WorldWideScience

Sample records for line scanning mode

  1. Rapid line scan MR angiography

    International Nuclear Information System (INIS)

    Frahm, J.; Merboldt, K.D.; Hanicke, W.; Bruhn, H.

    1987-01-01

    Direct MR angiography may be performed using line scan imaging techniques combined with presaturation of stationary spins. Thus, a single line scan echo yields a projection of vessels due to the signal from reflowing unsaturated spins. Reconstruction of an angiographic image is performed line by line at slightly incremented positions. In particular, line scan angiography is direct and fast without a sensitivity to artifacts even for high flow rates. Image resolution and field of view may be chosen without restrictions, and zoom images using enhanced gradients may be recorded without aliasing artifacts. The method is robust with respect to eddy currents and pulsatile flow. Line scan MR angiograms of phantoms, animals, and human volunteers have been recorded using 90 0 radio frequency pulses and gradient-recalled echoes

  2. High resolution RGB color line scan camera

    Science.gov (United States)

    Lynch, Theodore E.; Huettig, Fred

    1998-04-01

    A color line scan camera family which is available with either 6000, 8000 or 10000 pixels/color channel, utilizes off-the-shelf lenses, interfaces with currently available frame grabbers, includes on-board pixel by pixel offset correction, and is configurable and controllable via RS232 serial port for computer controlled or stand alone operation is described in this paper. This line scan camera is based on an available 8000 element monochrome line scan camera designed by AOA for OEM use. The new color version includes improvements such as better packaging and additional user features which make the camera easier to use. The heart of the camera is a tri-linear CCD sensor with on-chip color balancing for maximum accuracy and pinned photodiodes for low lag response. Each color channel is digitized to 12 bits and all three channels are multiplexed together so that the resulting camera output video is either a 12 or 8 bit data stream at a rate of up to 24Megpixels/sec. Conversion from 12 to 8 bit, or user-defined gamma, is accomplished by on board user-defined video look up tables. The camera has two user-selectable operating modes; lows speed, high sensitivity mode or high speed, reduced sensitivity mode. The intended uses of the camera include industrial inspection, digital archiving, document scanning, and graphic arts applications.

  3. Mjollnir Rotational Line Scan Diagnostics.

    Science.gov (United States)

    1981-05-19

    using long cavity. M8 Removable Pellicle Beam Splitter for He-Ne Lineup Beam. Removed before HF or DF laser is turned on. 27 A 27 * A r of the chopper...three probe laser lines, however three lines were sequentially measured to verify the diagnostic equipment. Two of the three lines have been monitored

  4. Line-mode browser development days

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    Twelve talented web developers have travelled to CERN from all over the world to recreate a piece of web history: the line-mode browser. See the line-mode browser simulator that they created here. Read more about the birth of the web here.

  5. A dark mode in scanning thermal microscopy

    Science.gov (United States)

    Ramiandrisoa, Liana; Allard, Alexandre; Joumani, Youssef; Hay, Bruno; Gomés, Séverine

    2017-12-01

    The need for high lateral spatial resolution in thermal science using Scanning Thermal Microscopy (SThM) has pushed researchers to look for more and more tiny probes. SThM probes have consequently become more and more sensitive to the size effects that occur within the probe, the sample, and their interaction. Reducing the tip furthermore induces very small heat flux exchanged between the probe and the sample. The measurement of this flux, which is exploited to characterize the sample thermal properties, requires then an accurate thermal management of the probe-sample system and to reduce any phenomenon parasitic to this system. Classical experimental methodologies must then be constantly questioned to hope for relevant and interpretable results. In this paper, we demonstrate and estimate the influence of the laser of the optical force detection system used in the common SThM setup that is based on atomic-force microscopy equipment on SThM measurements. We highlight the bias induced by the overheating due to the laser illumination on the measurements performed by thermoresistive probes (palladium probe from Kelvin Nanotechnology). To face this issue, we propose a new experimental procedure based on a metrological approach of the measurement: a SThM "dark mode." The comparison with the classical procedure using the laser shows that errors between 14% and 37% can be reached on the experimental data exploited to determine the heat flux transferred from the hot probe to the sample.

  6. Phase modulation mode of scanning ion conductance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  7. X-ray Compton line scan tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, Andreas; Lange, Axel; Jaenisch, Gerd-Ruediger [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe 8.5 - Mikro-ZfP; Hentschel, Manfred P. [Technische Univ. Berlin (Germany); Kardjilov, Nikolay; Markoetter, Henning; Hilger, Andre; Manke, Ingo [Helmholtz-Zentrum Berlin (HZB) (Germany); Toetzke, Christian [Potsdam Univ. (Germany)

    2015-07-01

    The potentials of incoherent X-ray scattering (Compton) computed tomography (CT) are investigated. The imaging of materials of very different atomic number or density at once is generally a perpetual challenge for X-ray tomography or radiography. In a basic laboratory set-up for simultaneous perpendicular Compton scattering and direct beam attenuation tomography are conducted by single channel photon counting line scans. This results in asymmetric distortions of the projection profiles of the scattering CT data set. In a first approach, corrections of Compton scattering data by taking advantage of rotational symmetry yield tomograms without major geometric artefacts. A cylindrical sample composed of PE, PA, PVC, glass and wood demonstrates similar Compton contrast for all the substances, while the conventional absorption tomogram only reveals the two high order materials. Comparison to neutron tomography reveals astonishing similarities except for the glass component (without hydrogen). Therefore, Compton CT offers the potential to replace neutron tomography, which requires much more efforts.

  8. Line-scan inspection of conifer seedlings

    Science.gov (United States)

    Rigney, Michael P.; Kranzler, Glenn A.

    1993-05-01

    Almost two billion conifer seedlings are produced in the U.S. each year to support reforestation efforts. Seedlings are graded manually to improve viability after transplanting. Manual grading is labor-intensive and subject to human variability. Our previous research demonstrated the feasibility of automated tree seedling inspection with machine vision. Here we describe a system based on line-scan imaging, providing a three-fold increase in resolution and inspection rate. A key aspect of the system is automatic recognition of the seedling root collar. Root collar diameter, shoot height, and projected shoot and root areas are measured. Sturdiness ratio and shoot/root ratio are computed. Grade is determined by comparing measured features with pre-defined set points. Seedlings are automatically sorted. The precision of machine vision and manual measurements was determined in tests at a commercial forest nursery. Manual measurements of stem diameter, shoot height, and sturdiness ratio had standard deviations three times those of machine vision measurements. Projected shoot area was highly correlated (r2 equals 0.90) with shoot volume. Projected root area had good correlation (r2 equals 0.80) with root volume. Seedlings were inspected at rates as high as ten per second.

  9. Tissue lesion created by HIFU in continuous scanning mode

    Science.gov (United States)

    Fan, Tingbo; Liu, Zhenbo; Zhang, Dong

    2012-09-01

    The lesion formation was numerically and experimentally investigated by the continuous scanning mode. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetov (KZK) equation and bio-heat equation. Measurements were performed on porcine liver tissues using a 1.01 MHz single-element focused transducer at various acoustic powers, confirmed the predicted results. Controlling of the peak temperature and lesion by the scanning speed may be exploited for improvement of efficiency in HIFU therapy.

  10. Line-scanning tomographic optical microscope with isotropic transfer function

    International Nuclear Information System (INIS)

    Gajdátsy, Gábor; Dudás, László; Erdélyi, Miklós; Szabó, Gábor

    2010-01-01

    An imaging method and optical system, referred to as a line-scanning tomographic optical microscope (LSTOM) using a combination of line-scanning technique and CT reconstruction principle, is proposed and studied theoretically and experimentally. In our implementation a narrow focus line is scanned over the sample and the reflected light is measured in a confocal arrangement. One such scan is equivalent to a transverse projection in tomography. Repeating the scanning procedure in several directions, a number of transverse projections are recorded from which the image can be obtained using conventional CT reconstruction algorithms. The resolution of the image is independent of the spatial dimensions and structure of the applied detector; furthermore, the transfer function of the system is isotropic. The imaging performance of the implemented confocal LSTOM was compared with a point-scanning confocal microscope, based on recorded images. These images demonstrate that the resolution of the confocal LSTOM exceeds (by 15%) the resolution limit of a point-scanning confocal microscope

  11. AUTOMATIC RAILWAY POWER LINE EXTRACTION USING MOBILE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2016-06-01

    Full Text Available Research on power line extraction technology using mobile laser point clouds has important practical significance on railway power lines patrol work. In this paper, we presents a new method for automatic extracting railway power line from MLS (Mobile Laser Scanning data. Firstly, according to the spatial structure characteristics of power-line and trajectory, the significant data is segmented piecewise. Then, use the self-adaptive space region growing method to extract power lines parallel with rails. Finally use PCA (Principal Components Analysis combine with information entropy theory method to judge a section of the power line whether is junction or not and which type of junction it belongs to. The least squares fitting algorithm is introduced to model the power line. An evaluation of the proposed method over a complicated railway point clouds acquired by a RIEGL VMX450 MLS system shows that the proposed method is promising.

  12. Ballooning modes on open magnetic field lines

    International Nuclear Information System (INIS)

    Hameiri, E.

    1999-01-01

    The ballooning instability on open magnetic field lines is given a thorough mathematical analysis. It is shown that resistive bounding ends (endplates) induce the same stability properties as insulating ends. When unstable, the maximal growth rate increases monotonically with boundary resistivity. An interchange instability may be present, and one necessary condition for its stability is that ∫dl/B be constant on pressure surfaces. (This is an equilibrium existence condition for systems with closed magnetic field lines.) Another necessary condition for interchange stability has the same form as in the closed line case. Precise necessary and sufficient stability criteria are given for various types of bounding ends, including insulating, resistive, and perfectly conducting. copyright 1999 American Institute of Physics

  13. Circular mode: a new scanning probe microscopy method for investigating surface properties at constant and continuous scanning velocities.

    Science.gov (United States)

    Nasrallah, Hussein; Mazeran, Pierre-Emmanuel; Noël, Olivier

    2011-11-01

    In this paper, we introduce a novel scanning probe microscopy mode, called the circular mode, which offers expanded capabilities for surface investigations especially for measuring physical properties that require high scanning velocities and/or continuous displacement with no rest periods. To achieve these specific conditions, we have implemented a circular horizontal displacement of the probe relative to the sample plane. Thus the relative probe displacement follows a circular path rather than the conventional back and forth linear one. The circular mode offers advantages such as high and constant scanning velocities, the possibility to be combined with other classical operating modes, and a simpler calibration method of the actuators generating the relative displacement. As application examples of this mode, we report its ability to (1) investigate the influence of scanning velocity on adhesion forces, (2) measure easily and instantly the friction coefficient, and (3) generate wear tracks very rapidly for tribological investigations. © 2011 American Institute of Physics

  14. Spiral scan long object reconstruction through PI line reconstruction

    International Nuclear Information System (INIS)

    Tam, K C; Hu, J; Sourbelle, K

    2004-01-01

    The response of a point object in a cone beam (CB) spiral scan is analysed. Based on the result, a reconstruction algorithm for long object imaging in spiral scan cone beam CT is developed. A region-of-interest (ROI) of the long object is scanned with a detector smaller than the ROI, and a portion of it can be reconstructed without contamination from overlaying materials. The top and bottom surfaces of the ROI are defined by two sets of PI lines near the two ends of the spiral path. With this novel definition of the top and bottom ROI surfaces and through the use of projective geometry, it is straightforward to partition the cone beam image into regions corresponding to projections of the ROI, the overlaying objects or both. This also simplifies computation at source positions near the spiral ends, and makes it possible to reduce radiation exposure near the spiral ends substantially through simple hardware collimation. Simulation results to validate the algorithm are presented

  15. Design of the scanning mode coated glass color difference online detection system

    Science.gov (United States)

    Bi, Weihong; Zhang, Yu; Wang, Dajiang; Zhang, Baojun; Fu, Guangwei

    2008-03-01

    A design of scanning mode coated glass color difference online detection system was introduced. The system consisted of color difference data acquirement part and orbit control part. The function of the color difference data acquirement part was to acquire glass spectral reflectance and then processed them to get the color difference value. Using fiber for light guiding, the reflected light from surface of glass was transmitted into light division part, and the dispersive light was imaged on linear CCD, and then the output signals from the CCD was sampled pixel by pixel, and the spectral reflectance of coated glass was obtained finally. Then, the acquired spectral reflectance signals was sent to industrial personal computer through USB interface, using standard color space and color difference formula nominated by International Commission on Illumination (CIE) in 1976 to process these signals, and the reflected color parameter and color difference of coated glass was gained in the end. The function of the orbit control part was to move the detection probe by way of transverse scanning mode above the glass strip, and control the measuring start-stop time of the color difference data acquirement part at the same time. The color difference data acquirement part of the system was put on the orbit which is after annealing area in coated glass production line, and the protected fiber probe was placed on slide of the orbit. Using single chip microcomputer to control transmission mechanism of the slide, which made the slide move by way of transverse scanning mode on the glass strip, meanwhile, the color difference data acquirement part of the system was also controlled by the single chip microcomputer, and it made the acquirement part measure color difference data when the probe reached the needed working speed and required place on the glass strip. The scanning mode coated glass color difference online detection system can measure color parameter and color difference of

  16. Probabilistic scan mode of a robot manipulator workspace using EEG signals. Part I

    International Nuclear Information System (INIS)

    Auat Cheein, Fernando A; Di Sciascio, Fernando; Freire Bastos, Teodiano; Carelli, Ricardo

    2007-01-01

    In this paper a probabilistic-based workspace scan mode of a manipulator robot is presented. The scan mode is governed by a Brain Computer Interface (BCI) based on Event Related Potentials (Synchronization and Dessynchronization events). The user is capable to select a specific position at the robot's workspace, which should be reached by the manipulator. The robot workspace is divided into cells. Each cell has a probability value associated with it. Once the robot reaches a cell, its probability value is updated. The mode the scan is made is determined by the probability of all cells at the workspace. Finally, the manipulator is teleoperated via TCP/IP

  17. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines

    Science.gov (United States)

    Bigun, A. Ya; Sidorov, O. A.; Osipov, D. S.; Girshin, S. S.; Goryunov, V. N.; Petrova, E. V.

    2018-01-01

    Electrical energy losses increase in modern grids. The losses are connected with an increase in consumption. Existing models of electric power losses estimation considering climatic factors do not allow estimating the cable temperature in real time. Considering weather and mode factors in real time allows to meet effectively and safely the consumer’s needs to minimize energy losses during transmission, to use electric power equipment effectively. These factors increase an interest in the evaluation of the dynamic thermal mode of overhead transmission lines conductors. The article discusses an approximate analytic solution of the heat balance equation in the transient operation mode of overhead lines based on the least squares method. The accuracy of the results obtained is comparable with the results of solving the heat balance equation of transient thermal mode with the Runge-Kutt method. The analysis of mode and climatic factors effect on the cable temperature in a dynamic thermal mode is presented. The calculation of the maximum permissible current for variation of weather conditions is made. The average electric energy losses during the transient process are calculated with the change of wind, air temperature and solar radiation. The parameters having the greatest effect on the transmission capacity are identified.

  18. Probabilistic scan mode of a robot manipulator workspace using EEG signals. Part II

    International Nuclear Information System (INIS)

    Auat Cheein, Fernando A; Di Sciascio, Fernando; Freire Bastos, Teodiano; Carelli, Ricardo

    2007-01-01

    In this paper a probabilistic-based workspace scan mode of a robot manipulator is presented. The workspace is divided into cells. Each cell has its own probability value associated with it. Once the robot reaches a cell, its probability value is updated. The updating process is governed by a recursive Bayes algorithm. A performance comparison between a sequential scan mode and the one proposed here is made. Mathematical derivations and experimental results are also shown in this paper

  19. Preliminary report on a new mode of CT-scanning of the thorax

    NARCIS (Netherlands)

    Veiga-Pires, J.A.; Kaiser, M.C.

    1980-01-01

    The A.A. advocate a “longitudino-axial” mode of CT-scanning in examinations of the thorax and suggest it as the standard mode in children and adults of small stature. The full development of the method is at present limited by the design of both hardware and software of the current generations of

  20. MICROSTRUCTURING OF SILICON SINGLE CRYSTALS BY FIBER LASER IN HIGH-SPEED SCANNING MODE

    Directory of Open Access Journals (Sweden)

    T. A. Trifonova

    2015-11-01

    Full Text Available Subject of Study. The surface structure of the silicon wafers (substrate with a thermally grown silicon dioxide on the surface (of SiO2/Si is studied after irradiation by pulse fiber laser of ILI-1-20 type. The main requirements for exposure modes of the system are: the preservation of the integrity of the film of silicon dioxide in the process of microstructuring and the absence of interference of surrounding irradiated areas of the substrate. Method. Studies were carried out on silicon wafers KEF-4,5 oriented in the crystallographic plane (111 with the source (natural silicon dioxide (SiO2 with thickness of about 4 nm, and SiO2 with 40 nm and 150 nm thickness, grown by thermal oxidation in moist oxygen. Also, wafers KHB-10 oriented in the plane (100 with 500 nm thickness of thermal oxide were investigated. Irradiation of SiO2/Si system was produced by laser complex based on ytterbium fiber pulse laser ILI-1-20. Nominal output power of the laser was 20 W, and the laser wavelength was λ = 1062 nm. Irradiation was carried out by a focused beam spot with a diameter of 25 microns and a pulse repetition rate of 99 kHz. The samples with 150 nm and 40 nm thickness of SiO2 were irradiated at a power density equal to 1,2·102 W/cm2, and the samples of SiO2 with 500 nm thickness were irradiated at a power density equal to 2,0·102 W/cm2. Scanning was performed using a two-axis Coordinate Scanning Device based on VM2500+ drives with control via a PC with the software package "SinMarkTM." Only one scan line was used at the maximum speed of the beam equal to 8750 mm/s. Morphology control of the irradiated samples was conducted by an optical microscope ZeissA1M with high-resolution CCD array. A scanning probe microscope Nanoedicator of the NT-MDT company was used for structural measurements. Main Results. It has been shown that at a single exposure of high-frequency pulsed laser radiation on SiO2/Si system, with maintaining the integrity of the SiO2 film

  1. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance.

    Science.gov (United States)

    Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong

    2016-05-01

    The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the

  2. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    Science.gov (United States)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  3. Side-Scan-Sonar Lines for Hudson River, NY

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Side Scan Sonar and Subbottom Profiler Tracklines. Data was collected November 5 to December 15, 2009, in the estuary north from Saugerties to Troy. Fugro utilized...

  4. Research on cutoff wavelength of dominant mode and field patterns in trapezoidal microshield lines

    OpenAIRE

    SUN, Hai; WU, Yujiang

    2012-01-01

    The influence of the position of the metallic signal strip on the cutoff characteristic of the dominant mode and the field patterns in 3 types of trapezoidal microshield lines are calculated by the edge-based finite element method. These trapezoidal microshield lines include trapezoidal microshield lines with a single signal line, dual signal lines, and 3 signal lines. The cutoff wavelength of the dominant mode can be adjusted by changing the dimensions of metallic signal strips as w...

  5. Observation of magnetic domains using a reflection mode scanning near-field optical microscope

    NARCIS (Netherlands)

    Durkam, C.; Shvets, I.V.; Lodder, J.C.

    1997-01-01

    It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of

  6. On-line pressure measurement using scanning systems

    International Nuclear Information System (INIS)

    Morss, A.G.; Watson, A.P.

    1978-08-01

    Data collection methods can be improved significantly by using pressure scanning systems in conjunction with transducers for the measurement of pressure distribution in fluid flow rigs. However, the response of pressure transducers to the slight random pressure fluctuations that occur in practice can cause some measurement problems, especially for accurate work. The nature of these pressure fluctuations is examined and suitable analysis techniques are recommended. Results obtained using these techniques are presented. It is concluded that by using the correct techniques pressure transducer systems can be used to measure pressure distributions accurately and are sufficiently sensitive to measure very small systematic effects with great precision. (author)

  7. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    Science.gov (United States)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  8. Discrimination between Newly Formed and Aged Thrombi Using Empirical Mode Decomposition of Ultrasound B-Scan Image

    Directory of Open Access Journals (Sweden)

    Jui Fang

    2015-01-01

    Full Text Available Ultrasound imaging is a first-line diagnostic method for screening the thrombus. During thrombus aging, the proportion of red blood cells (RBCs in the thrombus decreases and therefore the signal intensity of B-scan can be used to detect the thrombus age. To avoid the effect of system gain on the measurements, this study proposed using the empirical mode decomposition (EMD of ultrasound image as a strategy to classify newly formed and aged thrombi. Porcine blood samples were used for the in vitro induction of fresh and aged thrombi (at hematocrits of 40%. Each thrombus was imaged using an ultrasound scanner at different gains (15, 20, and 30 dB. Then, EMD of ultrasound signals was performed to obtain the first and second intrinsic mode functions (IMFs, which were further used to calculate the IMF-based echogenicity ratio (IER. The results showed that the performance of using signal amplitude of B-scan to reflect the thrombus age depends on gain. However, the IER is less affected by the gain in discriminating between fresh and aged thrombi. In the future, ultrasound B-scan combined with the EMD may be used to identify the thrombus age for the establishment of thrombolytic treatment planning.

  9. Multi-mode operations for on-line uninterruptible power supply

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guan, Yajuan

    2018-01-01

    In this paper, the multi-mode operation of the on-line UPS system is investigated and corresponding control strategies are proposed. The proposed control strategies are able to achieve the seamless transition in traditional normal mode, PV-aided normal mode, enhanced eco-mode and burn-in test mod...

  10. Radionuclide scanning after total knee replacement: correlation with pain and radiolucent lines. A prospective study

    DEFF Research Database (Denmark)

    Duus, B R; Boeckstyns, M; Kjaer, L

    1987-01-01

    The authors examined the relationships among Tc-99m radionuclide bone scan findings, pain, and radiolucent lines in 35 postsurgical knees. Our prospective study included bone scans, as well as radiographic and clinical examination three, seven, and 12 months after knee replacement surgery in 35...... and nonpainful knees, and the degree of isotope uptake did not correlate with the development of radiolucent lines around the prosthetic components....

  11. Scanned-energy mode photoelectron diffraction measurements at beamline 7.0.1

    International Nuclear Information System (INIS)

    Toomes, R.; Booth, N.A.; Woodruff, D.P.

    1997-01-01

    This report covers the results of the authors first experimental run, in May 1996, conducted to explore the advantages offered by the high spectral resolution available at the SpectroMicroscopy Facility on beam line 7.0 to conduct scanned-energy mode photoelectron diffraction (PhD). This technique is now a well-established method for the determination of local structure of atomic and molecular adsorbates on well-characterised surfaces. The directly-emitted component of an adsorbate core-level photoelectron wavefield interferes coherently with components of the same wavefield elastically scattered by surrounding atoms, leading to a modulation in the photoemission intensity as a function of kinetic energy in any specific emission direction. A series of such PhD modulation spectra, each typically covering energies from 50-500 eV, for a series of different emission directions, provides the basis for a quantitative structure determination of the emitter-scatterer geometry. Within the last years the authors have developed an integrated approach to extract the structural information from these photoelectron diffraction (PhD) spectra in a quantitative way. A direct data inversion technique (the so-called Projection method) provides a first-order estimate of the local adsorbate geometry in the form of an 'image' of the scatterer atoms which are nearest neighbours to the emitter. This information is then used as a starting model for optimisation of the structural parameters by comparing the experimental PhD spectra with the results of multiple scattering simulations using a code developed by Fritzsche. The optimisation uses an automated trial-and-error procedure by minimising a reliability factor which provides an objective measure of the quality of agreement between experiment and theory. The authors have successfully applied this approach to the structure determination of about 30 adsorption systems

  12. Scanned-energy mode photoelectron diffraction measurements at beamline 7.0.1

    Energy Technology Data Exchange (ETDEWEB)

    Toomes, R.; Booth, N.A.; Woodruff, D.P. [Univ. of Warwick, Coventry (United Kingdom)] [and others

    1997-04-01

    This report covers the results of the authors first experimental run, in May 1996, conducted to explore the advantages offered by the high spectral resolution available at the SpectroMicroscopy Facility on beam line 7.0 to conduct scanned-energy mode photoelectron diffraction (PhD). This technique is now a well-established method for the determination of local structure of atomic and molecular adsorbates on well-characterised surfaces. The directly-emitted component of an adsorbate core-level photoelectron wavefield interferes coherently with components of the same wavefield elastically scattered by surrounding atoms, leading to a modulation in the photoemission intensity as a function of kinetic energy in any specific emission direction. A series of such PhD modulation spectra, each typically covering energies from 50-500 eV, for a series of different emission directions, provides the basis for a quantitative structure determination of the emitter-scatterer geometry. Within the last years the authors have developed an integrated approach to extract the structural information from these photoelectron diffraction (PhD) spectra in a quantitative way. A direct data inversion technique (the so-called Projection method) provides a first-order estimate of the local adsorbate geometry in the form of an `image` of the scatterer atoms which are nearest neighbours to the emitter. This information is then used as a starting model for optimisation of the structural parameters by comparing the experimental PhD spectra with the results of multiple scattering simulations using a code developed by Fritzsche. The optimisation uses an automated trial-and-error procedure by minimising a reliability factor which provides an objective measure of the quality of agreement between experiment and theory. The authors have successfully applied this approach to the structure determination of about 30 adsorption systems.

  13. Tissue ablation accelerated by peripheral scanning mode with high-intensity focused ultrasound: a study on isolated porcine liver perfusion.

    Science.gov (United States)

    Bu, Rui; Yin, Li; Yang, Han; Wang, Qi; Wu, Feng; Zou, Jian Zhong

    2013-08-01

    The aims of this study were to investigate the feasibility of accelerated tissue ablation using a peripheral scanning mode with high-intensity focused ultrasound (HIFU) and to explore the effect of flow rate on total energy consumption of the target tissues. Using a model of isolated porcine liver perfusion via the portal vein and hepatic artery, we conducted a scanning protocol along the periphery of the target tissues using linear-scanned HIFU to carefully adjust the varying focal depth, generator power, scanning velocity and line-by-line interval over the entire ablation range. Porcine livers were divided into four ablation groups: group 1, n = 12, with dual-vessel perfusion; group 2, n = 11, with portal vein perfusion alone; group 3, n = 10, with hepatic artery perfusion alone; and group 4, n = 11, control group with no-flow perfusion. The samples were cut open consecutively at a thickness of 3 mm, and the actual ablation ranges were calculated along the periphery of the target tissues after triphenyl tetrazolium chloride staining. Total energy consumption was calculated as the sum of the energy requirements at various focal depths in each group. On the basis of the pre-supposed scanning protocol, the peripheral region of the target tissue formed a complete coagulation necrosis barrier in each group with varying dose combinations, and the volume of the peripheral necrotic area did not differ significantly among the four groups (p > 0.05). Furthermore, total energy consumption in each group significantly decreased with the corresponding decrease in flow rate (p Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Mode-dependent templates and scan order for H.264/AVC-based intra lossless coding.

    Science.gov (United States)

    Gu, Zhouye; Lin, Weisi; Lee, Bu-Sung; Lau, Chiew Tong; Sun, Ming-Ting

    2012-09-01

    In H.264/advanced video coding (AVC), lossless coding and lossy coding share the same entropy coding module. However, the entropy coders in the H.264/AVC standard were original designed for lossy video coding and do not yield adequate performance for lossless video coding. In this paper, we analyze the problem with the current lossless coding scheme and propose a mode-dependent template (MD-template) based method for intra lossless coding. By exploring the statistical redundancy of the prediction residual in the H.264/AVC intra prediction modes, more zero coefficients are generated. By designing a new scan order for each MD-template, the scanned coefficients sequence fits the H.264/AVC entropy coders better. A fast implementation algorithm is also designed. With little computation increase, experimental results confirm that the proposed fast algorithm achieves about 7.2% bit saving compared with the current H.264/AVC fidelity range extensions high profile.

  15. Determination of line edge roughness in low-dose top-down scanning electron microscopy images

    NARCIS (Netherlands)

    Verduin, T.; Kruit, P.; Hagen, C.W.

    2014-01-01

    We investigated the off-line metrology for line edge roughness (LER) determination by using the discrete power spectral density (PSD). The study specifically addresses low-dose scanning electron microscopy (SEM) images in order to reduce the acquisition time and the risk of resist shrinkage. The

  16. Line-scan macro-scale Raman chemical imaging for authentication of powdered foods and ingredients

    Science.gov (United States)

    Adulteration and fraud for powdered foods and ingredients are rising food safety risks that threaten consumers’ health. In this study, a newly developed line-scan macro-scale Raman imaging system using a 5 W 785 nm line laser as excitation source was used to authenticate the food powders. The system...

  17. Continuous versus step-by-step scanning mode of a novel 3D scanner for CyberKnife measurements

    International Nuclear Information System (INIS)

    Al Kafi, M Abdullah; Mwidu, Umar; Moftah, Belal

    2015-01-01

    The purpose of the study is to investigate the continuous versus step-by-step scanning mode of a commercial circular 3D scanner for commissioning measurements of a robotic stereotactic radiosurgery system. The 3D scanner was used for profile measurements in step-by-step and continuous modes with the intent of comparing the two scanning modes for consistency. The profile measurements of in-plane, cross-plane, 15 degree, and 105 degree were performed for both fixed cones and Iris collimators at depth of maximum dose and at 10 cm depth. For CyberKnife field size, penumbra, flatness and symmetry analysis, it was observed that the measurements with continuous mode, which can be up to 6 times faster than step-by-step mode, are comparable and produce scans nearly identical to step-by-step mode. When compared with centered step-by-step mode data, a fully processed continuous mode data gives rise to maximum of 0.50% and 0.60% symmetry and flatness difference respectfully for all the fixed cones and Iris collimators studied. - Highlights: • D scanner for CyberKnife beam data measurements. • Beam data analysis for continuous and step-by-step scan modes. • Faster continuous scanning data are comparable to step-by-step mode scan data.

  18. Line-Scan Hyperspectral Imaging Techniques for Food Safety and Quality Applications

    Directory of Open Access Journals (Sweden)

    Jianwei Qin

    2017-01-01

    Full Text Available Hyperspectral imaging technologies in the food and agricultural area have been evolving rapidly over the past 15 years owing to tremendous interest from both academic and industrial fields. Line-scan hyperspectral imaging is a major method that has been intensively researched and developed using different physical principles (e.g., reflectance, transmittance, fluorescence, Raman, and spatially resolved spectroscopy and wavelength regions (e.g., visible (VIS, near infrared (NIR, and short-wavelength infrared (SWIR. Line-scan hyperspectral imaging systems are mainly developed and used for surface inspection of food and agricultural products using area or line light sources. Some of these systems can also be configured to conduct spatially resolved spectroscopy measurements for internal or subsurface food inspection using point light sources. This paper reviews line-scan hyperspectral imaging techniques, with introduction, demonstration, and summarization of existing and emerging techniques for food and agricultural applications. The main topics include related spectroscopy techniques, line-scan measurement methods, hardware components and systems, system calibration methods, and spectral and image analysis techniques. Applications in food safety and quality are also presented to reveal current practices and future trends of line-scan hyperspectral imaging techniques.

  19. Distance measurement using frequency scanning interferometry with mode-hoped laser

    Science.gov (United States)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  20. 3D scan line method for identifying void fabric of granular materials

    Directory of Open Access Journals (Sweden)

    Theocharis Alexandros I.

    2017-01-01

    Full Text Available Among other processes measuring the void phase of porous or fractured media, scan line approach is a simplified “graphical” method, mainly used in image processing related procedures. In soil mechanics, the application of scan line method is related to the soil fabric, which is important in characterizing the anisotropic mechanical response of soils. Void fabric is of particular interest, since graphical approaches are well defined experimentally and most of them can also be easily used in numerical experiments, like the scan line method. This is in contrast to the definition of fabric based on contact normal vectors that are extremely difficult to determine, especially considering physical experiments. The scan line method has been proposed by Oda et al [1] and implemented again by Ghedia and O’Sullivan [2]. A modified method based on DEM analysis instead of image measurements of fabric has been previously proposed and implemented by the authors in a 2D scheme [3-4]. In this work, a 3D extension of the modified scan line definition is presented using PFC 3D®. The results show clearly similar trends with the 2D case and the same behaviour of fabric anisotropy is presented.

  1. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.

    Science.gov (United States)

    Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  2. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes

    Directory of Open Access Journals (Sweden)

    A. Smirnov

    2018-01-01

    Full Text Available In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm and the probe’s tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000 of the TF + probe system (Cherkun et al., 2006. We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  3. Shaping the spectra of the line-to-line voltage using signal injection in the common mode voltage

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Rasmussen, Peter Omand; Pedersen, John Kim

    2009-01-01

    A drawback of Pulse Width Modulation in electrical drives is the high harmonic content of the line to line voltages, which gives rise to Electro-Magnetic Interference and acoustic noise. By injection of a signal into the common mode voltage, the fundamental is not affected, but new frequency...

  4. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    Science.gov (United States)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  5. Higher‐order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Hao [Department of Engineering Physics, Tsinghua University, Beijing CN-100086 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); The European Organization for Nuclear Research, Geneva CH-1211 (Switzerland); Shi, Jiaru, E-mail: shij@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing CN-100086 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); The European Organization for Nuclear Research, Geneva CH-1211 (Switzerland); Wu, Xiaowei; Chen, Huaibi [Department of Engineering Physics, Tsinghua University, Beijing CN-100086 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2016-04-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  6. Higher‐order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    International Nuclear Information System (INIS)

    Zha, Hao; Shi, Jiaru; Wu, Xiaowei; Chen, Huaibi

    2016-01-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  7. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope

    International Nuclear Information System (INIS)

    Ya-Jun, Zhao; Qian, Cheng; Meng-Lu, Qian

    2010-01-01

    Based on the interaction mechanism between tip and sample in the contact mode of a scanning probe acoustic microscope (SPAM), an active mass of the sample is introduced in the mass-spring model. The tip motion and frequency response of the sample vibration mode in the SPAM are calculated by the Lagrange equation with dissipation function. For the silicon tip and glass assemblage in the SPAM the frequency response is simulated and it is in agreement with the experimental result. The living myoblast cells on the glass slide are imaged at resonance frequencies of the SPAM system, which are 20kHz, 30kHz and 120kHz. It is shown that good contrast of SPAM images could be obtained when the system is operated at the resonance frequencies of the system in high and low-frequency regions

  8. The Fresnel mode of Lorentz microscopy using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Chapman, J.N.; Waddell, E.M.; Batson, P.E.; Ferrier, R.P.

    1979-01-01

    The most widely used method of investigating ferromagnetic films in the transmission electron microscope is the Fresnel or defocus mode of Lorentz microscopy. This may be implemented either in a fixed beam or a scanning instrument. Despite a rather inefficient utilization of electrons, several advantages accrue if the latter is used, and provided it is equipped with a field emission gun, low noise images may be obtained in acceptable recording times. To extract quantitative estimates of domain wall widths from such images it is necessary to measure accurately both instrumental and specimen parameters. Methods for this are discussed and an example of an analysis using a polycrystalline permalloy film is given. (Auth.)

  9. Observation of magnetic domains using a reflection-mode scanning near-field optical microscope

    OpenAIRE

    SHVETS, IGOR

    1997-01-01

    PUBLISHED It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of plane showed optical features in a track pattern whose appearance was determined by the position of an analyzer in front of the photomultiplier tube. These features were not apparent in t...

  10. Observation of magnetic domains using a reflection mode scanning near-field optical microscope

    OpenAIRE

    Durkam, C.; Shvets, I.V.; Lodder, J.C.

    1997-01-01

    It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of plane showed optical features in a track pattern whose appearance was determined by the position of an analyzer in front of the photomultiplier tube. These features were not apparent in the topography...

  11. Reproducibility of trabecular bone score with different scan modes using dual-energy X-ray absorptiometry: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Bandirali, Michele; Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Di Leo, Giovanni [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Pastor Lopez, Maria Juana; Ulivieri, Fabio M. [Servizio di Medicina Nucleare, Ospedale Maggiore, Mineralometria Ossea Computerizzata e Ambulatorio Malattie Metabolismo Minerale e Osseo, Milano (Italy); Mai, Alessandro [Universita degli Studi di Milano, Tecniche di Radiologia Medica, per Immagini e Radioterapia, Milano (Italy); Sardanelli, Francesco [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy)

    2014-08-12

    The trabecular bone score (TBS) accounts for the bone microarchitecture and is calculated on dual-energy X-ray absorptiometry (DXA). We estimated the reproducibility of the TBS using different scan modes compared to the reproducibility bone mineral density (BMD). A spine phantom was used with a Hologic QDR-Discovery A densitometer. For each scan mode [fast array, array, high definition (HD)], 25 scans were automatically performed without phantom repositioning; a further 25 scans were performed with phantom repositioning. For each scan, the TBS was obtained. The coefficient of variation (CoV) was calculated as the ratio between standard deviation and mean; percent least significant change (LSC%) as 2.8 x CoV; reproducibility as the complement to 100 % of LSC%. Differences among scan modes were assessed using ANOVA. Without phantom repositioning, the mean TBS (mm{sup -1}) was: 1.352 (fast array), 1.321 (array), and 1.360 (HD); with phantom repositioning, it was 1.345, 1.332, and 1.362, respectively. Reproducibility of the TBS without phantom repositioning was 97.7 % (fast array), 98.3 % (array), and 98.2 % (HD); with phantom repositioning, it was 97.9 %, 98.7 %, and 98.4 %, respectively. LSC% was ≤2.26 %. Differences among scan modes were all statistically significant (p ≤ 0.019). Reproducibility of BMD was 99.1 % with all scan modes, while LSC% was from 0.86 % to 0.91 %. Reproducibility error of the TBS was 2-3-fold higher than that of BMD. Although statistically significant, differences in TBS among scan modes were within the highest LSC%. Thus, the three scan modes can be considered interchangeable. (orig.)

  12. Ultrasonic unit for line-by-line ultrasonic scanning of bodies

    International Nuclear Information System (INIS)

    Soldner, R.

    1978-01-01

    The ultrasonic unit for medical diagnostics operates by the sectorial scanning principle, which avoids direct coupling of the transducer head to the surface of the body. For this purpose, several transmitter/receiver units (approx. 100) are arranged on a partial ring of a circular arc and the ultrasonic beams, which can be triggered sequentially in time, are directed at a common intersection behind the ultrasonic window of the unit, i.e., outside the unit. A mechanical system is employed to set and adjust the partial ring carrying the transmitter/receiver units. (DG) [de

  13. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.

    Science.gov (United States)

    Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

    2014-01-01

    This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    NARCIS (Netherlands)

    Zhang, Ye; Knopf, A; Tanner, Colby; Boye, Dirk; Lomax, Antony J.

    2013-01-01

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At

  15. Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning

    International Nuclear Information System (INIS)

    Xiao Bin; Zhang Yuwen

    2007-01-01

    A three-dimensional numerical model for multiple-line sintering of loose powders on top of multiple sintered layers under the irradiation of a moving Gaussian laser beam is carried out. The overlaps between vertically deposited layers and adjacent lines which strengthen bonding are taken into account. The energy equation is formulated using the temperature transforming model and solved by the finite volume method. The effects of the number of the existing sintered layers, porosity and initial temperature coupled with the optimal combination laser intensity and scanning velocity are presented. The results show that the liquid pool moves slightly towards the negative scanning direction and the shape of the liquid pool becomes shallower with higher scanning velocity. A higher laser intensity is needed to achieve the required overlaps when the number of the existing sintered layers increases. Increasing porosity or initial temperature enhances the sintering process and thus less intensity is needed for the overlap requirement

  16. Multidirectional Scanning Model, MUSCLE, to Vectorize Raster Images with Straight Lines

    Directory of Open Access Journals (Sweden)

    Ibrahim Baz

    2008-04-01

    Full Text Available This paper presents a new model, MUSCLE (Multidirectional Scanning for Line Extraction, for automatic vectorization of raster images with straight lines. The algorithm of the model implements the line thinning and the simple neighborhood methods to perform vectorization. The model allows users to define specified criteria which are crucial for acquiring the vectorization process. In this model, various raster images can be vectorized such as township plans, maps, architectural drawings, and machine plans. The algorithm of the model was developed by implementing an appropriate computer programming and tested on a basic application. Results, verified by using two well known vectorization programs (WinTopo and Scan2CAD, indicated that the model can successfully vectorize the specified raster data quickly and accurately.

  17. TEr azimuthal modes for a biconic transmission line in the small-gap limit

    International Nuclear Information System (INIS)

    Johnson, W.A.; Mendel, C.W. Jr.; Seidel, D.B.

    1992-01-01

    Azimuthally asymmetric modes in a biconic transmission line with a small-gap angle may be approximated by ''transmission-line-like'' modes. It is shown that the errors in these approximations are second order in the gap angle and approximate error bounds are provided. As an example demonstrating the application of this analysis in biconic structures, an analysis to characterize of the electromagnetic waves in the vacuum feed of the Particle Beam Fusion Accelerator II is provided

  18. Characterization of Line Nanopatterns on Positive Photoresist Produced by Scanning Near-Field Optical Microscope

    Directory of Open Access Journals (Sweden)

    Sadegh Mehdi Aghaei

    2015-01-01

    Full Text Available Line nanopatterns are produced on the positive photoresist by scanning near-field optical microscope (SNOM. A laser diode with a wavelength of 450 nm and a power of 250 mW as the light source and an aluminum coated nanoprobe with a 70 nm aperture at the tip apex have been employed. A neutral density filter has been used to control the exposure power of the photoresist. It is found that the changes induced by light in the photoresist can be detected by in situ shear force microscopy (ShFM, before the development of the photoresist. Scanning electron microscope (SEM images of the developed photoresist have been used to optimize the scanning speed and the power required for exposure, in order to minimize the final line width. It is shown that nanometric lines with a minimum width of 33 nm can be achieved with a scanning speed of 75 µm/s and a laser power of 113 mW. It is also revealed that the overexposure of the photoresist by continuous wave laser generated heat can be prevented by means of proper photoresist selection. In addition, the effects of multiple exposures of nanopatterns on their width and depth are investigated.

  19. Line scan analysis of the component of Ru porcelain by SRXRF method

    International Nuclear Information System (INIS)

    Zhu Jian; Mao Zhenwei; Yang Yimin; Feng Min; Wang Changsui; Sun Xinmin; Guo Musen; Huang Yuying; He Wei

    2002-01-01

    The technique of the SRXRF line scan analysis was used to measure contents of 11 elements at the broken plane of the Ru porcelain from porcelain glaze to body. It is found that there exists a great different layer of contents of elements between the porcelain glaze and body. The mechanism may be that in the process of firing the porcelain, materials of glass-glaze of porcelain glaze infiltrate into the surface of porcelain body, that could fit the phenomenon of observation by different microscopes (stereomicroscope, polarizing microscope and scanning electron microscope)

  20. Multi-Mode Operation for On-line Uninterruptible Power Supply System

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Golestan, Saeed

    2018-01-01

    To enhance the robustness and disturbance rejection ability of an on-line uninterruptible power supply (UPS) system, an Internal Model Control (IMC)-based DC-link voltage regulation method is proposed in this paper. Furthermore, the multi-mode operations of the on-line UPS system are investigated...

  1. Measurements of Soil Carbon by Neutron-Gamma Analysis in Static and Scanning Modes.

    Science.gov (United States)

    Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen

    2017-08-24

    The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detectors, split electronics to separate gamma spectra due to INS and thermo-neutron capture (TNC) processes, and software for gamma spectra acquisition and data processing. This method has several advantages over other methods in that it is a non-destructive in situ method that measures the average carbon content in large soil volumes, is negligibly impacted by local sharp changes in soil carbon, and can be used in stationary or scanning modes. The result of the INS method is the carbon content from a site with a footprint of ~2.5 - 3 m 2 in the stationary regime, or the average carbon content of the traversed area in the scanning regime. The measurement range of the current INS system is >1.5 carbon weight % (standard deviation ± 0.3 w%) in the upper 10 cm soil layer for a 1 hmeasurement.

  2. Non-destructive Patterning of Carbon Electrodes by Using the Direct Mode of Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Stratmann, Lutz; Clausmeyer, Jan; Schuhmann, Wolfgang

    2015-11-16

    Patterning of glassy carbon surfaces grafted with a layer of nitrophenyl moieties was achieved by using the direct mode of scanning electrochemical microscopy (SECM) to locally reduce the nitro groups to hydroxylamine and amino functionalities. SECM and atomic force microscopy (AFM) revealed that potentiostatic pulses applied to the working electrode lead to local destruction of the glassy carbon surface, most likely caused by etchants generated at the positioned SECM tip used as the counter electrode. By applying galvanostatic pulses, and thus, limiting the current during structuring, corrosion of the carbon surface was substantially suppressed. After galvanostatic patterning, unambiguous proof of the formation of the anticipated amino moieties was possible by modulation of the pH value during the feedback mode of SECM imaging. This patterning strategy is suitable for the further bio-modification of microstructured surfaces. Alkaline phosphatase, as a model enzyme, was locally bound to the modified areas, thus showing that the technique can be used for the development of protein microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tunneling Mode of Scanning Electrochemical Microscopy: Probing Electrochemical Processes at Single Nanoparticles.

    Science.gov (United States)

    Sun, Tong; Wang, Dengchao; Mirkin, Michael V

    2018-06-18

    Electrochemical experiments at individual nanoparticles (NPs) can provide new insights into their structure-activity relationships. By using small nanoelectrodes as tips in a scanning electrochemical microscope (SECM), we recently imaged individual surface-bound 10-50 nm metal NPs. Herein, we introduce a new mode of SECM operation based on tunneling between the tip and a nanoparticle immobilized on the insulating surface. The obtained current vs. distance curves show the transition from the conventional feedback response to electron tunneling between the tip and the NP at separation distances of less than about 3 nm. In addition to high-resolution imaging of the NP topography, the tunneling mode enables measurement of the heterogeneous kinetics at a single NP without making an ohmic contact with it. The developed method should be useful for studying the effects of nanoparticle size and geometry on electrocatalytic activity in real-world applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Line scanning analysis of Dilingtou Yue porcelain in Southern Song Dynasty by SRXRF method

    International Nuclear Information System (INIS)

    Zhu Shoumei; Mao Zhenwei; Feng Min; Zhu Jian; Ling Xue; Sheng Yueming; Huang Yuying; He Wei

    2004-01-01

    The SRXRF line scanning analysis technique was used to measure the elements' content in the Dilingtou Yue porcelain sherd of Southern Song Dynasty from glaze to body. It is found that there exists a middle layer between the porcelain glaze and body. And a line scanning analysis comparison was made with the Ru porcelain in Northern Song Dynasty. There are some differences between them and the middle layer of Dilingtou Yue sherd is a little thinner than the Ru sherd's. And elements' content distributions in glaze are different from Ru porcelain's and the changes of contents from the surface to the inner side of glaze are undulatory. The results indicate that the differences may result from the different materials of body and the different kilns. (authors)

  5. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity.

    Science.gov (United States)

    Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang

    2006-12-07

    In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.

  6. Resistive effects on line-tied magnetohydrodynamic modes in cylindrical geometry

    International Nuclear Information System (INIS)

    Delzanno, Gian Luca; Evstatiev, E. G.; Finn, John M.

    2007-01-01

    An investigation of the effect of resistivity on the linear stability of line-tied magnetohydrodynamic (MHD) modes is presented in cylindrical geometry, based on the method recently developed in the paper by Evstatiev et al. [Phys. Plasmas 13, 072902 (2006)]. The method uses an expansion of the full solution of the problem in one-dimensional radial eigenfunctions. This method is applied to study sausage modes (m=0, m being the poloidal wavenumber), kink modes (m=1), and m=2 modes. All these modes can be resistively unstable. It is found that m≠0 modes can be unstable below the ideal MHD threshold due to resistive diffusion of the field lines, with growth rates proportional to resistivity. For these resistive modes, there is no indication of tearing, i.e., current sheets or boundary layers due to ideal MHD singularities. That is, resistivity acts globally on the whole plasma column and not in layers. Modes with m=0, on the other hand, can exist as tearing modes if the equilibrium axial magnetic field reverses sign within the plasma

  7. Simulation-based comparisons of four apparel cell production modes of one clothing production line

    Directory of Open Access Journals (Sweden)

    Guoqiang Pan

    2014-10-01

    Full Text Available Purpose: This research, by using the SIMIO simulation platform, provides a quantitative and comparative analysis of how the efficiency of four different cell production modes is affected. It is hoped that the outcomes will be of some help for garment factories to optimize their production lines. Design/methodology/approach: The SIMIO simulation platform was employed in the research and comparisons were made of the simulation test results about the four different production modes. Findings: The operation mode, number of operators, and number of buffer areas are key factors affecting the production line efficiency, and need to be reasonably set to achieve the highest efficiency. Originality/value: As most research literature so far is qualitative, this research provided a simulation-based quantitative analysis of the production efficiency under different cell production modes.

  8. Reactors Dynamic analysis Due to Reactivity of The RSG-Gas at One Line Cooling Mode

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji

    2003-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor power has been determined and steady state and LOFA transient analysis have also been done. To complete those analyses, the reactivity analysis was done by means of a core dynamic and thermal hydraulic code, PARET-ANL. Accident simulation was done. by a ramp reactivity accident due to control rod withdrawal. Reactivity analysis was carried out at two power range i.e. low and high power level, by imposing one line mode reactor protection limits. The results show that technically, the RSG-Gas can be operated safely using one line mode

  9. The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment.

    Science.gov (United States)

    Grainger, William F; North, Chris E; Ade, Peter A R

    2011-06-01

    We investigate the possibility of using a flat-fold beam steering mirror for a cosmic microwave background B-mode experiment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated, and a possible method of correction applied. © 2011 American Institute of Physics

  10. Tunable zero-line modes via magnetic field in bilayer graphene

    Science.gov (United States)

    Wang, Ke; Qiao, Zhenhua

    Zero-line modes appear in bilayer graphene at the internal boundary between two opposite vertical electrostatic confinements. These one-dimensional modes are metallic along the boundary and exhibit quantized conductance in the absence of inter-valley scattering. However, experimental results show that the conductance is around 0.5 e2/h rather than quantized. This observation can be explained from our numerical results, which suggest that the scattering between zero-line mode and bound states and the presence of atomic scale disorders that provide inter-valley scattering can effectively reduce the conductance to about 0.5 e2/h. We further find that out-of-plane magnetic field can strongly suppress these scattering mechanisms and gives rise to nearly quantized conductance. On one hand, the presence of magnetic field makes bound states become Landau levels, which reduces the scattering between zero-line mode and bound states. On the other hand, the wave function distributions of oppositely propagating zero-line modes at different valleys are spatially separated, which can strongly suppress the inter-valley scattering. Specifically speaking, the conductance can be increased to 3.2 e2/h at 8 T even when the atomic Anderson type disorders are considered.

  11. Computer-assisted solid lung nodule 3D volumetry on CT : influence of scan mode and iterative reconstruction: a CT phantom study

    NARCIS (Netherlands)

    Coenen, Adriaan; Honda, Osamu; van der Jagt, Eric J.; Tomiyama, Noriyuki

    2013-01-01

    To evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution

  12. Novel Automatic Detection of Pleura and B-lines (Comet-Tail Artifacts) on In-Vivo Lung Ultrasound Scans

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse

    2016-01-01

    This paper presents a novel automatic method for detection of B-lines (comet-tail artifacts) in lung ultrasound scans. B-lines are the most commonly used artifacts for analyzing the pulmonary edema. They appear as laser-like vertical beams, which arise from the pleural line and spread down without...

  13. Luminescence of Quantum Dots by Coupling with Nonradiative Surface Plasmon Modes in a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Romero, M.J.; van de Lagemaat, J.

    2009-01-01

    The electronic coupling between quantum dots (QDs) and surface plasmons (SPs) is investigated by a luminescence spectroscopy based on scanning tunneling microscopy (STM). We show that tunneling luminescence from the dot is excited by coupling with the nonradiative plasmon mode oscillating at the metallic tunneling gap formed during the STM operation. This approach to the SP excitation reveals aspects of the SP-QD coupling not accessible to the more conventional optical excitation of SPs. In the STM, luminescence from the dot is observed when and only when the SP is in resonance with the fundamental transition of the dot. The tunneling luminescence spectrum also suggests that excited SP-QD hybrid states can participate in the excitation of QD luminescence. Not only the SP excitation regulates the QD luminescence but the presence of the dot at the tunneling gap imposes restrictions to the SP that can be excited in the STM, in which the SP cannot exceed the energy of the fundamental transition of the dot. The superior SP-QD coupling observed in the STM is due to the tunneling gap acting as a tunable plasmonic resonator in which the dot is fully immersed.

  14. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    Science.gov (United States)

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-08

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

  15. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure

    Directory of Open Access Journals (Sweden)

    Yuanqiang Ren

    2017-05-01

    Full Text Available Structural health monitoring (SHM of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  16. Deformation and wear of pyramidal, silicon-nitride AFM tips scanning micrometre-size features in contact mode

    NARCIS (Netherlands)

    Bloo, M.; Haitjema, H.; Pril, W.O.

    1999-01-01

    An experimental study was carried out, in order to investigate the deformation and wear taking place on pyramidal silicon-nitride AFM tips. The study focuses on the contact mode scanning of silicon features of micrometre-size. First the deformation and the mechanisms of wear of the tip during

  17. Towards Robust Self-Calibration for Handheld 3d Line Laser Scanning

    Science.gov (United States)

    Bleier, M.; Nüchter, A.

    2017-11-01

    This paper studies self-calibration of a structured light system, which reconstructs 3D information using video from a static consumer camera and a handheld cross line laser projector. Intersections between the individual laser curves and geometric constraints on the relative position of the laser planes are exploited to achieve dense 3D reconstruction. This is possible without any prior knowledge of the movement of the projector. However, inaccurrately extracted laser lines introduce noise in the detected intersection positions and therefore distort the reconstruction result. Furthermore, when scanning objects with specular reflections, such as glossy painted or metalic surfaces, the reflections are often extracted from the camera image as erroneous laser curves. In this paper we investiagte how robust estimates of the parameters of the laser planes can be obtained despite of noisy detections.

  18. Side-Scan Sonar Image Mosaic Using Couple Feature Points with Constraint of Track Line Positions

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2018-06-01

    Full Text Available To obtain large-scale seabed surface image, this paper proposes a side-scan sonar (SSS image mosaic method using couple feature points (CFPs with constraint of track line positions. The SSS geocoded images are firstly used to form a coarsely mosaicked one and the overlapping areas between adjacent strip images can be determined based on geographic information. Inside the overlapping areas, the feature point (FP detection and registration operation are adopted for both strips. According to the detected CFPs and track line positions, an adjustment model is established to accommodate complex local distortions as well as ensure the global stability. This proposed method effectively solves the problem of target ghosting or dislocation and no accumulated errors arise in the mosaicking process. Experimental results show that the finally mosaicked image correctly reflects the object distribution, which is meaningful for understanding and interpreting seabed topography.

  19. A design of a high speed dual spectrometer by single line scan camera

    Science.gov (United States)

    Palawong, Kunakorn; Meemon, Panomsak

    2018-03-01

    A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.

  20. Automating data analysis during the inspection of boiler tubes using line scanning thermography

    Science.gov (United States)

    Ley, Obdulia; Momeni, Sepand; Ostroff, Jason; Godinez, Valery

    2012-05-01

    Failures in boiler waterwalls can occur when a relatively small amount of corrosion and loss of metal have been experienced. This study presents our efforts towards the application of Line Scanning Thermography (LST) for the analysis of thinning in boiler waterwall tubing. LST utilizes a line heat source to thermally excite the surface to be inspected and an infrared detector to record the transient surface temperature increase observed due to the presence of voids, thinning or other defects. In waterwall boiler tubes the defects that can be detected using LST correspond to corrosion pitting, hydrogen damage and wall thinning produced by inadequate burner heating or problems with the water chemistry. In this paper we discuss how the LST technique is implemented to determine thickness from the surface temperature data, and we describe our efforts towards developing a semiautomatic analysis tool to speed up the time between scanning, reporting and implementing repairs. We compare the density of data produced by the common techniques used to assess wall thickness and the data produced by LST.

  1. Slots in dielectric image line as mode launchers and circuit elements

    Science.gov (United States)

    Solbach, K.

    1981-01-01

    A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values

  2. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    Science.gov (United States)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  3. Backside illuminated CMOS-TDI line scan sensor for space applications

    Science.gov (United States)

    Cohen, Omer; Ofer, Oren; Abramovich, Gil; Ben-Ari, Nimrod; Gershon, Gal; Brumer, Maya; Shay, Adi; Shamay, Yaron

    2018-05-01

    A multi-spectral backside illuminated Time Delayed Integration Radiation Hardened line scan sensor utilizing CMOS technology was designed for continuous scanning Low Earth Orbit small satellite applications. The sensor comprises a single silicon chip with 4 independent arrays of pixels where each array is arranged in 2600 columns with 64 TDI levels. A multispectral optical filter whose spectral responses per array are adjustable per system requirement is assembled at the package level. A custom 4T Pixel design provides the required readout speed, low-noise, very low dark current, and high conversion gains. A 2-phase internally controlled exposure mechanism improves the sensor's dynamic MTF. The sensor high level of integration includes on-chip 12 bit per pixel analog to digital converters, on-chip controller, and CMOS compatible voltage levels. Thus, the power consumption and the weight of the supporting electronics are reduced, and a simple electrical interface is provided. An adjustable gain provides a Full Well Capacity ranging from 150,000 electrons up to 500,000 electrons per column and an overall readout noise per column of less than 120 electrons. The imager supports line rates ranging from 50 to 10,000 lines/sec, with power consumption of less than 0.5W per array. Thus, the sensor is characterized by a high pixel rate, a high dynamic range and a very low power. To meet a Latch-up free requirement RadHard architecture and design rules were utilized. In this paper recent electrical and electro-optical measurements of the sensor's Flight Models will be presented for the first time.

  4. Simulation Of The Secondary Cooling System Failed For One Line Mode Of RSG-GAS

    International Nuclear Information System (INIS)

    Dibyo, Sukmanto; Susyadi; Sembiring, Tagor M; Isnaeni, Darwis

    2003-01-01

    Recently, an assessment of 15 MW power reactor RSG-GAS operated using one line cooling mode is under carried out, in which is in the same manner as BA TAN policy. At the power above mentioned, requirement for the research as well as isotop production has been fulfilled. To obtain the transient condition of 1 line-cooling mode, the simulation using RELAP5.MOD3.2 code was carried out. The simulation parameters interesting known are the inlet of primary coolant temperature after failed the secondary cooling system. At the first, reactor is operated at 15 MW steady state condition using 1 line-cooling mode. Primary coolant flow rate of 430 kg/s and secondary of 550 kg/s respectively. After that the decreasing is occurred due to stop of secondary cooling pump. Therefore the primary cooling inlet temperature to the core increase cause scram reactor by inserted control rod. During the transient occur, the characteristic of primary cooling temperature pattern change were obtained. The simulation result shows that the temperature increase (ΔT) temperature to the reactor is 5,1 o C at the second of 85.5. Here is lower than ΔT for the two cooling mode of 10 o C. That temperature characteristic still tolerable against acceptable safety margin to the flow instability

  5. Spatial Variations of Poloidal and Toroidal Mode Field Line Resonances Observed by MMS

    Science.gov (United States)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Anderson, B. J.; Kepko, L.; Nakamura, R.; Plaschke, F.; Torbert, R. B.

    2017-12-01

    Field line resonances (FLRs) are magnetosphere's responses to solar wind forcing and internal instabilities generated by solar wind-magnetospheric interactions. They are standing waves along the Earth's magnetic field lines oscillating in either poloidal or toroidal modes. The two types of waves have their unique frequency characteristics. The eigenfrequency of FLRs is determined by the length of the field line and the plasma density, and thus gradually changes with L. For toroidal mode oscillations with magnetic field perturbations in the azimuthal direction, ideal MHD predicts that each field line oscillates independently with its own eigenfrequency. For poloidal mode waves with field lines oscillating radially, their frequency cannot change with L easily as L shells need to oscillate in sync to avoid efficient damping due to phase mixing. Observations, mainly during quiet times, indeed show that poloidal mode waves often exhibit nearly constant frequency across L shells. Our recent observations, on the other hand, reveal a clear L-dependent frequency trend for a long lasting storm-time poloidal wave event, indicating the wave can maintain its power with changing frequencies for an extended period [Le et al., 2017]. The spatial variation of the frequency shows discrete spatial structures. The frequency remains constant within each discrete structure that spans about 1 REalong L, and changes discretely. We present a follow-up study to investigate spatial variations of wave frequencies using the Wigner-Ville distribution. We examine both poloidal and toroidal waves under different geomagnetic conditions using multipoint observations from MMS, and compare their frequency and occurrence characteristics for insights into their generation mechanisms. Reference: Le, G., et al. (2017), Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm, Geophys. Res. Lett., 44, 3456-3464, doi:10.1002/2017GL073048.

  6. Classification and calculation of primary failure modes in bread production line

    International Nuclear Information System (INIS)

    Tsarouhas, Panagiotis H.

    2009-01-01

    In this study, we describe the classification methodology over a 2-year period of the primary failure modes in categories based on failure data of bread production line. We estimate the probabilities of these categories applying the chi-square goodness of fit test, and we calculate their joint probabilities of mass function at workstation and line level. Then, we present numerical examples in order to predict the causes and frequencies of breakdowns for workstations and for the entire bread production line that will occur in the future. The methodology is meant to guide bread and bakery product manufacturers, improving the operation of the production lines. It can also be a useful tool to maintenance engineers, who wish to analyze and improve the reliability and efficiency of the manufacturing systems

  7. Robot calibration with a photogrammetric on-line system using reseau scanning cameras

    Science.gov (United States)

    Diewald, Bernd; Godding, Robert; Henrich, Andreas

    1994-03-01

    The possibility for testing and calibration of industrial robots becomes more and more important for manufacturers and users of such systems. Exacting applications in connection with the off-line programming techniques or the use of robots as measuring machines are impossible without a preceding robot calibration. At the LPA an efficient calibration technique has been developed. Instead of modeling the kinematic behavior of a robot, the new method describes the pose deviations within a user-defined section of the robot's working space. High- precision determination of 3D coordinates of defined path positions is necessary for calibration and can be done by digital photogrammetric systems. For the calibration of a robot at the LPA a digital photogrammetric system with three Rollei Reseau Scanning Cameras was used. This system allows an automatic measurement of a large number of robot poses with high accuracy.

  8. A License Plate Locating Method Based on Tophat-bothat Changing and Line Scanning

    International Nuclear Information System (INIS)

    Hou, P G; Zhao, J; Liu, M

    2006-01-01

    The automatic license plate recognition is an important technique to obtain traffic information, it mixes computer vision, image processing techniques and pattern recognition techniques, it is an important technique in intelligent traffic system. In a vehicle license plate recognition system, plate region detection is the key step before the final recognition. This article introduces the whole process of plate region detection. Top - hat and bot - hat transformation are used for enhancing the image contrast in this paper, and wavelet threshold method is used as image filter, and a improved line scanning is used for plate region detection at last. This method has strong practicability. The experimental results demonstrate that the method introduced in this paper is effective

  9. Analysis of the response dependence of Ebt3 radiochromic film with energy, dose rate, wavelength, scanning mode and humidity

    International Nuclear Information System (INIS)

    Leon M, E. Y.; Camacho L, M. A.; Herrera G, J. A.; Garcia G, O. A.; Villarreal B, J. E.

    2016-10-01

    With the development of new modalities in radiotherapy treatments, the use of radiochromic films has increased considerably. Because the characteristics that presented, they are suitable for quality control and dose measurement. In this work and analysis of the dependence of the response of Ebt3 radiochromic films with energy, dose rate, wavelength, scan mode and humidity, for a dose range of 0-70 Gy is presented. According to the results, the response of Ebt3 radiochromic films has low dependence on energy, dose rate, scan mode and humidity. However, the sensitivity of the response Ebt3 radiochromic films has a high dependence on the wavelength of the optical system used for reading. (Author)

  10. Modes in Component Behavior Specification via EBP and their Application in Product Lines

    Czech Academy of Sciences Publication Activity Database

    Kofroň, Jan; Plášil, František; Šerý, O.

    2009-01-01

    Roč. 51, č. 1 (2009), s. 31-41 ISSN 0950-5849 R&D Projects: GA AV ČR 1ET400300504 Grant - others:GA ČR(CZ) GA201/08/0266 Institutional research plan: CEZ:AV0Z10300504 Keywords : behavior specification * component modes * software product lines Subject RIV: JC - Computer Hardware ; Software Impact factor: 1.821, year: 2009

  11. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  12. First-line managers' experiences of alternative modes of funding in elderly care in Sweden.

    Science.gov (United States)

    Antonsson, Helen; Korjonen, Susanne Eriksson; Rosengren, Kristina

    2012-09-01

    The aim of this study was to describe first-line managers' experiences of alternative modes of funding elderly care in two communities in western Sweden. A growing elderly population demands alternative modes of funding elderly care for better outcomes for patients and better efficiency as it is publicly funded through taxation. The study comprised a total of eight semi-structured interviews with first-line managers working within elderly care. The interviews were analysed using manifest qualitative content analysis. Respect for the individuals was a main concern in the study. One category, quality improvement, and four subcategories freedom of choice, organisational structure, quality awareness and market forces effects were identified to describe first-line managers' experiences of the operation of elderly care. Quality improvement was an important factor to deal with when elderly care was operated in different organisational perspectives, either private or public. The first-line manager is a key person for developing a learning organisation that encourages both staff, clients and their relatives to improve the organisation. Moreover, person-centred care strengthens the client's role in the organisation, which is in line with the government's goal for the quality improvement of elderly care. However, further research is needed on how quality improvement could be developed when different caregivers operate in the same market in order to improve care from the elderly perspective. This study highlights alternative modes of funding elderly care. The economical perspectives should not dominate without taking care of quality improvement when the operation of elderly care is planned and implemented. Strategies such as a learning organisational structure built on person-centred care could create quality improvement in elderly care. © 2012 Blackwell Publishing Ltd.

  13. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    Science.gov (United States)

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  14. Novel Infiltration Diagnostics based on Laser-line Scanning and Infrared Temperature Field Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States)

    2017-12-08

    This project targets the building energy efficiency problems induced by building infiltration/leaks. The current infiltration inspection techniques often require extensive visual inspection and/or whole building pressure test. These current techniques cannot meet more than three of the below five criteria of ideal infiltration diagnostics: 1. location and extent diagnostics, 2. building-level application, 3. least surface preparation, 4. weather-proof, and 5. non-disruption to building occupants. These techniques are either too expensive or time consuming, and often lack accuracy and repeatability. They are hardly applicable to facades/facades section. The goal of the project was to develop a novel infiltration diagnostics technology based on laser line-scanning and simultaneous infrared temperature imaging. A laboratory scale experimental setup was designed to mimic a model house of well-defined pressure difference below or above the outside pressure. Algorithms and Matlab-based programs had been developed for recognition of the hole location in infrared images. Our experiment based on laser wavelengths of 450 and 1550 nm and laser beam diameters of 4-25 mm showed that the location of the holes could be identified using laser heating; the diagnostic approach however could not readily distinguish between infiltration and non-infiltration points. To significantly improve the scanning throughput and recognition accuracy, a second approach was explored, developed, and extensively tested. It incorporates a liquid spray on the surface to induce extra phase change cooling effect. In this spray method, we termed it as PECIT (Phase-change Enhanced Cooling Infrared Thermography), phase-change enhanced cooling was used, which significantly amplifies the effect of air flow (infiltration and exfiltration). This heat transfer method worked extremely well to identify infiltration and exfiltration locations with high accuracy and increased throughput. The PECIT technique was

  15. Damage detection in composite panels based on mode-converted Lamb waves sensed using 3D laser scanning vibrometer

    Science.gov (United States)

    Pieczonka, Łukasz; Ambroziński, Łukasz; Staszewski, Wiesław J.; Barnoncel, David; Pérès, Patrick

    2017-12-01

    This paper introduces damage identification approach based on guided ultrasonic waves and 3D laser Doppler vibrometry. The method is based on the fact that the symmetric and antisymmetric Lamb wave modes differ in amplitude of the in-plane and out-of-plane vibrations. Moreover, the modes differ also in group velocities and normally they are well separated in time. For a given time window both modes can occur simultaneously only close to the wave source or to a defect that leads to mode conversion. By making the comparison between the in-plane and out-of-plane wave vector components the detection of mode conversion is possible, allowing for superior and reliable damage detection. Experimental verification of the proposed damage identification procedure is performed on fuel tank elements of Reusable Launch Vehicles designed for space exploration. Lamb waves are excited using low-profile, surface-bonded piezoceramic transducers and 3D scanning laser Doppler vibrometer is used to characterize the Lamb wave propagation field. The paper presents theoretical background of the proposed damage identification technique as well as experimental arrangements and results.

  16. The Optimization of Passengers’ Travel Time under Express-Slow Mode Based on Suburban Line

    Directory of Open Access Journals (Sweden)

    Xiaobing Ding

    2016-01-01

    Full Text Available The suburban line connects the suburbs and the city centre; it is of huge advantage to attempt the express-slow mode. The passengers’ average travel time is the key factor to reflect the level of rail transport services, especially under the express-slow mode. So it is important to study the passengers’ average travel time under express-slow, which can get benefit on the optimization of operation scheme. First analyze the main factor that affects passengers’ travel time and then mine the dynamic interactive relationship among the factors. Second, a new passengers’ travel time evolution algorithm is proposed after studying the stop schedule and the proportion of express/slow train, and then membrane computing theory algorithm is introduced to solve the model. Finally, Shanghai Metro Line 22 is set as an example to apply the optimization model to calculate the total passengers’ travel time; the result shows that the total average travel time under the express-slow mode can save 1 minute and 38 seconds; the social influence and value of it are very huge. The proposed calculation model is of great help for the decision of stop schedule and provides theoretical and methodological support to determine the proportion of express/slow trains, improves the service level, and enriches and complements the rail transit operation scheme optimization theory system.

  17. The impact of the AEC mode of tube current on the dose at CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Il Bong; Dong, Kyung Rae [Dept. of Radiological Technology, Gwangju Health University, Gwangju (Korea, Republic of); Kim, Kwang Cheol [Dept. of of Nuclear Engineering, Chosun University,Gwangju (Korea, Republic of)

    2016-11-15

    In this study, the automatic exposure control (AEC) modes of tube current (SIEMENSCare Dose 4D and GE AEC mode) that CT manufacturers are using was applied to neck, chest and abdomen in order to determine the difference in the respective dose parameters (CTDIvol, DLP and mSv) resulting from the dose reduction. Equipment in use at C university adopted Care Dose 4D of Siemens and AEC mode of General Electric (GE), and the x-ray exposure conditions were adjusted to be as identical as possible between the experiments. For the assessment of the dose reduction, the differences between the doses with and without the use of the tube current AEC mode by the respective manufacturer were measured for each body part including neck, chest and abdomen of a human phantom, Rando Phantom (Art-200x, Fluke Biomedical, USA). First, the assessment of SIEMENS-Care Dose 4D yielded the following results. At the neck, the automatic exposure control resulted in a 3.3% reduction in CTDIvol and DLP, and a 3% reduction in the effective dose, mSv, compared to manual exposure control. The automatic exposure control at the chest displayed the reduction in CTDIvol and DLP by 25.5%, and in the effective dose, mSv, by 25.4% compared to the manual exposure control. In case of abdomen, CTDIvol and DLP were shown to be reduced by 16%, and the effective dose (mSv) by 16.3% under the automatic exposure control compared to the manual exposure. Second, the assessment results of GE AEC mode are as follows. The automatic exposure control at the neck resulted in a 45.1% reduction in CTDIvol and DLP, and a 44.7% reduction in the effective dose (mSv) in comparison to the manual exposure control. At the chest, the automatic exposure control displayed a 47.6% reduction in CTDIvol and DLP, and a 47.5% reduction in the effective dose, mSv, compared to the manual exposure control. At the abdomen, it was shown that CTDIvol and DLP were reduced by 26.9%, and the effective dose (mSv) by 26.8% under the automatic

  18. The impact of the AEC mode of tube current on the dose at CT scans

    International Nuclear Information System (INIS)

    Moon, Il Bong; Dong, Kyung Rae; Kim, Kwang Cheol

    2016-01-01

    In this study, the automatic exposure control (AEC) modes of tube current (SIEMENSCare Dose 4D and GE AEC mode) that CT manufacturers are using was applied to neck, chest and abdomen in order to determine the difference in the respective dose parameters (CTDIvol, DLP and mSv) resulting from the dose reduction. Equipment in use at C university adopted Care Dose 4D of Siemens and AEC mode of General Electric (GE), and the x-ray exposure conditions were adjusted to be as identical as possible between the experiments. For the assessment of the dose reduction, the differences between the doses with and without the use of the tube current AEC mode by the respective manufacturer were measured for each body part including neck, chest and abdomen of a human phantom, Rando Phantom (Art-200x, Fluke Biomedical, USA). First, the assessment of SIEMENS-Care Dose 4D yielded the following results. At the neck, the automatic exposure control resulted in a 3.3% reduction in CTDIvol and DLP, and a 3% reduction in the effective dose, mSv, compared to manual exposure control. The automatic exposure control at the chest displayed the reduction in CTDIvol and DLP by 25.5%, and in the effective dose, mSv, by 25.4% compared to the manual exposure control. In case of abdomen, CTDIvol and DLP were shown to be reduced by 16%, and the effective dose (mSv) by 16.3% under the automatic exposure control compared to the manual exposure. Second, the assessment results of GE AEC mode are as follows. The automatic exposure control at the neck resulted in a 45.1% reduction in CTDIvol and DLP, and a 44.7% reduction in the effective dose (mSv) in comparison to the manual exposure control. At the chest, the automatic exposure control displayed a 47.6% reduction in CTDIvol and DLP, and a 47.5% reduction in the effective dose, mSv, compared to the manual exposure control. At the abdomen, it was shown that CTDIvol and DLP were reduced by 26.9%, and the effective dose (mSv) by 26.8% under the automatic

  19. X-CT imaging method for large objects using double offset scan mode

    International Nuclear Information System (INIS)

    Fu Jian; Lu Hongnian; Li Bing; Zhang Lei; Sun Jingjing

    2007-01-01

    In X-ray computed tomography (X-CT) inspection, rotate-only scanner is commonly used because this configuration offers the highest imaging speed and best utilization of X-ray dose. But it requires that the imaging region of the scanned object must fit within the X-ray beam. Another configuration, transverse-rotate scanner, has a bigger field of view, but it is much more time consuming. In this paper, a two-dimensional X-CT imaging method for large objects is proposed to overcome the existing disadvantages. The scan principle of this method has been described and the reconstruction algorithm has been deduced. The results of the computer simulation and the experiments show the validity of the new method. Analysis shows that the scan field of view of this method is 1.8 times larger than that of rotate-only X-CT. The scan speed of this method is also much quicker than transverse-rotate X-CT

  20. An Automatic Hypothesis of Electrical Lines from Range Scans and Photographs

    DEFF Research Database (Denmark)

    Krispel, Ulrich; Ullrich, Torsten; Evers, Henrik Leander

    2016-01-01

    Building information modeling (BIM) with high level of detail and semantic information on buildings throughout their lifetime are getting more and more important for stakeholders in the building domain. Currently, such models are not yet present for the majority of today’s building stock. With in......Building information modeling (BIM) with high level of detail and semantic information on buildings throughout their lifetime are getting more and more important for stakeholders in the building domain. Currently, such models are not yet present for the majority of today’s building stock...... to extract non-visible structures from visible geometric entities. This work uses domain specific geometric and semantic constraints to automatically deduce information that is not directly observable in architectural objects: electrical power supply lines. It utilizes as-built BIM data from scans of indoor...... room. Observable endpoints (sockets and switches) are detected in indoor scenes of buildings using methods from computer vision. The information from the reconstructed BIM model, as well as the detections and the generated installation zones are combined in a graph that represents all likely paths...

  1. Influence of acoustic dominant mode propagation in a trifurcated lined duct with different impedances

    International Nuclear Information System (INIS)

    Ayub, M; Tiwana, M H; Mann, A B

    2010-01-01

    In this study, we analyzed the diffraction of the acoustic dominant mode in a parallel-plate trifurcated waveguide with normal impedance boundary conditions in the case where surface impedances of the upper and lower infinite plates are different from each other. The acoustic dominant mode is incident in a soft/hard semi-infinite duct located symmetrically in the infinite lined duct. The solution of the boundary value problem using Fourier transform leads to two simultaneous modified Wiener-Hopf equations that are uncoupled using the pole removal technique. Two infinite sets of unknown coefficients are involved in the solution, which satisfy two infinite systems of linear algebraic equations. These systems are solved numerically. The new kernel functions are factorized. Some graphical results showing the influence of sundry parameters of interest on the reflection coefficient are presented.

  2. Opto-electronic scanning of colour pictures with P/sup 2/CCC-all solid state line sensors

    Energy Technology Data Exchange (ETDEWEB)

    Damann, H; Rabe, G; Zinke, M; Herrmann, M; Imjela, R; Laasch, I; Mueller, J; Neumann, K; Tauchen, G; Woelber, J

    1982-04-01

    A new one-chip all solid state line sensor (P/sup 2/CCD-Tricoli) has been realized as a basis for the opto-electronic scanning of colour pictures. The three photosensitive lines for the colour components red, green and blue contain each 652 photo elements. They are arranged in parallel on one silicon crystal, with distances of some 100 ..mu..m. The line sensor is supplied with an extra designed driving circuitry and a signal processing. For colour splitting a colour separating digital phase grating has been developed which generates the three colour components in its three central diffraction orders. Using all the development components ('Tricoli'-line-sensor, electronic circuitry, colour separation grating) a model of a slide scanner has been built up, which succesfully demonstrates the feasibility of the proposed colour scanning system.

  3. In-line femtosecond common-path interferometer in reflection mode.

    Science.gov (United States)

    Chandezon, J; Rampnoux, J-M; Dilhaire, S; Audoin, B; Guillet, Y

    2015-10-19

    An innovative method to perform femtosecond time-resolved interferometry in reflection mode is proposed. The experiment consists in the combined use of a pump-probe setup and of a fully passive in-line femtosecond common-path interferometer. The originality of this interferometer relies on the use of a single birefringent crystal first to generate a pair of phase-locked pulses and second to recombine them to interfere. As predicted by analytical modeling, this interferometer measures the temporal derivative of the ultrafast changes of the complex optical reflection coefficient of the sample. Working conditions are illustrated through picosecond opto-acoustic experiments on a thin film.

  4. Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yoshihiko, E-mail: oyamayo@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Shimizu, Akie [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Kohri, Kazunori [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2013-01-29

    We focus on the ongoing and future observations for both the 21 cm line and the CMB B-mode polarization produced by a CMB lensing, and study their sensitivities to the effective number of neutrino species, the total neutrino mass, and the neutrino mass hierarchy. We find that combining the CMB observations with future square kilometer arrays optimized for 21 cm line such as Omniscope can determine the neutrino mass hierarchy at 2{sigma}. We also show that a more feasible combination of Planck + POLARBEAR and SKA can strongly improve errors of the bounds on the total neutrino mass and the effective number of neutrino species to be {Delta}{Sigma}m{sub {nu}}{approx}0.12 eV and {Delta}N{sub {nu}}{approx}0.38 at 2{sigma}, respectively.

  5. Influence of the scan mode on the dosimetric characteristics of an irradiator Beta

    International Nuclear Information System (INIS)

    Bouzid, Radhia

    2014-01-01

    For the electron beam irradiation, the uniformity of dose applied on the surface along the scan have to be inspected because it can disturb the validity of the processed product and affect it. In order to make the qualification of the new installation in the CNSTN, dosimetric measurements were performed and done to verify the homogeneity of the accelerator's irradiation area in CNSTN. the result shows that the dose is unstable along the irradiation's field.To explain this variation, a performed study is done using the BETA calculation's code. As a conclusion, this study explains the variation in the scanning dose along the irradiated field by a beta irradiator.

  6. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents

    Science.gov (United States)

    Higgins, Laura M.; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-01-01

    Abstract. Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4:Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic. PMID:26603495

  7. Computer-assisted solid lung nodule 3D volumetry on CT. Influence of scan mode and iterative reconstruction. A CT phantom study

    International Nuclear Information System (INIS)

    Coenen, Adriaan; Honda, Osamu; Tomiyama, Noriyuki; Jagt, Eric J. van der

    2013-01-01

    The objective of this study was to evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution mode) and iterative reconstructions [0, 50 and 100% blending of adaptive statistical iterative reconstruction (ASiR) and filtered back projection]. The nodule volumes were calculated using semiautomatic software and compared with the assumed volume from the nodules. The mean absolute and relative percentage error improved when using iterative reconstruction especially when using the conventional scan mode; however, this effect was not significant. Significant reduction in volume overestimation was observed when using high-resolution scan mode (P=0.011). The high-resolution mode significantly reduces the volume overestimation of 3D volumetry. Iterative reconstruction shows a reduction in volume overestimation and error margin especially with the conventional scan mode; however, this effect was not significant. (author)

  8. Point Cloud Analysis for Uav-Borne Laser Scanning with Horizontally and Vertically Oriented Line Scanners - Concept and First Results

    Science.gov (United States)

    Weinmann, M.; Müller, M. S.; Hillemann, M.; Reydel, N.; Hinz, S.; Jutzi, B.

    2017-08-01

    In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.

  9. B-lines with Lung Ultrasound: The Optimal Scan Technique at Rest and During Stress.

    Science.gov (United States)

    Scali, Maria Chiara; Zagatina, Angela; Simova, Iana; Zhuravskaya, Nadezhda; Ciampi, Quirino; Paterni, Marco; Marzilli, Mario; Carpeggiani, Clara; Picano, Eugenio

    2017-11-01

    Various lung ultrasound (LUS) scanning modalities have been proposed for the detection of B-lines, also referred to as ultrasound lung comets, which are an important indication of extravascular lung water at rest and after exercise stress echo (ESE). The aim of our study was to assess the lung water spatial distribution (comet map) at rest and after ESE. We performed LUS at rest and immediately after semi-supine ESE in 135 patients (45 women, 90 men; age 62 ± 12 y, resting left ventricular ejection fraction = 41 ± 13%) with known or suspected heart failure or coronary artery disease. B-lines were measured by scanning 28 intercostal spaces (ISs) on the antero-lateral chest, 2nd-5th IS, along with the midaxillary (MA), anterior axillary (AA), mid-clavicular (MC) and parasternal (PS) lines. Complete 28-region, 16-region (3rd and 4th IS), 8-region (3rd IS), 4-region (3rd IS, only AA and MA) and 1-region (left 3rd IS, MA) scans were analyzed. In each space, the B-lines were counted from 0 = black lung to 10 = white lung. Interpretable images were obtained in all spaces (feasibility = 100 %). B-lines (>0 in at least 1 space) were present at ESE in 93 patients (69%) and absent in 42. More B-lines were found in the 3rd IS and along AA and MA lines. The B-line cumulative distribution was symmetric at rest (right/left = 1.10) and asymmetric with left lung predominance during stress (right/left = 0.67). The correlation of per-patient B-line number between 28-S and 16-S (R 2  = 0.9478), 8-S (R 2  = 0.9478) and 4-S scan (R 2  = 0.9146) was excellent, but only good with 1-S (R 2  = 0.8101). The average imaging and online analysis time were 5 s per space. In conclusion, during ESE, the comet map of lung water accumulation follows a predictable spatial pattern with wet spots preferentially aligned with the third IS and along the AA and MA lines. The time-saving 4-region scan is especially convenient during stress, simply dismissing dry regions and

  10. TU-CD-304-07: Intensity Modulated Electron Beam Therapy Employing Small Fields in Virtual Scanning Mode

    International Nuclear Information System (INIS)

    Rodrigues, A; Yin, F; Wu, Q; Liang, B

    2015-01-01

    Purpose: Dynamic electron radiation therapies such as dynamic electron arc radiotherapy (DEAR) utilize small fields to provide target conformity and fluence modulation. The purpose of this study is to demonstrate the feasibility of virtual scanning mode using small fields. Methods: Monte Carlo simulations (EGSnrc/BEAMnrc/DOSXYZnrc) were performed using validated Varian TrueBeam phase space files for electron beam energies of 6, 9, 12, and 16 MeV and square/circular fields (1×1/1, 2×2/2, 3×3/3, 4×4/4, 5×5/5 cm"2/cm diameter). Resulting dose distributions (kernels) were used for subsequent calculations. The following analyses were performed: (1) Comparison of composite square fields and reference 10×10 cm"2 dose distributions and (2) Scanning beam deliveries for square and circular fields realized as the convolution of kernels and scanning pattern. Preliminary beam weight and pattern optimization were also performed. Two linear scans of 10 cm with/without overlap were modeled. Comparison metrics included depth and orthogonal profiles at dmax. Results: (1) Composite fields regained reference depth dose profiles for most energies and fields within 5%. Smaller kernels and higher energies increased dose in the build-up and Bremsstrahlung region (30%, 16MeV and 1×1 cm"2), while reference dmax was maintained for all energies and composite fields. Smaller kernels (<2×2 cm"2) maintained penumbra and field size within 0.2 cm, and flatness within 2%. Deterioration of penumbra for larger kernels (5×5 cm"2) were observed. Balancing desirable dosimetry and efficiencies suggests that smaller kernels are used at edges and larger kernels in the center of the target. (2) Beam weight optimization improved cross-plane penumbra (0.2 cm) and increased the field size (0.4 cm) on average. In-plane penumbra and field size remained unchanged. Overlap depended on kernel size and optimal overlap resulted in flatness ±2%. Conclusion: Dynamic electron beam therapy in virtual scanning

  11. Comparison of radiation dose estimates, image noise, and scan duration in pediatric body imaging for volumetric and helical modes on 320-detector CT and helical mode on 64-detector CT

    International Nuclear Information System (INIS)

    Johnston, Jennifer H.; Podberesky, Daniel J.; Larson, David B.; Alsip, Christopher; Yoshizumi, Terry T.; Angel, Erin; Barelli, Alessandra; Toncheva, Greta; Egelhoff, John C.; Anderson-Evans, Colin; Nguyen, Giao B.; Frush, Donald P.; Salisbury, Shelia R.

    2013-01-01

    Advanced multidetector CT systems facilitate volumetric image acquisition, which offers theoretic dose savings over helical acquisition with shorter scan times. Compare effective dose (ED), scan duration and image noise using 320- and 64-detector CT scanners in various acquisition modes for clinical chest, abdomen and pelvis protocols. ED and scan durations were determined for 64-detector helical, 160-detector helical and volume modes under chest, abdomen and pelvis protocols on 320-detector CT with adaptive collimation and 64-detector helical mode on 64-detector CT without adaptive collimation in a phantom representing a 5-year-old child. Noise was measured as standard deviation of Hounsfield units. Compared to 64-detector helical CT, all acquisition modes on 320-detector CT resulted in lower ED and scan durations. Dose savings were greater for chest (27-46%) than abdomen/pelvis (18-28%) and chest/abdomen/pelvis imaging (8-14%). Noise was similar across scanning modes, although some protocols on 320-detector CT produced slightly higher noise. Dose savings can be achieved for chest, abdomen/pelvis and chest/abdomen/pelvis examinations on 320-detector CT compared to helical acquisition on 64-detector CT, with shorter scan durations. Although noise differences between some modes reached statistical significance, this is of doubtful diagnostic significance and will be studied further in a clinical setting. (orig.)

  12. Chiral Majorana fermion modes regulated by a scanning tunneling microscope tip

    Science.gov (United States)

    Zhou, Yan-Feng; Hou, Zhe; Zhang, Ying-Tao; Sun, Qing-Feng

    2018-03-01

    The Majorana fermion can be described by a real wave function with only two phases (zero and π ) which provide a controllable degree of freedom. We propose a strategy to regulate the phase of the chiral Majorana state by coupling with a scanning tunneling microscope tip in a system consisting of a quantum anomalous Hall insulator coupled with a superconductor. With the change in the chemical potential, the chiral Majorana state can be tuned alternately between zero and π , in which the perfect normal tunneling and perfect crossed Andreev reflection appear, respectively. The perfect crossed Andreev reflection, by which a Cooper pair can be split into two electrons going into different terminals completely, leads to a pumping current and distinct quantized resistances. These findings may provide a signature of Majorana fermions and pave a feasible avenue to regulate the phase of the Majorana state.

  13. The development of a line-scan imaging algorithm for the detection of fecal contamination on leafy geens

    Science.gov (United States)

    Yang, Chun-Chieh; Kim, Moon S.; Chuang, Yung-Kun; Lee, Hoyoung

    2013-05-01

    This paper reports the development of a multispectral algorithm, using the line-scan hyperspectral imaging system, to detect fecal contamination on leafy greens. Fresh bovine feces were applied to the surfaces of washed loose baby spinach leaves. A hyperspectral line-scan imaging system was used to acquire hyperspectral fluorescence images of the contaminated leaves. Hyperspectral image analysis resulted in the selection of the 666 nm and 688 nm wavebands for a multispectral algorithm to rapidly detect feces on leafy greens, by use of the ratio of fluorescence intensities measured at those two wavebands (666 nm over 688 nm). The algorithm successfully distinguished most of the lowly diluted fecal spots (0.05 g feces/ml water and 0.025 g feces/ml water) and some of the highly diluted spots (0.0125 g feces/ml water and 0.00625 g feces/ml water) from the clean spinach leaves. The results showed the potential of the multispectral algorithm with line-scan imaging system for application to automated food processing lines for food safety inspection of leafy green vegetables.

  14. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection

    Directory of Open Access Journals (Sweden)

    Gil Lopes

    2016-04-01

    Full Text Available This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills—Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels’ image width (1 m width of road surface with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel. Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians.

  15. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection.

    Science.gov (United States)

    Lopes, Gil; Ribeiro, A Fernando; Sillero, Neftalí; Gonçalves-Seco, Luís; Silva, Cristiano; Franch, Marc; Trigueiros, Paulo

    2016-04-19

    This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED) lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills-Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS) localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels' image width (1 m width of road surface) with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel). Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians.

  16. Retro-mode imaging and fundus autofluorescence with scanning laser ophthalmoscope of retinal dystrophies

    Directory of Open Access Journals (Sweden)

    Maurizio Battaglia

    2012-05-01

    Full Text Available Abstract Background Retinal dystrophies display a considerably wide range of phenotypic variability, which can make diagnosis and clinical staging difficult. The aim of the study is to analyze the contribution of retro-mode imaging (RMI and fundus autofluorescence (FAF to the characterization of retinal dystrophies. Methods Eighteen consecutive patients affected by retinal dystrophies underwent a complete ophthalmological examination, including best corrected visual acuity with ETDRS charts, blue-light fundus autofluorescence, (BL-FAF, near-infrared fundus autofluorescence (NIR-FAF, and RMI. The primary outcome was the identification of abnormal patterns on RMI. The secondary outcome was the correlation with the findings on BL-FAF and NIR-FAF. Results Overall, the main feature of RMI is represented by a pseudo-3D pattern of all the lesions at the posterior pole. More specifically, any accumulation of material within the retina appears as an area of elevation of different shape and size, displaying irregular and darker borders. No precise correlations between RMI, BL-AF, and NIR-AF imaging was found. Conclusions RMI and FAF appear to be useful tools for characterizing retinal dystrophies. Non-invasive diagnostic tools may yield additional information on the clinical setting and the monitoring of the patients.

  17. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    International Nuclear Information System (INIS)

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-01-01

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  18. Dynamic motion modes of high temperature superconducting maglev on a 45-m long ring test line

    Science.gov (United States)

    Lei, W. Y.; Qian, N.; Zheng, J.; Jin, L. W.; Zhang, Y.; Deng, Z. G.

    2017-10-01

    With the development of high temperature superconducting (HTS) maglev, studies on the running stability have become more and more significant to ensure the operation safety. An experimental HTS maglev vehicle was tested on a 45-m long ring test line under the speed from 4 km/h to 20 km/h. The lateral and vertical acceleration signals of each cryostat were collected by tri-axis accelerometers in real time. By analyzing the phase relationship of acceleration signals on the four cryostats, several typical motion modes of the HTS maglev vehicle, including lateral, yaw, pitch and heave motions were observed. This experimental finding is important for the next improvement of the HTS maglev system.

  19. The sinusoidal lining cells in "normal" human liver. A scanning electron microscopic investigation

    DEFF Research Database (Denmark)

    Horn, T; Henriksen, Jens Henrik Sahl; Christoffersen, P

    1986-01-01

    The scanning electron microscopic was used to study the fenestrations of human liver sinusoids. Thirteen biopsies, where light microscopy and transmission electron microscopy revealed normal sinusoidal architecture, were investigated. The number of fenestrae was calculated in acinar zone 3...

  20. Comparison of Electron Imaging Modes for Dimensional Measurements in the Scanning Electron Microscope.

    Science.gov (United States)

    Postek, Michael T; Vladár, András E; Villarrubia, John S; Muto, Atsushi

    2016-08-01

    Dimensional measurements from secondary electron (SE) images were compared with those from backscattered electron (BSE) and low-loss electron (LLE) images. With the commonly used 50% threshold criterion, the lines consistently appeared larger in the SE images. As the images were acquired simultaneously by an instrument with the capability to operate detectors for both signals at the same time, the differences cannot be explained by the assumption that contamination or drift between images affected the SE, BSE, or LLE images differently. Simulations with JMONSEL, an electron microscope simulator, indicate that the nanometer-scale differences observed on this sample can be explained by the different convolution effects of a beam with finite size on signals with different symmetry (the SE signal's characteristic peak versus the BSE or LLE signal's characteristic step). This effect is too small to explain the >100 nm discrepancies that were observed in earlier work on different samples. Additional modeling indicates that those discrepancies can be explained by the much larger sidewall angles of the earlier samples, coupled with the different response of SE versus BSE/LLE profiles to such wall angles.

  1. Planar quadrature RF transceiver design using common-mode differential-mode (CMDM transmission line method for 7T MR imaging.

    Directory of Open Access Journals (Sweden)

    Ye Li

    Full Text Available The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR in magnetic resonance (MR imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM and the differential mode (DM of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.

  2. ELABORATION OF THE 3D MODEL AND SURVEY OF THE POWER LINES USING DATA FROM AIRBORNE LASER SCANNING

    Directory of Open Access Journals (Sweden)

    Bogusława Kwoczyńska

    2016-09-01

    Full Text Available One of the methods of obtaining highly accurate and current spatial data about the terrain, as well as objects situated on it, is laser scanning. LIDAR (Light Detection and Ranging is among the most modern, dynamically developing technologies and reveals in surveying new capabilities that have been unachievable in a traditional way so far. The aim of the publication is to show the possibilities of using data from airborne laser scanning to perform the survey and visualization of the energy network, and also identification of hazards which the present network constitutes for the immediate environment using the TerraSolid software package. The survey was conducted for two independent sections of the power line, on the basis of two different clouds of points obtained from the airborne laser scanning. The first one had a density of 16 points/m2, while the other 22 pts/m2. The project was created in an environment of MicroStation V8i software using special overlays – TerraScan and TerraModeler of Finnish TerraSolid Company. The use of the test clouds of different densities was intended to indicate an optimal density of the cloud of points, which allows carrying out a survey and visualization of the energy network based on data derived from airborne laser scanning. The publication presents on particular examples the procedure of vectorization and visualization of the power line and detection of objects within a dangerous distance from it. The possibility of using applied LIDAR data, meeting the industry requirements, to the survey of power lines has been also confirmed.

  3. IDENTIFIKASI PROFIL DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR DENGAN METODE BEAM PATTERN DISCRETE-EQUI-SPACED UNSHADED LINE ARRAY

    Directory of Open Access Journals (Sweden)

    Muhammad Zainuddin Lubis

    2017-05-01

    Full Text Available Laut Punggur merupakan laut yang terletak di Batam, Kepulauan Riau yang mempunyai beragam habitat objek,dan bentuk struktur bawah laut yang memiliki dinamika laut yang sangat tinggi. Side scan sonar (SSS merupakan instrumen pengembangan sistem sonar yang mampu menunjukkan dalam gambar dua dimensional permukaan dasar laut dengan kondisi kontur, topografi, dan target secara bersamaan. Metode Beam Pattern Discrete-Equi-Spaced Unshaded Line Array digunakan untuk menghitung beam pattern dua dimensi yang tergantung pada sudut dari gelombang suara yang masuk dari sumbu array yang diterima tergantung pada sudut di mana sinar suara pada array. Penelitian ini dilakukan pada Desember 2016 di laut Punggur,Batam, Kepulauan Riau-Indonesia, dengan koordinat 104 ° 08,7102 E dan 1° 03,2448 N sampai 1 ° 03.3977 N dan 104 ° 08,8133 E, menggunakan instrumen Side Scan Sonar C-Max CM2 Tow fish dengan frekuensi 325 kHz. Hasil yang diperoleh dari perekaman terdapat 7 target, dan Beam pattern dari metode Beam Discrete-Equi-Spaced Unshaded Line Array target 4 memiliki nilai tertinggi pada directivity Pattern yaitu 21.08 dB. Hasil model beam pattern ini memiliki nilai pusat pada incidence angle (o terhadap Directivity pattern (dB tidak berada di nilai 0 ataupun pada pusat beam pattern yang dihasilkan pada target 6 dengan nilai incident angle -1.5 o dan 1.5o mengalami penurunan hingga -40 dB. Karakteristik sedimen dasar perairan di laut punggur ditemukan lebih banyak pasir. Hasil metode Beam Discrete-Equi-Spaced Unshaded Line Array ditemukan bangkai kapal tenggelam.Kata Kunci: Side Scan Sonar, Beam Pattern Discrete-Equi-Spaced Unshaded Line Array, Incidence angle, Directivity pattern IDENTIFICATION OF SEABED PROFILE USING SIDE SCAN SONAR INSTRUMENT WITH PATTERN DISCRETE-EQUI-SPACED UNSHADED LINE ARRAY METHODRiau Islands is an island that has a variety of habitat objects, and forms of submarine structures that have a very high ocean dynamics, Punggur Sea is the sea

  4. Experimental design and methodology for a new Moessbauer scan experiment: absorption line tracking

    International Nuclear Information System (INIS)

    Veiga, A.; Pasquevich, G. A.; Zelis, P. Mendoza; Sanchez, F. H.; Fernandez van Raap, M. B.; Martinez, N.

    2009-01-01

    A new experimental setup and methodology that allows the automatic tracking of a Moessbauer absorption line as its energy position varies during the experiment is introduced. As a test the sixth spectral line of FeSn 2 was tracked while temperature was varied between room temperature and a value slightly above its Neel temperature.

  5. Molecular dimensions of dried glucose oxidase on a Au(1 1 1) surface studied by dynamic mode scanning force microscopy

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Yaoita, Masashi; Nagashima, Seiichi; Higano, Michi

    2005-01-01

    We have investigated the molecular dimensions of a dried single glucose oxidase (GO) molecule adsorbed on a Au(1 1 1) surface with the UHV non-contact atomic force microscopy (NC-AFM) and tapping mode atomic force microcopy (TMAFM). The smallest air-dried GO particles in a TMAFM-measured size distribution are found to be 10-11 nm wide and 0.3-0.4 nm high. We find each collapsed ellipsoidal feature with a groove in a NC-AFM image, which measured 12 nm x 10 nm x 0.5 nm. The lateral dimensions (12 nm x 10 nm) of the observed feature is close to those of a GO monomer measured by scanning tunneling microscopy (STM) [Quijin et al., 12.2 nm x 8.9 nm as the size of one wing of an opening butterfly (dimer) appeared in a STM image] and by contact mode AFM [Quinto et al., 14 nm x 8 nm]. Our value of the vertical dimension (0.5 nm) is consistent with AFM results and molecular dynamics simulations that suggest a surface-induced complete unfolding, showing the average diameter of amino acid residues

  6. Automated transmission-mode scanning electron microscopy (tSEM for large volume analysis at nanoscale resolution.

    Directory of Open Access Journals (Sweden)

    Masaaki Kuwajima

    Full Text Available Transmission-mode scanning electron microscopy (tSEM on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm(2 (65.54 µm per side at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM system, which were only 66.59 µm(2 (8.160 µm per side at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm(2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm. Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems.

  7. SU-E-T-510: Interplay Between Spots Sizes, Spot / Line Spacing and Motion in Spot Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Lee, TK

    2015-01-01

    Purpose In proton beam configuration for spot scanning proton therapy (SSPT), one can define the spacing between spots and lines of scanning as a ratio of given spot size. If the spacing increases, the number of spots decreases which can potentially decrease scan time, and so can whole treatment time, and vice versa. However, if the spacing is too large, the uniformity of scanned field decreases. Also, the field uniformity can be affected by motion during SSPT beam delivery. In the present study, the interplay between spot/ line spacing and motion is investigated. Methods We used four Gaussian-shape spot sizes with 0.5cm, 1.0cm, 1.5cm, and 2.0cm FWHM, three spot/line spacing that creates uniform field profile which are 1/3*FWHM, σ/3*FWHM and 2/3*FWHM, and three random motion amplitudes within, +/−0.3mm, +/−0.5mm, and +/−1.0mm. We planned with 2Gy uniform single layer of 10×10cm2 and 20×20cm2 fields. Then, mean dose within 80% area of given field size, contrubuting MU per each spot assuming 1cGy/MU calibration for all spot sizes, number of spots and uniformity were calculated. Results The plans with spot/line spacing equal to or smaller than 2/3*FWHM without motion create ∼100% uniformity. However, it was found that the uniformity decreases with increased spacing, and it is more pronounced with smaller spot sizes, but is not affected by scanned field sizes. Conclusion It was found that the motion during proton beam delivery can alter the dose uniformity and the amount of alteration changes with spot size which changes with energy and spot/line spacing. Currently, robust evaluation in TPS (e.g. Eclipse system) performs range uncertainty evaluation using isocenter shift and CT calibration error. Based on presented study, it is recommended to add interplay effect evaluation to robust evaluation process. For future study, the additional interplay between the energy layers and motion is expected to present volumetric effect

  8. Can anterior junction line be used to distinguish right middle from right upper lobe on CT scan?

    International Nuclear Information System (INIS)

    Cha, Jae Heon; Suh, Ja Young; Jo, Jin Man; Jeong, Hyeon Jo; Cheon, Mal Soon; Lee, Chul Woo; Yoon, Soon Min

    1997-01-01

    To evalvate the usefulness on a CT chest scan, of the anterior junction line as an anatomical landmark to distinguish the right middle and the right upper lobe We found that the anterior junction line has a constant anatomical relationship with the right upper and middle lobe, and with this in mind, analysed connvcntional CT films of 86 patients with normal lung(group A) and 30 with architectural distortion(group B). On a series of slices, we compared the location of slice 1 with that of slice 2(slice 1:the slice which includes the lowest portion of the anterior junction line, slice 2:the initial slice, in which the right middle lobe occupies the whole of the lung anterior to the right major fissure). In group A(n=86), the right upper lobe, as seen in the anteromedial zone of slice 1, was present in 83 cases(96.5%). The right upper lobe on slice 1 was absent in two cases(2.3%) in which a minor fissure was almost completely abent. In group B(n=30), the right upper lobe on slice 1 was absent in 19 cases(63.3%). We suggest that on a CT chest scan, the anterior junction line can be used as an anatomical landmark in the differentiation of the right middle from the right upper lobe, and as an indicator of the presence of architectural distortion

  9. Rapid age determination of oysters using LA-ICP-MS line scans of shell Mg/Ca ratios

    Science.gov (United States)

    Gillikin, D. P.; Durham, S. R.; Goodwin, D. H.

    2016-02-01

    Magnesium to calcium (Mg/Ca) ratios exhibit a strong temperature dependence in foraminifera and corals, but not in bivalve mollusks. Various studies have reported Mg/Ca-temperature relationships with R2 values ranging from 0.3 to 0.8 and significantly different relationships for bivalves growing at different salinities. However, this poor temperature correlation does not render Mg/Ca data useless. A weak temperature dependence would allow time (seasons and years) to be determined along the growth axis of shells. This would provide information about age, growth rate and also allow other proxies to be aligned with time. Typically, oxygen isotopes (δ18O) are used to age shells without clear periodic growth lines, which is time consuming and expensive. Line scans using laser ablation systems can cover several centimeters of shell in a few minutes. We test this method on the resilifer of two oyster species (Crassostrea gigas and C. virginica) using a 193 nm Laser-Ablation-ICP-MS. Living oysters were collected from San Francisco Bay, North Carolina, South Carolina, and the Gulf of Mexico; fossil shells (Pleistocene) were also collected in South Carolina. Shells were sampled for δ18O values and Mg/Ca ratios. We use annual cycles in δ18O values to confidently determine age, then apply the Mg/Ca technique. Shells of both species exhibit annual cyclicity in Mg/Ca ratios using spot and line scan laser sampling, which matche the seasonal cyclicity determined using δ18O values. Results show a good correlation between ages determined using the different methods. We conclude that LA-ICP-MS line scans offer a rapid and inexpensive technique for determining age, growth rate, and timing of shell growth in oyster reslifers.

  10. Extrinsic Parameter Calibration for Line Scanning Cameras on Ground Vehicles with Navigation Systems Using a Calibration Pattern

    Directory of Open Access Journals (Sweden)

    Alexander Wendel

    2017-10-01

    Full Text Available Line scanning cameras, which capture only a single line of pixels, have been increasingly used in ground based mobile or robotic platforms. In applications where it is advantageous to directly georeference the camera data to world coordinates, an accurate estimate of the camera’s 6D pose is required. This paper focuses on the common case where a mobile platform is equipped with a rigidly mounted line scanning camera, whose pose is unknown, and a navigation system providing vehicle body pose estimates. We propose a novel method that estimates the camera’s pose relative to the navigation system. The approach involves imaging and manually labelling a calibration pattern with distinctly identifiable points, triangulating these points from camera and navigation system data and reprojecting them in order to compute a likelihood, which is maximised to estimate the 6D camera pose. Additionally, a Markov Chain Monte Carlo (MCMC algorithm is used to estimate the uncertainty of the offset. Tested on two different platforms, the method was able to estimate the pose to within 0.06 m/1.05 ∘ and 0.18 m/2.39 ∘ . We also propose several approaches to displaying and interpreting the 6D results in a human readable way.

  11. Scan-Less Line Field Optical Coherence Tomography, with Automatic Image Segmentation, as a Measurement Tool for Automotive Coatings

    Directory of Open Access Journals (Sweden)

    Samuel Lawman

    2017-04-01

    Full Text Available The measurement of the thicknesses of layers is important for the quality assurance of industrial coating systems. Current measurement techniques only provide a limited amount of information. Here, we show that spectral domain Line Field (LF Optical Coherence Tomography (OCT is able to return to the user a cross sectional B-Scan image in a single shot with no mechanical moving parts. To reliably extract layer thicknesses from such images of automotive paint systems, we present an automatic graph search image segmentation algorithm. To show that the algorithm works independently of the OCT device, the measurements are repeated with a separate time domain Full Field (FF OCT system. This gives matching mean thickness values within the standard deviations of the measured thicknesses across each B-Scan image. The combination of an LF-OCT with graph search segmentation is potentially a powerful technique for the quality assurance of non-opaque industrial coating layers.

  12. Determination of line edge roughness in low dose top-down scanning electron microscopy images

    Science.gov (United States)

    Verduin, T.; Kruit, P.; Hagen, C. W.

    2014-04-01

    We investigated off-line metrology for LER determination in low-dose SEM images to reduce the acquisition time and the risk of shrinkage. Our first attempts are based on filtering noisy (experimental) SEM images and use peak detection to measure the edge displacements and calculating the discrete PSD. However, the result of the filtering is that the power spectrum of the filter leaks into the PSD. So it is better to avoid a filter at all. We subsequently developed a method to detect edge displacements without the use of a filter. This method considers the signal profile of a SEM by integrating an experimental image of lines in the direction of the edges. The signal profile of an isolated edge is modeled as two merged Gaussians. This signal profile is then fitted against the raw (unfiltered) data of the edge pattern using an interior trust-region-reflective minimization procedure. This gives the edge displacements without the use of a filter and a filter-free version of the discrete PSD is obtained. The determination of edge displacements without the use of a filter, enables us to study how much noise is acceptable and still determine LER. To answer this question we generate random lines using the model of Palasantzas and the algorithm of Thorsos. This gives random generated edge displacements for typical values of experimental lines for the parameters of the model: 2 μm long lines (256 pixels), a correlation length ξ of 25 nm and a roughness exponent of 0.75. A noise-free top-down SEM-like image of lines is created by shifting the profile signal according to the random generated edge displacements. The image is further processed by adding Poisson-distributed noise. We consider three noise cases where the average electron density is about 2, 20 and 200 electrons per pixel. This corresponds to a charge density of (in respective order) 10 μC/cm2, 100 μC/cm2 and 1000 μC/cm2. The edge displacements of the random generated images are determined using our new

  13. [Accuracy of attenuation coefficient obtained by 137Cs single-transmission scanning in PET: comparison with conventional germanium line source].

    Science.gov (United States)

    Matsumoto, Keiichi; Kitamura, Keishi; Mizuta, Tetsuro; Shimizu, Keiji; Murase, Kenya; Senda, Michio

    2006-02-20

    Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR(+) (Siemens/CTI) , were used. For the transmission scanning, the SET-3000 G/X and ECAT HR(+) were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR(+) was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm(2) to 314 cm(2) to 628 cm(2) (apposition of the two 20 cm diameter phantoms) and 943 cm(2) (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation

  14. Accuracy of attenuation coefficient obtained by 137Cs single-transmission scanning in PET. Comparison with conventional germanium line source

    International Nuclear Information System (INIS)

    Matsumoto, Keiichi; Shimizu, Keiji; Senda, Michio; Kitamura, Keishi; Mizuta, Tetsuro; Murase, Kenya

    2006-01-01

    Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR + (Siemens/CTI), were used. For the transmission scanning, the SET-3000 G/X and ECAT HR + were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR 2 + was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm 2 to 314 cm 2 to 628 cm 2 (apposition of the two 20 cm diameter phantoms) and 943 cm 2 (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation coefficients

  15. Reaction of Br2 with adsorbed CO on Pt, studied by the surface interrogation mode of scanning electrochemical microscopy.

    Science.gov (United States)

    Wang, Qian; Rodríguez-López, Joaquín; Bard, Allen J

    2009-12-02

    Scanning electrochemical microscopy surface interrogation (SI-SECM) in the cyclic voltammetry mode was successfully used to detect and quantify adsorbed CO on a Pt electrode by reaction with electrogenerated Br(2). The two-electrode setup used in this new technique allowed the production of Br(2) on an interrogator tip, which reported a transient positive feedback above a Pt substrate at open circuit as an indication of the reactivity of this halogen with CO((ads)). Br(-) and CO(2) are shown to be the main products of the reaction (in the absence of O(2)), which may involve the formation of bromophosgene as a hydrolyzable intermediate. Under saturation conditions, CO((ads)) was reproducibly quantified at the polycrystalline Pt surface with theta(CO) approximately = 0.5. The reaction is shown to be blocked by the action of pre-adsorbed cyanide, which demonstrates the surface character of the process. The formation of CO(2) as an end product was further tested in a bulk experiment: addition of Pt black to a mixture of Br(2) in 0.5 M H(2)SO(4) through which CO was bubbled gave a precipitate of BaCO(3) in a saturated solution of Ba(OH)(2). The use of SI-SECM allowed access to a reaction that would otherwise be difficult to prove through conventional electrochemistry on a single electrode.

  16. Method for updating pipelined, single port Z-buffer by segments on a scan line

    International Nuclear Information System (INIS)

    Hannah, M.R.

    1990-01-01

    This patent describes, in a raster scan, computer controlled video display system for presenting an image to an observer. Having Z-buffer for storing Z values and a frame buffer for storing pixel values, a method for updating the Z-buffer with new Z values to replace old Z values. It comprises: calculating a new pixel value and a new Z value for each pixel location in pixel locations, performing a Z comparison for each new Z value by comparing the old Z value with the new Z value for each pixel location, the Z comparison being performed sequentially in one direction through the plurality of pixel locations, and updating the Z-buffer only after the Z comparison produces a combination of a fail condition for a current pixel location subsequent to producing a pass condition for a pixel location immediately preceding the current pixel location

  17. Line scan micro XRF analysis of engobe of whiteware painted with red, green and yellow patterns

    International Nuclear Information System (INIS)

    Yang Yimin; Wang Lihua; Zhu Jian; Wang Changsui; Yan Yan; Chen Dongliang; He Wei; Huang Yuying; Hua Wei; Xu Wei

    2008-01-01

    Whiteware painted with red, green and yellow patterns play an important role in China's development in glaze decoration. In this paper, cross-sections of the porcelain samples were scanned from glaze to body by synchrotron radiation and element contents of the samples were analyzed by SRXRF. The results revealed a transition between the glaze and engobe, and the engobe and body. In the transition area, elemental content changes were related to the raw material to form the glaze, engobe and body, and diffusing ability of the elements depended on thickness of the glaze and the elemental contents of each layer. The engobe had lower Fe and Ti concentrations than the body, hence improving the whiteness and quality of the porcelain. According to petrography, engobe was rich in mica minerals, leading to enhanced reflection effect of the white porcelain. This has not been reported before and further studies are underway. (authors)

  18. Phase Error Caused by Speed Mismatch Analysis in the Line-Scan Defect Detection by Using Fourier Transform Technique

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2015-01-01

    Full Text Available The phase error caused by the speed mismatch issue is researched in the line-scan images capturing 3D profile measurement. The experimental system is constructed by a line-scan CCD camera, an object moving device, a digital fringe pattern projector, and a personal computer. In the experiment procedure, the detected object is moving relative to the image capturing system by using a motorized translation stage in a stable velocity. The digital fringe pattern is projected onto the detected object, and then the deformed patterns are captured and recorded in the computer. The object surface profile can be calculated by the Fourier transform profilometry. However, the moving speed mismatch error will still exist in most of the engineering application occasion even after an image system calibration. When the moving speed of the detected object is faster than the expected value, the captured image will be compressed in the moving direction of the detected object. In order to overcome this kind of measurement error, an image recovering algorithm is proposed to reconstruct the original compressed image. Thus, the phase values can be extracted much more accurately by the reconstructed images. And then, the phase error distribution caused by the speed mismatch is analyzed by the simulation and experimental methods.

  19. Program for large scanning-measuring table calibration on-line with the TRA-1001 computer

    International Nuclear Information System (INIS)

    Kalmykova, L.P.; Ososkov, G.A.; Pogodina, G.A.; Skryl', I.I.

    1975-01-01

    A description of a programme variant for complex calibration of the system of boards BPS-2, is given in which the stage of measurements and accumulation of calibration data is separated from that of data processing on CDC-1604A computers. Stage-by-stage calibration allows for simultaneous and parallel measurements on all the 6 boards. Such a possibility of the boards' operation on a computer-controlled line has been used as checking of the operators' actions with current control of the data obtained. Mathematical formulae are followed by programmes' descriptions. Reception and accumulation of coordinates of the units of the calibrating plate, with a highly precise net of straight lines, are accomplished with the help of the DATREC programme working on a guiding TPA-1001 computer with simultaneous calibration of all the six BPS-2 boards. The DATREC programme is written in the SLANG-1 language. The CALBPS programme works on CDC-1604A computer, is written in FORTRAN, and calculates transformation coefficients and corresponding precision characteristics. The work has resulted in reducing the calibration time from 10-15 min. per board to 10-15 min. per all the 6 boards. The time of accumulation in the memory TPA-1001 and of recording on the CDC-608 tape recorder of calibration data is from 3 to 5 min.; the remaining time is spent on processing on a bigger CDC-1604A computer. Examples of typical output and certain results of calibration measurements are given

  20. Focal hot spot induced by a central subclavian line on bone scan.

    Science.gov (United States)

    Moslehi, Masood; Cheki, Mohsen; Dehghani, Tohid; Eftekhari, Mansoureh

    2014-01-01

    The diagnostic accuracy of nuclear medicine reporting can be improved by awareness of these instrument-related artifacts. Both awareness and experience are also important when it comes to detecting and identifying normal (and abnormal) variants. We present a case of hot spot on the upper right chest in the region of right subclavicular region resulting from injection of radiotracer from central subclavian line. A 52-year-old woman with a history of left breast cancer and recent bone pain was referred to our nuclear medicine department for skeletal survey. Anterior views of chest show a focus of increased radiotracer uptake corresponding to anterior arch of one of the right second rib. The nuclear physician reported it as a focal rib bony lesion and recommended radiological evaluation. As technician later explained, physicians realized that injection site was a central subclavian line on the right side and hot spot on that region is due to injection site. The appearance of both skeletal and soft-tissue uptake depends heavily on imaging technique (such as the route of radiotracer administration) and the interpreting physicians should be aware of the impact of technical factors on image quality.

  1. Test of the Capability of Laser Line Scan Technology to Support Benthic Habitat Mapping in Coral Reef Ecosystems, Maui Island, November 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The utility of Laser Line Scan (LLS) Technology for optical validation of benthic habitat map data from coral reef ecosystems was tested with a deployment of a...

  2. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Displaced dual-mode imaging with desorption electrospray ionization for simultaneous mass spectrometry imaging in both polarities and with several scan modes

    DEFF Research Database (Denmark)

    Janfelt, Christian; Wellner, Niels; Hansen, Harald S

    2013-01-01

    only. Simultaneous full-scan and MS/MS imaging was demonstrated on the same mouse kidney, as the mouse had been given a relatively low dose of the antidepressive drug amitriptyline. While the full-scan data allowed imaging of the endogenous phospholipids, the drug and its metabolites were only visible...

  4. Micro-PIXE line-scan measurements of the yellow eel's otolith

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Guo, H.; Tang, W.; Wei, K. [Laboratory of Ichthyology, Shanghai Ocean University, Shanghai 201306 (China); Shen, H., E-mail: haoshen@fudan.edu.cn [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Yang, M.; Mi, Y. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China)

    2011-10-15

    Anguilla japonica has a high economic value. The abundance had decreased significantly due to excessive fishing and change in the aquatic ecology. Life history patterns of A. japonica have been studied to prevent excessive fishing and make management plans. Strontium (Sr)-calcium (Ca) ratio along a line down the long axis from the core to the edge of the yellow eel's otolith was measured using micro proton induced X-ray emission (micro-PIXE). An efficient and precise method was proposed to locate the core where an otolith begins to grow, based on Sr concentration and distribution. Using this method, life history patterns of the yellow eels collected from Jingjiang River in China were investigated. In general, there are two types, river eels and estuarine eels.

  5. Micro-PIXE line-scan measurements of the yellow eel's otolith

    International Nuclear Information System (INIS)

    Zheng, Y.; Guo, H.; Tang, W.; Wei, K.; Shen, H.; Yang, M.; Mi, Y.

    2011-01-01

    Anguilla japonica has a high economic value. The abundance had decreased significantly due to excessive fishing and change in the aquatic ecology. Life history patterns of A. japonica have been studied to prevent excessive fishing and make management plans. Strontium (Sr)-calcium (Ca) ratio along a line down the long axis from the core to the edge of the yellow eel's otolith was measured using micro proton induced X-ray emission (micro-PIXE). An efficient and precise method was proposed to locate the core where an otolith begins to grow, based on Sr concentration and distribution. Using this method, life history patterns of the yellow eels collected from Jingjiang River in China were investigated. In general, there are two types, river eels and estuarine eels.

  6. Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Keil, Ulrich Dieter Felix; Hvam, Jørn Märcher

    1997-01-01

    Measurements on an ultrafast scanning tunneling microscope with simultaneous spatial and temporal resolution are presented. We show images of picosecond pulses propagating on a coplanar waveguide and resolve their mode structures. The influence of transmission line discontinuities on the mode...

  7. Scan-Mode Atmospheric-Pressure Plasma Jet Processed Reduced Graphene Oxides for Quasi-Solid-State Gel-Electrolyte Supercapacitors

    Directory of Open Access Journals (Sweden)

    Aliyah R. Hsu

    2018-01-01

    Full Text Available A scanning atmospheric-pressure plasma jet (APPJ is essential for high-throughput large-area and roll-to-roll processes. In this study, we evaluate scan-mode APPJ for processing reduced graphene oxides (rGOs that are used as the electrodes of quasi-solid-state gel-electrolyte supercapacitors. rGO nanoflakes are mixed with ethyl cellulose (EC and terpineol to form pastes for screen-printing. After screen-printing the pastes on carbon cloth, a DC-pulse nitrogen APPJ is used to process the pastes in the scan mode. The maximal temperature attained is ~550 °C with a thermal influence duration of ~10 s per scan. The pastes are scanned by APPJ for 0, 1, 3 and 5 times. X-ray photoelectron spectroscopy (XPS indicates the reduction of C-O binding content as the number of scan increases, suggesting the oxidation/decomposition of EC. The areal capacitance increases and then decreases as the number of scan increases; the best achieved areal capacitance is 15.93 mF/cm2 with one APPJ scan, in comparison to 4.38 mF/cm2 without APPJ processing. The capacitance retention rate of the supercapacitor with the best performance is ~93% after a 1000-cycle cyclic voltammetry (CV test. The optimal number of APPJ scans should enable the proper removal of inactive EC and improved wettability while minimizing the damage caused to rGOs by nitrogen APPJ processing.

  8. Liquid chromatography with high resolution mass spectrometry for identification of organic contaminants in fish fillet: screening and quantification assessment using two scan modes for data acquisition.

    Science.gov (United States)

    Munaretto, Juliana S; May, Marília M; Saibt, Nathália; Zanella, Renato

    2016-07-22

    This study proposed a strategy to identify and quantify 182 organic contaminants from different chemical classes, as for instance pesticides, veterinary drug and personal care products, in fish fillet using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF/MS). For this purpose, two different scan methods (full scan and all ions MS/MS) were evaluated to assess the best option for screening analysis in spiked fish fillet samples. In general, full scan acquisition was found to be more reliable (84%) in the automatic identification and quantification when compared to all ions MS/MS with 72% of the compounds detected. Additionally, a qualitative automatic search showed a mass accuracy error below 5ppm for 77% of the compounds in full scan mode compared to only 52% in all ions MS/MS scan. However, all ions MS/MS provides fragmentation information of the target compounds. Undoubtedly, structural information of a wide number of compounds can be obtained using high resolution mass spectrometry (HRMS), but it is necessary thoroughly assess it, in order to choose the best scan mode. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Real-time control of tearing modes using a line-of-sight electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Hennen, B A; Westerhof, E; De Baar, M R; Bongers, W A; Thoen, D J; Nuij, P W J M; Steinbuch, M; Oosterbeek, J W; Buerger, A

    2010-01-01

    The stability and performance of tokamak plasmas are limited by instabilities such as neoclassical tearing modes. This paper reports on an experimental proof of principle of a feedback control approach for real-time, autonomous suppression and stabilization of tearing modes in a tokamak. The system combines an electron cyclotron emission diagnostic for sensing of the tearing modes in the same sight line with a steerable electron cyclotron resonance heating and current drive (ECRH/ECCD) antenna. A methodology for fast detection of q = m/n = 2/1 tearing modes and retrieval of their location, rotation frequency and phase is presented. Set-points to establish alignment of the ECRH/ECCD deposition location with the centre of the tearing mode are generated in real time and forwarded in closed loop to the steerable launcher and as a modulation pulse train to the gyrotron. Experimental results demonstrate the capability of the control system to track externally perturbed tearing modes in real time.

  10. SU-F-T-138: Commissioning and Evaluating Dose Computation Models for a Dedicated Proton Line Scanning Beam Nozzle in Eclipse Treatment Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, P [Chang Gung Memorial Hospital, Proton and Radiation Therapy Center, Tao-yuan, Taiwan (China); Chang Gung University, Taoyuan, Taiwan (China); Huang, H; Cai, S; Chen, H; Wu, S; Wu, T; Lee, S; Yeh, C; Wu, T [Chang Gung Memorial Hospital, Proton and Radiation Therapy Center, Tao-yuan, Taiwan (China); Lee, C [Chang Gung University, Taoyuan, Taiwan (China)

    2016-06-15

    Purpose: In this study, we present an effective method to derive low dose envelope of the proton in-air spot fluence at beam positions other than the isocenter to reduce amount of measurements required for planning commission. Also, we demonstrate commissioning and validation results of this method to the Eclipse treatment planning system (version 13.0.29) for a Sumitomo dedicated proton line scanning beam nozzle. Methods: The in-air spot profiles at five beam-axis positions (±200, ±100 and 0 mm) were obtained in trigger mode using a MP3 Water tank (PTW-Freiburg) and a pinpoint ionization chamber (model 31014, PTW-Freiburg). Low dose envelope (below 1% of the center dose) of the spot profile at isocenter was obtained by repeated point measurements to minimize dosimetry uncertainty. The double Gaussian (DG) model was used to fit and obtain optimal σ1, σ2 and their corresponding weightings through our in-house MATLAB (Mathworks) program. σ1, σ2 were assumed to expand linearly along the beam axis from a virtual source position calculated by back projecting fitted sigmas from the single Gaussian (SG) model. Absolute doses in water were validated using an Advanced Markus chamber at the depth of 2cm with Pristine Peak (BP) R90d ranging from 5–32 cm for 10×10 cm2 scanned fields. The field size factors were verified with square fields from 2 to 20 cm at 2cm and before BP depth. Results: The absolute dose outputs were found to be within ±3%. For field size factor, the agreement between calculated and measurement were within ±2% at 2cm and ±3% before BP, except for the field size below 2×2 cm2. Conclusion: The double Gaussian model was found to be sufficient for characterizing the Sumitomo dedicated proton line scanning nozzle. With our effective double Gaussian fitting method, we are able to save significant proton beam time with acceptable output accuracy.

  11. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    Science.gov (United States)

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. © 2012 Acoustical Society of America

  12. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    Science.gov (United States)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  13. Nodalization Preparation for the Transient Simulation of Cooling System for One Line Mode of RSG-GAS

    International Nuclear Information System (INIS)

    Sukmanto Dibyo; Susyadi; Tagor MS; Darwis Isnaeni

    2004-01-01

    Cooling system is important component in RSG-GAS. To carry out the transient simulation of one line-cooling mode, the model of RSG-GAS has been prepared. To illustrate the transient condition, the RELAP5.MOD3 computer code the existing input files were used. This Input consist of kinetic, thermal, hydraulic and geometries data. Modification and decrement of number of nodalization has been done to simplification as well as running time. The reasonable result of model is arranged to determine the initial condition of input data therefore steady state condition have agreement to the analysis result of one line cooling mode of RSG-GAS. Parameter investigated are transient temperatures of cooling system after decreasing of secondary cooling system occur as function of time. These parameters can be requested using input of Minor Edit Request Simulation is conducted at the reactor power of 15 MW steady-state for one-line cooling mode in which the primary and secondary cooling of 430 kg/sec and 550 kg/sec respectively. Decreasing of secondary cooling flow is caused by pump trip. As a consequence, the control rod drop due to reactor protection system. The negative reactivity of control rod causes decreasing of reactor power. Change of pattern for the primary and secondary cooling system can be known. After that simulation depicts that increasing of temperatures occur at the certain moment since initiation temperature conditions, due to reactor shut down, curve inclined move going down. (author)

  14. Development and application of gamma scanning technology for on-line investigation of industrial process columns and vessels

    International Nuclear Information System (INIS)

    Jaafar Abdullah

    1999-01-01

    Plant Assessment Technology (PAT) group, in association with Intelligent System (IS) Group and Engineering Services Department of Malaysian Institute for Nuclear Technology Research (MINT) has developed gamma scanning facilities for on-line investigation of industrial process columns and vessels. The technology, based on the principle of gamma-ray absorption, has been successfully applied for troubleshooting of a number of distillation columns and process vessels in petroleum refineries, gas processing plants and chemical plants in the country and the region. This paper outlines basic characteristics of the system and describes the inspection procedures, and in addition, case studies are also presented. The case studies are purposely chosen to illustrate the versatility of the technology, and furthermore to demonstrate the economic benefits which can be realised from the application of this technology. (author)

  15. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    Science.gov (United States)

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  16. Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology

    Science.gov (United States)

    Yin, C.; Glaser, A.K.; Leigh, S. Y.; Chen, Y.; Wei, L.; Pillai, P. C. S.; Rosenberg, M. C.; Abeytunge, S.; Peterson, G.; Glazowski, C.; Sanai, N.; Mandella, M. J.; Rajadhyaksha, M.; Liu, J. T. C.

    2016-01-01

    There is a need for miniature optical-sectioning microscopes to enable in vivo interrogation of tissues as a real-time and noninvasive alternative to gold-standard histopathology. Such devices could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Miniature confocal microscopes have been developed by various researchers and corporations to enable optical sectioning of highly scattering tissues, all of which have necessitated various trade-offs in size, speed, depth selectivity, field of view, resolution, image contrast, and sensitivity. In this study, a miniature line-scanned (LS) dual-axis confocal (DAC) microscope, with a 12-mm diameter distal tip, has been developed for clinical point-of-care pathology. The dual-axis architecture has demonstrated an advantage over the conventional single-axis confocal configuration for reducing background noise from out-of-focus and multiply scattered light. The use of line scanning enables fast frame rates (16 frames/sec is demonstrated here, but faster rates are possible), which mitigates motion artifacts of a hand-held device during clinical use. We have developed a method to actively align the illumination and collection beams in a DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo clinical use, enables our device to achieve an optical-sectioning thickness and lateral resolution of 2.0 and 1.1 microns respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate the clinical potential of this high-speed optical-sectioning microscopy device. PMID:26977337

  17. Evidence of a spin resonance mode in the iron-based superconductor Ba(0.6)K(0.4)Fe2As2 from scanning tunneling spectroscopy.

    Science.gov (United States)

    Shan, Lei; Gong, Jing; Wang, Yong-Lei; Shen, Bing; Hou, Xingyuan; Ren, Cong; Li, Chunhong; Yang, Huan; Wen, Hai-Hu; Li, Shiliang; Dai, Pengcheng

    2012-06-01

    We used high-resolution scanning tunneling spectroscopy to study the hole-doped iron pnictide superconductor Ba(0.6)K(0.4)Fe(2)As(2) (T(c)=38 K). Features of a bosonic excitation (mode) are observed in the measured quasiparticle density of states. The bosonic features are intimately associated with the superconducting order parameter and have a mode energy of ~14 meV, similar to the spin resonance measured by inelastic neutron scattering. These results indicate a strong electron-spin excitation coupling in iron pnictide superconductors, similar to that in high-T(c) copper oxide superconductors.

  18. Autonomous Control Strategy of DC Microgrid for Islanding Mode Using Power Line Communication

    Directory of Open Access Journals (Sweden)

    Dong-Keun Jeong

    2018-04-01

    Full Text Available This paper proposes a DC-bus signaling (DBS method for autonomous power management in a DC microgrid, used to improve its reliability. Centralized power management systems require communication between the power sources and loads. However, the DBS method operates based on the common DC-bus voltage and does not require communication. Based on the DC-bus voltage band, the DC-bus voltage can be used to inform the status of the DC-bus in various scenarios. The DC microgrid operates independently to maintain the system stably in the DC-bus voltage band. The DC microgrid can be divided into a grid-connected mode and an islanding mode. This paper proposes a control strategy based on power management of various independent components in islanding mode. In addition, the autonomous control method for switching the converter’s operation between grid-connected mode and islanding mode is proposed. A DC microgrid test bed consisting of a grid-connected AC/DC converter, a bidirectional DC/DC converter, a renewable energy simulator, DC home appliances and a DC-bus protector is used to test the proposed control strategy. The proposed autonomous control strategy is experimentally verified using the DC microgrid test bed.

  19. Scanning electron microscope measurement of width and shape of 10 nm patterned lines using a JMONSEL-modeled library

    Energy Technology Data Exchange (ETDEWEB)

    Villarrubia, J.S., E-mail: john.villarrubia@nist.gov [Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Vladár, A.E.; Ming, B. [Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Kline, R.J.; Sunday, D.F. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Chawla, J.S.; List, S. [Intel Corporation, RA3-252, 5200 NE Elam Young Pkwy, Hillsboro, OR 97124 (United States)

    2015-07-15

    The width and shape of 10 nm to 12 nm wide lithographically patterned SiO{sub 2} lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm.

  20. Scanning electron microscope measurement of width and shape of 10nm patterned lines using a JMONSEL-modeled library.

    Science.gov (United States)

    Villarrubia, J S; Vladár, A E; Ming, B; Kline, R J; Sunday, D F; Chawla, J S; List, S

    2015-07-01

    The width and shape of 10nm to 12 nm wide lithographically patterned SiO2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm. Published by Elsevier B.V.

  1. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Science.gov (United States)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  2. Metabolism of furazolidone: alternative pathways and modes of toxicity in different cell lines

    NARCIS (Netherlands)

    Angelis, de I.; Rossi, L.; Pedersen, J.Z.; Vignoli, A.L.; Vincentini, O.; Hoogenboom, L.A.P.; Polman, T.H.G.; Stammati, A.; Zucco, F.

    1999-01-01

    1. The metabolism and cytotoxicity of the antimicrobial nitrofuran drug furazolidone have been studied in Caco-2, HEp-2 and V79 cell lines. Free radical production, metabolite pattern, formation of bound residues, inhibition of cellular replication and protection by the antioxidant glutathione were

  3. The effect of sidewall roughness on line edge roughness in top-down scanning electron microscopy images

    Science.gov (United States)

    Verduin, T.; Lokhorst, S. R.; Kruit, P.; Hagen, C. W.

    2015-03-01

    We have investigated in a numerical study the determination of sidewall roughness (SWR) from top down scanning electron microscopy (SEM) images. In a typical metrology application, top-down SEM images are acquired in a (critical-dimension) SEM and the roughness is analyzed. However, the true size, shape and roughness characteristics of resist features are not fully investigated in the analysis of top-down SEM images. In reality, rough resist features are complex three-dimensional structures and the characterization naturally extends to the analysis of SWR. In this study we randomly generate images of rough lines and spaces, where the lines are made of PMMA on a silicon substrate. The lines that we study have a length of 2 µm, a width of 32nm and a height of 32 nm. The SWR is modeled by using the power spectral density (PSD) function of Palasantzas, which characterizes roughness by the standard deviation σ, correlation length ξ and roughness exponent α . The actual roughness is generated by application of the method of Thorsos in two dimensions. The images are constructed by using a home-built program for simulating electron-specimen interactions. The program that we have developed is optimized for complex arbitrary geometries and large number of incident low energy primary electrons by using multi-core CPUs and GPUs. The program uses the dielectric function model for inelastic scattering events and has an implementation specifically for low energy electrons. A satisfactory comparison is made between the secondary electron yields from the home-built program and another program found in literature. In order to reduce the risk of shrinkage, we use a beam energy of 300 eV and a spot size of 3 nm. Each pixel is exposed with 20 electrons on average (≍ 276 µC/cm2), following the Poisson distribution to account for illumination shot noise. We have assumed that the detection of electrons is perfect and does not introduce additional noise. We measure line edge

  4. Printing line/space patterns on nonplanar substrates using a digital micromirror device-based point-array scanning technique

    Science.gov (United States)

    Kuo, Hung-Fei; Kao, Guan-Hsuan; Zhu, Liang-Xiu; Hung, Kuo-Shu; Lin, Yu-Hsin

    2018-02-01

    This study used a digital micromirror device (DMD) to produce point-array patterns and employed a self-developed optical system to define line-and-space patterns on nonplanar substrates. First, field tracing was employed to analyze the aerial images of the lithographic system, which comprised an optical system and the DMD. Multiobjective particle swarm optimization was then applied to determine the spot overlapping rate used. The objective functions were set to minimize linewidth and maximize image log slope, through which the dose of the exposure agent could be effectively controlled and the quality of the nonplanar lithography could be enhanced. Laser beams with 405-nm wavelength were employed as the light source. Silicon substrates coated with photoresist were placed on a nonplanar translation stage. The DMD was used to produce lithographic patterns, during which the parameters were analyzed and optimized. The optimal delay time-sequence combinations were used to scan images of the patterns. Finally, an exposure linewidth of less than 10 μm was successfully achieved using the nonplanar lithographic process.

  5. Scanning thermal microscopy based on a quartz tuning fork and a micro-thermocouple in active mode (2ω method)

    International Nuclear Information System (INIS)

    Bontempi, Alexia; Nguyen, Tran Phong; Salut, Roland; Thiery, Laurent; Teyssieux, Damien; Vairac, Pascal

    2016-01-01

    A novel probe for scanning thermal microscope using a micro-thermocouple probe placed on a Quartz Tuning Fork (QTF) is presented. Instead of using an external deflection with a cantilever beam for contact detection, an original combination of piezoelectric resonator and thermal probe is employed. Due to a non-contact photothermal excitation principle, the high quality factor of the QTF allows the probe-to-surface contact detection. Topographic and thermal scanning images obtained on a specific sample points out the interest of our system as an alternative to cantilevered resistive probe systems which are the most spread.

  6. Scanning thermal microscopy based on a quartz tuning fork and a micro-thermocouple in active mode (2ω method).

    Science.gov (United States)

    Bontempi, Alexia; Nguyen, Tran Phong; Salut, Roland; Thiery, Laurent; Teyssieux, Damien; Vairac, Pascal

    2016-06-01

    A novel probe for scanning thermal microscope using a micro-thermocouple probe placed on a Quartz Tuning Fork (QTF) is presented. Instead of using an external deflection with a cantilever beam for contact detection, an original combination of piezoelectric resonator and thermal probe is employed. Due to a non-contact photothermal excitation principle, the high quality factor of the QTF allows the probe-to-surface contact detection. Topographic and thermal scanning images obtained on a specific sample points out the interest of our system as an alternative to cantilevered resistive probe systems which are the most spread.

  7. Scanning thermal microscopy based on a quartz tuning fork and a micro-thermocouple in active mode (2ω method)

    Energy Technology Data Exchange (ETDEWEB)

    Bontempi, Alexia; Nguyen, Tran Phong; Salut, Roland; Thiery, Laurent; Teyssieux, Damien; Vairac, Pascal [FEMTO-ST Institute UMR 6174, Université de Franche-Comté, CNRS, ENSMM, UTBM, 15B Avenue des Montboucons, F-25030 Besançon (France)

    2016-06-15

    A novel probe for scanning thermal microscope using a micro-thermocouple probe placed on a Quartz Tuning Fork (QTF) is presented. Instead of using an external deflection with a cantilever beam for contact detection, an original combination of piezoelectric resonator and thermal probe is employed. Due to a non-contact photothermal excitation principle, the high quality factor of the QTF allows the probe-to-surface contact detection. Topographic and thermal scanning images obtained on a specific sample points out the interest of our system as an alternative to cantilevered resistive probe systems which are the most spread.

  8. Solving of some Problems with On-Line Mode Measurement of Partial Discharges

    Directory of Open Access Journals (Sweden)

    Karel Zalis

    2004-01-01

    Full Text Available This paper deals with the problems discussing the transition from off-line diagnostic methods to on-line ones. Based on the experience with commercial partial discharge measuring equipment a new digital system for the evaluation of partial discharge measurement including software and hardware facilities has been developed at the Czech Technical University in Prague. Two expert systems work in this complex evaluating system: a rule-based expert system performing an amplitude analysis of partial discharge impulses for determining the damage of the insulation system, and a neural network which is used for a phase analysis of partial discharge impulses to determine the kind of partial discharge activity. Problem of the elimination of disturbances is also discussed.

  9. Effect of voltage sags on digitally controlled line connected switched-mode power supplies

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2012-01-01

    Different voltage disorders like voltage fluctuations, sags, frequency variations may occur in the power supply networks due to different fault conditions. These deviations from normal operation affects in different ways the line connected devices. Standards were developed to protect and ensure...... of voltage sags is analyzed. Fault tolerant control algorithm was designed, implemented and is discussed. The fault conditions and their effects were investigated at different power levels....

  10. Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode.

    Science.gov (United States)

    Fernández, José L; Bard, Allen J

    2003-07-01

    The oxygen reduction reaction (ORR) in acidic medium was studied on different electrode materials by scanning electrochemical microscopy (SECM) operating in a new variation of the tip generation-substrate collection mode. An ultramicroelectrode tip placed close to the substrate electrode oxidizes water to oxygen at a constant current. The substrate is held at a potential where the tip-generated oxygen is reduced and the resulting substrate current is measured. By changing the substrate potential, it is possible to obtain a polarization (current-potential) curve, which depends on the electrocatalytic activity of the substrate material. The main difference between this mode and the classical feedback SECM mode of operation is that the feedback diffusion process is not required for the measurement, allowing its application for studying the ORR in acidic solutions. Activity-sensitive images of heterogeneous surfaces, e.g., with Pt and Au electrodes, were obtained from the substrate current when the x-y plane was scanned with the tip. The usefulness of this technique for imaging electrocatalytic activity of smooth metallic electrodes and of highly dispersed fuel cell-type electrocatalysts was demonstrated. The application of this method to the combinatorial chemical analysis of electrode materials and electrocatalysts is discussed.

  11. POINT CLOUD ANALYSIS FOR UAV-BORNE LASER SCANNING WITH HORIZONTALLY AND VERTICALLY ORIENTED LINE SCANNERS – CONCEPT AND FIRST RESULTS

    Directory of Open Access Journals (Sweden)

    M. Weinmann

    2017-08-01

    Full Text Available In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.

  12. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, Rick; Jilbert, Tom; Mason, Paul R D; de Lange, Gert J.; Reichart, Gert Jan

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (μm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  13. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, R.; Jilbert, T.; de Lange, G.J.; Reichart, G.J.

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (µm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  14. Probing the limits of Si:P δ-doped devices patterned by a scanning tunneling microscope in a field-emission mode

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, M.; Carr, S. M.; Ten Eyck, G.; Dominguez, J.; Carroll, M. S.; Bussmann, E. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Subramania, G. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Pluym, T.

    2014-10-20

    Recently, a single atom transistor was deterministically fabricated using phosphorus in Si by H-desorption lithography with a scanning tunneling microscope (STM). This milestone in precision, achieved by operating the STM in the conventional tunneling mode, typically utilizes slow (∼10{sup 2} nm{sup 2}/s) patterning speeds. By contrast, using the STM in a high-voltage (>10 V) field-emission mode, patterning speeds can be increased by orders of magnitude to ≳10{sup 4} nm{sup 2}/s. We show that the rapid patterning negligibly affects the functionality of relatively large micron-sized features, which act as contacting pads for these devices. For nanoscale structures, we show that the resulting electrical transport is consistent with the donor incorporation chemistry constraining the electrical dimensions to a scale of 10 nm even though the pattering spot size is 40 nm.

  15. Comparison of the biometric values obtained by two different A-mode ultrasound devices (Eye Cubed vs. PalmScan): a transversal, descriptive, and comparative study.

    Science.gov (United States)

    Velez-Montoya, Raul; Shusterman, Eugene Mark; López-Miranda, Miriam Jessica; Mayorquin-Ruiz, Mariana; Salcedo-Villanueva, Guillermo; Quiroz-Mercado, Hugo; Morales-Cantón, Virgilio

    2010-03-24

    To assess the reliability of the measurements obtained with the PalmScan, when compared with another standardized A-mode ultrasound device, and assess the consistency and correlation between the two methods. Transversal, descriptive, and comparative study. We recorded the axial length (AL), anterior chamber depth (ACD) and lens thickness (LT) obtained with two A-mode ultrasounds (PalmScan A2000 and Eye Cubed) using an immersion technique. We compared the measurements with a two-sample t-test. Agreement between the two devices was assessed with Bland-Altman plots and 95% limits of agreement. 70 eyes of 70 patients were enrolled in this study. The measurements with the Eye Cubed of AL and ACD were shorter than the measurements taken by the PalmScan. The differences were not statistically significant regarding AL (p < 0.4) but significant regarding ACD (p < 0.001). The highest agreement between the two devices was obtained during LT measurement. The PalmScan measurements were shorter, but not statistically significantly (p < 0.2). The values of AL and LT, obtained with both devices are not identical, but within the limits of agreement. The agreement is not affected by the magnitude of the ocular dimensions (but only between range of 20 mm to 27 mm of AL and 3.5 mm to 5.7 mm of LT). A correction of about 0.5 D could be considered if an intraocular lens is being calculated. However due to the large variability of the results, the authors recommend discretion in using this conversion factor, and to adjust the power of the intraocular lenses based upon the personal experience of the surgeon.

  16. Relative biological effectiveness in a proton spread-out Bragg peak formed by pencil beam scanning mode

    Czech Academy of Sciences Publication Activity Database

    Michaelidesová, Anna; Vachelová, Jana; Puchalská, M.; Pachnerová Brabcová, Kateřina; Vondráček, V.; Sihver, L.; Davídková, Marie

    2017-01-01

    Roč. 40, č. 2 (2017), s. 359-368 ISSN 0158-9938 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : Relative biological effectiveness * Proton therapy * Clonogennic assay * Micronuclei assay * Monte Carlo simulations * Scanning beam Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.171, year: 2016

  17. The decay modes of proton drip-line nuclei with A between 42 and 47

    International Nuclear Information System (INIS)

    Borrel, V.; Dogny, S.; Guillemaud-Mueller, D.; Mueller, A.C.; Pougheon, F.; Sorlin, O.; Bazin, D.; Del Moral, R.; Dufour, J.P.; Faux, L.; Fleury, A.; Hubert, F.; Marchand, C.; Pravikoff, M.S.; Chubarian, G.G.

    1992-01-01

    Neutron-deficient isotopes with Z = 21 to 26 have been produced as projectile-like fragments of an intense 58 Ni GANIL beam of 69 MeV/nucleon. The nuclei selected by the upgraded LISE3 spectrometer were identified and implanted in a silicon detector telescope. The 43 Cr, 47 Fe and 46 Fe isotopes were identified for the first time whereas 45 Fe, 45 Mn, 44 Mn and 42 V were not observed, indicating probable instability of these nuclei against particle emission. Measurements of the half-lives of 43 Cr and 46 Mn have been performed and the analysis of their measured beta-delayed proton spectra has given, through the Isobaric Multiplet Mass Equation, an empirical estimation of their masses. Half-lives of 44 Cr, 43 V, 47 Fe and 46 Fe have also been measured. A discussion of various mass predictions for nuclei at the proton drip-line is given

  18. List-Mode PET Motion Correction Using Markerless Head Tracking: Proof-of-Concept With Scans of Human Subject

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sullivan, Jenna M.; Mulnix, Tim

    2013-01-01

    A custom designed markerless tracking system was demonstrated to be applicable for positron emission tomography (PET) brain imaging. Precise head motion registration is crucial for accurate motion correction (MC) in PET imaging. State-of-the-art tracking systems applied with PET brain imaging rely...... on markers attached to the patient's head. The marker attachment is the main weakness of these systems. A healthy volunteer participating in a cigarette smoking study to image dopamine release was scanned twice for 2 h with $^{11}{\\rm C}$-racolopride on the high resolution research tomograph (HRRT) PET...... in contrast recovery of small structures....

  19. Determination Of Maximum Power Of The RSG-Gas At Power Operation Mode Using One Line Cooling System

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji; Kuntoro, Iman; Darwis Isnaini, M.

    2000-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor power shall be determined to assure that the existing safety criteria are not violated. The analysis was done by means of a core thermal hydraulic code, COOLOD-N. The code solves core thermal hydraulic equation at steady state conditions. By varying the reactor power as the input, thermal hydraulic parameters such as fuel cladding and fuel meat temperatures as well as safety margin against flow instability were calculated. Imposing the safety criteria to the results, maximum permissible power for this operation was obtained as much as 17.1 MW. Nevertheless, for operation the maximum power is limited to 15MW

  20. Evaluation of an accelerated 3D SPACE sequence with compressed sensing and free-stop scan mode for imaging of the knee.

    Science.gov (United States)

    Henninger, B; Raithel, E; Kranewitter, C; Steurer, M; Jaschke, W; Kremser, C

    2018-05-01

    To prospectively evaluate a prototypical 3D turbo-spin-echo proton-density-weighted sequence with compressed sensing and free-stop scan mode for preventing motion artefacts (3D-PD-CS-SPACE free-stop) for knee imaging in a clinical setting. 80 patients underwent 3T magnetic resonance imaging (MRI) of the knee with our 2D routine protocol and with 3D-PD-CS-SPACE free-stop. In case of a scan-stop caused by motion (images are calculated nevertheless) the sequence was repeated without free-stop mode. All scans were evaluated by 2 radiologists concerning image quality of the 3D-PD-CS-SPACE (with and without free-stop). Important knee structures were further assessed in a lesion based analysis and compared to our reference 2D-PD-fs sequences. Image quality of the 3D-PD-CS-SPACE free-stop was found optimal in 47/80, slightly compromised in 21/80, moderately in 10/80 and severely in 2/80. In 29/80, the free-stop scan mode stopped the 3D-PD-CS-SPACE due to subject motion with a slight increase of image quality at longer effective acquisition times. Compared to the 3D-PD-CS-SPACE with free-stop, the image quality of the acquired 3D-PD-CS-SPACE without free-stop was found equal in 6/29, slightly improved in 13/29, improved with equal contours in 8/29, and improved with sharper contours in 2/29. The lesion based analysis showed a high agreement between the results from the 3D-PD-CS-SPACE free-stop and our 2D-PD-fs routine protocol (overall agreement 96.25%-100%, Cohen's Kappa 0.883-1, p SPACE free-stop is a reliable alternative for standard 2D-PD-fs protocols with acceptable acquisition times. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. In vitro studies of Rickettsia-host cell interactions: Confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines.

    Science.gov (United States)

    Speck, Stephanie; Kern, Tanja; Aistleitner, Karin; Dilcher, Meik; Dobler, Gerhard; Essbauer, Sandra

    2018-02-01

    Rickettsia (R.) helvetica is the most prevalent rickettsia found in Ixodes ricinus ticks in Germany. Several studies reported antibodies against R. helvetica up to 12.5% in humans investigated, however, fulminant clinical cases are rare indicating a rather low pathogenicity compared to other rickettsiae. We investigated growth characteristics of R. helvetica isolate AS819 in two different eukaryotic cell lines with focus on ultra-structural changes of host cells during infection determined by confocal laser scanning microscopy. Further investigations included partially sequencing of rickA, sca4 and sca2 genes, which have been reported to encode proteins involved in cell-to-cell spread and virulence in some rickettsiae. R. helvetica grew constantly but slowly in both cell lines used. Confocal laser scanning microscopy revealed that the dissemination of R. helvetica AS819 in both cell lines was rather mediated by cell break-down and bacterial release than cell-to-cell spread. The cytoskeleton of both investigated eukaryotic cell lines was not altered. R. helvetica possesses rickA, but its expression is not sufficient to promote actin-based motility as demonstrated by confocal laser scanning microscopy. Hypothetical Sca2 and Sca4 proteins were deduced from nucleotide gene sequences but the predicted amino acid sequences were disrupted or truncated compared to other rickettsiae most likely resulting in non-functional proteins. Taken together, these results might give a first hint to the underlying causes of the reduced virulence and pathogenicity of R. helvetica.

  2. Precursor Ion Scan Mode-Based Strategy for Fast Screening of Polyether Ionophores by Copper-Induced Gas-Phase Radical Fragmentation Reactions.

    Science.gov (United States)

    Crevelin, Eduardo J; Possato, Bruna; Lopes, João L C; Lopes, Norberto P; Crotti, Antônio E M

    2017-04-04

    The potential of copper(II) to induce gas-phase fragmentation reactions in macrotetrolides, a class of polyether ionophores produced by Streptomyces species, was investigated by accurate-mass electrospray tandem mass spectrometry (ESI-MS/MS). Copper(II)/copper(I) transition directly induced production of diagnostic acylium ions with m/z 199, 185, 181, and 167 from α-cleavages of [macrotetrolides + Cu] 2+ . A UPLC-ESI-MS/MS methodology based on the precursor ion scan of these acylium ions was developed and successfully used to identify isodinactin (1), trinactin (2), and tetranactin (3) in a crude extract of Streptomyces sp. AMC 23 in the precursor ion scan mode. In addition, copper(II) was also used to induce radical fragmentation reactions in the carboxylic acid polyether ionophore nigericin. The resulting product ions with m/z 755 and 585 helped to identify nigericin in a crude extract of Streptomyces sp. Eucal-26 by means of precursor ion scan experiments, demonstrating that copper-induced fragmentation reactions can potentially identify different classes of polyether ionophores rapidly and selectively.

  3. A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator.

    Science.gov (United States)

    Koh, Kah How; Kobayashi, Takeshi; Lee, Chengkuo

    2011-07-18

    A novel dynamic excitation of an S-shaped PZT piezoelectric actuator, which is conceptualized by having two superimposed AC voltages, is characterized in this paper through the evaluation of the 2-D scanning characteristics of an integrated silicon micromirror. The device is micromachined from a SOI wafer with a 5 μm thick Si device layer and multilayers of Pt/Ti/PZT//Pt/Ti deposited as electrode and actuation materials. A large mirror (1.65 mm x 2mm) and an S-shaped PZT actuator are formed after the backside release process. Three modes of operation are investigated: bending, torsional and mixed. The resonant frequencies obtained for bending and torsional modes are 27Hz and 70Hz respectively. The maximum measured optical deflection angles obtained at 3Vpp are ± 38.9° and ± 2.1° respectively for bending and torsional modes. Various 2-D Lissajous patterns are demonstrated by superimposing two ac sinusoidal electrical signals of different frequencies (27 Hz and 70 Hz) into one signal to be used to actuate the mirror.

  4. Fabrication of Compact Microstrip Line-Based Balun-Bandpass Filter with High Common-Mode Suppression

    Directory of Open Access Journals (Sweden)

    Chia-Mao Chen

    2014-01-01

    Full Text Available A new type of balun-bandpass filter was proposed based on the traditional coupled-line theory and folded open-loop ring resonators (OLRRs configuration. For that, a new device with both filter-type and balun-type characteristics was investigated and fabricated. Both magnetic and electric coupling structures were implemented to provide high performance balun-bandpass responses. The fabricated balun-bandpass filters had a wide bandwidth more than 200 MHz and a low insertion loss less than 2.51 dB at a center frequency of 2.6 GHz. The differences between the two outputs were below 0.4 dB in magnitude and within 180 ± 7° in phase. Also, the balun-bandpass filter presented an excellent common-mode rejection ratio over 25 dB in the passband. An advanced design methodology had been adopted based on EM simulation for making these designed parameters of OLRRs, microstrip lines, and open stubs. The measured frequency responses agreed well with simulated ones.

  5. Mobile phone radiation induces mode-dependent DNA damage in a mouse spermatocyte-derived cell line: a protective role of melatonin.

    Science.gov (United States)

    Liu, Chuan; Gao, Peng; Xu, Shang-Cheng; Wang, Yuan; Chen, Chun-Hai; He, Min-Di; Yu, Zheng-Ping; Zhang, Lei; Zhou, Zhou

    2013-11-01

    To evaluate whether exposure to mobile phone radiation (MPR) can induce DNA damage in male germ cells. A mouse spermatocyte-derived GC-2 cell line was exposed to a commercial mobile phone handset once every 20 min in standby, listen, dialed or dialing modes for 24 h. DNA damage was determined using an alkaline comet assay. The levels of DNA damage were significantly increased following exposure to MPR in the listen, dialed and dialing modes. Moreover, there were significantly higher increases in the dialed and dialing modes than in the listen mode. Interestingly, these results were consistent with the radiation intensities of these modes. However, the DNA damage effects of MPR in the dialing mode were efficiently attenuated by melatonin pretreatment. These results regarding mode-dependent DNA damage have important implications for the safety of inappropriate mobile phone use by males of reproductive age and also suggest a simple preventive measure: Keeping mobile phones as far away from our body as possible, not only during conversations but during 'dialed' and 'dialing' operation modes. Since the 'dialed' mode is actually part of the standby mode, mobile phones should be kept at a safe distance from our body even during standby operation. Furthermore, the protective role of melatonin suggests that it may be a promising pharmacological candidate for preventing mobile phone use-related reproductive impairments.

  6. Influence of bending mode on the mechanical properties of nickel-titanium archwires and correlation to differential scanning calorimetry measurements.

    Science.gov (United States)

    Brauchli, Lorenz M; Keller, Heidi; Senn, Christiane; Wichelhaus, Andrea

    2011-05-01

    Nickel-titanium orthodontic archwires are used with bonded appliances for initial leveling. However, precise bending of these archwires is difficult and can lead to changes within the crystal structure of the alloy, thus changing the mechanical properties unpredictably. The aim of this study was to evaluate different bending methods in relation to the subsequent mechanical characteristics of the alloy. The mechanical behaviors of 3 archwires (Copper NiTi 35°C [Ormco, Glendora, Calif], Neo Sentalloy F 80 [GAC International, Bohemia, NY], and Titanol Low Force [Forestadent, Pforzheim, Germany]) were investigated after heat-treatment in a dental furnace at 550-650°C, treatment with an electrical current (Memory-Maker, Forestadent), and cold forming. In addition, the change in A(f) temperature was registered by means of differential scanning calorimetry. Heat-treatment in the dental furnace as well as with the Memory-Maker led to widely varying force levels for each product. Cold forming resulted in similar or slightly reduced force levels when compared to the original state of the wires. A(f) temperatures were in general inversely proportional to force levels. Archwire shape can be modified by using either chair-side technique (Memory-Maker, cold forming) because the superelastic behavior of the archwires is not strongly affected. However it is important to know the specific changes in force levels induced for each individual archwire with heat-treatment. Cold forming resulted in more predictable forces for all products tested. Therefore, cold forming is recommended as a chair-side technique for the shaping of NiTi archwires. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  7. Angular on-line tube current modulation in multidetector CT examinations of children and adults: The influence of different scanning parameters on dose reduction

    International Nuclear Information System (INIS)

    Papadakis, Antonios E.; Perisinakis, Kostas; Damilakis, John

    2007-01-01

    The purpose of this study was to assess the potential of angular on-line tube current modulation on dose reduction in pediatric and adult patients undergoing multidetector computed tomography (MDCT) examinations. Five physical anthropomorphic phantoms that simulate the average individual as neonate, 1-year-old, 5-year-old, 10-year-old, and adult were employed in the current study. Phantoms were scanned with the use of on-line tube current modulation (TCM). Percent dose reduction (%DR) factors achieved by applying TCM, were determined for standard protocols used for head and neck, shoulder, thorax, thorax and abdomen, abdomen, abdomen and pelvis, pelvis, and whole body examinations. A preliminary study on the application of TCM in MDCT examinations of adult patients was performed to validate the results obtained in anthropomorphic phantoms. Dose reduction was estimated as the percentage difference of the modulated milliamperes for each scan and the preset milliamperes prescribed by the scan protocol. The dose reduction in children was found to be much lower than the corresponding reduction achieved for adults. For helical scans the %DR factors, ranged between 1.6% and 7.4% for the neonate, 2.9% and 8.7% for the 1-year old, 2% and 6% for the 5-year-old, 5% and 10.9% for the 10-year-old, and 10.4% and 20.7% for the adult individual. For sequential scans the corresponding %DR factors ranged between 1.3% and 6.7%, 4.5% and 11%, 4.2% and 6.6%, 6.4% and 12.3%, and 8.9% and 23.3%, respectively. Broader beam collimations are associated with decreased %DR factors, when other scanning parameters are held constant. TCM did not impair image noise. In adult patients, the %DR values were found to be in good agreement with the corresponding results obtained in the anthropomorphic adult phantom. In conclusion, on-line TCM may be considered as a valuable tool for reducing dose in routine CT examinations of pediatric and adult patients. However, the dose reduction achieved with TCM

  8. Real-time deflection and friction force imaging by bimorph-based resonance-type high-speed scanning force microscopy in the contact mode.

    Science.gov (United States)

    Cai, Wei; Fan, Haiyun; Zhao, Jianyong; Shang, Guangyi

    2014-01-01

    We report herein an alternative high-speed scanning force microscopy method in the contact mode based on a resonance-type piezoelectric bimorph scanner. The experimental setup, the modified optical beam deflection scheme suitable for smaller cantilevers, and a high-speed control program for simultaneous data capture are described in detail. The feature of the method is that the deflection and friction force images of the sample surface can be obtained simultaneously in real time. Images of various samples (e.g., a test grating, a thin gold film, and fluorine-doped tin oxide-coated glass slides) are acquired successfully. The imaging rate is 25 frames per second, and the average scan speed reaches a value of approximately 2.5 cm/s. The method combines the advantages of both observing the dynamic processes of the sample surface and monitoring the frictional properties on the nanometer scale. 07.79.Lh; 07.79.Sp; 68.37.Ps.

  9. Cochlear Implant Electrode Localization Using an Ultra-High Resolution Scan Mode on Conventional 64-Slice and New Generation 192-Slice Multi-Detector Computed Tomography.

    Science.gov (United States)

    Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I

    2017-08-01

    A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.

  10. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors.

    Science.gov (United States)

    Yu, Tong; Gao, Jun; Liu, Zhi-Min; Zhang, Qi-Feng; Liu, Yong; Jiang, Ling; Peng, Yun

    2017-04-05

    Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors. Forty-five patients with solid tumors who had initial CT (Group B) and follow-up CT (Group A) after chemotherapy were enrolled. The initial diagnostic CT scan (Group B) was performed using the standard two-phase enhanced CT with 320 mgI/ml concentration contrast, and the follow-up scan (Group A) was performed using a single-phase enhanced CT at 45 s after the beginning of the 270 mgI/ml contrast injection using spectral mode. Forty percent ASiR was used for the images in Group B and monochromatic images with energy levels ≥60 keV in Group A. In addition, filtered back-projection (FBP) reconstruction was used for monochromatic images hounsfield unit (HU). The abdominal organs of Groups A and B had similar degrees of absolute and relative enhancement (t = 0.36 and -1.716 for liver, -0.153 and -1.546 for pancreas, and 2.427 and 0.866 for renal cortex, all P> 0.05). Signal-to-noise ratio of the abdominal organs was significantly lower in Group A than in Group B (t = -8.11 for liver, -7.83 for pancreas, and -5.38 for renal cortex, all P 3, indicating clinically acceptable image quality. Single-phase, dual-energy spectral CT used for children with solid abdominal tumors can reduce contrast dose and radiation dose and can also maintain clinically acceptable image quality.

  11. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  12. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    Science.gov (United States)

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Feedback control of tearing modes through ECRH with launcher mirror steering and power modulation using a line-of-sight ECE diagnostic

    NARCIS (Netherlands)

    Hennen, B.A.; Westerhof, E.; Nuij, P.W.J.M.; Ayten, B.; Baar, de M.R.; Bongers, W.A.; Bürger, A.; Lazzari, De D.; Oosterbeek, J.W.; Thoen, D.J.; Steinbuch, M.

    2010-01-01

    A demonstration of real-time feedback control for autonomous tracking and stabilization of m/n = 2/1 tearing modes in a tokamak using Electron Cyclotron Resonance Heating and Current Drive (ECRH/ECCD) is reported. The prototype system on TEXTOR combines in the same sight-line an Electron Cyclotron

  14. In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment

    Science.gov (United States)

    Rupnowski, Przemyslaw; Ulsh, Michael; Sopori, Bhushan; Green, Brian G.; Wood, David L.; Li, Jianlin; Sheng, Yangping

    2018-01-01

    This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min-1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends on both coating porosity (or area loading) and thickness. It is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.

  15. Eine elektronische Linienkamera fuer die Tomografie von Brennelementen mit durchdringenden Strahlen. An electronic line scan camera for tomographic evaluation of fuel assemblies using penetrating radiation

    International Nuclear Information System (INIS)

    Steinbock, L.

    1988-01-01

    The described electronic line scan camaera saves time and costs in taking radiographs and tompgraphs in nuclear facilities. The pictures being taken on polaroid films, there is no need for expensive laboratory work as for the X-ray films. The immediate digitalisation of the signals (saves) expensive digitalisation of X-ray films and allows to record the data of the pictures on cheap magnetic or optical disc. The data can later be processed by the common image analysing methods. Spatial resolutions achieved up to now are about 0.3 mm both for shadow radiography and tomography. (orig.) [de

  16. Development of a method of absorbed dose on-line monitoring at product processing by scanned electron beam

    International Nuclear Information System (INIS)

    Pomatsalyuk, R.I.; Shevchenko, V.A.; Tenishev, A.Eh.; Titov, D.V.; Uvarov, V.L.

    2016-01-01

    The conditions of the contact-free absorbed dose monitoring at industrial product processing by electron beam are investigated. The method is based on analysing the collected charge in a stack monitor (SM) mounted down-stream of irradiated object. Using computer simulation on the basis of a modified transport code PENELOPE-2008, it is shown that by placing a filter of low-energy electrons before SM it is possible to obtain the one-to-one correlation dependence between the monitor charge and absorbed energy of radiation in the processed object. At a certain surface density of the filter, this dependence takes on the form similar to linear. The possibility to use an air gap between the object and SM as such a filter has been demonstrated. For the conditions of radiation plant with an electron accelerator LU-10 of NSC KIPT, the optimum distance of the SM location has been established. For the practical range of the electron energy, beam scan width and surface density of the irradiated product, the constants of ''product absorbed energy-to- SM charge '' linear dependence have been determined. The capability to establish the average absorbed dose in the object moving trough the irradiation zone on the SM current is shown. The calculation data are in satisfactory agreement with the results of measurements.

  17. In vitro evaluation of photon and raster-scanned carbon ion radiotherapy in combination with gemcitabine in pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Shafie, Rami A. El; Habermehl, Daniel; Rieken, Stefan

    2013-01-01

    Pancreatic cancer is the fourth leading cause of cancer deaths, being responsible for 6% of all cancer-related deaths. Conventional radiotherapy with or without additional chemotherapy has been applied in the past in the context of neoadjuvant or adjuvant therapy concepts with only modest results, however new radiation modalities, such as particle therapy with promising physical and biological characteristics, present an alternative treatment option for patients with pancreatic cancer. Up until now the raster scanning technique employed at our institution for the application of carbon ions has been unique, and no radiobiological data using pancreatic cancer cells has been available yet. The aim of this study was to evaluate cytotoxic effects that can be achieved by treating pancreatic cancer cell lines with combinations of X-rays and gemcitabine, or alternatively with carbon ion irradiation and gemcitabine, respectively. Human pancreatic cancer cell lines AsPC-1, BxPC-3 and Panc-1 were irradiated with photons and carbon ions at various doses and treated with gemcitabine. Photon irradiation was applied with a biological cabin X-ray irradiator, and carbon ion irradiation was applied with an extended Bragg peak (linear energy transfer (LET) 103 keV/μm) using the raster scanning technique at the Heidelberg Ion Therapy Center (HIT). Responsiveness of pancreatic cancer cells to the treatment was measured by clonogenic survival. Clonogenic survival curves were then compared to predicted curves that were calculated employing the local effect model (LEM). Cell survival curves were calculated from the surviving fractions of each combination experiment and compared to a drug control that was only irradiated with X-rays or carbon ions, without application of gemcitabine. In terms of cytotoxicity, additive effects were achieved for the cell lines Panc-1 and BxPC-3, and a slight radiosensitizing effect was observed for AsPC-1. Relative biological effectiveness (RBE) of carbon

  18. The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Daniel Habermehl

    Full Text Available BACKGROUND: Aim of this study was to evaluate the relative biological effectiveness (RBE of carbon (12C and oxygen ion (16O-irradiation applied in the raster-scanning technique at the Heidelberg Ion beam Therapy center (HIT based on clonogenic survival in hepatocellular carcinoma cell lines compared to photon irradiation. METHODS: Four human HCC lines Hep3B, PLC, HepG2 and HUH7 were irradiated with photons, 12C and 16O using a customized experimental setting at HIT for in-vitro trials. Cells were irradiated with increasing physical photon single doses of 0, 2, 4 and 6 Gy and heavy ion-single doses of 0, 0.125, 0.5, 1, 2, 3 Gy (12C and 16O. SOBP-penetration depth and extension was 35 mm +/-4 mm and 36 mm +/-5 mm for carbon ions and oxygen ions respectively. Mean energy level and mean linear energy transfer (LET were 130 MeV/u and 112 keV/um for 12C, and 154 MeV/u and 146 keV/um for 16O. Clonogenic survival was computated and relative biological effectiveness (RBE values were defined. RESULTS: For all cell lines and both particle modalities α- and β-values were determined. As expected, α-values were significantly higher for 12C and 16O than for photons, reflecting a steeper decline of the initial slope of the survival curves for high-LET beams. RBE-values were in the range of 2.1-3.3 and 1.9-3.1 for 12C and 16O, respectively. CONCLUSION: Both irradiation with 12C and 16O using the raster-scanning technique leads to an enhanced RBE in HCC cell lines. No relevant differences between achieved RBE-values for 12C and 16O were found. Results of this work will further influence biological-adapted treatment planning for HCC patients that will undergo particle therapy with 12C or 16O.

  19. Three-dimensional fabric analysis for anisotropic material using multi-directional scanning line. Application to x-ray CI image

    International Nuclear Information System (INIS)

    Takemura, Takato; Takahashi, Manabu; Oda, Masanobu; Hirai, Hidekazu; Murakoshi, Atsushi; Miura, Makoto

    2007-01-01

    In microscopic analysis, materials are characterized by a three-dimensional (3D) microstructure which is composed of constituent elements such as pores, voids and cracks. A material's mechanical and hydrological properties are strongly dependent on its microstructure. In order to discuss the mechanics of geomaterials on a microstructural level, detailed information on their 3D macrostructure is required. X-ray computed tomography is a powerful non-destructive method for determining the microstructure, however it can be difficult to determine a material's microstructure from the reconstructed 3D image. We successfully evaluated the 3D microstructural anisotropy of porous and fibrous materials using a multi-directional scanning line method that employs straightforward image analysis, and its results were visualized using stereonet projection. (author)

  20. SU-C-207A-06: On-Line Beam Range Verification with Multiple Scanning Particle Beams: Initial Feasibility Study with Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y; Sun, X; Lu, W; Jia, X; Wang, J; Shao, Y [The University of Texas Southwestern Medical Ctr., Dallas, TX (United States)

    2016-06-15

    Purpose: To investigate the feasibility and requirement for intra-fraction on-line multiple scanning particle beam range verifications (BRVs) with in-situ PET imaging, which is beyond the current single-beam BRV with extra factors that will affect the BR measurement accuracy, such as beam diameter, separation between beams, and different image counts at different BRV positions. Methods: We simulated a 110-MeV proton beam with 5-mm diameter irradiating a uniform PMMA phantom by GATE simulation, which generated nuclear interaction-induced positrons. In this preliminary study, we simply duplicated these positrons and placed them next to the initial protons to approximately mimic the two spatially separated positron distributions produced by two beams parallel to each other but with different beam ranges. These positrons were then imaged by a PET (∼2-mm resolution, 10% sensitivity, 320×320×128 mm^3 FOV) with different acquisition times. We calculated the positron activity ranges (ARs) from reconstructed PET images and compared them with the corresponding ARs of original positron distributions. Results: Without further image data processing and correction, the preliminary study show the errors between the measured and original ARs varied from 0.2 mm to 2.3 mm as center-to-center separations and range differences were in the range of 8–12 mm and 2–8 mm respectively, indicating the accuracy of AR measurement strongly depends on the beam separations and range differences. In addition, it is feasible to achieve ≤ 1.0-mm accuracy for both beams with 1-min PET acquisition and 12 mm beam separation. Conclusion: This study shows that the overlap between the positron distributions from multiple scanning beams can significantly impact the accuracy of BRVs of distributed particle beams and need to be further addressed beyond the established method of single-beam BRV, but it also indicates the feasibility to achieve accurate on-line multi-beam BRV with further improved

  1. Single-mode solid-state polymer dye laser fabricated with standard I-line UV lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Mironov, Andrej; Nilsson, Daniel

    2005-01-01

    We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G.......We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G....

  2. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  3. Pulse-forming and line-broadening in AM mode locking of the TEA-CO2laser

    NARCIS (Netherlands)

    Witteman, W.J.; Olbertz, A.H.M.

    1977-01-01

    The present paper describes AM mode locking for homogeneously broadened systems, a procedure for measuring linewidths under laser conditions, and finally, experimental results for a 1-atm CO2laser. Working in the frequency domain, analytic solutions are given for the pulse bandwidth and pulse shape

  4. 600 GHz resonant mode in a parallel array of Josephson tunnel junctions connected by superconducting microstrip lines

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Larsen, Britt Hvolbæk; Mygind, Jesper

    1994-01-01

    on experimental and numerical investigations of a resonant step observed at a voltage corresponding to 600 GHz in the dc current-voltage characteristic of a parallel array of 20 identical small NbAl2O3Nb Josephson junctions interconnected by short sections of superconducting microstrip line. The junctions...... are mutually phase locked due to collective interaction with the line sections excited close to the half wavelength resonance. The phase locking range can be adjusted by means of an external dc magnetic field and the step size varies periodically with the magnetic field. The largest step corresponds...

  5. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) bea...

  6. Analysis Of The Heat Exchanger Capability At One Line Cooling System Operation Mode Of The RSG-GAS

    International Nuclear Information System (INIS)

    Dibyo, Sukmanto; Kuntoro, Iman

    2000-01-01

    In the frame of minimizing the operation lost of the RSG-GAS reactor, operation using one line cooling system at certain power range is being evaluated. Analysis the performance of cooling system for determining maximum power should be carried out. Analysis was carried out based on heat exchanger calculation using actual operation data. Constraints imposed to the analysis are that inlet cooling system to the reactor core shall be less than 42 o C. The result shows that by using one line of primary and secondary coolant flow of 1780 m exp. 3/hr and 2000 m 3 /hr and secondary coolant temperature from the cooling tower of 38 o C, the primary coolant to the core will be reach 42 o C if reactor operated at power of 16 MW

  7. Scanning holograms

    International Nuclear Information System (INIS)

    Natali, S.

    1984-01-01

    This chapter reports on the scanning of 1000 holograms taken in HOBC at CERN. Each hologram is triggered by an interaction in the chamber, the primary particles being pions at 340 GeV/c. The aim of the experiment is the study of charm production. The holograms, recorded on 50 mm film with the ''in line'' technique, can be analyzed by shining a parallel expanded laser beam through the film, obtaining immediately above it the real image of the chamber which can then be scanned and measured with a technique half way between emulsions and bubble chambers. The results indicate that holograms can be analyzed as quickly and reliably as in other visual techniques and that to them is open the same order of magnitude of large scale experiments

  8. Ultra-High-Speed Travelling Wave Protection of Transmission Line Using Polarity Comparison Principle Based on Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-01-01

    Full Text Available The traditional polarity comparison based travelling wave protection, using the initial wave information, is affected by initial fault angle, bus structure, and external fault. And the relationship between the magnitude and polarity of travelling wave is ignored. Because of the protection tripping and malfunction, the further application of this protection principle is affected. Therefore, this paper presents an ultra-high-speed travelling wave protection using integral based polarity comparison principle. After empirical mode decomposition of the original travelling wave, the first-order intrinsic mode function is used as protection object. Based on the relationship between the magnitude and polarity of travelling wave, this paper demonstrates the feasibility of using travelling wave magnitude which contains polar information as direction criterion. And the paper integrates the direction criterion in a period after fault to avoid wave head detection failure. Through PSCAD simulation with the typical 500 kV transmission system, the reliability and sensitivity of travelling wave protection were verified under different factors’ affection.

  9. ANALISIS IDENTIFIKASI MASALAH DENGAN MENGGUNAKAN METODE FAILURE MODE AND EFFECT ANALYSIS (FMEA DAN RISK PRIORITY NUMBER (RPN PADA SUB ASSEMBLY LINE (Studi Kasus : PT. Toyota Motor Manufacturing Indonesia

    Directory of Open Access Journals (Sweden)

    Nia Budi Puspitasari

    2017-07-01

    Abstract The failure rate is a problem that has always attempted to be minimized by a company in order to improve the quality of products, and also were conducted by oleh Toyota Motor Manufacturing Indonesia (PT. TMMIN which is consistent in producting a quality product.  Knowing that in 2016 there is a defect GAP at 50 ppm, PT. TMMIN needs to identify the failures that occur in their company. FMEA is a method to identify and analyze the failure modes in detail that can able to know the cause and impact of each failures, so we get the proper repairment. FMEA that is used in PT. TMMIN case study indicate various modes of failure in assembly-line, then known the alternatives to repair for any prioritize failures. The priorities failures can be seen in the Risk Priority Number (RPN. Based on the RPN resulting, we can obtain the priority failures in  assembly-line of PT. TMMIN that are about the part installation errors, failures due to foreign objects in the part, and the failure of the piston assembly errors.

  10. The neural elements in the lining of the ventricular-subventricular zone: making an old story new by high-resolution scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Dos Santos Haemmerle

    2015-10-01

    Full Text Available The classical description of the neural elements that compose the lining of brain ventricles introduces us to the single layer of ependymal cells. However, new findings, especially in the lateral ventricle - the major niche for the generation of new neurons in the adult brain - have provided information about additional cell elements that influence the organization of this part of the ventricular system and produce important contributions to neurogenesis. To complement the cell neurochemistry findings, we present a three-dimensional in situ description that demonstrates the anatomical details of the different types of ciliated cells and the innervation of these elements. After processing adult rat brains for ultrastructural analysis by high-resolution scanning electron microscopy and transmission electron microscopy, we observed a heterogeneous pattern of cilia distribution at the different poles of the lateral ventricle surface. Furthermore, we describe the particular three-dimensional aspects of the ciliated cells of the lateral ventricle, in addition the fiber bundles and varicose axons surrounding these cells. Therefore, we provide a unique ultrastructural description of the three-dimensional in situ organization of the lateral ventricle surface, highlighting its innervation, to corroborate the available neurochemical and functional findings regarding the factors that regulate this neurogenic niche.

  11. Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: Line scan vs. depth profiling

    International Nuclear Information System (INIS)

    Hola, Marketa; Kalvoda, Jiri; Novakova, Hana; Skoda, Radek; Kanicky, Viktor

    2011-01-01

    LA-ICP-MS and solution based ICP-MS in combination with electron microprobe are presented as a method for the determination of the elemental spatial distribution in fish scales which represent an example of a heterogeneous layered bone structure. Two different LA-ICP-MS techniques were tested on recent common carp (Cyprinus carpio) scales: (a)A line scan through the whole fish scale perpendicular to the growth rings. The ablation crater of 55 μm width and 50 μm depth allowed analysis of the elemental distribution in the external layer. Suitable ablation conditions providing a deeper ablation crater gave average values from the external HAP layer and the collagen basal plate. (b)Depth profiling using spot analysis was tested in fish scales for the first time. Spot analysis allows information to be obtained about the depth profile of the elements at the selected position on the sample. The combination of all mentioned laser ablation techniques provides complete information about the elemental distribution in the fish scale samples. The results were compared with the solution based ICP-MS and EMP analyses. The fact that the results of depth profiling are in a good agreement both with EMP and PIXE results and, with the assumed ways of incorporation of the studied elements in the HAP structure, suggests a very good potential for this method.

  12. Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: Line scan vs. depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa [Department of Chemistry, Masaryk University of Brno, Kamenice 5, 625 00 Brno (Czech Republic); Kalvoda, Jiri, E-mail: jkalvoda@centrum.cz [Department of Geological Sciences, Masaryk University of Brno, Kotlarska 2, 611 37 Brno (Czech Republic); Novakova, Hana [Department of Chemistry, Masaryk University of Brno, Kamenice 5, 625 00 Brno (Czech Republic); Skoda, Radek [Department of Geological Sciences, Masaryk University of Brno, Kotlarska 2, 611 37 Brno (Czech Republic); Kanicky, Viktor [Department of Chemistry, Masaryk University of Brno, Kamenice 5, 625 00 Brno (Czech Republic)

    2011-01-01

    LA-ICP-MS and solution based ICP-MS in combination with electron microprobe are presented as a method for the determination of the elemental spatial distribution in fish scales which represent an example of a heterogeneous layered bone structure. Two different LA-ICP-MS techniques were tested on recent common carp (Cyprinus carpio) scales: (a)A line scan through the whole fish scale perpendicular to the growth rings. The ablation crater of 55 {mu}m width and 50 {mu}m depth allowed analysis of the elemental distribution in the external layer. Suitable ablation conditions providing a deeper ablation crater gave average values from the external HAP layer and the collagen basal plate. (b)Depth profiling using spot analysis was tested in fish scales for the first time. Spot analysis allows information to be obtained about the depth profile of the elements at the selected position on the sample. The combination of all mentioned laser ablation techniques provides complete information about the elemental distribution in the fish scale samples. The results were compared with the solution based ICP-MS and EMP analyses. The fact that the results of depth profiling are in a good agreement both with EMP and PIXE results and, with the assumed ways of incorporation of the studied elements in the HAP structure, suggests a very good potential for this method.

  13. On-line coupling of size exclusion chromatography with mixed-mode liquid chromatography for comprehensive profiling of biopharmaceutical drug product.

    Science.gov (United States)

    He, Yan; Friese, Olga V; Schlittler, Michele R; Wang, Qian; Yang, Xun; Bass, Laura A; Jones, Michael T

    2012-11-02

    A methodology based on on-line coupling of size exclusion chromatography (SEC) with mixed-mode liquid chromatography (LC) has been developed. The method allows for simultaneous measurement of a wide range of components in biopharmaceutical drug products. These components include the active pharmaceutical ingredient (protein) and various kinds of excipients such as cations, anions, nonionic hydrophobic surfactant and hydrophilic sugars. Dual short SEC columns are used to separate small molecule excipients from large protein molecules. The separated protein is quantified using a UV detector at 280 nm. The isolated excipients are switched, online, to the Trinity P1 mixed-mode column for separation, and detected by an evaporative light scattering detector (ELSD). Using a stationary phase with 1.7 μm particles in SEC allows for the use of volatile buffers for both SEC and mix-mode separation. This facilitates the detection of different excipients by ELSD and provides potential for online characterization of the protein with mass spectrometry (MS). The method has been applied to quantitate protein and excipients in different biopharmaceutical drug products including monoclonal antibodies (mAb), antibody drug conjugates (ADC) and vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Regulation of Blood Glucose Concentration in Type 1 Diabetics Using Single Order Sliding Mode Control Combined with Fuzzy On-line Tunable Gain, a Simulation Study.

    Science.gov (United States)

    Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh

    2015-01-01

    Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and to alleviate its drawbacks. The aim of the proposed controller that is called SOSMC combined with fuzzy on-line tunable gain is to tune the gain of the controller adaptively. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. As a result, this method can decline the risk of hypoglycemia, a lethal phenomenon in regulating blood glucose level in diabetics caused by a low blood glucose level. Moreover, it attenuates the chattering observed in SOSMC significantly. It is worth noting that in this approach, a mathematical model called minimal model is applied instead of the intravenously infused insulin-blood glucose dynamics. The simulation results demonstrate a good performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. In addition, this method is compared to fuzzy high-order sliding mode control (FHOSMC) and the superiority of the new method compared to FHOSMC is shown in the results.

  15. Fiber coupled ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We report on a scanning tunneling microscope with a photoconductive gate in the tunneling current circuit. The tunneling tip is attached to a coplanar transmission line with an integrated photoconductive switch. The switch is illuminated through a fiber which is rigidly attached to the switch...... waveguide. The measurements show that the probe works as a transient voltage detector in contact and a capacitively coupled transient field detector in tunneling mode. We do not measure the transient voltage change in the ohmic tunneling current. In this sense, the spatial resolution for propagating...... substrate. By using a firmly attached fiber we achieve an excellent reproducibility and unconstrained positioning of the tip. We observe a transient signal with 2.9 ps pulse width in tunneling mode and 5 ps in contact mode. The instrument is applied to investigating the mode structure on a coplanar...

  16. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  17. Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser

    DEFF Research Database (Denmark)

    Torzicky, Teresa; Marschall, Sebastian; Pircher, Michael

    2013-01-01

    , averaging several two-dimensional frames allows the generation of high-definition B-scans without the use of an eye-tracking system. The increased penetration depth of the system, which is caused by the longer probing beam wavelength, is beneficial for imaging choroidal and scleral structures and allows...... automated segmentation of these layers based on their polarization characteristics....

  18. Monitoring tumor motion with on-line mega-voltage cone-beam computed tomography imaging in a cine mode

    International Nuclear Information System (INIS)

    Reitz, Bodo; Gayou, Olivier; Parda, David S; Miften, Moyed

    2008-01-01

    Accurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes. In this work, the feasibility of using the MV-CBCT raw data as a fluoroscopic series of portal images to monitor tumor changes due to e.g. respiratory motion was investigated. A method was developed to read and convert the CB raw data into a cine. To improve the contrast-to-noise ratio on the MV-CB projection data, image post-processing with filtering techniques was investigated. Volumes of interest from the planning CT were projected onto the MV-cine. Because of the small exposure and the varying thickness of the patient depending on the projection angle, soft-tissue contrast was limited. Tumor visibility as a function of tumor size and projection angle was studied. The method was well suited in the upper chest, where motion of the tumor as well as of the diaphragm could be clearly seen. In the cases of patients with non-small cell lung cancer with medium or large tumor masses, we verified that the tumor mass was always located within the PTV despite respiratory motion. However for small tumors the method is less applicable, because the visibility of those targets becomes marginal. Evaluation of motion in non-superior-inferior directions might also be limited for small tumor masses. Viewing MV-CBCT data in a cine mode adds to the utility of MV-CBCT for verification of tumor motion and for deriving individualized treatment margins

  19. Radial line-scans as representative sampling strategy in dried-droplet laser ablation of liquid samples deposited on pre-cut filter paper disks

    Science.gov (United States)

    Nischkauer, Winfried; Vanhaecke, Frank; Bernacchi, Sébastien; Herwig, Christoph; Limbeck, Andreas

    2014-11-01

    Nebulising liquid samples and using the aerosol thus obtained for further analysis is the standard method in many current analytical techniques, also with inductively coupled plasma (ICP)-based devices. With such a set-up, quantification via external calibration is usually straightforward for samples with aqueous or close-to-aqueous matrix composition. However, there is a variety of more complex samples. Such samples can be found in medical, biological, technological and industrial contexts and can range from body fluids, like blood or urine, to fuel additives or fermentation broths. Specialized nebulizer systems or careful digestion and dilution are required to tackle such demanding sample matrices. One alternative approach is to convert the liquid into a dried solid and to use laser ablation for sample introduction. Up to now, this approach required the application of internal standards or matrix-adjusted calibration due to matrix effects. In this contribution, we show a way to circumvent these matrix effects while using simple external calibration for quantification. The principle of representative sampling that we propose uses radial line-scans across the dried residue. This compensates for centro-symmetric inhomogeneities typically observed in dried spots. The effectiveness of the proposed sampling strategy is exemplified via the determination of phosphorus in biochemical fermentation media. However, the universal viability of the presented measurement protocol is postulated. Detection limits using laser ablation-ICP-optical emission spectrometry were in the order of 40 μg mL- 1 with a reproducibility of 10 % relative standard deviation (n = 4, concentration = 10 times the quantification limit). The reported sensitivity is fit-for-purpose in the biochemical context described here, but could be improved using ICP-mass spectrometry, if future analytical tasks would require it. Trueness of the proposed method was investigated by cross-validation with

  20. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors

    OpenAIRE

    Tong Yu; Jun Gao; Zhi-Min Liu; Qi-Feng Zhang; Yong Liu; Ling Jiang; Yun Peng

    2017-01-01

    Background: Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... found, and should not be a cause of concern for you. If you had an intravenous line ... found, and should not be a cause of concern for you. Actual scanning time for each thyroid ...

  2. The challenges encountered in the integration of an early test wafer surface scanning inspection system into a 450mm manufacturing line

    Science.gov (United States)

    Lee, Jeffrey; McGarvey, Steve

    2013-04-01

    The introduction of early test wafer (ETW) 450mm Surface Scanning Inspection Systems (SSIS) into Si manufacturing has brought with it numerous technical, commercial, and logistical challenges on the path to rapid recipe development and subsequent qualification of other 450mm wafer processing equipment. This paper will explore the feasibility of eliminating the Polystyrene Latex Sphere deposition process step and the subsequent creation of SSIS recipes based upon the theoretical optical properties of both the SSIS and the process film stack(s). The process of Polystyrene Latex Sphere deposition for SSIS recipe generation and development is generally accepted on the previous technology nodes for 150/200/300mm wafers. PSL is deposited with a commercially available deposition system onto a non-patterned bare Si or non-patterned filmed Si wafer. After deposition of multiple PSL spots, located in different positions on a wafer, the wafer is inspected on a SSIS and a response curve is generated. The response curve is based on the the light scattering intensity of the NIST certified PSL that was deposited on the wafer. As the initial 450mm Si wafer manufacturing began, there were no inspection systems with sub-90nm sensitivities available for defect and haze level verification. The introduction of a 450mm sub-30nm inspection system into the manufacturing line generated instant challenges. Whereas the 450mm wafers were relatively defect free at 90nm, at 40nm the wafers contained several hundred thousand defects. When PSL was deposited onto wafers with these kinds of defect levels, PSL with signals less than the sub-90nm defects were difficult to extract. As the defectivity level of the wafers from the Si suppliers rapidly improves the challenges of SSIS recipe creation with high defectivity decreases while at the same time the cost of PSL deposition increases. The current cost per wafer is fifteen thousand dollars for a 450mm PSL deposition service. When viewed from the

  3. Radial line-scans as representative sampling strategy in dried-droplet laser ablation of liquid samples deposited on pre-cut filter paper disks.

    Science.gov (United States)

    Nischkauer, Winfried; Vanhaecke, Frank; Bernacchi, Sébastien; Herwig, Christoph; Limbeck, Andreas

    2014-11-01

    Nebulising liquid samples and using the aerosol thus obtained for further analysis is the standard method in many current analytical techniques, also with inductively coupled plasma (ICP)-based devices. With such a set-up, quantification via external calibration is usually straightforward for samples with aqueous or close-to-aqueous matrix composition. However, there is a variety of more complex samples. Such samples can be found in medical, biological, technological and industrial contexts and can range from body fluids, like blood or urine, to fuel additives or fermentation broths. Specialized nebulizer systems or careful digestion and dilution are required to tackle such demanding sample matrices. One alternative approach is to convert the liquid into a dried solid and to use laser ablation for sample introduction. Up to now, this approach required the application of internal standards or matrix-adjusted calibration due to matrix effects. In this contribution, we show a way to circumvent these matrix effects while using simple external calibration for quantification. The principle of representative sampling that we propose uses radial line-scans across the dried residue. This compensates for centro-symmetric inhomogeneities typically observed in dried spots. The effectiveness of the proposed sampling strategy is exemplified via the determination of phosphorus in biochemical fermentation media. However, the universal viability of the presented measurement protocol is postulated. Detection limits using laser ablation-ICP-optical emission spectrometry were in the order of 40 μg mL - 1 with a reproducibility of 10 % relative standard deviation (n = 4, concentration = 10 times the quantification limit). The reported sensitivity is fit-for-purpose in the biochemical context described here, but could be improved using ICP-mass spectrometry, if future analytical tasks would require it. Trueness of the proposed method was investigated by cross-validation with

  4. Radial line-scans as representative sampling strategy in dried-droplet laser ablation of liquid samples deposited on pre-cut filter paper disks

    Energy Technology Data Exchange (ETDEWEB)

    Nischkauer, Winfried [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna (Austria); Department of Analytical Chemistry, Ghent University, Ghent (Belgium); Vanhaecke, Frank [Department of Analytical Chemistry, Ghent University, Ghent (Belgium); Bernacchi, Sébastien; Herwig, Christoph [Institute of Chemical Engineering, Vienna University of Technology, Vienna (Austria); Limbeck, Andreas, E-mail: Andreas.Limbeck@tuwien.ac.at [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna (Austria)

    2014-11-01

    Nebulising liquid samples and using the aerosol thus obtained for further analysis is the standard method in many current analytical techniques, also with inductively coupled plasma (ICP)-based devices. With such a set-up, quantification via external calibration is usually straightforward for samples with aqueous or close-to-aqueous matrix composition. However, there is a variety of more complex samples. Such samples can be found in medical, biological, technological and industrial contexts and can range from body fluids, like blood or urine, to fuel additives or fermentation broths. Specialized nebulizer systems or careful digestion and dilution are required to tackle such demanding sample matrices. One alternative approach is to convert the liquid into a dried solid and to use laser ablation for sample introduction. Up to now, this approach required the application of internal standards or matrix-adjusted calibration due to matrix effects. In this contribution, we show a way to circumvent these matrix effects while using simple external calibration for quantification. The principle of representative sampling that we propose uses radial line-scans across the dried residue. This compensates for centro-symmetric inhomogeneities typically observed in dried spots. The effectiveness of the proposed sampling strategy is exemplified via the determination of phosphorus in biochemical fermentation media. However, the universal viability of the presented measurement protocol is postulated. Detection limits using laser ablation-ICP-optical emission spectrometry were in the order of 40 μg mL{sup −1} with a reproducibility of 10 % relative standard deviation (n = 4, concentration = 10 times the quantification limit). The reported sensitivity is fit-for-purpose in the biochemical context described here, but could be improved using ICP-mass spectrometry, if future analytical tasks would require it. Trueness of the proposed method was investigated by cross-validation with

  5. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  6. MO-FG-202-03: Efficient Data Collection of Continuous 2D and Discrete Relative Dosimetric Data for Annual LINAC QA Using TrueBeam Developer Mode and a 1D Scanning Tank

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, N; Schmidt, M [Rhode Island Hospital, Providence, RI (United States); University of Rhode Island, Kingston, RI (United States); University of Massachusetts Lowell, Lowell, MA (United States); Nguyen, N [Rhode Island Hospital, Providence, RI (United States); University of Massachusetts Lowell, Lowell, MA (United States); Belley, M [Rhode Island Hospital, Providence, RI (United States); University of Rhode Island, Kingston, RI (United States); Price, M [Rhode Island Hospital, Providence, RI (United States); University of Rhode Island, Kingston, RI (United States); Alpert Medical School of Brown University, Providence, RI (United States)

    2016-06-15

    Purpose: To develop a method to exploit real-time dynamic machine and couch parameter control during linear accelerator (LINAC) beam delivery to facilitate efficient performance of TG-142 suggested, Annual LINAC QA tests. Methods: Varian’s TrueBeam Developer Mode (Varian Medical Systems, Palo Alto, CA) facilitates control of Varian’s TrueBeam LINAC via instructions provided in Extensible Markup Language (XML) files. This allows machine and couch parameters to be varied dynamically, in real-time, during beam delivery. Custom XML files were created to allow for the collection of (1) continuous Tissue Maximum Ratios (TMRs), (2) beam profiles, and (3) continuous output factors using a 1D-scanning tank. TMRs were acquired by orienting an ionization chamber (IC) at isocenter (depth=25cm) and synchronizing a depth scan towards the water surface while lowering the couch at 1mm/s. For beam profiles, the couch was driven laterally and longitudinally while logging IC electrometer readings. Output factors (OFs) where collected by continually varying field sizes (4×4 to 30×30-cm{sup 2}) at a constant speed of 6.66 mm/s. To validate measurements, comparisons were made to data collected using traditional methods (e.g. 1D or 3D tank). Results: All data collecting using the proposed methods agreed with traditionally collected data (TMRs within 1%, OFs within 0.5% and beam profile agreement within 1% / 1mm) while taking less time to collect (factor of approximately 1/10) and with a finer sample resolution. Conclusion: TrueBeam developer mode facilitates collection of continuous data with the same accuracy as traditionally collected data with a finer resolution in less time. Results demonstrate an order of magnitude increase in sampled resolution and an order of magnitude reduction in collection time compared to traditional acquisition methods (e.g. 3D scanning tank). We are currently extending this approach to perform other TG-142 tasks.

  7. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates.

    Science.gov (United States)

    Kolb, Jan Philip; Pfeiffer, Tom; Eibl, Matthias; Hakert, Hubertus; Huber, Robert

    2018-01-01

    We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz  =  834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 µm axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 µm axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others.

  8. SU-F-J-166: Volumetric Spatial Distortions Comparison for 1.5 Tesla Versus 3 Tesla MRI for Gamma Knife Radiosurgery Scans Using Frame Marker Fusion and Co-Registration Modes

    International Nuclear Information System (INIS)

    Neyman, G

    2016-01-01

    Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002 vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB

  9. SU-F-J-166: Volumetric Spatial Distortions Comparison for 1.5 Tesla Versus 3 Tesla MRI for Gamma Knife Radiosurgery Scans Using Frame Marker Fusion and Co-Registration Modes

    Energy Technology Data Exchange (ETDEWEB)

    Neyman, G [The Cleveland Clinic Foundation, Cleveland, OH (United States)

    2016-06-15

    Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002 vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.

  10. About the contrast of δ' precipitates in bulk Al-Cu-Li alloys in reflection mode with a field-emission scanning electron microscope at low accelerating voltage.

    Science.gov (United States)

    Brodusch, Nicolas; Voisard, Frédéric; Gauvin, Raynald

    2017-11-01

    Characterising the impact of lithium additions in the precipitation sequence in Al-Li-Cu alloys is important to control the strengthening of the final material. Since now, transmission electron microscopy (TEM) at high beam voltage has been the technique of choice to monitor the size and spatial distribution of δ' precipitates (Al 3 Li). Here we report on the imaging of the δ' phase in such alloys using backscattered electrons (BSE) and low accelerating voltage in a high-resolution field-emission scanning electron microscope. By applying low-energy Ar + ion milling to the surface after mechanical polishing (MP), the MP-induced corroded layers were efficiently removed and permitted the δ's to be visible with a limited impact on the observed microstructure. The resulting BSE contrast between the δ's and the Al matrix was compared with that obtained using Monte Carlo modelling. The artefacts possibly resulting from the sample preparation procedure were reviewed and discussed and permitted to confirm that these precipitates were effectively the metastable δ's. The method described in this report necessitates less intensive sample preparation than that required for TEM and provides a much larger field of view and an easily interpretable contrast compared to the transmission techniques. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  11. Frostbite and bone scanning: the use of 99mTc-labeled phosphates in demarcating the line of viability in frostbite victims

    International Nuclear Information System (INIS)

    Ikawa, G.; dos Santos, P.A.; Yamaguchi, K.T.; Stroh-Recor, C.; Ibello, R.

    1986-01-01

    Early diagnosis of the extent of bone and soft tissue damage is a very important step in treating a frostbite victim. The diagnostic use of Tc-99m-phosphates in assessing the viability of soft tissue and bone in frostbite was evaluated in the early post-thaw period. Four patients were treated with a combination of warm baths, rehydration, vasodilators, epidural block, fasciotomy, and debridement. Six scans were done to stage involvement. In three of the four cases, final involvement could be determined as early as the third day. When a specific level of soft tissue or bone uptake was determined, future scanning showed either improvement, or no change in three of the four patients. In our experience, Tc-99m-phosphate scans represent an improvement over other diagnostic tests for viability of tissues

  12. The use of differential scanning calorimetry for the evaluation of dental materials. I. Cements, cavity lining materials and anterior restorative materials.

    Science.gov (United States)

    McCabe, J F; Wilson, H J

    1980-03-01

    Thermal changes occurring during the setting of restorative materials have been measured accurately using a differential scanning calorimeter. The results were used to evaluate setting characteristics. The heat of reaction and rate of heat output may be significant in determining thermal damage to the pulp. The heat capacity is related to thermal insulation properties. These properties have been determined and their effect on the efficacy of restorative materials discussed.

  13. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  14. CT Scan

    Science.gov (United States)

    ... disease, lung nodules and liver masses Monitor the effectiveness of certain treatments, such as cancer treatment Detect ... scan done in a hospital or an outpatient facility. CT scans are painless and, with newer machines, ...

  15. Measurement of the vortex-core radius by scanning tunneling microscopy

    NARCIS (Netherlands)

    Hartmann, U.; Golubov, Alexandre Avraamovitch; Drechsler, T.; Kupriyanov, M. Yu; Heiden, C.

    1994-01-01

    Using a scanning tunneling microscope operated in a spectroscopic mode we imaged flux-line lattices in niobium diselenide at various external magnetic fields. From the evaluation of a large number of tunneling-current profiles taken across the individual vortices we deduced the dependence of the

  16. Transient measurements with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We use a photoconductively gated ultrafast scanning tunneling microscope to resolve laser-induced transients on transmission lines and photoconductors. The photoconductive switch on the tunneling probe is illuminated through a rigidly attached fiber. The use of the fiber enables us to scan across...... the transmission line while the change in delay time between pump beam (on the sample) and probe beam (on the probe) provides the temporal information. The investigated photoconductor sample is a low-temperature-grown GaAs layer placed on a sapphire substrate with a thin, semitransparent gold layer. In tunneling...... mode the probe is sensitive to laser-induced field changes in the semiconductor layer. Laser-induced transient signals of 2.2 ps widths are detected. As for the transmission lines, the signals can be explained by a capacitive coupling across the tunneling gap....

  17. Vertical Scan-Conversion for Filling Purposes

    OpenAIRE

    Hersch, R. D.

    1988-01-01

    Conventional scan-conversion algorithms were developed independently of filling algorithms. They cause many problems, when used for filling purposes. However, today's raster printers and plotters require extended use of filling, especially for the generation of typographic characters and graphic line art. A new scan-conversion algorithm, called vertical scan-conversion has been specifically designed to meet the requirements of parity scan line fill algorithms. Vertical scan-conversion ensures...

  18. Analysis of acetal toilet fill valve supply line nut failure

    Directory of Open Access Journals (Sweden)

    Anthony Timpanaro

    2017-10-01

    Full Text Available In recent years, there has been a rise in the number of product liability cases involving the failure of toilet water supply line acetal plastic nuts. These nuts can fail in service, causing water leaks that result in significant property and financial losses. This study examines three possible failure modes of acetal plastic toilet water supply nuts. The three failure modes tested were all due to over load failure of the acetal nut and are as follows: (1 Overtightening of the supply line acetal nut, (2 Supply line lateral pull and, (3 Embrittled supply line lateral pull. Additionally, a “hand-tight” torque survey was conducted. The fracture surfaces and characteristics of these failure tests were examined with Stereo Microscopy and Scanning Electron Microscopy (SEM. The failure modes were compared and contrasted to provide guidance in determination of cause in these investigations.

  19. Correlation between the number of quantum-statistical modes of the exciting field and the number of lines in the resonance fluorescence spectrum

    International Nuclear Information System (INIS)

    Kryzhanovskii, Boris V; Sokolov, G B

    2000-01-01

    The quasi-energy wave functions of a two-level atom in an electromagnetic field, the state of which represents a superposition of coherent states, were found. The fluorescence spectrum of an atom excited by such a field was investigated. It was shown that a spectral fluorescence mode corresponds to each mode of the quantum-statistical distribution of the field incident on the atom. This means that the number of statistical modes of the incident field may be recorded as the number of data bits of the information carried by the light pulse. (laser applications and other topics in quantum electronics)

  20. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  1. Regulation of Blood Glucose Concentration in Type 1 Diabetics Using Single Order Sliding Mode Control Combined with Fuzzy On-line Tunable Gain, a Simulation Study

    OpenAIRE

    Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh

    2015-01-01

    Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and...

  2. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  3. Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the scaleless line of featherless chickens

    Directory of Open Access Journals (Sweden)

    Wells Kirsty L

    2012-06-01

    Full Text Available Abstract Background Scaleless (sc/sc chickens carry a single recessive mutation that causes a lack of almost all body feathers, as well as foot scales and spurs, due to a failure of skin patterning during embryogenesis. This spontaneous mutant line, first described in the 1950s, has been used extensively to explore the tissue interactions involved in ectodermal appendage formation in embryonic skin. Moreover, the trait is potentially useful in tropical agriculture due to the ability of featherless chickens to tolerate heat, which is at present a major constraint to efficient poultry meat production in hot climates. In the interests of enhancing our understanding of feather placode development, and to provide the poultry industry with a strategy to breed heat-tolerant meat-type chickens (broilers, we mapped and identified the sc mutation. Results Through a cost-effective and labour-efficient SNP array mapping approach using DNA from sc/sc and sc/+ blood sample pools, we map the sc trait to chromosome 4 and show that a nonsense mutation in FGF20 is completely associated with the sc/sc phenotype. This mutation, common to all sc/sc individuals and absent from wild type, is predicted to lead to loss of a highly conserved region of the FGF20 protein important for FGF signalling. In situ hybridisation and quantitative RT-PCR studies reveal that FGF20 is epidermally expressed during the early stages of feather placode patterning. In addition, we describe a dCAPS genotyping assay based on the mutation, developed to facilitate discrimination between wild type and sc alleles. Conclusions This work represents the first loss of function genetic evidence supporting a role for FGF ligand signalling in feather development, and suggests FGF20 as a novel central player in the development of vertebrate skin appendages, including hair follicles and exocrine glands. In addition, this is to our knowledge the first report describing the use of the chicken SNP array to

  4. LIDAR COMBINED SCANNING UNIT

    Directory of Open Access Journals (Sweden)

    V. V. Elizarov

    2016-11-01

    Full Text Available Subject of Research. The results of lidar combined scanning unit development for locating leaks of hydrocarbons are presented The unit enables to perform high-speed scanning of the investigated space in wide and narrow angle fields. Method. Scanning in a wide angular field is produced by one-line scanning path by means of the movable aluminum mirror with a frequency of 20Hz and amplitude of 20 degrees of swing. Narrowband scanning is performed along a spiral path by the deflector. The deflection of the beam is done by rotation of the optical wedges forming part of the deflector at an angle of ±50. The control function of the scanning node is performed by a specialized software product written in C# programming language. Main Results. This scanning unit allows scanning the investigated area at a distance of 50-100 m with spatial resolution at the level of 3 cm. The positioning accuracy of the laser beam in space is 15'. The developed scanning unit gives the possibility to browse the entire investigated area for the time not more than 1 ms at a rotation frequency of each wedge from 50 to 200 Hz. The problem of unambiguous definition of the beam geographical coordinates in space is solved at the software level according to the rotation angles of the mirrors and optical wedges. Lidar system coordinates are determined by means of GPS. Practical Relevance. Development results open the possibility for increasing the spatial resolution of scanning systems of a wide range of lidars and can provide high positioning accuracy of the laser beam in space.

  5. DOSE RESPONSE FROM HIGH THROUGHPUT GENE EXPRESSION STUDIES AND THE INFLUENCE OF TIME AND CELL LINE ON INFERRED MODE OF ACTION BY ONTOLOGIC ENRICHMENT (SOT)

    Science.gov (United States)

    Gene expression with ontologic enrichment and connectivity mapping tools is widely used to infer modes of action (MOA) for therapeutic drugs. Despite progress in high-throughput (HT) genomic systems, strategies suitable to identify industrial chemical MOA are needed. The L1000 is...

  6. 32-core Dense SDM Unidirectional Transmission of PDM-16QAM Signals Over 1600 km Using Crosstalk-managed Single-mode Heterogeneous Multicore Transmission Line

    DEFF Research Database (Denmark)

    Mizuno, Takayuki; Shibahara, K.; Ono, Hirotaka

    2016-01-01

    We demonstrate 32-core dense space-division multiplexed (DSDM) unidirectional transmission of PDM-16QAM 20-WDM signals over 1644.8 km employing a low-crosstalk single-mode heterogeneous 32-core fiber in a partial recirculating-loop system....

  7. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  8. A New Generation of Thermal Desorption Technology Incorporating Multi Mode Sampling (NRT/DAAMS/Liquid Agent) for Both on and off Line Analysis of Trace Level Airbone Chemical Warfare Agents

    International Nuclear Information System (INIS)

    Roberts, G. M.

    2007-01-01

    A multi functional, twin-trap, electrically-cooled thermal desorption (TD) system (TT24-7) will be discussed for the analysis of airborne trace level chemical warfare agents. This technology can operate in both military environments (CW stockpile, or destruction facilities) and civilian locations where it is used to monitor for accidental or terrorist release of acutely toxic substances. The TD system interfaces to GC, GCMS or direct MS analytical platforms and provides for on-line continuous air monitoring with no sampling time blind spots and within a near real time (NRT) context. Using this technology enables on-line sub ppt levels of agent detection from a vapour sample. In addition to continuous sampling the system has the capacity for off-line single (DAAMS) tube analysis and the ability to receive an external liquid agent injection. The multi mode sampling functionality provides considerable flexibility to the TD system, allowing continuous monitoring of an environment for toxic substances plus the ability to analyse calibration standards. A calibration solution can be introduced via a conventional sampling tube on to either cold trap or as a direct liquid injection using a conventional capillary split/splitless injection port within a gas chromatograph. Low level (linearity) data will be supplied showing the TT24-7 analyzing a variety of CW compounds including free (underivitised) VX using the three sampling modes described above. Stepwise changes in vapor generated agent concentrations will be shown, and this is cross referenced against direct liquid agent introduction, and the tube sampling modes. This technology is in use today in several geographies around the world in both static and mobile analytical laboratories. (author)

  9. Microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.; Zou, X.

    1990-01-01

    A serious degradation of confinement with additional heating is commonly observed on most tokamaks. The microtearing modes could provide an explanation for this experimental fact. They are driven linearly unstable by diamagnetism in collisional regimes, but it may be shown that the collisions in non linear regimes provide a small diffusion coefficient which can be only significant at the plasme edge. In the bulk of the plasma, the microtearing turbulence could play a basic role if it is unstable in the collisionless regime. While it is linearly stable without collisions, it could be driven unstable in realistic regimes by the radial diffusion it induces. To study this effect, we have used a model where the non linear action of the modes on a given helicity component is represented by a diffusion operator. They are found unstable for reasonable β p =2μ o nT/B 2 p , with a special radial profile of the potential vector A. The problem arises the validity of this model where non linearities in the trajectories behaviour are replaced by the diffusion which broadens resonances. To test this procedure, we calculate the actual electron distribution function when it is determined by the ergodicity of the field lines. We compute the correlations of the distribution function with the magnetic perturbation and compare them with the analytical expressions derived from the resonance broadening model. (author) 3 refs., 2 figs

  10. Scanning table

    CERN Multimedia

    1960-01-01

    Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.

  11. Scan Statistics

    CERN Document Server

    Glaz, Joseph

    2009-01-01

    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  12. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  13. Estimating heat transfer bias of kinetic measurement for polymers by differential scanning calorimetry with isothermal mode; Evaluation de l'erreur due au transfert de chaleur lors des mesures cinetiques dans les polymeres par calorimetrie differentielle a balayage en mode isotherme

    Energy Technology Data Exchange (ETDEWEB)

    Danes, Florin; Garnier, Bertrand [Laboratoire de Thermocinetique, UMR CNRS 6607, Ecole Polytechnique de l' Universite de Nantes, rue C. Pauc, BP50609, 44306 cedex 3, Nantes (France)

    2003-06-01

    The non-uniformity of temperatures in the DSC sample, and the subsequent difference between mean sample temperature and measured one (in the support of the crucible) are identified as the main source of bias for the isothermal mode determination of kinetic characteristics by differential scanning calorimetry. Chemical reactions under consideration are these with important heat effects into thermal insulators, as for example the reticulation of polymeric materials.By introducing an analytical model of heat transfer in DSC reactive samples, we have performed an estimation for the upper limit of the maximal size of samples which corresponds to a given relative error of the reaction rate, as measured by isothermal DSC calorimetry. For example, with a 5% error and flat samples, we have found admissible sample thicknesses which decrease with temperature and are between 1.9 and 3.1 mm for the sulphur vulcanization of a natural rubber and between 0.6 and 1.1 mm for the reticulation of a pre-polymerized epoxy resin. (authors)

  14. Bone scans

    International Nuclear Information System (INIS)

    Hetherington, V.J.

    1989-01-01

    Oftentimes, in managing podiatric complaints, clinical and conventional radiographic techniques are insufficient in determining a patient's problem. This is especially true in the early stages of bone infection. Bone scanning or imaging can provide additional information in the diagnosis of the disorder. However, bone scans are not specific and must be correlated with clinical, radiographic, and laboratory evaluation. In other words, bone scanning does not provide the diagnosis but is an important bit of information aiding in the process of diagnosis. The more useful radionuclides in skeletal imaging are technetium phosphate complexes and gallium citrate. These compounds are administered intravenously and are detected at specific time intervals postinjection by a rectilinear scanner with minification is used and the entire skeleton can be imaged from head to toe. Minification allows visualization of the entire skeleton in a single image. A gamma camera can concentrate on an isolated area. However, it requires multiple views to complete the whole skeletal image. Recent advances have allowed computer augmentation of the data received from radionucleotide imaging. The purpose of this chapter is to present the current radionuclides clinically useful in podiatric patients

  15. Analysis of the response dependence of Ebt3 radiochromic film with energy, dose rate, wavelength, scanning mode and humidity; Analisis de la dependencia de la respuesta de la pelicula radiocromica EBT3 con la energia, tasa de dosis, longitud de onda, modo de escaneo y con la humedad

    Energy Technology Data Exchange (ETDEWEB)

    Leon M, E. Y.; Camacho L, M. A. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Laboratorio de Fotomedicina, Biofotonica y Espectroscopia Laser de Pulsos Ultracortos, Jesus Carranza y Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Herrera G, J. A.; Garcia G, O. A. [Instituto Nacional de Neurologia y Neurocirugia, Laboratorio de Fisica Medica y Unidad de Radiocirugia, 14269 Ciudad de Mexico (Mexico); Villarreal B, J. E., E-mail: yaz_3333@hotmail.com [University of Calgary, Department of Oncology, Tom Baker Cancer Centre, 1331 29th street NW Calgary, Alberta T2N 4N2 (Canada)

    2016-10-15

    With the development of new modalities in radiotherapy treatments, the use of radiochromic films has increased considerably. Because the characteristics that presented, they are suitable for quality control and dose measurement. In this work and analysis of the dependence of the response of Ebt3 radiochromic films with energy, dose rate, wavelength, scan mode and humidity, for a dose range of 0-70 Gy is presented. According to the results, the response of Ebt3 radiochromic films has low dependence on energy, dose rate, scan mode and humidity. However, the sensitivity of the response Ebt3 radiochromic films has a high dependence on the wavelength of the optical system used for reading. (Author)

  16. White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Line Widths: Kepler  Observations of 27 Pulsating DA White Dwarfs through K2 Campaign 8

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Fanale, S. M.; Dennihy, E.; Fuchs, J. T.; Dunlap, B. H.; Clemens, J. C. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Gänsicke, B. T.; Greiss, S.; Tremblay, P.-E.; Fusillo, N. P. Gentile; Raddi, R.; Chote, P.; Marsh, T. R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kawaler, Steven D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Bell, Keaton J.; Montgomery, M. H.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Redfield, S., E-mail: jjhermes@unc.edu [Wesleyan University Astronomy Department, Van Vleck Observatory, 96 Foss Hill Drive, Middletown, CT 06459 (United States)

    2017-10-01

    We present photometry and spectroscopy for 27 pulsating hydrogen-atmosphere white dwarfs (DAVs; a.k.a. ZZ Ceti stars) observed by the Kepler space telescope up to K2 Campaign 8, an extensive compilation of observations with unprecedented duration (>75 days) and duty cycle (>90%). The space-based photometry reveals pulsation properties previously inaccessible to ground-based observations. We observe a sharp dichotomy in oscillation mode line widths at roughly 800 s, such that white dwarf pulsations with periods exceeding 800 s have substantially broader mode line widths, more reminiscent of a damped harmonic oscillator than a heat-driven pulsator. Extended Kepler coverage also permits extensive mode identification: we identify the spherical degree of 87 out of 201 unique radial orders, providing direct constraints of the rotation period for 20 of these 27 DAVs, more than doubling the number of white dwarfs with rotation periods determined via asteroseismology. We also obtain spectroscopy from 4 m-class telescopes for all DAVs with Kepler photometry. Using these homogeneously analyzed spectra, we estimate the overall mass of all 27 DAVs, which allows us to measure white dwarf rotation as a function of mass, constraining the endpoints of angular momentum in low- and intermediate-mass stars. We find that 0.51–0.73 M {sub ⊙} white dwarfs, which evolved from 1.7–3.0 M {sub ⊙} ZAMS progenitors, have a mean rotation period of 35 hr with a standard deviation of 28 hr, with notable exceptions for higher-mass white dwarfs. Finally, we announce an online repository for our Kepler data and follow-up spectroscopy, which we collect at http://k2wd.org.

  17. Short-term precision assessment of trabecular bone score and bone mineral density using dual-energy X-ray absorptiometry with different scan modes: an in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Bandirali, Michele; Poloni, Alessandro; Messina, Carmelo; Petrini, Marcello [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Sconfienza, Luca Maria; Sardanelli, Francesco [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy); Papini, Giacomo Davide Edoardo; Di Leo, Giovanni [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Ulivieri, Fabio Massimo [IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Mineralometria Ossea Computerizzata e Ambulatorio Malattie Metabolismo Minerale e Osseo, Servizio di Medicina Nucleare, Milano (Italy)

    2015-07-15

    We estimated the in vivo reproducibility of trabecular bone score (TBS) from dual-energy X-ray absorptiometry (DXA) using different imaging modes to be compared to that of bone mineral density (BMD). We enrolled 30 patients for each imaging mode: fast-array, array, high definition. Each patient underwent two DXA examinations with in-between repositioning. BMD and TBS were obtained according to the International Society for Clinical Densitometry guidelines. The coefficient of variation (CoV) was calculated as the ratio between root mean square standard deviation and mean, percent least significant change (LSC) as 2.77 x CoV, reproducibility as the complement to 100 % LSC. Fast-array imaging mode resulted in 0.8 % CoV and 2.1 % LSC for BMD, 1.9 % and 5.3 % for TBS, respectively; array imaging mode resulted in 0.7 % and 2.0 % for BMD, 1.9 % and 5.2 %, for TBS; high-definition imaging mode resulted in 0.7 % and 2.0 %, for BMD; 2.0 % and 5.4 % for TBS, respectively. Reproducibility of TBS (95 %) was significantly lower than that of BMD (98 %) (p < 0.012). Difference in reproducibility among the imaging modes was not significant for either BMD or TBS (p = 0.942). While TBS reproducibility was significantly lower than that of BMD, differences among imaging modes were not significant for both TBS and BMD. (orig.)

  18. Habit modification of nearly perfect single crystals of potassium dihydrogen phosphate (KDP) by trivalent manganese ions studied using synchrotron radiation X-ray multiple diffraction in Renninger scanning mode

    OpenAIRE

    Lai, X; Roberts, KJ; Avanci, LH; Cardoso, LP; Sasaki, JM

    2003-01-01

    The X-ray multiple diffraction technique using synchrotron radiation is applied in the preliminary study of the habit modification of KDP samples as induced by incorporation of the trivalent transition metal cation Mn3+. High-resolution Renninger scans of pure and doped KDP were carried out using 400 as the primary reflection, echoing the fact that these impurity species were segregated in the {100} growth sector. The analysis of the Renninger scans of the doped KDP crystals is consistent wit...

  19. ELT-MELAS analyzer and its on-line programs

    International Nuclear Information System (INIS)

    Anikeev, V.B.; Berezhnoj, V.A.; Glupova

    1976-01-01

    ELT-MELAS device constructed for an automatic analysis of pictures from big bubble chambers is described. It is controlled by a medium-size ICL-1903A computer and has two measuring modes: analysis of the ''agreement'' signal and digitation of slice-scans. Main features of the hardware and of on-line controlling and diagnostic software are presented. The test results of the MELAS complex as well as preliminary results of the scan-slice measurements of pictures from 15sup(') chamber are given

  20. Aphasia caused by intracerebral hemorrhage; CT-scan findings and prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Kazuhide; Segawa, Hiromu; Shiokawa, Yoshiaki; Hasegawa, Isao; Sano, Keiji (Fuji Brain Institute and Hospital, Shizuoka (Japan))

    1992-10-01

    It is generally accepted that cases of aphasia can be divided into several groups according to verbal fluency, auditory comprehension, and repetition abilities. Although many authors have studied aphasia and its location by means of a CT scan, the primary lesion on a CT scan with regard to the subtypes of aphasia still remains controversial. In this report we present our new CT classification for the syndromes of aphasia and the prognosis. Twenty-one patients with intracerebral hematoma (ICH) were followed up for more than 3 months after onset. ICH was classified according to the mode of the horizontal extension of the hematoma on a CT scan. Four lines were decided as follows: Line (a) is between the anterior horn of the lateral ventricle and the midpoint of the third ventricle; Line (b) is the vertical line to the saggital line which originates from the midpoint of the third ventricle; Line (c) is between the trigone of the lateral ventricle and the midpoint of the third ventricle. The CT classification consisted of 4 types: in Type A, ICH was located anterior to line (a); in Type B, ICH was located between line (a) and line (b); in Type C, ICH was located between line (b) and line (c); Type B+C, was a combination of Type B and Type C. Transcortical motor aphasia belonged to the Type A group. Transcortical sensory aphasia belonged to the Type B and Type B+C groups. Wernicke's and anomic aphasia belonged to the Type C group. Conduction and global aphasia belonged to the Type B+C group. Pure Broca's aphasia could not be observed in this series. Several relationships between the syndromes of aphasia and its CT findings were evident. On the other hand, the syndromes of aphasia and the degree of recovery were not correlated, except for global aphasia. (author).

  1. Aphasia caused by intracerebral hemorrhage; CT-scan findings and prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Kazuhide; Segawa, Hiromu; Shiokawa, Yoshiaki; Hasegawa, Isao; Sano, Keiji [Fuji Brain Institute and Hospital, Shizuoka (Japan)

    1992-10-01

    It is generally accepted that cases of aphasia can be divided into several groups according to verbal fluency, auditory comprehension, and repetition abilities. Although many authors have studied aphasia and its location by means of a CT scan, the primary lesion on a CT scan with regard to the subtypes of aphasia still remains controversial. In this report we present our new CT classification for the syndromes of aphasia and the prognosis. Twenty-one patients with intracerebral hematoma (ICH) were followed up for more than 3 months after onset. ICH was classified according to the mode of the horizontal extension of the hematoma on a CT scan. Four lines were decided as follows: Line (a) is between the anterior horn of the lateral ventricle and the midpoint of the third ventricle; Line (b) is the vertical line to the saggital line which originates from the midpoint of the third ventricle; Line (c) is between the trigone of the lateral ventricle and the midpoint of the third ventricle. The CT classification consisted of 4 types: in Type A, ICH was located anterior to line (a); in Type B, ICH was located between line (a) and line (b); in Type C, ICH was located between line (b) and line (c); Type B+C, was a combination of Type B and Type C. Transcortical motor aphasia belonged to the Type A group. Transcortical sensory aphasia belonged to the Type B and Type B+C groups. Wernicke's and anomic aphasia belonged to the Type C group. Conduction and global aphasia belonged to the Type B+C group. Pure Broca's aphasia could not be observed in this series. Several relationships between the syndromes of aphasia and its CT findings were evident. On the other hand, the syndromes of aphasia and the degree of recovery were not correlated, except for global aphasia. (author).

  2. An interchangeable scanning Hall probe/scanning SQUID microscope

    International Nuclear Information System (INIS)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-01-01

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10 −7 T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La 2/3 Ca 1/3 MnO 3 thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K

  3. An interchangeable scanning Hall probe/scanning SQUID microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Tse-Jun; Wang, M. J. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  4. Head CT scan

    Science.gov (United States)

    ... scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... head size in children Changes in thinking or behavior Fainting Headache, when you have certain other signs ...

  5. Signal of microstrip scanning near-field optical microscope in far- and near-field zones.

    Science.gov (United States)

    Morozov, Yevhenii M; Lapchuk, Anatoliy S

    2016-05-01

    An analytical model of interference between an electromagnetic field of fundamental quasi-TM(EH)00-mode and an electromagnetic field of background radiation at the apex of a near-field probe based on an optical plasmon microstrip line (microstrip probe) has been proposed. The condition of the occurrence of electromagnetic energy reverse flux at the apex of the microstrip probe was obtained. It has been shown that the nature of the interference depends on the length of the probe. Numerical simulation of the sample scanning process was conducted in illumination-reflection and illumination-collection modes. Results of numerical simulation have shown that interference affects the scanning signal in both modes. However, in illumination-collection mode (pure near-field mode), the signal shape and its polarity are practically insensible to probe length change; only signal amplitude (contrast) is slightly changed. However, changing the probe length strongly affects the signal amplitude and shape in the illumination-reflection mode (the signal formed in the far-field zone). Thus, we can conclude that even small background radiation can significantly influence the signal in the far-field zone and has practically no influence on a pure near-field signal.

  6. Observations on resistive wall modes

    International Nuclear Information System (INIS)

    Gerwin, R.A.; Finn, J.M.

    1996-01-01

    Several results on resistive wall modes and their application to tokamaks are presented. First, it is observed that in the presence of collisional parallel dynamics there is an exact cancellation to lowest order of the dissipative and sound wave effects for an ideal Ohm's law. This is easily traced to the fact that the parallel dynamics occurs along the perturbed magnetic field lines for such electromagnetic modes. Such a cancellation does not occur in the resistive layer of a tearing-like mode. The relevance to models for resistive wall modes using an electrostatic Hammett-Perkins type operator to model Landau damping will be discussed. Second, we observe that with an ideal Ohm's law, resistive wall modes can be destabilized by rotation in that part of parameter space in which the ideal MHD modes are stable with the wall at infinity. This effect can easily be explained by interpreting the resistive wall instability in terms of mode coupling between the backward stable MHD mode and a stable mode locked into the wall. Such an effect can occur for very small rotation for tearing-resistive wall modes in which inertia dominates viscosity in the layer, but the mode is stabilized by further rotation. For modes for which viscosity dominates in the layer, rotation is purely stabilizing. For both tearing models, a somewhat higher rotation frequency gives stability essentially whenever the tearing mode is stable with a perfectly conducting wall. These tearing/resistive wall results axe also simply explained in terms of mode coupling. It has been shown that resonant external ideal modes can be stabilized in the presence of resistive wall and resistive plasma with rotation of order the nominal tearing mode growth rate. We show that these modes behave as resistive wall tearing modes in the sense above. This strengthens the suggestion that rotational stabilization of the external kink with a resistive wall is due to the presence of resistive layers, even for ideal modes

  7. Assessing ScanSAR Interferometry for Deformation Studies

    Science.gov (United States)

    Buckley, S. M.; Gudipati, K.

    2007-12-01

    There is a trend in civil satellite SAR mission design to implement an imaging strategy that incorporates both stripmap mode and ScanSAR imaging. This represents a compromise between high resolution data collection and a desire for greater spatial coverage and more frequent revisit times. However, mixed mode imaging can greatly reduce the number of stripmap images available for measuring subtle ground deformation. Although ScanSAR-ScanSAR and ScanSAR-stripmap repeat-pass interferometry have been demonstrated, these approaches are infrequently used for single interferogram formation and nonexistent for InSAR time series analysis. For future mission design, e.g., a dedicated US InSAR mission, the effect of various ScanSAR system parameter choices on InSAR time series analysis also remains unexplored. Our objective is to determine the utility of ScanSAR differential interferometry. We will demonstrate the use of ScanSAR interferograms for several previous deformation studies: localized and broad-scale urban land subsidence, tunneling, volcanic surface movements and several examples associated with the seismic cycle. We also investigate the effect of various ScanSAR burst synchronization levels on our ability to detect and make quality measurements of deformation. To avoid the issues associated with Envisat ScanSAR burst alignment and to exploit a decade of InSAR measurements, we simulate ScanSAR data by bursting (throwing away range lines of) ERS-1/2 data. All the burst mode datasets are processed using a Modified SPECAN algorithm. To investigate the effects of burst misalignment, a number of cases with varying degrees of burst overlap are considered. In particular, we look at phase decorrelation as a function of percentage of burst overlap. Coherence clearly reduces as the percentage of overlap decreases and we find a useful threshold of 40-70% burst overlap depending on the study site. In order to get a more generalized understanding for different surface conditions

  8. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jonathan D.; Nievergelt, Adrian; Erickson, Blake W.; Yang, Chen; Dukic, Maja; Fantner, Georg E., E-mail: georg.fantner@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2014-09-15

    We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance. Using small cantilevers with our AFM head on an otherwise unmodified commercial AFM system, we are able to take tapping mode images approximately 5–10 times faster compared to the same AFM system using large cantilevers. By using additional scanner turnaround resonance compensation and a controller designed for high-speed AFM imaging, we show tapping mode imaging of lipid bilayers at line scan rates of 100–500 Hz for scan areas of several micrometers in size.

  9. Growth arrest line mimicking lymphoma involvement: The findings of {sup 99m}Tc-MDP bone SPECT/CT and serial bone scan in a child with non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Woo; Kim, Ji Young; Choi, Yun Young; Lee, Seung Hun; Lee, Young Ho [Hanyang University Medical Center, Seoul (Korea, Republic of)

    2016-06-15

    Growth arrest lines appear as dense sclerotic lines parallel to the growth plate of long bones on radiography. We describe the case of a 9-year-old female with growth arrest lines initially masquerading as lymphoma involvement on {sup 99m}Tc-MDP bone scintigraphy who had been treated with chemotherapy for non-Hodgkin's lymphoma about 3 years previously. Subsequent regional bone SPECT/CT clearly diagnosed the growth arrest lines, and retrograde review of previous bone scintigraphy demonstrated line migration in this patient. Growth arrest lines should be considered a possible diagnosis on bone scintigraphy, especially in the surveillance of children who have experienced severe childhood infections, malnutrition, immobilization, or treatment with immunosuppressive or chemotherapeutic drugs that may inhibit bone growth.

  10. Growth arrest line mimicking lymphoma involvement: The findings of 99mTc-MDP bone SPECT/CT and serial bone scan in a child with non-Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Kim, Chan Woo; Kim, Ji Young; Choi, Yun Young; Lee, Seung Hun; Lee, Young Ho

    2016-01-01

    Growth arrest lines appear as dense sclerotic lines parallel to the growth plate of long bones on radiography. We describe the case of a 9-year-old female with growth arrest lines initially masquerading as lymphoma involvement on 99m Tc-MDP bone scintigraphy who had been treated with chemotherapy for non-Hodgkin's lymphoma about 3 years previously. Subsequent regional bone SPECT/CT clearly diagnosed the growth arrest lines, and retrograde review of previous bone scintigraphy demonstrated line migration in this patient. Growth arrest lines should be considered a possible diagnosis on bone scintigraphy, especially in the surveillance of children who have experienced severe childhood infections, malnutrition, immobilization, or treatment with immunosuppressive or chemotherapeutic drugs that may inhibit bone growth

  11. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  12. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  13. A Scanning Microwave Radar and Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels

    1995-01-01

    The Scanning Microwave Radar and Radiometer (SMRR) is a line scanner featuring a combined radar and radiometer system operating around 35 and 94 GHz. The layout of the SMRR is shown. The 2 offset antenna parabolas scan in synchronism, the receiver antenna has the highest gain in order to ensure...

  14. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  15. Suppression of the dayside magnetopause surface modes

    Directory of Open Access Journals (Sweden)

    Pilipenko V.A.

    2017-12-01

    Full Text Available Magnetopause surface eigenmodes were suggested as a potential source of dayside high-latitude broadband pulsations in the Pc5-6 band (frequency about 1–2 mHz. However, the search for a ground signature of these modes has not provided encouraging results. The comparison of multi-instrument data from Svalbard with the latitudinal structure of Pc5-6 pulsations, recorded by magnetometers covering near-cusp latitudes, has shown that often the latitudinal maximum of pulsation power occurs about 2–3° deeper in the magnetosphere than the dayside open-closed field line boundary (OCB. The OCB proxy was determined from SuperDARN radar data as the equatorward boundary of enhanced width of a return radio signal. The OCB-ULF correspondence is further examined by comparing the latitudinal profile of the near-noon pulsation power with the equatorward edge of the auroral red emission from the meridian scanning photometer. In most analyzed events, the “epicenter” of Pc5-6 power is at 1–2° lower latitude than the optical OCB proxy. Therefore, the dayside Pc5-6 pulsations cannot be associated with the ground image of the magnetopause surface modes or with oscillations of the last field line. A lack of ground response to these modes beneath the ionospheric projection of OCB seems puzzling. As a possible explanation, we suggest that a high variability of the outer magnetosphere near the magnetopause region may suppress the excitation efficiency. To quantify this hypothesis, we consider a driven field line resonator terminated by conjugate ionospheres with stochastic fluctuations of its eigenfrequency. A solution of this problem predicts a substantial deterioration of resonant properties of MHD resonator even under a relatively low level of background fluctuations. This effect may explain why there is no ground response to magnetopause surface modes or oscillations of the last field line at the OCB latitude, but it can be seen at somewhat lower latitudes

  16. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates.

    Science.gov (United States)

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Park, Jewook; Li, An-Ping; Zhang, X-G

    2017-01-01

    We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a "rubber band" model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  17. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-01-01

    Full Text Available We present an image postprocessing framework for Scanning Tunneling Microscope (STM to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a “rubber band” model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA. The numerical results on measurement from copper(111 surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  18. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  19. Photon emission spectroscopy of NiAl(110) in the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Nilius, N.; Ernst, N.; Freund, H.-J.; Johansson, P.

    2000-01-01

    Spectroscopic measurements have been carried out of the light emitted from the NiAl(110)/W tunnel junction of a scanning tunneling microscope. The data reveal two prominent emission lines in the visible and near-infrared region. Corresponding model calculations assign the observed light emission to the radiating decay of the tip-induced plasmon excited in the tip-sample cavity. In agreement with the theory, a low- and a high-energy mode of the plasmon can be distinguished in the experimental data. Since the excitation probability of the two modes is determined by the size of the tunnel cavity, it can be influenced by the radius of the tunnel tip. A blunted tip favors the observation conditions of the higher mode

  20. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a ω is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, Q/sub xy/, whenever a coherent dipole oscillation exists

  1. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a(ω) is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, whenever a coherent dipole oscillation exists

  2. Line parameters of methanol (CH3OH) at 10 microns

    Science.gov (United States)

    Lees, R. M.; Xu, L.-H.; Wang, P.; Brown, L. R.; Kleiner, I.; Johns, J. W. C.

    2003-05-01

    Laboratory spectra of methanol have been measured at high resolution and analyzed to provide spectroscopic information required for astrophysics and solar system studies. Line positions and quantum assignments have been obtained using spectra recorded at 0.002 cm-1 resolution using a modified Bomem DA3,002 spectrometer. Line intensities have been retrieved using laboratory scans from the McMath-Pierce Fourier-transform spectrometer located at the National Solar Observatory. The 10 micron region methanol absorption arises mainly from the fundamental CO-stretch mode (nu8) at 1033 cm-1, along with occasional transitions perturbed in the region by several nearby interacting states of the methyl rock (nu7), methyl bends (nu5, nu10, nu4) and the OH-bending (nu6) in combination with the torsion (nu12). Overall, the nu8 CO-stretch mode follows the traditional torsion-rotational pattern. We modeled the line positions and intensities for the CO-stretch mode with the one-dimensional torsional Hamiltonian and produced a HITRAN line list for cometary studies. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. RML and LHXu wish to acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada. IK would like to thank the French Programme National de Planétologie (PNP) for funding this research.

  3. Scanning probe lithography for nanoimprinting mould fabrication

    International Nuclear Information System (INIS)

    Luo Gang; Xie Guoyong; Zhang Yongyi; Zhang Guoming; Zhang Yingying; Carlberg, Patrick; Zhu Tao; Liu Zhongfan

    2006-01-01

    We propose a rational fabrication method for nanoimprinting moulds by scanning probe lithography. By wet chemical etching, different kinds of moulds are realized on Si(110) and Si(100) surfaces according to the Si crystalline orientation. The structures have line widths of about 200 nm with a high aspect ratio. By reactive ion etching, moulds with patterns free from the limitation of Si crystalline orientation are also obtained. With closed-loop scan control of a scanning probe microscope, the length of patterned lines is more than 100 μm by integrating several steps of patterning. The fabrication process is optimized in order to produce a mould pattern with a line width about 10 nm. The structures on the mould are further duplicated into PMMA resists through the nanoimprinting process. The method of combining scanning probe lithography with wet chemical etching or reactive ion etching (RIE) provides a resistless route for the fabrication of nanoimprinting moulds

  4. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...

  5. Mixed-mode elastic-plastic fracture of 2024-T351 aluminium alloy

    International Nuclear Information System (INIS)

    Sakata, Masaru; Aoki, Shigeru; Kishimoto, Kikuo; Chikugo, Hiroshi; Takizawa, Masakazu.

    1985-01-01

    In order to evaluate accurately the strength and structural soundness of the structures made of high toughness materials, it is necessary to clarify the fracture behavior under the loading condition of mixed mode such as oblique cracks as well as the elasto-plastic fracture behavior of the materials in the case of single opening displacement type mode. About the fracture condition in the state of mixed mode, various theories based on the linear fracture mechanics have been proposed. In this study, the elasto-plastic fracture toughness test of mixed mode was carried out by using an aluminum alloy as the subject, and the behavior of dulling and development of cracks was observed with a scanning electron microscope. Moreover, the state of deformation of the test pieces was analyzed by elasto-plastic finite element method, thus the parameters controlling the elasto-plastic fracture of mixed mode were examined. In the range of this study, the limiting stretch zone width in the case of loading of mixed mode was 12 μm similarly to the case of single mode. Also in the case of mixed mode, there was distinct difference between the inclination of a dulling straight line and an R-curve, and the limit value of J intergral was determined by their intersection. (Kako, I.)

  6. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  7. A scanning tunneling microscope for a dilution refrigerator.

    Science.gov (United States)

    Marz, M; Goll, G; Löhneysen, H v

    2010-04-01

    We present the main features of a home-built scanning tunneling microscope that has been attached to the mixing chamber of a dilution refrigerator. It allows scanning tunneling microscopy and spectroscopy measurements down to the base temperature of the cryostat, T approximately 30 mK, and in applied magnetic fields up to 13 T. The topography of both highly ordered pyrolytic graphite and the dichalcogenide superconductor NbSe(2) has been imaged with atomic resolution down to T approximately 50 mK as determined from a resistance thermometer adjacent to the sample. As a test for a successful operation in magnetic fields, the flux-line lattice of superconducting NbSe(2) in low magnetic fields has been studied. The lattice constant of the Abrikosov lattice shows the expected field dependence proportional to 1/square root of B and measurements in the scanning tunneling spectroscopy mode clearly show the superconductive density of states with Andreev bound states in the vortex core.

  8. Environmental scanning as information seeking and organizational learning

    Directory of Open Access Journals (Sweden)

    2001-01-01

    Full Text Available Environmental scanning is the acquisition and use of information about events, trends, and relationships in an organization's external environment, the knowledge of which would assist management in planning the organization's future course of action. Depending on the organization's beliefs about environmental analyzability and the extent that it intrudes into the environment to understand it, four modes of scanning may be differentiated: undirected viewing, conditioned viewing, enacting, and searching. We analyze each mode of scanning by examining its characteristic information needs, information seeking, and information use behaviours. In addition, we analyze organizational learning processes by considering the sensemaking, knowledge creating and decision making processes at work in each mode.

  9. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  10. A proton microbeam deflection system to scan target surfaces

    International Nuclear Information System (INIS)

    Heck, D.

    1978-12-01

    A system to deflect the proton beam within the Karlsruhe microbeam setup is described. The deflection is achieved whithin a transverse electrical field generated between parallel electrodes. Their tension is controlled by a pattern generator, thus enabling areal and line scans with a variable number of scan points at variable scan speed. The application is demonstrated at two different examples. (orig.) [de

  11. Spin modes

    International Nuclear Information System (INIS)

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  12. Tilting mode in field-reversed configurations

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.

    1982-01-01

    Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal

  13. Radiopharmaceutical scanning agents

    International Nuclear Information System (INIS)

    1976-01-01

    This invention is directed to dispersions useful in preparing radiopharmaceutical scanning agents, to technetium labelled dispersions, to methods for preparing such dispersions and to their use as scanning agents

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Scan and Uptake Thyroid scan and uptake uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  15. Nuclear Heart Scan

    Science.gov (United States)

    ... Home / Nuclear Heart Scan Nuclear Heart Scan Also known as Nuclear Stress Test , ... Learn More Connect With Us Contact Us Directly Policies Privacy Policy Freedom of Information Act (FOIA) Accessibility ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Most thyroid scan and thyroid uptake ... you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special instructions ...

  17. RBC nuclear scan

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  18. Scanning gamma camera

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Batter, J.F. Jr.; Stout, K.J.

    1977-01-01

    A scanning system for a gamma camera providing for the overlapping of adjacent scan paths is described. A collimator mask having tapered edges provides for a graduated reduction in intensity of radiation received by a detector thereof, the reduction in intensity being graduated in a direction normal to the scanning path to provide a blending of images of adjacent scan paths. 31 claims, 15 figures

  19. Effect of low density H-mode operation on edge and divertor plasma parameters

    International Nuclear Information System (INIS)

    Maingi, R.; Mioduszewski, P.K.; Cuthbertson, J.W.

    1994-07-01

    We present a study of the impact of H-mode operation at low density on divertor plasma parameters on the DIII-D tokamak. The line-average density in H-mode was scanned by variation of the particle exhaust rate, using the recently installed divertor cryo-condensation pump. The maximum decrease (50%) in line-average electron density was accompanied by a factor of 2 increase in the edge electron temperature, and 10% and 20% reductions in the measured core and divertor radiated power, respectively. The measured total power to the inboard divertor target increased by a factor of 3, with the major contribution coming from a factor of 5 increase in the peak heat flux very close to the inner strike point. The measured increase in power at the inboard divertor target was approximately equal to the measured decrease in core and divertor radiation

  20. Clinical application of dual modes NMR scanning system

    International Nuclear Information System (INIS)

    Furuse, Kazuhiro; Sao, Katsuyoshi; Inao, Motohide; Mogi, Yoshimasa; Nagai, Masahiko

    1983-01-01

    The initial stage of clinical application of this method using the FONAR QED 80-α system was reprted. In normal subjects this system produced higher T 1 values for the gray matter than those for the white matter both in the cerebrum and cerebellum. Cases of cerebral infarction showed prolongation of the T 1 value at the infarction site. Cases of cerebral atrophy showed definitely high T 1 values of the white matter near the lateral ventricle. The T 1 value did not fluctuate greatly at the hematoma site in cases of intracerebral hematoma, but was high in the area surrounding the hematoma. Thus, the T 1 value seemed important for assessment of edema surrounding the hematoma. In brain tumors, the major lesion showed a high T 1 . The system has induced no subjective or objective signs of hazards. (Chiba, N.)

  1. A new ultrasensitive scanning calorimeter.

    Science.gov (United States)

    Plotnikov, V V; Brandts, J M; Lin, L N; Brandts, J F

    1997-08-01

    A new ultrasensitive differential scanning calorimeter is described, having a number of novel features arising from integration between hardware and software. It is capable of high performance in either a scanning or isothermal mode of operation. Upscanning is carried out adiabatically while downscanning is nonadiabatic. By using software-controlled signals sent continuously to appropriate hardware devices, it is possible to improve adiabaticity and constancy of scan rate through use of empirical prerun information stored in memory rather than by using feedback systems which respond in real time and generate thermal noise. Also, instrument response time is software-selectable, maximizing performance for both slow- and fast-transient systems. While these and other sophisticated functionalities have been introduced into the instrument to improve performance and data analysis, they are virtually invisible and add no additional complexities into operation of the instrument. Noise and baseline repeatability are an order of magnitude better than published raw data from other instruments so that high-quality results can be obtained on protein solutions, for example, using as little as 50 microg of protein in the sample cell.

  2. Scanning electron microscopy of bone.

    Science.gov (United States)

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  3. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    Science.gov (United States)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a advantages in achieving slow light.

  4. Laser scanning of experimental solar cells

    Science.gov (United States)

    Plunkett, B. C.; Lasswell, P. G.

    1980-01-01

    A description is presented of a laser scanning instrument which makes it possible to display and measure the spatial response of a solar cell. Examples are presented to illustrate the use of generated micrographs in the isolation of flaws and features of the cell. The laser scanner system uses a 4 mW, CW helium-neon laser, operating a wavelength of 0.633 micrometers. The beam is deflected by two mirror galvanometers arranged to scan in orthogonal directions. After being focused on the solar cell by the beam focusing lens, the moving light spot raster scans the specimen. The current output of the photovoltaic device under test, as a function of the scan dot position, can be displayed in several modes. The laser scanner has proved to be a very useful diagnostic tool in optimizing the process design of transparent metal film photovoltaic devices on Zn3P2, a relatively new photovoltaic material.

  5. Lung PET scan

    Science.gov (United States)

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  6. Scanning of bone metastases

    International Nuclear Information System (INIS)

    Robillard, J.

    1977-01-01

    The Centers against cancer of Caen, Angers, Montpellier, Strasbourg and 'the Curie Foundation' have confronted their experience in detection of bone metastases by total body scanning. From the investigation by this procedure, of 1,467 patients with cancer, it results: the confrontation between radio and scanning shows a rate of false positive and false negative identical to the literature ones; the countage scanning allows to reduce the number of false positive; scanning allows to direct bone biopsy and to improve efficiency of histological examination [fr

  7. Image quality of high-resolution CT with 16-channel multidetector-row CT. Comparison between helical scan and conventional step-shoot scan

    International Nuclear Information System (INIS)

    Sumikawa, Hiromitsu; Johkoh, Takeshi; Koyama, Mitsuhiro

    2005-01-01

    The aim of this study was to evaluate the image quality of high-resolution CT (HRCT) reconstructed from volumetric data with 16-channel multidetector-row CT (MDCT). Eleven autopsy lungs that were diagnosed histopathologically were scanned by 16-channel MDCT with the step-and-shoot scan mode and three helical scan modes. Each helical mode had each size of focal spot, pitch, and time of gantry rotation. HRCT images were reconstructed from the volumetric data with each helical mode and axial sequence data. Two observers evaluated the image quality and noted the most appropriate diagnosis for each imaging. Visualization of abnormal structures with one helical mode was equal to those with axial mode, whereas those with the other two helical modes were inferior to those with axial mode (Wilcoxon signed rank test; p<0.0001). There was no significant difference in diagnostic efficacy between modes. The image quality of HRCT with appropriate helical mode is equal to that with axial mode and diagnostic efficacy is equal among all modes. These results may indicate that sufficient HRCT images can be obtained by only one helical scan without the addition of conventional axial scans. (author)

  8. High-mode-number ballooning modes in a heliotron/torsatron system. II. Stability

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-01-01

    In heliotron/torsatron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standard stability calculations, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues ω 2 to have a strong field line dependence (i.e., α-variation) through the strong dependence of the local magnetic curvature, such that the level surfaces of ω 2 (ψ,θ k ,α) (≤0) become spheroids in (ψ,θ k ,α) space, where ψ labels flux surfaces and θ k is the radial wave number. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfvacute en eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high-mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects. copyright 1996 American Institute of Physics

  9. The scanning probe microscopy study of thin polymer films

    International Nuclear Information System (INIS)

    Harron, H.R.

    1995-08-01

    Scanning Tunnelling Microscopy and Atomic Force Microscopy were used systematically to investigate the morphology, uniformity, coverage and structure of the thin films of several commercially important insulating polymers. Despite the poorly conducting nature of the polymer sample, detailed and convincing images of this class of materials were achieved by STM without the need to coat the samples with a conductive layer. The polymer regions of the sample were further investigated by the use of surface profiling with 'line scans'. The fluctuations of the amplitude therein enabled important film characteristics to be assessed. An environmental stage was designed for the STM to enable the effect of various vapour-sample interactions to be observed during the imaging process. Using the data from the environmental stage in addition to the surface profiling with line scans, an insight into the conduction mechanism and image interpretation was gained. Results suggest that the water content of the sample and its immediate surroundings is an important factor in achieving reliable STM images in air. The initial study culminated with the observation by STM alone of the plasticizer induced crystallization of uncoated PC thin films. The 'amorphous' PC films were observed before crystallization and small ordered regions in roughly the same proportion as that predicted by diffraction studies [Prietschk, 1959 and Schnell, 1964] were imaged. This has never been observed by a microscopy technique. Furthermore, images of the crystalline film contained elongated units that were attributed to the lamellae formations that form the basic building blocks of polymer spherulites. The study continued with the AFM imaging of the growth of crystalline entities in a PC film, without the need for harsh sample treatment or metal coating. A method of casting and crystallizing the films was developed such that the growth was predominantly in two dimensions and consequently ideal for observation by

  10. New Snail Mail Scanning Service

    CERN Multimedia

    2012-01-01

    Modernisation does not stop at the CERN postal service (GS/PS). “With more and more digitisation and the prevalence of e-mail throughout the site, we were hoping to provide more timely delivery of letters and make further saving in resources”, said Tueri Datta, head of GS/PS.   Instead of the standard delivery to your P.O. box, the CERN postal service will digitally scan all letters and books up to 100 pages on reception. These scans will subsequently be sent via e-mail to the corresponding recipient as PDF (Portable Data Format - you will need to install “Acrobat Reader” on your PC). Express mail will be handled with priority. Users without a valid CERN mailbox can register at mail.scan.service@cern.ch in order to have their letters read to them via the phone line (we are currently investigating whether we can use the voices of the last five DGs).   This service will start on 1st April 2012 on the Meyrin site and will gradually replace th...

  11. Scanning Tunneling Optical Resonance Microscopy

    Science.gov (United States)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically tunneling current

  12. Model PET Scan Activity

    Science.gov (United States)

    Strunk, Amber; Gazdovich, Jennifer; Redouté, Oriane; Reverte, Juan Manuel; Shelley, Samantha; Todorova, Vesela

    2018-05-01

    This paper provides a brief introduction to antimatter and how it, along with other modern physics topics, is utilized in positron emission tomography (PET) scans. It further describes a hands-on activity for students to help them gain an understanding of how PET scans assist in detecting cancer. Modern physics topics provide an exciting way to introduce students to current applications of physics.

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ...

  14. Second-harmonic scanning optical microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Pedersen, Kjeld; Bozhevolnyi, Sergey I.; Arentoft, Jesper

    2000-01-01

    Second-harmonic scanning optical microscopy (SHSOM) is performed on electric-field poled silica-based waveguides. Two operation modes of SHSOM are considered. Oblique transmission reflection and normal reflection modes are used to image the spatial distribution of nonlinear susceptibilities...... and limitations of the two operation modes when used for SHSOM studies of poled silica-based waveguides are discussed. The influence of surface defects on the resulting second-harmonic images is also considered. ©2000 American Institute of Physics....

  15. The innominate line

    International Nuclear Information System (INIS)

    Whelan, M.A.; Myung, K.H.; Bergeron, R.T.

    1984-01-01

    The innominate line continues to be of value in evaluating the integrity of the sphenoid bone since plain skull radiographs remain a primary screening tool for metastatic disease, seizure disorder and headache. The detection of lesions involving the sphenoid bone can be difficult. The accuracy of the radionulcide scan is reduced because of confusion caused by uptake in the adjacent nasal and sinus mucosa. On computed tomography, the sections through the base of the skull and orbit can contain many artifictual densities caused by a combination of bone, soft tissue and sinus air interfaces. In addition, routine settings of window width and level on CT scan are designed to best demonstrate the soft tissues, and bony lesions can easily be missed. Thus, disruption of the ''integrity'' of this line on plain films, particularly the Caldwell projection, can be a sensitive first indicator of disease involving the sphenoid bone. Such a determination on plain film leads to more accurate CT scanning, in that attention will be given to the skull base and scans will be imaged with both soft tissue and bone windows. (orig./MG)

  16. Transverse section scanning mechanism

    International Nuclear Information System (INIS)

    Doherty, E.J.

    1978-01-01

    Apparatus is described for scanning a transverse, radionuclide scan-field using an array of focussed collimators. The collimators are movable tangentially on rails, driven by a single motor via a coupled screw. The collimators are also movable in a radial direction on rails driven by a step motor via coupled screws and bevel gears. Adjacent bevel gears rotate in opposite directions so adjacent collimators move in radially opposite directions. In use, the focal point of each collimator scans at least half of the scan-field, e.g. a human head located in the central aperture, and the electrical outputs of detectors associated with each collimator are used to determine the distribution of radioactive emission intensity at a number of points in the scan-field. (author)

  17. Two modes of polyamine block regulating the cardiac inward rectifier K+ current IK1 as revealed by a study of the Kir2.1 channel expressed in a human cell line.

    Science.gov (United States)

    Ishihara, Keiko; Ehara, Tsuguhisa

    2004-04-01

    The strong inward rectifier K(+) current, I(K1), shows significant outward current amplitude in the voltage range near the reversal potential and thereby causes rapid repolarization at the final phase of cardiac action potentials. However, the mechanism that generates the outward I(K1) is not well understood. We recorded currents from the inside-out patches of HEK 293T cells that express the strong inward rectifier K(+) channel Kir2.1 and studied the blockage of the currents caused by cytoplasmic polyamines, namely, spermine and spermidine. The outward current-voltage (I-V) relationships of Kir2.1, obtained with 5-10 microm spermine or 10-100 microm spermidine, were similar to the steady-state outward I-V relationship of I(K1), showing a peak at a level that is approximately 20 mV more positive than the reversal potential, with a negative slope at more positive voltages. The relationships exhibited a plateau or a double-hump shape with 1 microm spermine/spermidine or 0.1 microm spermine, respectively. In the chord conductance-voltage relationships, there were extra conductances in the positive voltage range, which could not be described by the Boltzmann relations fitting the major part of the relationships. The extra conductances, which generated most of the outward currents in the presence of 5-10 microm spermine or 10-100 microm spermidine, were quantitatively explained by a model that considered two populations of Kir2.1 channels, which were blocked by polyamines in either a high-affinity mode (Mode 1 channel) or a low-affinity mode (Mode 2 channel). Analysis of the inward tail currents following test pulses indicated that the relief from the spermine block of Kir2.1 consisted of an exponential component and a virtually instantaneous component. The fractions of the two components nearly agreed with the fractions of the blockages in Mode 1 and Mode 2 calculated by the model. The estimated proportion of Mode 1 channels to total channels was 0.9 with 0.1-10 microm

  18. Scanning protocol of dual-source computed tomography for aortic dissection

    International Nuclear Information System (INIS)

    Zhai Mingchun; Wang Yongmei

    2013-01-01

    Objective: To find a dual-source CT scanning protocol which can obtain high image quality with low radiation dose for diagnosis of aortic dissection. Methods: Total 120 patients with suspected aortic dissection were randomly and equally assigned into three groups. Patients in Croup A were performed CTA exam with prospectively electrocardiogram- gated high pitch spiral mode (FLASH). Patients in Croup B were performed CTA exam with retrospective electrocardiogram- gated spiral mode. Patients in Croup C were performed CTA exam with conventional mode which no electrocardiogram-gated. The image quality, radiation dose, advantages and disadvantages among the three scan protocol were analyzed. Results: For image quality, seventeen, twenty two and one patients in group A were granted to grade 1, 2, 3 respectively, and none was in grade 4; thirty three and seven patients in group B were granted to grade 1, 2, respectively, and none was in grade 3 and 4; fourteen and twenty six patients in group C were granted to grade 3, 4, respectively, and none was in grade 1 and 2. There was no significant difference between group A and B in image quality. Compared with the image quality, Group A and B were significantly higher than Group C. Mean effective radiation dose of Croup A, B and C were 7.7±0.4 mSv, 33.11±3.38 mSv, and 7.6±0.68 mSv, respectively. Group B was significantly higher than Groups A and C (P<0.05, P<0.05, respectively), and there was no significant difference between Group A and C (P=0.826). Conclusions: Prospectively electrocardiogram-gated high pitch spiral mode can be the first line protocol for evaluation of aortic dissection. It can achieve high image quality with low radiation dose. Conventional mode with no electrocardiogram-gated can be selectively used for Stanford B aortic dissection. (authors)

  19. Scanning electron microscopy of semiconductor materials

    International Nuclear Information System (INIS)

    Bresse, J.F.; Dupuy, M.

    1978-01-01

    The use of scanning electron microscopy in semiconductors opens up a large field of use. The operating modes lending themselves to the study of semiconductors are the induced current, cathodoluminescence and the use of the potential contrast which can also be applied very effectively to the study of the devices (planar in particular). However, a thorough knowledge of the mechanisms of the penetration of electrons, generation and recombination of generated carriers in a semiconductor is necessary in order to attain a better understanding of the operating modes peculiar to semiconductors [fr

  20. Intermittent-contact scanning capacitance microscopy imaging and modeling for overlay metrology

    International Nuclear Information System (INIS)

    Mayo, S.; Kopanski, J. J.; Guthrie, W. F.

    1998-01-01

    Overlay measurements of the relative alignment between sequential layers are one of the most critical issues for integrated circuit (IC) lithography. We have implemented on an AFM platform a new intermittent-contact scanning capacitance microscopy (IC-SCM) mode that is sensitive to the tip proximity to an IC interconnect, thus making it possible to image conductive structures buried under planarized dielectric layers. Such measurements can be used to measure IC metal-to-resist lithography overlay. The AFM conductive cantilever probe oscillating in a vertical plane was driven at frequency ω, below resonance. By measuring the tip-to-sample capacitance, the SCM signal is obtained as the difference in capacitance, ΔC(ω), at the amplitude extremes. Imaging of metallization structures was obtained with a bars-in-bars aluminum structure embedded in a planarized dielectric layer 1 μm thick. We have also modeled, with a two-dimensional (2D) electrostatic field simulator, IC-SCM overlay data of a metallization structure buried under a planarized dielectric having a patterned photoresist layer deposited on it. This structure, which simulates the metal-to-resist overlay between sequential IC levels, allows characterization of the technique sensitivity. The capacitance profile across identical size electrically isolated or grounded metal lines embedded in a dielectric was shown to be different. The floating line shows capacitance enhancement at the line edges, with a minimum at the line center. The grounded line shows a single capacitance maximum located at the line center, with no edge enhancement. For identical line dimensions, the capacitance is significantly larger for grounded lines making them easier to image. A nonlinear regression algorithm was developed to extract line center and overlay parameters with approximately 3 nm resolution at the 95% confidence level, showing the potential of this technique for sub-micrometer critical dimension metrology. Symmetric test

  1. A Study for Reappearance According to the Scan Type, the CT Scanning by a Moving Phantom

    International Nuclear Information System (INIS)

    Choi, Jae Hyock; Jeong, Do Hyeong; Choi, Gye Suk; Jang, Yo Jong; Kim, Jae Weon; Lee, Hui Seok

    2007-01-01

    CT scan shows that significant tumor movement occurs in lesions located in the proximity of the heart, diaphragm, and lung hilus. There are differences concerning three kinds of type to get images following the Scan type called Axial, Helical, Cine (4D-CT) mode, when the scanning by CT. To know how each protocol describe accurately, this paper is going to give you reappearance using the moving phantom. To reconstruct the movement of superior-inferior and anterior-posterior, the manufactured moving phantom and the motor following breathing were used. To distinguish movement from captured images by CT scanning, a localizer adhered to the marker on the motor. The moving phantom fixed the movement of superior-inferior upon 1.3 cm /1 min. The motor following breathing fixed the movement of anterior-posterior upon 0.2 cm /1 min. After fixing each movement, CT scanning was taken by following the CT protocols. The movement of A localizer and volume-reappearance analyzed by RTP machine. Total volume of a marker was 88.2 cm 3 considering movement of superior-inferior. Total volume was 184.3 cm 3 . Total volume according to each CT scan protocol were 135 cm 3 by axial mode, 164.9 cm 3 by helical mode, 181.7 cm 3 by cine (4D-CT) mode. The most closely describable protocol about moving reappearance was cine mode, the marker attached localizer as well. CT scan should reappear concerning a exact organ-description and target, when the moving organ is being scanned by three kinds of CT protocols. The cine (4D-CT) mode has the advantage of the most highly reconstructible ability of the three protocols in reappearance of the marker using a moving phantom. The marker on the phantom has always regular motion but breathing patients don't move like a phantom. Breathing education and devices setting patients were needed so that images reconstruct breathing as exactly as possible. Users should also consider that an amount of radiation to patients is being bombed.

  2. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  3. Bone scan in pediatrics

    International Nuclear Information System (INIS)

    Gordon, I.; Peters, A.M.

    1987-01-01

    In 1984, a survey carried out in 21 countries in Europe showed that bone scintigraphy comprised 16% of all paediatric radioisotope scans. Although the value of bone scans in paediatrics is potentially great, their quality varies greatly, and poor-quality images are giving this valuable technique a bad reputation. The handling of children requires a sensitive staff and the provision of a few simple inexpensive items of distraction. Attempting simply to scan a child between two adult patients in a busy general department is a recipe for an unhappy, uncooperative child with the probable result of poor images. The intravenous injection of isotope should be given adjacent to the gamma camera room, unless dynamic scans are required, so that the child does not associate the camera with the injection. This injection is best carried out by someone competent in paediatric venipunture; the entire procedure should be explained to the child and parent, who should remain with child throughout. It is naive to think that silence makes for a cooperative child. The sensitivity of bone-seeking radioisotope tracers and the marked improvement in gamma camera resolution has allowed the bone scanning to become an integrated technique in the assessment of children suspected of suffering from pathological bone conditions. The tracer most commonly used for routine bone scanning is 99m Tc diphosphonate (MDP); other isotopes used include 99m Tc colloid for bone marrow scans and 67 Ga citrate and 111 In white blood cells ( 111 In WBC) for investigation of inflammatory/infective lesions

  4. Full cycle rapid scan EPR deconvolution algorithm.

    Science.gov (United States)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  5. A Novel Atomic Force Microscope with Multi-Mode Scanner

    International Nuclear Information System (INIS)

    Qin, Chun; Zhang, Haijun; Xu, Rui; Han, Xu; Wang, Shuying

    2016-01-01

    A new type of atomic force microscope (AFM) with multi-mode scanner is proposed. The AFM system provides more than four scanning modes using a specially designed scanner with three tube piezoelectric ceramics and three stack piezoelectric ceramics. Sample scanning of small range with high resolution can be realized by using tube piezos, meanwhile, large range scanning can be achieved by stack piezos. Furthermore, the combination with tube piezos and stack piezos not only realizes high-resolution scanning of small samples with large- scale fluctuation structure, but also achieves small range area-selecting scanning. Corresponding experiments are carried out in terms of four different scanning modes showing that the AFM is of reliable stability, high resolution and can be widely applied in the fields of micro/nano-technology. (paper)

  6. Electrostatic effect for the collisionless tearing mode

    International Nuclear Information System (INIS)

    Hoshino, M.

    1987-01-01

    Electron dynamics has not been self-consistently considered in collisionless tearing mode theories to date because of the mathematical complexity of the Vlasov-Maxwell equations. We have found using computer simulations that electrostatic fields play an important role in the tearing mode. Vlasov theory, including the electrostatic field, is investigated for topologies with both antiparallel and nonantiparallel magnetic field lines. The electrostatic field influences the resonant current in the neutral sheet which is a non-MHD effect, and modifies the linear growth rate. At the magnetopause, where the field lines are not antiparallel, the electrostatic effect acts to raise the linear growth rate of the tearing mode. On the other hand, in the magnetotail, where magnetic field lines are antiparallel, the electrostatic effect reduces the tearing mode growth rate. copyright American Geophysical Union 1987

  7. Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Park, Hyok; Kim, Dong Ook; Jeong, Hai Jo; Kim, Hee Joung; Yoo, Sun Kook; Kim, Yong Oock; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2004-07-15

    To evaluate the quantitative accuracy of three-dimensional (3D) images by mean of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes. An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0 (Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test. 11 line items in Conventional 3 mm, 8 in Helical 3 mm, 11 in Conventional 5 mm, 10 in Helical 5 mm, 5 in Conventional 7 mm and 9 in Helical 7 mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2 mm in 19 line items of Conventional 3 mm. 20 of Helical 3 mm, 15 of Conventional 5 mm, 18 of Helical 5 mm, 11 of Conventional 7 mm and 16 of Helical 7 mm. Considering image quality and patient's exposure time, scanning protocol of Helical 5 mm is recommended for 3D image analysis of the skull in CT.

  8. Physics of the H-mode

    International Nuclear Information System (INIS)

    Hinton, F.L.; Chu, M.S.; Dominguez, R.R.

    1985-01-01

    A theoretical picture of the H-mode is proposed which explains some of the most important features of this good confinement mode in neutral beam heated plasmas with divertors. From consideration of the transport through the separatrix and along the open field lines outside the separatrix, as well as the stability of the plasma inside the separatrix, we show that a bifurcation in the operating parameters is possible. At high edge temperatures, very large particle confinement times are possible because of the Ware pinch. The transport of particles and heat along the open field lines to the divertor region depends on temperature in a non-monotonic way, and the bifurcation of the thermal equilibrium which is implied may correspond to the L- to H-mode transition. The improvement of the interior confinement in the H-mode, when the edge temperature is higher, is shown to follow from the tearing mode stability properties of current profiles with pedestals. (author)

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine ( ... for each thyroid uptake is five minutes or less. top of page What will I experience during ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should ... such as an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... abnormal was found, and should not be a cause of concern for you. If you had an ... abnormal was found, and should not be a cause of concern for you. Actual scanning time for ...

  12. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to a multiplexer slip ring means for receiving output from the detectors and enabling interfeed to the image reconstruction station. (U.K.)

  13. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are presented of a tomographic scanning apparatus, its rotational assembly, and the control and circuit elements, with particular reference to the amplifier and multiplexing circuits enabling detector signal calibration. (U.K.)

  14. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  15. Pediatric CT Scans

    Science.gov (United States)

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... which are encased in metal and plastic and most often shaped like a box, attached to a ... will I experience during and after the procedure? Most thyroid scan and thyroid uptake procedures are painless. ...

  17. Heart CT scan

    Science.gov (United States)

    ... make to decrease the risk of heart disease. Risks Risks of CT scans include: Being exposed to ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... that help physicians diagnose and evaluate medical conditions. These imaging scans use radioactive materials called radiopharmaceuticals or ... or had thyroid cancer. A physician may perform these imaging tests to: determine if the gland is ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Actual scanning time for each thyroid uptake is five minutes or less. top of page What will ... diagnostic procedures have been used for more than five decades, and there are no known long-term ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Head and Neck Cancer top ... Scan and Uptake Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information needed to make a diagnosis or to determine appropriate treatment, if any. Nuclear medicine is less expensive and ...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation ... high as with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more ...

  6. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... as an overactive thyroid gland, a condition called hyperthyroidism , cancer or other growths assess the nature of ... an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the last two ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... painless. However, during the thyroid scan, you may feel uncomfortable when lying completely still with your head ... When the radiotracer is given intravenously, you will feel a slight pin prick when the needle is ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... energy. top of page What are some common uses of the procedure? The thyroid scan is used ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  11. Body CT (CAT Scan)

    Science.gov (United States)

    ... a CT scan can be reformatted in multiple planes, and can even generate three-dimensional images. These ... other medical conditions and whether you have a history of heart disease, asthma, diabetes, kidney disease or ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should I prepare? You ... You will receive specific instructions based on the type of scan you are undergoing. top of page ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  14. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus, with particular reference to the adjustable fan beam and its collimator system, together with the facility for taking a conventional x-radiograph without moving the patient. (U.K.)

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... exam of any medications you are taking, including vitamins and herbal supplements. You should also inform them ... of scan you are undergoing. top of page What does the equipment look like? The special camera ...

  16. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should I prepare? You ... but is often performed on hospitalized patients as well. Thyroid Scan You will be positioned on an ...

  18. Signal Transmission on Power Lines

    DEFF Research Database (Denmark)

    Dalby, Arne Brejning

    1997-01-01

    In the analysis of power-line networks over a large frequency span, the time-domain method used in programs like EMTP (Electromagnetic Time domain Program) can not be used. A more rigorous analysis method must be employed. The correct analysis method (assuming TEM-mode propagation) for multiple....... An approximate analysis method must be usedIn this paper it is shown that an eigenvectormatrix, that is the propagation modes, can be chosen almost arbitrarily if the frequency interval of interest lies below the frequency, where the line length is about 1/3 times the wavelength for the propagation mode...... with the lowest phase velocity. The propagation constants corresponding to the chosen eigenvector matrix (the quasi modes) are found iteratively, which is a much simpler procedure than finding the eigenvalues....

  19. Competition and transformation of modes of unidirectional air waveguide

    Science.gov (United States)

    Sun, Yu-xin; Kong, Xiang-kun; Fang, Yun-tuan

    2016-10-01

    In order to study the mode excitation of the unidirectional air waveguide, we place a line source at different positions in the waveguide. The source position plays an important role in determining the result of the competition of the even mode and the odd mode. For the source at the edge of the waveguide, the odd mode gets advantage over the even mode. As a result, the odd mode is excited, but the even mode is suppressed. For the source at the center of the waveguide, the even mode is excited, but the odd mode is suppressed. With two sources at two edges of the waveguide, the even mode is released because the two odd modes are canceled.

  20. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy......, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2...

  1. ELM phenomenon as an interaction between bootstrap-current driven peeling modes and pressure-driven ballooning modes

    International Nuclear Information System (INIS)

    Saarelma, S.; Kurki-Suonio, T.; Guenter, S.; Zehrfeld, H.-P.

    2000-01-01

    An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning modes. A combination of these two instabilities is a possible explanation for the type I ELM phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes and can produce ELM-free periods observed in the experiments. (author)

  2. Dexter: Data Extractor for scanned graphs

    Science.gov (United States)

    Demleitner, Markus

    2011-12-01

    The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.

  3. Time displacement pictures with multi-mode probes from circumferential welds

    International Nuclear Information System (INIS)

    Wustenberg, H.; Jaffrey, D.; Ludwig, B.; Bertus, N.; Erhard, A.

    1985-01-01

    If a creeping wave probe is applied to butt welds typical echo patterns from weld defects can be received. It seems possible that echoes from the geometric shape of the root or the crown and defect echoes can be separated by simple means. This has been the reason for the development of a special presentation of the echo patterns received by this multi-mode creeping wave probe. The so called time displacement pictures show the AD-converted A-scans in a gray scale along a line corresponding to the time axis of the propagation. Perpendicular to this time axis results obtained from displacement of the probe parallel to the weld are presented. This kind of picture immediately provides the whole A-scan information. This paper presents some first results on simulated welds with artificial defects and on circumferential welds with typical geometric imperfections

  4. A Mobile Automated Tomographic Gamma Scanning System - 13231

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, J.M.; LeBlanc, P.J.; Nakazawa, D.; Petroka, D.L.; Kane Smith, S.; Venkataraman, R.; Villani, M. [Canberra Industries, Inc. 800 Research Parkway, Meriden CT 06450 (United States)

    2013-07-01

    Canberra Industries have recently designed and built a new automated Tomographic Gamma Scanning (TGS) system for mobile deployment. The TGS technique combines high-resolution gamma spectroscopy with low spatial resolution 3-dimensional image reconstruction to provide increased accuracy over traditional approaches for the assay of non-uniform source distributions in low-to medium-density, non-heterogeneous matrices. Originally pioneered by R. Estep at Los Alamos National Laboratory (LANL), the TGS method has been further developed and commercialized by Canberra Industries in recent years. The present system advances the state of the art on several fronts: it is designed to be housed in a standard cargo transport container for ease of transport, allowing waste characterization at multiple facilities under the purview of a single operator. Conveyor feed, drum rotator, and detector and collimator positioning mechanisms operated by programmable logic control (PLC) allow automated batch mode operation. The variable geometry settings can accommodate a wide range of waste packaging, including but not limited to standard 220 liter drums, 380 liter overpack drums, and smaller 20 liter cans. A 20 mCi Eu-152 transmission source provides attenuation corrections for drum matrices up to 1 g/cm{sup 3} in TGS mode; the system can be operated in Segmented Gamma Scanning (SGS) mode to measure higher density drums. To support TGS assays at higher densities, the source shield is sufficient to house an alternate Co-60 transmission source of higher activity, up to 250 mCi. An automated shutter and attenuator assembly is provided for operating the system with a dual intensity transmission source. The system's 1500 kg capacity rotator turntable can handle heavy containers such as concrete lined 380 liter overpack drums. Finally, data acquisition utilizes Canberra's Broad Energy Germanium (BEGE) detector and Lynx MCA, with 32 k channels, providing better than 0.1 ke

  5. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  6. Preoperative bone scans

    International Nuclear Information System (INIS)

    Charkes, N.D.; Malmud, L.S.; Caswell, T.; Goldman, L.; Hall, J.; Lauby, V.; Lightfoot, W.; Maier, W.; Rosemond, G.

    1975-01-01

    Strontium nitrate Sr-87m bone scans were made preoperatively in a group of women with suspected breast cancer, 35 of whom subsequently underwent radical mastectomy. In 3 of the 35 (9 percent), the scans were abnormal despite the absence of clinical or roentgenographic evidence of metastatic disease. All three patients had extensive axillary lymph node involvement by tumor, and went on to have additional bone metastases, from which one died. Roentgenograms failed to detect the metastases in all three. Occult bone metastases account in part for the failure of radical mastectomy to cure some patients with breast cancer. It is recommended that all candidates for radical mastectomy have a preoperative bone scan. (U.S.)

  7. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    Science.gov (United States)

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  8. Electric vortex lines from the Yang-Mills theory

    International Nuclear Information System (INIS)

    Nielsen, N.K.; Olesen, P.

    1978-08-01

    The dynamics of an unstable Yang-Mills field mode previously found by the authors is developed. It is argued that this unstable mode corresponds to the transition to a state where electric vortex lines are created. (Auth.)

  9. High Line

    DEFF Research Database (Denmark)

    Kiib, Hans

    2015-01-01

    At just over 10 meters above street level, the High Line extends three kilometers through three districts of Southwestern Manhattan in New York. It consists of simple steel construction, and previously served as an elevated rail line connection between Penn Station on 34th Street and the many....... The High Line project has been carried out as part of an open conversion strategy. The result is a remarkable urban architectural project, which works as a catalyst for the urban development of Western Manhattan. The greater project includes the restoration and reuse of many old industrial buildings...

  10. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  11. Scanning the phenomenological MSSM

    CERN Document Server

    Wuerzinger, Jonas

    2017-01-01

    A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\

  12. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  13. Adaptive Optical Scanning Holography

    Science.gov (United States)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  14. Defect grating modes as superimposed grating states

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; de Ridder, R.M.; Altena, G; Altena, G.; Geuzebroek, D.H.; Geuzenboek, D.; Dekker, R.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  15. Orientation of X Lines in Asymmetric Magnetic Reconnection-Mass Ratio Dependency

    Science.gov (United States)

    Liu, Yi-Hsin; Hesse, M.; Kuznetsova, M.

    2015-01-01

    Using fully kinetic simulations, we study the X line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single X line, which has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the X line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through the corresponding 2-D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit is consistent with the orientation shift of the most unstable linear tearing mode in an electron-scale current sheet.

  16. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    International Nuclear Information System (INIS)

    Ren, Juan; Zou, Qingze

    2014-01-01

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality

  17. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Juan; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Rd, Piscataway, New Jersey 08854 (United States)

    2014-07-15

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.

  18. World lines.

    OpenAIRE

    Waser Jürgen; Fuchs Raphael; Ribicic Hrvoje; Schindler Benjamin; Blöschl Günther; Gröller Eduard

    2010-01-01

    In this paper we present World Lines as a novel interactive visualization that provides complete control over multiple heterogeneous simulation runs. In many application areas decisions can only be made by exploring alternative scenarios. The goal of the suggested approach is to support users in this decision making process. In this setting the data domain is extended to a set of alternative worlds where only one outcome will actually happen. World Lines integrate simulation visualization and...

  19. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... process that regulates the rate at which the body converts food to energy. top of page What are some common uses of the procedure? The thyroid scan is used to determine the size, shape and position of the thyroid gland. The ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake ...

  2. Dialogue scanning measuring systems

    International Nuclear Information System (INIS)

    Borodyuk, V.P.; Shkundenkov, V.N.

    1985-01-01

    The main developments of scanning measuring systems intended for mass precision processsing of films in nuclear physics problems and in related fields are reviewed. A special attention is paid to the problem of creation of dialogue systems which permit to simlify the development of control computer software

  3. Scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1970-05-15

    The JSM-11 scanning electron microscope at CRNL has been used extensively for topographical studies of oxidized metals, fracture surfaces, entomological and biological specimens. A non-dispersive X-ray attachment permits the microanalysis of the surface features. Techniques for the production of electron channeling patterns have been developed. (author)

  4. Scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Binnig, G.; Rohrer, H.

    1983-01-01

    Based on vacuum tunneling, a novel type of microscope, the scanning tunneling microscope (STM) was developed. It has an unprecedented resolution in real space on an atomic scale. The authors review the important technical features, illustrate the power of the STM for surface topographies and discuss its potential in other areas of science and technology. (Auth.)

  5. Bone scan in rheumatology

    International Nuclear Information System (INIS)

    Morales G, R.; Cano P, R.; Mendoza P, R.

    1993-01-01

    In this chapter a revision is made concerning different uses of bone scan in rheumatic diseases. These include reflex sympathetic dystrophy, osteomyelitis, spondyloarthropaties, metabolic bone diseases, avascular bone necrosis and bone injuries due to sports. There is as well some comments concerning pediatric pathology and orthopedics. (authors). 19 refs., 9 figs

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... information. The thyroid scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is a gland in the neck that controls metabolism , a chemical process that regulates the rate at which the body ...

  7. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to the means of adjusting the apparent gain of the signal processing means for receiving output signals from the detectors, to compensate for drift in the gain characteristics, including means for passing a reference signal. (U.K.)

  8. Stabilized radiographic scanning agent

    International Nuclear Information System (INIS)

    Fawzi, M.B.

    1979-01-01

    A stable composition useful in preparation of technetium-99m-based radiographic scanning agents has been developed. The composition contains a stabilizing amount of gentisate stabilizer selected from gentisic acid and its soluble pharmaceutically-acceptable salts and esthers. (E.G.)

  9. Scanning electron microscope

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The principle underlying the design of the scanning electron microscope (SEM), the design and functioning of SEM are described. Its applications in the areas of microcircuitry and materials science are outlined. The development of SEM in India is reviewed. (M.G.B.)

  10. Radiographic scanning agent

    International Nuclear Information System (INIS)

    Tofe, A.J.

    1976-01-01

    A stable radiographic scanning agent on a sup(99m)Tc basis has been developed. The substance contains a pertechnetate reduction agent, tin(II)-chloride, chromium(II)-chloride, or iron(II)-sulphate, as well as an organospecific carrier and ascorbic acid or a pharmacologically admissible salt or ester of ascorbic acid. (VJ) [de

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... you: have had any tests, such as an x-ray or CT scan, surgeries or treatments using iodinated ... page How does the procedure work? With ordinary x-ray examinations, an image is made by passing x- ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake will begin several hours to 24 hours later. Often, two separate uptake ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the last two months. are taking medications or ingesting other substances that contain iodine , including kelp, seaweed, cough syrups, multivitamins or heart medications. have any ...

  14. CS-Studio Scan System Parallelization

    Energy Technology Data Exchange (ETDEWEB)

    Kasemir, Kay [ORNL; Pearson, Matthew R [ORNL

    2015-01-01

    For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to the Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.

  15. A new scanning proton microprobe with long focus

    International Nuclear Information System (INIS)

    Zhu Jieqing; Li Minqian; Mao Yu; Chen Hanmin; Gu Yingmei; Yang Changyi; Sheng Kanglong

    1991-01-01

    A new scanning proton microprobe equipped with a long focus Russian magnetic quadruplet is set up. With excellent performances of ion optics, it can be used to do experiments of PIXE, RBS, RFS, NRA and channelling simultaneously within a micron-region. The power supplies for quadruplet and scanning coils are controlled by an IBM-PC computer and a scanning graphical monitor based on an Apple IIe microcomputer provides convenience of searching for an interesting area to scan. The advanced modes of the fast random scan and the event-by-event data collection make it possible to treat the multi-parameter and multi-detector data by means of the strategy of TQSA (Total quantitative scanning analysis). There are three types of graphical display including the innovation of three dimensional contour mapping

  16. Higher order mode of a microstripline fed cylindrical dielectric resonator antenna

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. V. Praveen, E-mail: praveen.kumar@pilani.bits-pilani.ac.in [Department of Electrical and Electronics Engineering, BITS Pilani, Pilani, Rajasthan-333 031 (India)

    2016-03-09

    A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.

  17. Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study

    Science.gov (United States)

    Motzkus, C.; Macé, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A.; Dirscherl, K.; Hodoroaba, V.-D.; Popov, I.; Popov, O.; Kuselman, I.; Takahata, K.; Ehara, K.; Ausset, P.; Maillé, M.; Michielsen, N.; Bondiguel, S.; Gensdarmes, F.; Morawska, L.; Johnson, G. R.; Faghihi, E. M.; Kim, C. S.; Kim, Y. H.; Chu, M. C.; Guardado, J. A.; Salas, A.; Capannelli, G.; Costa, C.; Bostrom, T.; Jämting, Å. K.; Lawn, M. A.; Adlem, L.; Vaslin-Reimann, S.

    2013-10-01

    Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—"Properties of Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 "Techniques for characterizing size distribution of airborne nanoparticles". Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2-46.6 nm and 80.2-89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.

  18. Size characterization of airborne SiO{sub 2} nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Motzkus, C., E-mail: charles.motzkus@lne.fr; Mace, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A. [Laboratoire National de Metrologie et d' Essais (LNE) (France); Dirscherl, K. [Danish Fundamental Metrology (DFM) (Denmark); Hodoroaba, V.-D. [BAM Federal Institute for Materials Research and Testing (Germany); Popov, I. [The Hebrew University of Jerusalem, Unit for Nanocharacterization (Israel); Popov, O.; Kuselman, I. [National Physical Laboratory of Israel (INPL) (Israel); Takahata, K.; Ehara, K. [National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ) (Japan); Ausset, P.; Maille, M. [Universite Paris-Est Creteil et Universite Paris-Diderot, Laboratoire Interuniversitaire des Systemes Atmospheriques (LISA), UMR CNRS 7583 (France); Michielsen, N.; Bondiguel, S.; Gensdarmes, F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), PSN-RES, SCA, LPMA (France); Morawska, L.; Johnson, G. R.; Faghihi, E. M. [Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (ILAQH) (Australia); and others

    2013-10-15

    Results of an interlaboratory comparison on size characterization of SiO{sub 2} airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34-'Properties of Nanoparticle Populations' of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 'Techniques for characterizing size distribution of airborne nanoparticles'. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2-46.6 nm and 80.2-89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO{sub 2} nanoparticles characterization are proposed.

  19. Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study

    International Nuclear Information System (INIS)

    Motzkus, C.; Macé, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A.; Dirscherl, K.; Hodoroaba, V.-D.; Popov, I.; Popov, O.; Kuselman, I.; Takahata, K.; Ehara, K.; Ausset, P.; Maillé, M.; Michielsen, N.; Bondiguel, S.; Gensdarmes, F.; Morawska, L.; Johnson, G. R.; Faghihi, E. M.

    2013-01-01

    Results of an interlaboratory comparison on size characterization of SiO 2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO 2 nanoparticles characterization are proposed

  20. Kinetic stability of internal kink mode

    International Nuclear Information System (INIS)

    Romanelli, F.; Fogaccia, G.

    1993-01-01

    With reference to studies of the attainment of ignited operations on devices like ITER (International Thermonuclear Experimental Reactor), the stability of the internal kink mode is re-investigated by taking into account the contribution of perpendicular compressibility, obtained by solving the drift kinetic equation. The resulting stability condition yields threshold values typically larger than the conventional Bussac criterion. For the case of ultra-flat safety factor profiles, the mode can be stable also in the absence of line-bending

  1. Apparatus for producing a visual representation of a radiographic scan

    International Nuclear Information System (INIS)

    Hounsfield, G.N.

    1976-01-01

    An apparatus is disclosed for providing a visual representation of the absorption or transmission coefficients of the elements of a two dimensional matrix of elements notionally defined in a cross-sectional plane through a body. The representation is in the form of an analogue display comprising superimposed lines of information scanned on the surface of a suitable screen, the brightness of each line being indicative of the absorption suffered by penetrating radiation on traversing a respective path through said plane of the body. The orientation of each scanned line depends on the orientation of the respective path with respect to the body. 7 Claims, 4 Drawing Figures

  2. On a laser beam fiducial line application for metrological purposes

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, J.; Lyablin, M.; Rusakovich, N.; Sisakyan, A.; Topilin, N.; Khubua, J.; Lasseur, C.

    2008-01-01

    The possibility of a collimated one-mode laser beam used as a fiducial line is considered. The technology of an 'extended' laser beam formation and application for a much extended fiducial line is proposed

  3. Second-harmonic scanning optical microscopy of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Vohnsen, B.; Bozhevolnyi, S.I.; Pedersen, K.

    2001-01-01

    Second-harmonic (SH) optical imaging of self-assembled InAlGaAs quantum dots (QD's) grown on a GaAs(0 0 1) substrate has been accomplished at room temperature by use of respectively a scanning far-field optical microscope in reflection mode and a scanning near-field optical microscope...... in transmission mode. In both cases the SH signal peaks at a pump wavelength of similar to 885 nm in correspondence to the maximum in the photoluminescence spectrum of the QD sample. SH near-field optical images exhibit spatial signal variations on a subwavelength scale that depend on the pump wavelength. We...

  4. Thermal effects on tearing mode saturation

    International Nuclear Information System (INIS)

    Kim, J.S.; Chu, M.S.; Greene, J.M.

    1988-01-01

    The effect of geometry on tearing modes, saturated states of tearing modes, and the thermal effect on tearing modes are presented. The configuration of current and magnetic fields are quite different in slabs and in Tokamaks. However, for any magnetic island regardless of geometry and heating conditions, at island saturation the product of resistivity and current is the same at magnetic O and X lines. The temperature perturbation effect on the nonlinear development of tearing modes is investigated. Thermal conduction along the field lines is much faster than that in the perpendicular direction, and thus the temperature profile follows the island structure. Utilizing Spitzer's conductivity relation, the temperature perturbation is modelled as helical components of resistivity. For a usual tearing mode unstable Tokamak, where shear is positive, the islands continue to grow to a larger size when the islands are cooled. When they are heated, the island sizes are reduced. The temperature perturbation can induce islands even for equilibria stable with respect to tearing modes. Again, the islands appear when cooling takes place. The equilibria with the cooled islands show enhanced field line stochasticity, thus enhanced heat transport. Therefore, thermal instability can be directly related to pressure disruptions. (author)

  5. Dispersion of strongly confined channel plasmon polariton modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir; Volkov, Valentyn S.; Han, Zhanghua

    2011-01-01

    We report on experimental (by use of scanning near-field optical microscopy) and theoretical investigations of strongly confined (∼λ/5) channel plasmon polariton (CPP) modes propagating at telecom wavelengths (1425–1630 nm) along V-grooves cut in a gold film. The main CPP characteristics (mode in...

  6. Scanning probe microscopy

    International Nuclear Information System (INIS)

    Mainsbridge, B.

    1994-01-01

    In late 1959, Richard Feynman observed that manoeuvring atoms was something that could be done in principle but has not been done, 'because we are too big'. In 1982, the scanning tunnelling microscope (STM) was invented and is now a central tool for the construction of nanoscale devices in what was known as molecular engineering, and now, nanotechnology. The principles of the microscope are outlined and references are made to other scanning devices which have evolved from the original invention. The method of employment of the STM as a machine tool is described and references are made to current speculations on applications of the instrument in nanotechnology. A short bibliography on this topic is included. 27 refs., 7 figs

  7. Scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mainsbridge, B [Murdoch Univ., WA (Australia). School of Mathematical and Physical Sciences

    1994-12-31

    In late 1959, Richard Feynman observed that manoeuvring atoms was something that could be done in principle but has not been done, `because we are too big`. In 1982, the scanning tunnelling microscope (STM) was invented and is now a central tool for the construction of nanoscale devices in what was known as molecular engineering, and now, nanotechnology. The principles of the microscope are outlined and references are made to other scanning devices which have evolved from the original invention. The method of employment of the STM as a machine tool is described and references are made to current speculations on applications of the instrument in nanotechnology. A short bibliography on this topic is included. 27 refs., 7 figs.

  8. 67Ga lung scan

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.; Pick, R.

    1977-01-01

    Twenty-three patients with clinical signs of pulmonary embolic disease and lung infiltrates were studied to determine the value of gallium citrate 67 Ga lung scan in differentiating embolic from inflammatory lung disease. In 11 patients without angiographically proved embolism, only seven had corresponding ventilation-perfusion defects compatible with inflammatory disease. In seven of these 11 patients, the 67 Ga concentration indicated inflammatory disease. In the 12 patients with angiographically proved embolic disease, six had corresponding ventilation-perfusion defects compatible with inflammatory disease. None had an accumulation of 67 Ga in the area of pulmonary infiltrate. Thus, ventilation-perfusion lung scans are of limited value when lung infiltrates are present. In contrast, the accumulation of 67 Ga in the lung indicates an inflammatory process. Gallium imaging can help select those patients with lung infiltrates who need angiography

  9. Horizon Scanning for Pharmaceuticals

    DEFF Research Database (Denmark)

    Lepage-Nefkens, Isabelle; Douw, Karla; Mantjes, GertJan

    for a joint horizon scanning system (HSS).  We propose to create a central “horizon scanning unit” to perform the joint HS activities (a newly established unit, an existing HS unit, or a third party commissioned and financed by the collaborating countries). The unit will be responsible for the identification...... and filtration of new and emerging pharmaceutical products. It will maintain and update the HS database, organise company pipeline meetings, and disseminate the HSS’s outputs.  The HS unit works closely together with the designated national HS experts in each collaborating country. The national HS experts...... will collect country-specific information, liaise between the central HS unit and country-specific clinical and other experts, coordinate the national prioritization process (to select products for early assessment), and communicate the output of the HSS to national decision makers.  The outputs of the joint...

  10. Silver linings.

    Science.gov (United States)

    Bultas, Margaret W; Pohlman, Shawn

    2014-01-01

    The purpose of this interpretive phenomenological study was to gain a better understanding of the experiences of 11 mothers of preschool children with autism spectrum disorder (ASD). Mothers were interviewed three times over a 6 week period. Interviews were analyzed using interpretive methods. This manuscript highlights one particular theme-a positive perspective mothers described as the "silver lining." This "silver lining" represents optimism despite the adversities associated with parenting a child with ASD. A deeper understanding of this side of mothering children with ASD may help health care providers improve rapport, communication, and result in more authentic family centered care. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Vacuum scanning capillary photoemission microscopy.

    Science.gov (United States)

    Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V

    2017-08-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multichannel scanning spectrophotometer

    International Nuclear Information System (INIS)

    Lagutin, A.F.

    1979-01-01

    A spectrophotometer designed in the Crimea astrophysical observatory is described. The spectrophotometer is intended for the installation at the telescope to measure energy distribution in the star spectra in the 3100-8550 A range. The device is made according to the scheme with a fixed diffraction lattice. The choice of the optical kinematic scheme is explained. The main design elements are shown. Some singularities of the scanning drive kinematics are considered. The device performance is given

  13. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  14. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  15. IMEF gamma scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs.

  16. IMEF gamma scanning system

    International Nuclear Information System (INIS)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum.

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs

  17. SU-E-J-36: Comparison of CBCT Image Quality for Manufacturer Default Imaging Modes

    International Nuclear Information System (INIS)

    Nelson, G

    2015-01-01

    Purpose CBCT is being increasingly used in patient setup for radiotherapy. Often the manufacturer default scan modes are used for performing these CBCT scans with the assumption that they are the best options. To quantitatively assess the image quality of these scan modes, all of the scan modes were tested as well as options with the reconstruction algorithm. Methods A CatPhan 504 phantom was scanned on a TrueBeam Linear Accelerator using the manufacturer scan modes (FSRT Head, Head, Image Gently, Pelvis, Pelvis Obese, Spotlight, & Thorax). The Head mode scan was then reconstructed multiple times with all filter options (Smooth, Standard, Sharp, & Ultra Sharp) and all Ring Suppression options (Disabled, Weak, Medium, & Strong). An open source ImageJ tool was created for analyzing the CatPhan 504 images. Results The MTF curve was primarily dictated by the voxel size and the filter used in the reconstruction algorithm. The filters also impact the image noise. The CNR was worst for the Image Gently mode, followed by FSRT Head and Head. The sharper the filter, the worse the CNR. HU varied significantly between scan modes. Pelvis Obese had lower than expected HU values than most while the Image Gently mode had higher than expected HU values. If a therapist tried to use preset window and level settings, they would not show the desired tissue for some scan modes. Conclusion Knowing the image quality of the set scan modes, will enable users to better optimize their setup CBCT. Evaluation of the scan mode image quality could improve setup efficiency and lead to better treatment outcomes

  18. PRF Ambiguity Detrmination for Radarsat ScanSAR System

    Science.gov (United States)

    Jin, Michael Y.

    1998-01-01

    PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.

  19. Scanning unit for collectrons

    International Nuclear Information System (INIS)

    Plaige, Yves.

    1976-01-01

    This invention concerns a measurement scanning assembly for collectron type detectors. It is used in measuring the neutron flux in nuclear reactors. As the number of these detectors in a reactor can be very great, they are not usually all connected permanently to the measuring facility but rather in turn by means of a scanning device which carries out, as it were, multiplexing between all the collectrons and the input of a single measuring system. The object of the invention is a scanning assembly which is of relative simplicity through an original organisation. Specifically, according to this organisation, the collectrons outputs are grouped together in bunches, each of these bunches being processed by a multiplexing sub-assembly belonging to a first stage, the different outputs of these multiplexing subassemblies of this first stage being grouped together yet again in bunches processed by multiplexors forming a new stage and so forth. Further, this structure is specially adapted for use with collectrons by utilising a current amplifier at each multiplexing level so that from one end to the other of the multiplexing system, the commutations are carried out on currents and not on voltages [fr

  20. Interaction of tearing modes

    International Nuclear Information System (INIS)

    Satya, Y.; Schmidt, G.

    1979-01-01

    A fully developed tearing mode modifies the magnetic field profile. The effect of this profile modification on the linear growth rate of a different tearing mode in a slab and cylindrical geometry is investigated

  1. Microprocessor-controlled scanning densitometer system

    International Nuclear Information System (INIS)

    Shurtliff, R.W.

    1980-04-01

    An Automated Scanning Densitometer System has been developed by uniting a microprocessor with a low energy x-ray densitometer system. The microprocessor controls the detector movement, provides self-calibration, compensates raw readings to provide time-linear output, controls both data storage and the host computer interface, and provides measurement output in engineering units for immediate reading. The densitometer, when used in a scanning mode, is a precision reference instrument that provides chordal average density measurements over the cross section of a pipe under steady-state flow conditions. Results have shown an improvement over the original densitometer in reliability and repeatability of the system, an a factor-of-five improvement in accuracy

  2. Observation of Magnetic Induction Distribution by Scanning Interference Electron Microscopy

    Science.gov (United States)

    Takahashi, Yoshio; Yajima, Yusuke; Ichikawa, Masakazu; Kuroda, Katsuhiro

    1994-09-01

    A scanning interference electron microscope (SIEM) capable of observing magnetic induction distribution with high sensitivity and spatial resolution has been developed. The SIEM uses a pair of fine coherent scanning probes and detects their relative phase change by magnetic induction, giving raster images of microscopic magnetic distributions. Its performance has been demonstrated by observing magnetic induction distributed near the edge of a recorded magnetic storage medium. Obtained images are compared with corresponding images taken in the scanning Lorentz electron microscope mode using the same microscope, and the differences between them are discussed.

  3. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  4. Radiographic scanning agent

    International Nuclear Information System (INIS)

    Bevan, J.A.

    1983-01-01

    This invention relates to radiodiagnostic agents and more particularly to a composition and method for preparing a highly effective technetium-99m-based bone scanning agent. One deficiency of x-ray examination is the inability of that technique to detect skeletal metastases in their incipient stages. It has been discovered that the methanehydroxydiphosphonate bone mineral-seeking agent is unique in that it provides the dual benefits of sharp radiographic imaging and excellent lesion detection when used with technetium-99m. This agent can also be used with technetium-99m for detecting soft tissue calcification in the manner of the inorganic phosphate radiodiagnostic agents

  5. Spinal CT scan, 1

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi

    1982-01-01

    Methods of CT of the cervical and thoracic spines were explained, and normal CT pictures of them were described. Spinal CT was evaluated in comparison with other methods in various spinal diseases. Plain CT revealed stenosis due to spondylosis or ossification of posterior longitudinal ligament and hernia of intervertebral disc. CT took an important role in the diagnosis of spinal cord tumors with calcification and destruction of the bone. CT scan in combination with other methods was also useful for the diagnosis of spinal injuries, congenital anomalies and infections. (Ueda, J.)

  6. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  7. Scanning apparatus and method

    International Nuclear Information System (INIS)

    Brunnett, C.J.

    1980-01-01

    A novel method is described for processing the analogue signals from the photomultiplier tubes in a tomographic X-ray scanner. The system produces a series of pulses whose instantaneous frequency depends on the detected intensity of the X-radiation. A timer unit is used to determine the segment scan intervals and also to deduce the average radiation intensity detected during this interval. The overall system is claimed to possess the advantageous properties of low time delay, wide bandwidth and relative low cost. (U.K.)

  8. NEW SCANNING DEVICE FOR SCANNING TUNNELING MICROSCOPE APPLICATIONS

    NARCIS (Netherlands)

    SAWATZKY, GA; Koops, Karl Richard

    A small, single piezo XYZ translator has been developed. The device has been used as a scanner for a scanning tunneling microscope and has been tested successfully in air and in UHV. Its simple design results in a rigid and compact scanning unit which permits high scanning rates.

  9. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  10. Infrared helioseismology - Detection of the chromospheric mode

    Science.gov (United States)

    Deming, D.; Kaeufl, H. U.; Espenak, F.; Glenar, D. A.; Hill, A. A.

    1986-01-01

    Time-series observations of an infrared solar OH absorption line profile have been obtained on two consecutive days using a laser heterodyne spectrometer to view a 2 arcsec portion of the quiet sun at disk center. A power spectrum of the line center velocity shows the well-known photospheric p-mode oscillations very prominently, but also shows a second feature near 4.3 mHz. A power spectrum of the line intensity shows only the 4.3 mHz feature, which is identified as the fundamental p-mode resonance of the solar chromosphere. The frequency of the mode is observed to be in substantial agreement with the eigenfrequency of current chromospheric models. A time series of two beam difference measurements shows that the mode is present only for horizontal wavelengths greater than 19 Mm. The period of a chromospheric p-mode resonance is directly related to the sound travel time across the chromosphere, which depends on the chromospheric temperature and geometric height. Thus, detection of this resonance will provide an important new constraint on chromospheric models.

  11. Usefulness of thin slice target CT scan in detecting mediastinal and hilar lymphadenopathy

    International Nuclear Information System (INIS)

    Yoshida, Shoji; Maeda, Tomoho; Nishioka, Masatoshi

    1986-01-01

    Comparative study of target scan with the different slice thickness and scan modes was performed to evaluate the mediastinal and hilar lymphadenopathy. 20 cases in controls and 35 cases in lymphadenopathy were examined. To delineate mediastinal and hilar lymphadenopathy, the scan mode of standard target was most useful in contrast and sharpness. Thin slice thickness with 5 mm was necessary in detecting small lymphnode or contour and internal structure of enlarged lymphnode. Valuable estimation of 5 mm contiguous target scan was obtained in the subaortic node (no. 5), tracheobronchial node (no. 4), precarinal and subcarinal node (no. 7) and right hilar node (no. 12). (author)

  12. IMPROVED REAL-TIME SCAN MATCHING USING CORNER FEATURES

    Directory of Open Access Journals (Sweden)

    H. A. Mohamed

    2016-06-01

    Full Text Available The automation of unmanned vehicle operation has gained a lot of research attention, in the last few years, because of its numerous applications. The vehicle localization is more challenging in indoor environments where absolute positioning measurements (e.g. GPS are typically unavailable. Laser range finders are among the most widely used sensors that help the unmanned vehicles to localize themselves in indoor environments. Typically, automatic real-time matching of the successive scans is performed either explicitly or implicitly by any localization approach that utilizes laser range finders. Many accustomed approaches such as Iterative Closest Point (ICP, Iterative Matching Range Point (IMRP, Iterative Dual Correspondence (IDC, and Polar Scan Matching (PSM handles the scan matching problem in an iterative fashion which significantly affects the time consumption. Furthermore, the solution convergence is not guaranteed especially in cases of sharp maneuvers or fast movement. This paper proposes an automated real-time scan matching algorithm where the matching process is initialized using the detected corners. This initialization step aims to increase the convergence probability and to limit the number of iterations needed to reach convergence. The corner detection is preceded by line extraction from the laser scans. To evaluate the probability of line availability in indoor environments, various data sets, offered by different research groups, have been tested and the mean numbers of extracted lines per scan for these data sets are ranging from 4.10 to 8.86 lines of more than 7 points. The set of all intersections between extracted lines are detected as corners regardless of the physical intersection of these line segments in the scan. To account for the uncertainties of the detected corners, the covariance of the corners is estimated using the extracted lines variances. The detected corners are used to estimate the transformation parameters

  13. An on-line tritium-in-water monitor

    International Nuclear Information System (INIS)

    Singh, A.N.; Ratnakaran, M.; Vohra, K.G.

    1985-01-01

    The paper describes the development and operation of a continuous on-line tritium-in-water monitor for the detection of heavy water leaks into the secondary coolant light water of a heavy water power reactor. The heart of the instrument is its plastic scintillator sponge detector, made from 5 μm thick plastic scintillator films. The sponge weighs only about 1 g and is in the form of disc of 48 mm diameter and 8 mm thickness. The total surface area of the films is about 3000 cm 2 . In the coincidence mode of counting, the detector gives 1000 cps for the passage of 3.7 x 10 4 Bq/cm 3 (1 μCi/cm 3 ) of tritiated water. The background in 6 cm thick lead shielding in the laboratory is 0.2 cps, and inside the reactor building it is below 1 cps. The monitor presently scans 18 sample lines in sequence for 5 min each and gives a printout for the activity in each line. (orig.)

  14. An on-line tritium-in-water monitor

    Science.gov (United States)

    Singh, A. N.; Ratnakaran, M.; Vohra, K. G.

    1985-05-01

    The paper describes the development and operation of a continuous on-line tritium-in-water monitor for the detection of heavy water leaks into the secondary coolant light water of a heavy water power reactor. The heart of the instrument is its plastic scintillator sponge detector, made from 5 μm thick plastic scintillator films. The sponge weighs only about 1 g and is in the form of disc of 48 mm diameter and 8 mm thickness. The total surface area of the films is about 3000 cm 2. In the coincidence mode of counting, the detector gives 1000 cps for the passage of 3.7 × 10 4 Bq/cm 3 (1 μCi/cm 3) of tritiated water. The background in 6 cm thick lead shielding in the laboratory is 0.2 cps, and inside the reactor building it is below 1 cps. The monitor presently scans 18 sample lines in sequence for 5 min each and gives a printout for the activity in each line.

  15. Mode group specific amplification length in an asymmetric LPG assisted few-mode EDFA

    Science.gov (United States)

    Rastogi, Vipul; Gaur, Ankita; Aschieri, Pierre; Dussardier, Bernard

    2017-01-01

    This article presents a scheme for few-mode EDFA, which allows to choose independent amplification lengths for different mode groups. The EDF is a dual concentric core fiber, where the central core is connected to the line FMF and the ring core is doped with erbium to provide amplification. The modes of FMF are launched into the central core of the EDF, are converted into ring modes using LPG for amplification and then converted back into central core modes using another LPG. The distance between the LPGs determines the amplification length. The amplification length, can thus, be chosen for a given mode group. We demonstrate the working of this concept by choosing LP11 and LP21 mode groups of the FMF and show that a suitable choice of amplification lengths for the two mode groups can tailor the differential modal gain (DMG) to any desired value. We demonstrate achieving zero DMG among all the mode of LP11 and LP21 mode groups using this concept while having gain in excess of 20 dB. The study should be useful for optical fiber communication system employing space-division multiplexing (SDM).

  16. Scanning device for a spectrometer

    International Nuclear Information System (INIS)

    Ignat'ev, V.M.

    1982-01-01

    The invention belongs to scanning devices and is intended for spectrum scanning in spectral devices. The purpose of the invention is broadening of spectral scanning range. The device construction ensures the spectrum scanning range determined from revolution fractions to several revolutions of the monochromator drum head, any number of the drum head revolutions determined by integral number with addition of the drum revolution fractions with high degree of accuracy being possible

  17. Factors influencing bone scan quality

    International Nuclear Information System (INIS)

    Adams, F.G.; Shirley, A.W.

    1983-01-01

    A reliable subjective method of assessing bone scan quality is described. A large number of variables which theoretically could influence scan quality were submitted to regression and factor analysis. Obesity, age, sex and abnormality of scan were found to be significant but weak variables. (orig.)

  18. production lines

    Directory of Open Access Journals (Sweden)

    Jingshan Li

    2000-01-01

    Full Text Available In this work, serial production lines with finished goods buffers operating in the pull regime are considered. The machines are assumed to obey Bernoulli reliability model. The problem of satisfying customers demand is addressed. The level of demand satisfaction is quantified by the due-time performance (DTP, which is defined as the probability to ship to the customer a required number of parts during a fixed time interval. Within this scenario, the definitions of DTP bottlenecks are introduced and a method for their identification is developed.

  19. CT scans in encephalitis

    International Nuclear Information System (INIS)

    Imanishi, Masami; Morimoto, Tetsuya; Iida, Noriyuki; Hisanaga, Manabu; Kinugawa, Kazuhiko

    1980-01-01

    Generally, CT scans reveal a decrease in the volume of the ventricular system, sylvian fissures and cortical sulci in the acute stage of encephalitis, and softening of the cerebral lobes with dilatation of the lateral ventricles and subarachnoidian dilated spaces in the chronic stage. We encountered three cases of encephalitis: mumps (case 1), herpes simplex (case 2), and syphilis (case 3). In case 1, brain edema was seen in the acute stage and brain atrophy in the chronic stage. In case 2, necrosis of the temporal pole, which is pathognomonic in herpes simplex encephalitis, was recognized. And in case 3, multiple lesions whose CT appearance was enhanced by contrast materials were found scattered over the whole brain. These lesions were diagnosed as inflammatory granuloma by histological examination. (author)

  20. Scanning device for scintigraphy

    International Nuclear Information System (INIS)

    Casale, R.

    1975-01-01

    A device is described for the scintigraphic scanning according to a horizontal plane, comprising: (a) A support provided with two guides horizontally and longitudinally located, one of which is located in the upper part of the support, while the second guide is located in the lower part of the support; (b) A carriage, movable with respect to the support along the two guides, provided in its upper part, projecting above the support, with rolling means suitable to support and to cause to slide along its axis a support rod for the first detector, horizontally and transversely located, said carriage being further provided in its lower part with a recess with possible rolling means suitable to support and to cause to slide along its axis a second support rod for the second detector, said second rod being located parallel to the first rod and below it; (c) One or two support rods for the detectors, the first of said rods being supported above the support in a sliding way along its axis, by the rolling means located in the upper part of the carriage, and the second rod if present is supported slidingly along its axis by the possible rolling means contained in the suitable recess which is provided in the lower part of the carriage, and (d) A vertical shaft supported by said carriage on which is mounted a toothed wheel for each rod, each toothed wheel engaging a positive drive belt or the like, which is connected to each said rod so that rotation of the shaft determines the simultaneous displacement of the two rods along their axes; and single motor means for driving said shaft during a scanning operation. (U.S.)

  1. Scanning the periphery.

    Science.gov (United States)

    Day, George S; Schoemaker, Paul J H

    2005-11-01

    Companies often face new rivals, technologies, regulations, and other environmental changes that seem to come out of left field. How can they see these changes sooner and capitalize on them? Such changes often begin as weak signals on what the authors call the periphery, or the blurry zone at the edge of an organization's vision. As with human peripheral vision, these signals are difficult to see and interpret but can be vital to success or survival. Unfortunately, most companies lack a systematic method for determining where on the periphery they should be looking, how to interpret the weak signals they see, and how to allocate limited scanning resources. This article provides such a method-a question-based framework for helping companies scan the periphery more efficiently and effectively. The framework divides questions into three categories: learning from the past (What have been our past blind spots? What instructive analogies do other industries offer? Who in the industry is skilled at picking up weak signals and acting on them?); evaluating the present (What important signals are we rationalizing away? What are our mavericks, outliers, complainers, and defectors telling us? What are our peripheral customers and competitors really thinking?); and envisioning the future (What future surprises could really hurt or help us? What emerging technologies could change the game? Is there an unthinkable scenario that might disrupt our business?). Answering these questions is a good first step toward anticipating problems or opportunities that may appear on the business horizon. The article concludes with a self-test that companies can use to assess their need and capability for peripheral vision.

  2. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  3. Metrological large range scanning probe microscope

    International Nuclear Information System (INIS)

    Dai Gaoliang; Pohlenz, Frank; Danzebrink, Hans-Ulrich; Xu Min; Hasche, Klaus; Wilkening, Guenter

    2004-01-01

    We describe a metrological large range scanning probe microscope (LR-SPM) with an Abbe error free design and direct interferometric position measurement capability, aimed at versatile traceable topographic measurements that require nanometer accuracy. A dual-stage positioning system was designed to achieve both a large measurement range and a high measurement speed. This dual-stage system consists of a commercially available stage, referred to as nanomeasuring machine (NMM), with a motion range of 25 mmx25 mmx5 mm along x, y, and z axes, and a compact z-axis piezoelectric positioning stage (compact z stage) with an extension range of 2 μm. The metrological LR-SPM described here senses the surface using a stationary fixed scanning force microscope (SFM) head working in contact mode. During operation, lateral scanning of the sample is performed solely by the NMM. Whereas the z motion, controlled by the SFM signal, is carried out by a combination of the NMM and the compact z stage. In this case the compact z stage, with its high mechanical resonance frequency (greater than 20 kHz), is responsible for the rapid motion while the NMM simultaneously makes slower movements over a larger motion range. To reduce the Abbe offset to a minimum the SFM tip is located at the intersection of three interferometer measurement beams orientated in x, y, and z directions. To improve real time performance two high-end digital signal processing (DSP) systems are used for NMM positioning and SFM servocontrol. Comprehensive DSP firmware and Windows XP-based software are implemented, providing a flexible and user-friendly interface. The instrument is able to perform large area imaging or profile scanning directly without stitching small scanned images. Several measurements on different samples such as flatness standards, nanostep height standards, roughness standards as well as sharp nanoedge samples and 1D gratings demonstrate the outstanding metrological capabilities of the instrument

  4. Scanning Ion Conductance Microscopy of Live Keratinocytes

    International Nuclear Information System (INIS)

    Hegde, V; Mason, A; Saliev, T; Smith, F J D; McLean, W H I; Campbell, P A

    2012-01-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (< nN), could not routinely image microvilli: rather, an apparently convolved image of the underlying cytoskeleton was instead prevalent. We note that the present incarnation of the commercial instrument falls some way behind the market leading SPMs in terms of technical prowess and scanning speed, however, the intrinsic non-obtrusive nature of

  5. High-speed atomic force microscope imaging: Adaptive multiloop mode

    Science.gov (United States)

    Ren, Juan; Zou, Qingze; Li, Bo; Lin, Zhiqun

    2014-07-01

    In this paper, an imaging mode (called the adaptive multiloop mode) of atomic force microscope (AFM) is proposed to substantially increase the speed of tapping mode (TM) imaging while preserving the advantages of TM imaging over contact mode (CM) imaging. Due to its superior image quality and less sample disturbances over CM imaging, particularly for soft materials such as polymers, TM imaging is currently the most widely used imaging technique. The speed of TM imaging, however, is substantially (over an order of magnitude) lower than that of CM imaging, becoming the major bottleneck of this technique. Increasing the speed of TM imaging is challenging as a stable probe tapping on the sample surface must be maintained to preserve the image quality, whereas the probe tapping is rather sensitive to the sample topography variation. As a result, the increase of imaging speed can quickly lead to loss of the probe-sample contact and/or annihilation of the probe tapping, resulting in image distortion and/or sample deformation. The proposed adaptive multiloop mode (AMLM) imaging overcomes these limitations of TM imaging through the following three efforts integrated together: First, it is proposed to account for the variation of the TM deflection when quantifying the sample topography; second, an inner-outer feedback control loop to regulate the TM deflection is added on top of the tapping-feedback control loop to improve the sample topography tracking; and, third, an online iterative feedforward controller is augmented to the whole control system to further enhance the topography tracking, where the next-line sample topography is predicted and utilized to reduce the tracking error. The added feedback regulation of the TM deflection ensures the probe-sample interaction force remains near the minimum for maintaining a stable probe-sample interaction. The proposed AMLM imaging is tested and demonstrated by imaging a poly(tert-butyl acrylate) sample in experiments. The

  6. Real squashing mode in textures in 3He-B

    International Nuclear Information System (INIS)

    Mineev, V.P.

    1985-01-01

    The shape of the absorption line of ultrasound due to various components of the real squashing mode in textures in 3 He-B is investigated. An explanation is presented of the additional splitting of the absorption line for the M=0 component of the real squashing model in a magnetic field and of the absence of such splitting of lines with M=+-1, +-2 in the case of place geometry. The peculiarities of the shape of the ultrasound absorption lines for various components of the real squashing mode in a rotating cylindrical vessel with 3 He-B are discussed

  7. New oscillation mode in a tokamak and its instability

    International Nuclear Information System (INIS)

    Ivanov, S.D.; Mazur, V.A.

    1982-01-01

    A new potential oscillation mode in a tokamak has been discovered. This mode properties are an original combination of properties of a drift wave and a mode on trapped ions. Its existence is equally due to trapped and low flight ions. The effect of fast flight ions is eliminated with the peculiarity of a poloidal mode structure - mean value of a disturbed potential along a force line equals zero. The mode is swung with trapped electron collisions and the magnetic field shear, ion collisions and bounce resonances affect stabilizingly

  8. Line facilities outline

    International Nuclear Information System (INIS)

    1998-08-01

    This book deals with line facilities. The contents of this book are outline line of wire telecommunication ; development of line, classification of section of line and theory of transmission of line, cable line ; structure of line, line of cable in town, line out of town, domestic cable and other lines, Optical communication ; line of optical cable, transmission method, measurement of optical communication and cable of the sea bottom, Equipment of telecommunication line ; telecommunication line facilities and telecommunication of public works, construction of cable line and maintenance and Regulation of line equipment ; regulation on technique, construction and maintenance.

  9. Simultaneous and Sequential MS/MS Scan Combinations and Permutations in a Linear Quadrupole Ion Trap.

    Science.gov (United States)

    Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham

    2017-10-17

    Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.

  10. CT-scanning in otolaryngology, 2

    International Nuclear Information System (INIS)

    Kusakari, Jun; Endo, Satomi; Hara, Akira

    1982-01-01

    Combined computerized tomography-sialography was performed in 28 patients with parotid tumors. Sialography was performed in the usual fashion. After confirming the presence of the contrast material within the parotid gland by X-ray, 4 to 5 scannings were done at the width of 10 mm below Repid's base line. With this procedure, the parotid gland was clearly demonstrated and the location of the tumor was shown as a shadow defect. Although the nature of the tumor, especially whether it was malignant or benign was difficult to predict, the CT-findings regarding the size and location of the tumor were completely coincident with the operative findings in all the cases. Accurate appraisal of the relation between the tumor and the facial nerve was possible in all but two cases. The preoperative information obtained from CT-scanning is extremely useful in the case of parotid tumor surgery. (author)

  11. Double-mode pulsation

    International Nuclear Information System (INIS)

    Cox, A.N.

    1982-01-01

    Double mode pulsation is a very pervasive phenomenon in stars all over the Hertzsprung-Russell diagram. In order of increasing radius, examples are: ZZ Ceti stars, the sun, the delta Scuti stars, RR Lyrae variables, the β Cephei variables and those related to them, Cepheids, and maybe even the Mira stars. These many modes have been interpreted as both radial and nonradial modes, but in many cases the actual mode has not been clearly identified. Yellow giants seem to be the most simple pulsators with a large majority of the RR Lyrae variables and Cepheids showing only one pulsation period. We limit this review to those very few cases for classical Cepheids and RR Lyrae variables which display two modes. For these we know many facts about these stars, but the actual cause of the pulsation in two modes simultaneously remains unknown

  12. A Potential Use of 3-D Scanning to Evaluate the Chemical Composition of Pork Meat.

    Science.gov (United States)

    Adamczak, Lech; Chmiel, Marta; Florowski, Tomasz; Pietrzak, Dorota; Witkowski, Marcin; Barczak, Tomasz

    2015-07-01

    The aim of this study was to determine the possibility of 3-D scanning method in chemical composition evaluation of pork meat. The sampling material comprised neck muscles (1000 g each) obtained from 20 pork carcasses. The volumetric estimation process of the elements was conducted on the basis of point cloud collected using 3-D scanner. Knowing the weight of neck muscles, their density was calculated which was subsequently correlated with the content of basic chemical components of the pork meat (water, protein and fat content, determined by standard methods). The significant correlations (P ≤ 0.05) between meat density and water (r = 0.5213), protein (r = 0.5887), and fat (r = -0.6601) content were obtained. Based on the obtained results it seems likely to employ the 3-D scanning method to compute the meat chemical composition. The use of the 3-D scanning method in industrial practice will allow to evaluate the chemical composition of meat in online mode on a dressing and fabrication line and in a rapid, noninvasive manner. The control of the raw material using the 3-D scanning will allow to make visual assessment more objective and will enable optimal standardization of meat batches prior to processing stage. It will ensure not only the repeatability of product quality characteristics, but also optimal use of raw material-lean and fat meat. The knowledge of chemical composition of meat is essential due to legal requirements associated with mandatory nutrition facts labels on food products. © 2015 Institute of Food Technologists®

  13. Digital Processing for Modifying and Rearranging Rectilinear and Section Scan Data under Direct Observation

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, D. E.; Edwards, R. Q. [University of Pennsylvania, Philadelphia, PA (United States)

    1969-01-15

    Our digital processor for scan data is an on-site instrument that is intermediate in complexity between conventional optical processing devices and large digital computers. It is designed to provide for a wide and flexible range of secondary data operations, direct picture display on a CRT screen, and full operator control of both processing and display operations at the time of viewing. The instrument does not require the user to learn complicated programing schemes. The operator is expected to be a physician who will control the parameters of interest by punching preset buttons on a keyboard while observing changes displayed on a CRT screen. The system functions primarily as an investigative tool for studying perception of scan information and ways of making this information more meaningful. Data operations include data bounding, spatial averaging, iso-count line generation, image addition and subtraction, and several forms of quantitative read-out for analysis of regional data. The instrument is intended to serve as a central processor and reader for data from several units. Investigations with this processor have served as a source of information leading to the design of more simple processing devices suitable for wider acceptance. For example, the Mark III rectilinear and transverse section brain scanner that has evolved from this project is expected to be a practical improvement of the brain study method. This instrument is designed especially for rapid brain scanning using {sup 99m}Tc pertechnetate. It has a self-contained computer, integrated digital circuits for compactness and economy, and provision for transverse section scanning. The advantages of this system are that it provides a more thorough study using both transverse section and rectilinear modes, rapid performance, precise orientation of section and rectilinear views to the patient position, efficient transfer of information between physician and machine during studies, and economy of design

  14. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  15. Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  16. Antipastorialism : Resistant Georgic Mode

    National Research Council Canada - National Science Library

    Zimmerman, Donald

    2000-01-01

    .... Abolitionists, women, Afro-British slaves, and those who protested land enclosure developed a multivalent, resistant mode of writing, which I name 'antipastoralism', that countered orthodox, poetical...

  17. Nonlinear drift tearing mode

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1989-01-01

    Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed

  18. Parallel Lines

    Directory of Open Access Journals (Sweden)

    James G. Worner

    2017-05-01

    Full Text Available James Worner is an Australian-based writer and scholar currently pursuing a PhD at the University of Technology Sydney. His research seeks to expose masculinities lost in the shadow of Australia’s Anzac hegemony while exploring new opportunities for contemporary historiography. He is the recipient of the Doctoral Scholarship in Historical Consciousness at the university’s Australian Centre of Public History and will be hosted by the University of Bologna during 2017 on a doctoral research writing scholarship.   ‘Parallel Lines’ is one of a collection of stories, The Shapes of Us, exploring liminal spaces of modern life: class, gender, sexuality, race, religion and education. It looks at lives, like lines, that do not meet but which travel in proximity, simultaneously attracted and repelled. James’ short stories have been published in various journals and anthologies.

  19. Synthetic holography based on scanning microcavity

    Directory of Open Access Journals (Sweden)

    A. Di Donato

    2015-11-01

    Full Text Available Synthetic optical holography (SOH is an imaging technique, introduced in scanning microscopy to record amplitude and phase of a scattered field from a sample. In this paper, it is described a novel implementation of SOH through a lens-free low-coherence system, based on a scanning optical microcavity. This technique combines the low-coherence properties of the source with the mutual interference of scattered waves and the resonant behavior of a micro-cavity, in order to realize a high sensitive imaging system. Micro-cavity is compact and realized by approaching a cleaved optical fiber to the sample. The scanning system works in an open-loop configuration without the need for a reference wave, usually required in interferometric systems. Measurements were performed over calibration samples and a lateral resolution of about 1 μm is achieved by means of an optical fiber with a Numerical Aperture (NA equal to 0.1 and a Mode Field Diameter (MDF of 5.6 μm.

  20. Structural resonance and mode of flutter of hummingbird tail feathers.

    Science.gov (United States)

    Clark, Christopher J; Elias, Damian O; Girard, Madeline B; Prum, Richard O

    2013-09-15

    Feathers can produce sound by fluttering in airflow. This flutter is hypothesized to be aeroelastic, arising from the coupling of aerodynamic forces to one or more of the feather's intrinsic structural resonance frequencies. We investigated how mode of flutter varied among a sample of hummingbird tail feathers tested in a wind tunnel. Feather vibration was measured directly at ~100 points across the surface of the feather with a scanning laser Doppler vibrometer (SLDV), as a function of airspeed, Uair. Most feathers exhibited multiple discrete modes of flutter, which we classified into types including tip, trailing vane and torsional modes. Vibratory behavior within a given mode was usually stable, but changes in independent variables such as airspeed or orientation sometimes caused feathers to abruptly 'jump' from one mode to another. We measured structural resonance frequencies and mode shapes directly by measuring the free response of 64 feathers stimulated with a shaker and recorded with the SLDV. As predicted by the aeroelastic flutter hypothesis, the mode shape (spatial distribution) of flutter corresponded to a bending or torsional structural resonance frequency of the feather. However, the match between structural resonance mode and flutter mode was better for tip or torsional mode shapes, and poorer for trailing vane modes. Often, the 3rd bending structural harmonic matched the expressed mode of flutter, rather than the fundamental. We conclude that flutter occurs when airflow excites one or more structural resonance frequencies of a feather, most akin to a vibrating violin string.

  1. First results from the INTEGRAL galactic plane scans

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Schonfelder, V.

    2003-01-01

    Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapp...... mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec. 2002-May 2003) of the nominal mission.......Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved...

  2. GPR scan assessment

    Directory of Open Access Journals (Sweden)

    Abbas M. Abbas

    2015-06-01

    Full Text Available Mekaad Radwan monument is situated in the neighborhood of Bab Zuweila in the historical Cairo, Egypt. It was constructed at the middle XVII century (1635 AD. The building has a rectangle shape plan (13 × 6 m with the longitudinal sides approximately WNW-ESE. It comprises three storages namely; the ground floor; the opened floor (RADWAN Bench and the living floor with a total elevation of 15 m above the street level. The building suffers from severe deterioration phenomena with patterns of damage which have occurred over time. These deterioration and damages could be attributed to foundation problems, subsoil water and also to the earthquake that affected the entire Greater Cairo area in October 1992. Ground Penetrating Radar (GPR scan was accomplished against the walls of the opened floor (RADWAN Bench to evaluate the hazard impact on the walls textures and integrity. The results showed an anomalous feature through the southern wall of RADWAN Bench. A mathematical model has been simulated to confirm the obtained anomaly and the model response exhibited a good matching with the outlined anomaly.

  3. Radionuclide brain scanning

    International Nuclear Information System (INIS)

    Abdel-Dayem, H.

    1992-01-01

    At one stage of medical imaging development, radionuclide brain scanning was the only technique available for imaging of the brain. Advent of CT and MRI pushed it to the background. It regained some of the grounds lost to ''allied advances'' with the introduction of brain perfusion radiopharmaceuticals. Positron emission tomography is a promising functional imaging modality that at present will remain as a research tool in special centres in developed countries. However, clinically useful developments will gradually percolate from PET to SPECT. The non-nuclear imaging methods are totally instrument dependent; they are somewhat like escalators, which can go that far and no further. Nuclear imaging has an unlimited scope for advance because of the new developments in radiopharmaceuticals. As the introduction of a radiopharmaceutical is less costly than buying new instruments, the recent advances in nuclear imaging are gradually perfusing through the developing countries also. Therefore, it is essential to follow very closely PET developments because what is research today might become routine tomorrow

  4. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  5. Gastrointestinal scanning agent

    International Nuclear Information System (INIS)

    Francis, M.D.

    1980-01-01

    An easily prepared radiolabeled gastrointestinal scanning agent is described. Technetium-99m has ideal characteristics for imaging the upper and lower GI tract and determining stomach emptying and intestinal transit time when used with an insoluble particulate material. For example, crystalline and amorphous calcium phosphate particles can be effectively labeled in a one-step process using sup(99m)TcO 4 and SnCl 2 . These labeled particles have insignificant mass and when administered orally pass through the GI tract unchanged, without affecting the handling and density of the intestinal contents. Visualization of the esophageal entry into the stomach, the greater and lesser curvatures of the stomach, ejection into the duodenum, and rates of passage through the upper and lower GI tract are obtained. The slurry of sup(99m)TC particulate can be given rectally by enema. Good images of the cecum and the ascending, transverse, and descending colon are obtained. Mucosal folds and the splenic and hepatic flexures are visualized. The resilience of the large intestine is also readily visualized by pneumocolonographic techniques. (author)

  6. Radionuclide brain scanning

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Dayem, H

    1993-12-31

    At one stage of medical imaging development, radionuclide brain scanning was the only technique available for imaging of the brain. Advent of CT and MRI pushed it to the background. It regained some of the grounds lost to ``allied advances`` with the introduction of brain perfusion radiopharmaceuticals. Positron emission tomography is a promising functional imaging modality that at present will remain as a research tool in special centres in developed countries. However, clinically useful developments will gradually percolate from PET to SPECT. The non-nuclear imaging methods are totally instrument dependent; they are somewhat like escalators, which can go that far and no further. Nuclear imaging has an unlimited scope for advance because of the new developments in radiopharmaceuticals. As the introduction of a radiopharmaceutical is less costly than buying new instruments, the recent advances in nuclear imaging are gradually perfusing through the developing countries also. Therefore, it is essential to follow very closely PET developments because what is research today might become routine tomorrow

  7. Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film

    Energy Technology Data Exchange (ETDEWEB)

    Teke, T; Milette, MP [BC Cancer Agency Centre for the Southern Interior (Canada); Huang, V; Thomas, SD [BC Cancer Agency Fraser Valley Cancer Centre (Canada)

    2014-08-15

    The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam was created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode. Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.

  8. Mapping the antioxidant activity of apple peels with soft probe scanning electrochemical microscopy

    OpenAIRE

    Lin, Tzu-En; Lesch, Andreas; Li, Chi-Lin; Girault, Hubert

    2017-01-01

    We present a non-invasive electrochemical strategy for mapping the antioxidant (AO) activity of apple peels, which counterbalances oxidative stress caused by various external effectors. Soft carbon microelectrodes were used for soft probe scanning electrochemical microscopy (SECM) enabling the gentle and scratch-free in contact mode scanning of the rough and delicate apple peels in an electrolyte solution. The SECM feedback mode was applied using ferrocene methanol (FcMeOH) as redox mediator ...

  9. Topological Acoustic Delay Line

    Science.gov (United States)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan

    2018-03-01

    Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.

  10. Specialized computer system to diagnose critical lined equipment

    Science.gov (United States)

    Yemelyanov, V. A.; Yemelyanova, N. Y.; Morozova, O. A.; Nedelkin, A. A.

    2018-05-01

    The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors propose and describe the structure of the specialized computer system to diagnose critical lined equipment. The relative results of diagnosing lining condition by the basic system and the proposed specialized computer system are presented. To automate evaluation of lining condition and support in making decisions regarding the operation mode of the lined equipment, the specialized software has been developed.

  11. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  12. Hyperchromatic laser scanning cytometry

    Science.gov (United States)

    Tárnok, Attila; Mittag, Anja

    2007-02-01

    In the emerging fields of high-content and high-throughput single cell analysis for Systems Biology and Cytomics multi- and polychromatic analysis of biological specimens has become increasingly important. Combining different technologies and staining methods polychromatic analysis (i.e. using 8 or more fluorescent colors at a time) can be pushed forward to measure anything stainable in a cell, an approach termed hyperchromatic cytometry. For cytometric cell analysis microscope based Slide Based Cytometry (SBC) technologies are ideal as, unlike flow cytometry, they are non-consumptive, i.e. the analyzed sample is fixed on the slide. Based on the feature of relocation identical cells can be subsequently reanalyzed. In this manner data on the single cell level after manipulation steps can be collected. In this overview various components for hyperchromatic cytometry are demonstrated for a SBC instrument, the Laser Scanning Cytometer (Compucyte Corp., Cambridge, MA): 1) polychromatic cytometry, 2) iterative restaining (using the same fluorochrome for restaining and subsequent reanalysis), 3) differential photobleaching (differentiating fluorochromes by their different photostability), 4) photoactivation (activating fluorescent nanoparticles or photocaged dyes), and 5) photodestruction (destruction of FRET dyes). With the intelligent combination of several of these techniques hyperchromatic cytometry allows to quantify and analyze virtually all components of relevance on the identical cell. The combination of high-throughput and high-content SBC analysis with high-resolution confocal imaging allows clear verification of phenotypically distinct subpopulations of cells with structural information. The information gained per specimen is only limited by the number of available antibodies and by sterical hindrance.

  13. Excursions through KK modes

    Energy Technology Data Exchange (ETDEWEB)

    Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University,Manipal, Karnataka 576104 (India)

    2016-07-07

    In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.

  14. Excursions through KK modes

    International Nuclear Information System (INIS)

    Furuuchi, Kazuyuki

    2016-01-01

    In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.

  15. Optical depth sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscope

    International Nuclear Information System (INIS)

    Behan, G; Nellist, P D

    2008-01-01

    The use of spherical aberration correctors in the scanning transmission electron microscope (STEM) has the effect of reducing the depth of field of the microscope, making three-dimensional imaging of a specimen possible by optical sectioning. Depth resolution can be improved further by placing aberration correctors and lenses pre and post specimen to achieve an imaging mode known as scanning confocal electron microscopy (SCEM). We present the calculated incoherent point spread functions (PSF) and optical transfer functions (OTF) of a STEM and SCEM. The OTF for a STEM is shown to have a missing cone region which results in severe blurring along the optic axis, which can be especially severe for extended objects. We also present strategies for reconstruction of experimental data, such as three-dimensional deconvolution of the point spread function.

  16. Gallium scans in myasthenia gravis

    International Nuclear Information System (INIS)

    Swick, H.M.; Preston, D.F.; McQuillen, M.P.

    1976-01-01

    A study was conducted to determine whether 67 Ga scans could be used for the detection of thymomas and to investigate the activity of the thymus gland in patients with myasthenia gravis. Scans of the anterior mediastinum proved to be a reliable way to detect thymomas. The scans were positive in eight patients including three with myasthenia gravis and histologically proved thymomas, three others with severe myasthenia gravis and thymic tumors, and two with histologically proved thymomas not associated with myasthenia. Activity on 67 Ga scans was not directly related to the increased activity of the thymus gland that is presumed to be associated with myasthenia gravis

  17. Gallium scans in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Swick, H.M. (Univ. of Kentucky, Lexington); Preston, D.F.; McQuillen, M.P.

    1976-01-01

    A study was conducted to determine whether /sup 67/Ga scans could be used for the detection of thymomas and to investigate the activity of the thymus gland in patients with myasthenia gravis. Scans of the anterior mediastinum proved to be a reliable way to detect thymomas. The scans were positive in eight patients including three with myasthenia gravis and histologically proved thymomas, three others with severe myasthenia gravis and thymic tumors, and two with histologically proved thymomas not associated with myasthenia. Activity on /sup 67/Ga scans was not directly related to the increased activity of the thymus gland that is presumed to be associated with myasthenia gravis. (HLW)

  18. Large Scale Scanning Probe Microscope "Making Shear Force Scanning visible."

    NARCIS (Netherlands)

    Bosma, E.; Offerhaus, Herman L.; van der Veen, Jan T.; van der Veen, J.T.; Segerink, Franciscus B.; Wessel, I.M.

    2010-01-01

    We describe a demonstration of a scanning probe microscope with shear-force tuning fork feedback. The tuning fork is several centimeters long, and the rigid fiber is replaced by a toothpick. By scaling this demonstration to visible dimensions the accessibility of shear-force scanning and tuning fork

  19. VT Digital Line Graph Miscellaneous Transmission Lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This datalayer is comprised of Miscellaineous Transmission Lines. Digital line graph (DLG) data are digital representations of cartographic...

  20. Resolution Enhancement of Scanning Laser Acoustic Microscope Using Transverse Wave

    International Nuclear Information System (INIS)

    Ko, D. S.; Park, J. S.; Kim, Y. H.

    1997-01-01

    We studied the resolution enhancement of a novel scanning laser acoustic microscope (SLAM) using transverse waves. Mode conversion of the ultrasonic wave takes place at the liquid-solid interface and some energy of the insonifying longitudinal waves in the water will convert to transverse wave energy within the solid specimen. The resolution of SLAM depends on the size of detecting laser spot and the wavelength of the insonifying ultrasonic waves. Science the wavelength of the transverse wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution by using transverse waves. In order to operate SLAM in the transverse wave mode, we made wedge for changing the incident angle. Our experimental results with model 2140 SLAM and an aluminum specimen showed higher contrast of the SLAM image in the transverse wave mode than that in the longitudinal wave mode

  1. Subsystem for processing, storage and editing of the results of the chamber film scanning

    International Nuclear Information System (INIS)

    Balgansurehn, Ya.; Dirner, A.; Ivanov, V.G.

    1987-01-01

    A subsystem which is an element of the high-automated system for film data processing and intended for run with the scanning information is described. The subsystem consists of routines which allow to create, to edit and to print the file of scanning results both in batch and interactive mode on the CDC-6500 computer

  2. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  3. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  4. Effect of modes interaction on the resistive wall mode stability

    International Nuclear Information System (INIS)

    Chen Longxi; Wu Bin

    2013-01-01

    Effects of modes interaction on the resistive wall mode (RWM) stability are studied. When considering the modes interaction effects, the linear growth rate of the most unstable (3, 1) mode decreases. After linear evolution, the RWM saturates at the nonlinear phase. The saturation can be attributed to flux piling up on the resistive wall. When some modes exist, the (3, 1) mode saturates at lower level compared with single mode evolution. Meanwhile, the magnetic energy of the (5, 2) mode increases correspondingly, but the magnetic energy saturation level of the (2, 1) mode changes weakly. (authors)

  5. Scanning tunneling spectroscopy on superconducting proximity nanostructures

    International Nuclear Information System (INIS)

    Chapelier, C; Vinet, M; Lefloch, F

    2001-01-01

    We investigated the local density of states (LDOS) of a normal metal (N) in good electrical contact with a superconductor (S) as a function of the distance x to the NS interface. The sample consists of a pattern of alternate L = 1 mm wide strips of Au and Nb made by UV lithography. We used a low temperature scanning tunneling microscope and a lock-in detection technique to record simultaneously dI/dV(V,x) curves and the topographic profile z(x) at 1.5 K. We scanned along lines perpendicular to the strips. All the spectra show a dip near the Fermi energy, which spectral extension decreases from the superconducting gap Δ at the NS interface to zero at distances x >> ξ N where ξ N ≅ √hD N /2Δ ≅ 53nm is the coherence length in the normal metal. Our measurements are correctly described in the framework of the quasi-classical Green's function formalism. We numerically solved the 1D Usadel equation and extracted a decoherence time in gold of 4 ps. We also investigated the LDOS of small ridges of Au deposited on the top of the Nb lines. In this case, L ≤ ξ N and the spatial variations of the spectra depend on the exact shape of the Au ridge. However, our results are consistent with a predicted minigap related to the Thouless energy. (4. mesoscopic superconductivity)

  6. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  7. Study of complex modes

    International Nuclear Information System (INIS)

    Pastrnak, J.W.

    1986-01-01

    This eighteen-month study has been successful in providing the designer and analyst with qualitative guidelines on the occurrence of complex modes in the dynamics of linear structures, and also in developing computer codes for determining quantitatively which vibration modes are complex and to what degree. The presence of complex modes in a test structure has been verified. Finite element analysis of a structure with non-proportional dumping has been performed. A partial differential equation has been formed to eliminate possible modeling errors

  8. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  9. Field Applications of Gamma Column Scanning Technology

    International Nuclear Information System (INIS)

    Aquino, Denis D.; Mallilin, Janice P.; Nuñez, Ivy Angelica A.; Bulos, Adelina DM.

    2015-01-01

    The Isotope Techniques Section (ITS) under the Nuclear Service Division (NSD) of the Philippine Nuclear Research Institute (PNRI) conducts services, research and development on radioisotope and sealed source application in the industry. This aims to benefit the manufacturing industries such as petroleum, petrochemical, chemical, energy, waste, column treatment plant, etc. through on line inspection and troubleshooting of a process vessel, column or pipe that could optimize the process operation and increase production efficiency. One of the most common sealed source techniques for industrial applications is the gamma column scanning technology. Gamma column scanning technology is an established technique for inspection, analysis and diagnosis of industrial columns for process optimization, solving operational malfunctions and management of resources. It is a convenient non-intrusive, cost effective and cost-efficient technique to examine inner details of an industrial process vessel such as a distillation column while it is in operation. The Philippine Nuclear Research Institute (PNRI) recognize the importance and benefits of this technology and has implemented activities to make gamma column scanning locally available to benefit the Philippine industries. Continuous effort for capacity building is being pursued thru the implementation of in-house and on-the-job training abroad and upgrading of equipment. (author)

  10. Novel scanning probe microscope instrumentation with applications in nanotechnology

    International Nuclear Information System (INIS)

    Humphry, M.J.

    2000-10-01

    A versatile scanning probe microscope controller has been constructed. Its suitability for the control of a range of different scanning probe microscope heads has been demonstrated. These include an ultra high vacuum scanning tunnelling microscope, with which atomic resolution images of Si surfaces was obtained, a custom-built atomic force microscope, and a custom-built photon emission scanning tunnelling microscope. The controller has been designed specifically to facilitate data acquisition during molecular manipulation experiments. Using the controller, the fullerene molecule C 60 has been successfully manipulated on Si(100)-2x1 surfaces and detailed data has been acquired during the manipulation process. Evidence for two distinct modes of manipulation have been observed. A repulsive mode with success rates up to 90% was found to occur with tunnel gap impedances below 2GΩ, while between 2GΩ and 8GΩ attractive manipulation events were observed, with a maximum success rate of ∼8%. It was also found that the step size between feedback updates had a significant effect on tip stability, and that dwell time of the STM tip at each data point had a critical effect on manipulation probability. A multi-function scanning probe microscope head has been developed capable of operation as a scanning tunnelling microscope and an atomic force microscope in vacuum and a magnetic field of 7T. The custom-built controller also presented here was used to control the head. A three-axis inertial sliding motor was developed for the head, capable of reproducible step sizes of <1000A. In addition, an optical fibre interferometer was constructed with a sensitivity of 0.2A/√Hz. Preliminary development of a magnetic resonance force microscope mode has also been performed, with initial results showing such a system to be feasible. (author)

  11. A new Scanning Transmission X-ray Microscope at the ALS for operation up to 2500eV

    International Nuclear Information System (INIS)

    Kilcoyne, David; Ade, Harald; Attwood, David; Hitchcock, Adam; McKean, Pat; Mitchell, Gary; Monteiro, Paulo; Tyliszczak, Tolek; Warwick, Tony

    2010-01-01

    We report on the design and construction of a higher energy Scanning Transmission X-ray Microscope on a new bend magnet beam line at the Advanced Light Source. Previously we have operated such an instrument on a bend magnet for C, N and O 1s NEXAFS spectroscopy. The new instrument will have similar performance at higher energies up to and including the S 1s edge at 2472eV. A new microscope configuration is planned. A more open geometry will allow a fluorescence detector to count emitted photons from the front surface of the sample. There will be a capability for zone plate scanning in addition to the more conventional sample scanning mode. This will add the capability for imaging a massive sample at high resolution over a limited field of view, so that heavy reaction cells may be used to study processes in-situ, exploiting the longer photon attenuation length and the longer zone plate working distances available at higher photon energy. The energy range will extend down to include the C1s edge at 300eV, to allow high energy NEXAFS microscopic studies to correlate with the imaging of organics in the same sample region of interest.

  12. Accuracy assessment of airborne laser scanning strips using planar features

    NARCIS (Netherlands)

    Soudarissanane, S.S.; Van der Sande, C.J.; Khoshelham, K.

    2010-01-01

    Airborne Laser Scanning (ALS) is widely used in many applications for its high measurement accuracy, fast acquisition capability, and large spatial coverage. Accuracy assessment of the ALS data usually relies on comparing corresponding tie elements, often points or lines, in the overlapping strips.

  13. Microwave photonics systems based on whispering-gallery-mode resonators.

    Science.gov (United States)

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K

    2013-08-05

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.

  14. The U-line line balancing problem

    NARCIS (Netherlands)

    Miltenburg, G.J.; Wijngaard, J.

    1994-01-01

    The traditional line balancing (LB) problem considers a production line in which stations are arranged consecutively in a line. A balance is determined by grouping tasks into stations while moving forward (or backward) through a precedence network. Recently many production lines are being arranged

  15. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...

  16. Default mode network connectivity during task execution.

    Science.gov (United States)

    Vatansever, D; Menon, D K; Manktelow, A E; Sahakian, B J; Stamatakis, E A

    2015-11-15

    Initially described as task-induced deactivations during goal-directed paradigms of high attentional load, the unresolved functionality of default mode regions has long been assumed to interfere with task performance. However, recent evidence suggests a potential default mode network involvement in fulfilling cognitive demands. We tested this hypothesis in a finger opposition paradigm with task and fixation periods which we compared with an independent resting state scan using functional magnetic resonance imaging and a comprehensive analysis pipeline including activation, functional connectivity, behavioural and graph theoretical assessments. The results indicate task specific changes in the default mode network topography. Behaviourally, we show that increased connectivity of the posterior cingulate cortex with the left superior frontal gyrus predicts faster reaction times. Moreover, interactive and dynamic reconfiguration of the default mode network regions' functional connections illustrates their involvement with the task at hand with higher-level global parallel processing power, yet preserved small-world architecture in comparison with rest. These findings demonstrate that the default mode network does not disengage during this paradigm, but instead may be involved in task relevant processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy

    Science.gov (United States)

    Mauzeroll, Janine; Bard, Allen J.; Owhadian, Omeed; Monks, Terrence J.

    2004-01-01

    The cytotoxicity of menadione on hepatocytes was studied by using the substrate generation/tip collection mode of scanning electrochemical microscopy by exposing the cells to menadione and detecting the menadione-S-glutathione conjugate (thiodione) that is formed during the cellular detoxication process and is exported from the cell by an ATP-dependent pump. This efflux was electrochemically detected and allowed scanning electrochemical microscopy monitoring and imaging of single cells and groups of highly confluent live cells. Based on a constant flux model, ≈6 × 106 molecules of thiodione per cell per second are exported from monolayer cultures of Hep G2 cells. PMID:15601769

  18. Status of the Nanoscopium scanning nanoprobe beamline of Synchrotron Soleil

    Science.gov (United States)

    Somogyi, A.; Medjoubi, K.; Kewish, C. M.; Leroux, V.; Ribbens, M.; Baranton, G.; Polack, F.; Samama, J. P.

    2013-09-01

    The Nanoscopium 155 m-long scanning nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal imaging. Dedicated experimental stations, working in consecutive operation mode, will provide coherent scatter imaging and spectro-microscopy techniques in the 5-20 keV energy range for various user communities. Next to fast scanning, cryogenic cooling will reduce the radiation damage of sensitive samples during the measurements. Nanoscopium is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this contribution.

  19. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS for Near-Infrared Gas Sensing

    Directory of Open Access Journals (Sweden)

    Qixin He

    2017-12-01

    Full Text Available A Pound-Drever-Hall (PDH-based mode-locked cavity-enhanced sensor system was developed using a distributed feedback diode laser centered at 1.53 µm as the laser source. Laser temperature scanning, bias control of the piezoelectric ceramic transducer (PZT and proportional-integral-derivative (PID feedback control of diode laser current were used to repetitively lock the laser modes to the cavity modes. A gas absorption spectrum was obtained by using a series of absorption data from the discrete mode-locked points. The 15 cm-long Fabry-Perot cavity was sealed using an enclosure with an inlet and outlet for gas pumping and a PZT for cavity length tuning. The performance of the sensor system was evaluated by conducting water vapor measurements. A linear relationship was observed between the measured absorption signal amplitude and the H2O concentration. A minimum detectable absorption coefficient of 1.5 × 10–8 cm–1 was achieved with an averaging time of 700 s. This technique can also be used for the detection of other trace gas species by targeting the corresponding gas absorption line.