pi}{sup -}, {Sigma}{sup -} {pi}{sup +} and {Sigma}{sup 0} {pi}{sup 0} final states, from threshold at 1328 MeV/c^2 through the mass range of the {Lambda}(1405) and the {Lambda}(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I=0 {Lambda}(1405), indicating the presence of substantial I=1 strength in the reaction. Background contributions to the data from the {Sigma}{sup 0}(1385) and from K* {Sigma} production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the Nkbar threshold. A best fit to all the data was obtained after including a phenomenological I=1, J{sup P} = 1/2{sup -} amplitude with a centroid at 1394\\pm20 MeV/c^2 and a second I=1 amplitude at 1413\\pm10 MeV/c^2. The centroid of the I=0 {Lambda}(1405) strength was found at the {Sigma} {pi} threshold, with the observed shape determined largely by channel-coupling, leading to an apparent overall peak near 1405 MeV/c^2.

  8. Ultrafast method of calculating the dynamic spectral line shapes for integrated modelling of plasmas

    International Nuclear Information System (INIS)

    Lisitsa, V.S.

    2009-01-01

    An ultrafast code for spectral line shape calculations is presented to be used in the integrated modelling of plasmas. The code is based on the close analogy between two mechanisms: (i) Dicke narrowing of the Doppler-broadened spectral lines and (ii) transition from static to impact regime in the Stark broadening. The analogy makes it possible to describe the dynamic Stark broadening in terms of an analytical functional of the static line shape. A comparison of new method with the widely used Frequency Fluctuating Method (FFM) developed by the Marseille University group (B. Talin, R. Stamm, et al.) shows good agreement, with the new method being faster than the standard FFM by nearly two orders of magnitude. The method proposed may significantly simplify the radiation transport modeling and opens new possibilities for integrated modeling of the edge and divertor plasma in tokamaks. (author)

  9. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Calisti, A.; Mosse, C.; Talin, B.; Lisitsa, V.

    2010-01-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  10. Optical line shape of molecular rings: Influence of correlated nondiagonal disorder

    International Nuclear Information System (INIS)

    Barvik, I.; Warns, Ch.; Reineker, P.

    2006-01-01

    We investigate the optical properties of molecular rings which are generally influenced by many kinds of static disorder. Recently, Papiz suggested that quasistatic disorder, anticorrelated between neighboring transfer integrals, plays an important role. We simulate such a disorder by slow colored dichotomic Markov processes with long-time constants for the decay of their correlation functions. The colored dichotomic Markov processes leading to transfer integral fluctuations can be uncorrelated, anticorrelated or partially correlated between nearest neighboring transfer integrals in the ring. The optical line shape of the molecular ring is modeled and investigated in dependence on the parameters of the stochastic processes. Conclusions as regards the influence of the correlation on the splitting of the optical line shape, the shift of the optical absorption maximum and the width of the optical line are drawn

  11. Evaluation of mechanical alloying to obtain Cu-Al-Nb shape memory alloy

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Amorim da Silva

    2005-06-01

    Full Text Available The technical viability of preparing a Cu-Al-Nb shape memory alloy by high energy ball milling in a planetary mill has been evaluated. The alloy Cu-13Al-2Nb (wt. (% was prepared by mixing pure elemental powders. A ball-to-powder weight ratio of 6:1 and rotation rate of 150 rpm in argon atmosphere were the main processing parameters. The milling time ranged from 1 to 65 hours. Changes in microstructure as a function of milling time were investigated, using X-ray diffraction analysis and scanning electron microscopy. To investigate the viability of producing sintered parts from milled powders, the conventional powder metallurgy route was used. The milled powders were compacted in a cylindrical die at 900 MPa. Sintering was carried out in argon atmosphere at 850 °C for 6 hours. This study has shown that high energy ball milling, combined with pressing and sintering, can be used to promote the formation of a copper-aluminum solid solution and achieve final sintered densities of 91% of the theoretical density.

  12. Design Optimization of An Axial Flow Fan Blade Considering Airfoil Shape and Stacking Line

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sang; Kim, Kwang Yong; Samad, Abdus [Inha Univ., Incheon (Korea, Republic of)

    2007-07-01

    This work presents a numerical optimization procedure for a low-speed axial flow fan blade with polynomial response surface approximation model. Reynolds-averaged Navier-Stokes equations with Shear Stress Turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. The airfoil shape as well as stacking line is modified to enhance blade total efficiency, i.e., the objective function. The design variables of blade lean, maximum thickness and location of maximum thickness are selected, and a design of experiments technique produces design points where flow analyses are performed to obtain values of the objective function. A gradient-based search algorithm is used to find the optimal design in the design space from the constructed response surface model for the objective function. As a main result, the efficiency is increased effectively by the present optimization procedure. And, it is also shown that the modification of blade lean is more effective to improve the efficiency rather than modifying blade profile.

  13. Measurement of the Σπ photoproduction line shapes near the Λ(1405)

    Science.gov (United States)

    Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bellis, M.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Collins, P.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Sanctis, E.; De Vita, R.; Deur, A.; Dey, B.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McCracken, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, S.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Torayev, B.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weygand, D. P.; Williams, M.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2013-03-01

    The reaction γ+p→K++Σ+π was used to determine the invariant mass distributions or “line shapes” of the Σ+π-, Σ-π+, and Σ0π0 final states, from threshold at 1328 MeV/c2 through the mass range of the Λ(1405) and the Λ(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95obtained after including a phenomenological I=1, JP=1/2- amplitude with a centroid at 1394±20 MeV/c2 and a second I=1 amplitude at 1413±10 MeV/c2. The centroid of the I=0 Λ(1405) strength was found at the Σπ threshold, with the observed shape determined largely by channel coupling, leading to an apparent overall peak near 1405 MeV/c2.

  14. Memory function approach to the line shape problem in collision-induced light scattering

    International Nuclear Information System (INIS)

    Balucani, U.; Tognetti, V.; Vallauri, R.

    1980-01-01

    This article mainly deals with the problem of the shape of the spectrum due to interacting pairs of atoms at low and moderate densities. A memory function approach is used which permits to obtain in a consistent way the shape of the scattered spectrum. In order to obtain 'exact' time correlation functions and spectral shapes, molecular-dynamics 'experiments' in Lennard-Jones argon at two different densities were also performed. The dipole-induced dipole (DID) polarizabilities have been used to ascertain the validity of the theoretical approach in a well-defined physical model. The theoretical shapes and correlation functions can be then directly compared with computer simulations. Finally, a comparison with the data of real experiments clarifies the relevance of other-than-DID polarizability mechanisms as far as the spectrum is concerned. (KBE)

  15. Welding lines formation in holes obtained by low pressure injection molding of ceramic parts

    Directory of Open Access Journals (Sweden)

    C. A. Costa

    Full Text Available Abstract This work presents a study to evaluate the process of producing internal holes in ceramic disks produced by low pressure injection molding (LPIM process. Two process conditions defined as pre-injection and post-injection were used to test the proposition. In the first one the pin cores that produce the holes were positioned in the cavity before the injection of the feedstock; and in the second one, the pin cores were positioned in the cavity, just after the feeding phase of the injection mold. An experimental injection mold designed and manufactured to test both processes was developed to produce ceramic disk with Ø 50 x 2 mm with four holes of Ø 5 mm, equally and radially distributed through the disk. The feedstock was composed of 86 wt% alumina (Al2O3 and 14 wt% organic vehicle based on paraffin wax. Heating and cooling systems controlled by a data acquisition system were included in the mold. The results showed that there were no welding lines with the post-injection process, proving to be an option for creating holes in the ceramic parts produced by LPIM. It was observed that best results were obtained at 58 °C mold temperature. The pins extraction temperature was about 45 °C, and the injection pressure was 170 kPa.

  16. Damage identification of beam structures using free response shapes obtained by use of a continuously scanning laser Doppler vibrometer system

    Science.gov (United States)

    Xu, Y. F.; Chen, Da-Ming; Zhu, W. D.

    2017-08-01

    Spatially dense operating deflection shapes and mode shapes can be rapidly obtained by use of a continuously scanning laser Doppler vibrometer (CSLDV) system, which sweeps its laser spot over a vibrating structure surface. This paper introduces a new type of vibration shapes called a free response shape (FRS) that can be obtained by use of a CSLDV system, and a new damage identification methodology using FRSs is developed for beam structures. An analytical expression of FRSs of a damped beam structure is derived, and FRSs from the analytical expression compare well with those from a finite element model. In the damage identification methodology, a free-response damage index (FRDI) is proposed, and damage regions can be identified near neighborhoods with consistently high values of FRDIs associated with different modes; an auxiliary FRDI is defined to assist identification of the neighborhoods. A FRDI associated with a mode consists of differences between curvatures of FRSs associated with the mode in a number of half-scan periods of a CSLDV system and those from polynomials that fit the FRSs with properly determined orders. A convergence index is proposed to determine the proper order of a polynomial fit. One advantage of the methodology is that the FRDI does not require any baseline information of an undamaged beam structure, if it is geometrically smooth and made of materials that have no stiffness and mass discontinuities. Another advantage is that FRDIs associated with multiple modes can be obtained using free response of a beam structure measured by a CSLDV system in one scan. The number of half-scan periods for calculation of the FRDI associated with a mode can be determined by use of the short-time Fourier transform. The proposed methodology was numerically and experimentally applied to identify damage in beam structures; effects of the scan frequency of a CSLDV system on qualities of obtained FRSs were experimentally investigated.

  17. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    International Nuclear Information System (INIS)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Capes, H.; Guirlet, R.

    2003-01-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D α line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior

  18. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R. [Universite de Provence (PIIM), Centre de Saint-Jerome, 13 - Marseille (France); Capes, H.; Guirlet, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D{sub {alpha}} line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior.

  19. A comparison of colour, shape, and flash induced illusory line motion.

    Science.gov (United States)

    Hamm, Jeff P

    2017-04-01

    When a bar suddenly appears between two boxes, the bar will appear to shoot away from the box that matches it in colour or in shape-a phenomenon referred to as attribute priming of illusory line motion (ILM; colour ILM and shape ILM, respectively). If the two boxes are identical, ILM will still occur away from a box if it changes luminance shortly before the presentation of the bar ( flash ILM). This flash condition has been suggested to produce the illusory motion due to the formation of an attentional gradient surrounding the flashed location. However, colour ILM and shape ILM cannot be explained by an attentional gradient as there is no way for attention to select the matching box prior to the presentation of the bar. These findings challenge the attentional gradient explanation for ILM, but only if it is assumed that ILM arises for the same underlying reason. Two experiments are presented that address the question of whether or not flash ILM is the same as colour ILM or shape ILM. The results suggest that while colour ILM and shape ILM reflect a common illusion, flash ILM arises for a different reason. Therefore, the attentional gradient explanation for flash ILM is not refuted by the occurrence of colour ILM or shape ILM, which may reflect transformational apparent motion (TAM).

  20. Development of On-line Monitoring System for Shape Memory Alloy Composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Park, Young Chul; Lee, Min Rae; Lee, Dong Hwa; Lee, Kyu Chang

    2003-01-01

    A hot press method was use for the optimal manufacturing condition for a shape memory alloy(SMA) composite. The bonding between the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In this study, the objective was to develop an on-line monitoring system for the prevention of the crack initiation and propagation by shape memory effort of SMA composite. Shape memory effect was used to prevent the SMA composite from cracking. For the system to be developed, an optimal hE parameter should be determined based on the degree of damage and crack initiation. When the SHA composite was heated by the plate heater attached at the composite, the propagating cracks appeared to be controlled by the compressive force of SMA

  1. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    Science.gov (United States)

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-09

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000.

  2. Transition probabilities of some Si II lines obtained by laser produced plasma emission

    International Nuclear Information System (INIS)

    Blanco, F.; Botho, B.; Campos, J.

    1995-01-01

    The absolute transition probabilities for 28 Si II spectral lines have been determined by measurement of emission line intensities from laser-produced plasmas of Si in Ar and Kr atmospheres. The studied plasma has a temperature of about 2 . 10 4 K and 10 17 cm -3 electron density. The local thermodynamic equilibrium conditions and plasma homogeneity have been checked. The results are compared with the available experimental and theoretical data and with present Hartree-Fock calculations in LS coupling. (orig.)

  3. Effects of self-similar correlations on the spectral line shape in the neutral gas

    International Nuclear Information System (INIS)

    Kharintsev, S.S.; Salakhov, M.Kh.

    2001-01-01

    The paper is devoted to the study of the influence of self-similar correlations on the Doppler and pressure broadening within the non-equilibrium Boltzmann gas. The diffuse model for the thermal motion of the radiator and the self-similar mechanism of interference of scalar perturbations for phase shifts of an atomic oscillator are developed. It is shown that taking into account self-similar correlation in a description of the spectral line shape allows one to explain, on the one hand, the additional spectral line Dicke-narrowing in the Doppler regime, and, on the other hand, the asymmetry in wings of the spectral line in a high pressure region

  4. Simulation of excitonic optical line shapes of cyclic oligomers - models for basic units of photosynthetic antenna systems: Transfer integral versus local energy fluctuations with dichotomic coloured noise

    International Nuclear Information System (INIS)

    Barvik, I.; Reineker, P.; Warns, C.; Neidlinger, T.

    1995-08-01

    For Frenkel excitons moving on cyclic and linear molecular chains modeling in part photosynthetic antenna systems we investigate the influence of dynamic and static disorder on their optical line shapes. The dynamic disorder describes the influence of vibrational degrees of freedom and is taken into account by fluctuations of the transfer matrix element between neighbouring molecules. The fluctuations are represented by dichotomic Markov processes with coloured noise. We obtain a closed set of equations of motion for the correlation functions determining the optical line shape which is solved exactly. The line shapes are discussed for various sets of the model parameters and arrangements of molecules and their dipole moments. (author). 63 refs, 10 figs

  5. [Obtaining the transgenic lines of finger millet Eleusine coracana (L.) Gaertn. With dinitroaniline resistance].

    Science.gov (United States)

    Baer, G Ia; Emets, A I; Blium, Ia B

    2014-01-01

    The current data is dedicated to the study of bioballistic and Agrobacterium-mediated transformation of finger millet with the constructs carrying the mutant alpha-tubulin gene (TUAm 1), isolated from R-biotype goosegrass (Eleusine indica L.), for the decision of problem of dinitroaniline-resistance. It was found that 10 microM of trifluralin is optimal for the selection of transgene plants of finger millet. PCR analysis of transformed lines confirmed the transgene nature of plants. The analysis of seed of T1 oftransgene lines confirmed heterozygous character of inheritance of the resistance.

  6. Bibliography on atomic line shapes and shifts (June 1975 through June 1978). Interim report

    International Nuclear Information System (INIS)

    Fuhr, J.R.; Miller, B.J.; Martin, G.A.

    1978-12-01

    This is the third supplement to the NBS Special Publication 366, Bibliography on Atomic Line Shapes and Shifts (1889 through March 1972). It contains about 600 references and covers the literature from June 1975 through June 1978. As before, the bibliography contains five major parts: (1) All general interest papers are catalogued according to the broadening mechanisms (and, further, according to special topics under several of the mechanisms) and as to whether the work is a general theory, a general review, a table of profiles or parameters, a comment on existing work, a study of general experimental measurement techniques, or an experimental effort of general importance. Also included are selected papers on important applications of line broadening and on miscellaneous topics relating to atomic spectral line shapes and shifts. (2) In Part 2 all papers containing numerical data are ordered as to element, ionization stage, and broadening mechanism (in the case of foreign gas broadening the perturbing species are listed), and it is indicated whether the data are experimentally or theoretically derived. (3) While in the two preceding parts of the bibliography the references are listed for brevity by identification numbers only, in Part 3 all references are listed completely by journal, authors, and title and are generally arranged by year of publication and alphabetically by authors' names within the year. (4) This section contains a list of all authors and their papers. (5) A final section provides corrections or additions to the second supplement to the original bibliography

  7. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    Science.gov (United States)

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-08

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

  8. An EPR line shape study of anisotropic rotational reorientation and slow tumbling in liquid and frozen jojoba oil

    Science.gov (United States)

    Hwang, J. S.; Al-Rashid, W. A.

    Spin probe investigation of jojoba oil was carried out by electron paramagnetic rresonance (EPR) spectroscopy. The spin probe used was 2,2,6,6-tetramethyl-4-piperidone- N-oxide. The EPR line shape studies were carried out in the lower temperature range of 192 to 275 K to test the applicability of the stochastic Liouville theory in the simulation of EPR line shapes where earlier relaxation theories do not apply. In an earlier study, this system was analysed by employing rotational diffusion at the fast-motional region. The results show that PD-Tempone exhibits asymmetric rotational diffusion with N = 3.3 at an axis z'= Y in the plane of the molecule and perpendicular to the NO bond direction. In this investigation we have extended the temperature range to lower temperatures and observed slow tumbling EPR spectra. It is shown that the stochastic Liouville method can be used to simulate all but two of the experimentally observed EPR spectra in the slow-motional region and details of the slow-motional line shape are sensitive to the anisotropy of rotation and showed good agreement for a moderate jump model. From the computer simulation of EPR line shapes it is found that the information obtained on τ R, and N in the motional-narrowing region can be extrapolated into the slow-tumbling region. It is also found that ln (τ R) is linear in 1/ T in the temperature range studied and the resulting activation energy for rotation is 51 kJ/mol. The two EPR spectra at 240 and 231 K were found to exhibit the effects of anisotropic viscosity observed by B IRELL for nitroxides oriented in tubular cavities in inclusion crystals in which the molecule is free to rotate about the long axis but with its rotation hindered about the other two axes because of the cavity geometry. These results proved that the slow-tumbling spectra were very sensitive to the effects of anisotropy in the viscosity.

  9. A monolithic constant-fraction discriminator using distributed R-C delay-line shaping

    International Nuclear Information System (INIS)

    Simpson, M.L.; Young, G.R.; Xu, M.

    1995-01-01

    A monolithic, CMOS, constant-fraction discriminator (CFD) was fabricated in the Orbit Semiconductor, 1.2 μ N-well process. This circuit uses an on-chip, distributed, R-C delay-line to realize the constant-fraction shaping. The delay-line is constructed from a narrow, 500-μ serpentine layer of polysilicon above a wide, grounded, second layer of polysilicon. This R-C delay-line generates about 1.1 ns of delay for 5 ns risetime signals with a slope degradation of only ≅ 15% and an amplitude reduction of about 6.1%. The CFD also features an automatic walk adjustment. The entire circuit, including the delay line, has a 200 μ pitch and is 950 μ long. The walk for a 5 ns risetime signal was measured as ± 100 ps over the 100:1 dynamic range from -15 mV to -1.5 mV. to -1.5 V. The CFD consumes 15 mW

  10. Noodles and stars allow a precise and efficient calculation of the Z-line shape and the polarization asymmetry

    International Nuclear Information System (INIS)

    Jung-Choon Im, C.

    1990-01-01

    We give a pedagogical introduction to the star functions and the Noodle method. The Z-line shape and the polarization asymmetry at SLC/LEP can be evaluated elegantly and efficiently using the star functions and the Noodle method

  11. Drag Reduction Obtained by the Addition of a Boattail to a Box Shaped Vehicle. M.S. Thesis

    Science.gov (United States)

    Peterson, R. L.

    1981-01-01

    Coast down tests were performed on a box shaped ground vehicle used to simulate the aerodynamic drag of high volume transports such as delivery vans, motor homes and trucks. The results of these tests define the reduction in aerodynamic drag that can be obtained by the addition of either a boattail or a truncated boattail to an otherwise blunt based vehicle. Test velocities ranged up to 96.6 km/h (60 mph) with Reynolds numbers to 1.3 x 10 the 7th power. The full boattail provided an average 32 percent reduction in drag at highway speeds whereas the truncated boattail provided an average 31 percent reduction in drag as compared to the configuration having the blunt base. These results are compared with one tenth scale wind tunnel model data.

  12. Recognition and use of line drawings by children with severe intellectual disabilities: the effects of color and outline shape.

    Science.gov (United States)

    Stephenson, Jennifer

    2009-03-01

    Communication symbols for students with severe intellectual disabilities often take the form of computer-generated line drawings. This study investigated the effects of the match between color and shape of line drawings and the objects they represented on drawing recognition and use. The match or non-match between color and shape of the objects and drawings did not have an effect on participants' ability to match drawings to objects, or to use drawings to make choices.

  13. On-line measurement of ski-jumper trajectory: combining stereo vision and shape description

    Science.gov (United States)

    Nunner, T.; Sidla, O.; Paar, G.; Nauschnegg, B.

    2010-01-01

    Ski jumping has continuously raised major public interest since the early 70s of the last century, mainly in Europe and Japan. The sport undergoes high-level analysis and development, among others, based on biodynamic measurements during the take-off and flight phase of the jumper. We report on a vision-based solution for such measurements that provides a full 3D trajectory of unique points on the jumper's shape. During the jump synchronized stereo images are taken by a calibrated camera system in video rate. Using methods stemming from video surveillance, the jumper is detected and localized in the individual stereo images, and learning-based deformable shape analysis identifies the jumper's silhouette. The 3D reconstruction of the trajectory takes place on standard stereo forward intersection of distinct shape points, such as helmet top or heel. In the reported study, the measurements are being verified by an independent GPS measurement mounted on top of the Jumper's helmet, synchronized to the timing of camera exposures. Preliminary estimations report an accuracy of +/-20 cm in 30 Hz imaging frequency within 40m trajectory. The system is ready for fully-automatic on-line application on ski-jumping sites that allow stereo camera views with an approximate base-distance ratio of 1:3 within the entire area of investigation.

  14. Calculation of Resonance Interaction Effects Using a Rational Approximation to the Symmetric Resonance Line Shape Function

    International Nuclear Information System (INIS)

    Haeggblom, H.

    1968-08-01

    The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances

  15. Calculation of Resonance Interaction Effects Using a Rational Approximation to the Symmetric Resonance Line Shape Function

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H

    1968-08-15

    The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances.

  16. Fission product nuclear data obtained by use of an on-line mass spectrometer

    International Nuclear Information System (INIS)

    Reeder, P.L.; Wright, J.F.; Anderl, R.A.

    1975-01-01

    A Spectrometer for On-Line Analysis of Radionuclides (SOLAR) has been installed at a 1 MW TRIGA reactor at Washington State University. Fission product ions from a combination target/ion source located within the thermal column are brought out to a 60 0 magnetic sector mass spectrometer. Surface ionization provides copious beams of Rb + and Cs + ions and less intense beams of Br - and I - ions with negligible contamination by other elements. About 40 fission product nuclides can thus be chemically and physically separated in times of less than 1 second. Past results on independent and cumulative fission yields along with measurements of half-lives of some very neutron-rich nuclides are presented. Current work on delayed-neutron emission probabilities and energy spectra of delayed neutrons from individual nuclides is described. (7 tables, 2 figures) (U.S.)

  17. On beam shaping of the field radiated by a line source coupled to finite or infinite photonic crystals.

    Science.gov (United States)

    Ceccuzzi, Silvio; Jandieri, Vakhtang; Baccarelli, Paolo; Ponti, Cristina; Schettini, Giuseppe

    2016-04-01

    Comparison of the beam-shaping effect of a field radiated by a line source, when an ideal infinite structure constituted by two photonic crystals and an actual finite one are considered, has been carried out by means of two different methods. The lattice sums technique combined with the generalized reflection matrix method is used to rigorously investigate the radiation from the infinite photonic crystals, whereas radiation from crystals composed of a finite number of rods along the layers is analyzed using the cylindrical-wave approach. A directive radiation is observed with the line source embedded in the structure. With an increased separation distance between the crystals, a significant edge diffraction appears that provides the main radiation mechanism in the finite layout. Suitable absorbers are implemented to reduce the above-mentioned diffraction and the reflections at the boundaries, thus obtaining good agreement between radiation patterns of a localized line source coupled to finite and infinite photonic crystals, when the number of periods of the finite structure is properly chosen.

  18. Line profile analyses of rhodium metal obtained by decomposition of rhodium carbonyl

    International Nuclear Information System (INIS)

    Chandra, D.; Mandalia, H.; Garner, M.L.; Blakely, M.K.; Lau, K.H.

    1995-01-01

    Metal carbonyls are important for chemical vapor deposition (CVD) of metals and alloys and formation of high surface area metallic particles which have potential applications as catalysts. Rhodium carbonyl [Rh 6 (CO) 16 ] produces high surface area metallic particles whose structure has been reported as monoclinic (I2/a) with lattice dimensions, a=17.00(±0.03)Angstrom, b=9.78(±0.02)Angstrom, c=17.53(±0.03)Angstrom and Β=121 degrees 45' ± 30' at room temperature. Generally, metal carbonyl crystals dissociate under vacuum as carbonyl gas and decompose to metallic crystals and carbon monoxide at higher temperatures. However, the behavior of rhodium carbonyl crystals is different; they decompose directly to metallic rhodium without the formation of rhodium carbonyl gas in vacuum. Several residual fine grains of rhodium metal are found after the decomposition in vacuum at relatively low temperatures. The metallic samples of rhodium were obtained from vapor pressure experiments using torsion Knudsen-effusion apparatus. X-ray diffraction analyses performed on these gains showed severely broadened Bragg reflections indicative of small particle size and/or lattice microgram. In this study, a comparison of lattice strains and domain sizes obtained by integral breadth and Fourier methods has been made. In addition a comparison of the lattice strains and domain sizes has been made between the Cauchy, Gaussian, Cauchy-Gaussian and Aqua integral breadth methods

  19. Chemo-radioresistance of small cell lung cancer cell lines derived from untreated primary tumors obtained by diagnostic bronchofiberscopy

    International Nuclear Information System (INIS)

    Tanio, Yoshiro; Watanabe, Masatoshi; Inoue, Tamotsu

    1990-01-01

    New cell lines of small cell lung cancer (SCLC) were established from specimens of untreated primary tumors biopsied by diagnostic bronchofiberscopy. The advantage of this method was ease of obtaining specimens from lung tumors. Establishment of cell lines was successful with 4 of 13 specimens (30%). Clinical responses of the tumors showed considerable variation, but were well correlated with the in vitro sensitivity of the respective cell lines to chemotherapeutic drugs and irradiation. One of the cell lines was resistant to all drugs tested and irradiation, while another was sensitive to all of them. Although the acquired resistance of SCLC is the biggest problem in treatment, the natural resistance to therapy is another significant problem. Either acquired or natural, resistance mechanisms of SCLC may be elucidated by the use of such cell lines derived from untreated tumors. This method and these SCLC cell lines are expected to be useful for the serial study of biologic and genetic changes of untreated and pre-treated tumors, or primary and secondary tumors. (author)

  20. Propeller-Shaped ZnO Nano structures Obtained by Chemical Vapor Deposition: Photoluminescence and Photo catalytic Properties

    International Nuclear Information System (INIS)

    Wang, S.L.; Zhu, H.W.; Li, P.G.; Tang, W.H.

    2012-01-01

    Propeller-shaped and flower-shaped ZnO nano structures on Si substrates were prepared by a one-step chemical vapor deposition technique. The propeller-shaped ZnO nano structure consists of a set of axial nano rod (50 nm in tip, 80 nm in root and 1μm in length), surrounded by radial-oriented nano ribbons (20-30 nm in thickness and 1.5μm in length). The morphology of flower-shaped ZnO nano structure is similar to that of propeller-shaped ZnO, except the shape of leaves. These nano rods leaves (30?nm in diameter and 1-1.5μm in length) are aligned in a radial way and pointed toward a common center. The flower-shaped ZnO nano structures show sharper and stronger UV emission at 378 nm than the propeller-shaped ZnO, indicating a better crystal quality and fewer structural defects in flower-shaped ZnO. In comparison with flower-shaped ZnO nano structures, the propeller-shaped ZnO nano structures exhibited a higher photo catalytic property for the photo catalytic degradation of Rhodamine B under UV-light illumination.

  1. Contrast matching of line gratings obtained with NXE3XXX and EUV- interference lithography

    Science.gov (United States)

    Tasdemir, Zuhal; Mochi, Iacopo; Olvera, Karen Garrido; Meeuwissen, Marieke; Yildirim, Oktay; Custers, Rolf; Hoefnagels, Rik; Rispens, Gijsbert; Fallica, Roberto; Vockenhuber, Michaela; Ekinci, Yasin

    2017-10-01

    Extreme UV lithography (EUVL) has gained considerable attention for several decades as a potential technology for the semiconductor industry and it is now close to being adopted in high-volume manufacturing. At Paul Scherrer Institute (PSI), we have focused our attention on EUV resist performance issues by testing available high-performance EUV resists in the framework of a joint collaboration with ASML. For this purpose, we use the grating-based EUV-IL setup installed at the Swiss Light Source (SLS) at PSI, in which a coherent beam with 13.5 nm wavelength is used to produce a periodic aerial image with virtually 100% contrast and large depth of focus. Interference lithography is a relatively simple technique and it does not require many optical components, therefore the unintended flare is minimized and the aerial image is well-defined sinusoidal pattern. For the collaborative work between PSI and ASML, exposures are being performed on the EUV-IL exposure tool at PSI. For better quantitative comparison to the NXE scanner results, it is targeted to determine the actual NILS of the EUV-IL exposure tool at PSI. Ultimately, any resist-related metrology must be aligned and compared with the performance of EUV scanners. Moreover, EUV-IL is a powerful method for evaluating the resist performance and a resist which performs well with EUV-IL, shows, in general, also good performance with NXE scanners. However, a quantitative prediction of the performance based on EUV-IL measurements has not been possible due to the differences in aerial image formation. In this work, we aim to study the performance of EUV resists with different aerial images. For this purpose, after the real interference pattern exposure, we overlay a flat field exposure to emulate different levels of contrast. Finally, the results are compared with data obtained from EUV scanner. This study will enable not only match the data obtained from EUV- IL at PSI with the performance of NXE scanners, but also a

  2. ZEST: A Fast Code for Simulating Zeeman-Stark Line-Shape Functions

    Directory of Open Access Journals (Sweden)

    Franck Gilleron

    2018-03-01

    Full Text Available We present the ZEST code, dedicated to the calculation of line shapes broadened by Zeeman and Stark effects. As concerns the Stark effect, the model is based on the Standard Lineshape Theory in which ions are treated in the quasi-static approximation, whereas the effects of electrons are represented by weak collisions in the framework of a binary collision relaxation theory. A static magnetic field may be taken into account in the radiator Hamiltonian in the dipole approximation, which leads to additional Zeeman splitting patterns. Ion dynamics effects are implemented using the fast Frequency-Fluctuation Model. For fast calculations, the static ion microfield distribution in the plasma is evaluated using analytic fits of Monte-Carlo simulations, which depend only on the ion-ion coupling parameter and the electron-ion screening factor.

  3. X-ray spectral line shapes for the excimer-laser-produced high density plasma diagnostics

    International Nuclear Information System (INIS)

    Magunov, A.; Faenov, A.; Skobelev, I.; Pikuz, T.; Batani, D.; Milani, M.; Conti, A.; Masini, A.; Costato, M.; Pozzi, A.; Turcu, E.; Allot, R.; Lisi, N.; Koenig, M.; Benuzzi, A.; Flora, F.; Letardi, T.; Palladino, L.; Reale, A.

    1997-01-01

    The time and space-integrated emission spectra measurements have been performed in plasma produced by 308 nm wavelength XeCl laser radiation (I L =(4-10)·10 12 W/cm 2 , τ=10 ns) and by 248 nm wavelength KrF laser pulse train radiation (I L =5·10 15 W/cm 2 , τ=7 ps, 16 pulses in train) on CF n plane target. The lines' shapes and intensities modeling of Lyman series and He-like ion resonance series of fluorine up to n=7 by fitting experimental data shows the considerable difference of plasma formation features for these two sets of the laser pulse parameters

  4. Measured signatures of low energy, physical sputtering in the line shape of neutral carbon emission

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, N.H. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)]. E-mail: brooks@fusion.gat.com; Isler, R.C. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Whyte, D.G. [University of Wisconsin, Madison, WI 53706 (United States); Fenstermacher, M.E. [Livermore National Laboratory, Livermore, CA 94550 (United States); Groebner, R.J. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Stangeby, P.C. [University of Toronto Institute for Aerospace Studies, Toronto, M3H 5T6 (Canada); Heidbrink, W.W. [University of California, Irvine, CA 92697 (United States); Jackson, G.L. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Mahdavi, M.A. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); West, W.P. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2005-03-01

    The most important mechanisms for introducing carbon into the DIII-D divertors [J.L. Luxon, Nucl. Fusion 42 (2002) 614] are physical and chemical sputtering. Previous investigations have indicated that operating conditions where one or the other of these is dominant can be distinguished by using CD and C{sub 2} emissions to infer C I influxes from dissociation of hydrocarbons and comparing to measured C I influxes. The present work extends these results through detailed analysis of the C I spectral line shapes. In general, it is found that the profiles are actually asymmetric and have shifted peaks. These features are interpreted as originating from a combination of an anisotropic velocity distribution from physical sputtering (the Thompson model) and an isotropic distribution from molecular dissociation. The present study utilizes pure helium plasmas to benchmark C I spectral profiles arising from physical sputtering alone.

  5. Application of positron annihilation line-shape analysis to fatigue damage for nuclear plant materials

    International Nuclear Information System (INIS)

    Maeda, N.; Uchida, M.; Ohta, Y.; Yoshida, K.

    1996-01-01

    Positron annihilation line-shape analysis is sufficiently sensitive to detect microstructural defects such as vacancies and dislocations. We are developing a portable positron annihilation system and applying this technique to fatigue damage in type 316 stainless steel and SA508 low alloy steel. The positron annihilation technique was found to be sensitive in the early fatigue life, i.e. up to 10% of the fatigue life, but showed little sensitivity in later stages of the fatigue life in type 316 stainless steel and SA508 low alloy steel. Type 316 stainless steel a higher positron annihilation sensitivity than that of SA508. It was considered that the amount of dislocation density change in the stainless steel was greater than that in the low alloy steel, because the initial microstructure contained a low dislocation density because of the solution heat treatment for the type 316 stainless steel. (orig.)

  6. Line shape and thermal Kinetics analysis of the Fe2+ -band in Brazilian Green beryl

    International Nuclear Information System (INIS)

    Isotani, S.; Furtado, W.; Antonini, R.; Dias, O.L.

    1988-03-01

    The optical absorption spectra study through isothermal treatments of the σ- and Π-polarized bands of Fe 2+ -band is reported. It was shown a linear correlation between these bands through thermal treatments. Irradiation with γ-rays from 60 Co, showed the decrease of this band. The line shape analysis and the discussions lend us to assign the Π- and σ-polarized bands to Fe 2+ ions in the structural channels with and without neighbour water molecules, respectively. The kinetics analysis through a ''bimolecular-like'' model gives untrapping parameter with Arrhenius behavior. The retrapping and recombination parameters showed a behavior proportional to T 1/2 - T 1/2 o which were explained from free electron distribution of velocities and minimum untrapped electron energy due to a potential barrier of the trap. The kinetics cut-off temperature, T 0 , agrees with the previous experimental observation. (author) [pt

  7. Spectral Line Shapes in the ν_3 Q Branch of ^{12}CH_4 Near 3.3 μm

    Science.gov (United States)

    Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.; Smith, Mary Ann H.; Sams, Robert L.

    2017-06-01

    Detailed knowledge of spectroscopic parameters for prominent Q branches of methane is necessary for interpretation and modeling of high resolution infrared spectra of terrestrial and planetary atmospheres. We have measured air-broadened line shape parameters in the Q branch of ^{12}CH_4 in the ν_3 fundamental band for a large number of transitions in the 3000 to 3023 cm^{-1} region by analyzing 13 room-temperature laboratory absorption spectra. Twelve of these spectra were recorded with 0.01 cm^{-1} resolution using the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory (NSO) on Kitt Peak, and one higher-resolution (˜0.0011 cm^{-1}) low pressure (˜1 Torr) spectrum of methane was obtained using the Bruker IFS 120HR FTS at the Pacific Northwest National Laboratory (PNNL) in Richland, WA. The air-broadened spectra were recorded using various absorption cells with path lengths of 5, 20, 25, and 150 cm, total sample pressures between 50 and 500 Torr, and CH_4 volume mixing ratios of 0.01 or less. All 13 spectra were fit simultaneously covering the 3000-3023 cm^{-1} spectral region using a multispectrum nonlinear least squares technique to retrieve accurate line positions, absolute intensities, Lorentz air-broadened widths and pressure-shift coefficients. Line mixing using the off-diagonal relaxation matrix element formalism was measured for a number of pairs of transitions for the CH_4-air collisional system. The results will be compared to values reported in the literature. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith, D. Atkins, JQSRT 53 (1995) 705-721. A. Levy, N. Lacome, C. Chackerian, Collisional line mixing, in Spectroscopy of the Earth's Atmosphere and Interstellar Medium, Academic Press, Inc., Boston (1992) 261-337.

  8. 3D base: a geometrical data base system for the analysis and visualisation of 3D-shapes obtained from parallel serial sections including three different geometrical representations

    NARCIS (Netherlands)

    Verbeek, F. J.; de Groot, M. M.; Huijsmans, D. P.; Lamers, W. H.; Young, I. T.

    1993-01-01

    In this paper we discuss a geometrical data base that includes three different geometrical representations of one and the same reconstructed 3D shape: the contour-pile, the voxel enumeration, and the triangulation of a surface. The data base is tailored for 3D shapes obtained from plan-parallel

  9. Line-Shape Code Comparison through Modeling and Fitting of Experimental Spectra of the C ii 723-nm Line Emitted by the Ablation Cloud of a Carbon Pellet

    Directory of Open Access Journals (Sweden)

    Mohammed Koubiti

    2014-07-01

    Full Text Available Various codes of line-shape modeling are compared to each other through the profile of the C ii 723-nm line for typical plasma conditions encountered in the ablation clouds of carbon pellets, injected in magnetic fusion devices. Calculations were performed for a single electron density of 1017 cm−3 and two plasma temperatures (T = 2 and 4 eV. Ion and electron temperatures were assumed to be equal (Te = Ti = T. The magnetic field, B, was set equal to either to zero or 4 T. Comparisons between the line-shape modeling codes and two experimental spectra of the C ii 723-nm line, measured perpendicularly to the B-field in the Large Helical Device (LHD using linear polarizers, are also discussed.

  10. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    International Nuclear Information System (INIS)

    Niu, Kai; Lee, Soo-Y.

    2015-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms

  11. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Kai [School of Science, Tianjin University of Technology and Education, Tianjin, 300222 (China); Lee, Soo-Y., E-mail: sooying@ntu.edu.sg [Division of Physics & Applied Physics, and Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-12-15

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  12. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Science.gov (United States)

    Niu, Kai; Lee, Soo-Y.

    2015-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  13. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.

    1992-01-01

    The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.

  14. Line shape and ray trace calculations in saturated X-ray lasers: Application to Ni-like silver

    International Nuclear Information System (INIS)

    Benredjem, D.; Guilbaud, O.; Moeller, C.; Klisnick, A.; Ros, D.; Dubau, J.; Calisti, A.; Talin, B.

    2006-01-01

    Longitudinal coherence length in X-ray lasers depends strongly on the shape of the amplified line. We have modelled an experiment performed at the LULI facility of Ecole Polytechnique. The experiment was devoted to the study of the temporal (longitudinal) coherence of the transient Ni-like silver 4d-4p transition X-ray laser at 13.9 nm. Accurate line shape calculations using PPP, a spectral line shape code, confirm that the Voigt profile is a good approximation for this X-ray laser line. This allows us to extensively use the Voigt shape in conditions where the amplifier, i.e. the plasma produced by the interaction of a high intensity laser with a slab target, is neither stationary nor homogeneous. Our calculations involve a ray trace code which is a post-processor to the hydrodynamic simulation EHYBRID. As the effect of saturation is important for the level populations and gains we include the interaction between the amplified beam and the medium using the Maxwell-Bloch formalism. While the FWHM of the spontaneous emission profile is ∼10 mA, the amplified X-ray line exhibits gain narrowing leading to the smaller width ∼3 mA. Comparison with experiment is discussed

  15. Shaping the spectra of the line-to-line voltage using signal injection in the common mode voltage

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Rasmussen, Peter Omand; Pedersen, John Kim

    2009-01-01

    A drawback of Pulse Width Modulation in electrical drives is the high harmonic content of the line to line voltages, which gives rise to Electro-Magnetic Interference and acoustic noise. By injection of a signal into the common mode voltage, the fundamental is not affected, but new frequency...

  16. FPSPH DFPSPF, Line Shape Function for Doppler Broadened Resonance Cross-Sections Calculation

    International Nuclear Information System (INIS)

    Ribon, P.

    1982-01-01

    1 - Description of problem or function: In the computation of Doppler- broadened resonance cross sections, use is made of the symmetric and anti-symmetric line shape functions. These functions usually denoted as Psi and Phi (Psi and Chi in Anglo-Saxon formalism) are defined in terms of the real and imaginary parts of the error function for complex arguments. They are the product of the convolution of a Gaussian function with the symmetric and anti-symmetric Breit-Wigner functions, respectively. FPSPH and DFPSPH compute these functions. 2 - Method of solution: For (1+x 2 ) > 20 Beta 2 , the calculation is based upon the asymptotic expansion: Psi+(i*Phi) = 1/(1-ix)*(1-t+3t 2 -3.5t 3 +3.5+7t 4 ---), with: t = 1/(2z 2 ); z = (1-ix)/Beta. The half-plane (Beta,x) is split in several parts, and use is made of PADE approximants. For 1 + x 2 2 , the calculation is based upon the relation with the erf function: Psi + i*Phi = SQRT(Pi)/Beta*(e (z 2 ) )*(1-erf(z)) (z = (1-ix)/Beta, and erf(z) being calculated from its analytic expansion: erf(z) = 2/SQRT(Pi)*z*e (-z 2 ) *(1+z 2 /3+z 4 /(3*5) + z 6 /(3*5*7)+---). PADE approximants are used to compute the expansion and e z 2

  17. On low-dimensional models at NMR line shape analysis in nanomaterial systems

    Science.gov (United States)

    Kucherov, M. M.; Falaleev, O. V.

    2018-03-01

    We present a model of localized spin dynamics at room temperature for the low-dimensional solid-state spin system, which contains small ensembles of magnetic nuclei (N ~ 40). The standard spin Hamiltonian (XXZ model) is the sum of the Zeeman term in a strong external magnetic field and the magnetic dipole interaction secular term. The 19F spins in a single crystal of fluorapatite [Ca5(PO4)3F] have often been used to approximate a one-dimensional spin system. If the constant external field is parallel to the c axis, the 3D 19F system may be treated as a collection of many identical spin chains. When considering the longitudinal part of the secular term, we suggest that transverse component of a spin in a certain site rotates in a constant local magnetic field. This field changes if the spin jumps to another site. On return, this spin continues to rotate in the former field. Then we expand the density matrix in a set of eigenoperators of the Zeeman Hamiltonian. A system of coupled differential equations for the expansion coefficients then solved by straightforward numerical methods, and the fluorine NMR line shapes of fluorapatite for different chain lengths are calculated.

  18. First application of the spectral difference method for lifetime measurements of doppler attenuated line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Duckwitz, Hannah [Institut fuer Kernphysik, Koeln Univ. (Germany); Petkov, Pavel [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2016-07-01

    In this new approach to lifetime measurements via Doppler attenuated line shapes, the spectra of a feeding f and a deexciting transition d of the level of interest are used to determine the lifetime without any lineshape analysis of the feeding transition (direct or indirect). Similarly to the DDC method, the decay function λ{sub d}n{sub d}(t) of the deexciting transition is determined. The feeding of the level is included via the spectral difference of the two successive decays. Consequently, the determined lifetime is the real lifetime. After transforming both transitions into the same energy region, their spectral difference D(v{sub θ}) = S{sub d}(v{sub θ})-S{sub f}(v{sub θ}) = ∫{sub 0}{sup ∞}(∂P{sub θ}(t,v{sub θ}))/(∂t)n{sub d}(t) dt, is solved for n{sub d}(t). Dividing n{sub d}(t) by the decay function λ{sub d}n{sub d}(t) should yield a constant τ value for the level lifetime as a function of the time t. After the development and test of the procedure in 2015, it is now applied for the first time. Two level lifetimes are determined in {sup 86}Sr for the 2{sup +}{sub 2} and the 2{sup +}{sub 3} levels.

  19. Mg IX emission lines in an active region spectrum obtained with the Solar EUV Rocket Telescope and Spectrograph (SERTS)

    Science.gov (United States)

    Keenan, F. P.; Thomas, R. J.; Neupert, W. M.; Conlon, E. S.

    1994-01-01

    Theoretical electron-temperature-sensitive Mg IX emission line ratios are presented for R(sub 1) = I(443.96 A)/I(368.06 A), R(sub 2) = I(439.17 A)/I(368.06 A), R(sub 3) = I(443.37 A)/I(368.06 A), R(sub 4) = I(441.22 A)/I(368.06 A), and R(sub 5) = I(448.28 A)/I(368.06 A). A comparison of these with observational data for a solar active region, obtained during a rocket flight by the Solar EUV Rocket Telescope and Spectrograph (SERTS), reveals excellent agreement between theory and observation for R(sub 1) through R(sub 4), with discrepancies that average only 9%. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations, and also resolves discrepancies found previously when the theoretical results were compared with solar data from the S082A instrument on board Skylab. However in the case of R(sub 5), the theoretical and observed ratios differ by almost a factor of 2. This may be due to the measured intensity of the 448.28 A line being seriously affected by instrumental effects, as it lies very close to the long wavelength edge of the SERTS spectral coverage (235.46-448.76 A).

  20. Influence of thin porous Al2O3 layer on aluminum cathode to the Hα line shape in glow discharge

    International Nuclear Information System (INIS)

    Steflekova, V.; Sisovic, N. M.; Konjevic, N.

    2009-01-01

    The results of the Balmer alfa line shape study in a plane cathode-hollow anode Grimm discharge with aluminum (Al) cathode covered with thin layer of porous Al 2 O 3 are presented. The comparison with same line profile recorded with pure Al cathode shows lack of excessive Doppler broadened line wings, which are always detected in glow discharge with metal cathode. The effect is explained by the lack of strong electric field in the cathode sheath region, which is missing in the presence of thin oxide layer in, so called, spray discharge.

  1. Improvement of the instrumental line shape of X-ray spectrometers with Si(Li) - detectors

    International Nuclear Information System (INIS)

    Berdikov, V.V.; Zajtsev, E.A.; Iokhin, B.S.

    1983-01-01

    The possibility of decreasing the background of the X-ray spectrometer detector using the rise-time pulse selection method was investigated. Si(Li)-detectors of 10 and 25 mm 2 square were investigated. Spectrometer channel was composed of ORTEC-472 amplifier and ULTIMA/2 multichannel analyzer on the base of NOVA-3 minicomputer. The energy resolution was equal to 300 eV on 14 KeV line. The pulses of detection allowing were transmitted to analog-to-digital converter. The detection was allowed if front photopeak square) were measured at 17.4, 20.3 and 59.6 keV. 4-6-fold decrease of X-factor was obtained without any loss of detection efficiency. The combination of the method with collimation of radiation in the centre of the detector gives an extremely low value of X-factor which agress with theretical estimations

  2. Scanning electron microscope measurement of width and shape of 10 nm patterned lines using a JMONSEL-modeled library

    Energy Technology Data Exchange (ETDEWEB)

    Villarrubia, J.S., E-mail: john.villarrubia@nist.gov [Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Vladár, A.E.; Ming, B. [Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Kline, R.J.; Sunday, D.F. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Chawla, J.S.; List, S. [Intel Corporation, RA3-252, 5200 NE Elam Young Pkwy, Hillsboro, OR 97124 (United States)

    2015-07-15

    The width and shape of 10 nm to 12 nm wide lithographically patterned SiO{sub 2} lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm.

  3. Scanning electron microscope measurement of width and shape of 10nm patterned lines using a JMONSEL-modeled library.

    Science.gov (United States)

    Villarrubia, J S; Vladár, A E; Ming, B; Kline, R J; Sunday, D F; Chawla, J S; List, S

    2015-07-01

    The width and shape of 10nm to 12 nm wide lithographically patterned SiO2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm. Published by Elsevier B.V.

  4. THE BIOTECHNOLOGY OF EMBRYOGENIC CELL LINES OBTAINING AND PLANTLETS OF CONIFEROUS SPECIES IN SIBERIA IN CULTURE IN VITRO

    Directory of Open Access Journals (Sweden)

    Tretiakova I.

    2012-08-01

    Full Text Available Experiments of culturing the immature isolated embryos and megagamethophytes of Siberian coniferous species were carried out on different modified media: ½ LV medium for Pinus sibirica and Pinus pumila, MSG and AI media (patent № 2431651 for Larix sibirica and Larix gmelinii, DCR medium for Picea ajanensis. For induction of embryogenic callus every species needs the optimized medium supplemented with L-glutamine, casein hydrolysate, ascorbic acid and hormones with different concentrations and their different proportions. The active proliferation of embryonal masses is observed on the same medium with reduced concentration of cytokinins. The proliferation of embryonal masses was significantly improved when they were subcultured after dispersing in liquid medium. The somatic embryos from embryonal masses are matured on basal medium with ABA (60-120 mM and PEG. In spite of species specificity the embryogenesis of morphogenic structures had the same scheme: elongation and asymmetric division of somatic cells, formation of initial cells and embryonal tubes, development of globular, torpedo and bipolar somatic embryos, embryos maturation and germination. However, not all donor-plants of coniferous species can form the embryogenic cell lines and somatic embryos. The active development of embryonal masses and formation of somatic embryos are observed from zygotic embryo of hybrid seeds of P. sibirica and L. sibirica. The obtained embryogenic lines were characterized by different proliferative activity. During 10 months cultivation the value of embryonal masses in different lines was 140-570 g. The number of somatic embryos varies from 210 to 410 per 100 mg of callus fresh weight. Decreasing proliferation activity did not observed during 24-45 months cultivation. However, development of somatic embryos in long cultivated lines decreased. Maturation of somatic embryos and development of plantlets were established in L. sibirica and P. pumila 50

  5. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.

    Science.gov (United States)

    Allen, Vivian; Bates, Karl T; Li, Zhiheng; Hutchinson, John R

    2013-05-02

    Locomotion in living birds (Neornithes) has two remarkable features: feather-assisted flight, and the use of unusually crouched hindlimbs for bipedal support and movement. When and how these defining functional traits evolved remains controversial. However, the advent of computer modelling approaches and the discoveries of exceptionally preserved key specimens now make it possible to use quantitative data on whole-body morphology to address the biomechanics underlying this issue. Here we use digital body reconstructions to quantify evolutionary trends in locomotor biomechanics (whole-body proportions and centre-of-mass position) across the clade Archosauria. We use three-dimensional digital reconstruction to estimate body shape from skeletal dimensions for 17 archosaurs along the ancestral bird line, including the exceptionally preserved, feathered taxa Microraptor, Archaeopteryx, Pengornis and Yixianornis, which represent key stages in the evolution of the avian body plan. Rather than a discrete transition from more-upright postures in the basal-most birds (Avialae) and their immediate outgroup deinonychosauria, our results support hypotheses of a gradual, stepwise acquisition of more-crouched limb postures across much of theropod evolution, although we find evidence of an accelerated change within the clade Maniraptora (birds and their closest relatives, such as deinonychosaurs). In addition, whereas reduction of the tail is widely accepted to be the primary morphological factor correlated with centre-of-mass position and, hence, evolution of hindlimb posture, we instead find that enlargement of the pectoral limb and several associated trends have a much stronger influence. Intriguingly, our support for the onset of accelerated morpho-functional trends within Maniraptora is closely correlated with the evolution of flight. Because we find that the evolution of enlarged forelimbs is strongly linked, via whole-body centre of mass, to hindlimb function during

  6. On the line-shape analysis of Compton profiles and its application to neutron scattering

    International Nuclear Information System (INIS)

    Romanelli, G.; Krzystyniak, M.

    2016-01-01

    Analytical properties of Compton profiles are used in order to simplify the analysis of neutron Compton scattering experiments. In particular, the possibility to fit the difference of Compton profiles is discussed as a way to greatly decrease the level of complexity of the data treatment, making the analysis easier, faster and more robust. In the context of the novel method proposed, two mathematical models describing the shapes of differenced Compton profiles are discussed: the simple Gaussian approximation for harmonic and isotropic local potential, and an analytical Gauss–Hermite expansion for an anharmonic or anisotropic potential. The method is applied to data collected by VESUVIO spectrometer at ISIS neutron and muon pulsed source (UK) on Copper and Aluminium samples at ambient and low temperatures. - Highlights: • A new method to analyse neutron Compton scattering data is presented. • The method allows many corrections on the experimental data to be avoided. • The number of needed fitting parameters is drastically reduced using the new method. • Mass-selective analysis is facilitated with parametric studies benefiting the most. • Observables linked to anisotropic momentum distribution are obtained analytically.

  7. Intrinsic line shape of electromagnetic radiation from a stack of intrinsic Josephson junctions synchronized by an internal cavity resonance

    Science.gov (United States)

    Koshelev, Alexei

    2013-03-01

    Stacks of intrinsic Josephson-junctions are realized in mesas fabricated out of layered superconducting single crystals, such as Bi2Sr2CaCu2O8 (BSCCO). Synchronization of phase oscillations in different junctions can be facilitated by the coupling to the internal cavity mode leading to powerful and coherent electromagnetic radiation in the terahertz frequency range. An important characteristic of this radiation is the shape of the emission line. A finite line width appears due to different noise sources leading to phase diffusion. We investigated the intrinsic line shape caused by the thermal noise for a mesa fabricated on the top of a BSCCO single crystal. In the ideal case of fully synchronized stack the finite line width is coming from two main contributions, the quasiparticle-current noise inside the mesa and the fluctuating radiation in the base crystal. We compute both contributions and conclude that for realistic mesa's parameters the second mechanism typically dominates. The role of the cavity quality factor in the emission line spectrum is clarified. Analytical results were verified by numerical simulations. In real mesa structures part of the stack may not be synchronized and chaotic dynamics of unsynchronized junctions may determine the real line width. Work supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357.

  8. In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer.

    Science.gov (United States)

    Wu, Chuang; Tse, Ming-Leung Vincent; Liu, Zhengyong; Guan, Bai-Ou; Lu, Chao; Tam, Hwa-Yaw

    2013-09-01

    We propose and demonstrate a highly sensitive in-line photonic crystal fiber (PCF) microfluidic refractometer. Ultrathin C-shaped fibers are spliced in-between the PCF and standard single-mode fibers. The C-shaped fibers provide openings for liquid to flow in and out of the PCF. Based on a Sagnac interferometer, the refractive index (RI) response of the device is investigated theoretically and experimentally. A high sensitivity of 6621 nm/RIU for liquid RI from 1.330 to 1.333 is achieved in the experiment, which agrees well with the theoretical analysis.

  9. Low Reynolds number airfoil aerodynamic loads determination via line integral of velocity obtained with particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.; Su, Y.Y. [McGill University, Department of Mechanical Engineering, Montreal, QC (Canada)

    2012-11-15

    The small magnitude lift forces generated by both a NACA 0012 airfoil and a thin flat plate at Re = 29,000 and 54,000 were determined through the line integral of velocity, obtained with particle image velocimetry, via the application of the Kutta-Joukowsky theorem. Surface pressure measurements of the NACA0012 airfoil were also obtained to validate the lift coefficient C{sub l}. The bound circulation was found to be insensitive to the size and aspect ratio of the rectangular integration loop for pre-stall angles. The present C{sub l} data were also found to agree very well with the surface pressure-determined lift coefficient for pre-stall conditions. A large variation in C{sub l} with the loop size and aspect ratio for post-stall conditions was, however, observed. Nevertheless, the present flat-plate C{sub l} data were also found to collectively agree with the published force-balance measurements at small angles of attack, despite the large disparity exhibited among the various published data at high angles. Finally, the ensemble-averaged wake velocity profiles were also used to compute the drag coefficient and, subsequently, the lift-to-drag ratio. (orig.)

  10. Welcome to the 21st International Conference on Spectral Line Shapes

    Science.gov (United States)

    2012-12-01

    organizing committee of the conference has not forgotten about the cultural and tourism significance of the host city, with Hermitage and the Russian Museum, memorial museums of Pushkin and Dostoevsky, Mariinsky and Mikhailovsky Theaters being only a few of the many places to visit. Early June is the time of white nights, the best time to visit the environs of St. Petersburg with its many imperial palaces and parks, and attend multiple music and theater festivals. This is just the right time to take a break from physics overall and spectral line shapes in particular. On behalf of the Rector's Office let me wish the Conference every success, and do not forget to take some time out to enjoy your visit. Welcome! Professor N G Skvortsov Vice-Rector for Research St. Petersburg University

  11. Revisiting Vertical Models To Simulate the Line Shape of Electronic Spectra Adopting Cartesian and Internal Coordinates.

    Science.gov (United States)

    Cerezo, Javier; Santoro, Fabrizio

    2016-10-11

    Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q 1 -frame, where Q 1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q 1 -frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal

  12. The influence of instrumental line shape degradation on NDACC gas retrievals: total column and profile

    Directory of Open Access Journals (Sweden)

    Y. Sun

    2018-05-01

    Full Text Available We simulated instrumental line shape (ILS degradations with respect to typical types of misalignment, and compared their influence on each NDACC (Network for Detection of Atmospheric Composition Change gas. The sensitivities of the total column, the root mean square (rms of the fitting residual, the total random uncertainty, the total systematic uncertainty, the total uncertainty, degrees of freedom for signal (DOFs, and the profile with respect to different levels of ILS degradation for all current standard NDACC gases, i.e. O3, HNO3, HCl, HF, ClONO2, CH4, CO, N2O, C2H6, and HCN, were investigated. The influence of an imperfect ILS on NDACC gases' retrieval was assessed, and the consistency under different meteorological conditions and solar zenith angles (SZAs were examined. The study concluded that the influence of ILS degradation can be approximated by the linear sum of individual modulation efficiency (ME amplitude influence and phase error (PE influence. The PE influence is of secondary importance compared with the ME amplitude. Generally, the stratospheric gases are more sensitive to ILS degradation than the tropospheric gases, and the positive ME influence is larger than the negative ME. For a typical ILS degradation (10 %, the total columns of stratospheric gases O3, HNO3, HCl, HF, and ClONO2 changed by 1.9, 0.7, 4, 3, and 23 %, respectively, while the columns of tropospheric gases CH4, CO, N2O, C2H6, and HCN changed by 0.04, 2.1, 0.2, 1.1, and 0.75 %, respectively. In order to suppress the fractional difference in the total column for ClONO2 and other NDACC gases within 10 and 1 %, respectively, the maximum positive ME degradations for O3, HNO3, HCl, HF, ClONO2, CO, C2H6, and HCN should be less than 6, 15, 5, 5, 5, 5, 9, and 13 %, respectively; the maximum negative ME degradations for O3, HCl, and HF should be less than 6, 12, and 12 %, respectively; the influence of ILS degradation on CH4 and N2O can be regarded as being

  13. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, R. D., E-mail: rdguerrerom@unal.edu.co [Department of Physics, Universidad Nacional de Colombia, Bogotá (Colombia); Arango, C. A., E-mail: caarango@icesi.edu.co [Department of Chemical Sciences, Universidad Icesi, Cali (Colombia); Reyes, A., E-mail: areyesv@unal.edu.co [Department of Chemistry, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-21

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.

  14. Fabrication of shape-controllable polyaniline micro/nanostructures on organic polymer surfaces: obtaining spherical particles, wires, and ribbons.

    Science.gov (United States)

    Zhong, Wenbin; Wang, Yongxin; Yan, Yan; Sun, Yufeng; Deng, Jianping; Yang, Wantai

    2007-04-19

    A novel strategy was developed in order to prepare various micro/nanostructured polyanilines (PANI) on polymer substrates. The strategy involved two main steps, i.e., a grafting polymerization of acrylate acid (AA) onto the surface of a polypropylene (PP) film and subsequently an oxidative polymerization of aniline on the grafted surface. By tuning the conformation of the surface-grafted poly acrylate acid (PAA) brushes, as well as the ratio of AA to aniline, the shape of the PANIs fixated onto the surfaces of the polymer substrate could be controlled to go from spherical particles to nanowires and eventually to nanoribbons. In these structures, the PAA brushes not only acted as templates but also as dopants of PANI, and thereby, the nanostructured PANIs could be strongly bonded with the substrate. In addition, the surface of the PP films grafted with polyaniline nanowires and nanoribbons displayed superhydrophobicity with contact angles for water of approxiamtely 145 and 151 degrees , respectively.

  15. Effect of duct shape, Mach number, and lining construction on measured suppressor attenuation and comparison with theory

    Science.gov (United States)

    Olsen, W. A.; Krejsa, E. A.; Coats, J. W.

    1972-01-01

    Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.

  16. Study of semiconductor valence plasmon line shapes via electron energy-loss spectroscopy in the transmission electron microscope

    International Nuclear Information System (INIS)

    Kundmann, M.K.

    1988-11-01

    Electron energy-loss spectra of the semiconductors Si, AlAs, GaAs, InAs, InP, and Ge are examined in detail in the regime of outer-shell and plasmon energy losses (0--100eV). Particular emphasis is placed on modeling and analyzing the shapes of the bulk valence plasmon lines. A line shape model based on early work by Froehlich is derived and compared to single-scattering probability distributions extracted from the measured spectra. Model and data are found to be in excellent agreement, thus pointing the way to systematic characterization of the plasmon component of EELS spectra. The model is applied to three separate investigations. 82 refs

  17. High-resolution measurements and multichannel quantum defect analysis of spectral line shapes of autoionizing Rydberg series

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    1997-01-01

    Spectral line shapes for autoionizing Rydberg series are briefly reviewed within the framework of multichannel quantum defect theory (MQDT). Recent high-resolution measurements and MQDT analysis for the spectra line shapes are reviewed for the mp 5 ( 2 P 1/2 )ns ' and nd ' J=1 odd spectra of the Ar, Kr, and Xe atoms (m=3,4,5 for Ar, Kr, and Xe) and the 3p 5 ( 2 P 1/2 )nd ' J=2 and 3 odd spectra of Ar*3p 5 4p excited atoms. Some results are also discussed for the Ca 4p( 2 P 1/2,3/2 )ns and nd J=1 odd spectrum and the Ba 5d( 2 P 5/2 )nd J=1 odd spectrum

  18. Obtaining Empirical Validation of Shape-Coexistence in the Mass 70 Region: Coulomb Excitation of a Radioactive Beam of $^{70}$Se

    CERN Multimedia

    Andreoiu, C; Paul, E S; Czosnyka, T; Hammond, N

    2002-01-01

    We propose to study the Coulomb excitation of a radioactive beam of $^{70}$Se at 2.2 MeV/u obtained from the REX-ISOLDE facility in order to determine the sign of the quadrupole moment and, hence, the sign of the quadrupole deformation. Calculations suggest a 33~\\% sensitivity in Coulomb excitation yield for a nickel target depending on whether the nuclear shape is oblate or prolate. Such a determination would provide compelling evidence for the presence of oblate shapes in the vicinity of N=Z=34.

  19. Rapid Obtaining of Nano-Hydroxyapatite Bioactive Films on NiTi Shape Memory Alloy by Electrodeposition Process

    Science.gov (United States)

    Lobo, A. O.; Otubo, J.; Matsushima, J. T.; Corat, E. J.

    2011-07-01

    Nano-hydroxyapatite (n-HA) crystalline films have been developed in this study by electrodeposition method on NiTi shape memory alloy (SMA). The electrodeposition of the n-HA films was carried out using 0.042 mol/L Ca(NO3)2 · 4H2O + 0.025 mol/L (NH4) · 2HPO4 electrolytes by applying a constant potential of -2.0 V for 120 min and keeping the solution temperature at 70 °C. The characterization of n-HA films is of special importance since bioactive properties related to n-HA have been directly identified with its specific composition and crystalline structure. AFM, XRD, EDX, FEG-SEM and Raman spectroscopy shows a homogeneous film, with high crystallinity, special composition, and bioactivity properties (Ca/P = 1.93) of n-HA on NiTi SMA surfaces. The n-HA coating with special structure would benefit the use of NiTi alloy in orthopedic applications.

  20. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources.

    Science.gov (United States)

    Botta, Albert; Martínez, Verónica; Mitjans, Montserrat; Balboa, Elena; Conde, Enma; Vinardell, M Pilar

    2014-02-01

    Oxidative stress can damage cellular components including DNA, proteins or lipids, and may cause several skin diseases. To protect from this damage and addressing consumer's appeal to natural products, antioxidants obtained from algal and vegetal extracts are being proposed as antioxidants to be incorporated into formulations. Thus, the development of reliable, quick and economic in vitro methods to study the cytoactivity of these products is a meaningful requirement. A combination of erythrocyte and cell line-based assays was performed on two extracts from Sargassum muticum, one from Ulva lactuca, and one from Castanea sativa. Antioxidant properties were assessed in erythrocytes by the TBARS and AAPH assays, and cytotoxicity and antioxidant cytoprotection were assessed in HaCaT and 3T3 cells by the MTT assay. The extracts showed no antioxidant activity on the TBARS assay, whereas their antioxidant capacity in the AAPH assay was demonstrated. On the cytotoxicity assays, extracts showed low toxicity, with IC50 values higher than 200μg/mL. C. sativa extract showed the most favourable antioxidant properties on the antioxidant cytoprotection assays; while S. muticum and U. lactuca extracts showed a slight antioxidant activity. This battery of methods was useful to characterise the biological antioxidant properties of these natural extracts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Optimum coil shape for a given volume of conductor to obtain maximum central field in an air core solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, P. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This paper is an expansion of engineering notes prepared in 1961 to address the question of how to wind circular coils so as to obtain the maximum axial field with the minimum volume of conductor. At the time this was a germain question because of the advent of superconducting wires which were in very limited supply, and the rapid push for generation of very high fields, with little concern for uniformity.

  2. First line shape analysis and spectroscopic parameters for the ν11 band of 12C2H4

    KAUST Repository

    Es-sebbar, Et-touhami

    2016-08-11

    An accurate knowledge of line intensities, collisional broadening coefficients and narrowing parameters is necessary for the interpretation of high-resolution infrared spectra of the Earth and other planetary atmospheres. One of the most promising spectral domains for (C2H4)-C-12 monitoring in such environments is located near the 336 gm window, through its v(11) C-H stretching mode. In this paper, we report an extensive study in which we precisely determine spectroscopic parameters of (C2H4)-C-12 v(11) band at 297 +/- 1 K, using a narrow Difference-Frequency-Generation (DFG) laser with 10(-4) cm(-1) resolution. Absorption measurements were performed in the 2975-2980 cm(-1) spectral window to investigate 32 lines corresponding to where, J\\'ka\\',kc\\'<- Jka,kc, 5 <= J <= 7; 0.5 <= K-a <= 6 and 1 <= K-c <= 14. Spectroscopic parameters are retrieved using either Voigt or appropriate Galatry profile to simulate the measured (C2H4)-C-12 line shape. Line intensities along with self-broadening coefficients are reported for all lines. Narrowing coefficients for each isolated line are also derived. To our knowledge, the current study reports the first extensive spectroscopic parameter measurements of the (C2H4)-C-12 v(11) band in the 2975-2980 cm(-1) range. (C) 2016 Elsevier Ltd. All rights reserved.

  3. First line shape analysis and spectroscopic parameters for the ν11 band of 12C2H4

    KAUST Repository

    Es-sebbar, Et-touhami; Mantzaras, John; Benilan, Yves; Farooq, Aamir

    2016-01-01

    An accurate knowledge of line intensities, collisional broadening coefficients and narrowing parameters is necessary for the interpretation of high-resolution infrared spectra of the Earth and other planetary atmospheres. One of the most promising spectral domains for (C2H4)-C-12 monitoring in such environments is located near the 336 gm window, through its v(11) C-H stretching mode. In this paper, we report an extensive study in which we precisely determine spectroscopic parameters of (C2H4)-C-12 v(11) band at 297 +/- 1 K, using a narrow Difference-Frequency-Generation (DFG) laser with 10(-4) cm(-1) resolution. Absorption measurements were performed in the 2975-2980 cm(-1) spectral window to investigate 32 lines corresponding to where, J'ka',kc'<- Jka,kc, 5 <= J <= 7; 0.5 <= K-a <= 6 and 1 <= K-c <= 14. Spectroscopic parameters are retrieved using either Voigt or appropriate Galatry profile to simulate the measured (C2H4)-C-12 line shape. Line intensities along with self-broadening coefficients are reported for all lines. Narrowing coefficients for each isolated line are also derived. To our knowledge, the current study reports the first extensive spectroscopic parameter measurements of the (C2H4)-C-12 v(11) band in the 2975-2980 cm(-1) range. (C) 2016 Elsevier Ltd. All rights reserved.

  4. Epoxy-Based Shape-Memory Actuators Obtained via Dual-Curing of Off-Stoichiometric “Thiol–Epoxy” Mixtures

    Directory of Open Access Journals (Sweden)

    Alberto Belmonte

    2017-03-01

    Full Text Available In this work, epoxy-based shape-memory actuators have been developed by taking advantage of the sequential dual-curing of off-stoichiometric “thiol–epoxy” systems. Bent-shaped designs for flexural actuation were obtained thanks to the easy processing of these materials in the intermediate stage (after the first curing process, and successfully fixed through the second curing process. The samples were programmed into a flat temporary-shape and the recovery-process was analyzed in unconstrained, partially-constrained and fully-constrained conditions using a dynamic mechanical analyzer (DMA. Different “thiol–epoxy” systems and off-stoichiometric ratios were used to analyze the effect of the network structure on the actuation performance. The results evidenced the possibility to take advantage of the flexural recovery as a potential actuator, the operation of which can be modulated by changing the network structure and properties of the material. Under unconstrained-recovery conditions, faster and narrower recovery-processes (an average speed up to 80%/min are attained by using materials with homogeneous network structure, while in partially- or fully-constrained conditions, a higher crosslinking density and the presence of crosslinks of higher functionality lead to a higher amount of energy released during the recovery-process, thus, increasing the work or the force released. Finally, an easy approach for the prediction of the work released by the shape-memory actuator has been proposed.

  5. A renormalized -group attempt to obtain the exact transition line of the square - lattice bond - dilute Ising model

    International Nuclear Information System (INIS)

    Tsallis, C.; Levy, S.V.F.

    1979-05-01

    Two different renormalization-group approaches are used to determine approximate solutions for the paramagnetic-ferromagnetic transition line of the square-lattice bond-dilute first-neighbour-interaction Ising model. (Author) [pt

  6. Influence of nonuniform external magnetic fields and anode--cathode shaping on magnetic insulation in coaxial transmission lines

    International Nuclear Information System (INIS)

    Mostrom, M.A.

    1979-01-01

    Coaxial transmission lines, used to transfer the high voltage pulse into the diode region of a relativistic electron beam generator, have been studied using the two-dimensional time-dependent fully relativistic and electromagnetic particle simulation code CCUBE. A simple theory of magnetic insulation that agrees well with simulation results for a straight cylindrical coax in a uniform external magnetic field is used to interpret the effects of anode--cathode shaping and nonuniform external magnetic fields. Loss of magnetic insulation appears to be minimized by satisfying two conditions: (1) the cathode surface should follow a flux surface of the external magnetic field; (2) the anode should then be shaped to insure that the magnetic insulation impedance, including transients, is always greater than the effective load impedance wherever there is an electron flow in the anode--cathode gap

  7. Investigating the structural origin of trpzip2 temperature dependent unfolding fluorescence line shape based on a Markov state model simulation.

    Science.gov (United States)

    Song, Jian; Gao, Fang; Cui, Raymond Z; Shuang, Feng; Liang, Wanzhen; Huang, Xuhui; Zhuang, Wei

    2012-10-25

    Vibrationally resolved fluorescence spectra of the β-hairpin trpzip2 peptide at two temperatures as well as during a T-jump unfolding process are simulated on the basis of a combination of Markov state models and quantum chemistry schemes. The broad asymmetric spectral line shape feature is reproduced by considering the exciton-phonon couplings. The temperature dependent red shift observed in the experiment has been attributed to the state population changes of specific chromophores. Through further theoretical study, it is found that both the environment's electric field and the chromophores' geometry distortions are responsible for tryptophan fluorescence shift.

  8. Line shape parameters for the H2O-H2 collision system for application to exoplanet and planetary atmospheres

    Science.gov (United States)

    Renaud, Candice L.; Cleghorn, Kara; Hartmann, Léna; Vispoel, Bastien; Gamache, Robert R.

    2018-05-01

    Water can be detected throughout the universe: in comets, asteroids, dwarf planets, the inner and outer planets in our solar system, cool stars, brown dwarfs, and on many exoplanets. Here the focus is on locations rich in hydrogen gas. To properly study these environments, there is a need for the line shape parameters for H2O transitions in collision with hydrogen. This work presents calculations of the half-width and line shift, made using the Modified Complex Robert-Bonamy (MCRB) formalism, at a number of temperatures. It is shown that this collision system is strongly off-resonance. For such conditions, the atom-atom part of the intermolecular potential dominates the interaction of the radiating and perturbing molecules. The atom-atom parameters were adjusted by fitting the H2O-H2 measurements of Brown and Plymate (1996). Several techniques were used to extract lines for which there is more confidence in the quality of the data. The final potential yields results that agree with the measurements with ∼0.3% difference and a 5.9% standard deviation. Using this potential, MCRB calculations were made for all transitions in the pure rotation, ν2, ν1, and ν3 bands. The structure of the line shape parameters and the temperature dependence of the half-width, as a function of the rotational and vibrational quantum numbers, are discussed. It is shown that the power law model of the T-dependence of the half-width is inadequate over large temperature ranges.

  9. Shaping a Favorable Environment in Line with Social Expectations on Residential Areas

    Directory of Open Access Journals (Sweden)

    Joanna Agnieszka Pawłowicz

    2017-12-01

    Full Text Available The driving force behind the development of any city includes its residents. Hence, it is very important that they have the opportunity to live, work and rest in a friendly environment. The source of their well-being and positive aesthetic experience is a harmonious landscape shaped by a functional spatial arrangement of streets, shapes of buildings, as well as the accompanying nature, ensuring rational development of the city space. One of the key stages that developers and construction companies must take into consideration when planning new investments, is becoming familiar with people's expectations regarding their future place of residence. It is no secret that each square meter of building land is a potential source of profit for developers. The more apartments they build and sell, the more they earn. However, in order for apartments to be sold, they must meet the expectations of their potential buyers related not only to apartments and buildings themselves, but also to the environment surrounding them. Therefore, it is very important that residential estates be attractive and satisfy the needs of their dwellers, which substantially comes down to the comfort of living, rest and recreation within their place of residence. The primary objective behind meeting these needs is to stimulate the demand for new apartments among people, integrate the local community and increase the people' satisfaction with living in a friendly environment.

  10. Influence of Projection Operator on Oxygen Line Shapes and its effect on Rosseland-Mean Opacity in Stellar Interiors

    Science.gov (United States)

    Gomez, Thomas; Nagayama, Taisukue; Kilcrease, David; Hansen, Stephanie; Montgomery, Mike; Winget, Don

    2018-01-01

    The Rosseland-Mean opacity (RMO) is an important quantity in determining radiation transport through stars. The solar-convection-zone boundary predicted by the standard solar model disagrees with helioseismology measurements by many sigma; a 14% increase in the RMO would resolve this discrepancy. Experiments at Sandia National Laboratories are now measuring iron opacity at solar-interior conditions, and significant discrepancies are already observed. Highly-ionized oxygen is one of the dominant contributions to the RMO. The strongest line, Lyman alpha, is at the peak of the Rosseland weighting function. The accuracy of line-broadening calculations has been called into question due to various experimental results and comparisons between theory. We have developed an ab-initio calculation to explore different physical effects, our current focus is treating penetrating collisions explicitly. The equation of motion used to calculate line shapes within the relaxation and unified theories includes a projection operator, which performs an average over plasma electron states; this is neglected due to past calculations approximate treatment of penetrations. We now include this projection term explicitly, which results in a significant broadening of spectral lines from highly-charged ions (low-Z elements are not much affected). The additional broadening raises the O Ly-alpha wing opacity by a factor of 5; we examine the consequences of this additional broadening on the Rosseland mean.

  11. Arthritis by autoreactive T cell lines obtained from rats after injection of intestinal bacterial cell wall fragments

    NARCIS (Netherlands)

    I. Klasen (Ina); J. Kool (Jeanette); M.J. Melief (Marie-José); I. Loeve (I.); W.B. van den Berg (Wim); A.J. Severijnen; M.P.H. Hazenberg (Maarten)

    1992-01-01

    markdownabstract__Abstract__ T cell lines (B13, B19) were isolated from the lymph nodes of Lewis rats 12 days after an arthritogenic injection of cell wall fragments of Eubacterium aerofaciens (ECW), a major resident of the human intestinal flora. These cell wall fragments consist of

  12. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    Science.gov (United States)

    Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  13. Second-order quadrupolar line shapes under molecular dynamics: An additional transition in the extremely fast regime.

    Science.gov (United States)

    Hung, Ivan; Wu, Gang; Gan, Zhehong

    NMR spectroscopy is a powerful tool for probing molecular dynamics. For the classic case of two-site exchange, NMR spectra go through the transition from exchange broadening through coalescence and then motional narrowing as the exchange rate increases passing through the difference between the resonance frequencies of the two sites. For central-transition spectra of half-integer quadrupolar nuclei in solids, line shape change due to molecular dynamics occurs in two stages. The first stage occurs when the exchange rate is comparable to the second-order quadrupolar interaction. The second spectral transition comes at a faster exchange rate which approaches the Larmor frequency and generally reduces the isotropic quadrupolar shift. Such a two-stage transition phenomenon is unique to half-integer quadrupolar nuclei. A quantum mechanical formalism in full Liouville space is presented to explain the physical origin of the two-stage phenomenon and for use in spectral simulations. Variable-temperature 17 O NMR of solid NaNO 3 in which the NO 3 - ion undergoes 3-fold jumps confirms the two-stage transition process. The spectra of NaNO 3 acquired in the temperature range of 173-413K agree well with simulations using the quantum mechanical formalism. The rate constants for the 3-fold NO 3 - ion jumps span eight orders of magnitude (10 2 -10 10 s -1 ) covering both transitions of the dynamic 17 O line shape. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Resonant infiltration of an opal: Reflection line shape and contribution from in-depth regions.

    Science.gov (United States)

    Maurin, Isabelle; Bloch, Daniel

    2015-06-21

    We analyze the resonant variation of the optical reflection on an infiltrated artificial opal made of transparent nanospheres. The resonant infiltration is considered as a perturbation in the frame of a previously described one-dimensional model based upon a stratified effective index. We show that for a thin slice of resonant medium, the resonant response oscillates with the position of this slice. We derive that for adequate conditions of incidence angle, this spatially oscillating behavior matches the geometrical periodicity of the opal and hence the related density of resonant infiltration. Close to these matching conditions, the resonant response of the global infiltration varies sharply in amplitude and shape with the incidence angle and polarization. The corresponding resonant reflection originates from a rather deep infiltration, up to several wavelengths or layers of spheres. Finally, we discuss the relationship between the present predictions and our previous observations on an opal infiltrated with a resonant vapor.

  15. Observation of High Transformer Ratio of Shaped Bunch Generated by an Emittance-Exchange Beam Line.

    Science.gov (United States)

    Gao, Q; Ha, G; Jing, C; Antipov, S P; Power, J G; Conde, M; Gai, W; Chen, H; Shi, J; Wisniewski, E E; Doran, D S; Liu, W; Whiteford, C E; Zholents, A; Piot, P; Baturin, S S

    2018-03-16

    Collinear wakefield acceleration has been long established as a method capable of generating ultrahigh acceleration gradients. Because of the success on this front, recently, more efforts have shifted towards developing methods to raise the transformer ratio (TR). This figure of merit is defined as the ratio of the peak acceleration field behind the drive bunch to the peak deceleration field inside the drive bunch. TR is always less than 2 for temporally symmetric drive bunch distributions and therefore recent efforts have focused on generating asymmetric distributions to overcome this limitation. In this Letter, we report on using the emittance-exchange method to generate a shaped drive bunch to experimentally demonstrate a TR≈5 in a dielectric wakefield accelerator.

  16. Line-shape theory and molecular dynamics in collision-induced light scattering

    International Nuclear Information System (INIS)

    Balucani, U.; Tognetti, V.; Vallauri, R.

    1979-01-01

    Molecular-dynamics studies in argon at 148 amagats are presented for gaining information on the dynamical properties responsible for the depolarized light scattering from simple fluids. The total and pair-correlation functions are computed within the simple dipole--induced-dipole model of polarizability anisotropy. The pair spectral shape is derived. These results are compared with a theoretical analysis based on a continued-fraction approach. The necessary frequency moments are calculated both in the low-density limit and taking into account first-order density corrections, and compared with the molecular-dynamics data. The agreement between the theoretical spectra and molecular-dynamics data shows the validity of the memory-function approach. The comparison with the real experimental results allows one to test the relevant physical contributions to the polarizability anisotropy

  17. Thickness periodicity in the auger line shape from epitaxial (111)Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Y; Vook, R W; Chao, S S

    1981-01-01

    The 61 eV MMM Cu Auger line doublet was recorded in the derivative mode as a function of thickness for epitaxial (111)Cu films approximately 1500 angstrom thick. The overlap of the doublet lines makes it possible to define a measure of the doublet profile called the ''R-factor'' as a ratio of the peak-to-peak heights of the small overlap oscillation to that of the major oscillation. To within the experimental error, it was found that the R-factor varies with a periodicity of approximately one monoatomic layer as the film thickens. Since these films grow by a layer growth mechaniism, the surface topography varies periodically with the number of monolayers deposited, going from a smooth to a rough to a smooth, etc. surface. It is believed that the occurrence of such a periodicity implies that there is a difference in the electronic structure at the surface of the flat areas of the film from that at the edges of monolayer high, flat islands. The amplitude of the oscillation in R is interpreted to be a measure of the relative amounts of edge area compared to flat area. These results show that it is possible to use Auger electron spectroscopy to monitor surface topography and the electronic structure changes that accompany the topographical changes occurring when epitaxial films grow by a layer growth mechanism.

  18. Auger line shape changes in epitaxial (111)Pd/(111)Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Chao, S S; Knabbe, E A; Vook, R W

    1980-01-01

    Epitaxial Pd films ranging in thickness from a few tenths of a monolayer up to many monolayers were formed on (111)Cu substrate films at room temperature under uhv conditions. The growth of these Pd films was monitored in situ by Auger electron spectroscopy. The line profiles of the Cu MMM (61 eV) and Pd MVV (329 eV) AES doublets varied significantly with the amount of Pd deposited. A new measure of the AES doublet line profile, called the R-factor, was defined. A graph of R/sub Pd/ versus Pd film thickness shows a sharp decline with increasing thickness. Superimposed on the major trends is a cyclical variation. A corresponding periodicity in R/sub Cu/ was observed for the Cu MMM (61 eV) AES doublet. The results suggest that the R-factor provides a direct measure of changes in the electronic structures of the overgrowth and substrate films as the former thickens by a layer-growth mechanism.

  19. Resonances in photoabsorption: Predissociation line shapes in the 3pπD1Π+u ← Χ1Σg+ system in H2

    International Nuclear Information System (INIS)

    Mezei, J. Zs.; Schneider, I. F.; Glass-Maujean, M.; Jungen, Ch.

    2014-01-01

    The predissociation of the 3pπD 1 Π u + ,v≥3,N=1, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit a complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally

  20. First spectroscopy of 66Se and 65As: Investigating shape coexistence beyond the N=Z line

    International Nuclear Information System (INIS)

    Obertelli, A.; Baugher, T.; Bazin, D.; Boissinot, S.; Delaroche, J.-P.; Dijon, A.; Flavigny, F.; Gade, A.; Girod, M.; Glasmacher, T.; Grinyer, G.F.; Korten, W.; Ljungvall, J.; McDaniel, S.; Ratkiewicz, A.; Sulignano, B.; Van Isacker, P.; Weisshaar, D.

    2011-01-01

    We report on the first γ spectroscopy of 66 Se and 65 As from two-neutron removal at intermediate beam energies. The deduced excitation energies for the first-excited states in 66 Se and 65 As are compared to mean-field-based predictions within a collective Hamiltonian formalism using the Gogny D1S effective interaction and to state-of-the-art shell-model calculations restricted to the pf 5/2 g 9/2 valence space. The obtained Coulomb-energy differences for the first excited states in 66 Se and 65 As are discussed within the shell-model formalism to assess the shape-coexistence picture for both nuclei. Our results support a favored oblate ground-state deformation in 66 Se and 65 As. A shape transition for the ground state of even-odd As isotopes from oblate in 65 As to prolate in 67,69,71 As is suggested.

  1. Slit shaped microwave induced atmospheric pressure plasma based on a parallel plate transmission line resonator

    Science.gov (United States)

    Kang, S. K.; Seo, Y. S.; Lee, H. Wk; Aman-ur-Rehman; Kim, G. C.; Lee, J. K.

    2011-11-01

    A new type of microwave-excited atmospheric pressure plasma source, based on the principle of parallel plate transmission line resonator, is developed for the treatment of large areas in biomedical applications such as skin treatment and wound healing. A stable plasma of 20 mm width is sustained by a small microwave power source operated at a frequency of 700 MHz and a gas flow rate of 0.9 slm. Plasma impedance and plasma density of this plasma source are estimated by fitting the calculated reflection coefficient to the measured one. The estimated plasma impedance shows a decreasing trend while estimated plasma density shows an increasing trend with the increase in the input power. Plasma uniformity is confirmed by temperature and optical emission distribution measurements. Plasma temperature is sustained at less than 40 °C and abundant amounts of reactive species, which are important agents for bacteria inactivation, are detected over the entire plasma region. Large area treatment ability of this newly developed device is verified through bacteria inactivation experiment using E. coli. Sterilization experiment shows a large bacterial killing mark of 25 mm for a plasma treatment time of 10 s.

  2. The Influence of Chemi-Ionization and Recombination Processes on Spectral Line Shapes in Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Mihajlov Anatolij A.

    2011-12-01

    Full Text Available The chemi-ionization processes in atom - Rydberg atom collisions, as well as the corresponding chemi-recombination processes, are considered as factors of influence on the atom exited-state populations in weakly ionized layers of stellar atmospheres. The presented results are related to the photospheres of the Sun and some M red dwarfs, as well as weakly ionized layers of DB white dwarf atmospheres. It has been found that the mentioned chemi-ionization and recombination processes dominate over the concurrent electron-atom and electron-ion ionization and recombination processes in all parts of the considered stellar atmospheres. The obtained results demonstrate the fact that the considered processes must have significant influence on the optical properties of stellar atmospheres. It is shown that these processes and their importance for non-local thermodynamic equilibrium (non-LTE modeling of the solar atmospheres should be investigated further.

  3. Fourier X-ray line shape analysis of lattice defects from a single reflection

    International Nuclear Information System (INIS)

    Misra, N.K.; Bhanumurthy, K.

    1981-01-01

    A method of single reflection Fourier analysis has been described considering the fact that the rms strain (averaged over a distance) is not independent of averaging distance. Following the procedure of N.K. Misra and T.B. Ghosh (1976) and considering the initial slopes of dAsub(L)/dL against L curves, (Asub(L) is the Lsub(th) order Fourier coefficient) the effective size of the coherently diffracting domains and the rms strain in them are determined. The results of this analysis for pure Ti and Ag-3.55% Ga, Ag-15% In and Cu-12.46% Ge alloys compare fairly well with those obtained from different multiple reflections techniques. (author)

  4. [Accuracy of attenuation coefficient obtained by 137Cs single-transmission scanning in PET: comparison with conventional germanium line source].

    Science.gov (United States)

    Matsumoto, Keiichi; Kitamura, Keishi; Mizuta, Tetsuro; Shimizu, Keiji; Murase, Kenya; Senda, Michio

    2006-02-20

    Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR(+) (Siemens/CTI) , were used. For the transmission scanning, the SET-3000 G/X and ECAT HR(+) were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR(+) was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm(2) to 314 cm(2) to 628 cm(2) (apposition of the two 20 cm diameter phantoms) and 943 cm(2) (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation

  5. Accuracy of attenuation coefficient obtained by 137Cs single-transmission scanning in PET. Comparison with conventional germanium line source

    International Nuclear Information System (INIS)

    Matsumoto, Keiichi; Shimizu, Keiji; Senda, Michio; Kitamura, Keishi; Mizuta, Tetsuro; Murase, Kenya

    2006-01-01

    Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR + (Siemens/CTI), were used. For the transmission scanning, the SET-3000 G/X and ECAT HR + were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR 2 + was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm 2 to 314 cm 2 to 628 cm 2 (apposition of the two 20 cm diameter phantoms) and 943 cm 2 (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation coefficients

  6. Toxicity assessment of metoprolol and its photodegradation mixtures obtained by using different type of TiO{sub 2} catalysts in the mammalian cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Četojević-Simin, Dragana D., E-mail: ddaaggeerr@gmail.com [University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Dr Goldmana 4, 21204 Sremska Kamenica (Serbia); Armaković, Sanja J., E-mail: sanja.armakovic@dh.uns.ac.rs [University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad (Serbia); Šojić, Daniela V., E-mail: daniela.sojic@dh.uns.ac.rs [University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad (Serbia); Abramović, Biljana F., E-mail: biljana.abramovic@dh.uns.ac.rs [University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad (Serbia)

    2013-10-01

    Toxicity of metoprolol (MET) alone and in mixtures with its photocatalytic degradation intermediates obtained by using TiO{sub 2} Wackherr and Degussa P25 under UV irradiation in the presence of O{sub 2} was evaluated in vitro in a panel of three histologically different cell lines: rat hepatoma (H-4-II-E), human colon adenocarcinoma (HT-29) and human fetal lung (MRC-5). Both catalysts promoted a time-dependent increase in the toxicity of the photodegradation products, and those obtained using Degussa P25 photocatalyst were more toxic. The most pronounced and selective toxic action of MET and products of its photodegradation was observed in the hepatic cell line. The higher toxicity of the mixtures obtained using Degussa P25 catalyst could be explained by a different mechanism of MET degradation, i.e. by the presence or higher concentrations of some intermediates. Although the concentrations of intermediates obtained using TiO{sub 2} Wackherr catalyst were higher, they did not affect significantly the growth of the examined cell lines, indicating their lower toxicity. This suggests that a treatment aiming at complete mineralization should be performed bearing in mind that the type of catalyst, the concentration of target molecule, and the duration of the process are significant factors that determine the nature and toxicity of the resulting mixtures. Although the EC{sub 50} values of MET obtained in mammalian cell lines were higher compared to the bioassays for lower trophic levels, the time-dependent promotion of toxicity of degradation mixtures should be attributed to the higher sensitivity of mammalian cell bioassays. - Highlights: • Toxicity study of metoprolol and its photocatalytic degradation mixtures • Toxicity evaluation in vitro in H-4-II-E, HT-29 and MRC-5 cell lines • TiO{sub 2} Wackherr and Degussa P25 promoted a time-dependent increase in toxicity. • The higher toxicity of degradation mixtures obtained using Degussa P25 • Most pronounced and

  7. Evidence for the field line reconnection process in the particle and magnetic field measurements obtained during the Giotto-Halley encounter

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, E.; Daly, P.; Korth, A.; McKenna-Lawlor, S.; Neubauer, F.M.; O' Sullivan, D.; Thompson, A.; Wenzel, K.P.

    1989-04-01

    Measurements of low (E = 250-1000 eV) and high (E = 60 to > 300 keV) energy particles as well as the magnetic field obtained by 3 different instruments (Reme Plasma Analyser, Energetic Particle Analyser, MAGnetometer) during the Giotto-Halley encounter on 13/14 March 1986 are used to study the field line merging process. Spikes of 5-15 min duration in the high energy particle flux which are superimposed on the general intensity time profile are correlated with minima in the low energy particle flux and time periods of oppositely directed magnetic field lines. Strong changes in the pitch angle distribution of energetic ions are observed simultaneously. The observations are considered as evidence for sporadic field line merging processes in the front side of Halley's cometosheath which can accelerate ions and electrons up to E /similar to/ 300 keV.

  8. Spectral shapes of Ar-broadened HCl lines in the fundamental band by classical molecular dynamics simulations and comparison with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tran, H., E-mail: ha.tran@lisa.u-pec.fr [Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil, Université Paris Diderot, Institut Pierre-Simon Laplace, 94010 Créteil Cedex (France); Domenech, J.-L. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, (IEM-CSIC), Serrano 123, 28006 Madrid (Spain)

    2014-08-14

    Spectral shapes of isolated lines of HCl perturbed by Ar are investigated for the first time using classical molecular dynamics simulations (CMDS). Using reliable intermolecular potentials taken from the literature, these CMDS provide the time evolution of the auto-correlation function of the dipole moment, whose Fourier-Laplace transform leads to the absorption spectrum. In order to test these calculations, room temperature spectra of various lines in the fundamental band of HCl diluted in Ar are measured, in a large pressure range, with a difference-frequency laser spectrometer. Comparisons between measured and calculated spectra show that the CMDS are able to predict the large Dicke narrowing effect on the shape of HCl lines and to satisfactorily reproduce the shapes of HCl spectra at different pressures and for various rotational quantum numbers.

  9. A feeder- and xeno-free human induced pluripotent stem cell line obtained from primary human dermal fibroblasts with epigenetic repression of reprogramming factors expression: GPCCi001-A

    Directory of Open Access Journals (Sweden)

    Michał Stefan Lach

    2017-04-01

    Full Text Available The primary human dermal fibroblasts (PHDFs from breast cancer patient were obtained to generate the human induced pluripotent stem cell line GPCCi001-A via lentiviral transfection. Thus, a modified EF1a-hSTEMCCA-loxP with tetO operator which regulates transgene expression was used. This method takes advantage of epigenetic regulation of transcription and allows for stable silencing of the reprogramming factors in obtained hiPS cells. To increase the potential utility of hiPSCs for clinical applications, they were adapted to feeder- and xeno-free conditions. The pluripotency of GPCCi001-A cell line and ability to differentiate into three germ layers was confirmed.

  10. Precision Measurement of the Energies and Line Shapes of Antiprotonic Lyman and Balmer Transitions From Hydrogen and Helium Isotopes

    CERN Multimedia

    2002-01-01

    % PS207 \\\\ \\\\ For the study of the antiproton-proton and antiproton-nuclear spin-spin and spin-orbital interaction at threshold a high resolution measurement is proposed of the line shapes and energy shifts of antiprotonic K$\\alpha$ and L$\\alpha$ transitions of hydrogen and helium isotopes. The intense LEAR beam, stopped in the cyclotron trap at low gas pressure, provides a unique~X-ray~source with sufficient brightness. Charge coupled devices with their excellent background rejection and energy resolution allow a precise determination of the strong shifts and widths of the 1s hyperfine states of protonium, in addition the detection of the $\\bar{p}$D K$\\alpha$ transition should be possible. A focussing crystal spectrometer with a resolution $\\Delta$E/E of about l0$ ^- ^{4} $, which is superior in the accuracy of the energy determination by two orders of magnitude as compared to the present detection methods, will be used to measure the energies of the L$\\alpha$ transitions. This permits a first direct measure...

  11. Constraints on dark matter and the shape of the Milky Way dark halo from the 511 keV line

    CERN Document Server

    Ascasibar, Y; Knödlseder, J; Jean, P

    2006-01-01

    About one year ago, it was speculated that decaying or annihilating Light Dark Matter (LDM) particles could explain the flux and extension of the 511 keV line emission in the galactic centre. Here we present a thorough comparison between theoretical expectations of the galactic positron distribution within the LDM scenario and observational data from INTEGRAL/SPI. Unlike previous analyses, there is now enough statistical evidence to put tight constraints on the shape of the dark matter halo of our galaxy, if the galactic positrons originate from dark matter. For annihilating candidates, the best fit to the observed 511 keV emission is provided by a radial density profile with inner logarithmic slope gamma=1.03+-0.04. In contrast, decaying dark matter requires a much steeper density profile, gamma>1.5, rather disfavoured by both observations and numerical simulations. Within the annihilating LDM scenario, a velocity-independent cross-section would be consistent with the observational data while a cross-section...

  12. New insight into hydration and aging mechanisms of paper by the line shape analysis of proton NMR spectra

    International Nuclear Information System (INIS)

    Mallamace, D.; Vasi, S.; Missori, M.; Corsaro, C.

    2016-01-01

    The action of water within biological systems is strictly linked either with their physical chemical properties and with their functions. Cellulose is one of the most studied biopolymers due to its biological importance and its wide use in manufactured products. Among them, paper is mainly constituted by an almost equimolar ratio of cellulose and water. Therefore the study of the behavior of water within pristine and aged paper samples can help to shed light on the degradation mechanisms that irremediably act over time and spoil paper. In this work we present Nuclear Magnetic Resonance (NMR) experiments on modern paper samples made of pure cellulose not aged and artificially aged as well as on ancient paper samples made in 1413 in Perpignan (France). The line shape parameters of the proton NMR spectra were studied as a function of the hydration content. Results indicate that water in aged samples is progressively involved in the hydration of the byproducts of cellulose degradation. This enhances the degradation process itself through the progressive consumption of the cellulose amorphous regions.

  13. Modulating the line shape of magnetoconductance by varying the charge injection in polymer light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Nidya Chitraningrum

    2018-02-01

    Full Text Available We fabricate the phenyl-substituted poly(p-phenylene vinylene copolymer (super yellow, SY-PPV-based polymer light-emitting diodes (PLEDs with different device architectures to modulate the injection of opposite charge carriers and investigate the corresponding magnetoconductance (MC responses. At the first glance, we find that all PLEDs exhibit the positive MC responses. By applying the mathematical analysis to fit the curves with two empirical equations of a non-Lorentzian and a Lorentzian function, we are able to extract the hidden negative MC component from the positive MC curve. We attribute the growth of the negative MC component to the reduced interaction of the triplet excitons with charges to generate the free charge carriers as modulated by the applied magnetic field, known as the triplet exciton-charge reaction, by analyzing MC responses for PLEDs of the charge-unbalanced and hole-blocking device configurations. The negative MC component causes the broadening of the line shape in MC curves.

  14. The line shape analysis of electron spectroscopy spectra by the artifical intelligence methods for identification of C sp.sup.2./sup./sp.sup.3./sup. bonds

    Czech Academy of Sciences Publication Activity Database

    Lesiak, B.; Zemek, Josef; Jiříček, Petr; Stobinski, L.; Jozwik, A.

    2010-01-01

    Roč. 247, 11-12 (2010), s. 2838-2842 ISSN 0370-1972 R&D Projects: GA ČR GA202/09/0428 Institutional research plan: CEZ:AV0Z10100521 Keywords : carbon nanotubes * temperature functionalization * electron spectroscopy * line shape analysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.344, year: 2010

  15. Calculation of the vibrational linewidth and line shape of Raman spectra using the relaxation function : I. method and application to nitrogen

    NARCIS (Netherlands)

    Kooi, M.E.; Smit, F.; Michels, J.P.J.; Schouten, J.A.

    2000-01-01

    The spectral line shape of the fundamental vibration of nitrogen is calculated from molecular dynamics simulations by determining the Fourier transform of the relaxation function. It has been applied to the fluid phase at various pressures and temperatures, and to solid d-N2. The validity of the

  16. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  17. Antiproliferative activity of flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the MCF7, KB, and NIH/3T3 cell lines.

    Science.gov (United States)

    Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B

    2012-11-01

    This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3.

  18. Disentangling the role of the Y(4260) in e+e- →D*Dbar* and Ds* Dbars* via line shape studies

    Science.gov (United States)

    Xue, Si-Run; Jing, Hao-Jie; Guo, Feng-Kun; Zhao, Qiang

    2018-04-01

    Whether the Y (4260) can couple to open charm channels has been a crucial issue for understanding its nature. The available experimental data suggest that the cross section line shapes of exclusive processes in e+e- annihilations have nontrivial structures around the mass region of the Y (4260). As part of a series of studies of the Y (4260) as mainly a D bar D1 (2420) + c . c . molecular state, we show that the partial widths of the Y (4260) to the two-body open charm channels of e+e- →D*Dbar* and Ds* D bars* are much smaller than that to D bar D* π + c . c . . The line shapes measured by the Belle Collaboration for these two channels can be well described by the vector charmonium states ψ (4040), ψ (4160) and ψ (4415) together with the Y (4260). It turns out that the interference of the Y (4260) with the other charmonia produces a dip around 4.22 GeV in the e+e- →D*Dbar* cross section line shape. The data also show an evidence for the strong coupling of the Y (4260) to the DDbar1 (2420), in line with the expectation in the hadronic molecular scenario for the Y (4260).

  19. Fourier analysis of the cell shape of paired human urothelial cell lines of the same origin but of different grades of transformation.

    Science.gov (United States)

    Ostrowski, K; Dziedzic-Goclawska, A; Strojny, P; Grzesik, W; Kieler, J; Christensen, B; Mareel, M

    1986-01-01

    The rationale of the present investigation is the observations made by many authors of changes in the molecular structure of the cell surface during the multistep process of malignant transformation. These changes may influence cell-matrix and cell-cell interactions and thereby cause changes in cell adhesiveness and cell shape. The aim of the present work was to investigate whether the development of various grades of transformation in vivo and in vitro of human urothelial cells is accompanied by significant changes in cell shape as measured by Fourier analysis. The following transformation grades (TGr) have been defined (Christensen et al. 1984; Kieler 1984): TGr I = nonmalignant, mortal cell lines that grow independently of fibroblasts and have a prolonged life span. TGr II = nonmalignant cell lines with an infinite life span. TGr III = malignant and immortal cell lines that grow invasively in co-cultures with embryonic chick heart fragments and possess tumorigenic properties after s.c. injection into nude mice. Comparisons of 4 pairs of cell lines were performed; each pair was of the same origin. Two pairs--each including a TGr I cell line (Hu 961b and Hu 1703S) compared to a TGr III cell line (Hu 961a or Hu 1703He)--were derived from two transitional cell carcinomas (TCC) containing a heterogeneous cell population. Two additional cell lines classified as TGr II (HCV-29 and Hu 609) were compared to two TGr III sublines (HCV-29T and Hu 609T, respectively) which arose by "spontaneous" transformation during propagation in vitro of the respective maternal TGr II-cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. GPU-based, parallel-line, omni-directional integration of measured acceleration field to obtain the 3D pressure distribution

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2016-11-01

    A PIV based method to reconstruct the volumetric pressure field by direct integration of the 3D material acceleration directions has been developed. Extending the 2D virtual-boundary omni-directional method (Omni2D, Liu & Katz, 2013), the new 3D parallel-line omni-directional method (Omni3D) integrates the material acceleration along parallel lines aligned in multiple directions. Their angles are set by a spherical virtual grid. The integration is parallelized on a Tesla K40c GPU, which reduced the computing time from three hours to one minute for a single realization. To validate its performance, this method is utilized to calculate the 3D pressure fields in isotropic turbulence and channel flow using the JHU DNS Databases (http://turbulence.pha.jhu.edu). Both integration of the DNS acceleration as well as acceleration from synthetic 3D particles are tested. Results are compared to other method, e.g. solution to the Pressure Poisson Equation (e.g. PPE, Ghaemi et al., 2012) with Bernoulli based Dirichlet boundary conditions, and the Omni2D method. The error in Omni3D prediction is uniformly low, and its sensitivity to acceleration errors is local. It agrees with the PPE/Bernoulli prediction away from the Dirichlet boundary. The Omni3D method is also applied to experimental data obtained using tomographic PIV, and results are correlated with deformation of a compliant wall. ONR.

  1. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.

    2016-10-21

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  2. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Andreeva, C.; Cinins, A.; Markovski, A.; Iftikhar, Z.; Ekers, Aigars; Ryabtsev, I. I.

    2016-01-01

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  3. Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, R., E-mail: naharro@uhu.es [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Sanchez-Raya, M.; Gomez-Galan, J.A. [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Flores, J.L. [Departamento Ingenieria Electrica y Termica, Universidad de Huelva, 21071 Huelva (Spain); Duenas, J.A.; Martel, I. [Departamento de Fisica Aplicada, Universidad de Huelva, 21071 Huelva (Spain)

    2012-05-11

    Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using {sup 12,13}C ions produced in heavy ion reactions. The actual latency of the system is about 20 {mu}s when using a clock frequency of 50 MHz.

  4. First observation of the Λ(1405) line shape in electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Y.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D’Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.

    2013-10-01

    We report the first observation of the line shape of the Λ ( 1405 ) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K + Λ ( 1405 ) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0 < Q 2 < 3.0 (GeV/ c ) 2 . The analysis utilized the decay channels Σ + π - of the Λ ( 1405 ) and p π 0 of the Σ + . Neither the standard Particle Data Group resonance parameters, nor free parameters fitting to a single Breit-Wigner resonance represent the line shape. In our fits, the line shape corresponds approximately to predictions of a two-pole meson-baryon picture of the Λ ( 1405 ) , with a lower mass pole near 1368 MeV/ c 2 and a higher mass pole near 1423 MeV/ c 2 . Furthermore, with increasing photon virtuality the mass distribution shifts toward the higher mass pole.

  5. About the Shape of the Melting Line as a Possible Precursor of a Liquid-Liquid Phase Transition

    Science.gov (United States)

    Imre, Attila R.; Rzoska, Sylwester J.

    Several simple, non-mesogenic liquids can exists in two or more different liquid forms. When the liquid-liquid line, separating two liquid forms, meets the melting line, one can expect some kind of break on the melting line, caused by the different freezing/melting behaviour of the two liquid forms. Unfortunately recently several researchers are using this vein of thinking in reverse; seeing some irregularity on the melting line, they will expect a break and the appearance of a liquid-liquid line. In this short paper, we are going to show, that in the case of the high-pressure nitrogen studied recently by Mukherjee and Boehler, the high-pressure data can be easily described by a smooth, break-free function, the modified Simon-Glatzel equation. In this way, the break, suggested by them and consequently the suggested appearance of a new liquid phase of the nitrogen might be artefacts.

  6. Effects of diffusion and surface interactions on the line shape of electron paramagnetic resonances in the presence of a magnetic field gradient

    International Nuclear Information System (INIS)

    Schaden, M.; Zhao, K. F.; Wu, Z.

    2007-01-01

    In an evanescent wave magnetometer the Zeeman polarization is probed at micrometer to submicrometer distances from the cell surface. The electron paramagnetic resonance lines of an evanescent wave magnetometer in the presence of a magnetic field gradient exhibit edge enhancement seen previously in nuclear magnetic resonance lines. We present a theoretical model that describes quantitatively the shape of the magnetic resonance lines of an evanescent wave magnetometer under a wide range of experimental conditions. It accounts for diffusion broadening in the presence of a magnetic field gradient as well as interactions of spin polarized Rb atoms with the coated Pyrex glass surfaces. Depending on the field gradient, cell thickness, and buffer gas pressure, the resonance line may have the form of a single asymmetric peak or two peaks localized near the front and back surfaces in frequency space. The double-peaked response depends on average characteristics of the surface interactions. Its shape is sensitive to the dwell time, relaxation probability, and average phase shift of adsorbed spin polarized Rb atoms

  7. Anomaly in shape of resonance absorption lines of atoms with large fine-structure splitting of levels

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; yachev, S.P."" >Podyachev, S.P.; Privalov, T.I.; Shalagin, A.M.

    1997-01-01

    Absorption line of monochromatic radiation by atoms nonselective excitation by velocities under conditions of optical excitation of components of superfine structure of the basic electron state is considered. It is shown that the absorption line has unusual substructures for certain values of the basic state superfine desintegration. These substructures in the absorption spectrum may be pointed out by accounting the superfine structure of the electron excited state. The absorption spectra of monochromatic radiation close tot he D 1 - and D 2 -lines of the atomic rubidium are calculated

  8. Supra-molecular structure of TGBC* phases studied by means of Deuterium NMR line-shape analysis

    Czech Academy of Sciences Publication Activity Database

    Domenici, V.; Veracini, C.A.; Hamplová, Věra; Kašpar, Miroslav

    2008-01-01

    Roč. 495, č. 11 (2008), s. 133-144 ISSN 1542-1406 Institutional research plan: CEZ:AV0Z10100520 Keywords : banana -shaped * deuterium NMR * magnetic field * rod-like * smectic * twist grain boundary Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.537, year: 2008

  9. Detailed single-crystal EPR line shape measurements for the single-molecule magnets Fe8Br and Mn12-acetate

    Science.gov (United States)

    Hill, S.; Maccagnano, S.; Park, Kyungwha; Achey, R. M.; North, J. M.; Dalal, N. S.

    2002-06-01

    It is shown that our multi-high-frequency (40-200 GHz) resonant cavity technique yields distortion-free high-field electron paramagnetic resonance (EPR) spectra for single-crystal samples of the uniaxial and biaxial spin S=10 single-molecule magnets (SMM's) [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O and [Fe8O2(OH)12(tacn)6]Br8.9H2O. The observed line shapes exhibit a pronounced dependence on temperature, magnetic field, and the spin quantum numbers (MS values) associated with the levels involved in the transitions. Measurements at many frequencies allow us to separate various contributions to the EPR linewidths, including significant D strain, g strain, and broadening due to the random dipolar fields of neighboring molecules. We also identify asymmetry in some of the EPR line shapes for Fe8 and a previously unobserved fine structure to some of the EPR lines for both the Fe8 and Mn12 systems. These findings prove relevant to the mechanism of quantum tunneling of magnetization in these SMM's.

  10. Avoidance of transmission line pressure oscillations in discrete hydraulic systems – by shaping of valve opening characteristics

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Bech, Michael Møller

    2015-01-01

    The architecture of multi pressure line discrete fluid power force systems imposes rapid pressure shifts in the actuator volumes. These fast shifts between pressure levels often introduce pressure oscillations in the actuator chamber and connecting pipes. The topic of this paper is to perform...... pressure shifts by changing the connection between various fixed pressure lines without introducing significant pressure oscillation. As a case study a discrete force system is utilised is a Power Take Off(PTO) system of a wave energy converter. Four pressure shifting algorithms are proposed...

  11. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    International Nuclear Information System (INIS)

    Attota, Ravikiran; Dixson, Ronald G.

    2014-01-01

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  12. Properties of laser-produced GaAs plasmas measured from highly resolved X-ray line shapes and ratios

    Science.gov (United States)

    Seely, J. F.; Fein, J.; Manuel, M.; Keiter, P.; Drake, P.; Kuranz, C.; Belancourt, Patrick; Ralchenko, Yu.; Hudson, L.; Feldman, U.

    2018-03-01

    The properties of hot, dense plasmas generated by the irradiation of GaAs targets by the Titan laser at Lawrence Livermore National Laboratory were determined by the analysis of high resolution K shell spectra in the 9 keV to 11 keV range. The laser parameters, such as relatively long pulse duration and large focal spot, were chosen to produce a steady-state plasma with minimal edge gradients, and the time-integrated spectra were compared to non-LTE steady state spectrum simulations using the FLYCHK and NOMAD codes. The bulk plasma streaming velocity was measured from the energy shifts of the Ga He-like transitions and Li-like dielectronic satellites. The electron density and the electron energy distribution, both the thermal and the hot non-thermal components, were determined from the spectral line ratios. After accounting for the spectral line broadening contributions, the plasma turbulent motion was measured from the residual line widths. The ionization balance was determined from the ratios of the He-like through F-like spectral features. The detailed comparison of the experimental Ga spectrum and the spectrum simulated by the FLYCHK code indicates two significant discrepancies, the transition energy of a Li-like dielectronic satellite (designated t) and the calculated intensity of a He-like line (x), that should lead to improvements in the kinetics codes used to simulate the X-ray spectra from highly-charged ions.

  13. Numerical Models for Exact Description of in-situ Digital In-Line Holography Experiments with Irregularly-Shaped Arbitrarily-Located Particles

    Directory of Open Access Journals (Sweden)

    Marc Brunel

    2015-04-01

    Full Text Available We present the development of a numerical simulator for digital in-line holography applications. In-line holograms of arbitrarily shaped and arbitrarily located objects are calculated using generalized Huygens-Fresnel integrals. The objects are 2D opaque or phase objects. The optical set-up is described by its optical transfer matrix. A wide variety of optical systems, involving windows, spherical or cylindrical lenses, can thus be taken into account. It makes the simulator applicable for design and description of in situ experiments. We discuss future applications of this simulator for detection of nanoparticles in droplets, or calibration of airborne instruments that detect and measure ice crystals in the atmosphere.

  14. Using titer and titer normalized to confluence are complementary strategies for obtaining Chinese hamster ovary cell lines with high volumetric productivity of etanercept

    DEFF Research Database (Denmark)

    Pristovšek, Nuša; Hansen, Henning Gram; Sergeeva, Daria

    2018-01-01

    The selection of clonally-derived Chinese hamster ovary (CHO) cell lines with the highest production rate of recombinant glycoproteins remains a big challenge during early stages of cell line development. Different strategies using either product titer or product titer normalized to cell number...

  15. Park Facilities, Boundaries were determined from parcel mapping lines & site specific items, such as shelter locations, were obtained by field GPS observation, Published in 2010, Not Applicable scale, Chippewa County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Park Facilities dataset current as of 2010. Boundaries were determined from parcel mapping lines & site specific items, such as shelter locations, were obtained...

  16. Shape of electron lines emitted by a fast particle in atomic collisions. Influence of the acceptance function

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Gleizes, A.; Benoit-Cattin, P.; Boudjema, M.

    1980-01-01

    In order to explain the large energy broadening of the lines observed in energy spectra of electrons emitted by fast particles, an accurate knowledge of the angular acceptance function of the electron energy analyser is necessary. A simple method is proposed which can give an accurate function for most atomic collisions: the various approximations are discussed. It is also shown that the analyser transmission depends on the acceptance angle. (author)

  17. 3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns

    Science.gov (United States)

    Flores, Jorge L.; Ayubi, Gaston A.; Di Martino, J. Matías; Castillo, Oscar E.; Ferrari, Jose A.

    2018-05-01

    In this work, we propose a novel technique to retrieve the 3D shape of dynamic objects by the simultaneous projection of a fringe pattern and a homogeneous light pattern which are both coded in two of the color channels of a RGB image. The fringe pattern, red channel, is used to retrieve the phase by phase-shift algorithms with arbitrary phase-step, while the homogeneous pattern, blue channel, is used to match pixels from the test object in consecutive images, which are acquired at different positions, and thus, to determine the speed of the object. The proposed method successfully overcomes the standard requirement of projecting fringes of two different frequencies; one frequency to extract object information and the other one to retrieve the phase. Validation experiments are presented.

  18. Modulated solar pressure-based surface shape control of paraboloid space reflectors with an off-axis Sun-line

    Science.gov (United States)

    Liu, Jiafu; McInnes, Colin R.

    2018-03-01

    This paper considers utilizing solar radiation pressure (SRP) to actively control the surface shape of a reflector consisting of a rigid hoop and slack membrane with embedded reflectivity control devices. The full nonlinear static partial differential governing equations for a reflector with negligible elastic deformations are established for the circumferential, radial and transverse directions respectively, in which the SRP force with ideal/non-perfect models, the centripetal force caused by the rotation of the reflector and the internal stresses are considered. The inverse problem is then formulated by assuming that the required surface shape is known, and then the governing algebraic-differential equations used to determine the required surface reflectivity, together with the internal stresses where are presented accordingly. The validity of the approach is verified by comparing the results in this paper with corresponding published results as benchmarks. The feasible regions of the angular velocity and Sun angle for a paraboloidal reflector with an invariant radius and focal length (case 1), and the achievable focal lengths with a specific angular velocity and Sun angle (case 2) are presented for two SRP models respectively, both by considering the constraints on the reflectivity and internal stresses. It is then found that the feasible region is toward a larger angular velocity and Sun angle when using the non-perfect SRP model, compared with the ideal one in case 1. The angular velocity of the spinning reflector should be within a certain range to make the required reflectivity profiles within a practical range, i.e., [0, 0.88], as indicated from prior NASA solar sail studies. In case 2, it is found that the smallest achievable focal length of the reflector with the non-perfect SRP model is smaller than that with the ideal SRP model. It is also found that the stress level is extremely low for all cases considered and that the typical real material strength

  19. The line shape of the Ortho-II superstructure reflection in YBa2Cu3O6.5

    DEFF Research Database (Denmark)

    Schleger, P.; Hadfield, R.; Casalta, H.

    1994-01-01

    Neutron and synchrotron x-ray measurements of the Ortho-II superstructure reflections on a high quality single crystal of YBa2Cu3O6.5 revealed that the intrinsic line shape is a Lorentzian to the power 5/2. It is argued that such a line shape implies late-stage domain coarsening of a quenched...... system ordering in three dimensions (d=3) with a two component order parameter (n=2)....

  20. Shape of argon spectral lines emitted from an electric arc (P=760 Torr). Study and application of pressure broadening

    International Nuclear Information System (INIS)

    Kretzas, Dimitrios.

    1978-01-01

    We have studied the broadening and shift of argon spectral lines corresponding to 3p 5 5p-3p 5 4s and 3p 5 4p-3p 5 4s transitions emitted from an electric arc burning under atmospheric pressure. We have revealed the broadening due to neutral atoms pressure effect, distinguishing the transitions whose lower level is a metastable one (1s 3 and 1s 5 ) or a level of strong (1s 2 ) or feeble resonance (1s 4 ). In this study we have employed a mixture of argon (98%) and hydrogen (2%); hydrogen's feeble proportion does not perturb much the discharge and is very suitable for the measure of the electronic density. The important departure of L.T.E. has guided us to imagine and apply an original method to measure the temperature and the overpopulation of the neutral atoms in the fondamental state. Our method which is independent of the existence of L.T.E. is based on the different behavior of the spectral lines which are under the influence of the resonance or Van der Waals broadening. The measure of the broadening constants which in the resonance case are independent of the temperature and vary as Tsup(0,3) for V.d.W's broadening, give us a suitable tool to measure the density and the temperature of the neutral atoms [fr

  1. Wave-dispersive x-ray spectrometer for simultaneous acquisition of several characteristic lines based on strongly and accurately shaped Ge crystal

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Nakajima, Kazuo; Fujiwara, Kozo; Nishikata, Susumu

    2008-01-01

    Si and Ge are widely used as analyzing crystals for x-rays. Drastic and accurate shaping of Si or Ge gives significant advance in the x-ray field, although covalently bonded Si or Ge crystals have long been believed to be not deformable to various shapes. Recently, we developed a deformation technique for obtaining strongly and accurately shaped Si or Ge wafers of high crystal quality, and the use of the deformed wafer made it possible to produce fine-focused x-rays. In the present study, we prepared a cylindrical Ge wafer with a radius of curvature of 50 mm, and acquired fluorescent x-rays simultaneously from four elements by combining the cylindrical Ge wafer with a position-sensitive detector. The energy resolution of the x-ray fluorescence spectrum was as good as that obtained using a flat single crystal, and its gain was over 100. The demonstration of the simultaneous acquisition of high-resolution x-ray fluorescence spectra indicated various possibilities of x-ray spectrometry, such as one-shot x-ray spectroscopy and highly efficient wave-dispersive x-ray spectrometers

  2. Endocytosis Pathways of the Folate Tethered Star-Shaped PEG-PCL Micelles in Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yu-Lun Li

    2014-03-01

    Full Text Available This study reports on the cellular uptake of folate tethered micelles using a branched skeleton of poly(ethylene glycol and poly(ε-caprolactone. The chemical structures of the copolymers were characterized by proton nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. Doxorubicin (DOX was utilized as an anticancer drug. The highest drug loading efficiencies of DOX in the folate decorated micelle (DMCF and folate-free micelle (DMC were found to be 88.5% and 88.2%, respectively, depending on the segment length of the poly(ε-caprolactone in the copolymers. A comparison of fluorescent microscopic images of the endocytosis pathway in two cell lines, human breast cancer cells (MCF-7 and human oral cavity carcinoma cells (KB, revealed that the micelles were engulfed by KB and MCF-7 cells following in vitro incubation for one hour. Flow cytometric analysis revealed that free folic acid can inhibit the uptake of DOX by 48%–57% and 26%–39% in KB cells and MCF-7 cells, respectively. These results prove that KB cells are relatively sensitive to folate-tethered micelles. Upon administering methyl-β-cyclodextrin, an inhibitor of the caveolae-mediated endocytosis pathway, the uptake of DOX by KB cells was reduced by 69% and that by MCF-7 cells was reduced by 56%. This finding suggests that DMCF enters cells via multiple pathways, thus implying that the folate receptor is not the only target of tumor therapeutics.

  3. Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single seed descent in wheat (Triticum aestivum L.)

    OpenAIRE

    Adamski,Tadeusz; Krystkowiak,Karolina; Kuczynska,Anetta; Mikolajczak,Krzysztof; Ogrodowicz,Piotr; Ponitka,Aleksandra; Surma,Maria; Slusarkiewicz-Jarzina,Aurelia

    2014-01-01

    Background: The quality of wheat grain depends on several characteristics, among which the composition of high molecular weight glutenin subunits, encoded by Glu-1 loci, are the most important. Application of biotechnological tools to accelerate the attainment of homozygous lines may influence the proportion of segregated genotypes. The objective was to determine, whether the selection pressure generated by the methods based on in vitro cultures, may cause a loss of genotypes with desirable G...

  4. The study of selective emission lines from plasma, obtained by evaporating as sample by laser radiation in air and argon media

    International Nuclear Information System (INIS)

    Sufian, A.; Dimitrov, G.

    1993-01-01

    Ultra violet visible emission spectroscopic analysis of a plasma produced through laser interaction with a solid probe in different gaseous atmospheres is conducted. Reported are the effects of air and argon, as enveloping media, on the spectral intensities of some lines. The temperature gradient of the plasma, in different atmosphere, is also plotted. In order to improve the detection limits of individual elements, suggested are the possible areas of illuminating the slit of the spectroscopic from the plasma, in respect of the height, above the sample, when working in different gaseous media. (author)

  5. Influence of surface geometry on the culture of human cell lines: A comparative study using flat, round-bottom and v-shaped 96 well plates.

    Directory of Open Access Journals (Sweden)

    Sara Shafaie

    Full Text Available In vitro cell based models have been invaluable tools for studying cell behaviour and for investigating drug disposition, toxicity and potential adverse effects of administered drugs. Within this drug discovery pipeline, the ability to assess and prioritise candidate compounds as soon as possible offers a distinct advantage. However, the ability to apply this approach to a cell culture study is limited by the need to provide an accurate, in vitro-like, microenvironment in conjunction with a low cost and high-throughput screening (HTS methodology. Although the geometry and/or alignment of cells has been reported to have a profound influence on cell growth and differentiation, only a handful of studies have directly compared the growth of a single cell line on different shaped multiwell plates the most commonly used substrate for HTS, in vitro, studies. Herein, the impact of various surface geometries (flat, round and v-shaped 96 well plates, as well as fixed volume growth media and fixed growth surface area have been investigated on the characteristics of three commonly used human cell lines in biopharmaceutical research and development, namely ARPE-19 (retinal epithelial, A549 (alveolar epithelial and Malme-3M (dermal fibroblastic cells. The effect of the surface curvature on cells was characterised using a combination of a metabolic activity assay (CellTiter AQ/MTS, LDH release profiles (CytoTox ONE and absolute cell counts (Guava ViaCount, respectively. In addition, cell differentiation and expression of specific marker proteins were determined using flow cytometry. These in vitro results confirmed that surface topography had a significant effect (p < 0.05 on cell activity and morphology. However, although specific marker proteins were expressed on day 1 and 5 of the experiment, no significant differences were seen between the different plate geometries (p < 0.05 at the later time point. Accordingly, these results highlight the impact of

  6. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Heib, F.; Hempelmann, R.; Munief, W.M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-01-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ a and the receding θ r contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  7. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heib, F., E-mail: f.heib@mx.uni-saarland.de [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Hempelmann, R. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Munief, W.M.; Ingebrandt, S. [Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibrücken (Germany); Fug, F.; Possart, W. [Department of Adhesion and Interphases in Polymers, Saarland University, 66123 Saarbrücken (Germany); Groß, K.; Schmitt, M. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany)

    2015-07-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ{sub a} and the receding θ{sub r} contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple

  8. Non-Destructive Assessment of Aroma Volatiles from a Climacteric Near-Isogenic Line of Melon Obtained by Headspace Stir-Bar Sorptive Extraction

    Directory of Open Access Journals (Sweden)

    Juan Pablo Fernández-Trujillo

    2013-08-01

    Full Text Available A climacteric aromatic near-isogenic line (NIL of melon (Cucumis melo L. SC3-5-1 contained an introgression of the non-climacteric Korean cultivar “Shongwan Charmi” accession PI 161375 (SC in the genetic background of the non-climacteric cultivar “Piel de Sapo” (PS. The aroma production was monitored during ripening at 21 °C in intact fruit using headspace sorptive bar extraction (HSSE. Bars were composed of polydimethylsiloxane (PDMS and aromas were desorbed and analyzed by gas-chromatography mass-spectrometry. The aromatic profile was composed of 70 aromatic compounds plus 21 alkanes with a predominance of esters, particularly acetate (2-methylbutyl acetate, 2-methylpropyl acetate, hexyl acetate, and phenylmethyl acetate. Some compounds were severely affected by postharvest time. The acetate esters (3-methylbutyl acetate, butan-2-yl acetate and phenylmethyl acetate decreased with ripening and sulfur-derived compounds (S-methyl butanethioate and S-methyl 3-methylbutanethioate increased gradually with ripening. A few compounds increased at the senescence phase (propyl ethanoate. Other compounds such as hexadecanoic acid showed a marked decrease after harvest, some decreasing from a relative maximum at harvest (2-methylpropyl hexanoate; n-hexanoic acid; nonanoic acid.

  9. Evidence for an anisotropic contact shift. Proton NMR study of line shapes in uranocene and (C5H5)3UCl powders

    International Nuclear Information System (INIS)

    McGarvey, B.R.; Nagy, S.

    1987-01-01

    The proton NMR spectra of solid powders of uranocene and (C 5 H 5 ) 3 UCl were measured from 90 to 298 K. The line shapes of both systems became increasingly anisotropic as the temperature was lowered. The cyclooctatetraene rings in uranocene were found to be rotating at a frequency greater than 100 kHz down to 90 K. The (C 5 H 5 ) 3 UCl molecules were found to be reorienting rapidly above 220 K, but below 140 K the NMR spectra were characteristic of a rigid lattice with no rotation of the cyclopentadienyl rings. The spectra of both compounds could be simulated by assuming an axial paramagnetic shift tensor and an orientation-dependent line width. Comparison of the experimental shift tensor with that calculated for a point dipolar interaction revealed a large and very anisotropic paramagnetic shift for uranocene due to unpaired spin transferred into the ligand orbitals. The shift was large when the magnetic field was along the 8-fold symmetry axis of the molecule and nearly zero perpendicular to the axis. It appears conclusive that the contact shift in uranocene is not isotropic at all. A similar anisotropy in the contact shift associated with the cyclopentadienyl rings is evident also in the results for (C 5 H 5 )UCl. The average solid-state shift of uranocene agreed with the solution shift, within experimental error, but the solid state shift of (C 5 H 5 ) 3 UCl was 42 ppm greater than the solution shift at 298 K, indicating a difference in molecular geometry between the crystalline state and solution. 32 references, 8 figures, 3 tables

  10. Characterization of sunflower oils obtained separately by pressing and subsequent solvent extraction from a new line of seeds rich in phytosterols and conventional seeds

    Directory of Open Access Journals (Sweden)

    Aguirre Marta R.

    2014-11-01

    Full Text Available In this study we evaluate the chemical composition of sunflower oils obtained separately by pressing and subsequent solvent extraction from a new seeds rich in phytosterols (IASP-18 and conventional seeds (HA-89. Results have shown that the total content of oil was much lower in the IASP-18 (18.1% than in the conventional (37.5% seeds. The extraction yield obtained by pressing was as low as 3% in the IASP-18 seeds and 37.5% in HA-89, while in the solvent extraction it was of the same order (~18 wt% on seeds extracted by pressing for the two types of seeds. No significant changes in the fatty acid composition were found between the oils extracted by the two procedures, but the pressed oils presented significantly lower acidity and larger content of the unsaponifiable fraction. Expressed as free sterols, the total sterols were 37–38% more concentrated in the oils extracted with solvent, reaching amounts of 13 700 and 6500 mg/kg in the IASP-18 and HA-89 oils, respectively. No substantial differences were found in the composition of total sterols analysed as free sterols between the oils extracted with the two procedures, but the contents of free sterols and sterol glycosides were much higher in the oils extracted with solvent.

  11. The scavenging of the precursors of the solvated electrons fom the positron lifetime spectroscopy and the Doppler broadening of annihilation line shape technique

    International Nuclear Information System (INIS)

    Abbe, J.C.; Duplatre, G.; Maddock, A.G.; Haessler, A.

    1979-01-01

    The electron scavenging properties in water of two series of solutes are investigated, using the positron as a probe. For a better interpretation of the data, both the lifetime specroscopy and the Doppler broadening of annihilation line shape technique are used. All solutes inhibit the positronium (Ps) formation, by the scavenging of electron. The first series consists of the halate ions, that should follow the Hunt linear relation between the rate constant for reaction with the solvated electrons, ksub(e - sub(aq)+S) and that for its precursors(s), 1/C 37 . The Ps inhibition constants, k, are 0.14, 1.44 and 3.45M -1 for ClO 3 - , BrO 3 - and IO 3 - respectively. This sequence is quantitatively consistent with that of the respective ksub(e - sub(aq)+S). The second series includes the SeO 4 -- , Te(OH) 6 and BrO 4 - species, and the Ps inhibition constants are 5.62, 10.5 and 14.3 respectively. Theses values are much higher than expected from the ksub(e - sub(aq)+S) constants, on basis of the Hunt relation, in agreement with previous results from pulse radiolysis experiments

  12. Deconvolution of EPR spectral lines with an approximate method

    International Nuclear Information System (INIS)

    Jimenez D, H.; Cabral P, A.

    1990-10-01

    A recently reported approximation expression to deconvolution Lorentzian-Gaussian spectral lines. with small Gaussian contribution, is applied to study an EPR line shape. The potassium-ammonium solution line reported in the literature by other authors was used and the results are compared with those obtained by employing a precise method. (Author)

  13. Mechanism of the reactions 14N(d,p)15N and 14N(d,n)15O by Doppler shift line shape method

    International Nuclear Information System (INIS)

    Abdel-Moneim, A.M.

    1976-06-01

    In this investigation the total and the differential absolute cross sections of the 14 N(d,p) 15 N reaction leading to excited states at 7.3, 8.3 and 9.05 MeV levels in 15 N and the 14 N(d,n) 15 O reaction leading to the 6.79 MeV level in 15 O, have been studied over the energy range from 0.5 MeV to 3 MeV. Doppler shift line shape method as well as γ-ray yield measurements have been used. The absolute cross sections are determined relative to the known 14 N(p,p) elastic differential cross sections. A comparison with previously determined values for the same reactions at selected energies shows good agreement in angular distribution as well as in absolute values. The total cross section for the d,p reaction shows a general energy dependence which is typical for direct reactions, but with minor contribution from compound nucleus formation at certain energy ranges. For the 14 N(d,n) 15 N reaction, the method applied is unique, since it allows the differential cross section to be studied all the way down to the threshold energy of deuterons at 2 MeV, with a detectorsystem efficiency which is constant over the entire range of neutron energies. The larger part of the energy range that has been investigated is dominated by a resonance at 2.55 π+ 0.05 MeV deuteron energy and a halfwidth depending on the amount of contribution from the direct reaction of the order of 200-400 keV. (JIW)

  14. Magnetization of topological line-node semimetals

    Science.gov (United States)

    Mikitik, G. P.; Sharlai, Yu. V.

    2018-02-01

    Using an approximate expression for the Landau levels of the electrons located near a nodal line of a topological line-node semimetal, we obtain formulas for the magnetization of this semimetal at an arbitrary shape of its line. It is also shown that the dependence of the chemical potential on the magnetic field can be strong in these materials, and this dependence can essentially influence the de Haas-van Alphen oscillations. The obtained results are applied to the rhombohedral graphite, which is one of the line-node semimetals. For this material, we find temperature and magnetic field dependencies of its magnetic susceptibility.

  15. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers.

    Science.gov (United States)

    Wang, Chun-Neng; Hsu, Hao-Chun; Wang, Cheng-Chun; Lee, Tzu-Kuei; Kuo, Yan-Fu

    2015-01-01

    The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D) images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D) images by using microcomputed tomography (μCT) and to examine the floral shape variations by using geometric morphometrics (GM). To demonstrate the advantages of the 3D-μCT-GM approach, we applied the approach to a second-generation population of florist's gloxinia (Sinningia speciosa) crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks) from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-μCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.

  16. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers

    Directory of Open Access Journals (Sweden)

    Chun-Neng eWang

    2015-09-01

    Full Text Available The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D images by using microcomputed tomography (μCT and to examine the floral shape variations by using geometric morphometrics (GM. To demonstrate the advantages of the 3D-µCT-GM approach, we applied the approach to a second-generation population of florist’s gloxinia (Sinningia speciosa crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-µCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.

  17. Shape effects in the vicinity of the Z=82 line: study of the $\\beta$-decay of $^{182,184,186}$Hg

    CERN Multimedia

    This proposal is aimed at the study of the $\\beta$-decay of the neutron-­deficient $^{182,184,186}$Hg nuclei using the total absorption technique. Recent theoretical results show that, from measurements of the Gamow-­Teller strength distribution, the shapes of the ground states of the decaying Hg nuclei can be inferred. This study offers an independent way to study the phenomenon of shape coexistence in a region of particular interest.

  18. Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

    Science.gov (United States)

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-03-22

    The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due to HSE and DD have been derived. By employing nonlinear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items 1-3 may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions; however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce whether this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A new key aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items 1-3 due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to

  19. Measurement and computations of line shape parameters for the 12201 ← 03301, 11101 ← 10002 and 12201 ← 11102 self-broadened CO2 Q-branches

    Science.gov (United States)

    Al Mashwood, Abdullah; Predoi-Cross, Adriana; Devi, V. Malathy; Rozario, Hoimonti; Billinghurst, Brant

    2018-06-01

    Pure CO2 spectra recorded at room temperature and different pressures (0.2-140 Torr) have been analyzed with the help of a fitting routine that takes into account asymmetries arising in the spectral lines due to pressure induced effects such as line mixing. The fitting procedure used in this study allows one to adjust the ro-vibrational constants for the band rather than fitting for individual line parameters. These constrained parameters greatly reduce the measurement uncertainties and allow us to observe the behavior of the weak lines corresponding to high J quantum numbers. We have also calculated line mixing parameters using approximations based on exponential nature of the energy difference between ground and upper vibrational states involved in the ro-vibrational band transitions. The calculated results show good agreement when compared with the experimentally determined parameters.

  20. Shape effects along the Z=82 line: study of the $\\beta$- decay of $^{188,190,192}$Pb using total absorption spectroscopy

    CERN Multimedia

    Caballero ontanaya, L; Garcia borge, M J; Malbrunot, S

    2002-01-01

    This proposal is aimed at the study of the $\\beta$- decay of the neutron-deficient $^{188,190,192}$Pb nuclei. The main motivation of the proposed experiment is to determine the Gamow-Teller strength distribution in the daughter nuclei using the Total Absorption Spectrometer "Lucrecia". Recent theoretical results show that from this measurement the shapes of the ground states of the decaying Pb nuclei can be inferred. This study offers an independent way to study the phenomenon of shape co-existence in a region of particular interest.

  1. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Directory of Open Access Journals (Sweden)

    Prakash Babu Narasimhan

    2018-04-01

    Full Text Available A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma or to live microfilariae (mf of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β, M2-associated (CCL13, CD206, Mreg-associated (IL-10, TGF-β, and angiogenesis associated (MMP9, VEGF genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  2. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Science.gov (United States)

    Narasimhan, Prakash Babu; Akabas, Leor; Tariq, Sameha; Huda, Naureen; Bennuru, Sasisekhar; Sabzevari, Helen; Hofmeister, Robert; Nutman, Thomas B; Tolouei Semnani, Roshanak

    2018-04-01

    A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  3. Nature of mixed symmetry 2+ states in 94Mo from high resolution electron and proton scattering and line shape of the first excited 1/2+ state in 9Be

    International Nuclear Information System (INIS)

    Burda, Oleksiy

    2007-07-01

    The present work contains two parts. The first one is devoted to the investigation of mixed-symmetry structure in 94 Mo and the second one to the astrophysical relevant line shape of the first excited 1/2 + state in 9 Be. In the first part of the thesis the nature of one- and two-phonon symmetric and mixed-symmetric 2 + states in 94 Mo is investigated with high-resolution inelastic electron and proton scattering experiments in a combined analysis. The (e,e') experiments were carried out at the 169 magnetic spectrometer at the S-DALINAC. Data were taken at a beam energy E e=70 MeV and scattering angles Θ e =93 -165 . In dispersion-matching mode an energy resolution Δ E =30-45 keV (full width at half maximum) was achieved. The (p,p') measurements were performed at iThemba LABS, South Africa, using a K600 magnetic spectrometer at a proton energy E p=200 MeV and scattering angles Θ p =4.5 -26 . Typical energy resolutions were Δ E ≅35 keV. The combined analysis reveals a dominant one-phonon structure of the transitions to the first and third 2 + states, as well as an isovector character of the transition to the one-phonon mixed-symmetric state within the valence shell. Quantitatively consistent estimates of the one-phonon admixtures are obtained from both experimental probes when two-step contributions to the proton scattering cross sections are taken into account. In the second part of the thesis the line shape of the first excited 1/2 + state in 9 Be is studied. Spectra of the 9 Be(e,e') reaction were measured at the S-DALINAC at an electron energy E e=73 MeV and scattering angles of 93 and 141 with high energy resolution up to excitation energies E x =8 MeV. The form factor of the first excited state has been extracted from the data. The astrophysical relevant 9 Be(γ,n) cross sections have been extracted from the (e,e') data. The resonance parameters of the first excited 1/2 + state in 9 Be are derived in a one-level R-matrix approximation. The deduced

  4. Nature of mixed symmetry 2{sup +} states in {sup 94}Mo from high resolution electron and proton scattering and line shape of the first excited 1/2{sup +} state in {sup 9}Be

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Oleksiy

    2007-07-15

    The present work contains two parts. The first one is devoted to the investigation of mixed-symmetry structure in {sup 94}Mo and the second one to the astrophysical relevant line shape of the first excited 1/2{sup +} state in {sup 9}Be. In the first part of the thesis the nature of one- and two-phonon symmetric and mixed-symmetric 2{sup +} states in {sup 94}Mo is investigated with high-resolution inelastic electron and proton scattering experiments in a combined analysis. The (e,e') experiments were carried out at the 169 magnetic spectrometer at the S-DALINAC. Data were taken at a beam energy E e=70 MeV and scattering angles {theta}{sub e}=93 -165 . In dispersion-matching mode an energy resolution {delta}{sub E}=30-45 keV (full width at half maximum) was achieved. The (p,p') measurements were performed at iThemba LABS, South Africa, using a K600 magnetic spectrometer at a proton energy E p=200 MeV and scattering angles {theta}{sub p}=4.5 -26 . Typical energy resolutions were {delta}{sub E}{approx_equal}35 keV. The combined analysis reveals a dominant one-phonon structure of the transitions to the first and third 2{sup +} states, as well as an isovector character of the transition to the one-phonon mixed-symmetric state within the valence shell. Quantitatively consistent estimates of the one-phonon admixtures are obtained from both experimental probes when two-step contributions to the proton scattering cross sections are taken into account. In the second part of the thesis the line shape of the first excited 1/2{sup +} state in {sup 9}Be is studied. Spectra of the {sup 9}Be(e,e') reaction were measured at the S-DALINAC at an electron energy E e=73 MeV and scattering angles of 93 and 141 with high energy resolution up to excitation energies E{sub x}=8 MeV. The form factor of the first excited state has been extracted from the data. The astrophysical relevant {sup 9}Be({gamma},n) cross sections have been extracted from the (e,e') data. The

  5. Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: the influence of vehicle type.

    Science.gov (United States)

    Justo, Oselys Rodriguez; Simioni, Patricia Ucelli; Gabriel, Dirce Lima; Tamashiro, Wirla Maria da Silva Cunha; Rosa, Paulo de Tarso Vieira; Moraes, Ângela Maria

    2015-10-29

    Numerous plants from have been investigated due to their anti-inflammatory activity and, among then, extracts or components of ginger (Zingiber officinale Roscoe) and rosemary (Rosmarinus officinalis L.), sources of polyphenolic compounds. 6-gingerol from ginger rhizome and carnosic acid and carnosol from rosemary leaves present anti-tumor, anti-inflammatory and antioxidant activities. However, the evaluation of the mechanisms of action of these and other plant extracts is limited due to their high hydrophobicity. Dimethylsulfoxide (DMSO) is commonly used as a vehicle of liposoluble materials to mammalian cells in vitro, presenting enhanced cell penetration. Liposomes are also able to efficiently deliver agents to mammalian cells, being capable to incorporate in their structure not only hydrophobic molecules, but also hydrophilic and amphiphilic compounds. Another strategy is based on the use of Pluronic F-68, a biocompatible low-foaming, non-ionic surfactant, to disperse hydrophobic components. Here, these three delivery approaches were compared to analyze their influence on the in vitro anti-inflammatory effects of ginger and rosemary extracts, at different concentrations, on primary mammalian cells and on a tumor cell line. Ginger and rosemary extracts free of organic solvents were obtained by supercritical fluid extraction and dispersed in DMSO, Pluronic F-68 or liposomes, in variable concentrations. Cell viability, production of inflammatory mediators and nitric oxide (NO) release were measured in vitro on J774 cell line and murine macrophages primary culture stimulated with bacterial lipopolysaccharide and interferon-γ after being exposed or not to these extracts. Ginger and rosemary extracts obtained by supercritical CO2 extraction inhibited the production of pro-inflammatory cytokines and the release of NO by peritoneal macrophages and J774 cells. The delivery vehicles influenced the anti-inflammatory effects. Comparatively, the ginger extract showed the

  6. On the approximation of crack shapes found during inservice inspection

    International Nuclear Information System (INIS)

    Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S.

    1997-01-01

    This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component

  7. On the approximation of crack shapes found during inservice inspection

    Energy Technology Data Exchange (ETDEWEB)

    Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component.

  8. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  9. Development of a high resolution, high sensitivity cylindrical crystal spectrometer for line shape diagnostics of x-rays emitted from hot plasmas. Progress report, August 1, 1977--July 31, 1978

    International Nuclear Information System (INIS)

    Taylor, P.O.; Schnopper, H.

    1978-05-01

    This report oulines progress towards development of a high resolution, high throughput, curved crystal spectrometer suitable for line shape diagnostics of x-rays emitted from hot plasmas. The instrument is designed to interface with the MIT Tokamak (Alcator) with the initial aim of studying the prominent MoL lines which occur in the x-ray spectrum. However, it will have the versatility to function over an energy range of at least 1.5 keV to 7 keV allowing determination of temperature, charge state and density distributions for important impurity ions. The spectrometer employs a large, cylindrically bent crystal which focuses the dispersed x-rays along the cylinder axis where they are recorded by a position sensitive proportional counter. Thus, a wide energy range of the spectrum can be recorded simultaneously and sensitively from a short duration plasma. Computer control of data acquisition and analysis will allow real-time diagnostics

  10. Híbridos pré-comerciais resistentes a Tuta absoluta obtidos de linhagem de tomateiro rica em acilaçúcares Pre-commercial hybrids obtained from an acylsugar-rich tomato inbred line, resistant to Tuta absoluta

    Directory of Open Access Journals (Sweden)

    Gabriel M Maciel

    2011-06-01

    Full Text Available O trabalho foi realizado com o objetivo de avaliar o potencial agronômico de híbridos de tomateiro a partir da linhagem TOM-687, rica em acilaçúcares e de resistência comprovada a pragas. O experimento foi instalado na HortiAgro, município de Ijaci, MG. Foi constituído de 30 genótipos (5 híbridos comerciais, 1 linhagem pré-comercial (TOM-687, e 24 híbridos nos quais TOM-687 foi utilizada como um dos pais, os quais foram conduzidos em tutoramento com haste dupla, no espaçamento de 1,30 x 0,50 m, totalizando 15.385 plantas por hectare. Foram realizadas nove colheitas, entre as datas de 01/11/08 a 28/11/08. Foram avaliadas as características de massa média por fruto (g fruto-1 e produção por hectare (t ha-1. Os 24 híbridos que tiveram TOM-687 como um dos pais apresentaram potencial produtivo similar ao das testemunhas comerciais Débora Max, Bravo, Bônus, Kombat e Atyna. Dos 24 híbridos experimentais, quatro (TEX-298, TEX-310, TEX-315 e TEX-316 foram avaliados quanto à resistência à traça-do-tomateiro (Tuta absoluta e mostraram-se mais resistentes do que as testemunhas comerciais.This experiment was designed to assess the agronomic potential of tomato hybrids obtained from the tomato line TOM-687, an acylsugar-rich line with confirmed resistance to an array of tomato pests. The experiment was carried out at the HortiAgro Sementes research station, in Ijaci, Minas Gerais State, Brazil. The treatments comprised 30 genotypes (5 commercial hybrid checks, 1 high acylsugar line (TOM-687, and 24 hybrids in which TOM-687 was one of the parents. Plants were trained to two stems, in a spacing of 1.30 m between rows x 0.50 m between plants within a row, totaling 15,385 plants per hectare. Nine harvests were performed between November 1st, 2008 and November 28th,2008. Traits assessed were mean fruit weight (g fruit-1 and total yield (t ha-1. All 24 hybrids with TOM-687 as a parent showed yields similar to those of the commercial check

  11. Factors affecting the line-shape of the EPR signal of high-spin Fe(III) in soybean lipoxygenase-1

    NARCIS (Netherlands)

    Slappendel, S.; Aasa, R.; Malmström, B.G.; Verhagen, J.; Veldink, G.A.; Vliegenthart, J.F.G.

    1982-01-01

    The yellow form of soybean lipoxygenase-1 (linoleate:oxygen oxidoreductase, EC 1.13.11.12), obtained upon addition of one molar equivalent of acid (13--HPOD) to the native enzyme, shows a complex EPR signal around g 6 which results from contributions of different high-spin Fe(III) species with

  12. In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing.

    Science.gov (United States)

    Wu, Chuang; Liu, Zhengyong; Zhang, A Ping; Guan, Bai-Ou; Tam, Hwa-Yaw

    2014-09-08

    We report an open-cavity optical fiber Fabry-Pérot interferometer (FPI) capable of measuring refractive index with very low temperature cross-sensitivity. The FPI was constructed by splicing a thin piece of C-shaped fiber between two standard single-mode fibers. The refractive index (RI) response of the FPI was characterized using water-ethanol mixtures with RI in the range of 1.33 to 1.36. The RI sensitivity was measured to be 1368 nm/RIU at the wavelength of 1600 nm with good linearity. Thanks to its all-glass structure, the FPI exhibits very low temperature cross-sensitivity of 3.04 × 10⁻⁷ RIU/°C. The effects of cavity length on the performance of the sensor were also studied. A shorter cavity gives rise to broader measurement range while offering larger detection limit, and vice versa. What's more, the effect of material dispersion of analyte on the sensitivity of open-cavity FPIs was identified for the first time. The sensor is compact in size and easy to fabricate. It is potentially useful for label-free optical sensing of chemical and biological samples.

  13. Comparison of multi-pole shaping and delay line clipping pre-amplifiers for position sensitive NaI(Tl) detectors

    International Nuclear Information System (INIS)

    Freifelder, R.; Karp, J.S.; Wear, J.A.; Lockyer, N.S.; Newcomer, F.M.; Surti, S.; Berg, R. van

    1998-01-01

    NaI(Tl) position sensitive detectors have been used in medical imaging for many years. For PET applications without collimators, the high counting rates place severe demands on such large area detectors. The NaI(Tl) detectors in the PENN-PET scanners are read-out via photomultiplier tubes and preamplifiers. Those preamplifiers use a delay-line clipping technique to shorten the characteristic 240 ns fall time of the NaI(Tl) signal. As an alternative, the authors have investigated a pole-zero network to shorten the signal followed by a multi-pole shaper to produce a symmetric signal suitable for high counting rates. This has been compared to the current design by measuring the energy and spatial resolution of a single detector as a function of different preamplifier designs. Data were taken over a range of ADC integration times and countrates. The new design shows improved energy resolution with short integration times. Effects on spatial resolution and deadtime are reported for large position sensitive detectors at different countrates

  14. Real-time UV-visible spectroscopy analysis of purple membrane-polyacrylamide film formation taking into account Fano line shapes and scattering.

    Science.gov (United States)

    Gomariz, María; Blaya, Salvador; Acebal, Pablo; Carretero, Luis

    2014-01-01

    We theoretically and experimentally analyze the formation of thick Purple Membrane (PM) polyacrylamide (PA) films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided.

  15. Status of thorium cycle nuclear data evaluations: Comparison of cross-section line shapes of JENDL-3 and ENDF-B-VI files for 230Th, 232Th, 231Pa, 233Pa, 232U, 233U and 234U

    International Nuclear Information System (INIS)

    Ganesan, S.; McLaughlin, P.K.

    1992-02-01

    Since 1990, one of the most interesting developments in the field of nuclear data for nuclear technology applications is that several new evaluated data files have been finalized and made available to the International Atomic Energy Agency (IAEA) for distribution to its Member States. Improved evaluated nuclear data libraries such as ENDF/B-VI from the United States and JENDL-3 from Japan were developed over a period of 10-15 years. This report is not an evaluation of the evaluations. The report as presented here gives a first look at the cross section line shapes of the isotopes that are important to the thorium fuel cycle derived from the two recently evaluated data files: JENDL-3 and ENDF/B-VI. The basic evaluated data files JENDL-3 and ENDF/B-VI were point-processed successfully using the codes LINEAR and RECENT. The point data were multigrouped in three different group structures using the GROUPIE code. Graphs of intercomparisons of cross section line shapes of JENDL-3 and ENDF/B-VI are presented in this paper for the following isotopes of major interest to studies of the thorium fuel cycle: 230 Th, 232 Th, 231 Pa, 233 Pa, 232 U, 233 U and 234 U. Comparisons between JENDL-3 and ENDF/B-VI which were performed at the point and group levels show large discrepancies in various cross sections. We conclude this report with a general remark that it is necessary to perform sensitivity studies to assess the impacts of the discrepancies between the two different sets of data on calculated reactor design and safety parameters of specific reactor systems and, based on the results of such sensitivity studies, to undertake new tasks of evaluations. (author). 2 refs, 245 figs, 8 tabs

  16. Modelling the line shape of very low energy peaks of positron beam induced secondary electrons measured using a time of flight spectrometer

    International Nuclear Information System (INIS)

    Fairchild, A J; Chirayath, V A; Gladen, R W; Chrysler, M D; Koymen, A R; Weiss, A H

    2017-01-01

    In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed. (paper)

  17. Initial daytime and nighttime SOFDI observations of thermospheric winds from Fabry-Perot Doppler shift measurements of the 630-nm OI line-shape profile

    Directory of Open Access Journals (Sweden)

    A. J. Gerrard

    2011-09-01

    Full Text Available In this paper we present both night and day thermospheric wind observations made with the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI, a novel triple-etalon Fabry-Perot interferometer (FPI designed to make 24-h measurements of thermospheric winds from OI 630-nm emission. These results were obtained from the northeastern United States and from under the magnetic equator at Huancayo, Peru and demonstrate the current instrument capability for measurements of Doppler shifts for either night or day. We found the uncertainties in the measurements agree with expected values based upon forward modeling calculations; nighttime wind components having an uncertainty of ~20-m s−1 at 30-min resolution and daytime wind components having an uncertainty of ~70-m s−1 at 20-min resolution. The nighttime uncertainties are typically larger than those seen with traditional single-etalon FPIs, which occur at the cost of being able to achieve daytime measurements. The thermospheric wind measurements from Huancayo replicate recently reported CHAMP zonal winds and are in disagreement with current empirical wind climatologies. In addition, we discuss the incorporation of how multiple point heads in the SOFDI instrument will allow for unique studies of gravity wave activity in future measurements.

  18. Magnetic field from arbitrarily shaped flat coils with filamentary, ribbon, and rectangular cross sections

    International Nuclear Information System (INIS)

    Weissenburger, D.W.; Christensen, U.R.

    1975-01-01

    This report describes the derivation of three groups of equations: (1) Field components from an arbitrarily shaped filament lying in a plane. (2) Field components from an arbitrarily shaped ribbon of infinitesimal thickness with center line lying in a plane. (3) Field components from an arbitrarily shaped bar of rectangular cross section with its center line lying in a plane. In all three cases analytical expressions for the field components were found for an infinitesimal element of the cross section. These expressions are then integrated numerically along the arbitrarily shaped center line of the coil to obtain the three field components. As a check for accuracy the calculated field values of an elliptically shaped coil were compared to an existing analytic expression for a filamentary elliptical coil

  19. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    International Nuclear Information System (INIS)

    Jacqmin, R.P.

    1991-01-01

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ''modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise

  20. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, Robert P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  1. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  2. Ethical and technical considerations for the creation of cell lines in the head & neck and tissue harvesting for research and drug development (Part II: Ethical aspects of obtaining tissue specimens

    Directory of Open Access Journals (Sweden)

    Upile Tahwinder

    2009-04-01

    Full Text Available Abstract Background Although much has been published for the development of cell lines, these were lab based and developed for scientific technical staff. Objective of review We discuss the ethical implications of tissue retention and present a generic consent form (Part II. We also present a simple and successful protocol for the development of cell lines and tissue harvesting for the clinical scientist (Part I. Conclusion Consent is also more proximate and assurance can be given of appropriate usage. Ethical questions concerning tissue ownership are in many institutions raised during the current consenting procedure. We provide a robust ethical framework, based on the current legislation, which allows clinicians to be directly involved in cell and tissue harvesting.

  3. Shape Synthesis in Mechanical Design

    OpenAIRE

    C. P. Teng; S. Bai; J. Angeles

    2007-01-01

    The shaping of structural elements in the area of mechanical design is a recurrent problem. The mechanical designer, as a rule, chooses what is believed to be the “simplest” shapes, such as the geometric primitives: lines, circles and, occasionally, conics. The use of higher-order curves is usually not even considered, not to speak of other curves than polynomials. However, the simplest geometric shapes are not necessarily the most suitable when the designed element must withstand loads that ...

  4. Line width of Josephson flux flow oscillators

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Dmitriev, P.N.; Sobolev, A.S.

    2002-01-01

    to be proven before one initiates real FFO applications. To achieve this goal a comprehensive set of line width measurements of the FFO operating in different regimes has been performed. FFOs with tapered shape have been successfully implemented in order to avoid the superfine resonant structure with voltage...... spacing of about 20 nV and extremely low differential resistance, recently observed in the IVC of the standard rectangular geometry. The obtained results have been compared with existing theories and FFO models in order to understand and possibly eliminate excess noise in the FFO. The intrinsic line width...

  5. Spectral shape of one-photon luminescence from single gold nanorods

    Directory of Open Access Journals (Sweden)

    Te Wen

    2017-12-01

    Full Text Available Light emission from gold nanoparticles was investigated with ultra-narrow-band notch filters to obtain the complete spectral shape. The anti-Stokes emission band was observed at all excitation wavelengths. The spectral shape of the anti-Stokes emission could be well fitted by a Fermi–Dirac-like line shape, while the spectral profile of the Stokes emission could be fitted by a Lorentzian line shape. The electron distribution and local surface plasmon resonance jointly determined the spectral shape. Additionally, we found that the anti-Stokes emission intensity increased more rapidly compared with that of the Stokes emission as illumination power was increased. This phenomenon can be understood from the temperature dependence of the electron distribution owing to photothermal effects.

  6. Development of a high resolution cylindrical crystal spectrometer for line shape and spectral diagnostics of x-rays emitted from - hot - plasmas. Final report, June 1, 1976-December 31, 1983

    International Nuclear Information System (INIS)

    Kaellne, E.G.

    1984-01-01

    The development, installation and evaluation of a high resolution X-ray spectroscopic diagnostics are reported. The approach has been to optimize spectrometer throughput to enable single shot plasma diagnostics with good time resolution and to ensure sufficient energy resolution to allow line profile analysis. These goals have been achieved using a new X-ray geometry combined with a new position sensitive X-ray detector. These diagnostics have been used at Alcator C to detect X-ray emission of highly ionized impurity elements as well as argon seed elements specially introduced into the plasma for this diagnostic. Temporally resolved ion temperature profiles have been obtained from the recorded X-ray spectra simultaneously with other plasma parameters such as electron temperature, ionization temperature and ionization stage distribution. Radial profiles have also been measured. The developed X-ray diagnostics thus serve as a major multiparameter probe of the central core of the plasma with complementary informtion on radial profiles

  7. Influence of Helical Cell Shape on Motility of Helicobacter Pylori

    Science.gov (United States)

    Hardcastle, Joseph; Martinez, Laura; Salama, Nina; Bansil, Rama; Boston University Collaboration; University of Washington Collaboration

    2014-03-01

    Bacteria's body shape plays an important role in motility by effecting chemotaxis, swimming mechanisms, and swimming speed. A prime example of this is the bacteria Helicobacter Pylori;whose helical shape has long been believed to provide an advantage in penetrating the viscous mucus layer protecting the stomach lining, its niche environment. To explore this we have performed bacteria tracking experiments of both wild-type bacteria along with mutants, which have a straight rod shape. A wide distribution of speeds was found. This distribution reflects both a result of temporal variation in speed and different shape morphologies in the bacterial population. Our results show that body shape plays less role in a simple fluid. However, in a more viscous solution the helical shape results in increased swimming speeds. In addition, we use experimentally obtained cell shape measurements to model the hydrodynamic influence of cell shape on swimming speed using resistive force theory. The results agree with the experiment, especially when we fold in the temporal distribution. Interestingly, our results suggest distinct wild-type subpopulations with varying number of half helices can lead to different swimming speeds. NSF PHY

  8. On the use of shape spaces to compare morphometric methods

    Directory of Open Access Journals (Sweden)

    F. James Rohlf

    2000-06-01

    Full Text Available Abstract Several methods have been proposed to use differences in configurations of landmark points to measure the amount of shape difference between two structures. Shape difference coefficients ignore differences in the configurations that could be due to the effects of translation, rotation, and scale. One way to understand the differences between these methods is to compare the multidimensional shape spaces corresponding to each coefficient. This paper compares Kendall's shape space, Kendall tangent space, the shape spaces implied by EDMA-I and EDMA-II test statistics, the shape space of log size-scaled inter-landmark distances, and the shape space implied by differences in angles of lines connecting pairs of landmarks. The case of three points in the plane (i.e., landmarks at the vertices of a triangle is given special emphasis because the various shape spaces can be illustrated in just 2 or 3 dimensions. The results of simulalions are shown both for random samples of all possible triangles as well as for normally distributed independent variation at each landmark. Generalizations to studies of more than three landmarks are suggested. It is shown that methods other than those based on Procrustes distances strongly constrain the possible results obtained by ordination analyses, can give misleading results when used in studies of growth and evolutionary trajectories.

  9. Parallel Lines

    Directory of Open Access Journals (Sweden)

    James G. Worner

    2017-05-01

    Full Text Available James Worner is an Australian-based writer and scholar currently pursuing a PhD at the University of Technology Sydney. His research seeks to expose masculinities lost in the shadow of Australia’s Anzac hegemony while exploring new opportunities for contemporary historiography. He is the recipient of the Doctoral Scholarship in Historical Consciousness at the university’s Australian Centre of Public History and will be hosted by the University of Bologna during 2017 on a doctoral research writing scholarship.   ‘Parallel Lines’ is one of a collection of stories, The Shapes of Us, exploring liminal spaces of modern life: class, gender, sexuality, race, religion and education. It looks at lives, like lines, that do not meet but which travel in proximity, simultaneously attracted and repelled. James’ short stories have been published in various journals and anthologies.

  10. Amplifier with time-invariant trapezoidal shaping and shape-sensitive pileup rejector for high-rate spectroscopy

    International Nuclear Information System (INIS)

    Drndarevic, V.; Ryge, P.; Gozani, T.

    1989-01-01

    An amplifier with trapezoidal pulse shaping was developed for high-rate high-energy gamma spectroscopy using NaI(T1) scintillation detectors. It employs a double delay-line technique for producing a nearly triangular pulse shape combined with a linear circuit for producing a flattopped pulse. Good energy resolution and short resolving time make this amplifier especially suitable for high count rate gamma ray spectroscopy. To provide a versatile high-performance system, it includes a pileup rejector based on inspection of a pileup signal obtained by combining the slow output signal and fast-shaped input signal. The trapezoidal shape provides a short resolving time for minimal occurrence of pileup with a width suitable for presentation to a standard multichannel analyzer. The performance of the system was tested, and the results are presented

  11. Nodal line optimization and its application to violin top plate design

    Science.gov (United States)

    Yu, Yonggyun; Jang, In Gwun; Kim, In Kyum; Kwak, Byung Man

    2010-10-01

    In the literature, most problems of structural vibration have been formulated to adjust a specific natural frequency: for example, to maximize the first natural frequency. In musical instruments like a violin; however, mode shapes are equally important because they are related to sound quality in the way that natural frequencies are related to the octave. The shapes of nodal lines, which represent the natural mode shapes, are generally known to have a unique feature for good violins. Among the few studies on mode shape optimization, one typical study addresses the optimization of nodal point location for reducing vibration in a one-dimensional beam structure. However, nodal line optimization, which is required in violin plate design, has not yet been considered. In this paper, the central idea of controlling the shape of the nodal lines is proposed and then applied to violin top plate design. Finite element model for a violin top plate was constructed using shell elements. Then, optimization was performed to minimize the square sum of the displacement of selected nodes located along the target nodal lines by varying the thicknesses of the top plate. We conducted nodal line optimization for the second and the fifth modes together at the same time, and the results showed that the nodal lines obtained match well with the target nodal lines. The information on plate thickness distribution from nodal line optimization would be valuable for tailored trimming of a violin top plate for the given performances.

  12. Universality of fragment shapes.

    Science.gov (United States)

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-16

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  13. Obtaining of inulin acetate

    OpenAIRE

    Khusenov, Arslonnazar; Rakhmanberdiev, Gappar; Rakhimov, Dilshod; Khalikov, Muzaffar

    2014-01-01

    In the article first obtained inulin ester inulin acetate, by etherification of inulin with acetic anhydride has been exposed. Obtained product has been studied using elementary analysis and IR spectroscopy.

  14. Coordination of hand shape.

    Science.gov (United States)

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  15. Broadband three-dimensional diamond-shaped invisible cloaks composed of tetrahedral homogeneous blocks

    International Nuclear Information System (INIS)

    Wang Xinhua; Qu Shaobo; Wu Xiang; Wang Jiafu; Ma Hua; Xu Zhuo

    2010-01-01

    By means of embedded optical transformation, three-dimensional diamond-shaped invisible cloaks composed of tetrahedral homogeneous blocks have been designed in this paper. The constitutive parameters of the invisible cloaks can be obtained based on the form invariance of Maxwell's equations in coordinate transformation. Numerical methods using the finite element method verified the diamond-shaped cloaks. The invisible properties of the designed cloaks are nearly perfect when the original line section is sufficiently short compared with its counterpart in the after-transformed space. The designed cloaks can operate in a wide bandwidth due to the line transformation in the coordinate transformation process.

  16. Directive Emission Obtained by Mu and Epsilon-Near-Zero Metamaterials

    Directory of Open Access Journals (Sweden)

    J. Yang

    2009-06-01

    Full Text Available In this work, we use Mu and Epsilon-Near-Zero (MENZ metamaterials to realize the substrates that can modify the emission of an embedded line source. Simulation results show that the cylindrical waves emitted from the line source can be perfectly converted to plane wave through the MENZ metamaterial slab with planar exit face. Hence the line source together with the metamaterial slab constructs a high directive slab antenna. The directive radiation pattern of the MENZ metamaterial-assisted slab antenna is independent on the thickness of the slab, the position of the line source, and the shape of the entrance face of the slab, but the slab with grooved entrance side will result in stronger far-field intensity. We also show that the MENZ metamaterials can be applied to the design of antenna array. Moreover, compared with the high directive slab antenna obtained by coordinate transformation approach, the MENZ metamaterial-assisted antenna is more preferable.

  17. FIRST 'WINGED' AND X-SHAPED RADIO SOURCE CANDIDATES. II. NEW REDSHIFTS

    International Nuclear Information System (INIS)

    Cheung, C. C.; Healey, Stephen E.; Landt, Hermine; Jordan, Andres; Verdoes Kleijn, Gijs

    2009-01-01

    We report optical spectroscopic observations of X-shaped radio sources with the Hobby-Eberly Telescope and Multiple-Mirror Telescope, focused on the sample of candidates from the FIRST survey presented in a previous paper. A total of 27 redshifts were successfully obtained, 21 of which are new, including a newly identified candidate source of this type which is presented here. With these observations, the sample of candidates from the previous paper is over 50% spectroscopically identified. Two new broad emission-lined X-shaped radio sources are revealed, while no emission lines were detected in about one-third of the observed sources; a detailed study of the line properties is deferred to a future paper. Finally, to explore their relation to the Fanaroff-Riley division, the radio luminosities and host galaxy absolute magnitudes of a spectroscopically identified sample of 50 X-shaped radio galaxies are calculated to determine their placement in the Owen-Ledlow plane.

  18. Shape coexistence in N = 28 isotones

    International Nuclear Information System (INIS)

    Saxena, G.; Kaushik, M.; Kumawat, M.; Jain, S.K.

    2016-01-01

    Shape coexistence is one of the important nuclear phenomenon which appears throughout the periodic chart from light mass nuclei to superheavy nuclei. The evolution of ground-state shapes in an isotopic or isotonic chain is governed by changes of the shell structure of single-nucleon orbitals. In recent past, evolution of shell structure guiding shape coexistence, has been observed in the N = 20 and N = 28 isotones around proton drip line. In this paper we have investigated shape coexistence phenomenon for N = 28 isotones in the vicinity of proton drip line using Relativistic Mean Field plus BCS approach

  19. Studies of radioinduced mutations in sorghum grain: 1. Comparison of phenotypic variability obtained through hybridation and mutagenesis of F2 and M2 populations; 2. Agronomical and physiotechnical characterization of mutants lines in the original collection and in the advanced lines of the Chapingo Postgraduate college

    International Nuclear Information System (INIS)

    Parra Negrete, L.A.

    1986-01-01

    Genetic inprovement of cultivated plants consists essentially of three phases (1) generation of genetic variability (2) selection of genotypes and (3) evaluation of selected genotypes. Hybridization and spontaneous or induced mutations are, responsible for the generation of and increase in genetic vegetative variability. Accordingly, such methods are used alternatively in local programs for plant improvement either for introducing improved genotypes or as sources of germplasma. This thesis is based on two experiments of mutations induced by cobalt 60 ionizing radiation while using distinct materials and methods presented in two parts, the first section analyze the mutation variability and the second the evaluation of mutant lines. (author)

  20. Building with a Line

    Science.gov (United States)

    Hubbert, Beth

    2011-01-01

    Architecture is a versatile, multifaceted area to study in the artroom with multiple age levels. It can easily stimulate a study of basic line, shape, and various other art elements and principles. It can then be extended into a more extensive study of architectural elements, styles, specific architects, architecture of different cultures, and…

  1. Magnetic fluid axisymmetric volume on a horizontal plane near a vertical line conductor in case of non-wetting

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradova, A.S., E-mail: vinogradova.msu@gmail.com; Turkov, V.A.; Naletova, V.A.

    2017-06-01

    Static shapes of a magnetic fluid axisymmetric volume on a horizontal plane in the magnetic field of a vertical line conductor are studied theoretically in case of non-wetting while the current is slowly changing in a quasi-static manner. The possibility of the fluid shape hysteresis for a cyclic increase and decrease of the current and of spasmodic changes at certain values of the current is investigated. - Highlights: • Magnetic fluid on a horizontal plane near a line conductor is studied theoretically. • For fixed current and volume various static shapes are obtained. • Spasmodic and hysteresis phenomena are found.

  2. Shaped superconductor cylinder retains intense magnetic field

    Science.gov (United States)

    Hildebrandt, A. F.; Wahlquist, H.

    1964-01-01

    The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.

  3. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  4. Synthesis of shape memory alloys using electrodeposition

    Science.gov (United States)

    Hymer, Timothy Roy

    Shape memory alloys are used in a variety of applications. The area of micro-electro-mechanical systems (MEMS) is a developing field for thin film shape memory alloys for making actuators, valves and pumps. Until recently thin film shape memory alloys could only be made by rapid solidification or sputtering techniques which have the disadvantage of being "line of sight". At the University of Missouri-Rolla, electrolytic techniques have been developed that allow the production of shape memory alloys in thin film form. The advantages of this techniques are in-situ, non "line of sight" and the ability to make differing properties of the shape memory alloys from one bath. This research focused on the electrodeposition of In-Cd shape memory alloys. The primary objective was to characterize the electrodeposited shape memory effect for an electrodeposited shape memory alloy. The effect of various operating parameters such as peak current density, temperature, pulsing, substrate and agitation were investigated and discussed. The electrodeposited alloys were characterized by relative shape memory effect, phase transformation, morphology and phases present. Further tests were performed to optimize the shape memory by the use of a statistically designed experiment. An optimized shape memory effect for an In-Cd alloy is reported for the conditions of the experiments.

  5. 3D CENTRAL LINE EXTRACTION OF FOSSIL OYSTER SHELLS

    Directory of Open Access Journals (Sweden)

    A. Djuricic

    2016-06-01

    Full Text Available Photogrammetry provides a powerful tool to digitally document protected, inaccessible, and rare fossils. This saves manpower in relation to current documentation practice and makes the fragile specimens more available for paleontological analysis and public education. In this study, high resolution orthophoto (0.5 mm and digital surface models (1 mm are used to define fossil boundaries that are then used as an input to automatically extract fossil length information via central lines. In general, central lines are widely used in geosciences as they ease observation, monitoring and evaluation of object dimensions. Here, the 3D central lines are used in a novel paleontological context to study fossilized oyster shells with photogrammetric and LiDAR-obtained 3D point cloud data. 3D central lines of 1121 Crassostrea gryphoides oysters of various shapes and sizes were computed in the study. Central line calculation included: i Delaunay triangulation between the fossil shell boundary points and formation of the Voronoi diagram; ii extraction of Voronoi vertices and construction of a connected graph tree from them; iii reduction of the graph to the longest possible central line via Dijkstra’s algorithm; iv extension of longest central line to the shell boundary and smoothing by an adjustment of cubic spline curve; and v integration of the central line into the corresponding 3D point cloud. The resulting longest path estimate for the 3D central line is a size parameter that can be applied in oyster shell age determination both in paleontological and biological applications. Our investigation evaluates ability and performance of the central line method to measure shell sizes accurately by comparing automatically extracted central lines with manually collected reference data used in paleontological analysis. Our results show that the automatically obtained central line length overestimated the manually collected reference by 1.5% in the test set, which

  6. D Central Line Extraction of Fossil Oyster Shells

    Science.gov (United States)

    Djuricic, A.; Puttonen, E.; Harzhauser, M.; Mandic, O.; Székely, B.; Pfeifer, N.

    2016-06-01

    Photogrammetry provides a powerful tool to digitally document protected, inaccessible, and rare fossils. This saves manpower in relation to current documentation practice and makes the fragile specimens more available for paleontological analysis and public education. In this study, high resolution orthophoto (0.5 mm) and digital surface models (1 mm) are used to define fossil boundaries that are then used as an input to automatically extract fossil length information via central lines. In general, central lines are widely used in geosciences as they ease observation, monitoring and evaluation of object dimensions. Here, the 3D central lines are used in a novel paleontological context to study fossilized oyster shells with photogrammetric and LiDAR-obtained 3D point cloud data. 3D central lines of 1121 Crassostrea gryphoides oysters of various shapes and sizes were computed in the study. Central line calculation included: i) Delaunay triangulation between the fossil shell boundary points and formation of the Voronoi diagram; ii) extraction of Voronoi vertices and construction of a connected graph tree from them; iii) reduction of the graph to the longest possible central line via Dijkstra's algorithm; iv) extension of longest central line to the shell boundary and smoothing by an adjustment of cubic spline curve; and v) integration of the central line into the corresponding 3D point cloud. The resulting longest path estimate for the 3D central line is a size parameter that can be applied in oyster shell age determination both in paleontological and biological applications. Our investigation evaluates ability and performance of the central line method to measure shell sizes accurately by comparing automatically extracted central lines with manually collected reference data used in paleontological analysis. Our results show that the automatically obtained central line length overestimated the manually collected reference by 1.5% in the test set, which is deemed

  7. Pollen irradiation method to obtain mutants in cucumber

    International Nuclear Information System (INIS)

    Iida, S.; Amano, E.

    1988-01-01

    Seed irradiation for mutation induction in dioecious crops like cucumber is not very useful because chimerism of the mutated tissues makes the segregation of mutants in the M 2 generation nearly impossible. This problem does not exist with pollen irradiation. Cucumber (Cucumis sativus L. var. Nishikisuyo) was used for a model experiment. The petals of male and female flowers were closed by pinching with binding wire before flowering to prevent pollination by insects. On the flowering day, the male flowers were collected and irradiated with 1kR to 10 kR of acute gamma rays (137-Cs), then used to pollinate the female flowers. The M 1 seeds thus obtained are not chimeric but heterozygous for induced mutations. When planted, no mutant phenotype appeared. Selfing within a plant lead to segregation of mutants in the M 2 generation. Seedling examination revealed eight mutants. One mutant line, in which the shape of leaves changed from pentagonal to round heart shape, was found under field conditions. The optimal dose for pollen irradiation seems to be between 2 kR and 4kR

  8. Stark parameters of some asymmetrical Si II lines

    International Nuclear Information System (INIS)

    Ferhat, B; Azzouz, Y; Redon, R; Ripert, M; Lesage, A

    2012-01-01

    Six lines of SiII are experimentally studied in pulsed plasma generated by Nd :Yag laser breakdown on pure solid silicon target. A set of experimental Stark parameters of asymmetrical lines are measured in temperature range from 14 000 K to 18 000 K (using Boltzmann plot). Calculated values of the electron density (using Griem's formula) vary from 1.7 to 6.1 × 10 23 m −3 . Processed spectral lines are 333.982 nm (3s 2 4p -3s 2 6s) and 397.746 nm, 399.177 nm, 399.801 nm, 401.622 nm (3d' 2 F 0 -4f' 4 G) and (3d' 2 F 0 - 4f' 2 G) of astrophysical interest. Asymmetrical line shapes are synthesized by a sum of two semi-Lorentzian distributions. The obtained fit is in good agreement with the measured spectra.

  9. Computerized tomographic scanner with shaped radiation filter

    International Nuclear Information System (INIS)

    Carlson, R.W.; Walters, R.G.

    1981-01-01

    The invention comprises a shaped filter and a filter correction circuitry for computerized tomographic scanners. The shaped filter is a generally u-shaped block of filter material which is adapted to be mounted between the source of radiation and the scan circle. The u-shaped block has a parabolic recess. The filter material may be beryllium, aluminum, sulphur, calcium, titanium, erbium, copper, and compounds including oxides and alloys thereof. The filter correction circuit comprises a first filter correction profile adding circuit for adding a first scaler valve to each intensity valve in a data line. The data line is operated on by a beam hardness correction polynomial. After the beam hardness polynomial correction operation, a second filter correction circuit adds a second filter correction profile consisting of a table of scalor values, one corresponding to each intensity reading in the data line

  10. Pulse shape adjustment for the SLC damping ring kickers

    International Nuclear Information System (INIS)

    Mattison, T.; Cassel, R.; Donaldson, A.; Fischer, H.; Gough, D.

    1991-05-01

    The difficulties with damping ring kickers that prevented operation of the SLAC Linear Collider in full multiple bunch mode have been overcome by shaping the current pulse to compensate for imperfections in the magnets. The risetime was improved by a peaking capacitor, with a tunable inductor to provide a locally flat pulse. The pulse was flattened by an adjustable droop inductor. Fine adjustment was provided by pulse forming line tuners driven by stepping motors. Further risetime improvement will be obtained by a saturating ferrite pulse sharpener. 4 refs., 3 figs

  11. Shape Synthesis in Mechanical Design

    Directory of Open Access Journals (Sweden)

    C. P. Teng

    2007-01-01

    Full Text Available The shaping of structural elements in the area of mechanical design is a recurrent problem. The mechanical designer, as a rule, chooses what is believed to be the “simplest” shapes, such as the geometric primitives: lines, circles and, occasionally, conics. The use of higher-order curves is usually not even considered, not to speak of other curves than polynomials. However, the simplest geometric shapes are not necessarily the most suitable when the designed element must withstand loads that can lead to failure-prone stress concentrations. Indeed, as mechanical designers have known for a while, stress concentrations occur, first and foremost, by virtue of either dramatic changes in curvature or extremely high values thereof. As an alternative, we propose here the use of smooth curves that can be simply generated using standard concepts such as non-parametric cubic splines. These curves can be readily used to produce either extruded surfaces or surfaces of revolution. 

  12. Shape morphing Kirigami mechanical metamaterials.

    Science.gov (United States)

    Neville, Robin M; Scarpa, Fabrizio; Pirrera, Alberto

    2016-08-05

    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson's ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.

  13. Noncircular plasma shape analysis in long-pulse current drive experiment in TRIAM-1M

    International Nuclear Information System (INIS)

    Minooka, Mayumi; Kawasaki, Shoji; Jotaki, Eriko; Moriyama, Shin-ichi; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1991-01-01

    Plasma cross section was noncircularized and the plasma shape was analyzed in order to study the characteristics of the plasma in long-pulse current drive experiments in high-field superconducting tokamak TRIAM-1M. Filament approximation method was adopted, since on-line processing by data processing computer is possible. The experiments of the noncircularization were carried out during 30-to 60-sec discharges. As a result, it became clear that D-shape plasma of elongation ratio 1.4 was maintained stably. By the analysis the internal inductance and poloidal beta were assessed, and so informations about the plasma current profile and internal pressure were obtained. (author)

  14. Reinforced Airfoil Shaped Body

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...

  15. Application of Green's differential equation to the analysis of ion-matrix sheaths around wedge-shaped cathodes

    International Nuclear Information System (INIS)

    Donolato, C

    2005-01-01

    A relation between the gradient of the electric field and mean curvature of equipotential surfaces (Green's differential equation) is applied to a two-dimensional free-boundary problem arising in the study of ion sheaths around wedge-shaped cathodes. With the assumption that the equipotential lines are hyperbolae, this relation leads to a nonlinear ordinary differential equation for the potential along the bisector line of the wedge. An approximate solution is found, which yields, in particular, the sheath width along this line as a function of the wedge angle. The resulting values are in good agreement with published results obtained by numerically solving Poisson's equation

  16. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  17. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  18. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    Science.gov (United States)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  19. High Line

    DEFF Research Database (Denmark)

    Kiib, Hans

    2015-01-01

    At just over 10 meters above street level, the High Line extends three kilometers through three districts of Southwestern Manhattan in New York. It consists of simple steel construction, and previously served as an elevated rail line connection between Penn Station on 34th Street and the many....... The High Line project has been carried out as part of an open conversion strategy. The result is a remarkable urban architectural project, which works as a catalyst for the urban development of Western Manhattan. The greater project includes the restoration and reuse of many old industrial buildings...

  20. Digital pulse shape discrimination

    International Nuclear Information System (INIS)

    Miller, L. F.; Preston, J.; Pozzi, S.; Flaska, M.; Neal, J.

    2007-01-01

    Pulse-shape discrimination (PSD) has been utilised for about 40 years as a method to obtain estimates for dose in mixed neutron and photon fields. Digitizers that operate close to GHz are currently available at a reasonable cost, and they can be used to directly sample signals from photomultiplier tubes. This permits one to perform digital PSD rather than the traditional, and well-established, analogous techniques. One issue that complicates PSD for neutrons in mixed fields is that the light output characteristics of typical scintillators available for PSD, such as BC501A, vary as a function of energy deposited in the detector. This behaviour is more easily accommodated with digital processing of signals than with analogous signal processing. Results illustrate the effectiveness of digital PSD. (authors)

  1. Forming of shape memory composite structures

    DEFF Research Database (Denmark)

    Santo, Loredana; Quadrini, Fabrizio; De Chiffre, Leonardo

    2013-01-01

    A new forming procedure was developed to produce shape memory composite structures having structural composite skins over a shape memory polymer core. Core material was obtained by solid state foaming of an epoxy polyester resin with remarkably shape memory properties. The composite skin consisted...... of a two-layer unidirectional thermoplastic composite (glass filled polypropylene). Skins were joined to the foamed core by hot compression without any adhesive: a very good adhesion was obtained as experimental tests confirmed. The structure of the foam core was investigated by means of computer axial...... tomography. Final shape memory composite panels were mechanically tested by three point bending before and after a shape memory step. This step consisted of a compression to reduce the panel thickness up to 60%. At the end of the bending test the panel shape was recovered by heating and a new memory step...

  2. World lines.

    OpenAIRE

    Waser Jürgen; Fuchs Raphael; Ribicic Hrvoje; Schindler Benjamin; Blöschl Günther; Gröller Eduard

    2010-01-01

    In this paper we present World Lines as a novel interactive visualization that provides complete control over multiple heterogeneous simulation runs. In many application areas decisions can only be made by exploring alternative scenarios. The goal of the suggested approach is to support users in this decision making process. In this setting the data domain is extended to a set of alternative worlds where only one outcome will actually happen. World Lines integrate simulation visualization and...

  3. Planar half-cell shaped precursor body

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a half-cell shaped precursor body of either anode type or cathode type, the half-cell shaped precursor body being prepared to be free sintered to form a sintered or pre-sintered half-cell being adapted to be stacked in a solid oxide fuel cell stack. The obtained half......-cell has an improved planar shape, which remains planar also after a sintering process and during temperature fluctuations....

  4. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  5. Shape-changing interfaces:

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegård; Pedersen, Esben Warming; Petersen, Marianne Graves

    2015-01-01

    Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address these shortc......Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address...... these shortcomings. We identify eight types of shape that are transformed in various ways to serve both functional and hedonic design purposes. Interaction with shape-changing interfaces is simple and rarely merges input and output. Three questions are discussed based on the review: (a) which design purposes may...

  6. Self-erecting shapes

    Science.gov (United States)

    Reading, Matthew W.

    2017-07-04

    Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation of joining of the shape-memory members with the hub components.

  7. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    In this paper, shape optimisation of flapping wings in forward flight is considered. This analysis is performed by combining a local gradient-based optimizer with the unsteady vortex lattice method (UVLM). Although the UVLM applies only to incompressible, inviscid flows where the separation lines are known a priori, Persson et al. [1] showed through a detailed comparison between UVLM and higher-fidelity computational fluid dynamics methods for flapping flight that the UVLM schemes produce accurate results for attached flow cases and even remain trend-relevant in the presence of flow separation. As such, they recommended the use of an aerodynamic model based on UVLM to perform preliminary design studies of flapping wing vehicles Unlike standard computational fluid dynamics schemes, this method requires meshing of the wing surface only and not of the whole flow domain [2]. From the design or optimisation perspective taken in our work, it is fairly common (and sometimes entirely necessary, as a result of the excessive computational cost of the highest fidelity tools such as Navier-Stokes solvers) to rely upon such a moderate level of modelling fidelity to traverse the design space in an economical manner. The objective of the work, described in this paper, is to identify a set of optimised shapes that maximise the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. The shape of the wings is modelled using B-splines, a technology used in the computer-aided design (CAD) field for decades. This basis can be used to smoothly discretize wing shapes with few degrees of freedom, referred to as control points. The locations of the control points constitute the design variables. The results suggest that changing the shape yields significant improvement in the performance of the flapping wings. The optimisation pushes the design to "bird-like" shapes with substantial increase in the time

  8. Vortex distribution in small star-shaped Mo{sub 80}Ge{sub 20} plate

    Energy Technology Data Exchange (ETDEWEB)

    Vu, The Dang, E-mail: vu-dang@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Department of Physics and Electronics, University of Sciences, Vietnam National University HCMC (Viet Nam); Matsumoto, Hitoshi; Miyoshi, Hiroki [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Huy, Ho Thanh [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Department of Physics and Electronics, University of Sciences, Vietnam National University HCMC (Viet Nam); Shishido, Hiroaki [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Institute for Nanofabrication Research, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Kato, Masaru [Institute for Nanofabrication Research, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Department of Mathematical Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Ishida, Takekazu [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Institute for Nanofabrication Research, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2017-02-15

    Highlights: • We found the general feature of vortex configuration in small star-shaped Mo{sub 80}Ge{sub 20} plates such as the appearance of symmetric line, the rule of shell filling and the existence of a magic number in both theoretical predictions and experimental results. • We found that the vortex distribution in a concave decagon tends to adapt to one of the five symmetric axes of the star-shaped plate expected in confining vortices in a restricted sample geometry. • The numerical results of Ginzburg–Landau equation confirmed that the filling rules for a vortex configuration and the existence of a magic number for small star-shaped plates are in good agreement with experiment results. - Abstract: We investigated vortex states in small star-shaped Mo{sub 80}Ge{sub 20} plates both theoretically and experimentally. The numerical calculations of the Ginzburg–Landau equation have been carried out with the aid of the finite element method, which is convenient to treat an arbitrarily shaped superconductor. The experimental results were observed by using a scanning SQUID microscope. Through systematic measurements, we figured out how vortices form symmetric configuration with increasing the magnetic field. The vortex distribution tends to adapt to one of five mirror symmetric lines when vortices were located at the five triangular horns of a star-shaped plate. The crystalline homogeneity of a sample was confirmed by the X-ray diffraction and the superconducting properties so that vortices are easily able to move for accommodating vortices in the geometric symmetry of the star-shaped plate. The experimental vortex configurations obtained for a star-shaped plate are in good agreement with theoretical predictions from the nonlinear Ginzburg–Landau equation.

  9. The Hue of Shapes

    Science.gov (United States)

    Albertazzi, Liliana; Da Pos, Osvaldo; Canal, Luisa; Micciolo, Rocco; Malfatti, Michela; Vescovi, Massimo

    2013-01-01

    This article presents an experimental study on the naturally biased association between shape and color. For each basic geometric shape studied, participants were asked to indicate the color perceived as most closely related to it, choosing from the Natural Color System Hue Circle. Results show that the choices of color for each shape were not…

  10. Silver linings.

    Science.gov (United States)

    Bultas, Margaret W; Pohlman, Shawn

    2014-01-01

    The purpose of this interpretive phenomenological study was to gain a better understanding of the experiences of 11 mothers of preschool children with autism spectrum disorder (ASD). Mothers were interviewed three times over a 6 week period. Interviews were analyzed using interpretive methods. This manuscript highlights one particular theme-a positive perspective mothers described as the "silver lining." This "silver lining" represents optimism despite the adversities associated with parenting a child with ASD. A deeper understanding of this side of mothering children with ASD may help health care providers improve rapport, communication, and result in more authentic family centered care. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. K-line photometry

    International Nuclear Information System (INIS)

    Henry, R.C.

    1979-01-01

    A brief review is given of more than a decade of work involving measurement of the strength of the K line of calcium in A-type stars. The effects of interstellar reddening are reexamined, and an improved estimate for the range in calcium abundance among field stars is obtained. (Auth.)

  12. Combined fit to the e{sup +}e{sup -} → π{sup +}π{sup -}J/ψ and e{sup +}e{sup -} → π{sup +}π{sup -}ψ(3686) line shape

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jielei; Yuan, Limin [Xinyang Normal University, College of Physics and Electronic Engineering, Xinyang (China)

    2017-11-15

    We analyze the cross section of e{sup +}e{sup -} → π{sup +}π{sup -}J/ψ measured by Belle, BABAR and BESIII experiments. The parameters of the two resonances Y(4220) and Y(4360) are consistent with that in e{sup +}e{sup -} → π{sup +}π{sup -}ψ(3686). A combined fit is performed to the two cross sections assuming the two resonances Y(4220) and Y(4360) have the same parameters. The parameters of Y(4220), Y(4360) and Y(4660) are determined to be M{sub Y(4220)} = (4223.3 ± 1.6 ± 2.5) MeV/c{sup 2}, Γ{sub Y(4220)} = (54.2 ± 2.6 ± 1.0) MeV; M{sub Y(4360)} = (4386.4 ± 2.1 ± 6.4) MeV/c{sup 2}, Γ{sub Y(4360)} = (96.0 ± 6.7 ± 2.7) MeV; M{sub Y(4660)} = (4646.4 ± 9.7 ± 4.8) MeV/c{sup 2}, Γ{sub Y(4660)} = (103.5 ± 15.6 ± 4.0) MeV, where the first uncertainties are statistical and the second systematic. The ratios (B(Y(4220)→π{sup +}π{sup -}ψ(3686)))/(B(Y(4220)→π{sup +}π{sup -}J/ψ)) and (B(Y(4360)→π{sup +}π{sup -}ψ(3686)))/(B(Y(4360)→π{sup +}π{sup -}J/ψ)) are also obtained, which may help in understanding the nature of these structures. (orig.)

  13. Stiffness and Mass Matrices of FEM-Applicable Dynamic Infinite Element with Unified Shape Basis

    International Nuclear Information System (INIS)

    Kazakov, Konstantin

    2009-01-01

    This paper is devoted to the construction and evaluation of mass and stiffness matrices of elastodynamic four and five node infinite elements with unified shape functions (EIEUSF), recently proposed by the author. Such elements can be treated as a family of elastodynamic infinite elements appropriate for multi-wave soil-structure interaction problems. The common characteristic of the proposed infinite elements is the so-called unified shape function, based on finite number of wave shape functions. The idea and the construction of the unified shape basis are described in brief. This element belongs to the decay class of infinite elements. It is shown that by appropriate mapping functions the formulation of such an element can be easily transformed to a mapped form. The results obtained using the proposed infinite elements are in a good agreement with the superposed results obtained by a series of standard computational models. The continuity along the finite/infinite element line (artificial boundary) in two-dimensional substructure models is also discussed in brief. In this type of computational models such a line marks the artificial boundary between the near and the far field of the model.

  14. Growth of Y-shaped Carbon Nanofibers from Ethanol Flames

    Directory of Open Access Journals (Sweden)

    Cheng Jin

    2008-01-01

    Full Text Available Abstract Y-shaped carbon nanofibers as a multi-branched carbon nanostructure have potential applications in electronic devices. In this article, we report that several types of Y-shaped carbon nanofibers are obtained from ethanol flames. These Y-shaped carbon nanofibers have different morphologies. According to our experimental results, the growth mechanism of Y-shaped carbon nanofibers has been discussed and a possible growth model of Y-shaped carbon nanofibers has been proposed.

  15. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  16. Walking at the drip line

    International Nuclear Information System (INIS)

    Bonaccorso, Angela

    2015-01-01

    Among exotic nuclei those at the drip line which are unstable against neutron emission are particularly interesting because they convey information on the nuclear force in the most extreme situations. Strictly speaking they are not ''nuclei'' but they exist thanks to long living resonances between a neutron and a bound ''core'' nucleus. Adding one more neutron they become bound and are called ''borromean''. Being particularly exotic they have attracted much attention in past years. One very challenging example is 13 Be whose level ordering has been discussed in a large number of papers in which it has been studied by transfer and fragmentation experiments, or it has been discussed theoretically. Although projectile fragmentation spectra show evident similarities, the interpretations of data all differ from each other. In this paper we argue that a way trough the problem could be to try to establish first, or at the same time, the quite elusive ''nature'' of the second s-state in the Beryllium isotopes with A=9-14. On the other hand there are other recent neutron removal experiments leading to nuclei unstable by one or more proton emissions, and thus somewhat mirror to borromean nuclei, performed with nuclei close to the proton drip line. It has been shown that by taking in coincidence all (charged) particles but the removed neutron, reconstructing the invariant mass and gating on the ground state peak, it is possible to obtain the longitudinal momentum distribution of the unbound ''core''. One can link it to the original wave function of the bound orbital and thus determine the initial neutron angular momentum from the shape of the distribution and the initial occupation probability from the absolute removal cross section. Then it is clear that modern experiments and theories are able to study unstable nuclei with the same degree of accuracy as stable nuclei. Such a

  17. Dielectron analysis in p-p collisions at 3.5 GeV with the HADES spectrometer. ω-meson line shape and a new electronics readout for the multi-wire drift chambers

    International Nuclear Information System (INIS)

    Tarantola Peloni, Attilio

    2011-06-01

    The HADES (High Acceptance DiElectron Spectrometer) is an experimental apparatus installed at the heavy-ion synchrotron SIS-18 at GSI, Darmstadt. The main physics motivation of the HADES experiment is the measurement of e + e - pairs in the invariant-mass range up to 1 GeV/c 2 in heavy-ion collisions as well as in pion and proton-induced reactions. The HADES physics program is focused on in-medium properties of the light vector mesons ρ(770), ω(783) and φ(1020), which decay with a small branching ratio into dileptons. Dileptons are penetrating probes which allow to study the in-medium properties of hadrons. However, in heavy-ion collisions, the measurement of such lepton pairs is difficult because they are rare and have a very large combinatorial background. Recently, HADES has been upgraded with new detectors and new electronics in order to handle higher intensity beams and reactions with heavy nuclei up to Au. HADES will continue for a few more years its rich physics program at its current place at SIS-18 and then move to the upcoming international Facility for Antiproton and Ion Research (FAIR) accelerator complex. In this context the physics results presented in this work are important prerequisites for the investigation of in-medium vector meson properties in p + A and A+A collisions. This work consists of five chapters. The first chapter introduces the physics motivation and a review of recent physics results. In the second chapter, the HADES spectrometer is described and its sub-detectors are presented. Chapter three deals with the issue of lepton identification and the reconstruction of the dielectron spectra in p + p collisions is presented. Here, two reactions are characterized: inclusive and exclusive dilepton production reactions. From the spectra obtained, the corresponding cross sections are presented with the respective statistical and systematical errors. A comparison with theoretical models is included as well. Conclusions are given in chapter

  18. Dielectron analysis in p-p collisions at 3.5 GeV with the HADES spectrometer. {omega}-meson line shape and a new electronics readout for the multi-wire drift chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tarantola Peloni, Attilio

    2011-06-15

    The HADES (High Acceptance DiElectron Spectrometer) is an experimental apparatus installed at the heavy-ion synchrotron SIS-18 at GSI, Darmstadt. The main physics motivation of the HADES experiment is the measurement of e{sup +}e{sup -} pairs in the invariant-mass range up to 1 GeV/c{sup 2} in heavy-ion collisions as well as in pion and proton-induced reactions. The HADES physics program is focused on in-medium properties of the light vector mesons {rho}(770), {omega}(783) and {phi}(1020), which decay with a small branching ratio into dileptons. Dileptons are penetrating probes which allow to study the in-medium properties of hadrons. However, in heavy-ion collisions, the measurement of such lepton pairs is difficult because they are rare and have a very large combinatorial background. Recently, HADES has been upgraded with new detectors and new electronics in order to handle higher intensity beams and reactions with heavy nuclei up to Au. HADES will continue for a few more years its rich physics program at its current place at SIS-18 and then move to the upcoming international Facility for Antiproton and Ion Research (FAIR) accelerator complex. In this context the physics results presented in this work are important prerequisites for the investigation of in-medium vector meson properties in p + A and A+A collisions. This work consists of five chapters. The first chapter introduces the physics motivation and a review of recent physics results. In the second chapter, the HADES spectrometer is described and its sub-detectors are presented. Chapter three deals with the issue of lepton identification and the reconstruction of the dielectron spectra in p + p collisions is presented. Here, two reactions are characterized: inclusive and exclusive dilepton production reactions. From the spectra obtained, the corresponding cross sections are presented with the respective statistical and systematical errors. A comparison with theoretical models is included as well

  19. Shape nuclei and nuclear reactions

    International Nuclear Information System (INIS)

    Yushkov, A.V.

    1975-01-01

    Experimental methods for obtaining the nucleus shape parameters are reviewed throughout the period of 1955-1975. Spatial properties of a nucleus, which can be directly or indirectly measured, are determined. They include: parameters of nucleus localization in space; parameters characterizing the nucleus nonsphericity; parameters of the nucleus nonaxiality. Dimensional parameters of a nucleus, namely, radius R and surface ΔR are derived from electron scattering. The deformation sign is indirectly obtained in the experiments. Parameters of the nucleus shape, namely, the sign and magnitude of nuclear deformation are derived from the mean energy proton scattering by a coupled channels method. The only direct way of deriving the nucleus surface deformation signs is the method of the Blaire phase shift. Results on scattering of electrons, protons, and α-particles on light and medium nuclei are reported. Data on the nucleus shape can be also obtained from reactions with heavy ions. A difference between strong absorptions of incident particles of high and average energy by a nucleus is noted. Numerous diagrams illustrate experimental and theoretical results

  20. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  1. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  2. Research in Shape Analysis

    CERN Document Server

    Leonard, Kathryn; Tari, Sibel; Hubert, Evelyne; Morin, Geraldine; El-Zehiry, Noha; Chambers, Erin

    2018-01-01

    Based on the second Women in Shape (WiSH) workshop held in Sirince, Turkey in June 2016, these proceedings offer the latest research on shape modeling and analysis and their applications. The 10 peer-reviewed articles in this volume cover a broad range of topics, including shape representation, shape complexity, and characterization in solving image-processing problems. While the first six chapters establish understanding in the theoretical topics, the remaining chapters discuss important applications such as image segmentation, registration, image deblurring, and shape patterns in digital fabrication. The authors in this volume are members of the WiSH network and their colleagues, and most were involved in the research groups formed at the workshop. This volume sheds light on a variety of shape analysis methods and their applications, and researchers and graduate students will find it to be an invaluable resource for further research in the area.

  3. Perspectives in shape analysis

    CERN Document Server

    Bruckstein, Alfred; Maragos, Petros; Wuhrer, Stefanie

    2016-01-01

    This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives. Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved using tools from the field of n...

  4. Femoral shape analysis by Bi-plane x-ray photogrammetry

    International Nuclear Information System (INIS)

    Tamaki, Tamotsu; Umezaki, Eisaku; Yamagata, Masatsune; Inoue, Shun-ichi; Yamaguchi, Kiyonao; Takahashi, Kazuhisa.

    1986-01-01

    For the osteotomy on hip joint diseases caused by abnormality of the shape of bones, an accurate 3-dimensional femoral shape must be recognized before operation. It has been reported by the present authors that spinal shape is sufficiently analyzed by a developed system based on bi-plane photogrammetry. This paper describes an application of the system to the femoral shape analysis. The shaft axis, the neck axis, the head center of femur and the radius of the head are reconstructed 3-dimensionally using the vector analysis of plane and line, and the least square approximation method. The obtained axes and head are graphically displayed on the screen of a personal computer through the perspective transformation. The shape parameters usually used in clinic, such as the anteversion angle and the neck-shaft angle, are also calculated by the present method. Result obtained by this system is compared with that by photographical measurement of exposed femurs, then the present method is reduced to have higher accuracy than Kai's method currently used. (author)

  5. On the analysis of line profile variations: A statistical approach

    International Nuclear Information System (INIS)

    McCandliss, S.R.

    1988-01-01

    This study is concerned with the empirical characterization of the line profile variations (LPV), which occur in many of and Wolf-Rayet stars. The goal of the analysis is to gain insight into the physical mechanisms producing the variations. The analytic approach uses a statistical method to quantify the significance of the LPV and to identify those regions in the line profile which are undergoing statistically significant variations. Line positions and flux variations are then measured and subject to temporal and correlative analysis. Previous studies of LPV have for the most part been restricted to observations of a single line. Important information concerning the range and amplitude of the physical mechanisms involved can be obtained by simultaneously observing spectral features formed over a range of depths in the extended mass losing atmospheres of massive, luminous stars. Time series of a Wolf-Rayet and two of stars with nearly complete spectral coverage from 3940 angstrom to 6610 angstrom and with spectral resolution of R = 10,000 are analyzed here. These three stars exhibit a wide range of both spectral and temporal line profile variations. The HeII Pickering lines of HD 191765 show a monotonic increase in the peak rms variation amplitude with lines formed at progressively larger radii in the Wolf-Rayet star wind. Two times scales of variation have been identified in this star: a less than one day variation associated with small scale flickering in the peaks of the line profiles and a greater than one day variation associated with large scale asymmetric changes in the overall line profile shapes. However, no convincing period phenomena are evident at those periods which are well sampled in this time series

  6. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  7. Research on the Test of Transmission Line Galloping

    Science.gov (United States)

    Zhang, Lichun; Li, Qing; lv, Zhongbin; Ji, Kunpeng; Liu, Bin

    2018-03-01

    The load of iced transmission line and the load generated by galloping after the conductor are covered by ice all may cause severe circuit faults, such as tripping, conductor breaking, armor clamp damage and even tower collapse, thus severely threatening running safety of power system. The generation and development processes of galloping of power transmission line is very complicated, and numerous factors may influence the galloping excitation, such as environmental factors, terrain factors and structural parameters of power transmission line; in which, the ice covering of conductor is one of necessary factors causing galloping. Therefore, researches on ice covering increasing test of different types of conductors under different meteorological conditions have been conducted in large-sized multi-functional phytotron, thus obtaining the relation curve of ice covering increasing of conductor along with time under different conditions, and analyzing factors influencing increasing of ice covering. The research result shows that under the same ice covering conditions, the increasing of ice covering of conductor with small diameter is relatively rapid; both environmental temperature and wind speed have obvious influence on increasing of ice covering of conductor, and the environmental temperature will decide the type of ice covering of conductor surface. Meanwhile, after wind tunnel tests targeting conductors with different ice covering shapes, pneumatic stability loss characteristics of conductors with different ice shapes have been obtained. Research results have important scientific reference value for revealing the mechanism of galloping of iced power transmission line, and have relatively high engineering practicability value for promoting realization of early warning system for galloping of iced power transmission line.

  8. Creation and control of variably shaped plasmas in TCV

    International Nuclear Information System (INIS)

    Hofmann, F.; Lister, J.B.; Anton, M.

    1994-01-01

    During the first year of operation, the TCV tokamak has produced a large variety of plasma shapes and magnetic configurations, with 1.0≤B tor ≤1.46T, I p ≤800kA, k≤2.05, -0.7≤δ ≤0.7. A new shape control algorithm, based on a finite element reconstruction of the plasma current in real time, has been implemented. Vertical growth rates of 800 sec -1 , corresponding to a stability margin f=1.15, have been stabilized. Ohmic H-modes, with energy confinement times reaching 80ms, normalized beta (β tor aB/I p ) of 1.9 and τ E /ITER89-P of 2.4 have been obtained in single-null X-point deuterium discharges with the ion grad B drift towards the X-point. Limiter H-modes with maximum line averaged electron densities of 1.7x10 20 m -3 have been observed in D-shaped plasmas with 360kA≤I p ≤600kA. (Author)

  9. Linewidths and line shapes in the vicinity of graphene

    International Nuclear Information System (INIS)

    Bhattacharyya, Pallavi; Sebastian, K. L.

    2014-01-01

    It is well known that graphene, by virtue of its pi-cloud delocalization, has a continuum of electronic energy states and thus behaves nearly like a metal. Instances involving quenching of electronic energy excitation in fluorophores placed in the proximity of graphene sheets are well documented. In this paper, we perform theoretical investigations on the broadening of vibrational and electronic transitions in the vicinity of graphene. We find that for CO vibrations in the vicinity of undoped graphene, the broadening at a distance of 5 Å is ∼0.008 cm −1 (κ ~ =2, κ ~ being the effective dielectric constant). In comparison, for electronic transitions, the linewidth is much larger, being of the order of several cm −1 . Also, if the transition dipole were parallel to the graphene sheet, the linewidth would be reduced to half the value for the case where it is perpendicular, an observation which should be easy to check experimentally for electronic transitions. This should be observable for the f − f transitions (which are rather narrow) of Lanthanide complexes placed within a distance of a few nanometers from a graphene sheet. Further the linewidth would have a (distance) −4 dependence as one varies the distance from graphene

  10. A precision measurement of the Z0-line shape

    International Nuclear Information System (INIS)

    Schmitt, B.

    1996-01-01

    A precise measurement of the cross section of the process e + e - → hadrons at energies around the Z 0 -resonance is performed. The aim is to achieve a systematic error of 0.1%. Data recorded with the OPAL detector at LEP during the years 1990 to 1994 are used. To achieve a small systematic luminosity error the OPAL detector was upgraded with a new luminosity monitor. The new luminosity detector, the luminosity measurement, and the selection of multi hadronic events is described in detail. The measured hadronic cross sections together with the leptonic cross sections are used to determine the mass and the width of the Z 0 -boson. The partial widths are used for a precision test of the standard model. (orig.)

  11. The natural line shape of the giant dipole resonance

    International Nuclear Information System (INIS)

    Gordon, E.F.; Pitthan, R.

    1977-01-01

    Investigation of photoabsorption experiments in the spherical nucleus 141 Pr, the quasispherical dynamically deformed 197 Au, and the statically deformed 165 Ho showed that the function which describes best the energy dependence of the reduced transition probability is given by the Breit-Wigner form rather than the Lorentz form. However, the form of the resulting measured cross section is approximately of the Lorentz type. The dependence of the giant resonance width GAMMA on the excitation energy was also investigated, and found to be less than 1% per MeV if one considered the known isovector E2 resonance above the giant dipole resonance. Best fit values of the reduced transition probabilities for the three nuclei are given and compared to (e,e') results. (Auth.)

  12. Asymmetrical shapes of optical line profiles in individual quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Kratochvílová, Irena; Menšík, Miroslav

    2009-01-01

    Roč. 282, č. 9 (2009), s. 1801-1806 ISSN 0030-4018 R&D Projects: GA MŠk ME 866; GA MŠk OC 137; GA ČR GA202/07/0643 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505 Keywords : optical spectra * quantum dots * optical phonons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.316, year: 2009

  13. production lines

    Directory of Open Access Journals (Sweden)

    Jingshan Li

    2000-01-01

    Full Text Available In this work, serial production lines with finished goods buffers operating in the pull regime are considered. The machines are assumed to obey Bernoulli reliability model. The problem of satisfying customers demand is addressed. The level of demand satisfaction is quantified by the due-time performance (DTP, which is defined as the probability to ship to the customer a required number of parts during a fixed time interval. Within this scenario, the definitions of DTP bottlenecks are introduced and a method for their identification is developed.

  14. Stokes line width

    International Nuclear Information System (INIS)

    Nikiskov, A.I.; Ritus, V.I.

    1993-01-01

    The concept of Stokes line width is introduced for the asymptotic expansions of functions near an essential singularity. Explicit expressions are found for functions (switching functions) that switch on the exponentially small terms for the Dawson integral, Airy function, and the gamma function. A different, more natural representation of a function, not associated with expansion in an asymptotic series, in the form of dominant and recessive terms is obtained by a special division of the contour integral which represents the function into contributions of higher and lower saddle points. This division leads to a narrower, natural Stokes line width and a switching function of an argument that depends on the topology of the lines of steepest descent from the saddle point

  15. Line facilities outline

    International Nuclear Information System (INIS)

    1998-08-01

    This book deals with line facilities. The contents of this book are outline line of wire telecommunication ; development of line, classification of section of line and theory of transmission of line, cable line ; structure of line, line of cable in town, line out of town, domestic cable and other lines, Optical communication ; line of optical cable, transmission method, measurement of optical communication and cable of the sea bottom, Equipment of telecommunication line ; telecommunication line facilities and telecommunication of public works, construction of cable line and maintenance and Regulation of line equipment ; regulation on technique, construction and maintenance.

  16. Shape from touch

    NARCIS (Netherlands)

    Kappers, A.M.L.; Bergmann Tiest, W.M.

    2014-01-01

    The shape of objects cannot only be recognized by vision, but also by touch. Vision has the advantage that shapes can be seen at a distance, but touch has the advantage that during exploration many additional object properties become available, such as temperature (Jones, 2009), texture (Bensmaia,

  17. Odd Shape Out

    Science.gov (United States)

    Cady, Jo Ann; Wells, Pamela

    2016-01-01

    The Odd Shape Out task was an open-ended problem that engaged students in comparing shapes based on their properties. Four teachers submitted the work of 116 students from across the country. This article compares various student's responses to the task. The problem allowed for differentiation, as shown by the many different ways that students…

  18. Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Loog, M.; de Bruijne, M.

    2009-01-01

    , not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two...

  19. ACTIVATED CARBON (CHARCOAL OBTAINING . APPLICATION

    Directory of Open Access Journals (Sweden)

    Florin CIOFU

    2015-05-01

    Full Text Available The activated carbon is a microporous sorbent with a very large adsorption area that can reach in some cases even 1500sqm / gram. Activated carbon is produced from any organic material with high carbon content: coal, wood, peat or moor coal, coconut shells. The granular activated charcoal is most commonly produced by grinding the raw material, adding a suitable binder to provide the desired hardness and shape. Enabling coal is a complete process through which the raw material is fully exposed to temperatures between 600-900 degrees C, in the absence of oxygen, usually in a domestic atmosphere as gases such as nitrogen or argon; as material that results from this process is exposed in an atmosphere of oxygen and steam at a temperature in the interval from 600 - 1200 degrees C.

  20. Spectral Ly{alpha}, Ly{beta}, and H{alpha} line shapes for the H atom in the presence of a magnetic field in a plasma; Profils des raies spectrales Ly{alpha}, Ly{beta}, et H{alpha} de l'atome H en presence d'un champ magnetique dans un plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H; Herman, L [Laboratoire de Recherches Physiques, Faculte des sciences, 9 Quai Saint Bernard, 75 - Paris (France); Drawin, H W [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-02-15

    This report contains numerical data of the line shapes of Ly{alpha}, Ly{beta}, and H{alpha} for the following parameters: 1. 10{sup 2} {<=} H [gauss] {<=} 1.2. 10{sup 5} 1. 10{sup 15}{<=} N [cm{sup -3}] {<=} 1. 10{sup 18} cm{sup -3} 1. 10{sup 4} {<=} T [deg. K] {<=} 4. 10{sup 4} where H = magnetic field strength, K = density of plasma ions, T = electron temperature. (authors) [French] Dans ce rapport, on donne les valeurs numeriques des contours des raies spectrales Ly{alpha}, Ly{beta}, et H{alpha} pour les valeurs suivantes des parametres H, N et T 1. 10{sup 2} {<=} H [gauss] {<=} 1.2. 10{sup 5} 1. 10{sup 15}{<=} N [cm{sup -3}] {<=} 1. 10{sup 18} cm{sup -3} 1. 10{sup 4} {<=} T [deg. K] {<=} 4. 10{sup 4} ou H intensite du champ magnetique, N = densite des ions, T = temperature electronique. (auteurs)

  1. The exchangeability of shape

    Directory of Open Access Journals (Sweden)

    Kaba Dramane

    2010-10-01

    Full Text Available Abstract Background Landmark based geometric morphometrics (GM allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes.

  2. Shape memory materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Compared with piezoelectric ceramics and magnetostrictive materials, the shape memory materials possess larger recoverable strain and recovery stress but slower response to external field. It is expected that the magneto-shape memory materials may develop considerable strain as well as rapid and precise shape control. Pseudoelasticity and shape memory effect (SME) resulted from martensitic transformation and its reverse transformation in shape memory materials were generally described. The requirements of appearing the shape memory effect in materials and the criteria for thermoelastic martensitic transformation were given. Some aspects concerning characteristics of martensitic transformation, and factors affecting SME in Ni-Ti, Cu-Zn-Al and Fe-Mn-Si based alloys as well as ZrO2 containing ceramics were briefly reviewed. Thermodynamic calculation of Ms temperature as function of grain size and parent ordering in Cu-Zn-Al was presented. The works on prediction of Ms in Fe-Mn-Si based alloys and in ZrO2-CeO2 were mentioned. Magnetic shape memory materials were briefly introduced.

  3. The Effect of Shape Memory on Red Blood Cell Motions

    Science.gov (United States)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2013-11-01

    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  4. Rebounding of a shaped-charge jet

    Science.gov (United States)

    Proskuryakov, E. V.; Sorokin, M. V.; Fomin, V. M.

    2007-09-01

    The phenomenon of rebounding of a shaped-charge jet from the armour surface with small angles between the jet axis and the target surface is considered. Rebounding angles as a function of jet velocity are obtained in experiments for a copper shaped-charge jet. An engineering calculation technique is developed. The results calculated with the use of this technique are in reasonable agreement with experimental data.

  5. Ordinal-Measure Based Shape Correspondence

    Directory of Open Access Journals (Sweden)

    Faouzi Alaya Cheikh

    2002-04-01

    Full Text Available We present a novel approach to shape similarity estimation based on distance transformation and ordinal correlation. The proposed method operates in three steps: object alignment, contour to multilevel image transformation, and similarity evaluation. This approach is suitable for use in shape classification, content-based image retrieval and performance evaluation of segmentation algorithms. The two latter applications are addressed in this papers. Simulation results show that in both applications our proposed measure performs quite well in quantifying shape similarity. The scores obtained using this technique reflect well the correspondence between object contours as humans perceive it.

  6. Experimental results obtained at GANIL

    International Nuclear Information System (INIS)

    Borrel, V.

    1993-01-01

    A review of experimental results obtained at GANIL on the study of nuclear structure and nuclear reactions with secondary radioactive beams is presented. Mass measurements by means of the GANIL cyclotrons are described. The possibilities of GANIL/LISE3 for the production and separation of radioactive beams are illustrated through a large variety of experiments. (author). 19 refs., 8 figs

  7. Robust estimation of seismic coda shape

    Science.gov (United States)

    Nikkilä, Mikko; Polishchuk, Valentin; Krasnoshchekov, Dmitry

    2014-04-01

    We present a new method for estimation of seismic coda shape. It falls into the same class of methods as non-parametric shape reconstruction with the use of neural network techniques where data are split into a training and validation data sets. We particularly pursue the well-known problem of image reconstruction formulated in this case as shape isolation in the presence of a broadly defined noise. This combined approach is enabled by the intrinsic feature of seismogram which can be divided objectively into a pre-signal seismic noise with lack of the target shape, and the remainder that contains scattered waveforms compounding the coda shape. In short, we separately apply shape restoration procedure to pre-signal seismic noise and the event record, which provides successful delineation of the coda shape in the form of a smooth almost non-oscillating function of time. The new algorithm uses a recently developed generalization of classical computational-geometry tool of α-shape. The generalization essentially yields robust shape estimation by ignoring locally a number of points treated as extreme values, noise or non-relevant data. Our algorithm is conceptually simple and enables the desired or pre-determined level of shape detail, constrainable by an arbitrary data fit criteria. The proposed tool for coda shape delineation provides an alternative to moving averaging and/or other smoothing techniques frequently used for this purpose. The new algorithm is illustrated with an application to the problem of estimating the coda duration after a local event. The obtained relation coefficient between coda duration and epicentral distance is consistent with the earlier findings in the region of interest.

  8. Magnetic shape memory behaviour

    International Nuclear Information System (INIS)

    Brown, P.J.; Gandy, A.P.; Ishida, K.; Kainuma, R.; Kanomata, T.; Matsumoto, M.; Morito, H.; Neumann, K.-U.; Oikawa, K.; Ouladdiaf, B.; Ziebeck, K.R.A.

    2007-01-01

    Materials that can be transformed at one temperature T F , then cooled to a lower temperature T M and plastically deformed and on heating to T F regain their original shape are currently receiving considerable attention. In recovering their shape the alloys can produce a displacement or a force, or a combination of the two. Such behaviour is known as the shape memory effect and usually takes place by change of temperature or applied stress. For many applications the transformation is not sufficiently rapid or a change in temperature/pressure not appropriate. As a result, considerable effort is being made to find a ferromagnetic system in which the effect can be controlled by an applied magnetic field. The results of recent experiments on ferromagnetic shape memory compounds aimed at understanding the underlying mechanism will be reviewed

  9. Shaping the ROTC Cohort

    National Research Council Canada - National Science Library

    Rittenhouse, Wiley P; Kwinn, Jr, Michael J

    2005-01-01

    ...) - to meet the future needs of the Army for commissioned officers. It is designed to shape each cohort to meet the Army's specific needs in terms of component, academic disciplines, race/ethnic makeup goals, gender, and targeted missions...

  10. Alternate Double Single Track Lines

    Energy Technology Data Exchange (ETDEWEB)

    Moraga Contreras, P.; Grande Andrade, Z.; Castillo Ron, E.

    2016-07-01

    The paper discusses the advantages and shortcomings of alternate double single track (ADST) lines with respect to double track lines for high speed lines. ADST lines consists of sequences of double and single track segments optimally selected in order to reduce the construction and maintenance costs of railway lines and to optimize the timetables used to satisfy a given demand. The single tracks are selected to coincide with expensive segments (tunnels and viaducts) and the double tracks are chosen to coincide with flat areas and only where they are necessary. At the same time, departure times are adjusted for trains to cross at the cheap double track segments. This alternative can be used for new lines and also for existing conventional lines where some new tracks are to be constructed to reduce travel time (increase speed). The ADST proposal is illustrated with some examples of both types (new lines and where conventional lines exist), including the Palencia-Santander, the Santiago-Valparaíso-Viña del Mar and the Dublin-Belfast lines, where very important reductions (90 %) are obtained, especially where a railway infrastructure already exist. (Author)

  11. Evaporation-induced flow in an inviscid liquid line at any contact angle

    Science.gov (United States)

    Petsi, A. J.; Burganos, V. N.

    2006-04-01

    The problem of potential flow inside an evaporating liquid line, shaped as an infinitely long cylindrical segment lying on a flat surface, is considered and an analytical solution is obtained for any contact angle in (0,π) . In this way, microflow details inside linear liquid bodies evaporating on hydrophilic, hydrophobic, and strongly hydrophobic substrates can now be obtained. The mathematical formulation employs the velocity potential and stream function formulations in bipolar coordinates and the solution is obtained using the technique of Fourier transform. Both pinned and depinned contact lines are considered. The solution is applicable to any evaporation mechanism but for illustration purposes numerical results are presented here for the particular case of kinetically controlled evaporation. For hydrophilic substrates, the flow inside the evaporating liquid line is directed towards the edges for pinned contact lines, thus, promoting a coffee stain effect. The opposite flow direction is observed for depinned contact lines. However, for strongly hydrophobic substrates, flow is directed outwards for both pinned and depinned contact lines, but owing to its low magnitude compared to that on hydrophilic substrates, a craterlike colloidal deposit should be expected rather than a ringlike deposit, in agreement with experimental observations.

  12. Email shape analysis

    OpenAIRE

    Sroufe, Paul; Phithakkitnukoon, Santi; Dantu, Ram; Cangussu, João

    2010-01-01

    Email has become an integral part of everyday life. Without a second thought we receive bills, bank statements, and sales promotions all to our inbox. Each email has hidden features that can be extracted. In this paper, we present a new mechanism to characterize an email without using content or context called Email Shape Analysis. We explore the applications of the email shape by carrying out a case study; botnet detection and two possible applications: spam filtering, and social-context bas...

  13. STEREOLOGICAL ANALYSIS OF SHAPE

    Directory of Open Access Journals (Sweden)

    Asger Hobolth

    2011-05-01

    Full Text Available This paper concerns the problem of making stereological inference about the shape variability in a population of spatial particles. Under rotational invariance the shape variability can be estimated from central planar sections through the particles. A simple, but flexible, parametric model for rotation invariant spatial particles is suggested. It is shown how the parameters of the model can be estimated from observations on central sections. The corresponding model for planar particles is also discussed in some detail.

  14. Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides.

    Science.gov (United States)

    Sayed, Farheen N; Polshettiwar, Vivek

    2015-05-05

    A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner.

  15. VT Digital Line Graph Miscellaneous Transmission Lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This datalayer is comprised of Miscellaineous Transmission Lines. Digital line graph (DLG) data are digital representations of cartographic...

  16. The guidance of visual search by shape features and shape configurations.

    Science.gov (United States)

    McCants, Cody W; Berggren, Nick; Eimer, Martin

    2018-03-01

    Representations of target features (attentional templates) guide attentional object selection during visual search. In many search tasks, targets objects are defined not by a single feature but by the spatial configuration of their component shapes. We used electrophysiological markers of attentional selection processes to determine whether the guidance of shape configuration search is entirely part-based or sensitive to the spatial relationship between shape features. Participants searched for targets defined by the spatial arrangement of two shape components (e.g., hourglass above circle). N2pc components were triggered not only by targets but also by partially matching distractors with one target shape (e.g., hourglass above hexagon) and by distractors that contained both target shapes in the reverse arrangement (e.g., circle above hourglass), in line with part-based attentional control. Target N2pc components were delayed when a reverse distractor was present on the opposite side of the same display, suggesting that early shape-specific attentional guidance processes could not distinguish between targets and reverse distractors. The control of attention then became sensitive to spatial configuration, which resulted in a stronger attentional bias for target objects relative to reverse and partially matching distractors. Results demonstrate that search for target objects defined by the spatial arrangement of their component shapes is initially controlled in a feature-based fashion but can later be guided by templates for spatial configurations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Geopolymer obtained from coal ash

    International Nuclear Information System (INIS)

    Conte, V.; Bissari, E.S.; Uggioni, E.; Bernardin, A.M.

    2011-01-01

    Geopolymers are three-dimensional alumino silicates that can be rapidly formed at low temperature from naturally occurring aluminosilicates with a structure similar to zeolites. In this work coal ash (Tractebel Energy) was used as source of aluminosilicate according a full factorial design in eight formulations with three factors (hydroxide type and concentration and temperature) and two-levels. The ash was dried and hydroxide was added according type and concentration. The geopolymer was poured into cylindrical molds, cured (14 days) and subjected to compression test. The coal ash from power plants belongs to the Si-Al system and thus can easily form geopolymers. The compression tests showed that it is possible to obtain samples with strength comparable to conventional Portland cement. As a result, temperature and molarity are the main factors affecting the compressive strength of the obtained geopolymer. (author)

  18. Truncated States Obtained by Iteration

    International Nuclear Information System (INIS)

    Cardoso, W. B.; Almeida, N. G. de

    2008-01-01

    We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST

  19. Parcels and Land Ownership, This data set consists of digital map files containing parcel-level cadastral information obtained from property descriptions. Cadastral features contained in the data set include real property boundary lines, rights-of-way boundaries, property dimensions, Published in Not Provided, 1:2400 (1in=200ft) scale, Racine County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Parcels and Land Ownership dataset current as of unknown. This data set consists of digital map files containing parcel-level cadastral information obtained from...

  20. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments obtained during the R/V Discovery EEL_2011_D365 Cruise Along Extended Ellett Line from 2011-05-20 to 2011-05-31 (NCEI Accession 0157258)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157258 includes chemical, discrete sample, physical and profile data obtained during the R/V Discovery EEL_2011_D365 Cruise Along Extended Ellett...

  1. Obtaining zircaloy powder through hydriding

    International Nuclear Information System (INIS)

    Dupim, Ivaldete da Silva; Moreira, Joao M.L.

    2009-01-01

    Zirconium alloys are good options for the metal matrix in dispersion fuels for power reactors due to their low thermal neutron absorption cross-section, good corrosion resistance, good mechanical strength and high thermal conductivity. A necessary step for obtaining such fuels is producing Zr alloy powder for the metal matrix composite material. This article presents results from the Zircaloy-4 hydrogenation tests with the purpose to embrittle the alloy as a first step for comminuting. Several hydrogenation tests were performed and studied through thermogravimetric analysis. They included H 2 pressures of 25 and 50 kPa and temperatures ranging between from 20 to 670 deg C. X-ray diffraction analysis showed in the hydrogenated samples the predominant presence of ZrH 2 and some ZrO 2 . Some kinetics parameters for the Zircaloy-4 hydrogenation reaction were obtained: the time required to reach the equilibrium state at the dwell temperature was about 100 minutes; the hydrogenation rate during the heating process from 20 to 670 deg C was about 21 mg/h, and at constant temperature of 670 deg C, the hydride rate was about 1.15 mg/h. The hydrogenation rate is largest during the heating process and most of it occurs during this period. After hydrogenated, the samples could easily be comminuted indicating that this is a possible technology to obtain Zircaloy powder. The results show that only few minutes of hydrogenation are necessary to reach the hydride levels required for comminuting the Zircaloy. The final hydride stoichiometry was between 2.7 and 2.8 H for each Zr atom in the sample (author)

  2. Optimization of line configuration and balancing for flexible machining lines

    Science.gov (United States)

    Liu, Xuemei; Li, Aiping; Chen, Zurui

    2016-05-01

    Line configuration and balancing is to select the type of line and allot a given set of operations as well as machines to a sequence of workstations to realize high-efficiency production. Most of the current researches for machining line configuration and balancing problems are related to dedicated transfer lines with dedicated machine workstations. With growing trends towards great product variety and fluctuations in market demand, dedicated transfer lines are being replaced with flexible machining line composed of identical CNC machines. This paper deals with the line configuration and balancing problem for flexible machining lines. The objective is to assign operations to workstations and find the sequence of execution, specify the number of machines in each workstation while minimizing the line cycle time and total number of machines. This problem is subject to precedence, clustering, accessibility and capacity constraints among the features, operations, setups and workstations. The mathematical model and heuristic algorithm based on feature group strategy and polychromatic sets theory are presented to find an optimal solution. The feature group strategy and polychromatic sets theory are used to establish constraint model. A heuristic operations sequencing and assignment algorithm is given. An industrial case study is carried out, and multiple optimal solutions in different line configurations are obtained. The case studying results show that the solutions with shorter cycle time and higher line balancing rate demonstrate the feasibility and effectiveness of the proposed algorithm. This research proposes a heuristic line configuration and balancing algorithm based on feature group strategy and polychromatic sets theory which is able to provide better solutions while achieving an improvement in computing time.

  3. Linear rotary optical delay lines

    Science.gov (United States)

    Guerboukha, Hichem; Qu, Hang; Skorobogatiy, Maksim

    2016-03-01

    We present a semi-analytical solution for the design of a high-speed rotary optical delay line that use a combination of two rotating curvilinear reflectors. We demonstrate that it is possible to design an infinite variety of the optical delay lines featuring linear dependence of the optical delay on the rotation angle. This is achieved via shape optimization of the rotating reflector surfaces. Moreover, a convenient spatial separation of the incoming and outgoing beams is possible. For the sake of example, we present blades that fit into a circle of 10cm diameter. Finally, a prototype of a rotary delay line is fabricated using CNC machining, and its optical properties are characterized.

  4. Animated construction of line drawings

    KAUST Repository

    Fu, Hongbo

    2011-12-01

    Revealing the sketching sequence of a line drawing can be visually intriguing and used for video-based storytelling. Typically this is enabled based on tedious recording of artists\\' drawing process. We demonstrate that it is often possible to estimate a reasonable drawing order from a static line drawing with clearly defined shape geometry, which looks plausible to a human viewer. We map the key principles of drawing order from drawing cognition to computational procedures in our framework. Our system produces plausible animated constructions of input line drawings, with no or little user intervention. We test our algorithm on a range of input sketches, with varying degree of complexity and structure, and evaluate the results via a user study. We also present applications to gesture drawing synthesis and drawing animation creation especially in the context of video scribing.

  5. Animated construction of line drawings

    KAUST Repository

    Fu, Hongbo

    2011-12-01

    Revealing the sketching sequence of a line drawing can be visually intriguing and used for video-based storytelling. Typically this is enabled based on tedious recording of artists\\' drawing process. We demonstrate that it is often possible to estimate a reasonable drawing order from a static line drawing with clearly defined shape geometry, which looks plausible to a human viewer. We map the key principles of drawing order from drawing cognition to computational procedures in our framework. Our system produces plausible animated constructions of input line drawings, with no or little user intervention. We test our algorithm on a range of input sketches, with varying degree of complexity and structure, and evaluate the results via a user study. We also present applications to gesture drawing synthesis and drawing animation creation especially in the context of video scribing. © 2011 ACM.

  6. The U-line line balancing problem

    NARCIS (Netherlands)

    Miltenburg, G.J.; Wijngaard, J.

    1994-01-01

    The traditional line balancing (LB) problem considers a production line in which stations are arranged consecutively in a line. A balance is determined by grouping tasks into stations while moving forward (or backward) through a precedence network. Recently many production lines are being arranged

  7. SHAPE selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R

    2015-01-01

    transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES...

  8. Shape memory polymer medical device

    Science.gov (United States)

    Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  9. Preparation of shaped bodies

    International Nuclear Information System (INIS)

    Sutcliffe, P.W.; Isaacs, J.W.; Lyon, C.E.

    1979-01-01

    A method for the preparation of a shaped body includes pressing a powder to give a 'green' shaped body, the powder having been made by comminuting a material prepared by means of a gelation process, the material prior to comminuting being of a selected physical configuration (e.g. spherical). Thus, a material prepared by means of a gelation process can be transported and handled in an environmentally desirable, substantially dust-free form (e.g. spherical particles) and then comminuted to produce a powder for pressing into e.g. a shaped nuclear fuel body (e.g. pellets of (70%U/30%Pu)O 2 ), which can be sintered. (author)

  10. Social Shaping of Innovation

    DEFF Research Database (Denmark)

    Buur, Jacob; Mack, Alexandra

    - in particular in a large corporation? This workshop explores how innovation is socially shaped in organizations. Based on our experiences with practices around innovation and collaboration, we start from three proposition about the social shaping of innovation: • Ideas don't thrive as text (i.e. we need...... to consider other media) • Ideas need socialization (ideas are linked to people, we need to be careful about how we support the social innovation context) • Ideas are local (ideas spring out of a local contingency, we need to take care in how we like them to travel)....

  11. Covering folded shapes

    Directory of Open Access Journals (Sweden)

    Oswin Aichholzer

    2014-05-01

    Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

  12. Shape memory effect alloys

    International Nuclear Information System (INIS)

    Koshimizu, S.

    1992-01-01

    Although the pseudo- or super-elasticity phenomena and the shape memory effect were known since the 1940's, the enormous curiosity and the great interest to their practical applications emerged with the development of the NITINOL alloy (Nickel-Titanium Naval Ordance Laboratory) by the NASA during the 1960's. This fact marked the appearance of a new class of materials, popularly known as shape memory effect alloys (SMEA). The objective of this work is to present a state-of-the-art of the development and applications for the SMEA. (E.O.)

  13. Flux Cloning in Josephson Transmission Lines

    International Nuclear Information System (INIS)

    Gulevich, D.R.; Kusmartsev, F.V.

    2006-01-01

    We describe a novel effect related to the controlled birth of a single Josephson vortex. In this phenomenon, the vortex is created in a Josephson transmission line at a T-shaped junction. The 'baby' vortex arises at the moment when a 'mother' vortex propagating in the adjacent transmission line passes the T-shaped junction. In order to give birth to a new vortex, the mother vortex must have enough kinetic energy. Its motion can also be supported by an externally applied driving current. We determine the critical velocity and the critical driving current for the creation of the baby vortices and briefly discuss the potential applications of the found effect

  14. Lithium storage into carbonaceous materials obtained from sugarcane bagasse

    International Nuclear Information System (INIS)

    Matsubara, Elaine Y.; Lala, Stella M.; Rosolen, Jose Mauricio

    2010-01-01

    Carbonaceous materials with different structures are prepared by carbonization of sugarcane bagasse. Depending on carbonization conditions, it is possible to obtain soot rich in flakes or in honeycomb-shaped micrometric particles, whose concentration has large influence on lithium storage into electrodes. The soot rich in honeycomb-shaped particles provides the best electrochemical performance, with a reversible specific capacity of 310 mAh g -1 . The results suggest that the sugarcane bagasse can be potentially used in the design of anodic materials for lithium ion batteries. (author)

  15. Quantitative model for the generic 3D shape of ICMEs at 1 AU

    Science.gov (United States)

    Démoulin, P.; Janvier, M.; Masías-Meza, J. J.; Dasso, S.

    2016-10-01

    Context. Interplanetary imagers provide 2D projected views of the densest plasma parts of interplanetary coronal mass ejections (ICMEs), while in situ measurements provide magnetic field and plasma parameter measurements along the spacecraft trajectory, that is, along a 1D cut. The data therefore only give a partial view of the 3D structures of ICMEs. Aims: By studying a large number of ICMEs, crossed at different distances from their apex, we develop statistical methods to obtain a quantitative generic 3D shape of ICMEs. Methods: In a first approach we theoretically obtained the expected statistical distribution of the shock-normal orientation from assuming simple models of 3D shock shapes, including distorted profiles, and compared their compatibility with observed distributions. In a second approach we used the shock normal and the flux rope axis orientations together with the impact parameter to provide statistical information across the spacecraft trajectory. Results: The study of different 3D shock models shows that the observations are compatible with a shock that is symmetric around the Sun-apex line as well as with an asymmetry up to an aspect ratio of around 3. Moreover, flat or dipped shock surfaces near their apex can only be rare cases. Next, the sheath thickness and the ICME velocity have no global trend along the ICME front. Finally, regrouping all these new results and those of our previous articles, we provide a quantitative ICME generic 3D shape, including the global shape of the shock, the sheath, and the flux rope. Conclusions: The obtained quantitative generic ICME shape will have implications for several aims. For example, it constrains the output of typical ICME numerical simulations. It is also a base for studying the transport of high-energy solar and cosmic particles during an ICME propagation as well as for modeling and forecasting space weather conditions near Earth.

  16. Extended Narrow-Line Region in Seyfert Galaxies

    Directory of Open Access Journals (Sweden)

    Enrico Congiu

    2017-10-01

    Full Text Available We present our recent results about the extended narrow-line region (ENLR of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212 obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1 galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a the contribution of shocks in ionizing the high velocity gas, (b the complex kinematics showed by the profile of the emission lines, (c the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  17. Extended Narrow-Line Region in Seyfert Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Enrico [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Contini, Marcella [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel); Ciroi, Stefano; Cracco, Valentina [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Di Mille, Francesco [Las Campanas Observatory, La Serena (Chile); Berton, Marco [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero, E-mail: enrico.congiu@phd.unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy)

    2017-10-24

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a) the contribution of shocks in ionizing the high velocity gas, (b) the complex kinematics showed by the profile of the emission lines, (c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  18. Extended Narrow-Line Region in Seyfert Galaxies

    International Nuclear Information System (INIS)

    Congiu, Enrico; Contini, Marcella; Ciroi, Stefano; Cracco, Valentina; Di Mille, Francesco; Berton, Marco; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero

    2017-01-01

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a) the contribution of shocks in ionizing the high velocity gas, (b) the complex kinematics showed by the profile of the emission lines, (c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  19. The Utility of a Three-Dimensional Approach with T-Shaped Osteotomy in Osseous Genioplasty

    Directory of Open Access Journals (Sweden)

    Jung Jae Jegal

    2013-07-01

    Full Text Available BackgroundFacial beauty depends on the form, proportion, and position of various units of the face. In terms of the frontal view and facial profile, the chin is the most prominent aesthetic element of the lower third of the face. Many methods have been implemented to obtain good proportions of the lower face. In this study, we applied the T-shaped genioplasty method to correcting chin deformities.MethodsAll of the procedures in 9 cases were performed under general anesthesia. For genioplasty, a horizontal cutting line and 1 or 2 vertical cutting lines were drawn 5 mm below the mental foramen. Osteotomed bone segments of the chin were used for horizontal widening using bone grafts or for horizontal shortening. Likewise, they were used as bone grafts for vertical lengthening or vertical shortening. The bone segments were approximated in the midline and held in place using miniplates.ResultsThe postoperative appearance of the 9 cases showed that the lower third of the face had been naturally changed. At the same time, vertical lengthening or shortening, and horizontal widening or shortening could be implemented during the operation. Satisfactory results were obtained based on reviews of the patients' preoperative and postoperative photographs. The patients were also satisfied with the outcomes.ConclusionsUsing T-shaped genioplasty, we efficiently adjusted the shape and position of the chin to obtain good proportions of the lower face and change its contour to obtain an aesthetically appealing oval face in accordance with East Asians' aesthetic preferences.

  20. Wideband dual frequency modified ellipse shaped patch antenna for WLAN/Wi-MAX/UWB application

    Science.gov (United States)

    Jain, P. K.; Jangid, K. G.; R. Sharma, B.; Saxena, V. K.; Bhatnagar, D.

    2018-05-01

    This paper communicates the design and performance of microstrip line fed modified ellipses shaped radiating patch with defected ground structure. Wide impedance bandwidth performance is achieved by applying a pentagonal slot and T slot structure in ground plane. By inserting two semi ellipses shaped ring in ground, we obtained axial ratio bandwidth approx 600 MHz. The proposed antenna is simulated by utilizing CST Microwave Studio simulator 2014. This antenna furnishes wide impedance bandwidth approx. 4.23 GHz, which has spread into two bands 2.45 GHz - 5.73 GHz and 7.22 GHz - 8.17 GHz with nearly flat gain in operating frequency range. This antenna may be proved as a practicable structure for modern wireless communication systems including Wi-MAX, WLAN and lower band of UWB.

  1. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  2. Tornado-Shaped Curves

    Science.gov (United States)

    Martínez, Sol Sáez; de la Rosa, Félix Martínez; Rojas, Sergio

    2017-01-01

    In Advanced Calculus, our students wonder if it is possible to graphically represent a tornado by means of a three-dimensional curve. In this paper, we show it is possible by providing the parametric equations of such tornado-shaped curves.

  3. Sounds Exaggerate Visual Shape

    Science.gov (United States)

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  4. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  5. Bend me, shape me

    CERN Multimedia

    2002-01-01

    A Japanese team has found a way to bend and shape silicon substrates by growing a thin layer of diamond on top. The technique has been proposed as an alternative to mechanical bending, which is currently used to make reflective lenses for X-ray systems and particle physics systems (2 paragraphs).

  6. How life shaped Earth.

    Science.gov (United States)

    Gross, Michael

    2015-10-05

    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  7. Interactive shape metamorphosis

    Science.gov (United States)

    Chen, David T.; State, Andrei; Banks, David

    1994-01-01

    A technique for controlled metamorphosis between surfaces in 3-space is described. Well-understood techniques to produce shape metamorphosis between models in a 2D parametric space is applied. The user selects morphable features interactively, and the morphing process executes in real time on a high-performance graphics multicomputer.

  8. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    Directory of Open Access Journals (Sweden)

    Miaolei Zhou

    Full Text Available As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  9. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    Science.gov (United States)

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  10. Shape and spin of asteroid 967 Helionape

    Science.gov (United States)

    Apostolovska, G.; Kostov, A.; Donchev, Z.; Bebekovska, E. Vchkova; Kuzmanovska, O.

    2018-04-01

    Knowledge of the spin and shape parameters of the asteroids is very important for understanding of the conditions during the creation of our planetary system and formation of asteroid populations. The main belt asteroid and Flora family member 967 Helionape was observed during five apparitions. The observations were made at the Bulgarian National Astronomical Observatory (BNAO) Rozhen, since March 2006 to March 2016. Lihtcurve inversion method (Kaasalainen et al. (2001)), applied on 12 relative lightcurves obtained at various geometric conditions of the asteroid, reveals the spin vector, the sense of rotation and the preliminary shape model of the asteroid. Our aim is to contribute in increasing the set of asteroids with known spin and shape parameters. This could be done with dense lightcurves, obtained during small number of apparitions, in combination with sparse data produced by photometric asteroid surveys such as the Gaia satellite (Hanush (2011)).

  11. Application of Numerical Analysis of the Shape of Electron Paramagnetic Resonance Spectra for Determination of the Number of Different Groups of Radicals in the Burn Wounds

    Directory of Open Access Journals (Sweden)

    Paweł Olczyk

    2017-01-01

    Full Text Available Background. The evidence exists that radicals are crucial agents necessary for the wound regeneration helping to enhance the repair process. Materials and methods. The lineshape of the electron paramagnetic resonance (EPR spectra of the burn wounds measured with the low microwave power (2.2 mW was numerically analyzed. The experimental spectra were fitted by the sum of two and three lines. Results. The number of the lines in the EPR spectrum corresponded to the number of different groups of radicals in the natural samples after thermal treatment. The component lines were described by Gaussian and Lorentzian functions. The spectra of the burn wounds were superposition of three lines different in shape and in linewidths. The best fitting was obtained for the sum of broad Gaussian, broad Lorentzian, and narrow Lorentzian lines. Dipolar interactions between the unpaired electrons widened the broad Gaussian and broad Lorentzian lines. Radicals with the narrow Lorentzian lines existed mainly in the tested samples. Conclusions. The spectral shape analysis may be proposed as a useful method for determining the number of different groups of radicals in the burn wounds.

  12. Modal analysis of main steam line piping under high energy line break condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Jin; Kim, Seung Hyun; Je, Sang-Yun; Chang, Yoon-Suk [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    If HELB (High Energy Line Break) occurs in NPPs (Nuclear Power Plants), not only environmental effect like release of radioactive material but also secondary structural defects should be considered. Jet impingement phenomenon caused by sudden pipe rupture may lead to severe damage on neighboring safe-related components and other structure. Lots of studies have been conducted to assess dynamic behaviors of the SG and MSL piping while pipe whip restraints and jet impingement shields are taken into account during design stage. Arroyo et al. performed modal analyses of a simple square component to examine the jet impingement phenomenon. Also, structural characteristics were predicted to assure structural integrity against the HELB. In this study, we examined dynamic characteristics of SG and MSL piping in a typical 1000MWe NPP. Simulation was performed by using two commercial computational softwares. In particular, modal analyses were conducted to determine mode shapes and natural frequencies of the structure and maximum displacements. The data obtain from each software were compared and observation was discussed in relation to the jet impingement phenomenon. In this research, modal analyses on the SG and MSL piping were carried out to get natural frequencies, vibration mode shapes and maximum displacements. Thereby, the following key finding was observed. (1) Maximum displacement was calculated at the top of SG outlet nozzle with y-directional bending at the third mode. (2) The differences between two models were respectively 7% in natural frequencies and less than 1% in maximum displacements.

  13. Effect of Contour Shape of Nervous System Electromagnetic Stimulation Coils on the Induced Electrical Field Distribution

    Directory of Open Access Journals (Sweden)

    Daskalov Ivan K

    2002-05-01

    Full Text Available Abstract Background Electromagnetic stimulation of the nervous system has the advantage of reduced discomfort in activating nerves. For brain structures stimulation, it has become a clinically accepted modality. Coil designs usually consider factors such as optimization of induced power, focussing, field shape etc. In this study we are attempting to find the effect of the coil contour shape on the electrical field distribution for magnetic stimulation. Method and results We use the maximum of the induced electric field stimulation in the region of interest as the optimization criterion. This choice required the application of the calculus of variation, with the contour perimeter taken as a pre-set condition. Four types of coils are studied and compared: circular, square, triangular and an 'optimally' shaped contour. The latter yields higher values of the induced electrical field in depths up to about 30 mm, but for depths around 100 mm, the circular shape has a slight advantage. The validity of the model results was checked by experimental measurements in a tank with saline solution, where differences of about 12% were found. In view the accuracy limitations of the computational and measurement methods used, such differences are considered acceptable. Conclusion We applied an optimization approach, using the calculus of variation, which allows to obtain a coil contour shape corresponding to a selected criterion. In this case, the optimal contour showed higher intensities for a longer line along the depth-axis. The method allows modifying the induced field structure and focussing the field to a selected zone or line.

  14. Drugs obtained by biotechnology processing

    Directory of Open Access Journals (Sweden)

    Hugo Almeida

    2011-06-01

    Full Text Available In recent years, the number of drugs of biotechnological origin available for many different diseases has increased exponentially, including different types of cancer, diabetes mellitus, infectious diseases (e.g. AIDS Virus / HIV as well as cardiovascular, neurological, respiratory, and autoimmune diseases, among others. The pharmaceutical industry has used different technologies to obtain new and promising active ingredients, as exemplified by the fermentation technique, recombinant DNA technique and the hybridoma technique. The expiry of the patents of the first drugs of biotechnological origin and the consequent emergence of biosimilar products, have posed various questions to health authorities worldwide regarding the definition, framework, and requirements for authorization to market such products.Nos últimos anos, tem aumentado exponencialmente o número de fármacos de origem biotecnológica ao dispor das mais diversas patologias, entre elas destacam-se, os diferentes tipos de cancêr, as doenças infecciosas (ex. vírus AIDS/HIV, as doenças autoimunes, as doenças cardiovasculares, a Diabetes Mellitus, as doenças neurológicas, as doenças respiratórias, entre outras. A indústria farmacêutica tem recorrido a diferentes tecnologias para a obtenção de novos e promissores princípios ativos, como são exemplo a fermentação, a técnica de DNA Recombinante, a técnica de hidridoma, entre outras. A queda das patentes dos primeiros fármacos de origem biotecnológica e o consequente aparecimento dos produtos biossimilares têm colocado diferentes questões às autoridades de saúde mundiais, sobre a definição, enquadramento e exigências para a autorização de entrada no mercado deste tipo de produtos.

  15. Design of bandwidth tunable HTS filter using H-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Nakagawa, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2009-10-15

    We have developed a bandwidth tuning method for use in high-temperature superconducting (HTS) microstrip filters. Several H-shaped waveguides are placed between the resonators, and the bandwidth is adjusted by changing the switch states of the waveguides. The coupling coefficients between the resonators are controlled by switching the connection or isolation of the center gaps of the waveguides so as to tune the bandwidth. The effects of using this method were evaluated by simulation using a filter composed of 3-pole half-wavelength straight-line resonators with an H-shaped waveguide between each pair and additional electric pads for post-tuning trimming. The filter was designed to have a center frequency of 5 GHz and a bandwidth of 100 MHz by using an electromagnetic simulator based on the moment method. The simulation showed that bandwidth tuning of 150 MHz can be obtained by using H-shaped waveguides to adjust the coupling coefficients. It also showed that using additional electric pads around the feed lines, which was previously shown to be useful for trimming to improve insertion loss after center-frequency tuning, is also useful for bandwidth tuning.

  16. Ring-shaped functions and Wigner 6j-symbols

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Erevanskij Gosudarstvennyj Univ., Erevan

    2006-01-01

    The explicit expression for the ring-shaped matrix connecting the ring-shaped functions relating to different values of the axial parameter is obtained. The connection of this matrix with Wigner 6j-symbols is found out. The motion of quantum particle in the ring-shaped model with the zero priming potential is investigated. The bases of this model, which are factored in spherical cylindrical coordinates, are obtained. The formula generalizing the Rayleigh expansion of a plane wave with respect to spherical waves in the ring-shaped model is deduced [ru

  17. Development of a pulse shape discrimination circuit

    International Nuclear Information System (INIS)

    Ye Bangjiao; Fan Wei; Fan Yangmei; Yu Xiaoqi; Mei Wen; Wang Zhongmin; Han Rongdian; Xiao Zhenxi

    1994-01-01

    A pulse shape discrimination circuit was designed and used in an experiment measuring double-differential cross sections of (n, charged particle) reaction; to identify p, α and γ. The performance of the circuit was tested. With this circuit, excellent identification of p, α and γ was obtained. ((orig.))

  18. Manifolds with integrable affine shape operator

    Directory of Open Access Journals (Sweden)

    Daniel A. Joaquín

    2005-05-01

    Full Text Available This work establishes the conditions for the existence of vector fields with the property that theirs covariant derivative, with respect to the affine normal connection, be the affine shape operatorS in hypersurfaces. Some results are obtained from this property and, in particular, for some kind of affine decomposable hypersurfaces we explicitely get the actual vector fields.

  19. Volume inequalities for asymmetric Wulff shapes

    OpenAIRE

    Schuster, Franz E.; Weberndorfer, Manuel

    2012-01-01

    Sharp reverse affine isoperimetric inequalities for asymmetric Wulff shapes and their polars are established, along with the characterization of all extremals. These new inequalities have as special cases previously obtained simplex inequalities by Ball, Barthe and Lutwak, Yang, and Zhang. In particular, they provide the solution to a problem by Zhang.

  20. Can double-peaked lines indicate merging effects in AGNs?

    Directory of Open Access Journals (Sweden)

    Popović L.Č.

    2000-01-01

    Full Text Available The influence of merging effects in the central part of an Active Galactic Nucleus (AGN on the emission spectral line shapes are discussed. We present a model of close binary Broad Line Region. The numerical experiments show that the merging effects can explain double peaked lines. The merging effects may also be present in the center of AGNs, although they emit slightly asymmetric as well as symmetric and relatively stable (in profile shape spectral lines. Depending on the black hole masses and their orbit elements such model may explain some of the line profile shapes observed in AGNs. This work shows that if one is looking for the merging effects in the central region as well as in the wide field structure of AGNs, he should first pay attention to objects which have double peaked lines.

  1. Raft cultivation area extraction from high resolution remote sensing imagery by fusing multi-scale region-line primitive association features

    Science.gov (United States)

    Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian

    2017-01-01

    In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.

  2. Evaluating the Association of Tooth Form of Maxillary Central Incisors with Face Shape Using AutoCAD Software: A Descriptive Study.

    Science.gov (United States)

    Mehndiratta, Aditi; Bembalagi, Mahantesh; Patil, Raghunath

    2017-12-27

    To assess the different forms of maxillary central incisors (MCI) and determine their association with the shape of the face for men and women. A total of 200 subjects (100 women, 100 men) aged between 18 and 30 years with healthy dentition were randomly selected from K.L.E. V.K Institute of Dental Sciences, Belagavi, India. Two standardized photographs (portrait and shape of the MCI) were taken for each subject and opened in AutoCAD 2009 software that was used to prepare technical drawings of face and tooth forms. The dental ratios (extent of line TA: extent of line TB) obtained after the tracings, were classified as tapered (≤0.61), ovoid (>0.61 and <0.69), or square (≥0.70). This classification was used to relate tooth form to the shape of the face and compare the form of MCI between men and women. Association between the shape of the MCI and the face was determined by Chi-square test using R 3.3.1 software. The most prevalent tooth form among the subjects was ovoid (women, 32%; men, 31%) followed by tapered (women, 13%; men, 16%). The least prevalent shape was square (women, 5%; men, 3%). The most prevalent face shape was tapered (women, 34%; men, 25%) followed by ovoid (women, 15%; men, 22%) and the least prevalent was square (women, 1%; men, 3%). An association between face shape and tooth form was statistically not significant. The most prevalent tooth form in both men and women was ovoid, and the least prevalent was square. The association between face shape and tooth form was not significant and did not abide by William's "Law of Harmony." However, there was an association between face shape and gender. © 2017 by the American College of Prosthodontists.

  3. On the line intensity ratios of prominent Si II, Si III, and Si IV multiplets

    International Nuclear Information System (INIS)

    Djenize, S.; Sreckovic, A.; Bukvic, S.

    2010-01-01

    Line intensities of singly, doubly and triply ionized silicon (Si II, Si III, and Si IV, respectively) belonging to the prominent higher multiplets, are of interest in laboratory and astrophysical plasma diagnostics. We measured these line intensities in the emission spectra of pulsed helium discharge. The Si II line intensity ratios in the 3s3p 22 D-3s 2 4p 2 P o , 3s 2 3d 2 D-3s 2 4f 2 F o , and 3s 2 4p 2 P o -3s 2 4d 2 D transitions, the Si III line intensity ratios in the 3s3d 3 D-3s4p 3 P o , 3s4p 3 P o -3s4d 3 D, 3s4p 3 P o -3s5s 3 S, 3s4s 3 S-3s4p 3 P o , and 3s4f 3 F o -3s5g 3 G transitions, and the Si IV line intensity ratios in the 4p 2 P o -4d 2 D and 4p 2 P o -5s 2 S transitions were obtained in a helium plasma at an electron temperature of about 17,000 ± 2000 K. Line shapes were recorded using a spectrograph and an ICCD camera as a highly-sensitive detection system. The silicon atoms were evaporated from a Pyrex discharge tube designed for the purpose. They represent impurities in the optically thin helium plasma at the silicon ionic wavelengths investigated. The line intensity ratios obtained were compared with those available in the literature, and with values calculated on the basis of available transition probabilities. The experimental data corresponded well with line intensity ratios calculated using the transition probabilities obtained from a Multi Configuration Hartree-Fock approximation for Si III and Si IV spectra. We recommend corrections of some Si II transition probabilities.

  4. Whole body line scanner

    International Nuclear Information System (INIS)

    Berninger, W.H.

    1975-01-01

    A bar-shaped scintillator converts incident collimated gamma rays to light pulses which are detected by a row of photoelectric tubes positioned along the output face of the scintillator wherein each tube has a convexly curved photocathode disposed in close proximity to the scintillator. Electronic circuitry connected to the output of phototubes develops the scintillation event x-axis position coordinate electrical signal with good linearity and with substantial independence of the spacing between the scintillator and photocathodes so that the phototubes can be positioned as close to the scintillator as possible to obtain reduced distortion in the field of view and improved spatial resolution. A mechanical drive of the scanner results in an image of the gamma ray source being formed by sequencing the developed scintillation position coordinate signals in the y-axis dimension

  5. Avaliação de híbridos de milho obtidos do cruzamento entre linhagens com diferentes níveis de degradabilidade da matéria seca Performance of corn hybrids obtained from crosses of lines with different dry matter degradabilities

    Directory of Open Access Journals (Sweden)

    Marcelo Cruz Mendes

    2008-01-01

    matter degradation (DEF of the whole plant. This investigation had the objective of evaluating agronomic, bromatologic, and rumen degradability of dry matter of commercial corn hybrids, recommended for silage production, and also experimental hybrids from crosses of lines of high and low degradability. It was evaluated the performance of eighteen experimental hybrids and five commercial hybrids recommend for silage production. The experiment was established in 2003/2004 crop season in randomized block design with three replications. The experimental plot was constituted of four rows 5.0 meters long. Corn plants were harvested at 20 cm from soil level at milk line at half grain stage. The silages were incubated in situ for 0, 6, 12, 24 and 96 hours in the rumen of three fistulated cows. Effective degradability was calculated based on 0.05%/h of passage rate. It was observed that among cultivars there were hybrids, that present good potential for silage production with high effective matter degradation (DEF of the whole plant, independently of grain texture. The strategy of synthesizing hybrids aiming at high dry matter effective degradability based on lines with high DEF is correct. The low correlation between effective degradability with a agronomic, and bromatologic characteristics indicate the need for better use of DEF in order to select corn hybrids of high quality of silage production.

  6. readShape

    International Nuclear Information System (INIS)

    Zitniak, J.; Pargac, M.

    2005-01-01

    In the Slovak Environmental Agency during relative short time originated the first version of software product using of GPS technology for monitoring of negative phenomena in nature. It was denominated as readShape and its primary goal is to minister for conservator of environment geographically strictly to observe endangered territories as are, for example, fire, fish kill, impact of motor vehicle accident or dangerous objects as are illegal stock-piles, wastes and other. Process of monitoring is described

  7. Shape memory alloy actuator

    Science.gov (United States)

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  8. Bulbous Bow Shape Optimization

    OpenAIRE

    Blanchard , Louis; Berrini , Elisa; Duvigneau , Régis; Roux , Yann; Mourrain , Bernard; Jean , Eric

    2013-01-01

    International audience; The aim of this study is to prove the usefulness of a bulbous bow for a fishing vessel, in terms of drag reduction, using an automated shape optimization procedure including hydrodynamic simulations. A bulbous bow is an appendage that is known to reduce the drag, thanks to its influence on the bow wave system. However, the definition of the geometrical parameters of the bulb, such as its length and thickness, is not intuitive, as both parameters are coupled with regard...

  9. A high speed electrohydrodynamic (EHD) jet printing method for line printing

    International Nuclear Information System (INIS)

    Phung, Thanh Huy; Kim, Seora; Kwon, Kye-Si

    2017-01-01

    Electrohydrodynamic (EHD) jet printing has drawn attention due to its capability to produce smaller dots and patterns with finer lines when compared to those obtained from using conventional inkjet printing. Previous studies have suggested that drop-on-demand EHD-patterning applications should be limited to very slow printing cases with speeds far less than 10 mm s −1 due to the small dot size and limited jetting frequency. In this study, a new EHD printing method is proposed to significantly increase the line-patterning printing speed by modifying the ink and thereby changing the relic shape. The proposed method has the additional advantage of reducing the line-pattern width. The results of the experiment show that the pattern width could be reduced from 20 µ m to 4 µ m by increasing the printing speed from 10 mm s −1 to 50 mm s −1 , respectively. (paper)

  10. Iron line spectroscopy with Einstein-dilaton-Gauss-Bonnet black holes

    Science.gov (United States)

    Nampalliwar, Sourabh; Bambi, Cosimo; Kokkotas, Kostas D.; Konoplya, Roman A.

    2018-06-01

    Einstein-dilaton-Gauss-Bonnet gravity is a well-motivated alternative theory of gravity that emerges naturally from string theory. While black hole solutions have been known in this theory in numerical form for a while, an approximate analytical metric was obtained recently by some of us, which allows for faster and more detailed analysis. Here we test the accuracy of the analytical metric in the context of X-ray reflection spectroscopy. We analyze innermost stable circular orbits (ISCO) and relativistically broadened iron lines and find that both the ISCO and iron lines are determined sufficiently accurately up to the limit of the approximation. We also find that, though the ISCO increases by about 7% as dilaton coupling increases from zero to extremal values, the redshift at ISCO changes by less than 1%. Consequently, the shape of the iron line is much less sensitive to the dilaton charge than expected.

  11. Audiometric shape and presbycusis.

    Science.gov (United States)

    Demeester, Kelly; van Wieringen, Astrid; Hendrickx, Jan-jaap; Topsakal, Vedat; Fransen, Erik; van Laer, Lut; Van Camp, Guy; Van de Heyning, Paul

    2009-04-01

    The aim of this study was to describe the prevalence of specific audiogram configurations in a healthy, otologically screened population between 55 and 65 years old. The audiograms of 1147 subjects (549 males and 598 females between 55 and 65 years old) were collected through population registries and classified according to the configuration of hearing loss. Gender and noise/solvent-exposure effects on the prevalence of the different audiogram shapes were determined statistically. In our population 'Flat' audiograms were most dominantly represented (37%) followed by 'High frequency Gently sloping' audiograms (35%) and 'High frequency Steeply sloping' audiograms (27%). 'Low frequency Ascending' audiograms, 'Mid frequency U-shape' audiograms and 'Mid frequency Reverse U-shape' audiograms were very rare (together less than 1%). The 'Flat'-configuration was significantly more common in females, whereas the 'High frequency Steeply sloping'-configuration was more common in males. Exposure to noise and/or solvents did not change this finding. In addition, females with a 'Flat' audiogram had a significantly larger amount of overall hearing loss compared to males. Furthermore, our data reveal a significant association between the prevalence of 'High frequency Steeply sloping' audiograms and the degree of noise/solvent exposure, despite a relatively high proportion of non-exposed subjects showing a 'High frequency Steeply sloping' audiogram as well.

  12. Identifying ambiguous prostate gland contours from histology using capsule shape information and least squares curve fitting

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Rania [DigiPen Institute of Technology, Department of Computer Engineering, Redmond, WA (United States); McKenzie, Frederic D. [Old Dominion University, Department of Electrical and Computer Engineering, Norfolk, VA (United States)

    2007-12-15

    To obtain an accurate assessment of the percentage and depth of extra-capsular soft tissue removed with the prostate by the various surgical techniques in order to help surgeons in determining the appropriateness of different surgical approaches. This can be enhanced by an accurate and automated means of identifying the prostate gland contour. To facilitate 3D reconstruction and, ultimately, more accurate analyses, it is essential for us to identify the capsule boundary that separates the prostate gland tissue from its extra-capsular tissue. However, the capsule is sometimes unrecognizable due to the naturally occurring intrusion of muscle and connective tissue into the prostate gland. At these regions where the capsule disappears, its contour can be arbitrarily created with a continuing contour line based on the natural shape of the prostate. We utilize an algorithm based on a least squares curve fitting technique that uses a prostate shape equation to merge previously detected capsule parts with the shape equation to produce an approximated curve that represents the prostate capsule. We have tested our algorithm using three different shapes on 13 histologic prostate slices that are cut at different locations from the apex. The best result shows a 90% average contour match when compared to pathologist-drawn contours. We believe that automatically identifying histologic prostate contours will lead to increased objective analyses of surgical margins and extracapsular spread of cancer. Our results show that this is achievable. (orig.)

  13. Identifying ambiguous prostate gland contours from histology using capsule shape information and least squares curve fitting

    International Nuclear Information System (INIS)

    Hussein, Rania; McKenzie, Frederic D.

    2007-01-01

    To obtain an accurate assessment of the percentage and depth of extra-capsular soft tissue removed with the prostate by the various surgical techniques in order to help surgeons in determining the appropriateness of different surgical approaches. This can be enhanced by an accurate and automated means of identifying the prostate gland contour. To facilitate 3D reconstruction and, ultimately, more accurate analyses, it is essential for us to identify the capsule boundary that separates the prostate gland tissue from its extra-capsular tissue. However, the capsule is sometimes unrecognizable due to the naturally occurring intrusion of muscle and connective tissue into the prostate gland. At these regions where the capsule disappears, its contour can be arbitrarily created with a continuing contour line based on the natural shape of the prostate. We utilize an algorithm based on a least squares curve fitting technique that uses a prostate shape equation to merge previously detected capsule parts with the shape equation to produce an approximated curve that represents the prostate capsule. We have tested our algorithm using three different shapes on 13 histologic prostate slices that are cut at different locations from the apex. The best result shows a 90% average contour match when compared to pathologist-drawn contours. We believe that automatically identifying histologic prostate contours will lead to increased objective analyses of surgical margins and extracapsular spread of cancer. Our results show that this is achievable. (orig.)

  14. Evaporation From Soil Containers With Irregular Shapes

    Science.gov (United States)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  15. Shape descriptors for mode-shape recognition and model updating

    International Nuclear Information System (INIS)

    Wang, W; Mottershead, J E; Mares, C

    2009-01-01

    The most widely used method for comparing mode shapes from finite elements and experimental measurements is the Modal Assurance Criterion (MAC), which returns a single numerical value and carries no explicit information on shape features. New techniques, based on image processing (IP) and pattern recognition (PR) are described in this paper. The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD), presented in this article, are the most popular shape descriptors having properties that include efficiency of expression, robustness to noise, invariance to geometric transformation and rotation, separation of local and global shape features and computational efficiency. The comparison of mode shapes is readily achieved by assembling the shape features of each mode shape into multi-dimensional shape feature vectors (SFVs) and determining the distances separating them.

  16. Measurements of weak conversion lines

    International Nuclear Information System (INIS)

    Feoktistov, A.I.; Frantsev, Yu.E.

    1979-01-01

    Described is a new methods for measuring weak conversion lines with the help of the β spectrometer of the π √ 2 type which permits to increase the reliability of the results obtained. According to this method the measurements were carried out by short series with the storage of the information obtained on the punched tape. The spectrometer magnetic field was stabilized during the measuring of the conversion spectra with the help of three nmr recorders. Instead of the dependence of the pulse calculation rate on the magnetic field value was measured the dependence of the calculation rate on the value of the voltage applied between the source and the spectrometer chamber. A short description of the automatic set-up for measuring conversion lines according to the method proposed is given. The main set-up elements are the voltage multiplexer timer, printer, scaler and the pulse analyzer. With the help of the above methods obtained is the K 1035, 8 keV 182 Ta line. It is obtained as a result of the composition of 96 measurement series. Each measurement time constitutes 640 s 12 points are taken on the line

  17. A new method to obtain ground control points based on SRTM data

    Science.gov (United States)

    Wang, Pu; An, Wei; Deng, Xin-pu; Zhang, Xi

    2013-09-01

    The GCPs are widely used in remote sense image registration and geometric correction. Normally, the DRG and DOM are the major data source from which GCPs are extracted. But the high accuracy products of DRG and DOM are usually costly to obtain. Some of the production are free, yet without any guarantee. In order to balance the cost and the accuracy, the paper proposes a method of extracting the GCPs from SRTM data. The method consist of artificial assistance, binarization, data resample and reshape. With artificial assistance to find out which part of SRTM data could be used as GCPs, such as the islands or sharp coast line. By utilizing binarization algorithm , the shape information of the region is obtained while other information is excluded. Then the binary data is resampled to a suitable resolution required by specific application. At last, the data would be reshaped according to satellite imaging type to obtain the GCPs which could be used. There are three advantages of the method proposed in the paper. Firstly, the method is easy for implementation. Unlike the DRG data or DOM data that charges a lot, the SRTM data is totally free to access without any constricts. Secondly, the SRTM has a high accuracy about 90m that is promised by its producer, so the GCPs got from it can also obtain a high quality. Finally, given the SRTM data covers nearly all the land surface of earth between latitude -60° and latitude +60°, the GCPs which are produced by the method can cover most important regions of the world. The method which obtain GCPs from SRTM data can be used in meteorological satellite image or some situation alike, which have a relative low requirement about the accuracy. Through plenty of simulation test, the method is proved convenient and effective.

  18. 'V' shaped predens space

    International Nuclear Information System (INIS)

    Bohrer, S.P.; Klein, A.; Martin, W.

    1985-01-01

    ''V'' shaped widening of the predens space (PDS) in flexion can be a worrisome finding in traume patients, possibly representing injury to the transverse ligament. These patients may also show widening of the C-1/C-2 interspinous distance. We think this appearance is usually due to increased flexion mobility at the atlantoaxial level with developmental elongation or laxity of the cranial end of the transverse ligament and/or the posterior ligamentous complex. Tearing of only the cranial end of the transverse ligament must be extremely rare, if it occurs at all; there is no reported proven case. Tearing of only posterior ligaments seems possible and should be evaluated clinically. (orig.)

  19. Oriented active shape models.

    Science.gov (United States)

    Liu, Jiamin; Udupa, Jayaram K

    2009-04-01

    Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks

  20. Evolution of nuclear shapes at high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1985-01-01

    The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs

  1. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  2. Constancy of spectral-line bisectors

    International Nuclear Information System (INIS)

    Gray, D.F.

    1983-01-01

    Bisectors of spectral line profiles in cool stars indicate the strength of convection in the photospheres of these objects. The present investigation is concerned with the feasibility of studying time variations in line bisectors, the reality of apparent line-to-line differences within the same stellar spectrum, and bisector differences between stars of identical spectral types. The differences considered pertain to the shape of the bisector. The material used in the investigation was acquired at the McDonald Observatory using a 1728 diode Reticon array at the coudefocus of the 2.1-m telescope. Observed bisector errors are discussed. It is established that different lines in the same star show significantly different bisectors. The observed error bands are shown by the shaded regions. The slope and curvature are unique for each case

  3. Investigating shape and space in mathematics: A case study | Kotze ...

    African Journals Online (AJOL)

    Evidence was obtained regarding mathematics teachers' and mathematics learners' knowledge of space and shape. Problems experienced in concept formation in geometry were investigated and analysed. An account is provided of how teachers and learners responded to problems related to space and shape.

  4. Experimental evidence for shape changes at high spin

    International Nuclear Information System (INIS)

    Twin, P.J.

    1985-01-01

    Recent experimental evidence obtained with TESSA for shape changes at high spin is presented. Continuum γ-ray spectroscopy data indicates the co-existence of both prolate and oblate shapes in N = 90 nuclei and lifetime data in 152 Dy shows that the super deformed decays are very enhanced. (orig.)

  5. Shape Memory Composite Hybrid Hinge

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  6. Accurate powder patterns and new spectral shape in orthorrombic symmetry

    International Nuclear Information System (INIS)

    Gonzalez-Tovany, L.

    1991-01-01

    The shape of the powder pattern of the center resonance line (M= 1/2 ↔ -1/2) for electron paramagnetic resonance (EPR) in orthorhombic symmetry, or nuclear magnetic resonance (NMR) with quadrupole interaction, is determined for all values of the crystal field symmetry parameter N by means of a general analytical method developed by Beltran-Lopez and Castro-Tello. Analytical functions in terms of elliptical integrals are obtained which are good approximations to the true powder pattern except in a narrow region around the field value corresponding to E=-2n 2 /3. numerical gaussian quadrature of the powder pattern from the single-variable integral arising in the analytical method is shown to be a very efficient semianalytical method of calculation for computer work, being much smoother and requiring only a few seconds of CPU time versus the several minutes needed with the grid of the Monte Carlo methods. The semianalytical powder patterns reveal the existence of a previous unknown EPR spectral feature in orthorhombic symmetry resembling a divergence. This feature which should appear at E=-2n 2 /3 for asymmetry parameter values near N=√ of 2/3, is hidden in the experimental spectra by the broadening effect of the linewidth of the individual crystallites. Comparison of experimental and simulated spectra obtained by convoluting powder patterns with first-derivate lorentzian lineshapes of convenient width are also shown. Semianalytical spectra are much smoother than Monte Carlo simulated spectra, revealing finer spectral features. (Author)

  7. HIGH ANGULAR RESOLUTION MULTI-LINE STUDY OF HH 1 AND 2

    Energy Technology Data Exchange (ETDEWEB)

    Raga, A. C.; Castellanos-Ramírez, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ap. 70-543, 04510 D.F., México (Mexico); Reipurth, Bo; Chiang, Hsin-Fang [Institute for Astronomy, University of Hawaii at Manoa, Hilo, HI 96720 (United States); Bally, J., E-mail: raga@nucleares.unam.mx [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States)

    2015-10-15

    We present new Hubble Space Telescope (HST) narrow band images of the bright Herbig–Haro (HH) objects HH 1 and 2 in the light of the Hα, Hβ, [O i] 6300, [O ii] 3726+28, [O iii] 5007 and [S ii] 6716+30 emission lines. The resulting emission and line ratio maps give an improved picture of the physical structure of these HH objects, showing the presence of spatially limited, high excitation/ionization ridges. We find that HH 1 has a morphology that could be interpreted in terms of a single, asymmetric bow shock, and that many of the clumps of HH 2 fall in two bow-shaped structures of different excitations. We also construct two-line ratio plots showing clear trends, which are much simpler than the highly complex spatial distributions of the emission, and are therefore interesting for testing shock models of HH objects (we only present a comparison with previously published, steady plane-parallel shock models). We have also used the temperature-sensitive [O i]/[S ii] line ratio to evaluate the temperature range and to obtain temperature maps of HH 1 and 2. We find that this line ratio picks out emitting regions with temperatures ≈10{sup 4} K, except along the leading edges of the HH 1 and 2 bow shocks (in which temperatures of ∼3 → 5 × 10{sup 4} K are obtained)

  8. Mast Wake Reduction by Shaping

    National Research Council Canada - National Science Library

    Beauchamp, Charles H

    2005-01-01

    The present invention relates to various mast shapes, in which the mast shapes minimize the production of visible, electro-optic, infrared and radar cross section wake signatures produced by water surface piercing masts...

  9. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi

    2013-07-01

    This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  10. On-Demand Microwave Generator of Shaped Single Photons

    Science.gov (United States)

    Forn-Díaz, P.; Warren, C. W.; Chang, C. W. S.; Vadiraj, A. M.; Wilson, C. M.

    2017-11-01

    We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.

  11. Spatial shape of avalanches

    Science.gov (United States)

    Zhu, Zhaoxuan; Wiese, Kay Jörg

    2017-12-01

    In disordered elastic systems, driven by displacing a parabolic confining potential adiabatically slowly, all advance of the system is in bursts, termed avalanches. Avalanches have a finite extension in time, which is much smaller than the waiting time between them. Avalanches also have a finite extension ℓ in space, i.e., only a part of the interface of size ℓ moves during an avalanche. Here we study their spatial shape 〈S(x ) 〉 ℓ given ℓ , as well as its fluctuations encoded in the second cumulant 〈S2(x ) 〉 ℓ c. We establish scaling relations governing the behavior close to the boundary. We then give analytic results for the Brownian force model, in which the microscopic disorder for each degree of freedom is a random walk. Finally, we confirm these results with numerical simulations. To do this properly we elucidate the influence of discretization effects, which also confirms the assumptions entering into the scaling ansatz. This allows us to reach the scaling limit already for avalanches of moderate size. We find excellent agreement for the universal shape and its fluctuations, including all amplitudes.

  12. Magnetic properties of elliptical and stadium-shaped nanoparticles: Effect of the shape anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Corona, R.M. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Altbir, D. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2012-11-15

    Elliptical and stadium-shaped nanoparticles as a function of their geometry have been investigated using numerical simulations. The effect of the shape anisotropy of the particles on coercivity and remanence together with the angular dependence of the remanence and coercivity are addressed. Our results demonstrate that the stadium-shaped particles have many of the outstanding properties of elliptical particles, but also have unique properties, such that the coercivity and remanence remain stable for a wide range of geometry parameters, and exhibit a peculiar angular dependence in the coercivity. These properties suggest that they can be useful for applications in the area of magnetic recording systems. - Highlights: Black-Right-Pointing-Pointer Coercivity and remanence are strongly affected by the shape anisotropy of the particles. Black-Right-Pointing-Pointer Coercivities for ellipses are nearly three times the obtained for stadium-shaped particles. Black-Right-Pointing-Pointer Elliptical particles with {delta}{<=}0.6, the hystereses resemble the square loops of wires. Black-Right-Pointing-Pointer An anhisteretic behavior appears for {theta}=90 Degree-Sign for elliptical particles, which do not appear in stadium-shaped particles. Black-Right-Pointing-Pointer Stadium-shaped particles have unique properties that allow us to suggest them for applications.

  13. Magnetic properties of elliptical and stadium-shaped nanoparticles: Effect of the shape anisotropy

    International Nuclear Information System (INIS)

    Corona, R.M.; Altbir, D.; Escrig, J.

    2012-01-01

    Elliptical and stadium-shaped nanoparticles as a function of their geometry have been investigated using numerical simulations. The effect of the shape anisotropy of the particles on coercivity and remanence together with the angular dependence of the remanence and coercivity are addressed. Our results demonstrate that the stadium-shaped particles have many of the outstanding properties of elliptical particles, but also have unique properties, such that the coercivity and remanence remain stable for a wide range of geometry parameters, and exhibit a peculiar angular dependence in the coercivity. These properties suggest that they can be useful for applications in the area of magnetic recording systems. - Highlights: ► Coercivity and remanence are strongly affected by the shape anisotropy of the particles. ► Coercivities for ellipses are nearly three times the obtained for stadium-shaped particles. ►Elliptical particles with δ≤0.6, the hystereses resemble the square loops of wires. ► An anhisteretic behavior appears for θ=90° for elliptical particles, which do not appear in stadium-shaped particles. ► Stadium-shaped particles have unique properties that allow us to suggest them for applications.

  14. Derivation of Color Confusion Lines for Pseudo-Dichromat Observers from Color Discrimination Thresholds

    Directory of Open Access Journals (Sweden)

    Kahiro Matsudaira

    2011-05-01

    Full Text Available The objective is to develop a method of defining color confusion lines in the display RGB color space through color discrimination tasks. In the experiment, reference and test square patches were presented side by side on a CRT display. The subject's task is to set the test color where the color difference from the reference is just noticeable to him/her. In a single trial, the test color was only adjustable along one of 26 directions around the reference. Thus 26 colors with just noticeable difference (JND were obtained and made up a tube-like or an ellipsoidal shape around each reference. With color-anomalous subjects, the major axes of these shapes should be parallel to color confusion lines that have a common orientation vector corresponding to one of the cone excitation axes L, M, or S. In our method, the orientation vector was determined by minimizing the sum of the squares of the distances from JND colors to each confusion line. To assess the performance the method, the orientation vectors obtained by pseudo-dichromats (color normal observers with a dichromat simulator were compared to those theoretically calculated from the color vision model used in the simulator.

  15. Issues in Biological Shape Modelling

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen

    This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape or appear......This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape...

  16. Theoretical Atomic Physics code development IV: LINES, A code for computing atomic line spectra

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.

    1988-12-01

    A new computer program, LINES, has been developed for simulating atomic line emission and absorption spectra using the accurate fine structure energy levels and transition strengths calculated by the (CATS) Cowan Atomic Structure code. Population distributions for the ion stages are obtained in LINES by using the Local Thermodynamic Equilibrium (LTE) model. LINES is also useful for displaying the pertinent atomic data generated by CATS. This report describes the use of LINES. Both CATS and LINES are part of the Theoretical Atomic PhysicS (TAPS) code development effort at Los Alamos. 11 refs., 9 figs., 1 tab

  17. Canonical Skeletons for Shape Matching

    NARCIS (Netherlands)

    Eede, M. van; Macrini, D.; Telea, A.; Sminchisescu, C.; Dickinson, S.

    2006-01-01

    Skeletal representations of 2-D shape, including shock graphs, have become increasingly popular for shape matching and object recognition. However, it is well known that skeletal structure can be unstable under minor boundary deformation, part articulation, and minor shape deformation (due to, for

  18. Asymmetric Bimodal Exponential Power Distribution on the Real Line

    Directory of Open Access Journals (Sweden)

    Mehmet Niyazi Çankaya

    2018-01-01

    Full Text Available The asymmetric bimodal exponential power (ABEP distribution is an extension of the generalized gamma distribution to the real line via adding two parameters that fit the shape of peakedness in bimodality on the real line. The special values of peakedness parameters of the distribution are a combination of half Laplace and half normal distributions on the real line. The distribution has two parameters fitting the height of bimodality, so capacity of bimodality is enhanced by using these parameters. Adding a skewness parameter is considered to model asymmetry in data. The location-scale form of this distribution is proposed. The Fisher information matrix of these parameters in ABEP is obtained explicitly. Properties of ABEP are examined. Real data examples are given to illustrate the modelling capacity of ABEP. The replicated artificial data from maximum likelihood estimates of parameters of ABEP and other distributions having an algorithm for artificial data generation procedure are provided to test the similarity with real data. A brief simulation study is presented.

  19. A novel line segment detection algorithm based on graph search

    Science.gov (United States)

    Zhao, Hong-dan; Liu, Guo-ying; Song, Xu

    2018-02-01

    To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).

  20. Scale and shape mixtures of multivariate skew-normal distributions

    KAUST Repository

    Arellano-Valle, Reinaldo B.; Ferreira, Clé cio S.; Genton, Marc G.

    2018-01-01

    We introduce a broad and flexible class of multivariate distributions obtained by both scale and shape mixtures of multivariate skew-normal distributions. We present the probabilistic properties of this family of distributions in detail and lay down

  1. Asymmetries of the solar Ca II lines

    International Nuclear Information System (INIS)

    Heasley, J.N.

    1975-01-01

    A theoretical study of the influence of propagating acoustic pulses in the solar chromosphere upon the line profiles of the Ca II resonance and infrared triplet lines has been made. The major objective has been to explain the observed asymmetries seen in the cores of the H and K lines and to predict the temporal behavior of the infrared lines caused by passing acoustic or shock pulses. The velocities in the pulses, calculated from weak shock theory, have been included consistently in the non-LTE calculations. The results of the calculations show that these lines are very sensitive to perturbations in the background atmosphere caused by the pulses. Only minor changes in the line shapes result from including the velocities consistently in the line source function calculations. The qualitative changes in the line profiles vary markedly with the strength of the shock pulses. The observed differences in the K line profiles seen on the quiet Sun can be explained in terms of a spectrum of pulses with different wavelengths and initial amplitudes in the photosphere. (Auth.)

  2. Ferromagnetic shape memory materials

    Science.gov (United States)

    Tickle, Robert Jay

    Ferromagnetic shape memory materials are a new class of active materials which combine the properties of ferromagnetism with those of a diffusionless, reversible martensitic transformation. These materials have been the subject of recent study due to the unusually large magnetostriction exhibited in the martensitic phase. In this thesis we report the results of experiments which characterize the magnetic and magnetomechanical properties of both austenitic and martensitic phases of ferromagnetic shape memory material Ni2MnGa. In the high temperature cubic phase, anisotropy and magnetostriction constants are determined for a range of temperatures from 50°C down to the transformation temperature, with room temperature values of K1 = 2.7 +/- 104 ergs/cm3 and lambda100 = -145 muepsilon. In the low temperature tetragonal phase, the phenomenon of field-induced variant rearrangement is shown to produce anomalous results when traditional techniques for determining anisotropy and magnetostriction properties are employed. The requirement of single variant specimen microstructure is explained, and experiments performed on such a specimen confirm a uniaxial anisotropy within each martensitic variant with anisotropy constant Ku = 2.45 x 106 ergs/cm3 and a magnetostriction constant of lambdasv = -288 +/- 73 muepsilon. A series of magnetomechanical experiments investigate the effects of microstructure bias, repeated field cycling, varying field ramp rate, applied load, and specimen geometry on the variant rearrangement phenomenon in the martensitic phase. In general, the field-induced strain is found to be a function of the variant microstructure. Experiments in which the initial microstructure is biased towards a single variant state with an applied load generate one-time strains of 4.3%, while those performed with a constant bias stress of 5 MPa generate reversible strains of 0.5% over a period of 50 cycles. An increase in the applied field ramp rate is shown to reduce the

  3. Cable line engineering

    International Nuclear Information System (INIS)

    Jang, Hak Sin; Kim, Sin Yeong

    1998-02-01

    This book is about cable line engineering. It is comprised of nine chapters, which deals with summary of cable communication such as way, process of cable communication and optical communication, Line constant of transmission on primary constant, reflection and crosstalk, communication cable line of types like flat cable, coaxial cable and loaded cable, Install of communication line with types and facility of aerial line, construction method of communication line facility, Measurement of communication line, Carrier communication of summary, PCM communication with Introduction, regeneration relay system sampling and quantization and Electric communication service and general information network with mobile communication technique and satellite communication system.

  4. Channels with Different Fin Shapes

    Directory of Open Access Journals (Sweden)

    R. J. Goldstein

    1998-01-01

    Full Text Available The mass transfer (analogous to heat transfer and pressure loss characteristics of staggered short pin-fin arrays are investigated experimentally in the range of Reynolds number 3000 to 18,000 based on fin diameter and mean approach-flow velocity. Three different shapes of fins with aspect ratio of 2 are examined: one uniform-diameter circular fin (UDCF and two stepped-diameter circular fins (SDCF1 and SDCF2. Flow visualization using oil-lampblack reveals complex flow characteristics associated with the repeated production of horseshoe vortices and fin wakes, and the interactions among these. The SDCF1 and SDCF2 arrays show flow characteristics different from the UDCF array due to downflow from the steps. For all arrays tested, the near-endwall flow varies row by row in the initial rows until it reaches a stable pattern after the third row. The row-averaged Sherwood numbers obtained from the naphthalene sublimation experiment also show a row-by-row variation pattern similar to the flow results. While the SDCF2 array has the highest mass transfer rate, the SDCF1 array has the smallest pressure loss at the same approach-flow velocity. The fin surfaces have higher array-averaged Sherwood number than the endwall and the ratio between these changes with fin shape and Reynolds number. The performance of the pin-fin arrays is analyzed under two different constraints: the mass[heat transfer rate at fixed pumping power, and the mass/heat transfer area and pressure loss to fulfill fixed heat load at a fixed mass flow rate. In both cases, the SDCF2 array shows the best performance.

  5. A vectorial description of electromagnetic scattering by large bodies of spherical shape

    International Nuclear Information System (INIS)

    Bourrely, C.; Lemaire, T.; Chiappetta, P.; Centre National de la Recherche Scientifique, 13 - Marseille

    1989-10-01

    We present a new method to obtain a vectorial solution of Helmholtz equation for large homogeneous scatterers having a cylindrical symmetry and a shape approximately spherical. Limitations of the method for arbitrarily shaped particles are discussed

  6. Seed shape quantification in the order Cucurbitales

    Directory of Open Access Journals (Sweden)

    Emilio Cervantes

    2018-02-01

    Full Text Available Seed shape quantification in diverse species of the families belonging to the order Cucurbitales is done based on the comparison of seed images with geometric figures. Quantification of seed shape is a useful tool in plant description for phenotypic characterization and taxonomic analysis. J index gives the percent of similarity of the image of a seed with a geometric figure and it is useful in taxonomy for the study of relationships between plant groups. Geometric figures used as models in the Cucurbitales are the ovoid, two ellipses with different x/y ratios and the outline of the Fibonacci spiral. The images of seeds have been compared with these figures and values of J index obtained. The results obtained for 29 species in the family Cucurbitaceae support a relationship between seed shape and species ecology. Simple seed shape, with images resembling simple geometric figures like the ovoid, ellipse or the Fibonacci spiral, may be a feature in the basal clades of taxonomic groups.

  7. Difficulties in obtaining representative samples for compliance with the Ballast Water Management Convention

    Digital Repository Service at National Institute of Oceanography (India)

    Carney, K.J; Basurko, O.C; Pazouki, K.; Marsham, S.; Delany, J; Desai, D.V.; Anil, A.C; Mesbahi, E.

    water, the shape, size and number of ballast tanks and the heterogeneous distribution of organisms within tanks. These factors hinder efforts to obtain samples that truly represent the total ballast water onboard a vessel. A known cell density...

  8. Reconnection of magnetic field lines

    International Nuclear Information System (INIS)

    Heyn, M.F.; Gratton, F.T.; Gnavi, G.; Heindler, M.

    1990-01-01

    Magnetic field line diffusion in a plasma is studied on the basis of the non-linear boundary layer equations of dissipative, incompressible magnetohydrodynamics. Non-linear steady state solutions for a class of plasma parameters have been obtained which are consistent with the boundary conditions appropriate for reconnection. The solutions are self-consistent in connecting a stagnation point flow of a plasma with reconnecting magnetic field lines. The range of the validity of the solutions, their relation to other fluid models of reconnection, and their possible applications to space plasma configurations are pointed out. (Author)

  9. Shape memory heat engines

    Science.gov (United States)

    Salzbrenner, R.

    1984-06-01

    The mechanical shape memory effect associated with a thermoelastic martensitic transformation can be used to convert heat directly into mechanical work. Laboratory simulation of two types of heat engine cycles (Stirling and Ericsson) has been performed to measure the amount of work available/cycle in a Ni-45 at. pct Ti alloy. Tensile deformations at ambient temperature induced martensite, while a subsequent increase in temperature caused a reversion to the parent phase during which a load was carried through the strain recovery (i.e., work was accomplished). The amount of heat necessary to carry the engines through a cycle was estimated from calorimeter measurements and the work performed/cycle. The measured efficiency of the system tested reached a maximum of 1.4 percent, which was well below the theoretical (Carnot) maximum efficiency of 35.6 percent.

  10. Shaping the Social

    DEFF Research Database (Denmark)

    Andersen, Susan; Tolstrup, Janne Schurmann; Rod, Morten Hulvej

    2015-01-01

    is a comprehensive programme integrating social and educational activities to promote student well-being and reduce smoking and dropout in upper secondary vocational education. The evaluation design is reported here. METHODS/DESIGN: The evaluation employed a non-randomised cluster controlled design, and schools were...... % and 81 % of eligible students, and 22 % of all technical/agricultural vocational schools in Denmark. Follow-up assessment was conducted 10 weeks after baseline and at the same time teachers of the intervention classes answered a questionnaire about implementation. School dropout rates will be tracked via...... national education registers through a 2-year follow-up period. DISCUSSION: Shaping the Social was designed to address that students at Danish vocational schools constitute a high risk population concerning health behaviour as well as school dropout by modifying the school environment, alongside developing...

  11. Boosted Higgs shapes

    International Nuclear Information System (INIS)

    Schlaffer, Matthias; Spannowsky, Michael; Wymant, Chris

    2014-05-01

    The inclusive Higgs production rate through gluon fusion has been measured to be in agreement with the Standard Model (SM). We show that even if the inclusive Higgs production rate is very SM-like, a precise determination of the boosted Higgs transverse momentum shape offers the opportunity to see effects of natural new physics. These measurements are generically motivated by effective field theory arguments and specifically in extensions of the SM with a natural weak scale, like composite Higgs models and natural supersymmetry. We show in detail how a measurement at high transverse momentum of H→2l+p T via H→ττ and H→WW * could be performed and demonstrate that it offers a compelling alternative to the t anti tH channel. We discuss the sensitivity to new physics in the most challenging scenario of an exactly SM-like inclusive Higgs cross-section.

  12. Geometric Topology and Shape Theory

    CERN Document Server

    Segal, Jack

    1987-01-01

    The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.

  13. Development of a Handheld Line Information Reader and Generator for Efficient Management of Optical Communication Lines.

    Science.gov (United States)

    Lee, Jaeyul; Kwon, Hyungwoo; Song, Jaewon; Jeon, Mansik; Kim, Jeehyun

    2017-08-24

    A handheld line information reader and a line information generator were developed for the efficient management of optical communication lines. The line information reader consists of a photo diode, trans-impedance amplifier, voltage amplifier, microcontroller unit, display panel, and communication modules. The line information generator consists of a laser diode, laser driving circuits, microcontroller unit, and communication modules. The line information reader can detect the optical radiation field of the test line by bending the optical fiber. To enhance the sensitivity of the line information reader, an additional lens was used with a focal length of 4.51 mm. Moreover, the simulation results obtained through BeamPROP ® software from Synopsys, Inc. demonstrated a stronger optical radiation field of the fiber due to a longer transmission wavelength and larger bending angle of the fiber. Therefore, the developed devices can be considered as useful tools for the efficient management of optical communication lines.

  14. Billiards in L-shaped tables with barriers

    DEFF Research Database (Denmark)

    Bainbridge, Matthew

    2010-01-01

    We compute the volumes of the eigenform loci in the moduli space of genus-two Abelian differentials. From this, we obtain asymptotic formulas for counting closed billiards paths in certain L-shaped polygons with barriers.......We compute the volumes of the eigenform loci in the moduli space of genus-two Abelian differentials. From this, we obtain asymptotic formulas for counting closed billiards paths in certain L-shaped polygons with barriers....

  15. A RADIAL VELOCITY TEST FOR SUPERMASSIVE BLACK HOLE BINARIES AS AN EXPLANATION FOR BROAD, DOUBLE-PEAKED EMISSION LINES IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia; Halpern, Jules P. [Astronomy Department, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Eracleous, Michael [Department of Astronomy and Institute for Gravitation and The Cosmos, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-01-20

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocity can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.

  16. Moving contact lines on vibrating surfaces

    Science.gov (United States)

    Solomenko, Zlatko; Spelt, Peter; Scott, Julian

    2017-11-01

    Large-scale simulations of flows with moving contact lines for realistic conditions generally requires a subgrid scale model (analyses based on matched asymptotics) to account for the unresolved part of the flow, given the large range of length scales involved near contact lines. Existing models for the interface shape in the contact-line region are primarily for steady flows on homogeneous substrates, with encouraging results in 3D simulations. Introduction of complexities would require further investigation of the contact-line region, however. Here we study flows with moving contact lines on planar substrates subject to vibrations, with applications in controlling wetting/dewetting. The challenge here is to determine the change in interface shape near contact lines due to vibrations. To develop further insight, 2D direct numerical simulations (wherein the flow is resolved down to an imposed slip length) have been performed to enable comparison with asymptotic theory, which is also developed further. Perspectives will also be presented on the final objective of the work, which is to develop a subgrid scale model that can be utilized in large-scale simulations. The authors gratefully acknowledge the ANR for financial support (ANR-15-CE08-0031) and the meso-centre FLMSN for use of computational resources. This work was Granted access to the HPC resources of CINES under the allocation A0012B06893 made by GENCI.

  17. Numerical Calculation of Overhead Power Lines Dynamics

    Directory of Open Access Journals (Sweden)

    Gogola Roman

    2016-11-01

    Full Text Available This paper contains results of transient analysis of airflow around the ACSR power line cross-section in unsymmetric multi-span. The forces applied to the power line are obtained from CFD simulations, where the wind induced vibration is studied. Effect of these forces to the maximal displacement of the power line and the maximal mechanical forces in the points of attachment are studied and evaluated.

  18. Experimental determination of the lifetimes and parities of the Yrast states of 60Ni. Study of shape

    International Nuclear Information System (INIS)

    Moyat, M.-G.

    1978-01-01

    The two methods used to measure the lifetimes of the Yrast states of 60 Ni are described: the Doppler attenuation method (line deformation) and the recoil range method. The lifetimes obtained for the levels at 2505, 4262, 5345 and 6807 keV are given, together with the transition probabilities inferred. The parities of the 60 Ni high-spin levels measured by the linear polarization method are also given. Finally the recent theoretical approaches relating to the shapes of the nuclei are outlined: K. Kuman's deformed quasi-particle model and the interaction boson approximation of A. Arima and F. Iachello [fr

  19. Performance-based shape optimization of continuum structures

    International Nuclear Information System (INIS)

    Liang Qingquan

    2010-01-01

    This paper presents a performance-based optimization (PBO) method for optimal shape design of continuum structures with stiffness constraints. Performance-based design concepts are incorporated in the shape optimization theory to achieve optimal designs. In the PBO method, the traditional shape optimization problem of minimizing the weight of a continuum structure with displacement or mean compliance constraints is transformed to the problem of maximizing the performance of the structure. The optimal shape of a continuum structure is obtained by gradually eliminating inefficient finite elements from the structure until its performance is maximized. Performance indices are employed to monitor the performance of optimized shapes in an optimization process. Performance-based optimality criteria are incorporated in the PBO method to identify the optimum from the optimization process. The PBO method is used to produce optimal shapes of plane stress continuum structures and plates in bending. Benchmark numerical results are provided to demonstrate the effectiveness of the PBO method for generating the maximum stiffness shape design of continuum structures. It is shown that the PBO method developed overcomes the limitations of traditional shape optimization methods in optimal design of continuum structures. Performance-based optimality criteria presented can be incorporated in any shape and topology optimization methods to obtain optimal designs of continuum structures.

  20. Revised Line Profile Function for Hydrogenic Species

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2012-09-01

    Full Text Available Analytical series expansions for the hydrogenic spectral line profile functions are derived starting from the three single expressions, obtained by integrating twice the convolution of the Holtsmark, Lorentz and Doppler line profile functions. We get well converging series expansions for the line wings and centers by reducing the number of arguments in the profile function by one, introducing the module of the Holtsmark and Lorentz profiles as a new argument. In the intermediate part of the line, the parabolic cylinder functions expressed via the confluent hypergeometric series, are used. The multi-component Stark splitting of the hydrogenic spectral lines and the modeled stochastic electron transitions in the electric field of the adjacent ions generate wide Doppler plateaux at the line centers, with the characteristic widths estimated from the fit to the characteristic width of the Holtsmark profile. This additional Doppler broadening of the line profile function removes the central dip typical to the Holtsmark profile.

  1. Elastic stresses in u-shaped bellows

    International Nuclear Information System (INIS)

    Janzen, P.

    1980-05-01

    This report presents relations describing the meridional and circumferential elastic stress levels at the root and crown due to external pressure and axial deflection of U-shaped bellows. The derivation is based on a statistical analysis of theoretical data obtained from a finite element analysis of selected bellows configurations. The mathematical formulations and various graphical representations are proposed as aids to bellows design and analysis. (auth)

  2. Acoustic Wave Propagation in Pressure Sense Lines

    Science.gov (United States)

    Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin

    2003-01-01

    Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.

  3. Quantitative Trait Loci in Inbred Lines

    NARCIS (Netherlands)

    Jansen, R.C.

    2001-01-01

    Quantitative traits result from the influence of multiple genes (quantitative trait loci) and environmental factors. Detecting and mapping the individual genes underlying such 'complex' traits is a difficult task. Fortunately, populations obtained from crosses between inbred lines are relatively

  4. On plasma flows along vortex lines

    International Nuclear Information System (INIS)

    Bagewadi, C.S.; Prasanna Kumar, K.N.

    1989-01-01

    The plasma flows are discussed and various intrinsic relations along the vortex lines and their principal normals and binormals are obtained. The effects of rotations on Bernoulli surfaces are also studied. (M.K.V.)

  5. Plasmodium species differentiation by non-expert on-line volunteers for remote malaria field diagnosis.

    Science.gov (United States)

    Ortiz-Ruiz, Alejandra; Postigo, María; Gil-Casanova, Sara; Cuadrado, Daniel; Bautista, José M; Rubio, José Miguel; Luengo-Oroz, Miguel; Linares, María

    2018-01-30

    Routine field diagnosis of malaria is a considerable challenge in rural and low resources endemic areas mainly due to lack of personnel, training and sample processing capacity. In addition, differential diagnosis of Plasmodium species has a high level of misdiagnosis. Real time remote microscopical diagnosis through on-line crowdsourcing platforms could be converted into an agile network to support diagnosis-based treatment and malaria control in low resources areas. This study explores whether accurate Plasmodium species identification-a critical step during the diagnosis protocol in order to choose the appropriate medication-is possible through the information provided by non-trained on-line volunteers. 88 volunteers have performed a series of questionnaires over 110 images to differentiate species (Plasmodium falciparum, Plasmodium ovale, Plasmodium vivax, Plasmodium malariae, Plasmodium knowlesi) and parasite staging from thin blood smear images digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Visual cues evaluated in the surveys include texture and colour, parasite shape and red blood size. On-line volunteers are able to discriminate Plasmodium species (P. falciparum, P. malariae, P. vivax, P. ovale, P. knowlesi) and stages in thin-blood smears according to visual cues observed on digitalized images of parasitized red blood cells. Friendly textual descriptions of the visual cues and specialized malaria terminology is key for volunteers learning and efficiency. On-line volunteers with short-training are able to differentiate malaria parasite species and parasite stages from digitalized thin smears based on simple visual cues (shape, size, texture and colour). While the accuracy of a single on-line expert is far from perfect, a single parasite classification obtained by combining the opinions of multiple on-line volunteers over the same smear, could improve accuracy and reliability of Plasmodium species

  6. Formation and Characterization of Inkjet-Printed Nanosilver Lines on Plasma-Treated Glass Substrates

    Directory of Open Access Journals (Sweden)

    Jae-Sung Kwon

    2018-02-01

    Full Text Available In this study, we investigated geometrical characteristics of the inkjet-printed lines with non-zero receding contact angle (CA on plasma-treated substrates in terms of various printing variables and analyzed the fluidic behavior and hydrodynamic instability involved in the line formation process. The printing variables included surface energy, droplet overlap ratio, printing frequency, a number of ink droplets, substrate temperature and printing procedures. For the study, a colloidal suspension containing 56 wt % silver nanoparticles in tetradecane solvent was used as a printing ink. It has electrical resistivity of 4.7 μΩ·cm. The substrates were obtained by performing a plasma enhanced chemical vapor deposition (PECVD process with C4F8 and O2 under various treatment conditions. As results of the experiments, the surface shape and pattern of the inkjet-printed Ag lines were dominantly influenced by the surface energy of the substrates, among the printing variables. Accordingly even when the receding CA was non-zero, bulging instability of the lines occurred forming separate circular patterns or regular bulges connected by ridges. It is a new finding of this study, which is completely different with the bulging instability of inkjet lines with zero receding CA specified by previous researches. The bulging instability decreased by increasing surface temperature of the substrates or employing interlacing procedure instead of continuous procedure for printing. The interlacing procedure also was advantageous to fabricate thick and narrow Ag lines with well-defined shape through overprinting on a hydrophobic substrate. These results will contribute greatly to not only the production of various printed electronics containing high-aspect-ratio structures but also the improvement of working performance of the devices.

  7. Estimating the location and shape of hybrid zones

    DEFF Research Database (Denmark)

    Guedj, Benjamin; Guillot, Gilles

    2011-01-01

    We propose a new model to make use of georeferenced genetic data for inferring the location and shape of a hybrid zone. The model output includes the posterior distribution of a parameter that quantifies the width of the hybrid zone. The model proposed is implemented in the GUI and command‐line v...

  8. Ultraviolet observations of cool stars. III. Chromospheric and coronal lines in α Tauri, β Geminorum, and α Bootis

    International Nuclear Information System (INIS)

    McClintock, W.; Linsky, J.L.; Henry, R.C.; Moos, H.W.; Gerola, H.

    1975-01-01

    The ultraviolet spectrometer of the Princeton Experiment Package aboard the Copernicus satellite has been used to obtain high-resolution measurements of Lα, the Mg ii lambda2800 doublet, and upper limits on the Si iii lambda1206 line in the K giants α Tau and β Gem. The intensities and line shapes are compared with earlier observations of α Boo. The Lα and Mg ii profiles for α Tau resemble those for α Boo, in that they are highly asymmetrical, while β Gem shows much more symmetrical profiles. The asymmetries for all lines except for those of α Boo and Mg ii lines of α Tau could be due to interstellar absorption. In the case of β Gem only, the O v intercombination line at 1218 A is observed, suggesting a well-developed corona substantially cooler than that of the Sun. The Lα profiles of α Tau and β Gem are consistent with the low interstellar hydrogen abundance in the solar neighborhood previously obtained from a similar observation of the α Boo Lα profile. The strength of the Mg ii lambda2796 line can be used to measure transition region and coronal pressures, and indicates a decrease in both with later spectral type and/or increasing luminosity

  9. Shape optimization of metal forming and forging products using the stress equivalent static loads calculated from a virtual model

    International Nuclear Information System (INIS)

    Jang, Hwan Hak; Jeong, Seong Beom; Park, Gyung Jin

    2012-01-01

    A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes

  10. Multiwire proportional counter (lecture by an electromagnetic delay line)

    International Nuclear Information System (INIS)

    Bruere-Dawson, R.

    1989-01-01

    For track localisation of ionizing particles with multiwire proportional chamber, an electronic chain including amplifying, shaping and memorizing circuits is required for each wire. In order to lower the cost of this type of detector, an electromagnetic delay line is proposed among various possibilities. In this paper, different coupling modes between chamber and delay line are studied with their respective advantages. The realization of one meter long delay line with a unit delay time of 15 ns per cm is also presented [fr

  11. Aging, body image, and body shape.

    Science.gov (United States)

    Ferraro, F Richard; Muehlenkamp, Jennifer J; Paintner, Ashley; Wasson, Kayla; Hager, Tracy; Hoverson, Fallon

    2008-10-01

    Participants were 25 older men (M age = 72 years, SD = 10 years) and 27 older women (M age = 71 years, SD = 8 years) who examined multiple line-drawing figures of babies, children, young adults, middle-aged adults, and older adults. Participants picked a number on a Likert-type scale ranging from 1 (very thin) to 9 (very obese) in response to questions including "Which is the most attractive?" and "Which figure would you most like to look like?" They also completed questionnaires about their body image and body shape. In response to the age-specific line drawings (e.g., those depicting older men and older women), older women endorsed thinner figures (e.g., picked smaller numbers) than did men. Likewise, older women reported thinking more about their body shape and appearance than did men and perceived their body image as "a little too big" in comparison with the older men who perceived their body image as "just the right size." However, a breakdown of normal and overweight women in this sample revealed that for some overweight elderly women, obesity could become a satisfactory way of life. Much as with college-aged women, the endorsement of a thinner body image by many of the older adult female participants appeared to persist into late adulthood and suggests that research into body image issues with older adults is relevant and necessary.

  12. Vaccines: Shaping global health.

    Science.gov (United States)

    Pagliusi, Sonia; Ting, Ching-Chia; Lobos, Fernando

    2017-03-14

    The Developing Countries Vaccine Manufacturers' Network (DCVMN) gathered leaders in immunization programs, vaccine manufacturing, representatives of the Argentinean Health Authorities and Pan American Health Organization, among other global health stakeholders, for its 17th Annual General Meeting in Buenos Aires, to reflect on how vaccines are shaping global health. Polio eradication and elimination of measles and rubella from the Americas is a result of successful collaboration, made possible by timely supply of affordable vaccines. After decades of intense competition for high-value markets, collaboration with developing countries has become critical, and involvement of multiple manufacturers as well as public- and private-sector investments are essential, for developing new vaccines against emerging infectious diseases. The recent Zika virus outbreak and the accelerated Ebola vaccine development exemplify the need for international partnerships to combat infectious diseases. A new player, Coalition for Epidemic Preparedness Innovations (CEPI) has made its entrance in the global health community, aiming to stimulate research preparedness against emerging infections. Face-to-face panel discussions facilitated the dialogue around challenges, such as risks of viability to vaccine development and regulatory convergence, to improve access to sustainable vaccine supply. It was discussed that joint efforts to optimizing regulatory pathways in developing countries, reducing registration time by up to 50%, are required. Outbreaks of emerging infections and the global Polio eradication and containment challenges are reminders of the importance of vaccines' access, and of the importance of new public-private partnerships. Copyright © 2017.

  13. Effects of anisotropy on the equilibrium shape of nanoscale pores at grain boundaries

    International Nuclear Information System (INIS)

    Wynblatt, Paul; Chatain, Dominique

    2013-01-01

    Molecular dynamics simulations have been performed to study the interaction between a faceted pore and an anisotropic grain boundary (GB). Nickel was chosen as a convenient model system. In order to establish the equilibrium crystal shape (ECS) of the pore, studies were also conducted on isolated pores. Isolated pores were found to be subject to the nucleation inhibition of equilibration that has been predicted by Rohrer et al. (J Am Ceram Soc 2000;83:214, 2001;84: 2099). This work shows that configurations close to the ECS can be obtained if supersaturation within a pore is artificially increased by adding mobile adatoms to the internal surfaces of the pores. In the case of pores located at GBs, the nucleation energy barriers to facet displacement are not present for facets in contact with the GB at the triple line, but may still persist for facets that have no contact with the GB. This problem can be overcome by approaching the equilibrium shape from different initial configurations. The configuration of the GB in the vicinity of the pore has been found to be essentially planar, indicating that GB puckering in the vicinity of anisotropic pores is not generally necessary. The present calculations show that incompatibilities between misoriented pore facets that meet at the triple line with the GB are easily accommodated by local atomic rearrangements at the disordered region of intersection with the GB

  14. Linear scleroderma following Blaschko′s lines

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Amiya

    2005-01-01

    Full Text Available Blaschko′s lines form a pattern, which many diseases are found to follow, but linear scleroderma following Blaschko′s lines is a controversial entity rarely reported in the literature. A 24-year-old man presented with multiple linear, atrophic, hyperpigmented lesions punctuated by areas of depigmentations on the left half of the trunk distributed on the anterior, lateral and posterior aspects. The lesions were distributed in a typical S-shaped line. Antinuclear antibody and antihistone antibody tests were negative. Histopathological examination of the skin from the affected area showed features suggestive of scleroderma. Here, we present a case of linear scleroderma following Blaschko′s lines in a male patient - an entity reported only three times so far.

  15. Mathematical modelling of liquid meniscus shape in cylindrical micro-channel for normal and micro gravity conditions

    Science.gov (United States)

    Marchuk, Igor; Lyulin, Yuriy

    2017-10-01

    Mathematical model of liquid meniscus shape in cylindrical micro-channel of the separator unit of condensing/separating system is presented. Moving liquid meniscus in the 10 μm cylindrical microchannel is used as a liquid lock to recover the liquid obtained by condensation from the separators. The main goal of the liquid locks to prevent penetration of a gas phase in the liquid line at the small flow rate of the condensate and because of pressure fluctuations in the vapor-gas-liquid loop. Calculation of the meniscus shape has been performed for liquid FC-72 at different values of pressure difference gas - liquid and under normal and micro gravity conditions.

  16. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  17. VT Electric Transmission Line Corridors - corridor lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The ELTRN layer depicts electric transmission line corridors in Vermont. Various methods have been used to digitize features. The data layer...

  18. Event Shape Analysis in ALICE

    CERN Document Server

    AUTHOR|(CDS)2073367; Paic, Guy

    2009-01-01

    The jets are the final state manifestation of the hard parton scattering. Since at LHC energies the production of hard processes in proton-proton collisions will be copious and varied, it is important to develop methods to identify them through the study of their final states. In the present work we describe a method based on the use of some shape variables to discriminate events according their topologies. A very attractive feature of this analysis is the possibility of using the tracking information of the TPC+ITS in order to identify specific events like jets. Through the correlation between the quantities: thrust and recoil, calculated in minimum bias simulations of proton-proton collisions at 10 TeV, we show the sensitivity of the method to select specific topologies and high multiplicity. The presented results were obtained both at level generator and after reconstruction. It remains that with any kind of jet reconstruction algorithm one will confronted in general with overlapping jets. The present meth...

  19. Virtual Technologies and Social Shaping

    OpenAIRE

    Kreps , David

    2010-01-01

    International audience; Virtual Technologies have enabled us all to become publishers and broadcasters. The world of information has become saturated with a multitude of opinions, and opportunities to express them. Track 2 "Virtual Technologies and Social Shaping" of the 9th Conference on Human Choice and Computers (HCC9) explores some of the issues that have arisen in this new information society, how we are shaped by it, and how we shape it, through i) two papers addressing issues of identi...

  20. Shape resonances in molecular fields

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1984-01-01

    A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field

  1. Women in Shape Modeling Workshop

    CERN Document Server

    Tari, Sibel

    2015-01-01

    Presenting the latest research from the growing field of mathematical shape analysis, this volume is comprised of the collaborations of participants of the Women in Shape Modeling (WiSh) workshop, held at UCLA's Institute for Pure and Applied Mathematics in July 2013. Topics include: Simultaneous spectral and spatial analysis of shape Dimensionality reduction and visualization of data in tree-spaces, such as classes of anatomical trees like airways and blood vessels Geometric shape segmentation, exploring shape segmentation from a Gestalt perspective, using information from the Blum medial axis of edge fragments in an image Representing and editing self-similar details on 3D shapes, studying shape deformation and editing techniques Several chapters in the book directly address the problem of continuous measures of context-dependent nearness and right shape models. Medical and biological applications have been a major source of motivation in shape research, and key topics are examined here in detail. All...

  2. Rapid reconnection of flux lines

    International Nuclear Information System (INIS)

    Samain, A.

    1982-01-01

    The rapid reconnection of flux lines in an incompressible fluid through a singular layer of the current density is discussed. It is shown that the liberated magnetic energy must partially appear in the form of plasma kinetic energy. A laminar structure of the flow is possible, but Alfven velocity must be achieved in eddies of growing size at the ends of the layer. The gross structure of the flow and the magnetic configuration may be obtained from variational principles. (author)

  3. Steady-state groundwater recharge in trapezoidal-shaped aquifers: A semi-analytical approach based on variational calculus

    Science.gov (United States)

    Mahdavi, Ali; Seyyedian, Hamid

    2014-05-01

    This study presents a semi-analytical solution for steady groundwater flow in trapezoidal-shaped aquifers in response to an areal diffusive recharge. The aquifer is homogeneous, anisotropic and interacts with four surrounding streams of constant-head. Flow field in this laterally bounded aquifer-system is efficiently constructed by means of variational calculus. This is accomplished by minimizing a properly defined penalty function for the associated boundary value problem. Simple yet demonstrative scenarios are defined to investigate anisotropy effects on the water table variation. Qualitative examination of the resulting equipotential contour maps and velocity vector field illustrates the validity of the method, especially in the vicinity of boundary lines. Extension to the case of triangular-shaped aquifer with or without an impervious boundary line is also demonstrated through a hypothetical example problem. The present solution benefits from an extremely simple mathematical expression and exhibits strictly close agreement with the numerical results obtained from Modflow. Overall, the solution may be used to conduct sensitivity analysis on various hydrogeological parameters that affect water table variation in aquifers defined in trapezoidal or triangular-shaped domains.

  4. Homotopic Polygonal Line Simplification

    DEFF Research Database (Denmark)

    Deleuran, Lasse Kosetski

    This thesis presents three contributions to the area of polygonal line simplification, or simply line simplification. A polygonal path, or simply a path is a list of points with line segments between the points. A path can be simplified by morphing it in order to minimize some objective function...

  5. OT2_smalhotr_3: Herschel Extreme Lensing Line Observations (HELLO)

    Science.gov (United States)

    Malhotra, S.

    2011-09-01

    We request 59.8 hours of Herschel time to observe 20 normal star-forming galaxies in the [CII] 158 micron and [OI] 63 micron lines. These galaxies lie at high redshift (1shaping our modern universe. Most of this redshift range is inaccesible to ground-based observations of [CII], [OI], or both. Herschel offers the unique opportunity to study both lines with high sensitivity throughout this epoch (using HIFI for [CII] and PACS for [OI]). These two lines are the main cooling lines of the atomic medium. By measuring their fluxes, we will measure (1) the cooling efficiency of gas, (2) gas densities and temperatures near starforming regions, and (3) gas pressures, which are important to drive the winds that provide feedback to starformation processes. By combining the proposed observations with existing multiwavelength data on these objects, we will obtain as complete a picture of galaxy-scale star formation and ISM physical conditions at high redshifts as we have at z=0. Then perhaps we can understand why star formation and AGN activity peaked at this epoch. In Herschel cycle OT1, 49 high redshift IR luminous galaxies were approved for spectroscopy, but only two so-called normal galaxies were included. This is an imbalance that should be corrected, to balance Herschel's legacy.

  6. High actuation properties of shape memory polymer composite actuator

    International Nuclear Information System (INIS)

    Basit, A; L’Hostis, G; Durand, B

    2013-01-01

    The shape memory polymers (SMPs) possess two shapes: permanent shape and temporary shape. This property leads to replacement of shape memory alloys by SMPs in various applications. In this work, two properties, namely structure activeness and the shape memory property of ‘controlled behavior composite material (CBCM)’ plate and its comparison with the conventional symmetrical composite plate (SYM), are studied. The SMPC plates (CBCM and SYM) are manufactured using epoxy resin with a thermal glass transition temperature (T g ) of 130 °C. The shape memory properties of these composites are investigated (under three-point bending test) and compared by deforming them to the same displacement. Three types of recoveries are conducted: unconstrained recovery, constrained recovery, and partial recovery under load. It is found that by coupling the structure activeness (due to its asymmetry) and its shape memory property, higher activated displacement is obtained during the unconstrained recovery. Also, at a lower recovery temperature (90 °C) than the fixing temperature, a recovery close to 100% is obtained for CBCM, whereas for SYM it is only 25%. During constrained recovery, CBCM produces five times larger recovery force than SYM. In addition, higher actuation properties are demonstrated by calculating recovered work and recovery percentages during partial recovery under load. (paper)

  7. Spectral line profiles in weakly turbulent plasmas

    International Nuclear Information System (INIS)

    Capes, H.; Voslamber, D.

    1976-07-01

    The unified theory of line broadening by electron perturbers is generalized to include the case of a weakly turbulent plasma. The collision operator in the line shape expression is shown to be the sum of two terms, both containing effects arising from the non-equilibrium nature of the plasma. One of the two terms represents the influence of individual atom-particle interactions occuring via the nonequilibrium dielectric plasma medium. The other term is due to the interaction of the atom with the turbulent waves. Both terms contain damping and diffusion effects arising from the plasma turbulence

  8. On-line signal trend identification

    International Nuclear Information System (INIS)

    Tambouratzis, T.; Antonopoulos-Domis, M.

    2004-01-01

    An artificial neural network, based on the self-organizing map, is proposed for on-line signal trend identification. Trends are categorized at each incoming signal as steady-state, increasing and decreasing, while they are further classified according to characteristics such signal shape and rate of change. Tests with model-generated signals illustrate the ability of the self-organizing map to accurately and reliably perform on-line trend identification in terms of both detection and classification. The proposed methodology has been found robust to the presence of white noise

  9. Filament shape versus coronal potential magnetic field structure

    Science.gov (United States)

    Filippov, B.

    2016-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.

  10. Collisional redistribution of the Na-D lines in a Ne, Xe filled vapour cell and depolarization in a flame

    International Nuclear Information System (INIS)

    Nieuwesteeg, K.J.B.M.

    1986-01-01

    1. Measurements of collisionally perturbed, 'complete' spectral profiles, i.e. core plus line wings of the Na-D lines, at the highest possible temperature in a fluorescence cell are reported. Both the shape of the profiles obtained in these experiments and the temperature dependence give information about the internuclear forces. Neon and xenon are chosen as perturbing atoms in order to extend and test potential shapes that have emerged from earlier beam experiments. 2. Possible ways are discussed of accurately calculating the cross sections of all elastic and inelastic processes in a Na- noble-gas system for any likely shape of the potentials involved. The main purpose of this discussion is to test these potentials by comparing the calculated cross sections with experimental data. Also a detailed comparison is made of the measured far-wing profile and the quasi-static profile calculated using these potentials. 3. In order to assess the validity of the approximations made in the theoretical model that was used for calculating the fluorescence-excitation profiles, the predictions of this model are compared with measurements of the polarization and the intensity ratio of the collision-induced Na-D fluorescence and Rayleigh scattering in an N 2 -diluted flame at 1 atm pressure. Using the Utrecht High-resolution Fourier Interferometer in the visible range, the Rayleigh peak and the collision-induced fluorescence were separated for the first time at laser detunings within the absorption line width. (Auth.)

  11. Development of a method and technology for obtaining vegetable oil from safflower seeds

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2017-01-01

    Full Text Available The article is designed and engineered compact line for processing grain safflower, which used the equipment of the increased efficiency, implementing progressive processes with application of modern physical methods of treatment. This line includes bucket Elevator (Noria, a receiving hopper , the air-sieve separator , intermediate tank, Trier (osgoodby and qualitronic, stone-dividing machine and separator for separation of Caucalis lappula, screw conveyor, intermediate bunker, peeler, oil press machines, the device for the deposition of oil (the sump, pump, frame filter. The process of collapse in the grinding pilot plant, in which the destruction of the epithelial layer of the shell is due to the fact that the compression stress in the impact zone exceeds the limit of elastic deformation of the shell of the grain. Conducted sieve analysis, which was studied granulometric composition fed to the compression of the particles of safflower seed , in this case to characterize the granulometric composition of the raw material, consisting of particles of irregular shape, used the concept of equivalent diameter. As a result of the experiments was the dependence of the equivalent particle diameter from the diameter of the sieve. Since the degree of extraction of safflower seed are hugely influenced by the moisture source of the product, was therefore carried out experimental studies of compaction with different moisture content of the seeds , and with the addition of Luz-Ki. From the analysis of graphic dependences were established a range of optimum moisture safflower seed 8,5--10%, providing the lowest residual oil content and hence the greatest yield of oil. Also managed to significantly increase the efficiency of extraction of oil by adding safflower seed pre-milled husks, which allowed to obtain cake with a residual oil content of 12% when you multiply pre-pressing and to 6% at the final extraction

  12. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System

    Directory of Open Access Journals (Sweden)

    Guijie Liu

    2018-03-01

    Full Text Available In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm.

  13. Shape memory alloys as damping materials

    International Nuclear Information System (INIS)

    Humbeeck, J. van

    2000-01-01

    Shape memory alloys are gaining an increased interest as passive as well as active damping materials. This damping ability when applied in structural elements can lead to a better noise control, improved life time and even better performance of the envisaged tools. By passive damping, it is understood that the material converts a significant part of unwanted mechanical energy into heat. This mechanical energy can be a (resonance) vibration, impact loading or shock waves. This high damping capacity finds its origin in the thermoelastic martensitic phase due to the hysteretic mobility of martensite-variants or different phase interfaces. The damping capacity increases with increasing amplitude of the applied vibration or impact and is almost frequency independent. Special interest exists moreover for damping extreme large displacements by applying the mechanical hysteresis performed during pseudoelastic loading. This aspect is nowadays very strongly studied as a tool for protecting buildings against earthquakes in seismic active regions. Active damping can be obtained in hybrid composites by controlling the recovery stresses or strains of embedded shape memory alloy wires. This controls the internal energy fo a structure which allows controlled modal modification and tuning of the dynamical properties of structural elements. But also impact damage, acoustic radiation, dynamic shape control can be actively controlled. As a consequence improved fatigue-resistance, better performance and a longer lifetime of the structural elements can be obtained. (orig.)

  14. Supernova Explosions Stay In Shape

    Science.gov (United States)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  15. Transmission of radioiodine through sampling lines

    International Nuclear Information System (INIS)

    Unrein, P.J.; Pelletier, C.A.; Cline, J.E.; Voilleque, P.G.

    1985-01-01

    An experimental program to measure radioiodine transmission through sampling lines is described. The transmission depends upon both deposition on and resuspension from the walls of the line. The deposition and resuspension processes are themselves controlled by the length, diameter, and material of the line and the conditions under which it is operated. The operating conditions under study are sampling flow rate, temperature and relative humidity. Measurement results have been interpreted in terms of a four-compartment model of radioiodine deposition and resuspension. The model is applied to each of twenty or more segments of the line. Experimental measurements of short-term transmission fractions and the deposition velocities derived from them are presented for six lines. Data on resuspension rates for the same lines were obtained and are also discussed

  16. Reconstruing U-Shaped Functions

    Science.gov (United States)

    Werker, Janet F.; Hall, D. Geoffrey; Fais, Laurel

    2004-01-01

    U-shaped developmental functions, and their N-shaped cousins, have intrigued developmental psychologists for decades because they provide a compelling demonstration that development does not always entail a monotonic increase across age in a single underlying ability. Instead, the causes of development are much more complex. Indeed,…

  17. Obtaining shale oil suitable for lighting

    Energy Technology Data Exchange (ETDEWEB)

    Giraudel, M

    1851-11-12

    Treats with sulphuric acid and then with soda, obtaining 57 per cent of products suitable for lighting in place of the usual 35 to 40 per cent as obtained by present processes. The product has a less disagreeable odor.

  18. Fitting Irregular Shape Figures into Irregular Shape Areas for the Nesting Problem in the Leather Industry

    Directory of Open Access Journals (Sweden)

    Guevara-Palma Luis

    2015-01-01

    Full Text Available The nesting problem of irregular shapes within irregular areas has been studied from several approaches due to their application in different industries. The particular case of cutting leather involves several restrictions that add complexity to this problem, it is necessary to generate products that comply with the quality required by customers This paper presents a methodology for the accommodation of irregular shapes in an irregular area (leather considering the constraints set by the footwear industry, and the results of this methodology when applied by a computer system. The scope of the system is to develop a working prototype that operates under the guidelines of a commercial production line of a sponsor company. Preliminary results got a reduction of 70% of processing time and improvement of 5% to 7% of the area usage when compared with manual accommodation.

  19. Consideration of correlativity between litho and etching shape

    Science.gov (United States)

    Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka

    2012-03-01

    We developed an effective method for evaluating the correlation of shape of Litho and Etching pattern. The purpose of this method, makes the relations of the shape after that is the etching pattern an index in wafer same as a pattern shape on wafer made by a lithography process. Therefore, this method measures the characteristic of the shape of the wafer pattern by the lithography process and can predict the hotspot pattern shape by the etching process. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used wafer CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and lithography management, and this has a big impact on the semiconductor market that centers on the semiconductor business. 2-dimensional shape of wafer quantification is important as optimal solution over these problems. Although 1-dimensional shape measurement has been performed by the conventional technique, 2-dimensional shape management is needed in the mass production line under the influence of RET. We developed the technique of analyzing distribution of shape edge performance as the shape management technique. In this study, we conducted experiments for correlation method of the pattern (Measurement Based Contouring) as two-dimensional litho and etch evaluation technique. That is, observation of the identical position of a litho and etch was considered. It is possible to analyze variability of the edge of the same position with high precision.

  20. Functional and shape data analysis

    CERN Document Server

    Srivastava, Anuj

    2016-01-01

    This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling fu...