WorldWideScience

Sample records for line neutron beam

  1. Neutron beam-line shield design for the protein crystallography instrument at the Lujan Center

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Muhrer, G.; Ferguson, P.D.

    2001-01-01

    We have developed a very useful methodology for calculating absolute total (neutron plus gamma-ray) dose equivalent rates for use in the design of neutron beam line shields at a spallation neutron source. We have applied this technique to the design of beam line shields for several new materials science instruments being built at the Manuel Lujan Jr. Neutron Scattering Center. These instruments have a variety of collimation systems and different beam line shielding issues. We show here some specific beam line shield designs for the Protein Crystallography Instrument. (author)

  2. The new vertical neutron beam line at the CERN n-TOF facility design and outlook on the performance

    Energy Technology Data Exchange (ETDEWEB)

    Weiß, C., E-mail: christina.weiss@cern.ch [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Barros, S. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa (Portugal); Bergström, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Berthoumieux, E. [Commissariat à l’Énergie Atomique (CEA) Saclay – Irfu, Gif-sur-Yvette (France); Calviani, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Guerrero, C.; Sabaté-Gilarte, M. [Universidad de Sevilla (Spain); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA) (Greece); Andrzejewski, J. [Uniwersytet Łódzki, Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 – IPN, Orsay (France); Bacak, M. [Atominstitut, Technische Universität Wien (Austria); Balibrea-Correa, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); and others

    2015-11-01

    At the neutron time-of-flight facility n-TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.

  3. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Science.gov (United States)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  4. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    CERN Document Server

    Boles, Jason; Reyes, Susana; Stein, Werner

    2005-01-01

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  5. Polarizing beam-splitter device at a pulsed neutron source

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Takeda, Masayasu.

    1996-01-01

    A polarizing beam-splitter device was designed using Fe/Si supermirrors in order to obtain two polarized neutron beam lines, from one unpolarized neutron beam line, with a practical beam size for investigating the properties of condensed matter. This device was mounted after a guide tube at a pulsed neutron source, and its performance was investigated. (author)

  6. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    International Nuclear Information System (INIS)

    Lu, Xiaolong; Wang, Junrun; Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng; Qian, Xiangping; Xu, Dapeng; Lan, Changlin; Yao, Zeen

    2016-01-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft–Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  7. Neutron Beam Filters

    International Nuclear Information System (INIS)

    Adib, M.

    2011-01-01

    The purpose of filters is to transmit neutrons with selected energy, while remove unwanted ones from the incident neutron beam. This reduces the background, and the number of spurious. The types of commonly used now-a-day neutron filters and their properties are discussed in the present work. There are three major types of neutron filters. The first type is filter of selective thermal neutron. It transmits the main reflected neutrons from a crystal monochromate, while reject the higher order contaminations accompanying the main one. Beams coming from the moderator always contain unwanted radiation like fast neutrons and gamma-rays which contribute to experimental background and to the biological hazard potential. Such filter type is called filter of whole thermal neutron spectrum. The third filter type is it transmits neutrons with energies in the resonance energy range (En . 1 KeV). The main idea of such neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasimonochromatic neutron lines instead of white reactor spectrum.

  8. Enhancing neutron beam production with a convoluted moderator

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E.B., E-mail: iversoneb@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Muhrer, G. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Ansell, S.; Dalgliesh, R. [ISIS Facility, Rutherford Appleton Laboratory, Chilton (United Kingdom); Gallmeier, F.X. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kaiser, H. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Lu, W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-10-21

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally enhanced neutron beam source, improving beam emission over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  9. Scatterings and reactions by means of polarized neutron beam

    International Nuclear Information System (INIS)

    Koori, N.

    1989-01-01

    A high resolution polarized neutron beam should be prepared for nuclear physics, which will be planned with the new ring cyclotron at RCNP. Studies on scatterings and reactions by means of polarized neutron beams are reviewed briefly. Beam lines for polarized neutrons are summarized. An example of high resolution measurements of neutron induced reactions is described. (author)

  10. Triple GEM gas detectors as real time fast neutron beam monitors for spallation neutron sources

    International Nuclear Information System (INIS)

    Murtas, F; Claps, G; Croci, G; Tardocchi, M; Pietropaolo, A; Cippo, E Perelli; Rebai, M; Gorini, G; Frost, C D; Raspino, D; Rhodes, N J; Schooneveld, E M

    2012-01-01

    A fast neutron beam monitor based on a triple Gas Electron Multiplier (GEM) detector was developed and tested for the ISIS spallation neutron source in U.K. The test on beam was performed at the VESUVIO beam line operating at ISIS. The 2D fast neutron beam footprint was recorded in real time with a spatial resolution of a few millimeters thanks to the patterned detector readout.

  11. Lattice design of medium energy beam transport line for n spallation neutron source

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2015-01-01

    A 1 GeV H - injector linac is being designed at RRCAT for the proposed Indian Spallation Neutron Source (ISNS). The front-end of the injector linac will consist of Radiofrequency Quadrupole (RFQ) linac, which will accelerate the H - beam from 50 keV to 3 MeV. The beam will be further accelerated in superconducting Single Spoke Resonators (SSRs). A Medium Energy Beam Transport (MEBT) line will be used to transport the beam from the exit of RFQ to the input of SSR. The main purpose of MEBT is to carry out beam matching from RFQ to SSR, and beam chopping. In this paper, we describe the optimization criteria for the lattice design of MEBT. The optimized lattice element parameters are presented for zero and full (15 mA) current case. Beam dynamics studies have been carried out using an envelope tracing code Trace-3D. Required beam deflection angle due to the chopper housed inside the MEBT for beam chopping has also been estimated. (author)

  12. nGEM fast neutron detectors for beam diagnostics

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Cavenago, M.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Pietropaolo, A.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2013-01-01

    Fast neutron detectors with a sub-millimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. A nGEM detector has been developed for the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a triple GEM gaseous detector equipped with polypropylene and polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a nGEM detector at the ISIS spallation source on the VESUVIO beam line. Beam profiles (σ x =14.35 mm, σ y =15.75 mm), nGEM counting efficiency (around 10 -4 for 3 MeV n <15 MeV), detector stability (≈4.5%) and the effect of filtering the beam with different type of materials were successfully measured. The x beam profile was compared to the one measured by a single crystal diamond detector. Finally, the efficiency of the detector was simulated exploiting the GEANT4 tool

  13. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities

    International Nuclear Information System (INIS)

    Mansy, M.S.; Bashter, I.I.; El-Mesiry, M.S.; Habib, N.; Adib, M.

    2015-01-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5–133 keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named “QMNB” was developed in the “MATLAB” programming language to perform the required calculations. - Highlights: • Quasi-monoenergetic neutron beams in energy range from (1.5–133) keV. • Interference between the resonance and potential scattering amplitudes. • Epithermal neutron beams used in BNCT

  14. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    Science.gov (United States)

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. NSPEC - A neutron spectrum code for beam-heated fusion plasmas

    International Nuclear Information System (INIS)

    Scheffel, J.

    1983-06-01

    A 3-dimensional computer code is described, which computes neutron spectra due to beam heating of fusion plasmas. Three types of interactions are considered; thermonuclear of plasma-plasma, beam-plasma and beam-beam interactions. Beam deposition is modelled by the NFREYA code. The applied steady state beam distribution as a function of pitch angle and velocity contains the effects of energy diffusion, friction, angular scattering, charge exchange, electric field and source pitch angle distribution. The neutron spectra, generated by Monte-Carlo methods, are computed with respect to given lines of sight. This enables the code to be used for neutron diagnostics. (author)

  16. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Science.gov (United States)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  17. Beam Instrumentation for the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Witkover, R. L.; Cameron, P. R.; Shea, T. J.; Connolly, R. C.; Kesselman, M.

    1999-01-01

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10 -4 . A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring

  18. Consequences of trapped beam ions of the analysis of neutron emission data

    International Nuclear Information System (INIS)

    Loughlin, M.J.; Hone, M.; Jarvis, O.N.; Laundy, B.; Sadler, G.; Belle, P. van

    1989-01-01

    Neutron energy spectra have been measured during D o neutral beam heating of deuterium plasmas. The thermonuclear to beam-plasma neutron production ratios are deduced. For a non-radial spectrometer line-of-sight, the trapped beam-ion fraction must be considered. (author) 5 refs., 4 figs

  19. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Energy Technology Data Exchange (ETDEWEB)

    Makhloufi, M., E-mail: makhloufi_8m@yahoo.fr [Centre de Recherche Nucléaire de Birine (Algeria); Salah, H. [Centre de Recherche Nucléaire d' Alger (Algeria)

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  20. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    International Nuclear Information System (INIS)

    Makhloufi, M.; Salah, H.

    2017-01-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  1. Use of neutron beams for fundamental research, applications and human capacity building: From national to regional perspectives

    International Nuclear Information System (INIS)

    Nothnagel, S.G.

    2010-01-01

    The SAFARI-1 research reactor at NECSA South Africa is currently one of the best utilized research reactors in the world. Apart from being used for materials irradiation and isotope production, there is a history of innovative utilization of neutron beam line techniques, such as neutron diffraction (strain scanning, powder and single crystal), neutron radiography/tomography, prompt gamma-ray neutron activation analysis and small angle neutron scattering both for NECSA research programs and external users. Through these applications neutron beam line diagnostics have been shown to make important contributions to a number of key research areas in South Africa. As a result these techniques are now being viewed as 'standard and essential' for an increasing number of researchers who came to appreciate the extra dimension of knowledge provided by neutron techniques. In addition neutron beam line facilities provide excellent training platforms for human capacity building in nuc lear and material related science and technology. Because of these reasons neutron beam line facilities at research reactors offer unique opportunities to build productive cross-cutting research collaborations, at national and regional levels. Some information on the role that nuclear beams can play, in the capacities mentioned, will be shared by virtue of some examples and the national, international and regional net-working potential of research reactor based neutron facilities shall be discussed.

  2. Neutron beam tomography software

    International Nuclear Information System (INIS)

    Newbery, A.C.R.

    1988-05-01

    When a sample is traversed by a neutron beam, inhomogeneities in the sample will cause deflections, and the deflections will permit conclusions to be drawn concerning the location and size of the inhomogeneities. The associated computation is similar to problems in tomography, analogous to X-ray tomography though significantly different in detail. We do not have any point-sample information, but only mean values over short line segments. Since each mean value is derived from a separate neutron counter, the quantity of available data has to be modest; also, since each datum is an integral, its geometric precision is inferior to that of X-ray data. Our software is designed to cope with these difficulties. (orig.) [de

  3. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    Science.gov (United States)

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dosimetric properties of the fast neutron therapy beams at TAMVEC

    International Nuclear Information System (INIS)

    Almond, P.R.; Smith, A.R.; Smathers, J.R.; Otte, V.A.

    1975-01-01

    In October 1972, M.D. Anderson Hospital and Tumor Institute of the University of Texas System Cancer Center initiated a clinical trial of fast neutron radiotherapy using the cyclotron at Texas A and M University. Initially, the study used neutrons produced by bombarding beryllium with 16 MeV deuterons, but since March, 1973, neutrons from 50 MeV deuterons have been used. The dosimetric properties of the 30 MeV beams have also been measured for comparison with the neutron beams from D-T generators. The three beams are compared in terms of dose rate, skin sparing, depth dose and field flatness. Isodose curves for treatment planning were generated using the decrement line method and compared to curves measured by a computer controlled isodose plotter. This system was also used to measure the isodose curves for wedge fields. Dosimetry checks on various patients were made using silicon diodes as in vivo fast neutron dosimeters

  5. Study on neutron beam probe. Study on the focused neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kotajima, Kyuya; Suzuki, K.; Fujisawa, M.; Takahashi, T.; Sakamoto, I. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Wakabayashi, T.

    1998-03-01

    A monoenergetic focused neutron beam has been produced by utilizing the endoenergetic heavy ion reactions on hydrogen. To realize this, the projectile heavy ion energy should be taken slightly above the threshold energy, so that the excess energy converted to the neutron energy should be very small. In order to improve the capability of the focused neutron beam, some hydrogen stored metal targets have also been tested. Separating the secondary heavy ions (associated particles) from the primary ions (accelerated particles) by using a dipole magnet, a rf separator, and a particle identification system, we could directly count the produced neutrons. This will leads us to the possibility of realizing the standard neutron field which had been the empty dream of many neutron-related researchers in the world. (author)

  6. Basic research of neutron radiography using cold neutron beam

    International Nuclear Information System (INIS)

    Oda, Masahiro; Tamaki, Masayoshi; Tasaka, Kanji

    1995-01-01

    As the result of demanding high quality images, now the nuclear reactors which can supply stably intense neutron beam have become the most general neutron source for radiography. For the purpose, mostly thermal neutrons have been used, but it is indispensable to use other neutrons than thermal neutrons for advancing neutron radiography technology and expanding the application fields. The radiography using cold neutrons is most behind in the development because the suitable neutron source was not available in Japan. The neutron sources for exclusively obtaining intense cold neutron beam were installed in the Kyoto University reactor in 1986 and in the JRR-3M of Japan Atomic Energy Research Institute in 1991. Basically as neutron energy lowers, the cross section of substances increases. In certain crystalline substances, the Bragg cutoff arises. The removal of scattered neutrons, the measurement of parallelism of beam and the relation of the thickness of objects with the transmissivity of cold neutrons are described. The imaging by TV method and the cold neutron CT in the CNRF and the simplified neutron CT by film method are reported. (K.I.)

  7. Radiation protection commissioning of neutron beam instruments at the OPAL research reactor

    International Nuclear Information System (INIS)

    Parkes, Alison; Saratsopoulos, John; Deura, Michael; Kenny, Pat

    2008-01-01

    The neutron beam facilities at the 20 MW OPAL Research Reactor were commissioned in 2007 and 2008. The initial suite of eight neutron beam instruments on two thermal neutron guides, two cold neutron guides and one thermal beam port located at the reactor face, together with their associated shielding were progressively installed and commissioned according to their individual project plans. Radiation surveys were systematically conducted as reactor power was raised in a step-wise manner to 20 MW in order to validate instrument shielding design and performance. The performance of each neutron guide was assessed by neutron energy spectrum and flux measurements. The activation of beam line components, decay times assessments and access procedures for Bragg Institute beam instrument scientists were established. The multiple configurations for each instrument and the influence of operating more than one instrument or beamline simultaneously were also tested. Areas of interest were the shielding around the secondary shutters, guide shield and bunker shield interfaces and monochromator doors. The shielding performance, safety interlock checks, improvements, radiation exposures and related radiation protection challenges are discussed. This paper discusses the health physics experience of commissioning the OPAL Research Reactor neutron beam facilities and describes health physics results, actions taken and lessons learned during commissioning. (author)

  8. Computer dosimetry for flattened and wedged fast-neutron beams

    International Nuclear Information System (INIS)

    Hogstrom, K.R.; Smith, A.R.; Almond, P.R.; Otte, V.A.; Smathers, J.B.

    1976-01-01

    Beam flattening by the use of polyethylene filters has been developed for the 50-MeV d→Be fast-neutron therapy beam at the Texas AandM Variable-Energy Cyclotron (TAMVEC) as a result of the need for a more uniform dose distribution at depth within the patient. A computer algorithm has been developed that allows the use of a modified decrement line method to calculate dose distributions; standard decrement line methods do not apply because of off-axis peaking. The dose distributions for measured flattened beams are transformed into distributions that are physically equivalent to an unflattened distribution. In the transformed space, standard decrement line theory yields a distribution for any field size which, by applying the inverse transformation, generates the flattened dose distribution, including the off-axis peaking. A semiempirical model has been constructed that allows the calculation of dose distributions for wedged beams from open-beam data

  9. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  10. Radiation transport calculations for the ANS [Advanced Neutron Source] beam tubes

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Lillie, R.A.; Slater, C.O.

    1988-01-01

    The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs

  11. Neutron beam applications

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S.

    2000-05-01

    For the materials science by neutron technique, the development of the various complementary neutron beam facilities at horizontal beam port of HANARO and the techniques for measurement and analysis has been performed. High resolution powder diffractometer, after the installation and performance test, has been opened and used actively for crystal structure analysis, magnetic structure analysis, phase transition study, etc., since January 1998. The main components for four circle diffractometer were developed and, after performance test, it has been opened for crystal structure analysis and texture measurement since the end of 1999. For the small angle neutron spectrometer, the main component development and test, beam characterization, and the preliminary experiment for the structure study of polymer have been carried out. Neutron radiography facility, after the precise performance test, has been used for the non-destructive test of industrial component. Addition to the development of main instruments, for the effective utilization of those facilities, the scattering techniques relating to quantitative phase analysis, magnetic structure analysis, texture measurement, residual stress measurement, polymer study, etc, were developed. For the neutron radiography, photographing and printing technique on direct and indirect method was stabilized and the development for the real time image processing technique by neutron TV was carried out. The sample environment facilities for low and high temperature, magnetic field were also developed

  12. A neutron beam polarizer for study of parity violation in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Penttilae, S.I.; Bowman, J.D.; Frankle, C.M.; Seestrom, S.J.; Yen, Yi-Fen; Delheij, P.P.J.; Haase, D.G.; Postma, H.

    1994-01-01

    A dynamically-polarized proton target operating at 5 Tesla and 1 K has been built to, neutron beam for studies of parity violation in compound-nuclear resonances. Nearly 0.9 proton polarization was obtained in an electron-beam irradiated ammonia target. This was used to produce a neutron beam polarization of 0.7 at epithermal energies. The combination of the polarized proton target and the LANSCE spallation neutron source produces the most intense pulsed polarized epithermal neutron beam in the world. The neutron-beam polarizer is described and methods to determine neutron beam polarization are presented

  13. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  14. A neutron beam facility at Spiral-2

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, X.; Bauge, E.; Belier, G.; Ethvignot, T.; Taieb, J.; Varignon, C. [CEA Bruyeres-le-Chatel, DIF, 91 (France); Andriamonje, S.; Dore, D.; Dupont, E.; Gunsing, F.; Ridikas, D.; Takibayev, A. [CEA Saclay, DSM/IRFU/SPhN, 91 - Gif-sur-Yvette (France); Blideanu, V. [CEA Saclay, DSM/IRFU/Senac, 91 - Gif-sur-Yvette (France); Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, 33 (France); Ban, G.; Lecolley, F.R.; Lecolley, J.F.; Lecouey, J.L.; Marie, N.; Steckmeyer, J.C. [LPC, 14 - Caen (France); Dessagne, P.; Kerveno, M.; Rudolf, G. [IPHC, 57 - Strasbourg (France); Bem, P.; Mrazek, J.; Novak, J. [NPI, Rez (Czech Republic); Blomgren, J.; Pomp, S. [Uppsala Univ., Dept. of Physics and Astronomy (Sweden); Fischer, U.; Herber, S.; Simakov, S.P. [FZK, Karlsruhe (Germany); Jacquot, B.; Rejmund, F. [GANIL, 14 - Caen (France); Avrigeanu, M.; Avrigeanu, V.; Borcea, C.; Negoita, F.; Petrascu, M. [NIPNE, Bucharest (Romania); Oberstedt, S.; Plompen, A.J.M. [JRC/IRMM, Geel (Belgium); Shcherbakov, O. [PNPI, Gatchina (Russian Federation); Fallot, M. [Subatech, 44 - Nantes (France); Smith, A.G.; Tsekhanovich, I. [Manchester Univ., Dept. of Physics and Astronomy (United Kingdom); Serot, O.; Sublet, J.C. [CEA Cadarache, DEN, 13 - Saint-Paul-lez-Durance (France); Perrot, L.; Tassan-Got, L. [IPNO, 91 - Orsay (France); Caillaud, T.; Giot, L.; Landoas, O.; Ramillon, J.M.; Rosse, B.; Thfoin, I. [CIMAP, 14 - Caen (France); Balanzat, E.; Bouffard, S.; Guillous, S.; Oberstedt, A. [Orebro Univ. (Sweden)

    2009-07-01

    The future Spiral-2 facility, dedicated to the production of intense radioactive ion beams, is based on a high-power superconducting driver Linac, delivering high-intensity deuteron, proton and heavy ion beams. These beams are particularly well suited to the production of neutrons in the 100 keV- 40 MeV energy range, a facility called 'Neutrons for Science' (NFS) will be built in the LINAG Experimental Area (LEA). NFS, operational in 2012, will be composed of a pulsed neutron beam for in-flight measurements and irradiation stations for activation measurements and material studies. Thick C and Be converters and a deuteron beam will produce an intense continuous neutron spectrum, while a thin {sup 7}Li target and a proton beam allow to generate quasi-mono-energetic neutrons. In the present work we show how the primary ion beam characteristics (energy, time resolution and intensity) are adequate to create a neutron time-of-flight facility delivering intense neutron fluxes in the 100 keV-40 MeV energy range. Irradiation stations for neutron, proton and deuteron reactions will also allow to perform cross-section measurements by means of the activation technique. Light-ion beams will be used to study radiation damage effects on materials for the nuclear industry. (authors)

  15. A neutron beam polarizer for study of parity violation in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Penttilae, S.I.; Bowman, J.D.; Delheij, P.P.; Frankle, C.M.; Haase, D.G.; Postma, H.; Seestrom, S.J.; Yen, Y.

    1995-01-01

    A dynamically-polarized proton target operating at 5 Tesla and 1 K has been built to polarize an epithermal neutron beam for studies of parity violation in compound-nuclear resonances. Nearly 0.9 proton polarization was obtained in an electron-beam irradiated ammonia target. This was used to produce a neutron beam polarization of 0.7 at epithermal energies. The combination of the polarized proton target and the LANSCE spallation neutron source produces the most intense pulsed polarized epithermal neutron beam in the world. The neutron-beam polarizer is described and methods to determine neutron beam polarization are presented. copyright 1995 American Institute of Physics

  16. Neutron beam imaging with GEM detectors

    International Nuclear Information System (INIS)

    Albani, G.; Cazzaniga, C.; Rebai, M.; Gorini, G.; Croci, G.; Muraro, A.; Cippo, E. Perelli; Tardocchi, M.; Cavenago, M.; Murtas, F.; Claps, G.; Pasqualotto, R.

    2015-01-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3 He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10 B(n,α) 7 Li reaction). GEM detectors can be realized in large area (1 m 2 ) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards

  17. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  18. Neutron beams. Tracks analysis, imaging and medicine

    International Nuclear Information System (INIS)

    Pepy, G.

    2006-01-01

    Thermal neutron beams can supply informations about the arrangement of atoms and molecules and about their movement inside the matter. This article treats of the preparation of thermal neutron beams and of the applications that use their penetration and matter activation properties: 1 - thermal neutrons production; 2 - basic properties of thermal neutrons: neutrons scattering, absorbing materials, activating materials, transparent materials, preparation of a neutron beam; 3 - tracks measurement by activation: activation method, measurement of marine pollution by heavy elements, historical evolution of glass composition; 4 - neutron radiography: neutronography, neutronoscopy: viscosity measurement; 5 - cancer treatment. (J.S.)

  19. Monochromatic neutron beam production at Brazilian nuclear research reactors

    Science.gov (United States)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  20. Neutron filters for producing monoenergetic neutron beams

    International Nuclear Information System (INIS)

    Harvey, J.A.; Hill, N.W.; Harvey, J.R.

    1982-01-01

    Neutron transmission measurements have been made on high-purity, highly-enriched samples of 58 Ni (99.9%), 60 Ni (99.7%), 64 Zn (97.9%) and 184 W (94.5%) to measure their neutron windows and to assess their potential usefulness for producing monoenergetic beams of intermediate energies from a reactor. Transmission measurements on the Los Alamos Sc filter (44.26 cm Sc and 1.0 cm Ti) have been made to determine the characteristics of the transmitted neutron beam and to measure the total cross section of Sc at the 2.0 keV minimum. When corrected for the Ti and impurities, a value of 0.35 +- 0.03 b was obtained for this minimum

  1. Accelerator Based Neutron Beams for Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2003-01-01

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  2. Performance test of Si PIN photodiode line scanner for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Daisuke, E-mail: totsuka@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Nihon Kessho Kogaku Co., Ltd., 810-5 Nobe-cho Tatebayashi, Gunma 374-0047 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Fukuda, Kentaro; Kawaguchi, Noriaki [Tokuyama Corp., 3 Shibuya Shibuya-ku, Tokyo 150-8383 (Japan); Fujimoto, Yutaka [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Pejchal, Jan [Institute of Physics AS CR, Cukrovarnicka 10, Prague 6, 162-53 (Czech Republic); Yokota, Yuui [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2011-12-11

    Thermal neutron imaging using Si PIN photodiode line scanner and Eu-doped LiCaAlF{sub 6} crystal scintillator has been developed. The pixel dimensions of photodiode are 1.18 mm (width) Multiplication-Sign 3.8 mm (length) with 0.4 mm gap and the module has 192 channels in linear array. The emission peaks of Eu-doped LiCaAlF{sub 6} after thermal neutron excitation are placed at 370 and 590 nm, and the corresponding photon sensitivities of photodiode are 0.04 and 0.34 A/W, respectively. Polished scintillator blocks with a size of 1.18 mm (width) Multiplication-Sign 3.8 mm (length) Multiplication-Sign 5.0 mm (thickness) were wrapped by several layers of Teflon tapes as a reflector and optically coupled to the photodiodes by silicone grease. JRR-3 MUSASI beam line emitting 13.5 meV thermal neutrons with the flux of 8 Multiplication-Sign 10{sup 5} n/cm{sup 2} s was used for the imaging test. As a subject for imaging, a Cd plate was moved at the speed of 50 mm/s perpendicular to the thermal neutron beam. Analog integration time was set to be 416.6 {mu}s, then signals were converted by a delta-sigma A/D converter. After the image processing, we successfully obtained moving Cd plate image under thermal neutron irradiation using PIN photodiode line scanner coupled with Eu-doped LiCaAlF{sub 6} scintillator.

  3. Performance test of Si PIN photodiode line scanner for thermal neutron detection

    International Nuclear Information System (INIS)

    Totsuka, Daisuke; Yanagida, Takayuki; Fukuda, Kentaro; Kawaguchi, Noriaki; Fujimoto, Yutaka; Pejchal, Jan; Yokota, Yuui; Yoshikawa, Akira

    2011-01-01

    Thermal neutron imaging using Si PIN photodiode line scanner and Eu-doped LiCaAlF 6 crystal scintillator has been developed. The pixel dimensions of photodiode are 1.18 mm (width)×3.8 mm (length) with 0.4 mm gap and the module has 192 channels in linear array. The emission peaks of Eu-doped LiCaAlF 6 after thermal neutron excitation are placed at 370 and 590 nm, and the corresponding photon sensitivities of photodiode are 0.04 and 0.34 A/W, respectively. Polished scintillator blocks with a size of 1.18 mm (width)×3.8 mm (length)×5.0 mm (thickness) were wrapped by several layers of Teflon tapes as a reflector and optically coupled to the photodiodes by silicone grease. JRR-3 MUSASI beam line emitting 13.5 meV thermal neutrons with the flux of 8×10 5 n/cm 2 s was used for the imaging test. As a subject for imaging, a Cd plate was moved at the speed of 50 mm/s perpendicular to the thermal neutron beam. Analog integration time was set to be 416.6 μs, then signals were converted by a delta-sigma A/D converter. After the image processing, we successfully obtained moving Cd plate image under thermal neutron irradiation using PIN photodiode line scanner coupled with Eu-doped LiCaAlF 6 scintillator.

  4. The Thermal Neutron Beam Option for NECTAR at MLZ

    Science.gov (United States)

    Mühlbauer, M. J.; Bücherl, T.; Genreith, C.; Knapp, M.; Schulz, M.; Söllradl, S.; Wagner, F. M.; Ehrenberg, H.

    The beam port SR10 at the neutron source FRM II of Heinz Maier-Leibnitz Zentrum (MLZ) is equipped with a moveable assembly of two uranium plates, which can be placed in front of the entrance window of the beam tube via remote control. With these plates placed in their operating position the thermal neutron spectrum produced by the neutron source FRM II is converted to fission neutrons with 1.9 MeV of mean energy. This fission neutron spectrum is routinely used for medical applications at the irradiation facility MEDAPP, for neutron radiography and tomography experiments at the facility NECTAR and for materials testing. If, however, the uranium plates are in their stand-by position far off the tip of the beam tube and the so-called permanent filter for thermal neutrons is removed, thermal neutrons originating from the moderator tank enter the beam tube and a thermal spectrum becomes available for irradiation or activation of samples. By installing a temporary flight tube the beam may be used for thermal neutron radiography and tomography experiments at NECTAR. The thermal neutron beam option not only adds a pure thermal neutron spectrum to the energy ranges available for neutron imaging at MLZ instruments but it also is an unique possibility to combine two quite different neutron energy ranges at a single instrument including their respective advantages. The thermal neutron beam option for NECTAR is funded by BMBF in frame of research project 05K16VK3.

  5. Reactor-moderated intermediate-energy neutron beams for neutron-capture therapy

    International Nuclear Information System (INIS)

    Less, T.J.

    1987-01-01

    One approach to producing an intermediate energy beam is moderating fission neutrons escaping from a reactor core. The objective of this research is to evaluate materials that might produce an intermediate beam for NCT via moderation of fission neutrons. A second objective is to use the more promising moderator material in a preliminary design of an NCT facility at a research reactor. The evaluations showed that several materials or combinations of materials could produce a moderator source for an intermediate beam for NCT. The best neutron spectrum for use in NCT is produced by Al 2 O 3 , but mixtures of Al metal and D 2 O are also attractive. Using the best moderator materials, results were applied to the design of an NCT moderator at the Georgia Institute of Technology Research Reactor's bio-medical facility. The amount of photon shielding and thermal neutron absorber were optimized with respect to the desired photon dose rate and intermediate neutron flux at the patient position

  6. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett

    2001-01-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10 14 n/cm 2 /sec and a liquid D 2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  7. Establishment of nuclear data system - Feasibility study for neutron-beam= facility at pohang accelerator laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Nam Kung, Won; Koh, In Soo; Cho, Moo Hyun; Kim, Kui Nyun; Kwang, Hung Sik; Park, Sung Joo [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    1996-12-01

    Nuclear data which have been produced by a few developed countries in the= past are essential elements to many disciplines, especially to nuclear engineering. As we promote our nuclear industry further to the level of advanced countries, we also have to establish the Nuclear Data System to produce and evaluate nuclear data independently. We have studied the possibility to build a neutron-beam facility utilizing accelerator facilities, technologies and man powers at pohang Accelerator Laboratory. We found specific parameters for the PAL 100-MeV electron linac based on the existing klystron, modulator, accelerating tubes and other facilities in the PAL; the beam energy is 60-100 MeV, the beam current for the short pulse (10 ns) is 2 A and for the long pulse is 500 mA and the pulse repetition rate is 60 Hz. We propose a neutron-beam facility using PAL 100-MeV electron linac where we can use a Ta-target for the neutron generation and three different time-of-flight beam lines (10 m, 20 m, and 100 m). One may find that the proposed neutron-beam facility is comparable with other operating neutron facilities in the world. We conclude that the proposed neutron-beam facility utilizing the existing accelerator facility in the PAL would be an excellent facility for neutron data production in combination with the ` Hanaro` facility in KAERI. 8 refs., 11 tabs., 12 figs. (author)

  8. Neutron capture therapy beams at the MIT Research Reactor

    International Nuclear Information System (INIS)

    Choi, J.R.; Clement, S.D.; Harling, O.K.; Zamenhof, R.G.

    1990-01-01

    Several neutron beams that could be used for neutron capture therapy at MITR-II are dosimetrically characterized and their suitability for the treatment of glioblastoma multiforme and other types of tumors are described. The types of neutron beams studied are: (1) those filtered by various thicknesses of cadmium, D2O, 6Li, and bismuth; and (2) epithermal beams achieved by filtration with aluminum, sulfur, cadmium, 6Li, and bismuth. Measured dose vs. depth data are presented in polyethylene phantom with references to what can be expected in brain. The results indicate that both types of neutron beams are useful for neutron capture therapy. The first type of neutron beams have good therapeutic advantage depths (approximately 5 cm) and excellent in-phantom ratios of therapeutic dose to background dose. Such beams would be useful for treating tumors located at relatively shallow depths in the brain. On the other hand, the second type of neutron beams have superior therapeutic advantage depths (greater than 6 cm) and good in-phantom therapeutic advantage ratios. Such beams, when used along with bilateral irradiation schemes, would be able to treat tumors at any depth in the brain. Numerical examples of what could be achieved with these beams, using RBEs, fractionated-dose delivery, unilateral, and bilateral irradiation are presented in the paper. Finally, additional plans for further neutron beam development at MITR-II are discussed

  9. Narrow beam neutron dosimetry.

    Science.gov (United States)

    Ferenci, M Sutton

    2004-01-01

    Organ and effective doses have been estimated for male and female anthropomorphic mathematical models exposed to monoenergetic narrow beams of neutrons with energies from 10(-11) to 1000 MeV. Calculations were performed for anterior-posterior, posterior-anterior, left-lateral and right-lateral irradiation geometries. The beam diameter used in the calculations was 7.62 cm and the phantoms were irradiated at a height of 1 m above the ground. This geometry was chosen to simulate an accidental scenario (a worker walking through the beam) at Flight Path 30 Left (FP30L) of the Weapons Neutron Research (WNR) Facility at Los Alamos National Laboratory. The calculations were carried out using the Monte Carlo transport code MCNPX 2.5c.

  10. THE METHODS OF PRODUCING AND ANALYZING POLARIZED NEUTRON BEAMS FOR HYSPEC AT THE SNS

    International Nuclear Information System (INIS)

    SHAPIRO, S.M.; PASSELL, L.; ZALIZNYAK, A.; GHOSH, V.J.; LEONHARDT, W.L.; HAGEN, M.E.

    2005-01-01

    The Hybrid Spectrometer (HYSPEC), under construction at the SNS on beam line 14B, is the only inelastic scattering instrument designed to enable polarization of the incident and the scattered neutron beams. A Heusler monochromator will replace the graphite crystal for producing polarized neutrons. In the scattered beam it is planned to use a collimator--multi-channel supermirror bender array to analyze the polarization of the scattered beam over the final energy range from 5-20 meV. Other methods of polarization analysis under consideration such as transmission filters using He 3 , Sm, and polarized protons are considered. Their performance is estimated and a comparison of the various methods of polarization is made

  11. Properties of the TRIUMF neutron beam

    International Nuclear Information System (INIS)

    Gan, L.; Berdoz, A.R.; Green, P.W.; Greeniaus, L.G.; Helmer, R.; Korkmaz, E.; Lee, L.; Miller, C.A.; Opper, A.K.; Page, S.A.; Van Oers, W.T.H.; Zhao, J.

    1995-01-01

    Properties of the TRIUMF neutron beam (4A/2) are presented and compared with a Monte Carlo prediction. The beam intensity profile, energy spectrum and polarization are predicted taking into account the beamline geometry, energy losses in the LD 2 production target, the properties of the vector pd→ vector npp reaction, and the scattering of neutrons from the collimator walls. The results allow for improved corrections to systematic errors in a number of TRIUMF neutron experiments. (orig.)

  12. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    International Nuclear Information System (INIS)

    Xufei, X.; Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-01-01

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes

  13. Status report on treatment planning with the fast neutron beam at Hamburg-Eppendorf

    International Nuclear Information System (INIS)

    Hess, A.; Schmidt, R.; Franke, H.D.

    1981-01-01

    For treatment planning with the fast neutron beam (DT, 14 MeV) at the Radiotherapy Department of the University Hospital Hamburg-Eppendorf the decrement line method is applied to compute isodose curves (total beam or neutrons and gamma-rays separately). The isodose curves are generated by a measured depth dose distribution and one lateral dose distribution at 10 cm phantom depth assuming two crossing points of the decrement lines at the edges of the collimator. By this method isodose charts have been generated for all available field sizes at 80 cm SSD. For the determination of depth dose values at different SSD a modified inverse square law has to be taken into account. Computerized treatment plans are calculated with the same technique used by the SIDOS-U1 (Siemens) planning system. (orig.)

  14. Materials research with neutron beams from a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Root, J.; Banks, D. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario (Canada)

    2015-03-15

    Because of the unique ways that neutrons interact with matter, neutron beams from a research reactor can reveal knowledge about materials that cannot be obtained as easily with other scientific methods. Neutron beams are suitable for imaging methods (radiography or tomography), for scattering methods (diffraction, spectroscopy, and reflectometry) and for other possibilities. Neutron-beam methods are applied by students and researchers from academia, industry and government to support their materials research programs in several disciplines: physics, chemistry, materials science and life science. The arising knowledge about materials has been applied to advance technologies that appear in everyday life: transportation, communication, energy, environment and health. This paper illustrates the broad spectrum of materials research with neutron beams, by presenting examples from the Canadian Neutron Beam Centre at the NRU research reactor in Chalk River. (author)

  15. Construction of the Neutron Beam Facility at Australia's OPAL Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, J.S.

    2005-01-01

    Full text: Australia's new research reactor, OPAL, has been designed for high quality neutron beam science and radioisotope production. It has a capacity for eighteen neutron beam instruments to be located at the reactor face and in a neutron guide hall. The new neutron beam facility features a 20 litre liquid deuterium cold neutron source and supermirror neutron reflecting guides for intense cold and thermal neutron beams. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, where criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. The lecture will outline Australia's aspirations for neutron science at the OPAL reactor, and describe the neutron beam facility under construction. The status of this project and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed. This project is the culmination of almost a decade of effort. We now eagerly anticipate catapulting Australia's neutron beam science capability to meet the best in the world today. (author)

  16. Characterizing ICF Neutron Diagnostics on the nTOF line at SUNY Geneseo

    Science.gov (United States)

    Simone, Angela; Padalino, Stephen; Turner, Ethan; Ginnane, Mary Kate; Dubois, Natalie; Fletcher, Kurtis; Giordano, Michael; Lawson-Keister, Patrick; Harrison, Hannah; Visca, Hannah; Sangster, Craig; Regan, Sean

    2014-10-01

    Charged particle beams from the Geneseo 1.7 MV tandem Pelletron accelerator produce nuclear reactions that emit neutrons in the range of 0.5 to 17.9 MeV via the d(d,n)3He and 11B(d,n)12C reactions. The neutron energy and flux can be adjusted by controlling the accelerator beam current and potential. This adjustable neutron source makes it possible to calibrate ICF and HEDP neutron scintillator diagnostics. However, gamma rays which are often present during an accelerator-based calibration are difficult to differentiate from neutron signals in scintillators. To identify neutrons from gamma rays and to determine their energy, a permanent neutron time-of-flight (nTOF) line is being constructed. By detecting the scintillator signal in coincidence with an associated charged particle (ACP) produced in the reaction, the identity of the neutron can be known and its energy determined by time of flight. Using a 100% efficient surface barrier detector to count the ACPs, the absolute efficiency of the scintillator as a function of neutron energy can be determined. This is done by determining the ratio of the ACP counts in the singles spectrum to coincidence counts for matched solid angles of the SBD and scintillator. Funded in part by a LLE contract through the DOE.

  17. Utilizations of filtered neutron beams at Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.D.; Chau, L.N.; Tan, V.H.; Hiep, N.T.; Phuong, L.B.

    1992-01-01

    Neutron beam utilizations in basic and applied researches have been important activities at the Dalat nuclear reactor. The neutron filters with single crystal of silicon are used to produce thermal neutrons at the tangential horizontal channel and quasi-monoenergetic 144 KeV and 54 KeV neutrons at the piercing beam tube. The paper presents some relevant characteristics of the filtered neutron beams at the two horizontal channels. Applications of neutron beams in prompt gamma-ray activation analysis and in nuclear data measurements are briefly described. (author)

  18. Neutron beam facilities at the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Kim, S.

    2003-01-01

    The exciting development for Australia is the construction of a modern state-of-the-art 20-MW Replacement Research Reactor which is currently under construction to replace the aging reactor (HIFAR) at ANSTO in 2006. To cater for advanced scientific applications, the replacement reactor will provide not only thermal neutron beams but also a modern cold-neutron source moderated by liquid deuterium at approximately -250 deg C, complete with provision for installation of a hot-neutron source at a later stage. The latest 'supermirror' guides will be used to transport the neutrons to the Reactor Hall and its adjoining Neutron Guide Hall where a suite of neutron beam instruments will be installed. These new facilities will expand and enhance ANSTO's capabilities and performance in neutron beam science compared with what is possible with the existing HIFAR facilities, and will make ANSTO/Australia competitive with the best neutron facilities in the world. Eight 'leading-edge' neutron beam instruments are planned for the Replacement Research Reactor when it goes critical in 2006, followed by more instruments by 2010 and beyond. Up to 18 neutron beam instruments can be accommodated at the Replacement Research Reactor, however, it has the capacity for further expansion, including potential for a second Neutron Guide Hall. The first batch of eight instruments has been carefully selected in conjunction with a user group representing various scientific interests in Australia. A team of scientists, engineers, drafting officers and technicians has been assembled to carry out the Neutron Beam Instrument Project to successful completion. Today, most of the planned instruments have conceptual designs and are now being engineered in detail prior to construction and procurement. A suite of ancillary equipment will also be provided to enable scientific experiments at different temperatures, pressures and magnetic fields. This paper describes the Neutron Beam Instrument Project and gives

  19. Construction of the neutron beam facility at Australia's OPAL research reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane J.

    2006-01-01

    Australia's new research reactor, OPAL, has been designed principally for neutron beam science and radioisotope production. It has a capacity for 18 neutron beam instruments, located at the reactor face and in a neutron guide hall. The neutron beam facility features a 20 l liquid deuterium cold neutron source and cold and thermal supermirror neutron guides. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, when criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. This paper will outline the key features of the OPAL reactor, and will describe the neutron beam facility in particular. The status of the construction and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed

  20. Double beam neutron radiography facility

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1977-09-01

    The DR1 reactor at Risoe is used as a neutron source for neutron radiography. In the double-beam neutron radiography facility a neutron flux of an intensity of 1.4 and 1.8 x 10 6 n. cm -2 . s -1 reaches the object to be radiographed. The transport and exposure container used for neutron radiography of irradiated nuclear fuel rods is described, and the exposure technique and procedure are reviewed. The mode by which single neutron radiographs are assembled and assessed is described. This report will be published in the ''Neutron Radiography Newsletter''. (author)

  1. Beam profiles for fast neutrons; and reply

    International Nuclear Information System (INIS)

    Bewley, D.K.; Parnell, C.J.; Bloch, P.

    1976-01-01

    The authors express surprise that Bloch et al. (Bloch, P.H., Hendry, G.O., Hilton, J.L., Quam, W.M., Reinhard, D.K., and Wilson, C., 1976, Phys. Med. Biol., Vol. 21, 450) justified a target size of 5.5 x 5.5 cm in a neutron generator by comparison with the profile given by a 2.5 MV X-ray generator. The penumbral width of this new neutron generator is more than twice that of a modern megavoltage X-ray machine, and larger than those of beams from standard 60 Co units, or of the Hammersmith Hospital cyclotron beam. The large target size of the neutron generator may have to be accepted as a necessary evil, but should not be considered satisfactory. In reply, one of the authors of the original note presents the results of calculations of beam profiles for 14 MeV neutron beams in a tissue-equivalent phantom, and suggests that the broader profiles are principally caused by the larger probability of side scatter, not by source size. The most fruitful approach to sharpening the neutron beam profile would seem to be to design a field flattening filter to increase relative dose near the edge inside the geometrically defined field. Calculations indicating that Bewley and Parnell have underestimated the penumbral widths of 60 Co beams are also presented. (U.K.)

  2. Thai Research Reactor (TRR-1/M1) Neutron Beam Measurements

    International Nuclear Information System (INIS)

    Ratanatongchai, Wichian

    2009-07-01

    Full text: Neutron beam tube of neutron radiography facility at Thai Research Reactor (TRR-1/M1) Thailand Institute of Nuclear Technology (public organization) is a divergent beam. The rectangular open-end of the beam tube is 16 cm x 17 cm while the inner-end is closed to the reactor core. The neutron beam size was measured using 20 cm x 40 cm neutron imaging plate. The measurement at the position 100 cm from the end of the collimator has shown that the beam size was 18.2 cm x 19.0 cm. Gamma ray in neutron the beam was also measured by the identical position using industrial X ray film. The area of gamma ray was 27.8 cm x 31.1 cm with the highest intensity found to be along the neutron beam circumference

  3. Beam Characterization at the Neutron Radiography Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  4. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  5. Reactions with fast radioactive beams of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Aumann, T.

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11 Li and 12 Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  6. Activation analysis opportunities using cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Zeisler, R; Rossbach, M

    1987-05-01

    Guided beams of cold neutrons being installed at a number of research reactors may become increasingly available for analytical research. A guided cold beam will provide higher neutron fluence rates and lower background interferences than in present facilities. In an optimized facility, fluence rates of 10/sup 9/ nxcm/sup -2/xs/sup -1/ are obtainable. Focusing a large area beam onto a small target will further increase the neutron intensity. In addition, the shift to lower neutron energy increases the effective cross sections. The absence of fast neutrons and gamma rays permits detectors to be placed near the sample without intolerable background, and thus the efficiency for counting prompt gamma rays can be much higher than in present systems. Measurements made at the hydrogen cold source of the FRJ-2 (DIDO) reactor at the KFA provide a numerical evaluation of the improvements in PGAA with respect to signal-to-background ratios of important elements and matrices. (author) 15 refs.

  7. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  8. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    Full text: The Australian federal government gave ANSTO final approval to build a research reactor to replace HIFAR on August 25th 1999. The replacement reactor is to be a multipurpose reactor with a thermal neutron flux of 3 x 10 14 n.cm -2 .s -1 and having improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The replacement reactor will commence operation in 2005 and will cater for Australian scientific, industrial and medical needs well into the 21st century. The scientific capabilities of the neutron beams at the replacement reactor are being developed in consultation with representatives from academia, industry and government research laboratories to provide a facility for condensed matter research in physics, chemistry, materials science, life sciences, engineering and earth sciences. Cold, thermal and hot neutron sources are to be installed, and neutron guides will be used to position most of the neutron beam instruments in a neutron guide hall outside the reactor confinement building. Eight instruments are planned for 2005, with a further three to be developed by 2010. A conceptual layout for the neutron beam facility is presented including the location of the planned suite of neutron beam instruments. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by an accredited reactor builder in a turnkey contract. Tenders have been called for December 1999, with selection of contractor planned by June 2000. The neutron beam instruments will be developed by ANSTO and other contracted organisations in consultation with the user community and interested overseas scientists. The facility will be based, as far as possible, around a neutron guide hall that is be served by three thermal and three cold neutron guides. Efficient transportation of thermal and cold neutrons to the guide hall requires the use of modern super

  9. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    Science.gov (United States)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  10. Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choopan Dastjerdi, M.H., E-mail: mdastjerdi@aeoi.org.ir [Reactor Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khalafi, H.; Kasesaz, Y.; Mirvakili, S.M.; Emami, J.; Ghods, H.; Ezzati, A. [Reactor Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2016-05-11

    To obtain a thermal neutron beam for neutron radiography applications, a neutron collimator has been designed and implemented at the Tehran Research Reactor (TRR). TRR is a 5 MW open pool light water moderated reactor with seven beam tubes. The neutron collimator is implemented in the E beam tube of the TRR. The design of the neutron collimator was performed using MCNPX Monte Carlo code. In this work, polycrystalline bismuth and graphite have been used as a gamma filter and an illuminator, respectively. The L/D parameter of the facility was chosen in the range of 150–250. The thermal neutron flux at the image plane can be varied from 2.26×10{sup 6} to 6.5×10{sup 6} n cm{sup −2} s{sup −1}. Characterization of the beam was performed by ASTM standard IQI and foil activation technique to determine the quality of neutron beam. The results show that the obtained neutron beam has a good quality for neutron radiography applications.

  11. Designing of the Low Energy Beam Lines with Achromatic Condition in the RAON Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang; Jang, Ji-Ho; Jeon, Dong-O [Institute for Basic Science, Daejeon (Korea, Republic of)

    2017-01-15

    The RAON accelerator has been built to create and accelerate stable heavy-ion beams and rare isotope beams. The stable heavy-ion beams are generated by the superconducting electron cyclotron resonance ion source and accelerated by the low energy superconducting linac SCL1. The beams accelerated by the SCL1 are re-accelerated by the high energy superconducting linac SCL2 for the generation of rare isotope beams by using the in-flight fragmentation system or are put to use in the low energy experimental halls, which include the neutron science facility and the Korea Broad acceptance Recoil spectrometer and Apparatus after having passed through the low energy beam lines which have long deflecting sections. At the end of each beam line in the low energy experimental halls, the beams should meet the targets of the two facilities with the specific requirements satisfied. Namely, if the beam is to be sent safely and accurately to the targets and simultaneously, satisfy the requirements, an achromatic lattice design needs to be applied in each beam line. In this paper, we will present the lattice design of the low energy beam lines and describe the results of the beam dynamics simulations. In addition, the correction of the beam orbit, which is distorted by machine imperfections, will be discussed.

  12. Preliminary shielding analysis in support of the CSNS target station shutter neutron beam stop design

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; CHEN Yi-Xue; WANG Wei-Jin; YANG Shou-Hai; WU Jun; YIN Wen; LIANG Tian-Jiao; JIA Xue-Jun

    2011-01-01

    The construction of China Spallation Neutron Source (CSNS) has been initiated in Dongguan,Guangdong, China.Thus a detailed radiation transport analysis of the shutter neutron beam stop is of vital importance. The analyses are performed using the coupled Monte Carlo and multi-dimensional discrete ordinates method. The target of calculations is to optimize the neutron beamline shielding design to guarantee personal safety and minimize cost. Successful elimination of the primary ray effects via the two-dimensional uncollided flux and the first collision source methodology is also illustrated. Two-dimensional dose distribution is calculated. The dose at the end of the neutron beam line is less than 2.5μSv/h. The models have ensured that the doses received by the hall staff members are below the standard limit required.

  13. Design of filtered epithermal neutron beams for BNC

    International Nuclear Information System (INIS)

    Greenwood, R.C.

    1986-01-01

    The design principles of filters (installed in nuclear reactors) to provide epithermal neutron beams suitable for use in 10 B Neutron Capture Therapy (BNCT) are reviewed. The goal of such filters is to provide epithermal neutron beams within an energy range of 1 keV to 30 keV with fluxes in excess of 5 x 10 8 neutrons/cm 2 .s, and having acceptably low contaminant fast neutron (> 30 keV) and gamma components. Filters considered for this application include 238 U, Sc, Fe/Al and Al/S. It is shown that in order to achieve a goal epithermal neutron flux of > 5 x 10 8 neutrons/cm 2 .s, such filters must be located in radial beam channels which view essentially the complete reactor core. Based on considerations of estimated epithermal fluxes, cost and availability of materials, and transmitted neutron energy spectrum, it is suggested that a filter consisting of elements of Al, S, Ti and V might prove to be an optimum design for BNCT applications. 13 references, 3 figures, 8 tables

  14. Monte Carlo program for the cold neutron beam guide

    International Nuclear Information System (INIS)

    Yoshiki, H.

    1985-02-01

    A Monte Carlo program for the transport of cold neutrons through beam guides has been developed assuming that the neutrons follow the specular reflections. Cold neutron beam guides are normally used to transport cold neutrons (4 ∼ 10 Angstrom) to experimental equipments such as small angle scattering apparatus, TOF measuring devices, polarized neutron spectrometers, and ultra cold neutron generators, etc. The beam guide is about tens of meters in length and is composed from a meter long guide elements made up from four pieces of Ni coated rectangular optical glass. This report describes mathematics and algorithm employed in the Monte Carlo program together with the display of the results. The source program and input data listings are also attached. (Aoki, K.)

  15. Modification of NUR II neutron beam profile of MINT TRIGA MARK II research reactor for digital neutron radiography

    International Nuclear Information System (INIS)

    Muhammad Rawi Mohamed Zin; Azali Muhammad; Abdul Aziz Mohamed; Rafhayudi Jamro; Syed Nasaruddin Syed Idris; Ng Aik Hao; Rosly Jaafar

    2006-01-01

    A cone neutron beam collimated by a 5.4 cm aperture produced in the Neutron Radiography II (NUR II) via a step divergence collimator had to be modified to fulfill 5 cm x 6 cm dimension of the scintillation screen placed in the charge couple device (ccd) camera. The required convergence neutron beam was obtained by a simple collimator-beam plug plugged in front of the NUR II beam port. The calculations involved in designing the collimator-beam plug had to take into account not only the neutron beam profiling but also the neutron and gamma shielding and are discussed in this article. (Author)

  16. The status of neutron beam utilization in Korea

    International Nuclear Information System (INIS)

    Shim, Hae-Seop; Lee, Chang-Hee; Seong, Baek-Seok; Lee, Jeong-Soo

    1999-01-01

    HANARO (30 MWth) at Korea Atomic Energy Research Institute (KAERI), which reached its first criticality on February 1995, is the multi-purpose research reactor for the application of reactor radiation in a variety of fields such as physics and materials science, irradiation technology, biomedical technology, and neutron activation analysis. For the neutron beam research, seven horizontal beam tubes of different types are available, and HANARO has performed its development plan for a basic set of neutron beam instruments since 1992. A High Resolution Powder Diffractometer (HRPD) and a Neutron Radiography Facility (NRF) has been installed and operated since 1997 and 1996 each. A Four Circle Diffractometer (FCD) and a Small Angle Neutron Spectrometer (SANS) will be operational on 1999 and in 2000 respectively, and a Polarized Neutron Spectrometer (PNS) in 2001. SANS at CN (Cold Neutron) beam tube will be operated using liquid nitrogen cooled Be filter until the cold neutron source is made available. Then, it will be moved to a guide laboratory with proper modification. Research works using the instruments in operation started by internal and external users since their full operation and have been rapidly increasing. Most in-house resources available are being used for on-going development of instruments due to rapidly increasing demands of external users nationwide. In addition to above instruments, a Triple Axis Spectrometer (TAS) and a Neutron Reflectometer which have been strongly requested by external users from universities and industries are under discussion. Then, HANARO will provide the best combination of neutron instruments to meet national research demands and international collaborations, and will be well prepared for future researches by cold neutrons. (author)

  17. Characterizing Neutron Diagnostics on the nTOF Line at SUNY Geneseo

    Science.gov (United States)

    Harrison, Hannah; Seppala, Hannah; Visca, Hannah; Wakwella, Praveen; Fletcher, Kurt; Padalino, Stephen; Forrest, Chad; Regan, Sean; Sangster, Craig

    2016-10-01

    Charged particle beams from SUNY Geneseo's 1.7 MV Tandem Pelletron Accelerator induce nuclear reactions that emit neutrons ranging from 0.5 to 17.9 MeV via 2H(d,n)3He and 11B(d,n)12C. This adjustable neutron source can be used to calibrate ICF and HEDP neutron scintillators for ICF diagnostics. However, gamma rays and muons, which are often present during an accelerator-based calibration, are difficult to differentiate from neutron signals in scintillators. To mitigate this problem, a new neutron time-of-flight (nTOF) line has been constructed. The nTOF timing is measured using the associated particle technique. A charged particle produced by the nuclear reaction serves as a start signal, while its associated neutron is the stop signal. Each reaction is analyzed event-by-event to determine whether the scintillator signal was generated by a neutron, gamma or muon. Using this nTOF technique, the neutron response for different scintillation detectors can be determined. Funded in part by a LLE contract through the DOE.

  18. Device for guiding a subthermal neutron beam and focussing device made of micro-neutron guides

    International Nuclear Information System (INIS)

    Marx, D.

    1977-01-01

    The invention concerns a device for guiding, in particular for diverting, a subthermal neutron beam with curved boundary surfaces at least in one level, whose sides towards the neutron beam are covered with at least one coating which reflects the subthermal neutrons completely. (orig./RW) [de

  19. Neutron beam applications - A development of real-time imaging processing for neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whoi Yul; Lee, Sang Yup; Choi, Min Seok; Hwang, Sun Kyu; Han, Il Ho; Jang, Jae Young [Hanyang University, Seoul (Korea)

    1999-08-01

    This research is sponsored and supported by KAERI as a part of {sup A}pplication of Neutron Radiography Beam.{sup M}ain theme of the research is to develop a non-destructive inspection system for the task of studying the real-time behaviour of dynamic motion using neutron beam with the aid of a special purpose real-time image processing system that allows to capture an image of internal structure of a specimen. Currently, most off-the-shelf image processing programs designed for visible light or X-ray are not adequate for the applications that require neutron beam generated by the experimental nuclear reactor. In addition, study of dynamic motion of a specimen is severely constrained by such image processing systems. In this research, a special image processing system suited for such application is developed which not only supplements the commercial image processing system but allows to use neutron beam directly in the system for the study. 18 refs., 21 figs., 1 tab. (Author)

  20. The fast neutron facility at the research reactor Munich. Determination of the beam quality and medical applications

    International Nuclear Information System (INIS)

    Wagner, F. M.; Koester, L.

    1990-01-01

    At the research reactor FRM, fast and epithermal neutron beams are generated by a thermal-to-fast neutron converter and/or near core scatterers. The dosimetry and spectroscopy of the resulting intense mixed beams of neutron and gamma radiation with a wide range of energies set spetial tasks for neutron dosimetry and spectroscopy. The twin chamber method and some others are briefly described. Neutron spectroscopy is performed by a Li-6 sandwich spectrometer covering the full neutron spectrum of a well-collimated mixed beam from about 20 keV to 8 MeV. The data registration is assisted by a microcomputer which generates sum and triton spectra on-line. Sum analysis is applied to neutron energies greater than 0.3 MeV; the intermediate neutron spectrum is evaluated by unfolding of the triton spectrum. Moreover, a brief overview of the reactor neutron therapy (RENT) at the FRM is given. After a number of animal experiments for the determination of the biological effectiveness relative to X-rays, clinical irradiations have been started in 1985. The most important indications for RENT are listed. 140 patients with bad prognoses have been treated since. The average tumour control rate of 60% is surprisingly high. Possibilities for an assisting Boron Neutron Capture Therapy (BNCT) are shown. 8 figs., 23 refs

  1. A specialized bioengineering ion beam line

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I.G.; Wiedemann, H.

    2007-01-01

    A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology

  2. Beam Optics for Typical Part of ISOL Beam Lines

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2013-01-01

    KOMAC (Korea Multi-purpose Accelerator Complex) is doing a project, the detailed design of the ISOL beam lines for the heavy ion accelerator project of IBS (Institute of Basic Science) from August 2013 to February 2014. The heavy ion beams are transported by using the electrostatic quadrupoles and electrostatic benders between the equipment. The work-scope of the project is the beam optics design of the beam lines and the detailed design of the beam optics components, the electrostatic quadrupoles and the electrostatic bender. This work summarized the initial result of beam optics design of the beam line. We performed the beam optics simulation in two regions of ISOL beam lines and found that beam envelope is less than 2 cm. We will check that the poletip file values are reasonable or not in near future, and we also applied this method to the other parts of the ISOL beam line and optimize them. The result will be used the detailed design of the electrostatic quadrupoles and benders

  3. Epithermal neutron beam interference with cardiac pacemakers

    International Nuclear Information System (INIS)

    Koivunoro, H.; Serén, T.; Hyvönen, H.; Kotiluoto, P.; Iivonen, P.; Auterinen, I.; Seppälä, T.; Kankaanranta, L.; Pakarinen, S.; Tenhunen, M.; Savolainen, S.

    2011-01-01

    In this paper, a phantom study was performed to evaluate the effect of an epithermal neutron beam irradiation on the cardiac pacemaker function. Severe malfunction occurred in the pacemakers after substantially lower dose from epithermal neutron irradiation than reported in the fast neutron or photon beams at the same dose rate level. In addition the pacemakers got activated, resulting in nuclides with half-lives from 25 min to 115 d. We suggest that BNCT should be administrated only after removal of the pacemaker from the vicinity of the tumor.

  4. Epithermal neutron beam interference with cardiac pacemakers

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H., E-mail: hanna.koivunoro@helsinki.fi [Department of Physics, P.O.B. 64, FI-00014 University of Helsinki (Finland)] [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland)] [Boneca Corporation, Finland, Filnland (Finland); Seren, T. [VTT Technical Research Centre of Finland (Finland); Hyvoenen, H. [Boneca Corporation, Finland, Filnland (Finland); Kotiluoto, P. [VTT Technical Research Centre of Finland (Finland); Iivonen, P. [St. Jude Medical (Finland); Auterinen, I. [VTT Technical Research Centre of Finland (Finland); Seppaelae, T.; Kankaanranta, L. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Pakarinen, S. [Department of Cardiology, Helsinki University Central Hospital (Finland); Tenhunen, M. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Savolainen, S. [HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital (Finland)

    2011-12-15

    In this paper, a phantom study was performed to evaluate the effect of an epithermal neutron beam irradiation on the cardiac pacemaker function. Severe malfunction occurred in the pacemakers after substantially lower dose from epithermal neutron irradiation than reported in the fast neutron or photon beams at the same dose rate level. In addition the pacemakers got activated, resulting in nuclides with half-lives from 25 min to 115 d. We suggest that BNCT should be administrated only after removal of the pacemaker from the vicinity of the tumor.

  5. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  6. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    Science.gov (United States)

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  7. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and

  8. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    International Nuclear Information System (INIS)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-01-01

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  9. Directed Neutron Beams From Inverse Kinematic Reactions

    Science.gov (United States)

    Vanhoy, J. R.; Guardala, N. A.; Glass, G. A.

    2011-06-01

    Kinematic focusing of an emitted fairly mono-energetic neutron beam by the use of inverse-kinematic reactions, i.e. where the projectile mass is greater than the target atom's mass, can provide for the utilization of a significant fraction of the fast neutron yield and also provide for a safer radiation environment. We examine the merit of various neutron production reactions and consider the practicalities of producing the primary beam using the suitable accelerator technologies. Preliminary progress at the NSWC-Carderock Positive Ion Accelerator Facility is described. Possible important applications for this type of neutron-based system can be both advanced medical imaging techniques and active "stand-off" interrogation of contraband items.

  10. Boron neutron capture therapy (BNCT). Recent aspect, a change from thermal neutron to epithermal neutron beam and a new protocol

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu

    1999-01-01

    Since 1968, One-hundred seventy three patients with glioblastoma (n=81), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumor (n=32) were treated by boron-neutron capture therapy (BNCT) using a combination of thermal neutron and BSH in 5 reactors (HTR n=13, JRR-3 n=1, MuITR n=98, KUR n=28, JRR-2 n=33). Out of 101 patients with glioma treated by BNCT under the recent protocol, 33 (10 glioblastoma, 14 anaplastic astrocytoma, 9 low grade astrocytoma) patients lived or have lived longer than 3 years. Nine of these 33 lived or have lived longer than 10 years. According to the retrospective analysis, the important factors related to the clinical results were tumor dose radiation dose and maximum radiation dose in thermal brain cortex. The result was not satisfied as it was expected. Then, we decided to introduce mixed beams which contain thermal neutron and epithermal neutron beams. KUR was reconstructed in 1996 and developed to be available to use mixed beams. Following the shutdown of the JRR-2, JRR-4 was renewed for medical use in 1998. Both reactors have capacity to yield thermal neutron beam, epithermal neutron beam and mixed beams. The development of the neutron source lead us to make a new protocol. (author)

  11. About possibilities of obtaining focused beams of thermal neutrons of radionuclide source

    International Nuclear Information System (INIS)

    Aripov, G.A.; Kurbanov, B.I.; Sulaymanov, N.T.; Ergashev, A.

    2004-01-01

    Full text: In the last years significant progress is achieved in development of neutron focusing methods (concentrating neutrons in a given direction and a small area). In this, main attention is given to focusing of neutron beams of reactor, particularly cold neutrons and their applications. [1,2]. However, isotope sources also let obtain intensive neutron beams and solve quite important (tasks) problems (e.g. neutron capture therapy for malignant tumors) [3], and an actual problems is focusing of neutrons. We developed a device on the basis of californium source of neutrons, allowing to obtain focused (preliminarily) beam of thermal neutrons with the aid of respective choice of moderators, reflectors and geometry of their disposition. Here, fast neutrons and gamma rays in the beam are minimized. With the aid of the model we developed on the basis of Monte-Carlo method, it is possible to modify aforementioned device and dynamics of output neutrons in wide energy range and analyze ways of optimization of neutron beams of isotope sources with different neutron outputs. Device of preliminary focusing of thermal neutrons can serve as a basis for further focus of neutrons using micro- and nano-capillar systems. It is known that, capillary systems performed with certain technology can form beam of thermal neutrons increasing its density by more than two orders of magnitude and effectively divert beams up to 20 o with length of system 15 cm

  12. About possibilities of obtaining focused beams of thermal neutrons of radionuclide source

    International Nuclear Information System (INIS)

    Aripov, G.A.; Kurbanov, B.I.; Sulaymanov, N.T.; Ergashev, A.

    2004-01-01

    In the last years significant progress is achieved in development of neutron focusing methods (concentrating neutrons in a given direction and a small area). In this, main attention is given to focusing of neutron beams of reactor, particularly cold neutrons and their applications. [1,2]. However, isotope sources also let obtain intensive neutron beams and solve quite important (tasks) problems (e.g. neutron capture therapy for malignant tumors) [3], and an actual problems is focusing of neutrons. We developed a device on the basis of californium source of neutrons, allowing to obtain focused (preliminarily) beam of thermal neutrons with the aid of respective choice of moderators, reflectors and geometry of their disposition. Here, fast neutrons and gamma rays in the beam are minimized. With the aid of the model we developed on the basis of Monte-Carlo method, it is possible to modify aforementioned device and dynamics of output neutrons in wide energy range and analyze ways of optimization of neutron beams of isotope sources with different neutron outputs. Device of preliminary focusing of thermal neutrons can serve as a basis for further focus of neutrons using micro- and nano-capillary systems. It is known that, capillary systems performed with certain technology can form beam of thermal neutrons increasing its density by more than two orders of magnitude and effectively divert beams up to 20 o with length of system 15 cm. (author)

  13. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  14. A white beam neutron spin splitter

    International Nuclear Information System (INIS)

    Krist, T.; Klose, F.; Felcher, G.P.

    1997-01-01

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co 0.11 Fe 0.89 supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 angstrom -1 , whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths

  15. A white beam neutron spin splitter

    Energy Technology Data Exchange (ETDEWEB)

    Krist, T. [Hahn Meitner Institute, Berlin (Germany); Klose, F.; Felcher, G.P. [Argonne National Lab., IL (United States)

    1997-07-23

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.

  16. Directionally positionable neutron beam

    International Nuclear Information System (INIS)

    Dance, W.E.; Bumgardner, H.M.

    1981-01-01

    Disclosed is apparatus for forming and directionally positioning a neutron beam. The apparatus includes an enclosed housing rotatable about a first axis with a neutron source axially positioned on the axis of rotation of the enclosed housing but not rotating with the housing. The rotatable housing is carried by a vertically positionable arm carried on a mobile transport. A collimator is supported by the rotatable housing and projects into the housing to orientationally position its inlet window at an adjustably fixed axial and radial spacing from the neutron source so that rotation of the enclosed housing causes the inlet window to rotate about a circle which is a fixed axial distance from the neutron source and has the axis of rotation of the housing as its center. (author)

  17. Neutron emission in neutral beam heated KSTAR plasmas and its application to neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jong-Gu, E-mail: jgkwak@nfri.re.kr; Kim, H.S.; Cheon, M.S.; Oh, S.T.; Lee, Y.S.; Terzolo, L.

    2016-11-01

    Highlights: • We measured the neutron emission from KSTAR plasmas quantitatively. • We confirmed that neutron emission is coming from neutral beam-plasma interactions. • The feasibility study shows that the fast neutron from KSTAR could be used for fast neutron radiography. - Abstract: The main mission of Korea Superconducting Tokamak Advanced Research (KSTAR) program is exploring the physics and technologies of high performance steady state Tokamak operation that are essential for ITER and fusion reactor. Since the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 s which corresponds to a few times of current diffusion time and surpassing the current conventional Tokamak operation. In addition to long-pulse operation, the operational boundary of the H-mode discharge is further extended over MHD no-wall limit(β{sub N} ∼ 4) transiently and higher stored energy region is obtained by increased total heating power (∼6 MW) and plasma current (I{sub p} up to 1 MA for ∼10 s). Heating system consists of various mixtures (NB, ECH, LHCD, ICRF) but the major horse heating resource is the neutral beam(NB) of 100 keV with 4.5 MW and most of experiments are conducted with NB. So there is a lot of production of fast neutrons coming from via D(d,n){sup 3}He reaction and it is found that most of neutrons are coming from deuterium beam plasma interaction. Nominal neutron yield and the area of beam port is about 10{sup 13}–10{sup 14}/s and 1 m{sup 2} at the closest access position of the sample respectively and neutron emission could be modulated for application to the neutron radiography by varying NB power. This work reports on the results of quantitative analysis of neutron emission measurements and results are discussed in terms of beam-plasma interaction and plasma confinement. It also includes the feasibility study of neutron radiography using KSTAR.

  18. Filtered neutron beams at the FMRB - review and current status

    International Nuclear Information System (INIS)

    Alberts, W.G.; Dietz, E.

    1987-12-01

    A review is presented of our experience with filtered neutron beams installed in beam tubes of the Research and Measurement Reactor Braunschweig since 1976: Desing of the filters and measurement of the beam parameters are reported and an outline of the research work done with the beams is given. The present status of the irradiation facility, which consists of 5 beams (144 keV, 24.5 keV, 2 keV, 0.2 keV and thermal neutrons), is described in some detail to allow understanding of the physical as well as the technical prerequisites for performing calibrations of neutron measuring instruments. An appendix contains the actual beam parameters. (orig.) [de

  19. Status of neutron beam utilization at the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Dien, Nguyen Nhi; Hai, Nguyen Canh

    2003-01-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  20. Neutron production by neutral beam sources

    International Nuclear Information System (INIS)

    Berkner, K.H.; Massoletti, D.J.; McCaslin, J.B.; Pyle, R.V.; Ruby, L.

    1979-11-01

    Neutron yields, from interactions of multiampere 40- to 120-keV deuterium beams with deuterium atoms implanted in copper targets, have been measured in order to provide input data for shielding of neutral-deuterium beam facilities for magnetic fusion experiments

  1. Neutron production by neutral beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, K.H.; Massoletti, D.J.; McCaslin, J.B.; Pyle, R.V.; Ruby, L.

    1979-11-01

    Neutron yields, from interactions of multiampere 40- to 120-keV deuterium beams with deuterium atoms implanted in copper targets, have been measured in order to provide input data for shielding of neutral-deuterium beam facilities for magnetic fusion experiments.

  2. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility

    International Nuclear Information System (INIS)

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. - Highlights: • Two in-core neutron detectors and three BNCT neutron beam monitors were compared. • BNCT neutron beam monitors improve the stability in neutron

  3. Dosimetry of clinical neutron and proton beams: An overview of recommendations

    International Nuclear Information System (INIS)

    Vynckier, S.

    2004-01-01

    Neutron therapy beams are obtained by accelerating protons or deuterons on Beryllium. These neutron therapy beams present comparable dosimetric characteristics as those for photon beams obtained with linear accelerators; for instance, the penetration of a p(65) + Be neutron beam is comparable with the penetration of an 8 MV photon beam. In order to be competitive with conventional photon beam therapy, the dosimetric characteristics of the neutron beam should therefore not deviate too much from the photon beam characteristics. This paper presents a brief summary of the neutron beams used in radiotherapy. The dosimetry of the clinical neutron beams is described. Finally, recent and future developments in the field of physics for neutron therapy is mentioned. In the last two decades, a considerable number of centres have established radiotherapy treatment facilities using proton beams with energies between 50 and 250 MeV. Clinical applications require a relatively uniform dose to be delivered to the volume to be treated, and for this purpose the proton beam has to be spread out, both laterally and in depth. The technique is called 'beam modulation' and creates a region of high dose uniformity referred to as the 'spread-out Bragg peak'. Meanwhile, reference dosimetry in these beams had to catch up with photon and electron beams for which a much longer tradition of dosimetry exists. Proton beam dosimetry can be performed using different types of dosemeters, such as calorimeters, Faraday cups, track detectors and ionisation chambers. National standard dosimetry laboratories will, however, not provide a standard for the dosimetry of proton beams. To achieve uniformity on an international level, the use of an ionisation chamber should be considered. This paper reviews and summarises the basic principles and recommendations for the absorbed dose determination in a proton beam, utilising ionisation chambers calibrated in terms of absorbed dose to water. These recommendations

  4. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  5. Structural design study of a proton beam window for a 1-MW spallation neutron source

    CERN Document Server

    Teraoku, T; Ishikura, S; Kaminaga, M; Maekawa, F; Meigo, S I; Terada, A

    2003-01-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to m...

  6. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M., E-mail: mdewey@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Coakley, K., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Gilliam, D., E-mail: david.gilliam@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Greene, G., E-mail: greenegl@ornl.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Lab, Building 6010, Oak Ridge, TN 37831 (United States); Laptev, A., E-mail: alaptev@nist.go [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nico, J., E-mail: jnico@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Snow, W., E-mail: wsnow@indiana.ed [Indiana University/IUCF, Bloomington, IN 47408 (United States); Wietfeldt, F., E-mail: few@tulane.ed [Tulane University, New Orleans, LA 70118 (United States); Yue, A., E-mail: ayue@nist.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States)

    2009-12-11

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  7. Determination of the neutron energy and spatial distributions of the neutron beam from the TSR-II in the large beam shield

    International Nuclear Information System (INIS)

    Clifford, C.E.; Muckenthaler, F.J.

    1976-01-01

    The TSR-II reactor of the ORNL Tower Shielding Facility has recently been relocated within a new, fixed shield. A principal feature of the new shield is a beam port of considerably larger area than that of its predecessor. The usable neutron flux has thereby been increased by a factor of approximately 200. The bare beam neutron spectrum behind the new shield has been experimentally determined over the energy range from 0.8 to 16 MeV. A high level of fission product gamma ray background prevented measurement of bare beam spectra below 0.8 MeV, however neutron spectra in the energy range from 8 keV to 1.4 MeV were obtained for two simple, calculable shielding configurations. Also measured in the present work were weighted integral flux distributions and fast neutron dose rates

  8. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    International Nuclear Information System (INIS)

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 10 8 n/cm 2 · s. The fast neutron and gamma radiation KERMA factors are 10 x 10 -11 cGy·cm 2 /n epi and 20 x 10 -11 cGy·cm 2 /n epi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power

  9. Achievement and development of neutron beam utilization in research reactors

    International Nuclear Information System (INIS)

    Isshiki, Masahiko

    1996-01-01

    Especially regarding the neutron beam experiment in Japan, the basic research has been developed by utilizing the JRR-2 of Japan Atomic Energy Research Institute and the KUR of Kyoto University over long years. Now, the JRR-3M of JAERI was revived as a high performance, general purpose reactor, and bears important roles as the neutron beam experiment center in Japan. Thanks to one of the most powerful reactor neutron sources in the world and the cold neutron source, the environment of research was greatly improved, and the excellent results of researches began to be reported. The discovery of neutrons by Chadwick and the history of the related researches are described. As neutron sources, radioisotopes, accelerators and nuclear reactors are properly used corresponding to purposes. As the utilization of research reactors for neutron sources, the utilization for irradiation and neutron beam experiment are carried out. The outline of the research reactor JRR-3M is explained. The state of utilization in neutron scattering experiment, neutron radiography, prompt γ-ray analysis and the medical irradiation of neutrons is reported. (K.I.)

  10. Novel design concepts for generating intense accelerator based beams of mono-energetic fast neutrons

    International Nuclear Information System (INIS)

    Franklyn, C.B.; Govender, K.; Guzek, J.; Beer, A. de; Tapper, U.A.S.

    2001-01-01

    Full text: Successful application of neutron techniques in research, medicine and industry depends on the availability of suitable neutron sources. This is particularly important for techniques that require mono-energetic fast neutrons with well defined energy spread. There are a limited number of nuclear reactions available for neutron production and often the reaction yield is low, particularly for thin targets required for the production of mono-energetic neutron beams. Moreover, desired target materials are often in a gaseous form, such as the reactions D(d,n) 3 He and T(d,n) 3 He, requiring innovative design of targets, with sufficient target pressure and particle beam handling capability. Additional requirements, particularly important in industrial applications, and for research institutions with limited funds, are the cost effectiveness as well as small size, coupled with reliable and continuous operation of the system. Neutron sources based on high-power, compact radio-frequency quadrupole (RFQ) linacs can satisfy these criteria, if used with a suitable target system. This paper discusses the characteristics of a deuteron RFQ linear accelerator system coupled to a high pressure differentially pumped deuterium target. Such a source, provides in excess of 10 10 mono- energetic neutrons per second with minimal slow neutron and gamma-ray contamination, and is utilised for a variety of applications in the field of mineral identification and materials diagnostics. There is also the possibility of utilising a proposed enhanced system for isotope production. The RFQ linear accelerator consists of: 1) Deuterium 25 keV ion source injector; 2) Two close-coupled RFQ resonators, each powered by an rf amplifier supplying up to 300 kW of peak power at 425 MHz; 3) High energy beam transport system consisting of a beam line, a toroid for beam current monitoring, two steering magnets and a quadrupole triplet for beam focusing. Basic technical specifications of the RFQ linac

  11. A low background pulsed neutron polyenergetic beam

    International Nuclear Information System (INIS)

    Adib, M.; Abdelkawy, A.; Habib, N.; abuelela, M.; Wahba, M.; kilany, M.; Kalebebin, S.M.

    1992-01-01

    A low background pulsed neutron polyenergetic thermal beam at ET-R R-1 is produced by a rotor and rotating collimator suspended in magnetic fields. Each of them is mounted on its mobile platform and whose centres are 66 cm apart, rotating synchronously at speeds up to 16000 rpm. It was found that the neutron burst produced by the rotor with almost 100% transmission passes through the collimator, when the rotation phase between them is 28.8 degree Moreover the background level achieved at the detector position is low, constant and free from peaks due to gamma rays and fast neutrons accompanying the reactor thermal beam.3 fig

  12. Radiosensitivity variations in human tumor cell lines exposed in vitro to p(66)/Be neutrons or 60Co γ-rays

    International Nuclear Information System (INIS)

    Slabbert, J.P.; Theron, T.; Serafin, A.; Jones, D.T.L.; Boehm, L.; Schmitt, G.

    1996-01-01

    Neutron therapy should be beneficial to patients with tumor types which are resistant to photons but relatively sensitive to high-LET radiation. In this work the potential therapeutic gain of a clinical neutron beam is evaluated by quantifying the variations in radiosensitivity of different cell lines to neutrons and photons. Different cell lines were exposed in vitro to p(66)/Be neutrons or 60 Co γ-rays. Micronuclei frequencies in binucleated cells and surviving fractions were determined for each cell type. Following exposure to either 1 or 1.5 Gy neutrons, micronuclei frequencies were significantly correlated with that observed for 2 Gy photons. A weak but significant correlation between the variation in neutron RBE values, determined from survival curve inactivation parameters and the mean inactivation doses for photon exposures, was also established. It is concluded that although neutron and photon sensitivities are related, the use of this high energy neutron source may constitute a potential therapeutic gain for tumor types that can be identified as very resistant to photons. Considering that a definitive oxygen gain factor has been established for this neutron beam the observed therapeutic gain is expected to be further enhanced in tumors where hypoxia protects cells from conventional radiation damage. (orig.) [de

  13. Polarized neutron physics at P.S.I

    International Nuclear Information System (INIS)

    Gaillard, G.

    1990-01-01

    In this paper the characteristics of the recent polarized neutron facility using the existing unpolarized neutron beam line nE1 developed at PSI and of the future nAl beam line are given. The physics program which started in 1986 is presented

  14. Other applications of neutron beams in material sciences

    International Nuclear Information System (INIS)

    Novion, C.H. de

    1997-01-01

    The various applications of neutron beams are reviewed. The different mechanisms involved in neutron interaction with matter are explained. We notice that generally neutron radiation effects are unfavorable but can be turned into efficient tools to add new structures or properties to materials, silicon doping is an example. The basis principles of neutron activation analysis and neutron radiography are described. (A.C.)

  15. Beam splitting to improve target life in neutron generators

    International Nuclear Information System (INIS)

    Farrell, J.P.

    1976-01-01

    In a neutron generator in which a tritium-titanium target is bombarded by a deuterium ion beam, the target half-life is increased by separating the beam with a weak magnetic field to provide three separate beams of atomic, diatomic, and triatomic deuterium ions which all strike the target at different adjacent locations. Beam separation in this manner eliminates the problem of one type ion impairing the neutron generating efficiency of other type ions, thereby effecting more efficient utilization of the target material

  16. Beam line design using G4BeamLine

    CERN Document Server

    Dogan, Arda

    2014-01-01

    In Turkey in Ankara TAEK SANAEM Proton Accelerator Facility (PAF), there is a cyclotron which produces a focused intense 30 MeV proton beam and sends this beam to four different arms, three of which uses this beam to produce pharmaceutical medicine. The remaining one is spared for R&D purposes and the idea was to use these protons coming out from the fourth arm to use space radiation tests, which cannot be done in Turkey at the moment. However, according to SCC 25100 standards which is for 30 MeV protons, the beam coming out of cyclotron is too intense and focused to use for space radiation tests. Therefore, the main aim of my project is to design a beam line which will defocus the beam and reduce the flux so that the space radiation tests can be done according to the standards of SCC 25100.

  17. A spin-transport system for a longitudinally polarized epithermal neutron beam

    International Nuclear Information System (INIS)

    Crawford, B.E.; Bowman, J.D.; Penttilae, S.I.; Roberson, N.R.

    2001-01-01

    The TRIPLE (Time Reversal and Parity at Low Energies) collaboration uses a polarized epithermal neutron beam and a capture γ-ray detector to study parity violation in neutron-nucleus reactions. In order to preserve the spin polarization of the neutrons as they travel the 60-m path to the target, the beam pipes are wrapped with wire to produce a solenoidal magnetic field of about 10 G along the beam direction. The flanges and bellows between sections of the beam pipe cause gaps in the windings which in turn produce radial fields that can depolarize the neutron spins. A computer code has been developed that numerically evaluates the effect of these gaps on the polarization. A measurement of the neutron depolarization for neutrons in the actual spin-transport system agrees with a calculation of the neutron depolarization for the TRIPLE system. Features that will aid in designing similar spin-transport systems are discussed

  18. Development of the RRR cold neutron beam facility

    International Nuclear Information System (INIS)

    Lovotti, Osvaldo; Masriera, Nestor; Lecot, Carlos; Hergenreder, Daniel

    2002-01-01

    This paper describes some general design issues on the neutron beam facilities (cold neutron source and neutron beam transport system) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspect of the design: the requirements that lead to an innovative design, the overall design itself, the definition of a technical approach in order to develop the necessary design solutions, and finally the organizational framework by which international expertise from five different institutions is integrated. From the technical viewpoint, the RRR-CNS is a liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation thermosyphon loop. The thermosyphon is surrounded by a zirconium alloy CNS vacuum containment that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The 'cold' neutrons are then taken by the NBTS and transported by the neutron guide system into the reactor beam hall and neutron guide hall, where neutron scattering instruments are located. From the management viewpoint, the adopted distributed scheme is successful to manage the complex interfacing between highly specialized technologies, allowing a smooth integration within the project. (author)

  19. Upgrade for the epithermal neutron beam at NRI Rez

    International Nuclear Information System (INIS)

    Marek, M.; Flibor, S.; Viererbl, L.; Burian, J.; Rejchrt, J.; Klupak, V.; Gambarini, G.; Vanossi, E.

    2006-01-01

    The epithermal neutron beam facility designed for pre-clinical neutron capture therapy research has been operated at LVR-15 reactor for more than ten years. The construction of the beam filter has been recently modified especially for the shielding quality of the beam shutter to be improved. The parameters of the upgraded beam were calculated with the MCNP code and a new source term for the NCTPLAN treatment planning software was evaluated. The calculated source term was consequently scaled according to the results of measurements in the free beam and in the 50x50x25 cm 3 water phantom. (author)

  20. A neutron beam facility for radioactive ion beams and other applications

    Science.gov (United States)

    Tecchio, L. B.

    1999-06-01

    In the framework of the Italian participation in the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involved in the design and construction of same prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has already been supported financially and the work is in progress. In this context LNL has proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by means of the ISOL method. The final goal is the production of neutron rich RIBs with masses ranging from 30 to 150 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is expected to be developed in about 10 years from new and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). During that period the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production and to the neutron physics, is proposed. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed. Besides the RIBs production, neutron beams for the BNCT applications and neutron physics are also planned.

  1. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    CERN Document Server

    Catherall, R; Gilardoni, S S; Köster, U

    2003-01-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN, tests have been made on standard ISOLDE actinide targets using fast neutron bunches produced by bombarding thick, high-Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten an...

  2. GEM-based thermal neutron beam monitors for spallation sources

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-01-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3 He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B 4 C layer used to convert thermal neutrons to charged particles through the 10 B(n, 7 Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM x =31 mm and FWHM y =36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3 He-based gaseous detectors

  3. Multigroup and coupled forward-adjoint Monte Carlo calculation efficiencies for secondary neutron doses from proton beams

    International Nuclear Information System (INIS)

    Kelsey IV, Charles T.; Prinja, Anil K.

    2011-01-01

    We evaluate the Monte Carlo calculation efficiency for multigroup transport relative to continuous energy transport using the MCNPX code system to evaluate secondary neutron doses from a proton beam. We consider both fully forward simulation and application of a midway forward adjoint coupling method to the problem. Previously we developed tools for building coupled multigroup proton/neutron cross section libraries and showed consistent results for continuous energy and multigroup proton/neutron transport calculations. We observed that forward multigroup transport could be more efficient than continuous energy. Here we quantify solution efficiency differences for a secondary radiation dose problem characteristic of proton beam therapy problems. We begin by comparing figures of merit for forward multigroup and continuous energy MCNPX transport and find that multigroup is 30 times more efficient. Next we evaluate efficiency gains for coupling out-of-beam adjoint solutions with forward in-beam solutions. We use a variation of a midway forward-adjoint coupling method developed by others for neutral particle transport. Our implementation makes use of the surface source feature in MCNPX and we use spherical harmonic expansions for coupling in angle rather than solid angle binning. The adjoint out-of-beam transport for organs of concern in a phantom or patient can be coupled with numerous forward, continuous energy or multigroup, in-beam perturbations of a therapy beam line configuration. Out-of-beam dose solutions are provided without repeating out-of-beam transport. (author)

  4. Tailoring phase-space in neutron beam extraction

    Energy Technology Data Exchange (ETDEWEB)

    Weichselbaumer, S. [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Brandl, G. [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Georgii, R., E-mail: Robert.Georgii@frm2.tum.de [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Stahn, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Panzner, T. [Material Science and Simulations, Neutrons and Muons, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Böni, P. [Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany)

    2015-09-01

    In view of the trend towards smaller samples and experiments under extreme conditions it is important to deliver small and homogeneous neutron beams to the sample area. For this purpose, elliptic and/or Montel mirrors are ideally suited as the phase space of the neutrons can be defined far away from the sample. Therefore, only the useful neutrons will arrive at the sample position leading to a very low background. We demonstrate the ease of designing neutron transport systems using simple numeric tools, which are verified using Monte-Carlo simulations that allow taking into account effects of gravity and finite beam size. It is shown that a significant part of the brilliance can be transferred from the moderator to the sample. Our results may have a serious impact on the design of instruments at spallation sources such as the European Spallation Source (ESS) in Lund, Sweden.

  5. Status of ACCULINNA beam line

    CERN Document Server

    Rodin, A M; Bogdanov, D D; Golovkov, M S; Fomichev, A S; Sidorchuk, S I; Slepnev, R S; Wolski, R; Ter-Akopian, G M; Oganessian, Yu T; Yukhimchuk, A A; Perevozchikov, V V; Vinogradov, Yu I; Grishenchkin, S K; Demin, A M; Zlatoustovskii, S V; Kuryakin, A V; Filchagin, S V; Ilkaev, R I

    2003-01-01

    The separator ACCULINNA was upgraded to achieve new experimental requirements. The beam line was extended by new ion-optical elements beyond the cyclotron hall. The new arrangements yield much better background conditions. The intensities of sup 6 He and sup 8 He radioactive beams produced in fragmentation of 35 A MeV sup 1 sup 1 B ions were increased up to a factor of 10. The upgraded beam line was used in experiments to study the sup 5 H resonance states populated in the t+t reaction. A cryogenic liquid tritium target was designed and installed at the separator beam line.

  6. Coulomb Excitation of a Neutron-Rich $^{88}$Kr Beam Search for Mixed Symmetry States

    CERN Multimedia

    Andreoiu, C; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    We propose to use the ISOLDE/REX/MINIBALL/CD set-up to perform a Coulomb Excitation experiment with a $^{88}$Kr radioactive beam. The motivation includes a search for $Mixed$ $Symmetry$ states predicted by the IBM-2 model, gathering more spectroscopy data about the $^{88}$Kr nucleus and extending shape coexistence studies (performed previously by the proposers for neutron-deficient Kr isotopes) to the neutron-rich side. The proposed experiment will provide data complementary to the Coulomb Excitation of a relativistic $^{88}$Kr beam proposed by D. Tonev et al. for a RISING experiment. A total of 12 days of beam time is necessary for the experiment, equally divided into two runs. One run with a 2.2 MeV/A beam energy on a $^{48}$Ti target and a second run with the maximum available REX energy of 3.1 MeV/A on a $^{208}$Pb target are requested. Using either a UC$_{x}$ or ThC$_{x}$ fissioning primary target coupled with a plasma source by a cooled transfer line seems to be the best choice for the proposed experime...

  7. Improving the beam quality of the neutron radiography facility using the SLOWPOKE-2 at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Lewis, W.J.; Bennett, L.G.I.; Teshima, P.

    1996-01-01

    At the SLOWPOKE-2 Facility at the Royal Military College of Canada, a neutron radiography facility has been designed and installed, and the beam quality has been improved by performing a series of radiographs using American standard for testing and materials (ASTM) E 545 indicators. Other means of determining the progress such as bubble detectors and activation foils were used. Modifications to the nosepiece of the beam tube including shielding and linings for fast neutron and gamma radiation were made. (orig.)

  8. The first neutron beam hits EAR2

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    On 25 July 2014, about a year after construction work began, the Experimental Area 2 (EAR2) of CERN’s neutron facility n_TOF recorded its first beam. Unique in many aspects, EAR2 will start its rich programme of experimental physics this autumn.   The last part of the EAR2 beamline: the neutrons come from the underground target and reach the top of the beamline, where they hit the samples. Built about 20 metres above the neutron production target, EAR2 is in fact a bunker connected to the n_TOF underground facilities via a duct 80 cm in diameter, where the beamline is installed. The feet of the bunker support pillars are located on the concrete structure of the n_TOF tunnel and part of the structure lies above the old ISR building. A beam dump located on the roof of the building completes the structure. Neutrons are used by physicists to study neutron-induced reactions with applications in a number of fields, including nuclear waste transmutation, nuclear technology, nuclear astrop...

  9. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  10. Upgrades of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1994-12-31

    The first epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR) was installed in 1988 and produced a neutron beam that was satisfactory for the development of NCT with epithermal neutrons. This beam was used routinely until 1992 when the beam was upgraded by rearranging fuel elements in the reactor core to achieve a 50% increase in usable flux. Next, after computer modeling studies, it was proposed that the Al and Al{sub 2}O{sub 3} moderator material in the shutter that produced the epithermal neutrons could be rearranged to enhance the beam further. However, this modification was not started because a better option appeared, namely to use fission plates to move the source of fission neutrons closer to the moderator and the patient irradiation position to achieve more efficient moderation and production of epithermal neutrons. A fission plate converter (FPC) source has been designed recently and, to test the concept, implementation of this upgrade has started. The predicted beam parameters will be 12 x 10{sup 9} n{sub epi}/cm{sup 2}sec accompanying with doses from fast neutrons and gamma rays per epithermal neutron of 2.8 x 10{sup -11} and < 1 x 10{sup -11} cGycm{sup 2}/n, respectively, and a current-to-flux ratio of epithermal neutrons of 0.78. This conversion could be completed by late 1996.

  11. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  12. Modification of beam lines at VEC

    Energy Technology Data Exchange (ETDEWEB)

    Shoor, Bivas; Chakraborty, P S; Mallik, C; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1997-12-01

    From the experience of light ion beam transportation through the Variable Energy Cyclotron beam line, it was observed that the beam line performance has to be improved in view of heavy ion acceleration program at the centre. The aim of this work was to study the feasibility of reducing the number of operational parameters without hampering the beam transmission and at the same time, to improve the vacuum of the beam line by reducing the hardware 2 refs., 1 fig.

  13. Neutron Imaging at LANSCE—From Cold to Ultrafast

    Directory of Open Access Journals (Sweden)

    Ronald O. Nelson

    2018-02-01

    Full Text Available In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE, covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center, Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutrons and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns, time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.

  14. Simulation of the Production of Secondary Particles from a Neutron Beam on Polyethylene Targets using the GEANT4 Simulation Tool

    CERN Document Server

    Ilgner, C

    2003-01-01

    In view of a beam test of RadFET semiconductor detectors and optically stimulated luminescence (OSL) detectors as on-line dosimeters for radiation monitoring purposes in the caverns of the Large Hadron Collider (LHC) experiments, a simulation on the production of secondary particles from a neutron beam on a polyethylene target was carried out. We describe the yield of recoil protons, scattered neutrons as well as electrons, positrons and photons, when neutrons of an average energy of 20 MeV hit polyethylene targets of several thicknesses. The simulation was carried out using the latest release 5.2 of the GEANT4 detector description and simulation tool, including advanced hadron interaction models.

  15. Minimizing the background radiation in the new neutron time-of-flight facility at CERN FLUKA Monte Carlo simulations for the optimization of the n_TOF second experimental line

    CERN Document Server

    Bergström, Ida; Elfgren, Erik

    2013-06-11

    At the particle physics laboratory CERN in Geneva, Switzerland, the Neutron Time-of-Flight facility has recently started the construction of a second experimental line. The new neutron beam line will unavoidably induce radiation in both the experimental area and in nearby accessible areas. Computer simulations for the minimization of the background were carried out using the FLUKA Monte Carlo simulation package. The background radiation in the new experimental area needs to be kept to a minimum during measurements. This was studied with focus on the contributions from backscattering in the beam dump. The beam dump was originally designed for shielding the outside area using a block of iron covered in concrete. However, the backscattering was never studied in detail. In this thesis, the fluences (i.e. the flux integrated over time) of neutrons and photons were studied in the experimental area while the beam dump design was modified. An optimized design was obtained by stopping the fast neutrons in a high Z mat...

  16. Using MCNP-4C code for design of the thermal neutron beam for neutron radiography at the MNSR

    International Nuclear Information System (INIS)

    Shaaban, I.

    2009-11-01

    Studies were carried out for determination of the parameters of a thermal neutron beam at the MNSR reactor (MNSR-30 kW) for neutron radiography in the vertical beam port by using the MCNP-4C (Monte Carlo Neutron - Photon transport). Thermal, epithermal and fast neutron energy ranges were selected as 10 keV respectively. To produce a good neutron beam in terms of intensity and quality, several materials Lead (Pb), Bismuth (Bi), Borated polyethelyene and Alumina Oxide (Al 2 O 3 ) were used as neutron and photon filters. Based on the current design, the L/D of the facility ranges between 125, 110 and 90. The thermal neutron flux at the beam exit is 1.436x10 5 n/cm2 .s ,1.843x10 5 n/cm2 .s and 2.845x10 5 n/cm2 .s respectively, middots with a Cd-ratio of ∼ 2.829, 2.766, 3.191 for the L/D = 125, 110, 90 respectively. The estimated values for gamma doses are 6.705x10 -2 Rem/h and 1.275x10 -1 Rem/h and 2.678x10 -1 Rem/ h with bismuth. The divergent angle of the collimator is 1.348 degree - 2.021 degree. Such neutron beams, if built into the Syrian MNSR reactor, could support the application of NRG in Syria. (author)

  17. Targets for neutron beam spallation sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1980-01-01

    The meeting on Targets for Neutron Beam Spallation Sources held at the Institut fuer Festkoerperforschung at KFA Juelich on June 11 and 12, 1979 was planned as an informal get-together for scientists involved in the planning, design and future use of spallation neutron sources in Europe. These proceedings contain the papers contributed to this meeting. For further information see hints under relevant topics. (orig./FKS)

  18. Beam line to S155

    CERN Multimedia

    1977-01-01

    The experiment S155 was designed by the Orsay (CSNM-CNRS) Collaboration to observe the properties of exotic light nuclei. It was installed in the PS neutrino tunnel. The photo shows a mass spectrometer (in the background) on line with the PS proton beam which arrives (bottom, right) from the fast extraction FE74. Roger Fergeau stands on the left. The alkaline isotopes produced in the carbon-uranium target heated at 2000°C were swiftly extracted, mass separated, and brought to a detector behind the shielding. Sodium 34 (11 protons and 23 neutrons) was observed and its half-life of only 5 ms was measured. The excited levels 2+ of Magnesium 30 and Magnesium 32 (Sodium descendants) were localised, and the magic number 20 was found to vanish. Thus, the discovery made earlier for Sodium 30 and Sodium 32, with the same apparatus, was confirmed. (See also photo 7706511.)

  19. In vitro biological effectiveness of JRR-4 epithermal neutron beam. Experiment under free air beam and in water phantom. Cooperative research

    CERN Document Server

    Yamamoto, T; Horiguchi, Y; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Yamamoto, K

    2002-01-01

    The surviving curve and the biological effectiveness factor of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at Japan Research Reactor No.4. Surviving fraction of V79 Chinese hamster cell with or without sup 1 sup 0 B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam (TNB-2), which were used or planned to use for BNCT clinical trial. The cell killing effect of these neutron beams with or without the presence of sup 1 sup 0 B depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. The biological effectiveness factor values of the boron capture reaction for ENB, TNB-1 and TNB-2 were 3.99+-0.24, 3.04+-0.19 and 1.43+-0.08, respectively. The biological effectiveness factor values of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50+-0.32, 2.34+-0.30 and 2.17+-0.28 for EN...

  20. Neutron capture therapy with thermal neutrons at IRT MIFI

    International Nuclear Information System (INIS)

    Zajtsev, K.N.; Portnov, A.A.; Savkin, V.A.; Kulakov, V.N.; Khokhlov, V.F.; Shejno, I.N.; Vajnson, A.A.; Kozlovskaya, N.G.; Meshcherikova, V.V.; Mitin, V.N.; Yarmonenko, S.P.

    2001-01-01

    Combined preclinical investigations into neutron capture therapy are conducted. Malignant melanoma was adopted as the line of investigation; boron-containing and gadolinium-containing preparations were used during the neutron capture therapy working off. Preparations produce secondary varying radiations when used in tumor. Dogs with spontaneous melanoma were used for the experiments. Procedures for the irradiation of dogs by neutron beam as the stage before use for the treatment of oncology patients were finished off; efficiency of neutron beam influence on normal tissues during the irradiation of dogs with melanoma (and without it) in antitumor and side effect sense was estimated [ru

  1. In-beam test of Neutron detector array facility at IUAC

    International Nuclear Information System (INIS)

    Sugathan, P.; Jhingan, A.; Saneesh, S.

    2014-01-01

    A new experimental facility dedicated for the study of fission dynamics has been installed and commissioned recently at Inter University Accelerator Centre (IUAC), New Delhi. The facility, National Array of Neutron Detectors (NAND) is used for the systematic studies on fission dynamics around Coulomb barrier energies using heavy ion beams from the Tandem plus LINAC accelerator facilities. The detector array consists 100 neutron detectors mounted on a geodesic dome structure at a radial distance of 175 cm from the target and multi wire proportional counters (MWPC) for detection of fission fragments. Each neutron detector is made of 5'' x 5'' cylindrical cell filled with BC501A organic liquid scintillator and coupled to a 5'' photo multiplier tube. A 100 cm diameter spherical vacuum chamber has been installed at the center of the array to house the targets, fission fragment detectors and other ancillary charged particle detectors. The vacuum chamber is made of 4mm thick steel and has target ladder with linear and rotary movements. The detector array is installed on a dedicated beam line of LINAC accelerator facilities at beam hall II. The neutrons are discriminated from gamma rays using pulse shape discrimination (PSD) technique based on conventional analog electronics and the energies of neutrons are measured by the time of flight (TOF) method. For this purpose, custom made electronics modules have been built to process signal from each detector. This module contains the integrated electronics for n - γ discrimination, time of flight (TOF) and light output. The fission fragments are detected in low pressure MWPCs mounted inside the spherical vacuum chamber. The MWPC has been built based on the conventional design using three electrodes, having a central cathode foil electrode sandwiched between two position sensing anode wire/strip frames. In order to acquire data from detector array, the data acquisition system has been implemented using VME based hardware systems

  2. Cyclotron Lines in Accreting Neutron Star Spectra

    Science.gov (United States)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  3. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    Science.gov (United States)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-09-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.

  4. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    International Nuclear Information System (INIS)

    Ellison, C.L.; Fuchs, J.

    2010-01-01

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  5. Intermediate-energy neutron beam for NCT at MURR

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    The University of Missouri Research Reactor (MURR) is one of the high-flux reactors in the USA and it can be used to produce an intense beam of intermediate-energy neutrons for neutron capture therapy. Two methods are being evaluated at MURR to produce such a beam. The first uses a moderator of Al 2 O 3 replacing part of the graphite and water on one side of the core of the reactor to produce a source of predominantly intermediate-energy neutrons. The second method is a filter of 238 U between the core and the patient position to pass only intermediate-energy neutrons. The results of these evaluations are presented in this paper along with an outline of the other resources at the University of Missouri-Columbia that are available to support an NCT program. 4 references, 7 figures, 1 table

  6. In vitro biological effectiveness of JRR-4 epithermal neutron beam. Experiment under free air beam and in water phantom. Cooperative research

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuya; Matsumura, Akira; Nose, Tadao; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Hori, Naohiko; Torii, Yoshiya; Horiguchi, Yoji

    2002-05-01

    The surviving curve and the biological effectiveness factor of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at Japan Research Reactor No.4. Surviving fraction of V79 Chinese hamster cell with or without 10 B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam (TNB-2), which were used or planned to use for BNCT clinical trial. The cell killing effect of these neutron beams with or without the presence of 10 B depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. The biological effectiveness factor values of the boron capture reaction for ENB, TNB-1 and TNB-2 were 3.99±0.24, 3.04±0.19 and 1.43±0.08, respectively. The biological effectiveness factor values of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50±0.32, 2.34±0.30 and 2.17±0.28 for ENB, TNB-1 and TNB-2, respectively. The biological effectiveness factor values of the neutron and photon components were 1.22±0.16, 1.23±0.16 and 1.21±0.16, respectively. The depth function of biological effectiveness factor in water phantom and the difference in biological effectiveness factor among boron compounds were also determined. The experimental determination of biological effectiveness factor outlined in this paper is applicable to the dose calculation for each dose component of the neutron beams and contribute to an accurate biological effectiveness factor as comparison with a neutron beam at a different facility employed in ongoing and planned BNCT clinical trials. (author)

  7. Neutron beam instruments at Harwell

    International Nuclear Information System (INIS)

    Baston, A.H.; Harris, D.H.C.

    1978-11-01

    A list and brief descriptions are given of the neutron beam facilities for U.K. scientists at Harwell and in academic institutions, available under an agreement between the Science Research Council and AERE (Harwell). The list falls under the following headings: reactor instruments (single crystal diffractometers, powder diffractometers, triple axis spectrometers, time-of-flight cold neutron twin rotor spectrometer, beryllium filter spectrometer, MARX spectrometer, Harwell small-angle scattering spectrometer); LINAC instruments (total scattering spectrometer, back scattering spectrometer, active sample spectrometer, inelastic rotor spectrometer, constant Q spectrometer); ancillary equipment (cryostats, superconducting magnets, electromagnets, furnaces). (U.K.)

  8. The elettra beam line control system

    International Nuclear Information System (INIS)

    Mignacco, M.; Abrami, A.; Dequal, Z.

    1994-01-01

    Elettra is a third generation Synchrotron Light Source located in Trieste (Italy). It consists of a full energy linac injector and a storage ring with beam energies between 1.5 and 2 GeV. The facility is scheduled to be operational by end 1993. For the whole project 22 beam lines from insertion devices are foreseen, each of them is composed of a large number of measurement and controls instruments, most of them embedded in intelligent devices; in addition each beam line can be considered unique compared to the others, having been designed to provide a different kind of synchrotron radiation. This results in a large not homogenous environment where more than 200,000 physical points have to be controlled. A joint team composed of Softeco Sismat and Digital Equipment has developed a fully automated beam line control system able to give full remote controls, with different kind of access rights, to beam line users and beam line specialists as well as a full integration with experiment control systems. ((orig.))

  9. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    Amaro, C.R.

    1995-01-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  10. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  11. On-line neutron activation analyzers

    International Nuclear Information System (INIS)

    Flahaut, V.; Colmon, A.

    1999-01-01

    A neutronic analyser has been designed to determine the composition of the flow of raw materials entering a cement factory on the conveyor belt. This new system gives a reliable analysis of the whole cargo that outdates the sampling or the usual surface analysis based on fluorescence spectrometry. The accuracy is about 1%.The neutrons interact with the materials on an average depth of 25 cm and are absorbed by nuclei, these nuclei produce photons whose energy is characteristic of the chemical element itself. The composition can be deduced by measuring the number of photons emitted and their energy. The analysis is made on-line and can concern the search for about 10 compounds. In the case of cement the list of compounds is: SiO 2 , CaO, Al 2 O 3 , Fe 2 O 3 , MgO, Na 2 O, TiO 2 , S, Mn 2 O 3 , K 2 O, and H 2 O. The neutron generator involves a deuterium ion source whose deuterium ions are accelerated by means of an electrical field and impinge on a tritiated target, the nuclear reactions between deuterium and tritium produce 14 MeV neutrons. This neutron analysing technique can be adapted to any need of on-line composition determination. (A.C.)

  12. Magnetic compound refractive lens for focusing and polarizing cold neutron beams

    International Nuclear Information System (INIS)

    Littrell, K. C.; Velthuis, S. G. E. te; Felcher, G. P.; Park, S.; Kirby, B. J.; Fitzsimmons, M. R.

    2007-01-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given

  13. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    Science.gov (United States)

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  14. Poster - 25: Neutron Spectral Measurements around a Scanning Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kildea, John; Enger, Shirin; Maglieri, Robert; Mirzakhanian, Lalageh; Dahlgren, Christina Vallhagen; Dubeau, Jacques; Witharana, Sanjeeva [Medical Physics Unit, McGill University Health Centre, Medical Physics Unit, McGill University, Medical Physics Unit, McGill University, Medical Physics Unit, McGill University, Skandion Clinic, Detec Inc., Gatineau, Quebec, Detec Inc., Gatineau, Quebec (Canada)

    2016-08-15

    We describe the measurements of neutron spectra that we undertook around a scanning proton beam at the Skandion proton therapy clinic in Uppsala, Sweden. Measurements were undertaken using an extended energy range Nested Neutron Spectrometer (NNS, Detec Inc., Gatineau, QC) operated in pulsed and current mode. Spectra were measured as a function of location in the treatment room and for various Bragg peak depths. Our preliminary unfolded data clearly show the direct, evaporation and thermal neutron peaks and we can show the effect on the neutron spectrum of a water phantom in the primary proton beam.

  15. Utilization of cold neutron beams at intermediate flux reactors

    International Nuclear Information System (INIS)

    Clark, D.D.

    1992-01-01

    With the advent of cold neutron beam (CNB) facilities at U.S. reactors [National Institute of Standards and Technology (NIST) in 1991; Cornell University and the University of Texas at Austin, anticipated in 1992], it is appropriate to reexamine the types of research for which they are likely to be best suited or uniquely suited. With the exception of a small-angle neutron scattering facility at Brookhaven National Laboratory, there has been no prior experience in the United States with such beams, but they have been extensively used at European reactors where cold neutron sources and neutron guides were developed some years age. This paper does not discuss specialized cases such as ultracold neutrons or very high flux facilities such as the Institute Laue-Langevin ractor and the proposed advanced neutron source. Instead, it concentrates on potential utilization of CNBs at intermediate-flux reactors such as at Cornell and Texas, i.e., in the 1-MW range and operated <24 h a day

  16. Characterization and optimization of the R A-6 s on-line neutron radiography facility

    International Nuclear Information System (INIS)

    Mezio Guanes, Federico Andres

    2007-01-01

    With the objective of characterizing and optimizing the radiation-field filters behavior in the beam of the R A-6 on-line Neutron Radiography facility, some improvements have been done to the facility devices.We studied the camera sensibility, the best camera acquisition software configuration, the best depth of field, we increased the system tuning efficiency.We also studied the linearity of the facility vs the reactor core neutron fluence and finally we constructed a device that ensure the repeatability of the measurements.The main parameters chosen to represent the best radiation-field set-up are the thermal neutron flux and dose in the position of the camera.Finally, a camera shield optimization haven been done in function of its position [es

  17. Status report of the program on neutron beam utilization at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1996-08-01

    The thermal reactor is an intense source not only of thermal neutron, but also intermediate as well as fast neutrons. Using the filtered neutron beam technique at steady state atomic reactor allows receiving the neutrons in the intermediate energy region with the most available intense flux at present. In the near time at the Dalat reactor the filtered neutron beam technique has been applied. Utilization of the filtered neutron beams in basic and applied researches has been a important activity of the Dalat Nuclear Research Institute (DNRI). This report presents some relevant characteristics of the filtered neutron beams and their utilization in nuclear data measurements, neutron capture gamma ray spectroscopy, neutron radiography, neutron dose calibration and other applications. (author). 3 refs, 2 figs

  18. Characteristic analysis on moderating material for obtaining epithermal neutron beam

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Da; Zhang Ying

    2000-01-01

    The one dimension discrete coordinates transport code ANISN was used to calculate three-group constants of 11 elements which could be used to consist moderating epithermal neutron material of beam. Moderating character of simple substances, compounds and mixtures consisted of the optimized elements analyzed three kinds of moderating materials were optimized for epithermal neutron beam

  19. Beam plug replacement and alignment under high radiation conditions for cold neutron facilities at Hanaro

    International Nuclear Information System (INIS)

    Yeong-Garp, Cho; Jin-Won, Shin; Jung-Hee, Lee; Jeong-Soo, Ryu

    2010-01-01

    that the laser tracker system can measure and align in 3 dimensional coordinates without a direct sight of the beam line. At a full power reactor operation in 2010, it was confirmed that the neutron guide system delivers the cold neutrons to the instruments with enough neutron fluxes. Also, shielding performance has been verified with the primary shutter opened and closed.

  20. Self-shielding for thick slabs in a converging neutron beam

    CERN Document Server

    Mildner, D F R

    1999-01-01

    We have previously given a correction to the neutron self-shielding for a thin slab to account for the increased average path length through the slab when irradiated in a converging neutron beam. This expression overstates the case for the self-shielding for a thick (or highly absorbing) slab. We give a better approximation to the increase in effective shielding correction for a slab placed in a converging neutron beam. It is negligible at large absorption mean free paths. (author)

  1. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W., E-mail: wvrenter@sckcen.be; Uytdenhouwen, I., E-mail: iuytdenh@sckcen.be

    2016-08-15

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 10{sup 20} n/cm{sup 2} and 4.74 × 10{sup 20} n/cm{sup 2} at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 10{sup 21}/m³ to 9 × 10{sup 22}/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock. - Highlights: • Neutron irradiated and electron beam exposed tungsten samples were studied with transmission electron microscopy. • Neutron irradiation creates dislocation loops and rafts, while voids are created at higher irradiation dose. • No precipitates of transmutation products were found under these low dose irradiation conditions. • Electron beam exposure annihilates the dislocation loops and rafts.

  2. RBEs and cytogenetic hereditary effects induced by neutron beams in mice

    International Nuclear Information System (INIS)

    Du Zeji; Li Yanyi; Liu Degui

    1994-01-01

    The RBEs and cytogenetic hereditary effects of different dose of neutron beams on chromosome aberrations and micronuclei of bone marrow cells in mice were observed. The results indicated that micronuclei frequency of occurrence and chromosome aberration frequency caused by neutrons increased with doses. The relationship was feasible to Y aD n . The lower energy of neutrons had the smaller value of RBE. RBE determined by CSACR were larger than that by MNCF. RBEs decreased with increasing of neutron doses, especially within the low range of doses. There was a linear relationship between CSACR and MNCF caused by neutron beams and γ-ray

  3. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  4. Application of Zeeman spatial beam-splitting in polarized neutron reflectometry

    OpenAIRE

    Kozhevnikov, S. V.; Ignatovich, V. K.; Radu, F.

    2017-01-01

    Neutron Zeeman spatial beam-splitting is considered at reflection from magnetically noncollinear films. Two applications of Zeeman beam-splitting phenomenon in polarized neutron reflectometry are discussed. One is the construction of polarizing devices with high polarizing efficiency. Another one is the investigations of magnetically noncollinear films with low spin-flip probability. Experimental results are presented for illustration.

  5. Epithermal neutron beam adoption for lung and pancreatic cancer treatment by boron neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Fukushima, Yuji

    2001-01-01

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreatic cancers using an epithermal neutron beam. The Monte Carlo Neutron Photon (MCNP) calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5 x 10 8 ncm -2 s -1 . The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT using an epithermal neutron beam could be applied for both lung and pancreatic cancer treatment. (author)

  6. Geant4 simulations of NIST beam neutron lifetime experiment

    Science.gov (United States)

    Valete, Daniel; Crawford, Bret; BL2 Collaboration Collaboration

    2017-09-01

    A free neutron is unstable and its decay is described by the Standard Model as the transformation of a down quark into an up quark through the weak interaction. Precise measurements of the neutron lifetime test the validity of the theory of the weak interaction and provide useful information for the predictions of the theory of Big Bang nucleosynthesis of the primordial helium abundance in the universe and the number of different types of light neutrinos Nν. The predominant experimental methods for determination of the neutron lifetime are commonly called `beam' and `bottle' methods, and the most recent uses of each method do not agree with each other within their stated uncertainties. An improved experiment of the beam technique, which uses magnetic and electric fields to trap and guide the decay protons of a beam of cold neutrons to a detector, is in progress at the National Institute of Standards and Technology, Gaithersburg, MD with a precision goal of 0.1. I acknowledge the support of the Cross-Diciplinary Institute at Gettysburg College.

  7. Feasibility Analysis for the Construction of Vertical Neutron Beam in the MNSR

    International Nuclear Information System (INIS)

    Al-Ayoubi, S.; Sulaiman, I.

    2009-06-01

    The MCNP-4C code was used to investigate the possibility of extracting a vertical neutron beam in the MNSR reactor. Code results showed that thermal neutron flux at the exit aperture of about ( 6 x10 5 ) cm -2 s -1 could be obtained and neutron beam properties were determined. (author)

  8. Design considerations for primary neutron beam collimation on the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Howells, W.S.

    1980-09-01

    A scheme for the design of primary neutron beam collimation is presented which is based on ray diagrams. The practical application of the ideas is outlined and the influence of various constraints such as beam shutters is discussed. The ideas are illustrated with examples which include the layouts for some typical instruments. (author)

  9. Vaccum and beam diagnostic controls for ORIC beam lines

    International Nuclear Information System (INIS)

    Tatum, B.A.

    1991-01-01

    Vacuum and beam diagnostic equipment on beam lines from the Oak Ridge Isochronous Cyclotron, ORIC, is now controlled by a new dedicated system. The new system is based on an industrial programmable logic controller with an IBM AT personal computer providing control room operator interface. Expansion of this system requires minimal reconfiguration and programming, thus facilitating the construction of additional beam lines. Details of the implementation, operation, and performance of the system are discussed. 2 refs., 2 figs

  10. Investigations of the neutron halo by radioactive beam experiments

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    Recently, a new tool has become available to study the behaviour of nuclei at the limits of particle stability. Heavy-ion projectile fragmentation, in combination with efficient recoil spectrometers, allows to prepare 'exotic' beams which can be used to induce secondary nuclear reactions. First experiments have revealed surprising features in the reactions of the most neutron-rich light nuclei. There is now conclusive evidence that the observed effects are due to long-tail matter distributions ('neutron halo') which occur for the last, very weakly bound neutrons. The results of some recent radioactive beam experiments, made by means of the spectrometer LISE3 at GANIL, are presented. (author) 24 refs.; 7 figs

  11. Prompt-gamma spectrometry for the optimization of reactor neutron beams in biomedical research

    International Nuclear Information System (INIS)

    Borisov, G.I.; Komkov, M.M.; Leonov, V.F.

    1988-01-01

    In order to select the optimal spectral composition and size for the reactor neutron beams applied to in vivo analysis and therapy in biomedical research it is necessary to determine the spatial slow-neutron flux distributions produced by the beam in the irradiated object and to calculate or measure the neutron dose equivalents of both the original spectrum and the moderated neutrons. In this study the maximum neutron dose equivalents are found by spectrometry of the prompt-γ emission from the interaction of neutrons with atomic nuclei in the irradiated object. Different spectral distributions were produced by using an unfiltered beam together with filters of quartz, cadmium, 10 B, iron, aluminum, and sulfur. The phantom used was a tank filled with an aqueous solution of urea. Cadmium-containing organs were simulated. For in vivo neutron-activation analysis of human tissues at a depth of 2-5 cm it was found advisable to use neutrons of 20-40 keV mean energy with a beam area of at least 45 cm 2

  12. A Kinematically Beamed, Low Energy Pulsed Neutron Source for Active Interrogation

    International Nuclear Information System (INIS)

    Dietrich, D.; Hagmann, C.; Kerr, P.; Nakae, L.; Rowland, M.; Snyderman, N.; Stoeffl, W.; Hamm, R.

    2004-01-01

    We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of SNM (Special Nuclear Materials) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals, (1) Energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) Neutrons with an energy of approximately 60 to 100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n,2n) or (n,n') processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM

  13. A single-beam deuteron compact accelerator for neutron generation

    International Nuclear Information System (INIS)

    Araujo, Wagner Leite; Campos, Tarcisio Passos Ribeiro de

    2011-01-01

    Portable neutron generators are devices composed by small size accelerators that produce neutrons through fusion between hydrogen isotopes. These reactions are characterized by appreciable cross section at energies at the tens of keV, which enables device portability. The project baselines follow the same physical and engineering principles of any other particle accelerators. The generator consists of a gas reservoir, apparatus for ion production, few electrodes to accelerate and focus the ion beam, and a metal hydride target where fusion reactions occur. Neutron generator applications include geophysical measurements, indus- trial process control, environmental, research, nation's security and mechanical structure analysis.This article presents a design of a compact accelerator for d-d neutron generators, describing the physical theory applied to the deuteron extraction system, and simulating the ion beam transport in the accelerator. (author)

  14. Primary study for boron neutron capture therapy uses the RSG-GAS beam tube facility

    International Nuclear Information System (INIS)

    Suroso

    2000-01-01

    The minimum epithermal neutron flux as one of the prerequisite of Boron Neutron Capture Therapy (BNCT) is 1.0 x 10 9 n/(cm 2 s) RSG-GAS have 6 beam tube facilities for neutron source, which is one of the beam tube S-2 has a possibility to utilization for BNCT facility. The totally flux neutron measurement in the front of S-2 beam tube is 1.8 x 10 7 n/(cm 2 s). The neutron flux measurement was less than for BNCT minimum prerequisite. Concerning to the flux neutron production in the reactor, which is reach to 2.5 x 10 14 n/(cm 2 s), there for the S-2 beam tube could be used beside collimator modification

  15. Study of the RP-10 reactor neutron beam applied to the neutron radiography

    International Nuclear Information System (INIS)

    Zegarra, Manuel; Lopez, Alcides

    2013-01-01

    We have studied the RP-10 reactor radial neutron beam No. 3, which is used for neutron radiographies, by comparing radiograph's with and without the inner duct, and neutron flux determination with in flakes along the external duct, being the presence of photons creating signals at comparable levels of neutron effects, which reduce the quality of the analysis, values around 10 6 and 10 4 n/cm 2 s for thermal and epithermal flux were obtained respectively. It is recommended evaluate the design of the internal duct which presents strong photon emission. (authors).

  16. How to polarise all neutrons in one beam: a high performance polariser and neutron transport system

    Science.gov (United States)

    Rodriguez, D. Martin; Bentley, P. M.; Pappas, C.

    2016-09-01

    Polarised neutron beams are used in disciplines as diverse as magnetism,soft matter or biology. However, most of these applications often suffer from low flux also because the existing neutron polarising methods imply the filtering of one of the spin states, with a transmission of 50% at maximum. With the purpose of using all neutrons that are usually discarded, we propose a system that splits them according to their polarisation, flips them to match the spin direction, and then focuses them at the sample. Monte Carlo (MC) simulations show that this is achievable over a wide wavelength range and with an outstanding performance at the price of a more divergent neutron beam at the sample position.

  17. A standardized method for beam design in neutron capture therapy

    International Nuclear Information System (INIS)

    Storr, G.J.: Harrington, B.V.

    1993-01-01

    A desirable end point for a given beam design for Neutron Capture Therapy (NCT) should be quantitative description of tumour control probability and normal tissue damage. Achieving this goal will ultimately rely on data from NCT human clinical trials. Traditional descriptions of beam designs have used a variety of assessment methods to quantify proposed or installed beam designs. These methods include measurement and calculation of open-quotes free fieldclose quotes parameters, such as neutron and gamma flux intensities and energy spectra, and figures-of-merit in tissue equivalent phantoms. The authors propose here a standardized method for beam design in NCT. This method would allow all proposed and existing NCT beam facilities to be compared equally. The traditional approach to determining a quantitative description of tumour control probability and normal tissue damage in NCT research may be described by the following path: Beam design → dosimetry → macroscopic effects → microscopic effects. Methods exist that allow neutron and gamma fluxes and energy dependence to be calculated and measured to good accuracy. By using this information and intermediate dosimetric quantities such as kerma factors for neutrons and gammas, macroscopic effect (absorbed dose) in geometries of tissue or tissue-equivalent materials can be calculated. After this stage, for NCT the data begins to become more sparse and in some areas ambiguous. Uncertainties in the Relative Biological Effectiveness (RBE) of some NCT dose components means that beam designs based on assumptions considered valid a few years ago may have to be reassessed. A standard method is therefore useful for comparing different NCT facilities

  18. Novel neutralized-beam intense neutron source for fusion technology development

    International Nuclear Information System (INIS)

    Osher, J.E.; Perkins, L.J.

    1983-01-01

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D 0 and T 0 beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T 0 + T + space-charge-neutralized beam incident on either a LiD or gas D 2 target with calculated 14-MeV neutron yields of 2 x 10 15 /s, 7 x 10 15 /s, or 1.6 x 10 16 /s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm 2

  19. SU-E-T-542: Measurement of Internal Neutrons for Uniform Scanning Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Zheng, Y; Rana, S [Procure Proton Therapy Center, Oklahoma City, OK (United States); Collums, T [University of Iowa Hospitals and Clinics, Iowa City, IA (United States); Monsoon, J; Benton, E [Oklahoma State University, Stillwater, OK (United States)

    2015-06-15

    Purpose: In proton radiotherapy, the production of neutrons is a wellknown problem since neutron exposure can lead to increased risk of secondary cancers later in the patient’s lifetime. The assessment of neutron exposure is, therefore, important for the overall quality of proton radiotherapy. This study investigates the secondary neutrons created inside the patient from uniform scanning proton beams. Methods: Dose equivalent due to secondary neutrons was measured outside the primary field as a function of distance from beam isocenter at three different angles, 45, 90 and 135 degree, relative to beam axis. Plastic track nuclear detector (CR-39 PNTD) was used for the measurement of neutron dose. Two experimental configurations, in-air and cylindrical-phantom, were designed. In a cylindrical-phantom configuration, a cylindrical phantom of 5.5 cm diameter and 35 cm long was placed along the beam direction and in an in-air configuration, no phantom was used. All the detectors were placed at nearly identical locations in both configurations. Three proton beams of range 5 cm, 18 cm, and 32 cm with 4 cm modulation width and a 5 cm diameter aperture were used. The contribution from internal neutrons was estimated from the differences in measured dose equivalent between in-air and cylindrical-phantom configurations at respective locations. Results: The measured ratio of neutron dose equivalent to the primary proton dose (H/D) dropped off with distance and ranged from 27 to 0.3 mSv/Gy. The contribution of internal neutrons near the treatment field edge was found to be up to 64 % of the total neutron exposure. As the distance from the field edge became larger, the external neutrons from the nozzle appear to dominate and the internal neutrons became less prominent. Conclusion: This study suggests that the contribution of internal neutrons could be significant to the total neutron dose equivalent.

  20. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Aguilar, F.; Paredes, L.; Rivera M, T.

    2013-10-01

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a 6 Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  1. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  2. Cumulative beam break-up study of the spallation neutron source superconducting linac

    CERN Document Server

    Jeon, D; Krafft, G A; Yunn, B; Sundelin, R; Delayen, J; Kim, S; Doleans, M

    2002-01-01

    Beam instabilities due to High Order Modes (HOMs) are a concern to superconducting (SC) linacs such as the Spallation Neutron Source (SNS) linac. The effects of pulsed mode operation on transverse and longitudinal beam breakup instability are studied for H sup - beam in a consistent manner for the first time. Numerical simulation indicates that cumulative transverse beam breakup instabilities are not a concern in the SNS SC linac, primarily due to the heavy mass of H sup - beam and the HOM frequency spread resulting from manufacturing tolerances. As little as +-0.1 MHz HOM frequency spread stabilizes all the instabilities from both transverse HOMs, and also acts to stabilize the longitudinal HOMs. Such an assumed frequency spread of +-0.1 MHz HOM is small, and hence conservative compared with measured values of sigma=0.00109(f sub H sub O sub M -f sub 0)/f sub 0 obtained from Cornell and the Jefferson Lab Free Electron Laser cavities. However, a few cavities may hit resonance lines and generate a high heat lo...

  3. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    Science.gov (United States)

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). 2010 Elsevier Ltd. All rights reserved.

  4. A Micromegas Detector for Neutron Beam Imaging at the n_TOF Facility at CERN

    CERN Document Server

    Belloni, F; Berthoumieux, E; Calviani, M; Chiaveri, E; Colonna, N; Giomataris, Y; Guerrero, C; Gunsing, F; Iguaz, F J; Kebbiri, M; Pancin, J; Papaevangelou, T; Tsinganis, A; Vlachoudis, V; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Corté-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Marítnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A J M; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T J; Žugec, P

    2014-01-01

    Micromegas (Micro-MEsh Gaseous Structure) detectors are gas detectors consisting of a stack of one ionization and one proportional chamber. A micromesh separates the two communicating regions, where two different electric fields establish respectively a charge drift and a charge multiplication regime. The n\\_TOF facility at CERN provides a white neutron beam (from thermal up to GeV neutrons) for neutron induced cross section measurements. These measurements need a perfect knowlodge of the incident neutron beam, in particular regarding its spatial profile. A position sensitive micromegas detector equipped with a B-10 based neutron/charged particle converter has been extensively used at the n\\_TOF facility for characterizing the neutron beam profile and extracting the beam interception factor for samples of different size. The boron converter allowed to scan the energy region of interest for neutron induced capture reactions as a function of the neutron energy, determined by the time of flight. Experimental ...

  5. Triga IPR-R1 neutron beam: increasing the thematic of applications in CDTN

    International Nuclear Information System (INIS)

    Sebastiao, Rita de C.O.; Rodrigues, Rogerio R.; Leal, Alexandre S.

    2007-01-01

    The neutron flux in a research reactor can be used in several applications such as the neutron activation analysis, the radioisotopes production, study of DNA and protein structures, doping of silicon and neutron radiography. The enhancement of the nuclear research reactor utilization with the introduction of new applications would be possible with the availability of a neutron beam and with the neutron energy spectra completely characterized. This work evaluates the use of TRIGA reactor of CDTN/CNEN as a source of neutron beam. The readiness of a neutron beam with appropriate intensity and energy spectrum would make possible the increasing of the thematic of applications and researches in this reactor. The main contribution to this theme is to evaluate the thermal and epithermal neutron flux in the vertical extractor of the TRIGA IPR-R1. The simulation was performed in this work using the MCNP code. (author)

  6. Neutron spectroscopy measurements and modeling of neutral beam heating fast ion dynamics

    International Nuclear Information System (INIS)

    Hellesen, C; Sunden, E Andersson; Conroy, S; Ericsson, G; Johnson, M Gatu; Hjalmarsson, A; Kaellne, J; Ronchi, E; Sjoestrand, H; Weiszflog, M; Albergante, M; Ballabio, L; Gorini, G; Tardocchi, M; Giacomelli, L; Jenkins, I; Voitsekhovitch, I

    2010-01-01

    The energy spectrum of the neutron emission from beam-target reactions in fusion plasmas at the Joint European Torus (JET) has been investigated. Different beam energies as well as injection angles were used. Both measurements and simulations of the energy spectrum were done. The measurements were made with the time-of-flight spectrometer TOFOR. Simulations of the neutron spectrum were based on first-principle calculations of neutral beam deposition profiles and the fast ion slowing down in the plasma using the code NUBEAM, which is a module of the TRANSP package. The shape of the neutron energy spectrum was seen to vary significantly depending on the energy of the beams as well as the injection angle and the deposition profile in the plasma. Cross validations of the measured and modeled neutron energy spectra were made, showing a good agreement for all investigated scenarios.

  7. Application of robot kinematics methods to the simulation and control of neutron beam line positioning systems

    Energy Technology Data Exchange (ETDEWEB)

    James, Jonathan A. [Open University, Materials Engineering, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA (United Kingdom)]. E-mail: j.a.j.james@open.ac.uk; Edwards, Lyndon [Open University, Materials Engineering, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA (United Kingdom)

    2007-02-11

    Neutron stress measurements require specimens of complex geometry to be speedily and accurately positioned and oriented with respect to the neutron beam. Recognition that a majority of the specimen positioning systems in use at strain scanning facilities are effectively serial robot manipulators, suggests that the methods of serial robot kinematic modelling may be applied to advantage. The adoption of robotics methods provides a simple and reliable framework for controlling positioning systems of arbitrary geometry and complexity. In addition the numerical solution of the inverse kinematic problem is facilitated, allowing specimens to be automatically positioned and orientated so that pre-determined strain components are measured. It is also shown that, given sufficient degrees of freedom, a secondary characteristic of the measurement position such as the measurement count time may be simultaneously optimised.

  8. Measured neutron beam line shielding effectiveness of several iron/polyethylene configurations

    International Nuclear Information System (INIS)

    Legate, G.L.; Howe, M.L.; Mundis, R.L.

    1988-01-01

    Neutron and gamma-ray leakage measurements were taken at various stages of shield construction of neutron flight path 5 (the Lash-up flight path) at LANSCE, to compare the relative effectiveness of several configurations. Dose equivalent rates were determined for three categories: ''low-energy neutrons'', below 20 MeV; ''high- energy neutrons'', above 20 MeV; and gamma rays, as measured by hand-held survey instruments. The low energy neutrons were measured by activation of an indium foil in a paraffin-filled cadmium canister, sized to be generally insensitive above 20 MeV. High-energy neutrons were measured by (n,2n) production of Carbon 11 in a plastic scintillator with a 20-MeV threshold. Thermal neutrons were not measured at the shield-leakage test points. Room-scattered neutrons were observed by Albatross IV detector readings, which were taken beside the shield as a measure of variation of room background as the shield configuration changed. 1 fig., 1 tab

  9. Fusion reaction using low energy neutron-excess nucleus beam

    International Nuclear Information System (INIS)

    Fukuda, Tomokazu

    1994-01-01

    The present state and the plan of the experiment of measuring the fusion reaction near barriers by using neutron-excess nucleus beam, which has been advanced at RIKEN are reported. One of the purposes of this experiment is the feasibility investigation of the fusion reaction by using neutron-excess nuclei, which is indispensable for synthesizing superheavy elements. It is intended to systematically explore some enhancing mechanism in the neutron-excess nuclei which are unfavorable in beam intensity. This research can become the good means to prove the dynamic behavior of the neutrons on the surfaces of nuclei in reaction. The fusion reaction of 27 Al + Au was measured by using the stable nucleus beam of 27 Al, and the results are shown. In order to know the low energy fusion reaction of 11 Li and 11 Be which are typical halo nuclei, the identification by characteristic α ray of composite nuclei is carried out in 7,9,11 Li + 209 Bi and 9,10,11 Be + 208 Pb. A new detector having high performance, New MUSIC, is being developed. As the experiment by using this detector, the efficient measurement of the fusion reaction by using heavy neutron-excess nuclei up to Ni is considered. An example of 8 Li + α → 11 B + n reaction for celestial body physics is mentioned. (K.I.)

  10. Beam line design for a low energy electron beam

    International Nuclear Information System (INIS)

    Arvind Kumar; Mahadevan, S.

    2002-01-01

    The design of a beam line for transport of a 70 keV electron beam from a thermionic gun to the Plane Wave Transformer (PWT) linac incorporating two solenoid magnets, a beam profile monitor and drift sections is presented. We used beam dynamics codes EGUN, PARMELA and compare simulated results with analytical calculations. (author)

  11. Flux distribution in phantom for biomedical use of beam-type thermal neutrons

    International Nuclear Information System (INIS)

    Aoki, Kazuhiko; Kobayashi, Tooru; Kanda, Keiji; Kimura, Itsuro

    1985-01-01

    For boron neutron capture therapy, the thermal neutron beam is worth using as therapeutic neutron irradiation without useless and unfavorable exposure of normal tissues around tumor and for microanalysis system to measure ppm-order 10 B concentrations in tissue and to search for the location of the metastasis of tumor. In the present study, the thermal neutron flux distribution in a phantom, when beam-type thermal neutrons were incident on it, was measured at the KUR Neutron Guide Tube. The measurements were carried out by two different methods using indium foil. The one is an ordinary foil activation technique by using the 115 In(n, γ) 116m 1 In reactions, while the other is to detect γ-rays from the 115 In(n, γ) 116m 2 In reactions during neutron irradiations with a handy-type Ge detector. The calculations with DOT 3.5 were performed to examine thermal neutron flux in the phantom for various beam size and phantom size. The experimental and calculated results are in good agreement and it is shown that the second type measurement has a potential for practical application as a new monitoring system of the thermal neutron flux in a living body for boron neutron capture therapy. (author)

  12. Experiments with neutron-rich isomeric beams

    International Nuclear Information System (INIS)

    Rykaczewski, K.; Lewitowicz, M.; Pfuetzner, M.

    1998-01-01

    A review of experimental results obtained on microsecond-isomeric states in neutron-rich nuclei produced in fragmentation reactions and studied with SISSI-Alpha-LISE3 spectrometer system at GANIL Caen is given. The perspectives of experiments based on secondary reactions with isomeric beams are presented

  13. The CERN n_TOF Facility: Neutron Beams Performances for Cross Section Measurements

    CERN Document Server

    Chiaveri, E; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Žugec, P

    2014-01-01

    This paper presents the characteristics of the existing CERN n\\_TOF neutron beam facility (n\\_TOF-EAR1 with a flight path of 185 meters) and the future one (n\\_TOF EAR-2 with a flight path of 19 meters), which will operate in parallel from Summer 2014. The new neutron beam will provide a 25 times higher neutron flux delivered in 10 times shorter neutron pulses, thus offering more powerful capabilities for measuring small mass, low cross section and/or high activity samples.

  14. Dose distributions in thorax inhomogeneity for fast neutron beam from NIRS cyclotron

    International Nuclear Information System (INIS)

    Kutsutani-Nakamura, Yuzuru; Furukawa, Shigeo; Iinuma, T.A.; Kawashima, Katsuhiro; Hoshino, Kazuo; Hiraoka, Takeshi; Maruyama, Takashi; Sakashita, Kunio; Tsunemoto, Hiroshi

    1990-01-01

    The power law tissue-air ratio (TAR) method developed by Batho appears to be practical use for inhomogeneity corrections to the dose calculated in a layered media for photon beam therapy. The validity was examined in applying the modified power law TAR and the isodose shift methods to the dose calculation in thorax tissue inhomogeneity containing the boundary region for fast neutron beam. The neutron beam is produced by bombarding a thick beryllium target with 30 MeV deuterons. Lung phantom was made of granulated tissue equivalent plastic, which resulted in density of 0.30 and 0.60 g/cm 3 . Depth dose distributions for neutron beam were measured in thorax phantom by an air-filled cylindrical ionization chamber with TE plastic wall. The power law TAR method considering TAR of zero depth at boundary was compared with the measured data and a good result was obtained that the calculated dose was within ±3 % against the measured. But the isodose shift method is not so good for dose calculation in thorax tissue inhomogeneity using fast neutron beam. (author)

  15. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Directory of Open Access Journals (Sweden)

    C. Andreani

    2018-02-01

    Full Text Available This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  16. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Science.gov (United States)

    Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.

    2018-02-01

    This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  17. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    International Nuclear Information System (INIS)

    Verbeke, Jerome M.

    1999-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only

  18. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  19. Pulsed neutron source and instruments at neutron facility

    Energy Technology Data Exchange (ETDEWEB)

    Teshigawara, Makoto; Aizawa, Kazuya; Suzuki, Jun-ichi; Morii, Yukio; Watanabe, Noboru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    We report the results of design studies on the optimal target shape, target - moderator coupling, optimal layout of moderators, and neutron instruments for a next generation pulsed spallation source in JAERI. The source utilizes a projected high-intensity proton accelerator (linac: 1.5 GeV, {approx}8 MW in total beam power, compressor ring: {approx}5 MW). We discuss the target neutronics, moderators and their layout. The sources is designed to have at least 30 beam lines equipped with more than 40 instruments, which are selected tentatively to the present knowledge. (author)

  20. Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities

    International Nuclear Information System (INIS)

    Macek, R.J.

    1994-01-01

    The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D)

  1. Precise determination of the degree of polarization of a cold neutron beam

    International Nuclear Information System (INIS)

    Nastoll, H.; Schreckenbach, K.; Baglin, C.; Bussiere, A.; Guillaud, J.P.; Kossakowski, R.; Liaud, P.

    1991-01-01

    A cold neutron beam at the ILL High Flux Reactor was used to produce highly polarized neutrons by means of a bent supermirror polarizer. A following current sheet spin flipper allowed the change of the neutron spin direction relative to the guiding magnetic fields. The degree of polarization of the beam was measured as a function of the neutron velocity in the range 300-1500 m/s achieving an accuracy of 0.2% at typically 98% polarization. Two spin flippers and the permutation of three supermirror polarizers as polarizer/analyzer were employed. (orig.)

  2. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  3. Beam monitoring system for intense neutron source

    International Nuclear Information System (INIS)

    Tron, A.M.

    2001-01-01

    Monitoring system realizing novel principle of operation and allowing to register a two-dimensional beam current distribution within entire aperture (100...200 mm) of ion pipe for a time in nanosecond range has been designed and accomplished for beam control of the INR intense neutron source, for preventing thermo-mechanical damage of its first wall. Key unit of the system is monitor of two-dimensional beam current distribution, elements of which are high resistant to heating by the beam and to radiation off the source. The description of the system and monitor are presented. Implementation of the system for the future sources with more high intensities are discussed. (author)

  4. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements

    International Nuclear Information System (INIS)

    2014-07-01

    The recent advances in the development of nuclear science and technology, demonstrating the globally growing economy, require highly accurate, powerful simulations and precise analysis of the experimental results. Confidence in these results is still determined by the accuracy of the atomic and nuclear input data. For studying material response, neutron beams produced from accelerators and research reactors in broad energy spectra are reliable and indispensable tools to obtain high accuracy experimental results for neutron induced reactions. The IAEA supports the accomplishment of high precision nuclear data using nuclear facilities in particular, based on particle accelerators and research reactors around the world. Such data are essential for numerous applications in various industries and research institutions, including the safety and economical operation of nuclear power plants, future fusion reactors, nuclear medicine and non-destructive testing technologies. The IAEA organized and coordinated the technical meeting Use of Neutron Beams for High Precision Nuclear Data Measurements, in Budapest, Hungary, 10–14 December 2012. The meeting was attended by participants from 25 Member States and three international organizations — the European Organization for Nuclear Research (CERN), the Joint Research Centre (JRC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (OECD/NEA). The objectives of the meeting were to provide a forum to exchange existing know-how and to share the practical experiences of neutron beam facilities and associated instrumentation, with regard to the measurement of high precision nuclear data using both accelerators and research reactors. Furthermore, the present status and future developments of worldwide accelerator and research reactor based neutron beam facilities were discussed. This publication is a summary of the technical meeting and additional materials supplied by the international

  5. Novel optics for conditioning neutron beams. II Focussing neutrons with a 'lobster-eye' optic

    International Nuclear Information System (INIS)

    Allman, B.E.; Cimmino, A.; Griffin, S.L.; Klein, A.G.; Nugent, K.A.

    1998-01-01

    Square-channel capillary, or 'Lobster-eye' arrays have been shown to be the optimum geometry for array optics. This configuration leads to a novel class of conditioning devices for X-ray and neutron beams. We present the first results of the focussing of neutrons with a Pb glass square-channel array. (authors)

  6. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  7. SLIA beam line design

    International Nuclear Information System (INIS)

    Petillo, J.; Chernin, D.; Kostas, C.; Mondelli, A.

    1990-01-01

    The Spiral Line Induction Accelerator (SLIA) is a multi-kiloampere compact electron accelerator. It uses linear induction accelerator modules on the straight sections of a racetrack spiral, with strong-focusing bends to recirculate the electrons. The strong focusing is provided by stellarator windings on the bends. Stellarator coils are used to provide the strong focusing on the bends. The matching of the electron beam from a diode through a series of accelerator modules and stellarator bends is a major issue in the design of this accelerator. The beam line design for a proof-of-concept SLIA experiment (10 kA, 7 MeV) to be carried out at Pulse Sciences, Inc. will be presented. The design will demonstrate beam matching from element to element in the focusing system, the design of an achromatic bend, and the requirements for avoiding collective instabilities

  8. Evaluation of JRR-4 neutron beam using tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Torii, Yoshiya; Kishi, Toshiaki; Horiguchi, Yoji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamamoto, Tetsuya; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Ibaraki (Japan)

    2001-03-01

    For preparation of irradiation plan of boron-neutron capture therapy (BNCT), not only the physical dose is important, but also weighted factors or RBE are also necessary on the evaluation of the effect on the organism. Physical dose calculated by dose evaluation system (JCDS : JAERI Computational Dosimetry System) must appropriately carry out the weighting by various cells like tumor, central nerve, glia, and the vascular in proportion to JRR-4 each irradiation mode. In-vitro biological experiment which used 9L gliosarcoma and C6 glioma in the head water phantom was carried out in order to evaluate these effect. Neutron beam characteristics of JRR-4 were also evaluated from the functions of survival fraction of these cells. As a result of the evaluation, it became clear that the dose evaluation calculated from physical dose of the boron and nitrogen carried out in traditional BNCT of Japan using thermal neutron is applicable for thermal and epi-thermal mixed neutron beam. (author)

  9. Structural design study of a proton beam window for a 1-MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Terada, Atsuhiko; Maekawa, Fujio; Meigo, Shin-ichiro; Kaminaga, Masanori; Ishikura, Syuichi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to manufacture, and the other, curved-type that has high stress resistivity. As a part of design study for the windows, evaluation of strength of structure and thermal hydraulic analysis were conducted. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and stress caused by internal water pressure and thermal stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible. (author)

  10. Radiative capture of cold neutrons by protons and deuteron photodisintegration with twisted beams

    Science.gov (United States)

    Afanasev, Andrei; Serbo, Valeriy G.; Solyanik, Maria

    2018-05-01

    We consider two basic nuclear reactions: capture of neutrons by protons, n + p → γ + d, and its time-reversed counterpart, photodisintegration of the deuteron, γ + d → n + p. In both of these cases we assume that the incoming beam of neutrons or photons is ‘twisted’ by having an azimuthal phase dependence, i.e., it carries an additional angular momentum along its direction of propagation. Taking a low-energy limit of these reactions, we derive relations between corresponding transition amplitudes and cross sections with plane-wave beams and twisted beams. Implications for experiments with twisted cold neutrons and twisted photon beams are discussed.

  11. Implementation of EPICS based Control System for Radioisotope Beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac.

  12. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets

    Science.gov (United States)

    Alejo, A.; Krygier, A. G.; Ahmed, H.; Morrison, J. T.; Clarke, R. J.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.; Kar, S.

    2017-06-01

    A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D2O ice at the rear side, irradiated by sub-petawatt laser pulses (˜200 J, ˜750 fs) at peak intensity ˜ 2× {10}20 {{W}} {{cm}}-2. The neutrons were preferentially produced in a beam of ˜70° FWHM cone along the ion beam forward direction, with maximum energy up to ˜40 MeV and a peak flux along the axis ˜ 2× {10}9 {{n}} {{sr}}-1 for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)3He reaction using the deuteron beam produced by the ice-layered target.

  13. Theoretical study on production of heavy neutron-rich isotopes around the N=126 shell closure in radioactive beam induced transfer reactions

    Directory of Open Access Journals (Sweden)

    Long Zhu

    2017-04-01

    Full Text Available In order to produce more unknown neutron-rich nuclei around N=126, the transfer reactions 136Xe + 198Pt, 136–144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z=72–77 are predicted in the reactions 136–144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line project as well, for production of neutron-rich nuclei around the N=126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N=126 and the advantages get more obvious for producing nuclei with less charge number.

  14. Beamed neutron emission driven by laser accelerated light ions

    Science.gov (United States)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  15. Neutron spectra in two beam ports of a TRIGA Mark III reactor with HEU fuel

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Paredes G, L.; Aguilar, F.

    2012-10-01

    Before to change the HEU for Leu fuel of the ININ's TRIGA Mark III nuclear reactor the neutron spectra were measured in two beam ports using 5 and 10 W. Measurements were carried out in a tangential and a radial beam port using a Bonner sphere spectrometer. It was found that neutron spectra are different in the beam ports, in radial beam port the amplitude of thermal and fast neutrons are approximately the same while, in the tangential beam port thermal neutron peak is dominant. In the radial beam port the fluence-to-ambient dose equivalent factors are 131±11 and 124±10 p Sv-cm 2 for 5 and 10 W respectively while in the tangential beam port the fluence-to-ambient dose equivalent factor is 55±4 p Sv-cm 2 for 10 W. (Author)

  16. Steel research using neutron beam techniques. In-situ neutron diffraction, small-angle neutron scattering and residual stress analysis

    International Nuclear Information System (INIS)

    Sueyoshi, Hitoshi; Ishikawa, Nobuyuki; Yamada, Katsumi; Sato, Kaoru; Nakagaito, Tatsuya; Matsuda, Hiroshi; Arakaki, Yu; Tomota, Yo

    2014-01-01

    Recently, the neutron beam techniques have been applied for steel researches and industrial applications. In particular, the neutron diffraction is a powerful non-destructive method that can analyze phase transformation and residual stress inside the steel. The small-angle neutron scattering is also an effective method for the quantitative evaluation of microstructures inside the steel. In this study, in-situ neutron diffraction measurements during tensile test and heat treatment were conducted in order to investigate the deformation and transformation behaviors of TRIP steels. The small-angle neutron scattering measurements of TRIP steels were also conducted. Then, the neutron diffraction analysis was conducted on the high strength steel weld joint in order to investigate the effect of the residual stress distribution on the weld cracking. (author)

  17. Other applications of neutron beams in material sciences; Autres utilisations des faisceaux de neutrons en science des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Novion, C.H. de

    1997-12-31

    The various applications of neutron beams are reviewed. The different mechanisms involved in neutron interaction with matter are explained. We notice that generally neutron radiation effects are unfavorable but can be turned into efficient tools to add new structures or properties to materials, silicon doping is an example. The basis principles of neutron activation analysis and neutron radiography are described. (A.C.)

  18. A comparison of the potential therapeutic gain of p(66)/Be neutrons and d(14)/Be neutrons

    International Nuclear Information System (INIS)

    Slabbert, Jacobus P.; Theron, Therina; Zoelzer, Friedo; Streffer, Christian; Boehm, Lothar

    2000-01-01

    Purpose: To determine the relationship between photon sensitivity and neutron sensitivity and between neutron RBE and photon resistance for two neutron modalities (with mean energies of 6 and 29 MeV) using human tumor cell lines spanning a wide range of radiosensitivities, the principal objective being whether or not a neutron advantage can be demonstrated. Methods and Materials: Eleven human tumor cell lines with mean photon inactivation doses of 1.65-4.35 Gy were irradiated with 0-5.0 Gy of p(66)/Be neutrons (mean energy of 29 MeV) at Faure, S.A. and the same plating was irradiated on the same day with 0-10.0 Gy of Cobalt-γ-rays . Twelve human tumor cell lines, many of which were identical with the above selection, and spanning mean photon inactivation doses of 1.75-4.08 Gy, were irradiated with 0-4 Gy of d(14)/Be neutrons (mean energy of 6 MeV) and with 0-10 Gy of 240 kVp X-rays at the Essen Klinikum. Cell survival was determined by the clonogenic assay, and data were fitted to the linear quadratic equation. Results: 1. Using the mean inactivation dose, a significant correlation was found to exist between neutron sensitivity and photon sensitivity. However, this correlation was more pronounced in the Faure beam (r 2 = 0.89 , p ≤ 0.0001) than in the Essen beam (r 2 = 0.65, p = 0.0027). 2. No significant relationship could be established between neutron RBE and photon resistance for both modalities (p = 0.69 and p = 0.07, respectively). 3. Using α-coefficients as a criterion, the neutron sensitivity for the Faure beam correlated with photon sensitivity (p = 0.001), but this did not apply to the Essen beam (p = 0.27). 4. The neutron RBE for the Essen beam derived from α-coefficients showed a steep increase with photon resistance (p = 0.003). In the Faure beam there was no increase of RBE with photon resistance (p = 0.494). Conclusion: Radiobiological differences between high-energy and low-energy neutrons are particularly apparent in the dependence of the

  19. Neutron capture studies of {sup 206}Pb at a cold neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Schillebeeckx, P.; Kopecky, S.; Quetel, C.R.; Tresl, I.; Wynants, R. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); Belgya, T.; Szentmiklosi, L. [Institute for Energy Security and Environmental Safety, Centre for Energy Research, Budapest (Hungary); Borella, A. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); SCK CEN, Mol (Belgium); Mengoni, A. [Nuclear Data Section, International Atomic Energy Agency (IAEA), Wagramerstrasse 5, PO Box 100, Vienna (Austria); Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Bologna (Italy)

    2013-11-15

    Gamma-ray transitions following neutron capture in {sup 206}Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in {sup 206}Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed {gamma} -rays have been incorporated into a decay scheme for neutron capture in {sup 206}Pb. Partial capture cross sections for {sup 206}Pb(n, {gamma}) at thermal energy have been derived relative to the cross section for the 1884 keV transition after neutron capture in {sup 14}N. From the average crossing sum a total thermal neutron capture cross section of 29{sup +2}{sub -1} mb was derived for the {sup 206}Pb(n, {gamma}) reaction. The thermal neutron capture cross section for {sup 206}Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of (649 {+-} 14) mb was determined for the {sup 207}Pb(n, {gamma}) reaction. (orig.)

  20. Progress in neutron beam development at the HFR Petten (feasibility study for a BNCT facility)

    International Nuclear Information System (INIS)

    Constantine, G.; Moss, R.L.; Watkins, P.R.D.; Perks, C.A.; Delafield, H.J.; Ross, D.; Voorbraak, W.P.; Paardekooper, A.; Freudenreich, W.E.; Stecher-Rasmussen, F.

    1990-08-01

    Boron Neutron Capture Therapy, using intermediate energy neutrons to achieve the deep penetration essential for treating brain tumours, can be implemented with a filtered reactor neutron beam. This is designed to minimize the mean energy of the neutrons to keep proton recoil damage to the scalp within normal tissue tolerance limits whilst delivering the required thermal neutron fluence to the tumour over a reasonably short period. This can only be realized in conjunction with a high power density reactor. At the Joint Research Centre Petten an optimized neutron filter is currently being built for installation into the HB11 beam tube of the High Flux Reactor HFR. Part of the development leading to this design has been an extensive study of broad spectrum, filtered beam performance on the HB7 beam tube facility. A wide range of calculations was performed using the Monte Carlo code, MCPN, supported by validation experiments in which several filter configuration incorporating aluminium, sulphur, liquid argon, titanium and cadmium were installed for low power measurements of the neutron fluence rate, neutron spectra and beam gamma-ray contamination. The measurements were carried out within a successful European collaboration. Evaluations were made of the reactor core edge and unfiltered beam spectra, for comparison with MCNP calculations. Multi-foil activation methods and also gamma dose determination in the filtered beam using thermo-luminescent detectors were performed by the ECN. The Harwell/ Birmingham University collaborators undertook the neutron spectrum measurements in the filtered beam. proton recoil spectrometry was used above 30 keV, combined with a multi-sphere and BF 3 chamber response modification technique. Subsequent spectrum adjustment was carried out with the SENSAK code. The agreement between the calculated and measured spectra has given confidence in the reactor and filter modelling methods used to design the HB11 therapy facility. (author). 12 refs

  1. Characterisation of neutron beam and gamma spectrometer for PGAA

    International Nuclear Information System (INIS)

    Revay, Zs.; Molnar, G.L.

    2001-01-01

    In the second project year great efforts have been devoted in Budapest to the development of methods and procedures for neutron beam characterisation and spectrometer calibration. These are described here to provide recipes for other laboratories. Some illustrative results obtained on the former thermal guide, and partly on the new cold neutron guide are also given. Preliminary results from the benchmark experiments on flux monitors titanium standard and an unknown sample are also reported. New k o factors for elements of highest priority will be measured on the cold beam only in the near future. (author)

  2. A novel methodology to determine the divergence of a neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Souza, E.S., E-mail: msouza@ien.gov.br [Universidade Federal do Rio de Janeiro, COPPE, Centro de Tecnologia, Cidade Universitaria, Bloco G, Ilha do Fundao, 21945-970 Rio de Janeiro, RJ (Brazil); Almeida, G.L., E-mail: gevlisb@hotmail.com [Instituto de Engenharia Nuclear, Reator Argonauta - CNEN Rua Helio de Almeida 75, Cidade Universitária, Ilha do Fundao, Caixa Postal 68550, CEP 21941-972 Rio de Janeiro, RJ (Brazil); Lopes, R.T., E-mail: ricardo@lin.ufrj.br [Universidade Federal do Rio de Janeiro, COPPE, Centro de Tecnologia, Cidade Universitaria, Bloco G, Ilha do Fundao, 21945-970 Rio de Janeiro, RJ (Brazil)

    2016-12-01

    This work posits a novel approach to characterize the divergence of a neutron beam emerging from a reactor port. Unlike the usual inverse of the L/D ratio, the term divergence as employed here refers to the deviation from an ideal parallel beam emitted from a surface source. Within this concept, an ideal point source in spite of its conical beam would not exhibit any divergence. Hence, the beam divergence of a surface source is more adequately characterized adopting the notion of Rocking Curve - RC, a term borrowed from the X-ray diffraction field. After this idea, every point of the surface source emits neutrons in all directions but with different intensities following a bell-shaped profile. Once the RC semi-width is determined, it is possible to assess its effect upon the quality of an acquired neutron radiograph, since it incorporates degrading agents such as geometrical unsharpness, neutron scattering, noise and statistical dispersion. In this work an inverse procedure is applied, i.e., to use an actual neutron radiograph to find the RC semi-width. To accomplish this task, synthetic images - generated with defined RC semi-widths and object-detector gaps - are compared with experimental ones acquired with the same gaps in order to find the most resemblance between them. The angular semi-width of the best synthetic image is assigned to that of the experimental one, defining thus the aimed beam divergence, which has been compared with a different method with a fair agreement. An equivalent procedure embedded in the algorithm has been employed to evaluate the L/D using the same radiographic images. The outcome fairly agrees with the value inferred from the neutron flux ratio at different locations. Both approaches RC semi-width and L/D ratio yielded consistent results with other utterly different methods. Yet, the rocking curve approach forecasts more precisely the neutron pattern hitting the detector and does not need a precisely machined test-object as required

  3. A novel methodology to determine the divergence of a neutron beam

    International Nuclear Information System (INIS)

    Souza, E.S.; Almeida, G.L.; Lopes, R.T.

    2016-01-01

    This work posits a novel approach to characterize the divergence of a neutron beam emerging from a reactor port. Unlike the usual inverse of the L/D ratio, the term divergence as employed here refers to the deviation from an ideal parallel beam emitted from a surface source. Within this concept, an ideal point source in spite of its conical beam would not exhibit any divergence. Hence, the beam divergence of a surface source is more adequately characterized adopting the notion of Rocking Curve - RC, a term borrowed from the X-ray diffraction field. After this idea, every point of the surface source emits neutrons in all directions but with different intensities following a bell-shaped profile. Once the RC semi-width is determined, it is possible to assess its effect upon the quality of an acquired neutron radiograph, since it incorporates degrading agents such as geometrical unsharpness, neutron scattering, noise and statistical dispersion. In this work an inverse procedure is applied, i.e., to use an actual neutron radiograph to find the RC semi-width. To accomplish this task, synthetic images - generated with defined RC semi-widths and object-detector gaps - are compared with experimental ones acquired with the same gaps in order to find the most resemblance between them. The angular semi-width of the best synthetic image is assigned to that of the experimental one, defining thus the aimed beam divergence, which has been compared with a different method with a fair agreement. An equivalent procedure embedded in the algorithm has been employed to evaluate the L/D using the same radiographic images. The outcome fairly agrees with the value inferred from the neutron flux ratio at different locations. Both approaches RC semi-width and L/D ratio yielded consistent results with other utterly different methods. Yet, the rocking curve approach forecasts more precisely the neutron pattern hitting the detector and does not need a precisely machined test-object as required

  4. Design of thermal neutron beam based on an electron linear accelerator for BNCT.

    Science.gov (United States)

    Zolfaghari, Mona; Sedaghatizadeh, Mahmood

    2016-12-01

    An electron linear accelerator (Linac) can be used for boron neutron capture therapy (BNCT) by producing thermal neutron flux. In this study, we used a Varian 2300 C/D Linac and MCNPX.2.6.0 code to simulate an electron-photoneutron source for use in BNCT. In order to decelerate the produced fast neutrons from the photoneutron source, which optimize the thermal neutron flux, a beam-shaping assembly (BSA) was simulated. After simulations, a thermal neutron flux with sharp peak at the beam exit was obtained in the order of 3.09×10 8 n/cm 2 s and 6.19×10 8 n/cm 2 s for uranium and enriched uranium (10%) as electron-photoneutron sources respectively. Also, in-phantom dose analysis indicates that the simulated thermal neutron beam can be used for treatment of shallow skin melanoma in time of about 85.4 and 43.6min for uranium and enriched uranium (10%) respectively. Copyright © 2016. Published by Elsevier Ltd.

  5. Study of computerized tomography using neutron beam

    International Nuclear Information System (INIS)

    Pereira, W.W.

    1991-05-01

    This paper aims to demonstrate the advantages, shortcomings and complementaries of a tomography development using neutrons over the one employing gamma rays in the context of their applications to non destructive essays. A simulated experimental study was performed in order to compare the two aforementioned tomographic procedures as applied to some materials. These materials were chosen for their clear advantages and complementaries as, for instance, aluminium, iron, plastic and aluminium hydroxide. In this work two tomographic systems, are employed both with parallel beams. The first with a gamma radiation source (Caesium-137), with an energy of 662 KeV and an activity of 3,9 x 10 9 Bq (100 mCi) and the second one employing a neutron source, the Argonaut Reactor of the Instituto de Engenharia Nuclear, IEN/CNEN, from where the thermal neutron beam of about 10 5 n/(cm.s) was obtained. It is possible to conclude from the simulated and experimental results, by means of image analysis and distortion measurements, that for a given material the adequate radiation and its energy may be chosen so as to better characterize it. (author)

  6. National facility for neutron beam research

    Indian Academy of Sciences (India)

    In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview ...

  7. Simulation of a low energy beam transport line

    International Nuclear Information System (INIS)

    Yang Yao; Liu Zhanwen; Zhang Wenhui; Ma Hongyi; Zhang Xuezhen; Zhao Hongwei; Yao Ze'en

    2012-01-01

    A 2.45 GHz electron cyclotron resonance intense proton source and a low energy beam transport line with dual-Glaser lens were designed and fabricated by Institute of Modern Physics for a compact pulsed hadron source at Tsinghua. The intense proton beams extracted from the ion source are transported through the transport line to match the downstream radio frequency quadrupole accelerator. Particle-in-cell code BEAMPATH was used to carry out the beam transport simulations and optimize the magnetic field structures of the transport line. Emittance growth due to space charge and spherical aberrations of the Glaser lens were studied in both theory and simulation. The results show that narrow beam has smaller aberrations and better beam quality through the transport line. To better match the radio frequency quadrupole accelerator, a shorter transport line is desired with sufficient space charge neutralization. (authors)

  8. Diode line scanner for beam diagnostics

    International Nuclear Information System (INIS)

    Gustov, S.A.

    1987-01-01

    The device-scanning diode line is described. It is applied for beam profile measuring with space precision better than ± 0.5 mm and with discreteness of 3 mm along Y-axis and 0.25 mm along X-axis. The device is easy in construction, reliable and has a small time of information acquisition (2-5 min). The working range is from 100 to 10 6 rad/min (10 6 -10 10 part/mm 2 /s for 660 MeV protons). Radioresistance is 10 7 rad. The device can be applied for precise beam line element tuning at beam transporting and emittance measuring. The fixed diode line (a simplified device version) has smaller dimensions and smaller time of data acquisition (2-5 s). It is applied for quick preliminary beamline tuning. The flowsheet and different variants of data representation on beam profile are given

  9. CONTINOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE

    International Nuclear Information System (INIS)

    GLENN, J.W.; TSOUPAS, N.; BROWN, K.A.; BIRYUKOV, V.M.

    2001-01-01

    A method to split off a few percent of the 6 x 10 13 AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given

  10. Standardization of beam line representations

    International Nuclear Information System (INIS)

    Carey, David C.

    1998-01-01

    Standardization of beam line representations means that a single set of data can be used in many situations to represent a beam line. This set of data should be the same no matter what the program to be run or the calculation to be made. We have concerned ourselves with three types of standardization: (1) The same set of data should be usable by different programs. (2) The inclusion of other items in the data, such as calculations to be done, units to be used, or preliminary specifications, should be in a notation similar to the lattice specification. (3) A single set of data should be used to represent a given beam line, no matter what is being modified or calculated. The specifics of what is to be modified or calculated can be edited into the data as part of the calculation. These three requirements all have aspects not previously discussed in a public forum. Implementations into TRANSPORT will be discussed

  11. Standardization of beam line representations

    International Nuclear Information System (INIS)

    Carey, David C.

    1999-01-01

    Standardization of beam line representations means that a single set of data can be used in many situations to represent a beam line. This set of data should be the same no matter what the program to be run or the calculation to be made. We have concerned ourselves with three types of standardization: (1) The same set of data should be usable by different programs. (2) The inclusion of other items in the data, such as calculations to be done, units to be used, or preliminary specifications, should be in a notation similar to the lattice specification. (3) A single set of data should be used to represent a given beam line, no matter what is being modified or calculated. The specifics of what is to be modified or calculated can be edited into the data as part of the calculation. These three requirements all have aspects not previously discussed in a public forum. Implementations into TRANSPORT will be discussed

  12. Characterizing ICF Neutron Scintillation Diagnostics on the nTOF line at SUNY Geneseo

    Science.gov (United States)

    Lawson-Keister, Pat; Padawar-Curry, Jonah; Visca, Hannah; Fletcher, Kurt; Padalino, Stephen; Sangster, T. Craig; Regan, Sean

    2015-11-01

    Neutron scintillator diagnostics for ICF and HEDP can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV tandem Pelletron accelerator. Neutron signals can be differentiated from gamma signals by employing coincidence methods. A 1.8-MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the 2H(d,n)3He reaction. Neutrons emerging at a lab angle of 88° have an energy of 2.96 MeV; the 3He ions associated with these neutrons are detected at a scattering angle of 43° using a surface barrier detector. The time of flight of the neutron can be measured by using the 3He detection as a ``start'' signal and the scintillation detection as a ``stop'' signal. This time of flight requirement is used to identify the 2.96-MeV neutron signals in the scintillator. To measure the light curve produced by these monoenergetic neutrons, two photomultiplier (PMT) tubes are attached to the scintillator. The full aperture PMT establishes the nTOF coincidence. The other PMT is fitted with a pinhole to collect single events. The time between the full aperture PMT signal and the arrival of the signal in the pinhole PMT is used to determine the light curve for the scintillator. This system will enable the neutron response of various scintillators to be compared. Supported in part by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. SU-F-BRE-11: Neutron Measurements Around the Varian TrueBeam Linac

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, R; Seuntjens, J; Kildea, J [McGill University, Montreal, QC (Canada); Liang, L; DeBlois, F [Jewish General Hospital, Montreal, QC (Canada); Evans, M [Montreal General Hospital, Montreal, QC (Canada); Licea, A [Canadian Nuclear Safety Comission, Ottawa, Ontario (Canada); Dubeau, J; Witharana, S [Detec, Gatineau, QC (Canada)

    2014-06-15

    Purpose: With the emergence of flattening filter free (FFF) photon beams, several authors have noted many advantages to their use. One such advantage is the decrease in neutron production by photonuclear reactions in the linac head. In the present work we investigate the reduction in neutrons from a Varian TrueBeam linac using the Nested Neutron Spectrometer (NNS, Detec). The neutron spectrum, total fluence and source strength were measured and compared for 10 MV with and without flattening filter and the effect of moderation by the room and maze was studied for the 15 MV beam. Methods: The NNS, similar to traditional Bonner sphere detectors but operated in current mode, was used to measure the neutron fluence and spectrum. The NNS was validated for use in high dose rate environments using Monte Carlo simulations and calibrated at NIST and NRC Canada. Measurements were performed at several positions within the treatment room and maze with the linac jaws closed to maximize neutron production. Results: The measurements showed a total fluence reduction between 35-40% in the room and maze when the flattening filter was removed. The neutron source strength Qn was calculated from in-room fluence measurements and was found to be 0.042 × 10{sup 2} n/Gy, 0.026 × 10{sup 2} n/Gy and 0.59 × 101{sup 2} n/Gy for the 10 MV, the 10 MV FFF and 15 MV beams, respectively. We measured ambient equivalent doses of 11 mSv/hr, 7 mSv/hr and 218 mSv/hr for the 10 MV, 10 MV FFF and 15 MV by the head. Conclusion: Our measurements revealed a decrease in total fluence, neutron source strength and equivalent dose of approximately 35-40% across the treatment room for the FFF compared to FF modes. This demonstrates, as expected, that the flattening filter is a major component of the neutron production for the TrueBeam. The authors greatly acknowledge support form the Canadian Nuclear Commission and the Natural Sciences and Engineering Research Council of Canada through the CREATE program. Co

  14. Impurity radiation from a beam-plasma neutron source

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1995-01-01

    Impurity radiation, in a worst case evaluation for a beam-plasma neutron source (BPNS), does not limit performance. Impurities originate from four sources: (a) sputtering from walls by charge exchange or alpha particle bombardment, (b) sputtering from limiters, (c) plasma desorption of gas from walls and (d) injection with neutral beams. Sources (c) and (d) are negligible; adsorbed gas on the walls of the confinement chamber and the neutral beam sources is removed by the steady state discharge. Source (b) is negligible for impinging ion energies below the sputtering threshold (T i ≤ 0.025 keV on tungsten) and for power densities to the limiter within the capabilities of water cooling (30-40 MW/m 2 ); both conditions can be satisfied in the BPNS. Source (a) radiates 0.025 MW/m 2 to the neutron irradiation samples, compared with 5 to 10 MW/m 2 of neutrons; and radiates a total of 0.08 MW from the plasma column, compared with 60 MW of injected power. The particle bombardment that yields source (a) deposits an average of 2.7 MW/m 2 on the samples, within the capabilities of helium gas cooling (10 MW/m 2 ). An additional worst case for source (d) is evaluated for present day 2 to 5 s pulsed neutral beams with 0.1% impurity density and is benchmarked against 2XIIB. The total radiation would increase a factor of 1.5 to ≤ 0.12 MW, supporting the conclusion that impurities will not have a significant impact on a BPN. (author). 61 refs, 7 figs, 2 tabs

  15. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    International Nuclear Information System (INIS)

    Khaykovich, B.; Gubarev, M.V.; Bagdasarova, Y.; Ramsey, B.D.; Moncton, D.E.

    2011-01-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  16. A directly heated electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, M.; Masood, K.; Rafiq, M.; Chaudhry, M.A.

    2002-05-01

    A 140-mm cathode length, Electron Beam Line Source with a high degree of focusing of the beam is constructed. The design principles and basic characteristic considerations for electron beam line source consists of parallel plate electrode geometric array as well as a beam power of 35kW are worked out. The dimensions of the beam at the work site are 1.25xl00mm. The gun is designed basically for the study of evaporation and deposition characteristic of refractory metals for laboratory use. However, it may be equally used for melting and casting of these metals. (author)

  17. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    Science.gov (United States)

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  18. Beam line for Schools: beyond expectations

    CERN Multimedia

    Cian O'Luanaigh

    2014-01-01

    Out of 292 proposals for CERN's first ever "Beam line for Schools" contest, two teams of high-school students – Odysseus' Comrades from Varvakios Pilot School in Athens, Greece and Dominicuscollege from Dominicus College in Nijmegen in the Netherlands – were selected to spend 10 days conducting their proposed experiments at the fully equipped T9 beam line on CERN's Meyrin site. Dedicated CERN staff and users from across the departments have put in a huge effort to ensure the success of the project.   Detector physicist Cenk Yidriz (centre, white helmet) explains the setup of the "Beamline for schools" experiment at the T9 beamline. It's finally beam time. After months of organisation, coding, engineering and even painting the experimental area, the T9 beam line is ready to deliver protons to experiments devised and built by high-school students. “They are here to collect data and experience the l...

  19. In-beam γ-ray spectroscopy of the neutron rich 39Si

    International Nuclear Information System (INIS)

    Sohler, D.; Dombradi, Zs.; Achouri, N.L.; Angelique, J.C.; Bastin, B.; Azaiez, F.; Baiborodin, D.; Borcea, R.

    2009-01-01

    Complete text of publication follows. In order to clarify the role of proton excitations across the Z = 14 subshell closure in neutron-rich Si isotopes, we investigated the structure of the 14 39 Si 25 isotope, having three neutron-hole configurations with respect to an N = 28 core. The excited states of 39 Si were studied by in-beam γ-ray spectroscopy trough fragmentation of radioactive beams. The experiment was performed at the GANIL facility in France. The radioactive beams were produced by the fragmentation of the stable 48 Ca beam of 60 MeV/u energy and 4μA intensity on a 12 C target in the SISSI device. The cocktail beam produced was impinged onto a 9 Be target. The nuclei produced in the secondary fragmentation reaction were selected and unambiguously identified by the SPEG spectrometer. In the performed experiment the 39 Si nuclei were obtained via 1p, 1p1n, 2p1n and 2p2n knockout reactions from the 40,41 P and 42,43 S secondary beams. To measure the γ rays emitted from the excited states, the secondary target was surrounded by the 4π 'Chateau de Crystal' array consisting of 74 BaF 2 scintillators. The γ-ray spectra were generated by gating event-by-event on the incoming secondary beam particles and the ejectiles after the secondary target. For the γ rays emitted by the fast moving fragments accurate Doppler correction was performed. From the obtained γ spectra of 39 Si displayed in Figure 1, two strong γ transitions at 163 and 397 keV as well as weaker ones at 303, 657, 906, 1143 and 1551 keV have been identified. γγ coincidences were obtained in 39 Si after having added all data from the various reaction channels giving rise to 39 Si. Analysing these data the 163 keV transition was found to be in coincidence with the 657, 1143 and 1551 keV ones, but not with the 397 keV transition. The two lines of the 303+397 keV doublet are in mutual coincidence, and one or both of them are found in coincidence with the 906 keV transition.

  20. Improved Dose Targeting for a Clinical Epithermal Neutron Capture Beam Using Optional 6Li Filtration

    International Nuclear Information System (INIS)

    Binns, Peter J.; Riley, Kent J.; Ostrovsky, Yakov; Gao Wei; Albritton, J. Raymond; Kiger, W.S.; Harling, Otto K.

    2007-01-01

    Purpose: The aim of this study was to construct a 6 Li filter and to improve penetration of thermal neutrons produced by the fission converter-based epithermal neutron beam (FCB) for brain irradiation during boron neutron capture therapy (BNCT). Methods and Materials: Design of the 6 Li filter was evaluated using Monte Carlo simulations of the existing beam line and radiation transport through an ellipsoidal water phantom. Changes in beam performance were determined using three figures of merit: (1) advantage depth (AD), the depth at which the total biologically weighted dose to tumor equals the maximum weighted dose to normal tissue; (2) advantage ratio (AR), the ratio of the integral tumor dose to that of normal tissue averaged from the surface to the AD; and (3) advantage depth dose rate (ADDR), the therapeutic dose rate at the AD. Dosimetry performed with the new filter installed provided calibration data for treatment planning. Past treatment plans were recalculated to illustrate the clinical potential of the filter. Results: The 8-mm-thick Li filter is more effective for smaller field sizes, increasing the AD from 9.3 to 9.9 cm, leaving the AR unchanged at 5.7 but decreasing the ADDR from 114 to 55 cGy min -1 for the 12 cm diameter aperture. Using the filter increases the minimum deliverable dose to deep seated tumors by up to 9% for the same maximum dose to normal tissue. Conclusions: Optional 6 Li filtration provides an incremental improvement in clinical beam performance of the FCB that could help to establish a therapeutic window in the future treatment of deep-seated tumors

  1. Detailed characterisation of the incident neutron beam on the TOSCA spectrometer

    Science.gov (United States)

    Pinna, Roberto S.; Rudić, Svemir; Capstick, Matthew J.; McPhail, David J.; Pooley, Daniel E.; Howells, Gareth D.; Gorini, Giuseppe; Fernandez-Alonso, Felix

    2017-10-01

    We report a detailed characterisation of the incident neutron beam on the TOSCA spectrometer. A bespoke time-of-flight neutron monitor has been designed, constructed and used to perform extensive spatially resolved measurements of the absolute neutron flux and its underlying time structure at the instrument sample position. The obtained data give a quantitative understanding of the current instrument beyond neutronic simulations and provide a baseline in order to assess the performance of the upgraded instrument. At an average proton current-on-target of 153 μA (ISIS Target Station 1; at the time of measurements) we have found that the wavelength-integrated neutron flux (from 0.28 Å to 4.65 Å) at the position of the TOSCA instrument sample (spatially averaged across the 3 × 3cm2 surface centred around (0,0) position) is approximately 1 . 2 × 106 neutrons cm-2s-1, while the whole beam has a homogeneous distribution across the 3 . 0 × 3 . 5cm2 sample surface. The spectra reproduced the well-known shape of the neutrons moderated by the room temperature water moderator and exhibit a neutron flux of 7 . 3 × 105 neutrons cm-2s-1Å-1 at 1 Å.

  2. Pilot experimental study on continual spectrum thermal neutron in-line phase contrast radiography

    International Nuclear Information System (INIS)

    Tang Bin; Huo Heyong; Wu Yang

    2009-01-01

    The in-line phase contrast radiography is one of phase contrast imaging methods. The neutron in-line phase contrast is developed with X-rays phase contrast radiography. In the paper, the principle of in-line phase contrast is introduced briefly and the experimental result of thermal neutron in-line contrast at SPRR-300 is analysed. It shows that thermal neutron can be used as in-line phase contrast radiography and enhances the edge of some sample in radiography and complements the disadvantage of conventional neutron radiography. (authors)

  3. Development of BPM/BLM DAQ System for KOMAC Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Song, Young-Gi; Kim, Jae-Ha; Yun, Sang-Pil; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2016-10-15

    The proton beam is accelerated from 3 MeV to 100 MeV through 11 DTL tanks. The KOMAC installed 10 beam lines, 5 for 20-MeV beams and 5 for 100-MeV beams. The proton beam is transmitted to two target room. The KOMAC has been operating two beam lines, one for 20 MeV and one for 100 MeV. New beam line, RI beam line is under commissioning. A Data Acquisition (DAQ) system is essential to monitor beam signals in an analog front-end circuitry from BPM and BLM at beam lines. A data acquisition (DAQ) system is essential to monitor beam signals in an analog front-end circuitry from BPM and BLM at beam lines. The DAQ digitizes beam signal and the sampling is synchronized with a reference signal which is an external trigger for beam operation. The digitized data is accessible by the Experimental Physics and Industrial Control System (EPICS)-based control system, which manages the whole accelerator control. The beam monitoring system integrates BLM and BPM signals into the control system and offers realtime data to operators. The IOC, which is implemented with Linux and a PCI driver, supports data acquisition as a very flexible solution.

  4. Generalized emittance measurements in a beam transport line

    International Nuclear Information System (INIS)

    Skelly, J.; Gardner, C.; Luccio, A.; Kponou, A.; Reece, K.

    1991-01-01

    Motivated by the need to commission 3 beam transport lines for the new AGS Booster project, we have developed a generalized emittance-measurement program; beam line specifics are entirely resident in data tables, not in program code. For instrumentation, the program requires one or more multi-wire profile monitors; one or multiple profiles are acquired from each monitor, corresponding to one or multiple tunes of the transport line. Emittances and Twiss parameters are calculated using generalized algorithms. The required matix descriptions of the beam optics are constructed by an on-line general beam modeling program. Design of the program, its algorithms, and initial experience with it will be described. 4 refs., 2 figs., 1 tab

  5. Summary of mirror experiments relevant to beam-plasma neutron source

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1988-01-01

    A promising design for a deuterium-tritium (DT) neutron source is based on the injection of neutral beams into a dense, warm plasma column. Its purpose is to test materials for possible use in fusion reactors. A series of designs have evolved, from a 4-T version to an 8-T version. Intense fluxes of 5--10 MW/m 2 is achieved at the plasma surface, sufficient to complete end-of-life tests in one to two years. In this report, we review data from earlier mirror experiments that are relevant to such neutron sources. Most of these data are from 2XIIB, which was the only facility to ever inject 5 MW of neutral beams into a single mirror call. The major physics issues for a beam-plasma neutron source are magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, cold-ion fueling of the midplane to allow two-component reactions, and operation in the Spitzer conduction regime, where the power is removed to the ends by an axial gradient in the electron temperature T/sub e/. We show in this report that the conditions required for a neutron source have now been demonstrated in experiments. 20 refs., 15 figs., 3 tabs

  6. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosunen, A

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?){sup water} {sub air}, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in {sup 60}Co gamma beams. In photon beam dosimetry (S I ?){sup water} {sub air} can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation

  7. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    International Nuclear Information System (INIS)

    Kosunen, A.

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?) water air , in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in 60 Co gamma beams. In photon beam dosimetry (S I ?) water air can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation). To improve the accuracy

  8. 750 keV beam line construction at the KEK

    International Nuclear Information System (INIS)

    Ishimaru, H.; Anami, S.; Inagaki, T.; Sakaue, T.; Itoh, K.; Fukumoto, S.

    1976-01-01

    The construction of 750 keV beam line of the KEK injector of the 12 GeV proton synchrotron was described. The beam line consists of the beam focusing quadrupoles, vacuum system, the electrostatic chopper and the various beam monitors. (author)

  9. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  10. System for detecting neutrons in the harsh radiation environment of a relativistic electron beam

    International Nuclear Information System (INIS)

    Kruse, L.W.

    1978-06-01

    Newly developed detectors and procedures allow measurement of neutron yield and energy in the harsh radiation environment of a relativistic electron beam source. A new photomultiplier tube design and special gating methods provide the basis for novel time-of-flight and total-yield detectors. The technique of activation analysis is expanded to provide a neutron energy spectrometer. There is a demonstrated potential in the use of the integrated system as a valuable diagnostic tool to study particle-beam fusion, intense ion-beam interactions, and pulsed neutron sources for simulating weapons effects. A physical lower limit of 10 8 neutrons into 4π is established for accurate and meaningful measurements in the REB environment

  11. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  12. Instrumentation to handle thermal polarized neutron beams

    NARCIS (Netherlands)

    Kraan, W.H.

    2004-01-01

    In this thesis we investigate devices needed to handle the polarization of thermal neutron beams: Ï/2-flippers (to start/stop Larmor precession) and Ï-flippers (to reverse polarization/precession direction) and illustrate how these devices are used to investigate the properties of matter and of the

  13. The IFUSP microtron accelerator beam transport line

    International Nuclear Information System (INIS)

    Rios, Paulo Beolchi

    2002-01-01

    In this work, the electron optical project of the IFUSP microtron beam transport line is presented, including the operational values for the parameters of the dipolar and quadrupolar electromagnets, as well as their location along the beam line. Analytical calculations and computer simulations were performed to obtain these results, and a programming tool was developed in order to analyze the beam parameters and to help studying racetrack microtrons. The electron optical simulations were split into two different study cases: the microtron booster, and the transfer line. In the first case, it was determined the main operational parameters of a microtron working far from its usual stability conditions. In the latter, it was done the basic design of the linking line between the booster and main (not yet built) microtrons, and between them and the experimental hall, with a total path length of approximately 32 m including large horizontal and vertical deflections with variable beam energy. (author)

  14. Overview on neutron beam industry-focused strategic research in Malaysia

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed; Razali Kassim; Abdul Jalil Abdul Hamid; Azali Muhammad; Muhammad Rawi Mohd Zain; Azhar Azmi

    2002-01-01

    The TRIGA MARK II research reactor (RTP) at the Malaysian Institute for Nuclear Technology Research (MINT) was commissioned in July 1982. RTP is a 1 MW steady state reactor which being used for reactor training and research related to neutron. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. Projects undertaken are the development and utilization of the neutron radiography (myNR) and small angle neutron scattering (mySANS) facilities. This poster highlights the recent status the above neutron beam facilities and their application in materials science and technology research and education. (Author)

  15. Fail-safe ion chamber errant beam detector tailored for personnel protection

    International Nuclear Information System (INIS)

    Plum, M.A.; Browman, A.A.; Brown, D.; Lee, D.M.; McCabe, C.W.

    1989-01-01

    This fail-safe ion chamber system is designed to be part of the personnel safety system (PSS) for the Los Alamos neutron Scattering Center (LANSCE) at the Los Alamos National Laboratory. Its job is to protect the occupants of the experimental areas from large radiation doses caused by errant beam conditions during beam transport from the Proton Storage Ring (PSR) to the LANSCE neutron spallation target. Due to limited shielding between the beam transport line and the experimental area only if the beam losses in the transport line are very low. The worst case beam spill scenario is calculated to result in a personnel exposure of about 0.01 Gys/s (1 rad/s). Although the preferred solution is to increase the bulk shielding between the beam line and the experimental area, the physical dimensions of the site do not permit an adequate amount of shielding to be added. The solution adopted is a layered system of three types of highly reliable detector systems: a current limiter system located in the beam line, a neutron detector system located in the experimental areas, and an ion chamber system located on the walls of the beam line tunnels. The ion chamber system is capable of shutting off the beam in less than 0.5 s, resulting in a worst case personnel exposure of 0.005 Gys (0.5 rad). 4 figs

  16. Straight lines of neutron scattering in biology: a review of basic controls in SANS and EINS.

    Science.gov (United States)

    Zaccai, Giuseppe

    2012-10-01

    Neutron and X-ray beams in scattering experiments have similar wavelengths and explore the same length scale (~1 Å or 0.1 nm). Data collection and analysis are also broadly similar for both radiation types. There are fundamental differences, however, between the interaction of X-rays and neutrons with matter, which makes them strongly complementary for structural studies in biology. The property of neutrons to distinguish natural abundance hydrogen from its deuterium isotope and the dispersion relation that leads to the energy of ~1 Å neutrons being of the order of thermal energy are well known. They form the basis, respectively, of contrast variation on the one hand and energy-resolved scattering experiments to study macromolecular dynamics-neutron-specific scattering methods on the other. Interestingly, analysis procedures for the structural and dynamics experiments display common aspects that can be expressed as straight-line relationships. These not only act as controls of good sample preparation, but also yield model-free parameters on an absolute scale that provide fundamental information on the structure and dynamics of the system under study.

  17. Spallation neutron source target station design, development, and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R., E-mail: hainesjr@ornl.gov; McManamy, T.J.; Gabriel, T.A.; Battle, R.E.; Chipley, K.K.; Crabtree, J.A.; Jacobs, L.L.; Lousteau, D.C.; Rennich, M.J.; Riemer, B.W.

    2014-11-11

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  18. Investigation on the neutron beam characteristics for boron neutron capture therapy with 3D and 2D transport calculations

    International Nuclear Information System (INIS)

    Kodeli, I.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    In the framework of future Boron Neutron Capture Therapy (BNCT) experiments, where cells and animals irradiations are planned at the research reactor of Strasbourg University, the feasibility to obtain a suitable epithermal neutron beam is investigated. The neutron fluence and spectra calculations in the reactor are performed using the 3D Monte Carlo code TRIPOLI-3 and the 2D SN code TWODANT. The preliminary analysis of Al 2 O 3 and Al-Al 2 O 3 filters configurations are carried out in an attempt to optimize the flux characteristics in the beam tube facility. 7 figs., 7 refs

  19. On-line spectroscopy with thermal atomic beams

    International Nuclear Information System (INIS)

    Thibault, C.; Guimbal, P.; Klapisch, R.; Saint Simon, M. de; Serre, J.M.; Touchard, F.; Duong, H.T.; Jacquinot, P.; Juncar, P.

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a cw tunable dye laser interacts at right angles with a thermal atomic beam. sup(76-98)Rb, sup(118-145)Cs and sup(208-213)Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while sup(20-31)Na and sup(38-47)K have been studied by setting the apparaturs directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. (orig.)

  20. Beam neutron energy optimization for boron neutron capture therapy using monte Carlo method

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Shekarian, E.

    2006-01-01

    In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b), the treatment of deep seated tumors such as glioblastoma multiform requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalized in the proximity of the tumor. Dosage from recoil proton associated with fast neutrons however poses some constraints on maximum neutron energy that can be used in the treatment. For this reason neutrons in the epithermal energy range of 10eV-10keV are generally to be the most appropriate. The simulation carried out by Monte Carlo methods using MCBNCT and MCNP4C codes along with the cross section library in 290 groups extracted from ENDF/B6 main library. The ptimal neutron energy for deep seated tumors depends on the sue and depth of tumor. Our estimated optimized energy for the tumor of 5cm wide and 1-2cm thick stands at 5cm depth is in the range of 3-5keV

  1. Some aspects of VUV beam line design

    International Nuclear Information System (INIS)

    Gaupp, A.; Peatman, W.

    1997-01-01

    Some aspects of the design and usage of vacuum ultraviolet beam lines are discussed. Fermat's principle for imaging is introduced and applied to grating monochromators. Some typical vacuum ultraviolet beam lines are presented, and some further topics believed to be of importance today and in the future are mentioned. (author)

  2. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, M., E-mail: osipenko@ge.infn.it [INFN, sezione di Genova, 16146 Genova (Italy); Ripani, M. [INFN, sezione di Genova, 16146 Genova (Italy); Alba, R. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Ricco, G. [INFN, sezione di Genova, 16146 Genova (Italy); Schillaci, M. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Barbagallo, M. [INFN, sezione di Bari, 70126 Bari (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Celentano, A. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy); Colonna, N. [INFN, sezione di Bari, 70126 Bari (Italy); Cosentino, L.; Del Zoppo, A.; Di Pietro, A. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Esposito, J. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Figuera, P.; Finocchiaro, P. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Kostyukov, A. [Moscow State University, Moscow 119992 (Russian Federation); Maiolino, C.; Santonocito, D.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Viberti, C.M. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy)

    2013-09-21

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a {sup 3}He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  3. Characterization of a polychromatic neutron beam diffracted by pyrolytic graphite crystals

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    The beam spectrum for polychromatic neutrons diffracted by pyrolytic graphite crystals was characterized. The theoretical beam spectrum was obtained using the diffraction model for a mosaic crystal. The lattice vibration effects were included in the calculation using the reported vibration amplitude of the crystal and the measured time-of-flight spectra in the thermal region. The calculated beam spectrum was compared with the results obtained in the absence of thermal motion. The lattice vibration effects became more important for the higher diffraction orders and a large decrease in the neutron flux induced by the vibrations was identified in the epithermal region. The validity of the beam spectrum was estimated by comparing with the effective quantities determined from prompt gamma-ray measurements and Cd-ratios measured both for 1/nu and non-1/nu nuclides.

  4. Design of an irradiation facility with thermal, epithermal and fast neutron beams

    International Nuclear Information System (INIS)

    Pfister, G.; Bernnat, W.; Seidel, R.; Schatz, A.K.; Wagner, F.M.; Waschkowski, W.; Schraube, H.

    1992-01-01

    The main features of a neutron irradiation facility to be installed at the planned research reactor FRM-II are presented. In addition to the operational possibilities of the existing facility at the reactor FRM-I, the new facility will produce quasi-monoenergetic neutron fields and a neutron beam in the keV region whose spectrum can be modified by application of suitable filters and scatterers. For this beam, which is well suited for boron capture therapy, calculated boron reaction rates inside a phantom and an experimental verification of the calculations at the existing facility are presented. (orig.) [de

  5. Measurement of Relative Biological Effectiveness (RBE) for the Radiation Beam from Neutron Source Reactor YAYOI -Comparisons with Cyclotron Neutron and 60Co Gamma Ray-

    OpenAIRE

    HIROAKI, WAKABAYASHI; SHOZO, SUZUKI; AKIRA, ITO; Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo; Institute of Medical Science, the University of Tokyo; Institute of Medical Science, the University of Tokyo

    1983-01-01

    Radiation biology and/or therapy research and development for a research reactor beam need specific RBEs of neutrons as well as of specific reactions. RBEs for reactor beams measured in situ condition are interesting because actual radiation effects on each biological system are different depending on detailed conditions of irradiation. A small powered research reactor (Fast Neutron Source Reactor: YAYOI) was examined here as a neutron beam source for obtaining survival curves in a manner usu...

  6. Beam instrumentation for the BNL Heavy Ion Transfer Line

    International Nuclear Information System (INIS)

    Witkover, R.L.; Buxton, W.; Castillo, V.; Feigenbaum, I.; Lazos, A.; Li, Z.G.; Smith, G.; Stoehr, R.

    1987-01-01

    The Heavy Ion Transfer Line (HITL) was constructed to transport beams from the BNL Tandem Van de Graaff (TVDG) to be injected into the AGS. Because the beam line is approximately 2000 feet long and the particle rigidity is so low, 20 beam monitor boxes were placed along the line. The intensity ranges from 1 to 100 nanoAmps for the dc trace beam used for line set-up, to over 100 μA for the pulsed beam to be injected into the AGS. Profiles are measured using multiwire arrays (HARPS) while Faraday cups and beam transformers monitor the intensity. The electronics stations are operated through 3 Instrumentation Controllers networked to Apollo workstations in the TVDG and AGS control rooms. Details of the detectors and electronics designs and performance will be given

  7. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons

    International Nuclear Information System (INIS)

    Lau, Ch.

    2000-01-01

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons

  8. Establishment of the Neutron Beam Research Facility at the OPAL Reactor

    International Nuclear Information System (INIS)

    Kennedy, S.J.; Robinson, R.A.

    2012-01-01

    Full text: Australia's first research reactor, HIFAR, reached criticality in January 1958. At that time Australia's main agenda was establishment of a nuclear power program. HIFAR operated for nearly 50 years, providing a firm foundation for the establishment of Australia's second generation research Reactor OPAL, which reached criticality in August 006. In HIFAR's early years a neutron beam facility was established for materials characterization, partly in aid of the nuclear energy agenda and partly in response to interest from Australia's scientific community. By the time Australia's nuclear energy program ceased (in the 1970s), radioisotope production and research had also been established at Lucas Heights. Also, by this time the neutron beam facility for scientific research had evolved into a major utilization programme, warranting establishment of an independent body to facilitate scientific access (the Australian Institute for Nuclear Science and Engineering). In HIFAR's lifetime, ANSTO established a radiopharmaceuticals service for the Australian medical community and NDT silicon production was also established and grew to maturity. So when time came to determine the strategy for nuclear research in Australia into the 21st century, it was clear that the replacement for HIFAR should be multipurpose, with major emphases on scientific applications of neutron beams and medical isotope production. With this strategy in mind, ANSTO set about to design and build OPAL with a world-class neutron beam facility, capable of supporting a large and diverse scientific research community. The establishment of the neutron beam facility became the mission of the Bragg Institute management team. This journey began in 1997 with establishment of a working budget, and reached its first major objective when OPAL reached 20 MW thermal power nearly one decade later (in 2006). The first neutron beam instruments began operation soon after (in 2007), and quickly proved themselves to be

  9. Use of GEANT4 vs. MCNPX for the characterization of a boron-lined neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Ende, B.M. van der; Atanackovic, J.; Erlandson, A.; Bentoumi, G.

    2016-06-01

    This work compares GEANT4 with MCNPX in the characterization of a boron-lined neutron detector. The neutron energy ranges simulated in this work (0.025 eV to 20 MeV) are the traditional domain of MCNP simulations. This paper addresses the question, how well can GEANT4 and MCNPX be employed for detailed thermal neutron detector characterization? To answer this, GEANT4 and MCNPX have been employed to simulate detector response to a {sup 252}Cf energy spectrum point source, as well as to simulate mono-energetic parallel beam source geometries. The {sup 252}Cf energy spectrum simulation results demonstrate agreement in detector count rate within 3% between the two packages, with the MCNPX results being generally closer to experiment than are those from GEANT4. The mono-energetic source simulations demonstrate agreement in detector response within 5% between the two packages for all neutron energies, and within 1% for neutron energies between 100 eV and 5 MeV. Cross-checks between the two types of simulations using ISO-8529 {sup 252}Cf energy bins demonstrates that MCNPX results are more self-consistent than are GEANT4 results, by 3–4%.

  10. Physical parameters and biological effects of the LVR-15 epithermal neutron beam

    International Nuclear Information System (INIS)

    Burian, J.; Marek, M.; Rejchrt, J.; Viererbl, L.; Gambarini, G.; Mares, V.; Vanossi, E.; Judas, L.

    2006-01-01

    Monitoring of the physical and biological properties of the epithermal neutron beam constructed at the multipurpose LVR-15 nuclear reactor for NCT therapy of brain tumors showed that its physical and biological properties are stable in time and independent on an ad hoc reconfiguration of the reactor core before its therapeutic use. Physical parameters were monitored by measurement of the neutron spectrum, neutron profile, fast neutron kerma rate in tissue and photon absorbed dose, the gel dosimetry was used with the group of standard measurement methods. The RBE of the beam, as evaluated by 3 different biological models, including mouse intestine crypt regeneration assay, germinative zones of the immature rat brain and C6 glioma cells in culture, ranged from 1.70 to 1.99. (author)

  11. Use of Neutron Beams for Materials Research Relevant to the Nuclear Energy Sector

    International Nuclear Information System (INIS)

    2015-10-01

    Nuclear technologies such as fission and fusion reactors, including associated waste storage and disposal, rely on the availability of not only nuclear fuels but also advanced structural materials. In 2010–2013, the IAEA organized and implemented the Coordinated Research Project (CRP) on Development, Characterization and Testing of Materials of Relevance to Nuclear Energy Sector Using Neutron Beams. A total of 19 institutions from 18 Member States (Argentina, Australia, Brazil, China, Czech Republic, France, Germany, Hungary, Indonesia, Italy, Japan, Netherlands, Republic of Korea, Romania, Russian Federation (two institutions), South Africa, Switzerland and United States of America) cooperated with the main objective to address the use of various neutron beam techniques for characterization, testing and qualification of materials and components produced or under development for applications in the nuclear energy sector. This CRP aimed to bring stakeholders and end users of research reactors and accelerator based neutron sources together for the enhanced use of available facilities and development of new infrastructures for applied materials research. Work envisioned under this CRP was related to the optimization and validation of neutron beam techniques, including facility and instrument modifications/optimizations as well as improved data acquisition, processing and analysis systems. Particular emphasis was placed on variable environments during material characterization and testing as required by some applications such as intensive irradiation load, high temperature and high pressure conditions, and the presence of strong magnetic fields. Targeted neutron beam techniques were neutron diffraction, small angle neutron scattering and digital neutron radiography/tomography. This publication is a compilation of the main results and findings of the CRP, and the CD-ROM accompanying this publication contains 19 reports with additional relevant technical details

  12. Hard X ray lines from neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.

    1982-01-01

    Experimental evidence is presented and evaluated concerning the features of the hard X-ray spectra detected in a number of cosmic X-ray sources which contain a neutron star. The strong emission line at cyclotron resonance detected in the spectrum of Her XI at an energy of 58 keV is evaluated and the implications of this finding are discussed. Also examined is the presence of spectral features in the energy range 20-80 keV found in the spectra of gamma-ray bursts, which have been interpreted as cyclotron resonance from interstellar-gas-accreting neutron stars. The less understood finding of a variable emission line at approximately 70 keV in the spectrum of the Crab Pulsar is considered. It is determined that several features varying with time are present in the spectra of cosmic X-ray sources associated with neutron stars. If these features are due to cyclotron resonance, it is suggested that they provide a direct measurement of neutron star magnetic fields on the order of 10 to the 11th-10 to the 13th Gauss. However, the physical condition of the emitting region and its geometry are still quite obscure.

  13. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  14. Development of a monoenergetic neutron beam (Theoretical aspects, experimental developments and applications)

    International Nuclear Information System (INIS)

    Varela G, A.

    2003-01-01

    By the use of a neutron time of flight system at the Tandem Accelerator of the National Nuclear Research Institute; with neutrons provided by means of the 2 H(d, n) 3 He we intend to use the associated particle technique in order to have monoenergetic neutrons. This neutron beam will be used both in basic and applied research. (Author)

  15. Neutronics and radiation field studies for the RIA fragmentation target area

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Susana [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)]. E-mail: reyes20@llnl.gov; Boles, Jason L. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Ahle, Larry E. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Stein, Werner [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)

    2006-06-23

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kw for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  16. Neutronics and radiation field studies for the RIA fragmentation target area

    Science.gov (United States)

    Reyes, Susana; Boles, Jason L.; Ahle, Larry E.; Stein, Werner

    2006-06-01

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kW for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  17. The structure of neutron-rich nuclei explored via in-beam gamma-ray spectroscopy of fast beams

    International Nuclear Information System (INIS)

    Glasmacher, T.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Hansen, P.G.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Bazin, D.; Enders, J.; Gade, A.; Hu, Z.; Mueller, W.F.

    2003-01-01

    In-beam gamma-ray spectroscopy with fast exotic beams provides an efficient tool to study bound states in exotic neutron-rich nuclei. Specialized experimental techniques have been developed and explore different aspects of nuclear structure. Inelastic scattering experiments with γ-ray detection can measure the response of exotic nuclei to electromagnetic (Coulomb excitation with a heavy target) or hadronic probes (proton scattering with hydrogen target). In-beam fragmentation populates higher-lying bound states to establish levels. Single- and two-nucleon knockout reactions allow for detailed wavefunction spectroscopy of individual levels and for the measurement of spectroscopic factors. Experimental programs employing these techniques are now underway at all projectile-fragmentation facilities around the world. Here we report on several successful in-beam gamma-ray spectroscopy experiments that have been performed at the Coupled Cyclotron Facility at Michigan State University with an emphasis on elucidating the evolution of nuclear structure around neutron numbers N=16, N=20, and N=28 in the π(sd) shell. (orig.)

  18. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  19. A beam position feedback system for beam lines at the photon factory

    International Nuclear Information System (INIS)

    Katsura, T.; Kamiya, Y.; Haga, K.; Mitsuhashi, T.

    1987-01-01

    The beam position of the synchrotron radiation produced from the Storage Ring was stabilized by a twofold position feedback system. A digital feedback system was developed to suppress the diurnal beam movement (one cycle of sin-like drifting motion per day) which became a serious problem in low-emittance operation. The feedback was applied to the closed-orbit-distortion (COD) correction system in order to cancel the position variation at all the beam lines proportionately to the variation monitored at one beam line. An analog feedback system is also used to suppress frequency components faster than the slow diurnal movement

  20. BEAM LINE DESIGN FOR THE CERN HIRADMAT TEST FACILITY

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2009-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×1013 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  1. Beam Line Design for the CERN Hiradmat Test Facility

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2010-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×10**13 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  2. Deuteron beam interaction with Li jet for a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1995-09-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (>14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities

  3. Deuteron beam interaction with lithium jet in a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1996-01-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities. (orig.)

  4. Neutron time behavior for deuterium neutral beam injection into a hydrogen plasma in ORMAK

    International Nuclear Information System (INIS)

    England, A.C.; Howe, H.C.; Mihalczo, J.T.; Fowler, R.H.

    1977-10-01

    Neutrons were produced by D-D interactions when a 28-keV deuterium beam was coinjected into a hydrogen plasma in the Oak Ridge Tokamak (ORMAK). Fokker-Planck calculations, which correctly predict the time behavior of the neutron rate after beam turnon, show that the majority of the neutrons are from injected particles interacting with previously injected deuterons that have scattered to pitch angles of approximately 60 to 90 0 while slowing down

  5. Non-classical neutron beams for fundamental and solid state research

    International Nuclear Information System (INIS)

    Rauch, H.

    2008-01-01

    The curious dual nature of the neutron, sometimes a particle, sometimes a wave, is wonderfully manifested in the various non-local interference and quantum contextuality effects observed in neutron interferometry. Non-classical states may become useful for novel fundamental and solid state research. Here we discuss unavoidable quantum losses as they appear in neutron phase-echo and spin rotation experiments and we show how entanglement effects in a single particle system demonstrate quantum contextuality. In all cases of interactions, parasitic beams are produced which cannot be recombined completely with the original beam. This means that a complete reconstruction of the original state would, in principle, be impossible which causes a kind of intrinsic irreversibility. Even small interaction potentials can have huge effects when they are applied in quantum Zeno-like experiments. Recently, it has been shown that an entanglement between external and internal degrees of freedom exists even in single particle systems. This contextuality phenomenon also shows that a quantum system carries much more information than usually extracted. The path towards advanced neutron quantum optics will be discussed. (author)

  6. Neutron beam effects on spin-exchange-polarized 3He.

    Science.gov (United States)

    Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S

    2008-08-22

    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.

  7. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B S; Lee, J S; Sim, C M [and others

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  8. Development of advanced neutron beam technology

    International Nuclear Information System (INIS)

    Seong, B. S.; Lee, J. S.; Sim, C. M.

    2007-06-01

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility

  9. Expanding options in radiation oncology: neutron beam therapy

    International Nuclear Information System (INIS)

    Cohen, L.

    1982-01-01

    Twelve years experience with neutron beam therapy in Britain, the USA, Europe and Japan shows that local control is achievable in late-stage epidermoid cancer somewhat more frequently than with conventional radiotherapy. Tumours reputed to be radioresistant (salivary gland, bladder, rectosigmoid, melanoma, bone and soft-tissue sarcomas) have proved to be particularly responsive to neutrons. Pilot studies in brain and pancreatic tumours suggest promising new approaches to management of cancer in these sites. The availability of neutron therapy in the clinical environment opens new prospects for irradiation of 'radioresistant' tumours, permits more conservative cancer surgery, expands the use of elective chemotherapy and provides a wider range of options for cancer patients. (author)

  10. Clustering and correlations at the neutron drip-line

    Energy Technology Data Exchange (ETDEWEB)

    Orr, N.A.; Marques, F.M

    2003-03-01

    Some recent experimental studies of clustering and correlations within very neutron-rich light nuclei are reviewed. In particular, the development of the novel probes of neutron-neutron interferometry and Dalitz-plot analyses is presented through the example of the dissociation of the two-neutron halo system {sup 14}Be. The utility of high-energy proton radiative capture is illustrated using a study of the {sup 6}He(p,{gamma}) reaction. A new approach to the production and detection of bound neutron clusters is also described, and the observation of events with the characteristics expected for tetraneutrons ({sup 4}n) liberated in the breakup of {sup 14}Be is discussed. The prospects for future work, including systems beyond the neutron drip-line, are briefly outlined. (authors)

  11. The development of maple technology for materials testing, isotope production, and neutron-beam applications

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Gillespie, G.E.; Lee, A.G.; Bishop, W.E.

    1996-01-01

    AECL has been developing MAPLE technology to meet Canadian and international requirements for high-performance research reactors. MAPLE refers to a family of open-tank-in-pool reactors that employ compact H 2 O-cooled cores within D 2 O vessels to efficiently furnish neutrons to various types of irradiation facilities. The initial focus was on a 10-MW t Canadian facility for radioisotope production, the HANARO multipurpose-reactor project, and an associated R and D program. Recently, AECL began to develop the concept for a new Canadian Irradiation Research Facility (IRF) which will support the continued evolution of CANDU (CANadian Deuterium Uranium) technology and generate neutrons for basic and applied materials science. Additionally, AECL is currently developing a standardized MAPLE research-centre design with integrated neutron-application facilities; various reactor-core options have been optimized for different combinations of utilization: a 19-site core for neutron-beam applications and ancillary isotope production, a 31-site core for multipurpose materials testing and neutron-beam applications, and twin 18-site cores for high-flux neutron-beam applications. (author)

  12. Neutron flux determination at the IPR-R1 Triga Mark I neutron beam extractor

    International Nuclear Information System (INIS)

    Zangirolami, Dante Marco; Maretti Junior, Fausto; Ferreira, Andrea Vidal

    2009-01-01

    The IPR-R1 Triga Mark I Reactor located at the CDTN/CNEN, Belo Horizonte, Brazil, has been operating since November of 1960. In this work, measurements of thermal and epithermal neutron flux along the IPR-R1 neutron beam extractor were performed by neutron activation of reference materials using the two foils method. The obtained results were compared with results from two previous works: an experimental measurement done in a previous reactor core configuration and a numerical work made by Monte Carlo simulation using the actual reactor core configuration. The main purpose of this work is to update the measured data to the actual reactor core configuration. (author)

  13. Neutron beam testing of triblades

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  14. Active beam position stabilization of pulsed lasers for long-distance ion profile diagnostics at the Spallation Neutron Source (SNS).

    Science.gov (United States)

    Hardin, Robert A; Liu, Yun; Long, Cary; Aleksandrov, Alexander; Blokland, Willem

    2011-02-14

    A high peak-power Q-switched laser has been used to monitor the ion beam profiles in the superconducting linac at the Spallation Neutron Source (SNS). The laser beam suffers from position drift due to movement, vibration, or thermal effects on the optical components in the 250-meter long laser beam transport line. We have designed, bench-tested, and implemented a beam position stabilization system by using an Ethernet CMOS camera, computer image processing and analysis, and a piezo-driven mirror platform. The system can respond at frequencies up to 30 Hz with a high position detection accuracy. With the beam stabilization system, we have achieved a laser beam pointing stability within a range of 2 μrad (horizontal) to 4 μrad (vertical), corresponding to beam drifts of only 0.5 mm × 1 mm at the furthest measurement station located 250 meters away from the light source.

  15. Temperature effects on neutron drip line

    International Nuclear Information System (INIS)

    Rajasekaran, M.; Aggarwal, Mamta

    1996-01-01

    Extremely neutron rich hot nuclei formed in high energy collisions having high thermal excitation energies are investigated in the framework of statistical theory and the effect of level density parameter a = U/T 2 , on the drip line is analysed

  16. Characterization of the Goubau line for testing beam diagnostic instruments

    Science.gov (United States)

    Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.

    2017-12-01

    One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.

  17. Floppy disc units for data collection from neutron beam experiments

    International Nuclear Information System (INIS)

    Hall, J.W.

    1976-02-01

    The replacement of paper tape output facilities on neutron beam equipment on DIDO and PLUTO reactors by floppy discs will improve reliability and provide a more manageable data storage medium. The cost of floppy disc drives is about the same as a tape punch and printer and less than other devices such as a magnetic tape. Suitable floppy disc controllers are not at present available and a unit was designed as a directly pluggable replacement for paper tape punches. This design was taken as the basis in the development of a prototype unit for use in neutron beam equipment. The circuit operation for this prototype unit is described. (author)

  18. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. EN Department

    2017-01-01

    In this report, I summarize my work of detailed study and optimization of the muon beam configuration of H4 beam line in SPS North Area. Using Monte-Carlo simulations, I studied the properties and behavior of the muon beam in combination with the field of the large, spectrometer “ GOLIATH” magnet at -1.5, -1.0, 0, 1.0 and 1.5 Tesla, which is shown to affect the central x position of the muon beam that is delivered to the Gamma Irradiation Facility (GIF++). I also studied the muon beam for different configurations of the two XTDV beam dumps upstream of GIF++ in the H4 beam line. I will also discuss my role in mapping the magnetic field of the GOLIATH magnet in the H4 beam line.

  19. Nondestructive inspection using neutron beams

    International Nuclear Information System (INIS)

    2013-01-01

    Neutron-abased experimental techniques such as neutronography, diffraction, or composition and elemental analysis are well established. They have important advantages in the non-destructive analysis of materials, making them a suitable option for quality-control protocols in industrial production lines. In addition, they are highly complementary to other non-destructive techniques, particularly X-ray analysis. Examples of industrial use include studies of pipes and ducts, concrete, or aeronautical components. Notwithstanding the above, the high cost associated with the construction and operation of the requisite neutron facilities has been an important limiting factor for their widespread use by the industrial sector. In this brief contribution, we explore the emerging (and already demonstrated) possibility of using compact, proton-accelerator-based neutron sources. these novel sources can be built and ran at a cost as low as a few ME, making them a competitive option to the more intense spallation or fission-based facilities for industrial applications. (Author)

  20. New wiggler beam line for SSRL

    International Nuclear Information System (INIS)

    Hoyer, E.

    1982-08-01

    A new high-intensity-beam line with a wiggler magnet source is described. This project, in final stages of design, is a joint effort between Lawrence Berkeley Laboratory (LBL), the Exxon Research and Engineering Company (EXXON), and the Stanford Synchrotron Radiation Laboratory (SSRL). Installation at SSRL will begin in the summer of 1982. The goal of this project is to provide extremely high-brightness synchrotron radiation beams over a broad spectral range from 50 eV to 40 keV. The radiation source is a 27 period (i.e., 55 pole) permanent magnet wiggler of a new design. The wiggler utilizes rare-earth cobalt (REC) material in the steel hybrid configuration to achieve high magnetic fields with short periods. An analysis has been made of the polarization, angular distribution and power density of the radiation produced by the wiggler. Details of the wiggler design are presented. The magnet is outside a thin walled (1mm) variable gap stainless steel vacuum chamber. The chamber gap will be opened to 1.8 cm for beam injection into SPEAR and then closed to 1.0 cm (or less) for operation. Five remotely controlled drives are provided; to change the wiggler gap, to change the vacuum chamber aperture and to position the wiggler. Details of the beam line optics and end stations are presented. Thermal loading on beam line components is severe. The peak power density at 7.5 m is 5 kW/cm 2 for the nominal wiggler field and present SPEAR beam currents and will approach 20 kW/cm 2 with the maximum wiggler field and projected SPEAR beam currents

  1. The relative biological effectiveness of a high energy neutron beam for micronuclei induction in T-lymphocytes of different individuals

    Energy Technology Data Exchange (ETDEWEB)

    Slabbert, J.P., E-mail: jps@tlabs.ac.z [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa); Dept. of Medical Imaging and Clinical Oncology, University of Stellenbosch (South Africa); August, L. [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa); Vral, A. [Dept. of Basic Medical Sciences, Ghent University (Belgium); Symons, J. [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa)

    2010-12-15

    In assessing the radiation risk of personnel exposed to cosmic radiation fields as it pertains to radiological damage during travel in civilian aircrafts, it is particularly important to know the relative biological effectiveness (RBE) for high energy neutrons. It has been the subject of numerous investigations in recent years using different neutron energies and cytogenetic examinations. Variations in the radiosensitivity of white blood cells for different individuals are likely to influence the estimate of the relative biological effectiveness for high energy neutrons. This as such observations have been noted in the response of different cancer cell lines with varying inherent sensitivities. In this work the radiosensitivities of T-lymphocytes of different individuals to the p(66)/Be neutron beam at iThemba LABS were measured using micronuclei formations and compared to that noted following exposure to {sup 60}Co {gamma}-rays. The principle objective of this investigation was to establish if a relationship between neutron RBE and variation in biological response to {sup 60}Co {gamma}-rays for lymphocytes from different individuals could be determined. Peripheral blood samples were collected from four healthy donors and isolated lymphocytes were exposed to different doses of {sup 60}Co {gamma}-rays (1-5 Gy) and p(66)/Be neutrons (0.5-2.5 Gy). One sample per donor was not exposed to radiation and served as a control. Lymphocytes were stimulated using PHA and cultured to induce micronuclei in cytokinesis-blocked cells. Micronuclei yields were numerated using fluorescent microscopy. Radiosensitivities and RBE values were calculated from the fitted parameters describing the micronuclei frequency dose response data. Dissimilar dose response curves for different donors were observed reflecting varying inherent sensitivities to both neutron and gamma radiation. A clear reduction in the dose limiting RBE{sub M} is noted for donors with lymphocytes more sensitive to

  2. The H line: a brand new beam line for fundamental physics at the J-PARC muon facility

    International Nuclear Information System (INIS)

    Kawamura, N; Shimomura, K; Miyake, Y; Toyoda, A; Saito, N; Mihara, S; Aoki, M

    2013-01-01

    The muon facility, J-PARC (Muon Science Establishment; MUSE), has been operated since first beam in 2008. Starting with a 200 kW proton beam, the beam intensity has reached 3×10 6 / muons/s, the most intense pulsed muon beam in the world. A 2 cm thick graphite target permits the extraction of four secondary muon beams. A brand new beam line, the H line, is planned to be constructed. The new beam line is designed to have a large acceptance, will provide the ability to tune the momentum, and use a kicker magnet and/or Wien filter. This beam line will provide an intense beam for experiments that require high statistics and must occupy the experimental areas for a relatively long period.

  3. Neutron stimulated emission computed tomography: Background corrections

    International Nuclear Information System (INIS)

    Floyd, Carey E.; Sharma, Amy C.; Bender, Janelle E.; Kapadia, Anuj J.; Xia, Jessie Q.; Harrawood, Brian P.; Tourassi, Georgia D.; Lo, Joseph Y.; Kiser, Matthew R.; Crowell, Alexander S.; Pedroni, Ronald S.; Macri, Robert A.; Tajima, Shigeyuki; Howell, Calvin R.

    2007-01-01

    Neutron stimulated emission computed tomography (NSECT) is an imaging technique that provides an in-vivo tomographic spectroscopic image of the distribution of elements in a body. To achieve this, a neutron beam illuminates the body. Nuclei in the body along the path of the beam are stimulated by inelastic scattering of the neutrons in the beam and emit characteristic gamma photons whose unique energy identifies the element. The emitted gammas are collected in a spectrometer and form a projection intensity for each spectral line at the projection orientation of the neutron beam. Rotating and translating either the body or the beam will allow a tomographic projection set to be acquired. Images are reconstructed to represent the spatial distribution of elements in the body. Critical to this process is the appropriate removal of background gamma events from the spectrum. Here we demonstrate the equivalence of two background correction techniques and discuss the appropriate application of each

  4. Influence of core model parameters on the characteristics of neutron beams of the research reactor

    Directory of Open Access Journals (Sweden)

    N. A. Khafizova

    2013-12-01

    Full Text Available IRT MEPhI reactor is equipped with a number of facilities at horizontal experimental channels (HEC. Knowing of parameters influencing spatio-angular distribution of irradiation fields is essential for each application area. The research for neutron capture therapy (NCT facility at HEC of the reactor was made. Calculation methods have been used to estimate how the reactor core parameters influence neutron beam characteristics at the HEC output. The impact of neutron source model in Monte Carlo calculations by MCNP code on the parameters of neutron and secondary photon field at the output of irradiation beam tubes of research reactor is estimated. The study shows that specifying neutron source with fission reaction rate distribution in SDEF option gives almost the same results as criticality calculation considered the most accurate. Our calculations show that changes of the core operational parameters have insignificant influence on characteristics of neutron beams at HEC output.

  5. Neutron-induced damage evolution under Beam Raster Scanner conditions for IFMIF

    International Nuclear Information System (INIS)

    Mota, Fernando; Ortiz, Christophe J.; Ibarra, Angel; Vila, Rafael

    2011-01-01

    The formation and evolution of defects in materials irradiated with a homogeneous neutron source and with the Beam Raster Scanner (BRS) solution was investigated. The intensity neutron source fluctuations inherent to the BRS system were determined using the neutron transport McDeLicious code. Defects generated during irradiation were calculated using the binary collision approximation MARLOWE code, using the primary knock-on atom (PKA) energy spectrum resulting from neutron interactions with the material. In order to predict the evolution of defects during irradiation, a Rate Theory model based on ab initio parameters was developed. Our model accounts for the migration of mobile defects, the formation of clusters and their recombination. As an example, we investigated defect evolution in Fe irradiated at room temperature in both beam configurations. Simulation results clearly indicate that the defect evolution expected in the BRS configuration is nearly the same as the one expected in a homogeneous irradiation system.

  6. A facility to produce collimated neutron beams at the Legnaro Laboratories

    International Nuclear Information System (INIS)

    Colautti, P.; Talpo, G.; Tornielli, G.

    1988-01-01

    The 7 MV Van de Graaff and the 16 MV Tandem accelerators at the Legnaro National Laboratories can be used to produce fast neutron fluxes of moderate intensity, ranging in energy from 1 MeV to 50 MeV. A W-polyethylene-Pb cylindrical collimator has been constructed in order to produce a collimated neutron beam, with well defined dose and microdose characteristics for radiobiological experiments. The collimator can be assembled in different configurations allowing both for different thicknesses and different beam apertures. Dosimetric measurements have been made with a d(4.5)+Be source. These demonstrate sharp beam edges with attenuation behind the shield of 20% with the 15 cm collimator and 1.5% with the 50 cm collimator. (author)

  7. Anisotropic shift of the irreversibility line by neutron irradiation

    International Nuclear Information System (INIS)

    Sauerzopf, F.M.; Wiesinger, H.P.; Weber, H.W.; Crabtree, G.W.; Frischherz, M.C.; Kirk, M.A.

    1991-09-01

    The irreversibility line of high-T c superconductors is shifted considerably by irradiating the material with fast neutrons. The anisotropic and non-monotonous shift is qualitatively explained by a simple model based on an interaction between three pinning mechanisms, the intrinsic pinning by the ab-planes, the weak pinning by the pre-irradiation defect structure, and strong pinning by neutron induced defect cascades. A correlation between the cascade density and the position of the irreversibility line is observed

  8. Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars

    Science.gov (United States)

    Pastore, A.; Margueron, J.; Schuck, P.; Viñas, X.

    2013-09-01

    Exotic and drip-line nuclei as well as nuclei immersed in a low-density gas of neutrons in the inner crust of neutron stars are systematically investigated with respect to their neutron pairing properties. This is done using Skyrme density-functional and different pairing forces such as a density-dependent contact interaction and a separable form of a finite-range Gogny interaction. Hartree-Fock-Bogoliubov (HFB) and Bardeen-Cooper-Schrieffer (BCS) theories are compared. It is found that neutron pairing is reduced towards the drip line while overcast by strong shell effects. Furthermore, resonances in the continuum can have an important effect counterbalancing the tendency of reduction and leading to a persistence of pairing at the drip line. It is also shown that in these systems the difference between HFB and BCS approaches can be quantitatively large.

  9. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Measurement of accelerator-based neutron distributions using nuclear track detectors

    International Nuclear Information System (INIS)

    Al-Jarallah, M.I.; Abu-Jarad, F.; Rehman, Fazal-ur-; Khiari, F.Z.; Aksoy, A.; Nassar, R.

    2000-01-01

    Nuclear track detectors were used to measure the longitudinal and transverse distributions of slow neutrons in a moderated neutron field as well as the longitudinal and transverse distributions of fast neutrons produced on the 0 deg. beam line of the KFUPM 350 keV ion accelerator. The neutrons were first produced from the T(d,n) 4 He reaction with a neutron energy of approximately 14 MeV and were then moderated in a cylindrical polyethylene moderator placed at the end of the 0 deg. beam line. The optimal transverse slow neutron distribution was found to be uniform within ±4.5% at a 3 cm depth inside the moderator. The fast neutron distribution component along the moderator central axis exhibited an exponential-like drop in intensity with depth. Linearity checks of alpha and proton recoil track density with irradiation time for the nuclear track detectors were verified for both slow and fast neutrons

  11. Measurement of accelerator-based neutron distributions using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Rehman, Fazal-ur-; Khiari, F.Z.; Aksoy, A.; Nassar, R

    2000-12-01

    Nuclear track detectors were used to measure the longitudinal and transverse distributions of slow neutrons in a moderated neutron field as well as the longitudinal and transverse distributions of fast neutrons produced on the 0 deg. beam line of the KFUPM 350 keV ion accelerator. The neutrons were first produced from the T(d,n){sup 4}He reaction with a neutron energy of approximately 14 MeV and were then moderated in a cylindrical polyethylene moderator placed at the end of the 0 deg. beam line. The optimal transverse slow neutron distribution was found to be uniform within {+-}4.5% at a 3 cm depth inside the moderator. The fast neutron distribution component along the moderator central axis exhibited an exponential-like drop in intensity with depth. Linearity checks of alpha and proton recoil track density with irradiation time for the nuclear track detectors were verified for both slow and fast neutrons.

  12. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  13. Investigation of Beam Emittance and Beam Transport Line Optics on Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew [Northern Illinois U.; Syphers, Michael [Fermilab

    2017-10-06

    Effects of beam emittance, energy spread, optical parameters and magnet misalignment on beam polarization through particle transport systems are investigated. Particular emphasis will be placed on the beam lines being used at Fermilab for the development of the muon beam for the Muon g-2 experiment, including comparisons with the natural polarization resulting from pion decay, and comments on the development of systematic correlations among phase space variables.

  14. Conceptual design of proton beam window

    International Nuclear Information System (INIS)

    Teraoku, Takuji; Kaminaga, Masanori; Terada, Atsuhiko; Ishikura, Syuichi; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-01-01

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  15. Possibility of a crossed-beam experiment involving slow-neutron capture by unstable nuclei - ``rapid-process tron''

    Science.gov (United States)

    Yamazaki, T.; Katayama, I.; Uwamino, Y.

    1993-02-01

    The possibility of a crossed beam facility of slow neutrons capturing unstable nuclei is examined in connection with the Japanese Hadron Project. With a pulsed proton beam of 50 Hz repetition and with a 100 μA average beam current, one obtains a spallation neutron source of 2.4 × 10 8 thermal neutrons/cm 3/spill over a 60 cm length with a 3 ms average duration time by using a D 2O moderator. By confining radioactive nuclei of 10 9 ions in a beam circulation ring of 0.3 MHz revolution frequency, so that nuclei pass through the neutron source, one obtains a collision luminosity of 3.9 × 10 24/cm 2/s. A new research domain aimed at studying rapid processes in nuclear genetics in a laboratory will be created.

  16. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    International Nuclear Information System (INIS)

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-01-01

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10 7 . Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays

  17. Neutron scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on 14 N, 181 Ta, 232 Th, 238 U and 239 Pu; Prompt fission spectra for 232 Th, 235 U, 238 U and 239 Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus

  18. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  19. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    International Nuclear Information System (INIS)

    Dighe, P.M.; Das, D.

    2015-01-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10 4 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors

  20. Out‐of‐field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators

    Science.gov (United States)

    Cardenas, Carlos E.; Nitsch, Paige L.; Kudchadker, Rajat J.; Howell, Rebecca M.

    2016-01-01

    Out‐of‐field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high‐energy electron beams. To better understand the extent of these exposures, we measured out‐of‐field dose characteristics of electron applicators for high‐energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out‐of‐field dose profiles and percent depth‐dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out‐of‐field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out‐of‐field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central‐axis, which was found to be higher than typical out‐of‐field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for

  1. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    Science.gov (United States)

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  2. Genetic Algorithms: A New Method for Neutron Beam Spectral Characterization

    International Nuclear Information System (INIS)

    David W. Freeman

    2000-01-01

    A revolutionary new concept for solving the neutron spectrum unfolding problem using genetic algorithms (GAs) has recently been introduced. GAs are part of a new field of evolutionary solution techniques that mimic living systems with computer-simulated chromosome solutions that mate, mutate, and evolve to create improved solutions. The original motivation for the research was to improve spectral characterization of neutron beams associated with boron neutron capture therapy (BNCT). The GA unfolding technique has been successfully applied to problems with moderate energy resolution (up to 47 energy groups). Initial research indicates that the GA unfolding technique may well be superior to popular unfolding methods in common use. Research now under way at Kansas State University is focused on optimizing the unfolding algorithm and expanding its energy resolution to unfold detailed beam spectra based on multiple foil measurements. Indications are that the final code will significantly outperform current, state-of-the-art codes in use by the scientific community

  3. Magnet power supply and beam line control for a secondary beam line K6

    International Nuclear Information System (INIS)

    Suzuki, Y.; Takasaki, M.; Minakawa, M.; Ishii, H.; Kato, Y.; Ieiri, M.; Tanaka, K.H.; Noumi, H.; Yamanoi, Y.

    1992-01-01

    K6 is a secondary separated-beam line with momentum range up to 2.0 GeV/c in the north experimental hall at the KEK 12 GeV Proton Synchrotron (KEK-PS). On the construction, newly developed magnet power supplies (MPSs), in each of them a microprocessor is embedded, are introduced. The features of the MPS are as follows: 1, The MPS is connected to an upper-level beam line controller (BLC) by GPIB highway for exchanging simple messages. 2, All the operations of the MPS are supervised by the microprocessor, which has its individual parameters and fault messages. It reduces the load of the upper-level controller. 3, The MPS has functions to inspect itself and to report the result. It saves much time and labor of maintenance. (author)

  4. Experimental investigation of decay properties of neutron deficient $^{116-118}$Ba isotopes and test of $^{112-115}$Ba beam counts

    CERN Multimedia

    We propose to study decay of neutron deficient isotopes $^{116-118}$Ba using Double Sided Silicon Strip Detector (DSSSD). To study delayed-proton and $\\alpha$-decay branching ratios of $^{116-118}$Ba are of special interest because of their vicinity to the proton drip line. The nuclear life-times and properties of the proton unstable states of Cs isotopes, populated through decay of $^{116-118}$Ba isotopes will be measured. In addition to that we propose beam development of $^{112-115}$Ba to study exotic decay properties of these neutron deficient nuclei and to search for super-allowed $\\alpha$-decay in future.

  5. Radical distributions in ammonium tartrate single crystals exposed to photon and neutron beams

    International Nuclear Information System (INIS)

    Marrale, M.; Longo, A.; Brai, M.; Barbon, A.; Brustolon, M.

    2014-01-01

    distribution of free radicals in the material. A more convenient approach is proposed for a direct determination of the ID contribution, allowing an easier treatment of the data and which shows larger concentration of free radical in the case of neutron irradiation with respect to photon irradiation. As far as the DEER technique is concerned, it is noted that the study of irradiated single crystals has advantages and disadvantages with respect to powders. An advantage is that for particular orientations of the crystal in the magnetic field the EPR spectrum is given by intense and well-separated lines, allowing the necessary separate microwave double excitation. A further advantage could derive from the dependence of DEER results on the crystal orientation in the magnetic field, as this could in principle provide much more information on the effects of different radiation beams. In particular, it was observed that the spatial spin distribution has largest peak centred at lower distances for neutron irradiation than for gamma irradiation. However, this would require a demanding thorough analysis of the DEER response exploring a number of different orientations of the crystal. (authors)

  6. Micromachining of commodity plastics by proton beam writing and fabrication of spatial resolution test-chart for neutron radiography

    International Nuclear Information System (INIS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.; Kada, W.; Kohka, M.; Satoh, T.; Ohkubo, T.; Ishii, Y.; Takano, K.

    2013-01-01

    Proton beam writing is a direct-write technique and a promising method for the micromachining of commodity plastics such as acrylic resins. Herein, we describe the fabrication of microscopic devices made from a relatively thick (∼75 μm) acrylic sheet using proton beam writing. In addition, a software package that converts image pixels into coordinates data was developed, and the successful fabrication of a very fine jigsaw puzzle was achieved. The size of the jigsaw puzzle pieces was 50 × 50 μm. For practical use, a prototype of a line and space test-chart was also successfully fabricated for the determination of spatial resolution in neutron radiography

  7. A line beam electron gun for rapid thermal processing

    Science.gov (United States)

    Pauli, M.; Müller, J.; Hartkopf, K.; Barth, T.

    1992-04-01

    A line beam electron gun based on the Pierce gun type was developed. The line cathode was realized by a directly heated tungsten rod. The temperature distribution along the tungsten rod was simulated numerically. The simulation shows a flat temperature across 2/3 of the cathode length and it agrees with appropriate measurable parameters. The beam profiles of the electron gun perpendicular to the line direction were examined as a function of electrical and geometrical parameters: The space-charge distribution in front of the cathode was found to be responsible for the shape of the beam profile. The shape of the beam profile is weakly influenced by the acceleration to the anode. The heating current induced voltage drop along the cathode was found to be responsible for the nonuniform emission in line direction. A model for the emission behavior of the line beam electron gun was developed. The model is based on the results of the measurements and on a numerical simulation of the potential distribution in the area between Pierce reflectors and anode. The emission model shows a solution to homogenize the emission by a suitable variation of geometrical parameters in line direction. A linear variation was realized in experiment which enables a uniform emission across 2/3 of the cathode length. The beam profile is adjustable by a bias voltage between the cathode and the Pierce reflectors.

  8. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements. Annex: Individual Reports

    International Nuclear Information System (INIS)

    2014-07-01

    The recent advances in the development of nuclear science and technology, demonstrating the globally growing economy, require highly accurate, powerful simulations and precise analysis of the experimental results. Confidence in these results is still determined by the accuracy of the atomic and nuclear input data. For studying material response, neutron beams produced from accelerators and research reactors in broad energy spectra are reliable and indispensable tools to obtain high accuracy experimental results for neutron induced reactions. The IAEA supports the accomplishment of high precision nuclear data using nuclear facilities in particular, based on particle accelerators and research reactors around the world. Such data are essential for numerous applications in various industries and research institutions, including the safety and economical operation of nuclear power plants, future fusion reactors, nuclear medicine and non-destructive testing technologies. The IAEA organized and coordinated the technical meeting Use of Neutron Beams for High Precision Nuclear Data Measurements, in Budapest, Hungary, 10–14 December 2012. The meeting was attended by participants from 25 Member States and three international organizations — the European Organization for Nuclear Research (CERN), the Joint Research Centre (JRC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (OECD/NEA). The objectives of the meeting were to provide a forum to exchange existing know-how and to share the practical experiences of neutron beam facilities and associated instrumentation, with regard to the measurement of high precision nuclear data using both accelerators and research reactors. Furthermore, the present status and future developments of worldwide accelerator and research reactor based neutron beam facilities were discussed. This publication is a summary of the technical meeting and additional materials supplied by the international

  9. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    Science.gov (United States)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  10. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    International Nuclear Information System (INIS)

    Guo, J.; Buecherl, T.; Zou, Y.; Guo, Z.

    2011-01-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  11. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Buecherl, T. [Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Zou, Y., E-mail: zouyubin@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Guo, Z. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China)

    2011-09-21

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  12. Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Bilheux, Jean-Christophe [ORNL; Tremsin, Anton S [University of California, Berkeley; Santodonato, Louis J [ORNL; Dehoff, Ryan R [ORNL; Kirka, Michael M [ORNL; Bailey, William Barton [ORNL; Keener, Wylie S [ORNL; Herwig, Kenneth W [ORNL

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than at pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.

  13. A method for the accurate determination of the polarization of a neutron beam using a polarized 3He spin filter

    International Nuclear Information System (INIS)

    Greene, G.L.; Thompson, A.K.; Dewey, M.S.

    1995-01-01

    A new method for the accurate determination of the degree of polarization of a neutron beam which has been polarized by transmission through a spin polarized 3 He cell is given. The method does not require the use of an analyzer or spin flipper nor does it require an accurate independent determination of the 3 He polarization. The method provides a continuous on-line determination of the neutron polarization. The method may be of use in the accurate determination of correlation coefficients in neutron beta decay which provide a test of the standard model for the electroweak interaction. The method may also provide an accurate procedure for the calibration of polarized 3 He targets used in medium and high energy scattering experiments. ((orig.))

  14. Status of radioactive ion beams at the HRIBF

    CERN Document Server

    Stracener, D W

    2003-01-01

    Radioactive Ion Beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF) are produced using the isotope separation on-line technique and are subsequently accelerated up to a few MeV per nucleon for use in nuclear physics experiments. The first RIB experiments at the HRIBF were completed at the end of 1998 using sup 1 sup 7 F beams. Since then other proton-rich ion beams have been developed and a large number of neutron-rich ion beams are now available. The neutron-rich radioactive nuclei are produced via proton-induced fission of uranium in a low-density matrix of uranium carbide. Recently developed RIBs include sup 2 sup 5 Al from a silicon carbide target and isobarically pure beams of neutron-rich Ge, Sn, Br and I isotopes from a uranium carbide target.

  15. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Ganda, Francesco; Vujic, Jasmina; Greenspan, Ehud; Leung, Ka-Ngo

    2010-01-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved with the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.

  16. Thermal problems on high flux beam lines

    International Nuclear Information System (INIS)

    Avery, R.T.

    1983-09-01

    Wiggler and undulator magnets can provide very intense photon flux densities to beam line components. This paper addresses some thermal/materials consequences due to such impingement. The LBL/Exxon/SSRL hybrid-wiggler Beam Line VI now nearing operation will be able to provide up to approx. 7 kW of total photon power at planned SPEAR operating conditions. The first masks are located at 6.5 meters from the source and may receive a peak power density (transverse to the beam) exceeding 20 kW/cm 2 . Significantly, this heat transfer rate exceeds that radiated from the sun's surface (7 kW/cm 2 ) and is comparable to that of welding torches. Clearing, cooling and configuration are of critical importance. Configurations for the first fixed mask, the movable mask, and the pivot mask on this beam line are presented together with considerations of thermal stress fatigue and of heat transfer by conduction to water-cooling circuits. Some preliminary information on heating of crystals and mirrors is also presented

  17. Development and applications of the reverse neutron time-of-flight method with Fourier-type beam chopper

    International Nuclear Information System (INIS)

    Antson, O.

    1991-09-01

    The neutron powder diffraction method has been applied to the crystal structure analysis of high-temperature superconductors such as La 0 .8Sr 0 .2CuO 4 - y , YBa 2 Cu 3 O 7 - y and Bi 2 Sr 2 CaCu 2 O 8 + y optically active yttriumformate Y(HCOO) 3 , and β phase of deuterated acetonitrile, CD 3 CN. The structural information, containing symmetry, positional and thermal parameters, occupation factors and the order parameter, was obtained by measuring the coherent elastic scattering cross-section. The Rietveld profile refinement method was used for the extraction of structural parameters from experimental data. The diffraction spectra were obtained by measuring the time-of-flight distribution of neutrons with a Fourier-type beam chopper. The neutron diffraction spectrum is created by the on-line synthesis of the cross-correlation function between the beam modulation function and the detector intensity. Such an operational mode, called the reverse time-of-flight method, has many unique properties. The possibility of filtering out a low-frequency part of a diffraction spectrum, eg. incoherent background, by a properly selected band-pass filter has been studied. One of the practical applications of the reverse time-of-flight method, the Mini-Sfinks facility, is described with technical details, and its operational characteristics are compared with other high-resolution instruments

  18. Experimental Program for the CLIC test facility 3 test beam line

    CERN Document Server

    Adli, E; Dobert, S; Olvegaard, M; Schulte, D; Syratchev, I; Lillestol, Reidar

    2010-01-01

    The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 power extraction and transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

  19. Reactor beam calculations to determine optimum delivery of epithermal neutrons for treatment of brain tumors

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Nigg, D.W.; Capala, J.

    1997-01-01

    Studies were performed to assess theoretical tumor control probability (TCP) for brain-tumor treatment with boron neutron capture therapy (BNCT) using epithermal neutron sources from reactors. The existing epithermal-neutron beams at the Brookhaven Medical Research Reactor Facility (BMRR), the Petten High Flux Reactor Facility (HWR) and the Finnish Research Reactor 1 (FIR1) have been analyzed and characterized using common analytical and measurement methods allowing for this inter-comparison. Each of these three facilities is unique and each offers an advantage in some aspect of BNCT, but none of these existing facilities excel in all neutron-beam attributes as related to BNCT. A comparison is therefore also shown for a near-optimum reactor beam which does not currently exist but which would be feasible with existing technology. This hypothetical beam is designated BNCT-1 and has a spectrum similar to the FIR-1, the mono-directionality of the HFR and the intensity of the BMRR. A beam very similar to the BNCT-1 could perhaps be achieved with modification of the BMRR, HFR, or FIR, and could certainly be realized in a new facility with today's technology

  20. A low background pulsed neutron polyenergetic beam at the ET-RR-1 reactor

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Habib, N.; Abu-El-Ela, M.; Wahba, M.; Kilany, M.

    1991-12-01

    A low background pulsed neutron polyenergetic thermal beam at ET-RR-1 is produced by a rotor and rotating collimator suspended in magnetic fields. Each of them is mounted on its mobile platform and whose centres are 66 cm apart, rotating synchronously at speeds up to 16000 rpm. It was found that the neutron burst produced by the rotor with almost 100% transmission passes through the collimator, when the rotation phase between them is 28.8 deg. Moreover the background level achieved at the detector position is low, constant and free from peaks due to gamma rays and fast neutrons accompanying the reactor thermal beam. (author). 12 refs, 3 figs

  1. FB-line neutron multiplicity counter operation manual

    International Nuclear Information System (INIS)

    Langner, D.G.; Sweet, M.R.; Salazar, S.D.; Kroncke, K.E.

    1998-01-01

    This manual describes the design features, performance, and operating characteristics for the FB-Line Neutron Multiplicity Counter (FBLNMC). The FBLNMC counts neutron multiplicities to quantitatively assay plutonium in many forms, including impure scrap and waste. Monte Carlo neutronic calculations were used to design the high-efficiency (57%) detector that has 113 3 H tubes in a high-density polyethylene body. The new derandomizer circuit is included in the design to reduce deadtime. The FBLNMC can be applied to plutonium masses in the range from a few tens of grams to 5 kg; both conventional coincidence counting and multiplicity counting can be used as appropriate. This manual gives the performance data and preliminary calibration parameters for the FBLNMC

  2. A comparison of mutagenic effects of common wheat by electron beam, fast neutron and 60Co gamma ray irradiation

    International Nuclear Information System (INIS)

    An Daochang; Wang Linqing

    1988-02-01

    After winter wheat was irradiated by electron beam, fast neutron and γ-rays, respectively, the RBE value of electron beam to both fast neutrons and γ-rays was less than one, the RBE value of fast neutron to γ-rays was largely more than one. This results indicated that biological effect of M 1 generation induced by electron beam was less than that of fast neutrons very much, and similar to γ-ray irradiation. With electron beam irradiation, the half-lethal doses of M 1 generation were from 185 to 370 Gy, closer to 370 Gy, the lethal doses from 740 to 925 Gy. M 2 mutation efficiency with electron beam treatment was larger as compared with that with both fast neutrons and γ-rays. A wider mutation spectrum and higher mutation efficiency compared with other physical mutagens can be obtained with electron beam irradiation, about 30% higher than that with γ-ray irradiation. The best doses of irradiation with electron beam were 370 to 555 Gy. Fast neutrons, a better dose of which was 25 Gy, could induce more mutants than that with γ-rays in M 2 generation. The dose in which biological injury reached to 50% was the best dose for M 2 mutants by electron beam irradiation

  3. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  4. Proceedings of the 5. symposium on neutron dosimetry. Beam dosimetry

    International Nuclear Information System (INIS)

    Schraube, H.; Burger, G.; Booz, J.

    1985-01-01

    Proceedings of the fifth symposium on neutron dosimetry, organized at Neuherberg, 17-21 September 1984, by the Commission of the European Communities and the GSF Neuherberg, with the co-sponsorship of the US Department of Energy, Office of Health and Environmental Research. The proceedings deal with research on concepts, instruments and methods in radiological protection for neutrons and mixed neutron-gamma fields, including the generation, collection and evaluation of new dosimetric data, the derivation of relevant radiation protection quantitites, and the harmonization of experimental methods and instrumentation by intercomparison programmes. Besides radiation protection monitoring, the proceedings also report on the improvement of neutron beam dosimetry in the fields of radiobiology and radiation therapy

  5. Survey on neutron production by electron beam from high power CW electron linear accelerator

    International Nuclear Information System (INIS)

    Toyama, S.

    1999-04-01

    In Japan Nuclear Cycle Development Institute, the development of high current CW electron linear accelerator is in progress. It is possible for an accelerator to produce neutrons by means of a spallation and photo nuclear reactions. Application of neutron beam produced by bremsstrahlung is one of ways of the utilization for high current electron accelerator. It is actual that many electron linear accelerators which maximum energy is higher than a few hundreds MeV are used as neutron sources. In this report, an estimate of neutron production is evaluated for high current CW electron linear accelerator. The estimate is carried out by 10 MeV beam which is maximum energy limited from the regulation and rather low for neutron production. Therefore, the estimate is also done by 17 and 35 MeV beam which is possible to be accelerated. Beryllium is considered as a target for lower electron energy in addition to Lead target for higher energy, because Beryllium has low threshold energy for neutron production. The evaluation is carried out in account of the target thickness optimized by the radiation length and neutron cross section reducing the energy loss for both of electron and neutron, so as to get the maximum number of neutrons. The result of the calculations shows neutron numbers 1.9 x 10 10 , 6.1 x 10 13 and 4.8 x 10 13 (n/s), respectively, for 10, 17, and 35 MeV with low duty. The thermal removal from the target is one of critical points. The additional shielding and cooling system is necessary in order to endure radiation. A comparison with other facilities are also carried out. The estimate of neutron numbers suggests the possibility to be applied for neutron radiography and measurement of nuclear data by means of Lead spectrometer, for example. (author)

  6. Effect of Neutron Irradiation on Beam-Column Interaction of Reinforced Concrete

    International Nuclear Information System (INIS)

    Kwon, Tae-Hyun; Park, Jiho; Kim, Jun Yeon; Kim, HyungTae; Park, Kyoungsoo; Kim, Sang-Ho

    2015-01-01

    Age-related effects on such RC structures have been extensively studied in detail. However, the effect of neutron irradiation requires further studies from its limited database. Most of RC structures have been regarded as sound as the neutron fluence below 1.0x10 19 n/cm 2 . The reduction of strength is not considered in a periodic inspection program at aging NPPs. However, RC structures, such as biological shields and supports for a reactor vessel, could be exposed to see the critical level of neutron fluence at years of operation. In this regard, beam-column interaction of a typical RC member is numerically investigated as a result of neutron irradiation. The effect of neutron irradiation on beam-column interaction is evaluated. ACI318 requires the strength reduction factor, ϕ=0.70, for the compression controlled area and the higher up to 0.9 as the tensile strain in steel reinforcement goes higher. This concept works well with this example. However, this does not take into account the energy dissipation capacity of the member but it only expresses the ultimate strength. Therefore, the current strength evaluation concept may be misleading when the material behavior of steel reinforcement becomes brittle due to the neutron irradiation. In such case, even for the transient and tension controlled area, the strength reduction factor needs to be modified to account for the potential ductility loss

  7. Initial Beam Test of the Prototype Strip Line BPM

    International Nuclear Information System (INIS)

    Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Ryu, Jin Yeong; Jang, Ji Ho; Cho, Yong Sub

    2011-01-01

    A beam position monitor (BPM) was developed which would be used for the Proton Engineering Frontier Project (PEFP) beam line. It is a strip line BPM which is commonly used one for the proton beam. The BPM cross section was designed with the SUPERFISH code and the matching section to the feed through was designed by the MWS code. The design parameters of the BPM are shown in Table 1. The designed BPM was fabricated to verify the manufacturing process and check its electrical performance. After the low power test at the test stand, the BPM was installed at the 20-MeV proton accelerator beam line as shown in Fig. 1

  8. Spallation study with proton beams around 1 GeV: neutron production

    International Nuclear Information System (INIS)

    Boudard, A.; Borne, F.; Brochard, F.; Crespin, S.; Drake, D.; Duchazeaubeneix, J.C.; Durand, D.; Durand, J.M.; Frehaut, J.; Hanappe, F.; Kowalski, L.; Lebrun, C.; Lecolley, F.R.; Lecolley, J.F.; Ledoux, X.; Lefebvres, F.; Legrain, R.; Leray, S.; Louvel, M.; Martinez, E.; Meigo, S.I.; Menard, S.; Milleret, G.; Patin, Y.; Petibon, E.; Plouin, F.; Pras, P.; Schapira, J.P.; Stuttge, L.; Terrien, Y.; Thun, J.; Uematsu, M.; Varignon, C.; Volant, C.; Whittal, D.M.; Wlazlo, W.

    2000-01-01

    Experiments performed at Lab. Nat. SATURNE on neutron produced by spallation from proton beams in the range 0.8 - 1.6 GeV are presented. Experimental data compared with codes show a significant improvement of the recent intra-nuclear cascade (J. Cugnon). This is also true in the same way for the neutron production from thick targets. However the model underestimates the energetic neutrons produced in the backward direction and other quantities as residual nuclei cross sections are not accurately predicted

  9. Systematic error in the precision measurement of the mean wavelength of a nearly monochromatic neutron beam due to geometric errors

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305 (United States); Dewey, M.S. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Yue, A.T. [University of Tennessee, Knoxville, TN (United States); Laptev, A.B. [Tulane University, New Orleans, LA (United States)

    2009-12-11

    Many experiments at neutron scattering facilities require nearly monochromatic neutron beams. In such experiments, one must accurately measure the mean wavelength of the beam. We seek to reduce the systematic uncertainty of this measurement to approximately 0.1%. This work is motivated mainly by an effort to improve the measurement of the neutron lifetime determined from data collected in a 2003 in-beam experiment performed at NIST. More specifically, we seek to reduce systematic uncertainty by calibrating the neutron detector used in this lifetime experiment. This calibration requires simultaneous measurement of the responses of both the neutron detector used in the lifetime experiment and an absolute black neutron detector to a highly collimated nearly monochromatic beam of cold neutrons, as well as a separate measurement of the mean wavelength of the neutron beam. The calibration uncertainty will depend on the uncertainty of the measured efficiency of the black neutron detector and the uncertainty of the measured mean wavelength. The mean wavelength of the beam is measured by Bragg diffracting the beam from a nearly perfect silicon analyzer crystal. Given the rocking curve data and knowledge of the directions of the rocking axis and the normal to the scattering planes in the silicon crystal, one determines the mean wavelength of the beam. In practice, the direction of the rocking axis and the normal to the silicon scattering planes are not known exactly. Based on Monte Carlo simulation studies, we quantify systematic uncertainties in the mean wavelength measurement due to these geometric errors. Both theoretical and empirical results are presented and compared.

  10. Epithermal neutron beam design for neutron capture therapy at the Power Burst Facility and the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Parsons, D.K.; Rushton, B.L.; Nigg, D.W.

    1990-01-01

    Nuclear design studies have been performed for two reactor-based epithermal neutron beams for cancer treatment by neutron capture therapy (NCT). An intermediate-intensity epithermal beam has been designed and implemented at the Brookhaven Medical Research Reactor (BMRR). Measurements show that the BMRR design predictions for the principal characteristics of this beam are accurate. A canine program for research into the biological effects of NCT is now under way at BMRR. The design for a high-intensity epithermal beam with minimal contamination from undesirable radiation components has been finalized for the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. This design will be implemented when it is determined that human NCT trials are advisable. The PBF beam will exhibit approximately an order of magnitude improvement in absolute epithermal flux intensity over that available in the BMRR, and its angular distribution and spectral characteristics will be more advantageous for NCT. The combined effects of beam intensity, angular distribution, spectrum, and contaminant level allow the desired tumor radiation dose to be delivered in much shorter times than are possible with the currently available BMRR beam, with a significant reduction (factor of 3 to 5) in collateral dose due to beam contaminants

  11. On scaling and optimization of high-intensity, low-beam-loss RF linacs for neutron source drivers

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1992-01-01

    RF linacs providing cw proton beams of 30--250 mA at 800--1600 MeV, and cw deuteron beams of 100--250 mA at 35--40 MeV, are needed as drivers for factory neutron sources applied to radioactive waste transmutation, advanced energy production, materials testing facilities, and spallation neutron sources. The maintenance goals require very low beam loss along the linac. Optimization of such systems is complex; status of beam dynamics aspects presently being investigated is outlined

  12. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  13. The advanced neutron source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1994-01-01

    The Advanced Neutron Source (ANS), slated for construction start in 1994, will be a multipurpose neutron research laboratory serving academic and industrial users in chemistry, biology, condensed matter physics, nuclear and fundamental physics, materials science and engineering, and many other fields. It will be centered on the world's highest flux neutron beam reactor, operating at 330 MW, with careful design integration between the neutron source and the experiment systems. Many instruments will be situated in low backgrounds at distances up to 80 m from the reactor, using neutron guides with tailored neutron optical coatings for beam transport. Apart from the many stations for neutron scattering research, specialized stations will also be provided for isotope separation on-line, experiments with liquid hydrogen targets, neutron optical techniques such as interferometry, activation analysis, depth profiling, and positron production. Careful consideration has been given to providing a good research environment for visiting scientists, including easy access to the experimental areas, while maintaining a highly secure nuclear facility. This paper will describe the reactor and experimental facilities and give some examples of the types of research for which ANS has been designed

  14. Neutron production and dose rate in the IFMIF/EVEDA LIPAc injector beam commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Keitaro, E-mail: kondo.keitaro@jaea.go.jp [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Narita, Takahiro; Usami, Hiroki; Takahashi, Hiroki; Ochiai, Kentaro; Shinto, Katsuhiro; Kasugai, Atsushi [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Okumura, Yoshikazu [IFMIF/EVEDA Project Team, Rokkasho-mura, Kamikita-gun, Aomori (Japan)

    2016-11-01

    Highlights: • A dedicated neutron production yield monitoring system for LIPAc has been developed. • The biological dose rate during operation of the LIPAc injector was analyzed. • The neutron streaming effect due to penetrations in the shielding wall was investigated. - Abstract: The construction of the Linear IFMIF Prototype Accelerator (LIPAc) is in progress in Rokkasho, Japan, and the deuteron beam commissioning of the injector began in July 2015. Due to the huge beam current of 125 mA, a large amount of d-D neutrons are produced in the commissioning. The neutron streaming effect through pipe penetrations and underground pits may dominate the radiation dose at the outside of the accelerator vault during the injector operation. In the present study the effective dose rate expected during the injector commissioning was analyzed by a Monte Carlo calculation and compared with the measured value. For the comparison it is necessary to know the total neutron production yield in the accelerator vault, thus a dedicated neutron production yield monitoring system was developed. The yield obtained was smaller than that previously reported in a literature by a factor of a few and seems to depend on some beam conditions. From the comparison it was proved that the calculation always provides a conservative estimate and the dose rates in places where occupational works can always access and the controlled area boundary are expected to be far less than the legal criteria throughout the injector commissioning.

  15. Design process and modeling studies of SSRL beam line wunder

    International Nuclear Information System (INIS)

    Bachrach, R.Z.; Bringans, R.D.

    1984-01-01

    SSRL Beam Line Wunder will be the first soft X-ray energy range synchrotron radiation beam line specifically designed to exploit the unique aspects of periodic insertion devices in the wiggler-undulator (wunder) regime. Aspects of the development of this beam line are described in this paper and in particular, we discuss the design methodology adopted and emphasize the joint optical, thermal and mechanical optimization studies that were required. (orig.)

  16. Performance of a MICROMEGAS-based TPC in a high-energy neutron beam

    Science.gov (United States)

    Snyder, L.; Manning, B.; Bowden, N. S.; Bundgaard, J.; Casperson, R. J.; Cebra, D. A.; Classen, T.; Duke, D. L.; Gearhart, J.; Greife, U.; Hagmann, C.; Heffner, M.; Hensle, D.; Higgins, D.; Isenhower, D.; King, J.; Klay, J. L.; Geppert-Kleinrath, V.; Loveland, W.; Magee, J. A.; Mendenhall, M. P.; Sangiorgio, S.; Seilhan, B.; Schmitt, K. T.; Tovesson, F.; Towell, R. S.; Walsh, N.; Watson, S.; Yao, L.; Younes, W.

    2018-02-01

    The MICROMEGAS (MICRO-MEsh GAseous Structure) charge amplification structure has found wide use in many detection applications, especially as a gain stage for the charge readout of Time Projection Chambers (TPCs). Here we report on the behavior of a MICROMEGAS TPC when operated in a high-energy (up to 800 MeV) neutron beam. It is found that neutron-induced reactions can cause discharges in some drift gas mixtures that are stable in the absence of the neutron beam. The discharges result from recoil ions close to the MICROMEGAS that deposit high specific ionization density and have a limited diffusion time. For a binary drift gas, increasing the percentage of the molecular component (quench gas) relative to the noble component and operating at lower pressures generally improves stability.

  17. E-line: A new crystal collimator beam line for source size measurements at CHESS

    International Nuclear Information System (INIS)

    White, Jeffrey A.; Revesz, Peter; Finkelstein, Ken

    2007-01-01

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring

  18. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  19. Proposed dedicated high pressure beam lines at CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Vohra, Y.K.; Bassett, W.A.; Batterman, B.W.; Bilderback, D.H.

    1988-01-01

    An instrumentation proposal for dedicated high pressure beam lines at CHESS is described. It is the purpose of this proposed program to provide researchers in high pressure science with beam lines for X-ray diffraction studies in the megabar regime. This will involve radiation from a bending magnet as well as from a wiggler. Examples of the high pressure results up to 2.16 Mbar are shown. Diffraction patterns from bending magnet and wiggler beams are shown and compared. The need for this facility by the high pressure community is discussed. (orig.)

  20. Observation of spatial splitting of a polarized neutron beam as it is refracted on the interface of two magnetically non-collinear media

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Fredrikze, H.; Rekveldt, M.Th.; Schreiber, J.

    1998-01-01

    In the conducted experimental investigation of neutron refraction on the interface of two magnetically non-collinear media spatial splitting of a polarized neutron beam was observed. The beam of neutrons initially in the spin state '+' or '-' splits into two beams of neutrons in the states '+' and '-'. All four split beams have different spatial positions. The reported phenomenon has been observed for the first time

  1. On the possible use of the MASURCA reactor as a flexible, high-intensity, fast neutron beam facility

    Science.gov (United States)

    Dioni, Luca; Jacqmin, Robert; Sumini, Marco; Stout, Brian

    2017-09-01

    In recent work [1, 2], we have shown that the MASURCA research reactor could be used to deliver a fairly-intense continuous fast neutron beam to an experimental room located next to the reactor core. As a consequence of the MASURCA favorable characteristics and diverse material inventories, the neutron beam intensity and spectrum can be further tailored to meet the users' needs, which could be of interest for several applications. Monte Carlo simulations have been performed to characterize in detail the extracted neutron (and photon) beam entering the experimental room. These numerical simulations were done for two different bare cores: A uranium metallic core (˜30% 235U enriched) and a plutonium oxide core (˜25% Pu fraction, ˜78% 239Pu). The results show that the distinctive resonance energy structures of the two core leakage spectra are preserved at the channel exit. As the experimental room is large enough to house a dedicated set of neutron spectrometry instruments, we have investigated several candidate neutron spectrum measurement techniques, which could be implemented to guarantee well-defined, repeatable beam conditions to users. Our investigation also includes considerations regarding the gamma rays in the beams.

  2. A beam optics study of the biomedical beam line at a proton therapy facility

    International Nuclear Information System (INIS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-01-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam

  3. Design of neutron beams at the Argonne Continuous Wave Linac (ACWL) for boron neutron capture therapy and neutron radiography

    International Nuclear Information System (INIS)

    Zhou, X.L.; McMichael, G.E.

    1994-01-01

    Neutron beams are designed for capture therapy based on p-Li and p-Sc reactions using the Argonne Continuous Wave Linac (ACWL). The p-Li beam will provide a 2.5 x 10 9 n/cm 2 s epithermal flux with 7 x 10 5 γ/cm 2 s contamination. On a human brain phantom, this beam allows an advantage depth (AD) of 10 cm, an advantage depth dose rate (ADDR) of 78 cGy/min and an advantage ratio (AR) of 3.2. The p-Sc beam offers 5.9 x 10 7 n/cm 2 s and a dose performance of AD = 8 cm and AR = 3.5, suggesting the potential of near-threshold (p,n) reactions such as the p-Li reaction at E p = 1.92 MeV. A thermal radiography beam could also be obtained from ACWL

  4. Neutron production and ion beam generation in plasma focus devices

    International Nuclear Information System (INIS)

    Steinmetz, K.

    1980-01-01

    Concerning the physical processes leading to neutron emission, a clearer situation has been achieved compared to the state at the start of this work. The general discussion will realize that the whole experimental data cannot be described consistently by the predictions of either the beam-target model or the quasi-thermonuclear fusion model, although many questions about the neutron production properties have been solved. In particular the neutron fluence anisotropy is found to be a property basically related to the existence of fast ions escaping axially out of the pinch region. The requirements to explain broad radial neutron energy spectra, long emission times, and energetic but not spatial emission anisotropies suggest a kind of particle trapping in the main source region. (orig./HT)

  5. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  6. Beam-Loss Driven Design Optimization for the Spallation Neutron Source (SNS) Ring

    International Nuclear Information System (INIS)

    Wei, J.

    1999-01-01

    This paper summarizes three-state design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.)

  7. Design of the ESCAR injection beam line

    International Nuclear Information System (INIS)

    Tanabe, J.; Staples, J.; Yourd, R.

    1975-01-01

    The design features of the elements of the ESCAR (Experimental Superconducting Accelerator Ring) injection beam line are described. The junction of the proton transport system with the ESCAR injection straight section requires the design of mechanical elements compatible with the 10 -11 torr vacuum requirements of the main ring. These elements include a novel septum magnet whose salient design features include a current-carrying septum of tapered thicknesses to reduce the overall power requirements and total enclosure of the magnet coil in a metal can for vacuum compatibility. Other elements are a wire electro-static septum and several fast-rise ''bump magnets''. A transition cryopump is designed to separate the main ring vacuum from the relatively poor 10 -6 torr vacuum of the conventional beam transport line. A brief description of the conventional beam transport line from the 50 MeV proton linac, recently installed for Bevatron injection,is also included. (U.S.)

  8. Neutronic calculations for Angra-1 steam line break accident

    International Nuclear Information System (INIS)

    Ponzoni Filho, Pedro; Sato, Sadakatu

    2000-01-01

    The reduction of boron concentration in the Boron Injection Tank (BIT), to the room temperature solubility level, makes necessary a reanalysis of the steam line break accident of Angra 1 NPP. This paper describes the neutronic calculation related to this reanalysis. The main steps of the work were: review of reactivity parameters used in the accident simulation; search of xenon profiles that cause the most severe core power distribution; calculation of hot channel factors and other neutronic parameters necessary for DNBR determination. The final conclusion, related to the steam line break accident, states the BIT concentration may be reduced to 2000 ppm. (author)

  9. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    Science.gov (United States)

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Plasma focus neutron anisotropy measurements and influence of a deuteron beam obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Talebitaher, A. [Physics Department, University of Regina, Saskatchewan, Canada S4S 0A2 (Canada); Springham, S.V., E-mail: stuart.springham@nie.edu.sg [Natural Sciences and Science Education, National Institute of Education, 637616 (Singapore); Rawat, R.S.; Lee, P. [Natural Sciences and Science Education, National Institute of Education, 637616 (Singapore)

    2017-03-11

    The deuterium-deuterium (DD) fusion neutron yield and anisotropy were measured on a shot-to-shot basis for the NX2 plasma focus (PF) device using two beryllium fast-neutron activation detectors at 0° and 90° to the PF axis. Measurements were performed for deuterium gas pressures in the range 6–16 mbar, and positive correlations between neutron yield and anisotropy were observed at all pressures. Subsequently, at one deuterium gas pressure (13 mbar), the contribution to the fusion yield produced by the forwardly-directed D{sup +} ion beam, emitted from the plasma pinch, was investigated by using a circular Pyrex plate to obstruct the beam and suppress its fusion contribution. Neutron measurements were performed with the obstacle positioned at two distances from the anode tip, and also without the obstacle. It was found that ~ 80% of the neutron yield originates in the plasma pinch column and just above that. In addition, proton pinhole imaging was performed from the 0° and 90° directions to the pinch. The obtained proton images are consistent with the conclusion that DD fusion is concentrated (~ 80%) in the pinch column region.

  11. Present status of neutron beam facilities at the research reactor, HANARO, and its future prospect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hee; Kang, Young-Hwan; Kuk, Il-Hiun [Korea Atomic Energy Research Institute, Taejon (Korea)

    2001-03-01

    Korea has been operating its new research reactor, HANARO, since its first criticality in 1995. It is an open-tank-in-pool type reactor using LEU fuel with thermal neutron flux of 2 x 10{sup 14} nominally at the nose in the D{sub 2}O reflector having 7 horizontal beam ports and a provision of vertical hole for cold neutron source installation. KAERI has pursued an extensive instrument development program since 1992 by the support of the nuclear long-term development program of the government and there are now 4 working instruments. A high resolution powder diffractometer and a neutron radiography facility has been operational since late 1997 and 1996, respectively. A four-circle diffractometer has been fully working since mid 1999 and a small angle neutron spectrometer is just under commissioning phase. With the development of linear position sensitive detector with delay-line readout electronics, we have developed a residual stress instrument as an optional machine to the HRPD for last two years. Around early 1998 informal users program started with friendly users and it became a formal users support program by the ministry of science and technology. Short description for peer group formation and users activities is given. (author)

  12. Present status of neutron beam facilities at the research reactor, HANARO, and its future prospect

    International Nuclear Information System (INIS)

    Lee, Chang-Hee; Kang, Young-Hwan; Kuk, Il-Hiun

    2001-01-01

    Korea has been operating its new research reactor, HANARO, since its first criticality in 1995. It is an open-tank-in-pool type reactor using LEU fuel with thermal neutron flux of 2 x 10 14 nominally at the nose in the D 2 O reflector having 7 horizontal beam ports and a provision of vertical hole for cold neutron source installation. KAERI has pursued an extensive instrument development program since 1992 by the support of the nuclear long-term development program of the government and there are now 4 working instruments. A high resolution powder diffractometer and a neutron radiography facility has been operational since late 1997 and 1996, respectively. A four-circle diffractometer has been fully working since mid 1999 and a small angle neutron spectrometer is just under commissioning phase. With the development of linear position sensitive detector with delay-line readout electronics, we have developed a residual stress instrument as an optional machine to the HRPD for last two years. Around early 1998 informal users program started with friendly users and it became a formal users support program by the ministry of science and technology. Short description for peer group formation and users activities is given. (author)

  13. Opportunities for research using neutron beams at Australia's replacement research reactor

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2000-01-01

    Full text: On July 13th 2000, a contract was signed for construction of Australia's Replacement Research Reactor at Lucas Heights just outside Sydney. This may represent Australia's largest single investment in scientific infrastructure, and it provides researchers in condensed matter physics, chemistry, materials science, and some aspects of engineering, the earth sciences and biology with the 'opportunity of a generation' The replacement reactor, which will commence operation in 2005, will be comparable with the national neutron sources of Japan, France and the U.S.A. Cold and thermal neutron sources are to be installed and supermirror guides will transport cold and thermal neutron beams into a large modern guide hall. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by the Argentinian company INVAP S.E., in collaboration with two Australian firms, in a turnkey contract. The instruments will be developed by ANSTO and other contracted organisations, in consultation with the Australian user community and interested overseas parties. This presentation reviews the planned scientific capabilities and opportunities, gives a description of the facility and a status report on the activities so far

  14. Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U

    International Nuclear Information System (INIS)

    Ishii, K.; Okamoto, A.; Kitajima, S.; Sasao, M.; Shinohara, K.; Ishikawa, M.; Baba, M.; Isobe, M.

    2010-01-01

    A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-γ pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and γ-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the γ-ray contamination in most of the beam heating phase was negligible compared with the statistical error with 10 ms time resolution.

  15. Preliminary results of a neutron-gamma coincidence experiment

    International Nuclear Information System (INIS)

    Piercey, R.B.; Dunnam, F.E.; Muga, M.L.; Rester, A.C.; Ramayya, A.V.; Hamilton, J.H.; Eberth, J.; Zganjar, E.F.

    1984-01-01

    The recently completed neutron multiplicity detector dubbed PANDA (Pentagonal Annular Neutron Detector Array) is fully described later in this report. The new detector was recently used for the first time on-line at the Holifield Heavy Ion Research Facility to measure neutron-gamma coincidence in the 24 Mg( 58 Ni,xαypzn) reaction. The detector configuration for the experiment is shown. The PANDA was situated in the forward direction, coaxial to the beam line with five gamma-ray detectors placed at +/- 90 0 , +/- 135 0 , and 0 0 . 2 figures

  16. Determination of Thermal Neutron Capture Cross Sections Using Cold Neutron Beams at the Budapest PGAA-NIPS Facilities

    International Nuclear Information System (INIS)

    Belgya, T.

    2006-01-01

    A complete elemental gamma-ray library was measured with our guided thermal beam at the Budapest PGAA facility in the period of 1995-2000. Using this data library in an IAEA CRP on PGAA it was managed to re-normalize the ENSDF intensity data with the Budapest intensities. Based on this renormalization thermal neutron cross sections were deduced for several isotopes. Most of these calculations were done by Richard B. Firestone. The Budapest PGAA-NIPS facilities have been used for routine prompt gamma activation analysis with cold neutrons since the year of 2000. The advantage of the cold neutron beam is that the neutron guide has much higher neutron transmission. This resulted in a gain factor about 20 relative to our thermal guide. For the analytical works a precise comparator technique was developed that is routinely used to determine partial gamma-ray production cross sections. An additional development of our methodology was necessary to be worked out to determine thermal neutron capture cross sections based on the partial gamma-ray production cross sections. In this talk our methodology of radiative capture cross section determination will be presented, including our latest results on 129 I, 204,206,207 Pb and 209 Bi. Most of these works were done in cooperation with people from EU-JRC-IRMM, Geel, Belgium and CEA Cadarache, France. Many partial cross sections of short lived nuclei have been re-measured with our new chopper technique. The uncertainty calculations of the radiative capture cross section determination procedures will be also shown. (authors)

  17. Capacitive beam position monitors and automatic beam centering in the transfer lines of Ganil

    International Nuclear Information System (INIS)

    Gudewicz, P.; Petit, E.

    1991-01-01

    A non-interceptive beam position monitor, made of four capacitive electrodes, has been designed at GANIL in order to allow a permanent measurement of the ion beam position over a large intensity range (50 enA to 10 eμA). Signal processing is based on a 10 kHz heterodyne and on an amplitude to phase conversion in order to measure the beam position. An immediate application of these monitors is the automatic beam centering. For this, two algorithms have been developed using the information on the center of gravity given by the beam position monitors which is then fed back to the steerers, an iterative method and a variational method. Both methods have been used on a section of beam line and have given similar and encouraging results. The next step is to center the beam on the completely equipped line. (author) 4 refs., 2 figs., 1 tab

  18. Simulating the Beam-line at CERN's ISOLDE Experiment

    CERN Document Server

    McGrath, Casey

    2013-01-01

    Maximizing the optical matching along portions of the ISOLDE beam-line and automating this procedure will make it easier for scientists to determine what the strengths of the electrical elds of each beam-line element should be in order to reduce particle loss. Simulations are run using a program called MAD-X, however, certain issues were discovered that hindered an immediate success of the simulations. Specifically, the transfer matrices for electrostatic components like the switchyards, kickers, and electric quadrupoles were missing from the original coding. The primary aim of this project was to design these components using AutoCAD and then extract the transfer matrices using SIMION. Future work will then implement these transfer matrices into the MAD-X code to make the simulations of the beam-line more accurate.

  19. E-line: A new crystal collimator beam line for source size measurements at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    White, Jeffrey A. [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)], E-mail: jaw7@cornell.edu; Revesz, Peter; Finkelstein, Ken [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)

    2007-11-11

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring.

  20. ALARA Review of the Spallation Neutron Source Accumulator Ring and Transfer Lines

    Energy Technology Data Exchange (ETDEWEB)

    Haire, M.J.

    2003-06-30

    The Spallation Neutron Source (SNS) is designed to meet the growing need for new tools that will deepen our understanding in materials science, life science, chemistry, fundamental and nuclear physics, earth and environmental sciences, and engineering sciences. The SNS is an accelerator-based neutron-scattering facility that when operational will produce an average beam power of 2 MW at a repetition rate of 60 Hz. The accelerator complex consists of the front-end systems, which will include an ion source; a 1-GeV full-energy linear accelerator; a single accumulator ring and its transfer lines; and a liquid mercury target. This report documents an as-low-as-reasonably-achievable (ALARA) review of the accumulator ring and transfer lines at their early design stage. An ALARA working group was formed and conducted a review of the SNS ring and transfer lines at the {approx}25% complete design stage to help ensure that ALARA principles are being incorporated into the design. The radiological aspects of the SNS design criteria were reviewed against regulatory requirements and ALARA principles. Proposed features and measures were then reviewed against the SNS design criteria. As part of the overall review, the working group reviewed the design manual; design drawings and process and instrumentation diagrams; the environment, safety, and health manual; and other related reports and literature. The group also talked with SNS design engineers to obtain explanations of pertinent subject matter. The ALARA group found that ALARA principles are indeed being incorporated into the early design stage. Radiation fields have been characterized, and shielding calculations have been performed. Radiological issues are being adequately addressed with regard to equipment selection, access control, confinement structure and ventilation, and contamination control. Radiation monitoring instrumentation for worker and environment protection are also being considered--a good practice at this

  1. FIRST BEAM TESTS OF THE MUON COLLIDER TARGET TEST BEAM LINE AT THE AGS

    International Nuclear Information System (INIS)

    BROWN, K.A.; GASSNER, D.; GLENN, J.W.; PRIGL, R.; SIMOS, N.; SCADUTO, J.; TSOUPAS, N.

    2001-01-01

    In this report we will describe the muon collider target test beam line which operates off one branch of the AGS switchyard. The muon collider target test facility is designed to allow a prototype muon collider target system to be developed and studied. The beam requirements for the facility are ambitious but feasible. The system is designed to accept bunched beams of intensities up to 1.6 x 10 13 24 GeV protons in a single bunch. The target specifications require beam spot sizes on the order of 1 mm, 1 sigma rms at the maximum intensity. We will describe the optics design, the instrumentation, and the shielding design. Results from the commissioning of the beam line will be shown

  2. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B

    International Nuclear Information System (INIS)

    FOERSTER, C.

    1999-01-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of ∼ 1 x 10 -10 Torr without beam and ∼ 1 x 10 -9 Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not

  3. Radioactive beam EXperiments at ISOLDE : Coulomb excitation and neutron transfer reactions of exotic nuclei.

    CERN Multimedia

    Kugler, E; Ratzinger, U; Wenander, F J C

    2002-01-01

    % IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.

  4. Requirements and guidelines for NSLS experimental beam line vacuum systems: Revision A

    International Nuclear Information System (INIS)

    Foerster, C.; Halama, H.; Thomlinson, W.

    1986-10-01

    Requirements are provided for NSLS beam line front ends and vacuum interlocks. Guidelines are provided for UHV beam line vacuum systems, including materials, vacuum hardware (pumps, valves, and flanges), acoustic delay lines and beam line fast valves, instrumentation, fabrication and testing, and the NSLS cleaning facility. Also discussed are the design review for experimenters' equipment that would be connected to the NSLS and acceptance tests for any beam line to be connected with the ring vacuum. Also appended are a description of the acoustic delay line as well as the NSLS vacuum standards and NSLS procedures

  5. A 14-MeV beam-plasma neutron source for materials testing

    International Nuclear Information System (INIS)

    Futch, A.H.; Coensgen, F.H.; Damm, C.C.; Molvik, A.W.

    1989-01-01

    The design and performance of 14-MeV beam-plasma neutron sources for accelerated testing of fusion reactor materials are described. Continuous production of 14-MeV neutron fluxes in the range of 5 to 10 MW/m 2 at the plasma surface are produced by D-T reactions in a two-component plasma. In the present designs, 14-MeV neutrons result from collisions of energetic deuterium ions created by transverse injection of 150-keV deuterium atoms on a fully ionized tritium target plasma. The beam energy, which deposited at the center of the tritium column, is transferred to the warm plasma by electron drag, which flows axially to the end regions. Neutral gas at high pressure absorbs the energy in the tritium plasma and transfers the heat to the walls of the vacuum vessel. The plasma parameters of the neutron source, in dimensionless units, have been achieved in the 2XIIB high-β plasma. The larger magnetic field of the present design permits scaling to the higher energy and density of the neutron source design. In the extrapolation, care has been taken to preserve the scaling and plasma attributes that contributed to equilibrium, magnetohydrodynamic (MHD) stability, and microstability in 2XIIB. The performance and scaling characteristics are described for several designs chosen to enhance the thermal isolation of the two-component plasmas. 11 refs., 3 figs., 3 tabs

  6. Evaluation of apoptosis and micronucleation induced by reactor neutron beams with two different cadmium ratios in total and quiescent cell populations within solid tumors

    International Nuclear Information System (INIS)

    Masunaga, Shin-ichiro; Ono, Koji; Sakurai, Yoshinori; Takagaki, Masao; Kobayashi, Tooru; Kinashi, Yuko; Suzuki, Minoru

    2001-01-01

    Purpose: Response of quiescent (Q) and total tumor cells in solid tumors to reactor neutron beam irradiation with two different cadmium (Cd) ratios was examined in terms of micronucleus (MN) frequency and apoptosis frequency, using four different tumor cell lines. Methods and Materials: C57BL mice bearing EL4 tumors, C3H/He mice bearing SCC VII or FM3A tumors, and Balb/c mice bearing EMT6/KU tumors received 5-bromo-2'-deoxyuridine (BrdU) continuously for 5 days via implanted mini-osmotic pumps to label all proliferating (P) cells. Thirty min after i.p. injection of sodium borocaptate- 10 B (BSH), or 3 h after oral administration of p-boronophenylalanine- 10 B (BPA), the tumors were irradiated with neutron beams. The tumors without 10 B-compound administration were irradiated with neutron beams or γ-rays. This neutron beam irradiation was performed using neutrons with two different Cd ratios. The tumors were then excised, minced, and trypsinized. The tumor cell suspensions thus obtained were incubated with cytochalasin-B (a cytokinesis blocker), and the MN frequency in cells without BrdU labeling (=Q cells) was determined using immunofluorescence staining for BrdU. Meanwhile, for apoptosis assay, 6 h after irradiation, tumor cell suspensions obtained in the same manner were fixed, and the apoptosis frequency in Q cells was also determined with immunofluorescence staining for BrdU. The MN and apoptosis frequencies in total (P+Q) tumor cells were determined from the tumors that were not pretreated with BrdU. Results: Without 10 B-compounds, the sensitivity difference between total and Q cells was reduced by neutron beam irradiation. Under our particular neutron beam irradiation condition, relative biological effectiveness (RBE) of neutrons was larger in Q cells than in total cells, and the RBE values were larger for low Cd-ratio than high Cd-ratio neutrons. With 10 B-compounds, both frequencies were increased for each cell population, especially for total cells. BPA

  7. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    Science.gov (United States)

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R.; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-01

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ˜50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  8. On a laser beam fiducial line application for metrological purposes

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, J.; Lyablin, M.; Rusakovich, N.; Sisakyan, A.; Topilin, N.; Khubua, J.; Lasseur, C.

    2008-01-01

    The possibility of a collimated one-mode laser beam used as a fiducial line is considered. The technology of an 'extended' laser beam formation and application for a much extended fiducial line is proposed

  9. Evaluation of beam-line components for use in a large neutral-beam injector

    International Nuclear Information System (INIS)

    Fink, J.H.

    1977-01-01

    A conceptual model of a neutral-beam injector was used to examine the effect of beam-line components on reactor performance. Criteria were established to optimize a reactor's reliability and minimize its cost

  10. Progress report on the neutral beam radiation hardening study

    International Nuclear Information System (INIS)

    Lee, J.D.; Condit, R.H.; Hoenig, C.L.; Wilcox, T.P.; Erickson, J.

    1978-01-01

    A neutral beam injector as presently conceived directly views the plasma it is sustaining. In turn the injector is exposed to the primary fusion neutrons plus secondary neutrons and gammas streaming back up the neutral beam duct. The intent of this work is to examine representative beam lines to see how performance and lifetimes could be affected by this radiation environment and to determine how unacceptable effects could be alleviated. Potential radiation induced problems addressed in this report have been limited to: (1) overheating of cryopanels and insulators, (2) gamma flux induced electrical conductivity increase of insulators, and (3) neutron and gamma fluence induced damage to insulator materials

  11. Long distance propagation of a polarized neutron beam in zero magnetic field

    International Nuclear Information System (INIS)

    Schmidt, U.; Bitter, T.; El-Muzeini, P.

    1992-01-01

    A beam of fully polarized cold neutrons was transported through a zero magnetic field region of 70 m length without loss of polarization. The purpose of this exercise was twofold: Firstly, to demonstrate that the new zero-field neutron spin-echo method will work also for very long neutron flight paths; secondly, to prove in the most direct way that the neutron free-flight region of the ILL neutron-antineutron oscillation experiment was indeed sufficiently field-free ('quasifree condition') by using the neutrons themselves as a magnetometer. To this purpose the residual magnetic field integrals in the long 'zero-field' region were measured with a conventional neutron spin-echo method. The overall spin precession angle of the neutrons during their flight through the long zero-field region was found to be less than 2 0 . (orig.)

  12. Peculiarities of using mixed deuterium and tritium ion beams of complicated atomic-molecular composition for fast neutron generation

    International Nuclear Information System (INIS)

    Kir'yanov, G.I.; Syromukov, S.V.

    1983-01-01

    The neutron yield is calculated depending on deuterium and tritium beam parameters as well as on the target parameters. Cases of target presaturation with hydrogen nuclides and of target stuffing with the ion beam in the process of the system functioning are discussed. It is shown that the neutron yield is approximately three times more in the case with a pure beam compared to the case with a niked beam

  13. The n_TOF facility: Neutron beams for challenging future measurements at CERN

    Science.gov (United States)

    Chiaveri, E.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2), located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented.

  14. Water-cooled beam line components at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1981-01-01

    The beam line components that comprise the main experimental beam at the Clinton P. Anderson Meson Physics Facility (LAMPF) have been operating since February 1976. This paper will define the functions of the primary water-cooled elements, their design evolution, and our operating experience to the present time

  15. Feasibility of the utilization of BNCT in the fast neutron therapy beam at Fermilab

    International Nuclear Information System (INIS)

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Paul M. Jr.

    2000-01-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue

  16. Neutron beam test of multi-grid-type microstrip gas chamber

    International Nuclear Information System (INIS)

    Fujita, K.; Takahashi, H.; Siritiprussamee, P.; Niko, H.; Kai, M.; Nakazawa, M.; Ino, T.; Sato, S.; Yokoo, T.; Furusaka, M.; Kanazawa, M.

    2006-01-01

    Multi-grid-type microstrip gas chambers (M-MSGCs) are being developed for the next-generation pulsed neutron source. Two new concepts, a global-local-grouping (GLG) method and a graded cathode pattern readout method, were applied to the M-MSGC design for realizing higher counting rate than traditional 3 He proportional counters. One-dimensional detectors with 700 mm-long test plates were fabricated and tested with X-ray and neutron beams, which demonstrated position detection capability based on these concepts

  17. Monitoring elastic strain and damage by neutron and synchrotron beams

    International Nuclear Information System (INIS)

    Withers, P.J.

    2001-01-01

    Large-scale neutron and synchrotron X-ray facilities have been providing important information for physicists and chemists for many decades. Increasingly, materials engineers are finding that they can also provide them with important information non-destructively. Highly penetrating neutron and X-ray synchrotron beams provide the materials engineer with a means of obtaining information about the state of stress and damage deep within materials. In this paper the principles underlying the elastic strain measurement and damage characterization techniques are introduced. (orig.)

  18. np Elastic-scattering experiments with polarized neutron beams

    International Nuclear Information System (INIS)

    Chalmers, J.S.; Ditzler, W.R.; Hill, D.

    1985-01-01

    Measurements of the spin transfer parameters, K/sub NN/ and K/sub LL/, at 500, 650, and 800 MeV are presented for the reaction p-vector d → n-vector pp at 0 0 . The data are useful input to the NN data base and indicate that the quasi-free charge exchange (CEX) reaction is a useful mechanism for producing neutrons with at least 40% polarization at energies as low as 500 MeV. Measurements of np elastic scattering observables C/sub LL/ and C/sub SL/ covering 35 0 to 172 0 are performed using a polarized neutron beam at 500, 650, and 800 MeV. Preliminary results are presented. 3 refs., 6 figs

  19. Silicon Photo-Multiplier Radiation Hardness Tests with a White Neutron Beam

    International Nuclear Information System (INIS)

    Montanari, A.; Tosi, N.; Pietropaolo, A.; Andreotti, M.; Baldini, W.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Cotta Ramusino, A.; Malaguti, R.; Santoro, V.; Tellarini, G.; Tomassetti, L.; De Donato, C.; Reali, E.

    2013-06-01

    We report radiation hardness tests performed, with a white neutron beam, at the Geel Electron Linear Accelerator in Belgium on silicon Photo-Multipliers. These are semiconductor photon detectors made of a square matrix of Geiger-Mode Avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated integrating up to about 6.2 x 10 9 1-MeV-equivalent neutrons per cm 2 . (authors)

  20. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    Science.gov (United States)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  1. Beam transport

    International Nuclear Information System (INIS)

    1988-01-01

    Considerable experience has now been gained with the various beam transport lines, and a number of minor changes have been made to improve the ease of operation. These include: replacement of certain little-used slits by profile monitors (harps or scanners); relocation of steering magnets, closer to diagnostic harps or profile scanners; installation of a scanner inside the isocentric neutron therapy system; and conversion of a 2-doublet quadrupole telescope (on the neutron therapy beamline) to a 2-triplet telescope. The beam-swinger project has been delayed by very late delivery of the magnet iron to the manufacturer, but is now progressing smoothly. The K=600 spectrometer magnets have now been delivered and are being assembled for field mapping. The x,y-table with its associated mapping equipment is complete, together with the driver software. One of the experimental areas has been dedicated to the production of collimated neutron beams and has been equipped with a bending magnet and beam dump, together with steel collimators fixed at 4 degrees intervals from 0 degrees to 16 degrees. Changes to the target cooling and shielding system for isotope production have led to a request for much smaller beam spot sizes on target, and preparations have been made for rearrangement of the isotope beamline to permit installation of quadrupole triplets on the three beamlines after the switching magnet. A practical system of quadrupoles for matching beam properties to the spectrometer has been designed. 6 figs

  2. Commissioning status of the decelerator test beam line in CTF3

    CERN Document Server

    Adli, E; Lillestol, R; Olvegaard, M; Syratchev, I; Carrillo, D; Toral, F; Faus-Golfe, A; Garcia-Garrigos, J J; Kubyshin, Y; Montoro, G

    2010-01-01

    The CLIC Test Facility (CTF3) at CERN was constructed by the CTF3 collaboration to study the feasibility of the concepts for a compact linear collider. The test beam line (TBL) recently added to the CTF3 machine was designed to study the CLIC decelerator beam dynamics and 12 GHz power production. The beam line consists of a FODO lattice with high precision BPM’s and quadrupoles on movers for precise beam alignment. A total of 16 Power Extraction and Transfer Structures (PETS) will be installed in between the quadrupoles to extract 12 GHz power from the drive beam provided by the CTF3 machine. The CTF3 drive beam with a bunch-train length of 140 ns, 12 GHz bunch repetition frequency and an average current over the train of up to 28 A will be injected into the test beam line. Each PETS structure will produce 135 MW of 12 GHz power at nominal current. The beam will have lost more than 50 % of its initial energy of 150 MeV at the end of the beam line and will contain particles with energies between 65 MeV and 1...

  3. Commissioning of the LHC Beam Transfer Line TI 8

    International Nuclear Information System (INIS)

    Uythoven, J.A.; Arduini, G.; Goddard, B.; Jacquet, D.; Kain, V.; Lamont, M.; Mertens, V.; Spinks, A.; Wenninger, J.; Chao, Y.-C.

    2005-01-01

    The first of the two LHC transfer lines was commissioned in autumn 2004. Beam reached an absorber block located some 2.5 km downstream of the SPS extraction point at the first shot, without the need of any threading. The hardware preparation and commissioning phase will be summarized, followed by a description of the beam tests and their results regarding optics and other line parameters, including the experience gained with beam instrumentation, the control system and the machine protection equipment

  4. PEMODELAN KOLIMATOR DI RADIAL BEAM PORT REAKTOR KARTINI UNTUK BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Bemby Yulio Vallenry

    2015-03-01

    Full Text Available Salah satu metode terapi kanker adalah Boron Neutron Capture Therapy (BNCT. BNCT memanfaatkan tangkapan neutron oleh 10B yang terendapkan pada sel kanker. Keunggulan BNCT dibandingkan dengan terapi radiasi lainnya adalah tingkat selektivitas yang tinggi karena tingkatannya adalah sel. Pada penelitian ini dilakukan pemodelan kolimator di radial beamport reaktor Kartini sebagai dasar pemilihan material dan manufature kolimator sebagai sumber neutron untuk BNCT. Pemodelan ini dilakukan dengan simulasi menggunakan perangkat lunak Monte Carlo N-Particle versi 5 (MCNP 5. MCNP 5 adalah suatu paket program untuk memodelkan sekaligus menghitung masalah transpor partikel dengan mengikuti sejarah hidup neutron semenjak lahir, bertranspor pada bahan hingga akhirnya hilang karena mengalami reaksi penyerapan atau keluar dari sistem. Pemodelan ini menggunakan variasi material dan ukurannya agar menghasilkan nilai dari tiap parameter-parameter yang sesuai dengan rekomendasi I International Atomic Energy Agency (IAEA untuk BNCT, yaitu fluks neutron epitermal (Фepi > 9 n.cm-2.s-1, rasio antara laju dosis neutron cepat dan fluks neutron epitermal (Ḋf/Фepi 0,7. Berdasarkan hasil optimasi dari pemodelan ini, material dan ukuran penyusun kolimator yang didapatkan yaitu 0,75 cm Ni sebagai dinding kolimator, 22 cm Al sebagai moderator dan 4,5 cm Bi sebagai perisai gamma. Keluaran berkas radiasi yang dihasilkan dari pemodelan kolimator radial beamport yaitu Фepi = 5,25 x 106 n.cm-2s-1, Ḋf/Фepi =1,17 x 10-13 Gy.cm2.n-1, Ḋγ/Фepi = 1,70 x 10-12 Gy.cm2.n-1, Фth/Фepi = 1,51 dan J/Фepi = 0,731. Berdasarkan penelitian ini, hasil optimasi 5 parameter sebagai persyaratan kolimator untuk BNCT yang keluar dari radial beam port tidak sepenuhnya memenuhi kriteria yang direkomendasikan oleh IAEA sehingga perlu dilakukan penelitian lebih lanjut agar tercapainya persyaratan IAEA. Kata kunci: BNCT, radial beamport, MCNP 5, kolimator   One of the cancer therapy methods is

  5. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    Directory of Open Access Journals (Sweden)

    Chang-Bum Moon

    2014-02-01

    Full Text Available This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL and fragmentation capability to produce rare isotopes beams (RIBs and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  6. Study of an integrated electronic monitor for neutron beams

    International Nuclear Information System (INIS)

    Barelaud, B.; Nexon-Mokhtari, F.; Barrau, C.; Decossac, J.L.; Vareille, J.C.; Sarrabayrouse, G.

    1994-01-01

    Many neutron beams monitors in 10 keV - 50 keV range are perturbed by gamma radiation impact. This new monitor uses two silicon (junction) diodes operating coincidence detection, combined with an electronic threshold to eliminate gamma background noise. The results and analyses presented here only concern feasibility studies. (D.L.)

  7. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. ATS Department

    2018-01-01

    In this note, we present detailed simulation results for the trajectory of a muon beam, traversing beam zones PPE-134 and PPE-154, produced by a 150 GeV positive hadron beam incident on collimators 9 & 10 in the H4 beam line when these collimators are placed off-beam axis to stop all hadrons and electrons. Using G4Beamline, a GEANT-4 based Monte-Carlo program, the trajectory of the muon beam has been studied for several field strengths of the GOLIATH magnet, as well as for different polarities. The position of the beam at the Gamma Irradiation Facility (GIF++), located downstream the PPE-144 area, is also presented. In addition, two configurations of the two XTDV’s present in the line (XTDV.022.520 and XTDV.022.610) have been studied, with the purpose to simulate the pion contamination of the beam both in PPE134 and GIF++.

  8. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    Energy Technology Data Exchange (ETDEWEB)

    FOERSTER,C.

    1999-05-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware

  9. Structural integrity assessment based on the HFR Petten neutron beam facilities

    CERN Document Server

    Ohms, C; Idsert, P V D

    2002-01-01

    Neutrons are becoming recognized as a valuable tool for structural-integrity assessment of industrial components and advanced materials development. Microstructure, texture and residual stress analyses are commonly performed by neutron diffraction and a joint CEN/ISO Pre-Standard for residual stress analysis is under development. Furthermore neutrons provide for defects analyses, i.e. precipitations, voids, pores and cracks, through small-angle neutron scattering (SANS) or radiography. At the High Flux Reactor, 12 beam tubes have been installed for the extraction of thermal neutrons for such applications. Two of them are equipped with neutron diffractometers for residual stress and structure determination and have been extensively used in the past. Several other facilities are currently being reactivated and upgraded. These include the SANS and radiography facilities as well as a powder diffractometer. This paper summarizes the main characteristics and current status of these facilities as well as recently in...

  10. Development of slow positron beam lines and applications

    Science.gov (United States)

    Mondal, Nagendra Nath

    2018-05-01

    A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.

  11. The Proton Beams for the New Time-of-Flight Neutron Facility at the CERN-PS

    CERN Document Server

    Cappi, R; Métral, G

    2000-01-01

    The experimental determination of neutron cross sections in fission and capture reactions as a function of the neutron energy is of primary importance in nuclear physics. Recent developments at CERN and elsewhere have shown that many fields of research and development, such as the design of Accelerator-Driven Systems (ADS) for nuclear waste incineration, nuclear astrophysics, fundamental nuclear physics, dosimetry for radiological protection and therapy, would benefit from a better knowledge of neutron cross sections. A neutron facility at the CERN-PS has been proposed with the aim of carrying out a systematic and high resolution study of neutron cross sections through Time-Of-Flight (n-TOF) measurement. The facility requires a high intensity proton beam (about 0.7x1013 particles/bunch) distributed in a short bunch (about 25 ns total length) to produce the neutrons by means of a spallation process in a lead target. To achieve these characteristics, a number of complex beam gymnastics have to be performed. All...

  12. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    Science.gov (United States)

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. neutron detector for in-beam studies

    International Nuclear Information System (INIS)

    Schmitt, R.P.; Nebbia, G.; Fabris, D.; Natowitz, J.B.; Utsunomiya, H.; Wada, R.

    1987-01-01

    Flexible, high-geometry detection systems are indispensable in unraveling the complexities of the contributing reaction mechanisms in medium energy heavy-ion collisions. In preparation for the K500 cyclotron, which will come on-line in 1987, they are constructing a 4π neutron ball. Like the fission neutron tanks first constructed more than three decades ago, the neutron ball consists of a large volume (approximately 1700 1) of Gd-doped liquid scintillator. However, the ball is distinguished from these systems in its relatively large scattering chamber and modular design. The design features and the expected performance of the ball will be described. They will also report on the current status of the project

  14. Beam dynamics calculations for the linac booster beam line

    International Nuclear Information System (INIS)

    Lu, J.Q.; Cramer, J.G.; Storm, D.W.

    1987-01-01

    Beam optics focusing characteristics both in the transverse and longitudinal directions of the superconducting linac booster beam line are calculated for different particles. Three computer programs, which are TRANSPORT, LYRA and ENTIME, are used to simulate particle motions. The first one is used to simulate the particle radial motions. The effects of energy increase on to the transverse phase space area are considered by putting in accelerating matrices of each resonators. The second program is used to simulate particle longitudinal motions. Beam longitudinal motions are calculated with program ENTIME also, with which visual pictures in the Energy-Time phase space can be displayed on the terminal screen. Besides, the stability of the particle periodic motions in the radial directions are considered and calculated

  15. Study of muon-induced neutron production using accelerator muon beam at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Draeger, E.; White, C. G. [Illinois Institute of Technology, Chicago, Illinois (United States); Luk, K. B.; Steiner, H. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Department of Physics, University of California, Berkeley, California (United States)

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  16. NSLS infra-red beam line (U3) conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.

    1984-02-09

    We describe the conceptual design of an infrared (I-R) beam line on the vacuum-ultra-violet storage ring of the National Synchrotron Light Source. The beam line forms part of the Phase II expansion of the NSLS. Consistent with the implementation of the current design is the extraction of hitherto wasted radiation and the establishment of a mezzanine floor or platform to make full use of the available headroom. This means that the I-R beam line, once established, does not interfere with any existing operations on the VUV floor.

  17. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...

  18. Voluminous D2 source for intense cold neutron beam production at the ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, K.; Mezei, F.

    2014-01-01

    the target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed....

  19. Ion beam characteristics of the controlatron/zetatron family of the gas filled neutron tubes

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.S.; Shope, L.A.; O' Neal, M.L.; Boers, J.E.; Bickes, R.W. Jr.

    1981-03-01

    A gas filled tube used to produce a neutron flux with the D(T,He/sup 4/)n reaction is described. Deuterium and tritium ions generated in a reflex discharge are extracted and accelerated to 100 keV by means of an accelerator electrode onto a deutero-tritide target electrode. The electrodes are designed to focus the ion beam onto the target. Total tube currents consisting of extracted ions, unsuppressed secondary electrons, and ions generated by interactions with the background gas are typically 100 mA. The characteristics of the extracted ion beam are discussed. Accelerating voltages greater than 50 kV are required to focus the beam through the accelerator aperture for configurations that give beams with the proper energy density onto the target. The perveance of the beam is discussed. Maximum perveance values are 2 to 20 nanopervs. Tube focusing and neutron production characteristics are described.

  20. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  1. Design and fabrication of 4π Clover Detector Array Assembly for gamma-spectroscopy studies using thermal neutrons

    International Nuclear Information System (INIS)

    Kumar, Manish; Kamble, S.R.; Chaudhari, A.T.; Sabharwal, T.P.; Pathak, Kavindra; Prasad, N.K.; Kinage, L.A.; Biswas, D.C.; Bhagwat, P.V.

    2017-01-01

    Nuclear spectroscopy has been studied earlier from the measurement of prompt gamma rays produced in reactions with thermal neutrons from CIRUS reactor. For studying the prompt γ-spectroscopy using thermal neutrons from Dhruva Reactor, BARC, the development of a dedicated beam line (R-3001) is in progress. In this beam line a detector assembly consisting of Clover Ge detectors will be used. This experimental setup will be utilized to investigate nuclear structure using prompt (n,γ) reactions and also to study the spectroscopy of neutron-rich fission-fragment nuclei

  2. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons; Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ch

    2000-09-15

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons.

  3. Study of an integrated electronic monitor for neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Barelaud, B.; Nexon-Mokhtari, F.; Barrau, C.; Decossac, J.L.; Vareille, J.C. [Limoges Univ., 87 (France); Sarrabayrouse, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. d`Automatique et d`Analyse des Systemes

    1994-12-31

    Many neutron beams monitors in 10 keV - 50 keV range are perturbed by gamma radiation impact. This new monitor uses two silicon (junction) diodes operating coincidence detection, combined with an electronic threshold to eliminate gamma background noise. The results and analyses presented here only concern feasibility studies. (D.L.). 11 refs.

  4. Geometric phase in a split-beam experiment measured with coupled neutron interference loops

    International Nuclear Information System (INIS)

    Hasegawa, Yuji; Zawisky, M.; Rauch, H.; Ioffe, A.

    1996-01-01

    A geometric phase factor is derived for a split-beam experiment as an example of cyclic evolutions. The geometric phase is given by one half of the solid angle independent of the spin of the beam. We observe this geometric phase with a two-loop neutron interferometer, where a reference beam can be added to the beam from one interference loop. All the experimental results show complete agreement with our theoretical treatment. (author)

  5. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    International Nuclear Information System (INIS)

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-01-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7 Li(p, n) 7 Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  6. Determination and analysis of neutron flux distribution on radial Piercing beam port for utilization of Kartini research reactor

    International Nuclear Information System (INIS)

    Widarto

    2002-01-01

    Determination and analysis of neutron flux measurements on radial piercing beam port have been done as completion experimental data document and progressing on utilization of the Kartini research reactor purposes. The analysis and determination of the neutron flux have been carried out by using Au foils detector neutron activation analysis method which put on the radius of cross section (19 cm) and a long of radial piercing beam port (310 cm) Based on the calculation, distribution of the thermal neutron flux is around (8.3 ± 0.9) x 10 5 ncm -2 s -1 to (6.8 ± 0.5) x 10 7 ncm -2 s -1 and fast neutron is (5.0 ± 0.2) x 10 5 ncm -2 s -1 to (1.43 ± 0.6) x 10 7 ncm -2 s -1 . Analyzing by means of curve fitting method could be concluded that the neutron flux distribution on radial piercing beam port has profiled as a polynomial curve. (author)

  7. Bending magnets for the CBA beam-transport line

    International Nuclear Information System (INIS)

    Thern, R.E.

    1983-01-01

    The beam-transport line from the AGS to CBA requires 68 large bending magnets, consisting of pure dipoles and two types of combined function gradient magnets. All three types were designed with magnetic-field calculation program POISSON, using the same exterior dimensions and coil package. The design goal of +-1% momentum acceptance for the transport line required a wide horizontal aperture, with a much-smaller vertical aperture for economy. Two prototypes of one gradient magnet were built, and a facility constructed to measure them and the later production magnets. Measurements were done using both a long coil and a point coil (Rawson-Lush gaussmeter). Preliminary results show δB/B - 3 , δG/G - 2 , and δB 2 /B - 4 cm - 2 over the beam aperture. Due to end effects, the actual gradient differs from the design gradient by 1%, which has been compensated for in the beam-line design

  8. Workshop on a project for a FZR-beam line at ESRF

    International Nuclear Information System (INIS)

    Matz, W.

    1993-10-01

    The Research Center Rossendorf (FZR) investigates the possibilities to install its own beam line as a Cooperate Research Group-project (CRG) at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The main interests for the FZR to use high brillant synchrotron radiation are in the Institute of Radiochemistry and the Institute of Ion Beam Physics and Materials Research. This workshop was organized by these two institutes together with the FZR Study group Synchrotron. The purpose of the workshop was to achieve a better understanding for the technical needs of the projected beam line for the planned research projects. Experts with experience in beam line design met with the Rossendorf groups to discuss the best layout for such a beam line. The summary of this workshop and the copies of transparencies of the lectures that were given are published in this booklet. (orig.)

  9. A scatter model for fast neutron beams using convolution of diffusion kernels

    International Nuclear Information System (INIS)

    Moyers, M.F.; Horton, J.L.; Boyer, A.L.

    1988-01-01

    A new model is proposed to calculate dose distributions in materials irradiated with fast neutron beams. Scattered neutrons are transported away from the point of production within the irradiated material in the forward, lateral and backward directions, while recoil protons are transported in the forward and lateral directions. The calculation of dose distributions, such as for radiotherapy planning, is accomplished by convolving a primary attenuation distribution with a diffusion kernel. The primary attenuation distribution may be quickly calculated for any given set of beam and material conditions as it describes only the magnitude and distribution of first interaction sites. The calculation of energy diffusion kernels is very time consuming but must be calculated only once for a given energy. Energy diffusion distributions shown in this paper have been calculated using a Monte Carlo type of program. To decrease beam calculation time, convolutions are performed using a Fast Fourier Transform technique. (author)

  10. Intraoperative boron neutron capture therapy for malignant gliomas. First clinical results of Tsukuba phase I/II trial using JAERI mixed thermal-epithermal beam

    International Nuclear Information System (INIS)

    Matsumura, A.; Yamamoto, T.; Shibata, Y.

    2000-01-01

    Since October 1999, a clinical trial of intraoperative boron neutron capture therapy (IOBNCT) is in progress at JRR-4 (Japan Research Reactor-4) in Japan Atomic Energy Research Institute (JAERI) using mixed thermal-epithermal beam (thermal neutron beam I: TNB-I). Compared to pure thermal beam (thermal neutron beam II: TNB-II), TNB-I has an improved neutron delivery into the deep region than TNB-II. The clinical protocol and the preliminary results will be discussed. (author)

  11. Report on neutron beam utilization and study of high Tc superconductors at NRI

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Vuong Huu [Nuclear Physics Dept., Nuclear Research Inst. (NRI), Dalat (Viet Nam)

    1998-10-01

    Utilization of reactor neutron beams at NRI for research and applications up to November 1996 had been presented at the last Workshop in Jakarta (25-28 Nov., 1996). This paper describes new research and applications carried out at Nuclear Physics Department of NRI after that time. They consist of neutron beam developments, neutron activation cross section measurements for waste disposal assessment and in-vivo prompt gamma neutron activation analysis for Cd determination in organs. After the last Sub-Workshop on Neutron Scattering in Serpong (21-23 Nov., 1996), we were accepted to participate in the Regional Program on Study of High Tc Superconductors with the topic `The mechanism of Pb and Sb dopant role on superconductivity of 2223 phase of Bi-Sr-Ca-Cu-O system`. Indeed, this study has begun at NRI only since August, 1997 due to the problem of materials. The study has been carried out in collaboration with the Hanoi State University (Superconductors Department) where experts and equipment for superconductors research have been considered as the best ones in Vietnam. Primary results in this study are presented in this workshop. (author)

  12. Development of 2-d position-sensitive neutron detector with individual readout. Operation test and establishment of detection system by means of neutron beam

    International Nuclear Information System (INIS)

    Tanaka, Hiroki; Yamagishi, Hideshi; Nakamura, Tatsuya; Soyama, Kazuhiko; Aizawa, Kazuya

    2005-04-01

    We have been developing the 2-d position-sensitive neutron detector with individual readout as next-generation-type detector system for neutron scattering experiments using intense pulsed neutron source. The detection system is designed to fulfill the specifications required for each neutron spectrometer, such as a count rate, efficiency, neutron/gamma-ray ratio, a spatial resolution and a size, by using suitable detector heads. The fundamental and imaging performances of the developed system assembled with a Multi-wire proportional counter head were evaluated using a collimated neutron beam. The system worked stably for long hours at the 4 He gas pressure of 5 atm with a mixture of 30% C 2 H 6 (0.26 atom 3 He) at gas gain of 450. The spatial resolutions were 1.4, 1.6 mm (FWHM) for a cathode- and a back strip- direction, respectively, considering a beam size. It was also confirmed that the spatial uniformity of the detection efficiency over the whole sensitive detection area was rather good, ±8% deviation from the average with the optimum discrimination level. (author)

  13. Transport and dosimetric solutions for the ELIMED laser-driven beam line

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Romano, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Scuderi, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Amato, A. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Candiano, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Cuttone, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Giove, D. [INFN Sezione di Milano, Via Celoria 16, Milano (Italy); Korn, G.; Krasa, J. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Leanza, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Maggiore, M. [INFN-LNL, Viale dell' Universitá 2 - 35020 Legnaro (PD) (Italy); Marchese, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Margarone, D. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Milluzzo, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Petringa, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Sabini, M.G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Azienda Ospedaliera Cannizzaro, Via Messina 829 - 95100 Catania (Italy); Schillaci, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); and others

    2015-10-01

    Within 2017, the ELIMED (ELI-Beamlines MEDical applications) transport beam-line and dosimetric systems for laser-generated beams will be installed at the ELI-Beamlines facility in Prague (CZ), inside the ELIMAIA (ELI Multidisciplinary Applications of laser–Ion Acceleration) interaction room. The beam-line will be composed of two sections: one in vacuum, devoted to the collecting, focusing and energy selection of the primary beam and the second in air, where the ELIMED beam-line dosimetric devices will be located. This paper briefly describes the transport solutions that will be adopted together with the main dosimetric approaches. In particular, the description of an innovative Faraday Cup detector with its preliminary experimental tests will be reported.

  14. Calculation And Design Of A New Configuration For Radiation Shielding At Neutron Beam No.3 For Fundamental And Applied Researches

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Tran Tuan Anh; Nguyen Kien Cuong; Nguyen Canh Hai; Nguyen Xuan Hai; Pham Ngoc Son; Ho Huu Thang

    2011-01-01

    The tangential horizontal channel of No. 3 of the Dalat Research Reactor has been opened and used during the 1990s. The utilizations of the thermal neutron beam at this channel were the Neutron Radiography and the Prompt Gamma Neutron Activation Analysis method (PGNAA). At present, the neutron beam used for nuclear structure data researches based on the Summing of Amplitude Coincident Pulses system (SACP). Beside, several related research equipments have been set up and operated for the research purposes. A renovation of the neutron channel, therefore, will play an important role in safe and effective utilizations of the neutron beam in fields of nuclear physic training and researches. A new configuration for radiation shielding has been simulated by MCNP code. The calculated results of dose rates for neutron and gamma at working positions are in range of dose rate limit. (author)

  15. Extraction Compression and Acceleration of High Line Charge Density Ion Beams

    CERN Document Server

    Henestroza, Enrique; Grote, D P; Peters, Craig; Yu, Simon

    2005-01-01

    HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2

  16. Single-crystal filters for attenuating epithermal neutrons and gamma rays in reactor beams

    DEFF Research Database (Denmark)

    Rustad, B.M.; Als-Nielsen, Jens Aage; Bahnsen, A.

    1965-01-01

    Cross section of representative samples of bismuth and quartz were measured at room and liquid nitrogen temperatures over neutron energy range of 0.0007 to 2.0 ev to obtain data for design of single-crystal 32-cm bismuth filters for attenuating fast neutrons and γ-rays in reactor beams; filters may...

  17. A new method to evaluate neutron spectra for bnct

    International Nuclear Information System (INIS)

    Martin Hernandez, Guido

    2001-01-01

    This paper deals with the development of a method to evaluate neutron spectra for BNCT. Physical dose deposition calculations for different neutron energies, ranging from thermal to fast, were performed. A matrix, containing dose for each energy and position in the beam center line was obtained. MCNP 4B and Snyder's head model were used. A simple computer code containing the matrix calculates the dose for each point in the beam center line depending on the input energy spectrum to be evaluated. The output of this program is the dose distribution in the brain and the dose gain, that is the ratio between dose to tumor and maximum dose to healthy tissue maximum

  18. Neutron energy spectrum from 120 GeV protons on a thick copper target

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; /Kyushu U.; Sanami, Toshiya; /KEK, Tsukuba; Kajimoto, Tsuyoshi; /Kyushu U.; Iwamoto, Yosuke; /JAEA, Ibaraki; Hagiwara, Masayuki; Saito, Kiwamu; /KEK, Tsukuba; Ishibashi, Kenji; /Kyushu U.; Nakashima, Hiroshi; Sakamoto, Yukio; /JAEA, Ibaraki; Lee, Hee-Seock; /Pohang Accelerator Lab.; Ramberg, Erik; /Fermilab

    2010-08-01

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, protoninduced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30{sup o} and 5 m 90{sup o} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multiparticle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  19. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Science.gov (United States)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to ECATANA) of INFN—LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. Here the ERBSS of UAB (Universidad Autónoma de Barcelona— Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and calibrated, is important for guaranteeing the robustness of the measured spectra and estimating their overall uncertainties.

  20. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    International Nuclear Information System (INIS)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G.A.P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M.V.; Gentile, A.

    2012-01-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  1. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Amgarou, K.; Domingo, C. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Russo, S.; Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali dei Sud, Via S. Sofia 62, 95125 Catania (Italy); Pelliccioni, M.; Esposito, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Pola, A.; Introini, M.V. [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Gentile, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy)

    2012-07-21

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0 Degree-Sign and 90 Degree-Sign with respect to the beam-line. The ERBSSs of UAB (Universidad Autonoma de Barcelona-Grup de Fisica de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  2. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Science.gov (United States)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.

    2012-07-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  3. Latest developments of neutron scattering instrumentation at the Juelich Centre for Neutron Science

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2013-01-01

    Jülich Centre for Neutron Science (JCNS) is operating a number of world-class neutron scattering instruments situated at the most powerful and advanced neutron sources (FRM II, ILL and SNS) and is continuously undertaking significant efforts in the development and upgrades to keep this instrumentation in line with the continuously changing scientific request. These developments are mostly based upon the latest progress in neutron optics and polarized neutron techniques. For example, the low-Q limit of the suite of small angle-scattering instruments has been extended to 4·10 -5 Å -1 by the successful use of focusing optics. A new generation of correction elements for the neutron spin-echo spectrometer has allowed for the use of the full field integral available, thus pushing further the instrument resolution. A significant progress has been achieved in the developments of 3 He neutron spin filters for purposes of the wide-angle polarization analysis for off-specular reflectometry and (grazing incidence) small-angle neutron scattering, e.g. the on-beam polarization of 3 He in large cells is allowing to achieve a high neutron beam polarization without any degradation in time. The wide Q-range polarization analysis using 3 He neutron spin filters has been implemented for small-angle neutron scattering that lead to the reduction up to 100 times of the intrinsic incoherent background from non-deuterated biological molecules. Also the work on wide-angle XYZ magnetic cavities (Magic PASTIS) will be presented. (author)

  4. SU-F-T-183: Design of a Beam Shaping Assembly of a Compact DD-Based Boron Neutron Capture Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, M; Liu, Y; Nie, L [Purdue University, West Lafayette, Indiana (United States)

    2016-06-15

    Purpose: To design a beam shaping assembly (BSA) to shape the 2.45-MeV neutrons produced by a deuterium-deuterium (DD) neutron generator and to optimize the beam output for boron neutron capture therapy of brain tumors Methods: MCNP is used for this simulation study. The simulation model consists of a neutron surface source that resembles an actual DD source and is surrounded by a BSA. The neutron source emits 2.45-MeV neutrons isotropically. The BSA is composed of a moderator, reflector, collimator and filter. Various types of materials and geometries are tested for each component to optimize the neutron output. Neutron characteristics are measured with an 2×2×2-cm{sup 3} air-equivalent cylinder at the beam exit. The ideal BSA is determined by evaluating the in-air parameters, which include epithermal neutron per source neutron, fast neutron dose per epithermal neutron, and photon dose per epithermal neutron. The parameter values are compared to those recommended by the IAEA. Results: The ideal materials for reflector and thermal neutron filter were lead and cadmium, respectively. The thickness for reflector was 43 cm and for filter was 0.5 mm. At present, the best-performing moderator has 25 cm of AlF{sub 3} and 5 cm of MgF{sub 2}. This layout creates a neutron spectrum that has a peak at approximately 10 keV and produces 1.35E-4 epithermal neutrons per source neutron per cm{sup 2}. Additional neutron characteristics, fast neutrons per epithermal neutron and photon per epithermal neutron, are still under investigation. Conclusion: Working is ongoing to optimize the final layout of the BSA. The neutron spectrum at the beam exit window of the final configuration will have the maximum number of epithermal neutrons and limited photon and fast neutron contaminations within the recommended values by IAEA. Future studies will also include phantom experiments to validate the simulation results.

  5. Measurement of neutron production by 500 MeV proton beam

    International Nuclear Information System (INIS)

    Hirayama, Hideo; Ban, Shuichi

    1981-01-01

    Measurement of high energy neutrons is difficult, because the cross section data are scarce, the cross section at high energy is usually small, and the monoenergetic neutrons are hardly obtained. At the National Laboratory for High Energy Physics (KEK), various threshold detectors have been used for high energy neutron measurement. A carbon detector is a standard detector for high energy neutrons, since the cross section of the C 12 (n, 2n) C 11 reaction is almost constant at higher energy than 20 MeV, and the data have been well known. The half-life of the product (C 11 ) is about 20 min, and other activities with longer half-life than 1 min are restricted to Be 7 and C 11 . As a carbon detector, a plastic scintillator is used, and the neutron spectra observed at the Booster Beam Dump Room of KEK are presented. The results of measurements were compared with the calculated results using a Monte Carlo code made at KEK. Agreement between both results was good. (Kato, T.)

  6. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    Science.gov (United States)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  7. RBE and clinical response in radiotherapy with neutron beams

    International Nuclear Information System (INIS)

    Ellis, F.

    1984-01-01

    Consideration of the clinical results reported, when a cyclotron produced neutron beam was used for treatments in the pelvis region, suggested that a constant RBE of 3 should not have been used for all neutron doses. Instead a variable RBE, which increased from approximately 3 to 8 (with decreasing dose), should have been used. Although some of these RBE values are much higher than 3, they have been observed in clinical practice. An ''equivalent photon'' isodose plan was produced by employing a variable RBE and, by taking a TDF limit of 86 for bowel, an isoeffect plan was produced. This shows that in the clinical situation under consideration much of the pelvis was overdosed. Doses to tumour cells and late effects are also briefly considered. It is suggested that, in neutron therapy, both an ''equivalent photon'' isodose plan and an isoeffect plan should be produced prior to treatment. (author)

  8. Designing on-line analyzer for coal on belt conveyor using neutron activation technique

    International Nuclear Information System (INIS)

    Rony Djokorayono; Agus Cahyono

    2014-01-01

    Basic design of on-line analyzer for coal on belt conveyor using neutron activation technique has been carried out. Compared with sampling technique, this neutron activation technique has some advantages in term of analysis accuracy and time. The design activities performed include the establishment of design requirements, functional requirements, technical requirements, technical specification, detection sub-system design, data acquisition subsystem design, and operator computer console design. This program will use Nal(Tl) scintillation detector to detect gamma-rays emitted by elements in coal due to neutron activation of a neutron source, "2"5"2Cf (Californium-252). This basic design of on-line analyzer for coal on belt conveyor using neutron activation technique should be followed up with the development of detailed design, prototype construction, and field testing. (author)

  9. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  10. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    International Nuclear Information System (INIS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Shayesteh, M.

    2015-01-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  11. Beam transfer line for food irradiation microtron at CAT

    International Nuclear Information System (INIS)

    Kant, Pradeep; Singh, Gurnam

    2003-01-01

    A 10 MeV microtron is being developed at CAT for irradiation of food products. A beam transfer line comprising a 90 deg bending magnet, a quadrupole doublet and a rectangular scanning magnet has been designed to irradiate food products from the upper side. The bending magnet has an edge angle of 22.5 deg. The length of the beam transfer line has been minimized to keep the whole unit as compact as possible. The beam optics has been optimized keeping in view the requirement of a small beam pipe aperture (25mm radius) and a large range of circular as well as elliptical beam sizes on the food product. The speed of the conveyor belt has been assumed to be very small. The results of the beam optics chosen and the variation of the linear charge density on a food product during the scanning are presented in this paper. The effects of path length variation within the scanning magnet and beam size variation during a scanning are also discussed

  12. Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness

    Science.gov (United States)

    Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (pbystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095

  13. The on-line beam control and diagnosis system of TARN

    International Nuclear Information System (INIS)

    Takanaka, M.; Watanabe, S.; Chiba, K.; Katayama, T.; Noda, A.

    1982-04-01

    The computer network in TARN is composed of a central main frame computer, two different minicomputers and several microprocessors. It has been used for the beam control and the beam diagnosis; support for adjustment of elements of the transport line and the ring, generation of RF voltage function, measurement of beam profile at RF stacking, on-line measurement of ν:value, and observation of Schottky signal. By the use of this computer system, the operation of TARN has been effectively and steadily performed, and additionally it has contributed to measuring the beam characteristics precisely in the ring. (author)

  14. Development of a monoenergetic neutron beam (Theoretical aspects, experimental developments and applications); Desarrollo de un haz de neutrones monoenergeticos (Aspectos teoricos, desarrollos experimentales y aplicaciones)

    Energy Technology Data Exchange (ETDEWEB)

    Varela G, A

    2003-07-01

    By the use of a neutron time of flight system at the Tandem Accelerator of the National Nuclear Research Institute; with neutrons provided by means of the {sup 2} H(d, n) {sup 3} He we intend to use the associated particle technique in order to have monoenergetic neutrons. This neutron beam will be used both in basic and applied research. (Author)

  15. Characterizing Scintillator Response with Neutron Time-of-Flight

    Science.gov (United States)

    Palmisano, Kevin; Visca, Hannah; Caves, Louis; Wilkinson, Corey; McClow, Hannah; Padalino, Stephen; Forrest, Chad; Katz, Joe; Sangster, Craig; Regan, Sean

    2017-10-01

    Neutron scintillator diagnostics for ICF can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV Tandem Pelletron Accelerator. Neutron signals can be differentiated from gamma signals by employing a coincidence method called the associated particle technique (APT). In this measurement, a 2.1 MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the d(d,n)3He reaction. A BC-412 plastic scintillator, placed at a scattering angle of 152º, detects 1.76 MeV neutrons in coincidence with the 2.56 MeV 3He ions at an associated angle of 10º. The APT is used to identify the 1.76 MeV neutron while the nTOF line determines its energy. By gating only mono-energetic neutrons, the instrument response function of the scintillator can be determined free from background scattered neutrons and gamma rays. Funded in part by a Grant from the DOE, through the Laboratory for Laser Energetics.

  16. Design of collimator in the radial piercing beam port of Kartini reactor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    M Ilma Muslih A; Andang Widiharto; Yohannes Sardjono

    2014-01-01

    Studies were carried out to design a collimator which results in epithermal neutron beam for in vivo experiment of Boron Neutron Capture Therapy (BNCT) at the Kartini Research Reactor by means of Monte Carlo N-Particle (MCNP) codes. Reactor within 100 kW of thermal power was used as the neutron source. All materials used were varied in size, according to the value of mean free path for each material. MCNP simulations indicated that by using 5 cm thick of Ni (95%) as collimator wall, 15 cm thick of Al as moderator, 1 cm thick of Pb as γ-ray shielding, 1.5 cm thick of Boral as additional material, with 2 cm aperture diameter, epithermal neutron beam with maximum flux of 5.03 x 10 8 n.cm -2 .s -1 could be produced. The beam has minimum fast neutron and γ-ray components of, respectively, 2.17 x 10 -13 Gy.cm 2 .n -1 and 1.16 x 10 -13 Gy.cm 2 .n -l , minimum thermal neutron per epithermal neutron ratio of 0.12, and maximum directionality of 0.835 . It did not fully pass the IAEA's criteria, since the epithermal neutron flux was below the recommended value, 1.0 x 10 9 n.cm -2 .s -l . Nonetheless, it was still usable with epithermal neutron flux exceeding 5.0 x 10 8 n.cm -2 .s -1 and fast neutron flux close to 2 x 10 -13 Gy.cm 2 .n -1 it is still feasible for BNCT in vivo experiment. (author)

  17. Multi-beam neutron guide system at IRI, Delft

    Energy Technology Data Exchange (ETDEWEB)

    Well, A.A. van; Gibcus, H.P.M.; Gommers, R.M.; Haan, V.O. de; Labohm, F.; Verkooijen, A.H.M. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Schebetov, A.; Pusenkov, V. [St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation)

    2001-07-01

    One of the main facilities of the Interfaculty Reactor Institute (IRI) at the Delft University of Technology is the swimming-pool type research reactor HOR. In 1963 it was critical for the first time. The power raised from 100 kW in 1963 to 500 kW in 1965. In 1968, forced cooling was introduced. From that time on, the reactor is operated at 2 MW, 5 days per week. The reactor comprises a variety of irradiation facilities, used among others for radioisotope production and neutron activation analysis. It is equipped with six horizontal radial beam tubes, originally used for neutron-scattering experiments. Throughout the years, the research activities have grown steadily, both in the development of new techniques and in applying these techniques in new research areas. (orig.)

  18. CAREM 25: actual status of the core neutronic design. Calculation line

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    This work follows the one titled 'Criteria for the CAREM 25 reactor core design. Neutronic aspects' presented at this congress, gives in detail the typical values regarding the core defined at this point. Besides, the neutronic calculation line used for the CAREM 25 reactor design is presented. (Author) [es

  19. Optimization aspects of the new nELBE photo-neutron source

    Directory of Open Access Journals (Sweden)

    Schwengner R.

    2010-10-01

    Full Text Available The nELBE beamline at Forschungszentrum Dresden-Rossendorf (FZD provides intense neutron beams by stopping primary electrons in a liquid lead target, where neutrons are produced by bremsstrahlung photons via (γ,n reactions. With the aim to increase the neutron yield through the enhancement of the electron beam energy (from the current 40 MeV limit up to 50 MeV, as well as to minimize several sources of background that are presently affecting the measurements, a new neutron beam-line and a new, larger neutron experimental room have been designed. The optimization of the neutron/photon ratio, the minimization of the backscattered radiation from the walls and the possibility to have better experimental conditions are the main advantages of the new design. To optimize the beamline, extensive simulations with the particle interaction and transport code FLUKA have been performed. Starting from the primary electron beam, both the photon and neutron radiation fields have been fully characterized. To have a cross-check of the results, the calculated values of the neutron yields at different energies of the primary beam have been compared both with an independent simulation with the MCNP code and with analytical calculations, obtaining a very satisfactory agreement at the level of few percent. The evaluated radiation fields have been used to optimize the direction of the new neutron beamline, in order to minimize the photon flash contribution. A general overview of the new photo-neutron source, together with all the steps of the optimization study, is here presented and discussed.

  20. Beam line from straight-section 16

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The start of a long trail. The beam line from straight-section 16, where protons are fast ejected, is seen at the point where it crosses the Linac shielding wall as it leaves the PS en route to the ISR.

  1. Implementation of neutron phase contrast imaging at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Klaus

    2008-11-12

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  2. Implementation of neutron phase contrast imaging at FRM-II

    International Nuclear Information System (INIS)

    Lorenz, Klaus

    2008-01-01

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  3. Study and production of polarized monochromatic thermal neutron beams; Etude et production de faisceaux monochromatiques polarises de neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Beiln, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10{sup -3} - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe{sub 3}O{sub 4} crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [French] Nous donnons les resultats obtenus avec un spectrometre produisant des neutrons monochromatiques polarises d'energie comprise entre quelques milliemes d'electronvolts et quelques electronvotts qui utilise une serie de monocristaux artificiels de Co: 92 pour cent - Fe: 8 pour cent, comme polariseurs et analyseurs. Nous discutons egalement une methode de taille de monocristaux a tres haute precision. Le dispositif experimental ainsi que quelques resultats preliminaires obtenus avec des monocristaux de Fe{sub 3}O{sub 4} sont egalement donnes. Nous discutons egalement des resultats experimentaux obtenus avec differents systemes de guidage magnetique et de renversement du spin. (auteur)

  4. Study and production of polarized monochromatic thermal neutron beams; Etude et production de faisceaux monochromatiques polarises de neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Beiln, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10{sup -3} - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe{sub 3}O{sub 4} crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [French] Nous donnons les resultats obtenus avec un spectrometre produisant des neutrons monochromatiques polarises d'energie comprise entre quelques milliemes d'electronvolts et quelques electronvotts qui utilise une serie de monocristaux artificiels de Co: 92 pour cent - Fe: 8 pour cent, comme polariseurs et analyseurs. Nous discutons egalement une methode de taille de monocristaux a tres haute precision. Le dispositif experimental ainsi que quelques resultats preliminaires obtenus avec des monocristaux de Fe{sub 3}O{sub 4} sont egalement donnes. Nous discutons egalement des resultats experimentaux obtenus avec differents systemes de guidage magnetique et de renversement du spin. (auteur)

  5. Test of sup 3 He-based neutron polarizers at NIST

    CERN Document Server

    Jones, G L; Thompson, A K; Chowdhuri, Z; Dewey, M S; Snow, W M; Wietfeldt, F E

    2000-01-01

    Neutron spin filters based on polarized sup 3 He are useful over a wide neutron energy range and have a large angular acceptance among other advantages. Two optical pumping methods, spin-exchange and metastability-exchange, can produce the volume of highly polarized sup 3 He gas required for such neutron spin filters. We report a test of polarizers based on each of these two methods on a new cold, monochromatic neutron beam line at the NIST Center for Neutron Research.

  6. Dehydration process of fish analyzed by neutron beam imaging

    International Nuclear Information System (INIS)

    Tanoi, K.; Hamada, Y.; Seyama, S.; Saito, T.; Iikura, H.; Nakanishi, T.M.

    2009-01-01

    Since regulation of water content of the dried fish is an important factor for the quality of the fish, water-losing process during drying (squid and Japanese horse mackerel) was analyzed through neutron beam imaging. The neutron image showed that around the shoulder of mackerel, there was a part where water content was liable to maintain high during drying. To analyze water-losing process more in detail, spatial image was produced. From the images, it was clearly indicated that the decrease of water content was regulated around the shoulder part. It was suggested that to prevent deterioration around the shoulder part of the dried fish is an important factor to keep quality of the dried fish in the storage.

  7. First results of micro-neutron tomography by use of a focussing neutron lens

    CERN Document Server

    Masschaele, B; Cauwels, P; Dierick, M; Jolie, J; Mondelaers, W

    2001-01-01

    Since the appearance of high flux neutron beams, scientists experimented with neutron radiography. This high beam flux combined with modern neutron to visible light converters leads to the possibility of performing fast neutron micro-tomography. The first results of cold neutron tomography with a neutron lens are presented in this article. Samples are rotated in the beam and the projections are recorded with a neutron camera. The 3D reconstruction is performed with cone beam reconstruction software.

  8. Construction of Superconducting Magnet System for the J-PARC Neutrino Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, T.; Wanderer, P.; Sasaki, K.; Ajima, Y.; Araoka, O.; Fujii, Y.; Hastings, N.; Higashi, N.; Iida, M.; Ishii, T.; Kimura, N.; Kobayashi, T.; Makida, Y.; Nakadaira, T.; Ogitsu, T.; Ohhata, H.; Okamura, T.; Sakashita, K.; Sugawara, S.; Suzuki, S.; Tanaka, K.; Tomaru, T.; Terashima, A.; Yamamoto, A.; Ichikawa, A.; Kakuno, H.; Anerella, M.; Escallier, J.; Ganetis, G.; gupta, R.; Jain, A.; Muratore, J.; Parker, B.; Boussuge, T.; Charrier, J.-P.; Arakawa, M.; Ichihara, T.; Minato, T.; Okada, Y.; Itou, A.; Kumaki, T.; Nagami, M.; Takahashi, T.

    2009-10-18

    Following success of a prototype R&D, construction of a superconducting magnet system for J-PARC neutrino beam line has been carried out since 2005. A new conceptual beam line with the superconducting combined function magnets demonstrated the successful beam transport to the neutrino production target.

  9. Bending magnets for the CBA beam-transport line

    Energy Technology Data Exchange (ETDEWEB)

    Thern, R.E.

    1983-01-01

    The beam-transport line from the AGS to CBA requires 68 large bending magnets, consisting of pure dipoles and two types of combined function gradient magnets. All three types were designed with magnetic-field calculation program POISSON, using the same exterior dimensions and coil package. The design goal of +-1% momentum acceptance for the transport line required a wide horizontal aperture, with a much-smaller vertical aperture for economy. Two prototypes of one gradient magnet were built, and a facility constructed to measure them and the later production magnets. Measurements were done using both a long coil and a point coil (Rawson-Lush gaussmeter). Preliminary results show ..delta..B/B < 0.2 x 10/sup -3/, ..delta..G/G < 0.3 x 10/sup -2/, and ..delta..B/sub 2//B < 0.3 x 10/sup -4/ cm/sup -2/ over the beam aperture. Due to end effects, the actual gradient differs from the design gradient by 1%, which has been compensated for in the beam-line design.

  10. Beam plasma 14 MeV neutron source for fusion materials development

    International Nuclear Information System (INIS)

    Ravenscroft, D.; Bulmer, D.; Coensgen, F.; Doggett, J.; Molvik, A.; Souza, P.; Summers, L.; Williamson, V.

    1991-09-01

    The conceptual engineering design and expected performance for a 14 MeV DT neutron source is detailed. The source would provide an intense neutron flux for accelerated testing of fusion reactor materials. The 150-keV neutral beams inject energetic deuterium atoms, that ionize, are trapped, then react with a warm (200 eV), dense tritium target plasma. This produces a neutron source strength of 3.6 x 10 17 n/sec for a neutron power density at the plasma edge of 5--10 MW/m 2 . This is several times the ∼2 MW/m 2 anticipated at the first wall of fusion reactors. This high flux provides accelerated end-of-life tests of 1- to 2-year duration, thus making materials development possible. The modular design of the source and the facilities are described

  11. Epithermal neutron beam for BNCT research at the Washington State University TRIGA research reactor

    International Nuclear Information System (INIS)

    Nigg, D.W.; Venhuizen, J.R.; Wheeler, F.J.; Wemple, C.A.; Tripard, G.E.; Gavin, P.R.

    2000-01-01

    A new epithermal-neutron beam facility for BNCT (Boron Neutron Capture Therapy) research and boronated agent screening in animal models is in the final stages of construction at Washington State University (WSU). A key distinguishing feature of the design is the incorporation of a new, high-efficiency, neutron moderating and filtering material, Fluental, developed by the Technical Research Centre of Finland. An additional key feature is the provision for adjustable filter-moderator thickness to systematically explore the radiobiological consequences of increasing the fast-neutron contamination above the nominal value associated with the baseline system. (author)

  12. Fan analyzer of neutron beam polarization on REMUR spectrometer at IBR-2 pulsed reactor

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.; Ul'yanov, V.A.; Pusenkov, V.M.; Kozhevnikov, S.V.; Jernenkov, K.N.; Pleshanov, N.K.; Peskov, B.G.; Petrenko, A.V.; Proglyado, V.V.; Syromyatnikov, V.G.; Schebetov, A.F.

    2006-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation in the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multiplayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 A. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (fan-like polarization analyzer) with a solid angle of neutron detection of 2.2x10 -4 rad. This article describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of its tests on a polarized neutron beam

  13. J-PARC and the prospective neutron sciences

    International Nuclear Information System (INIS)

    Masatoshi Arai

    2009-01-01

    Full text: J-PARC is an interdisciplinary facility with high power proton accelerator complex containing particle physics, nuclear physics, muon science and neutron science facilities. After 8 years construction, she is almost ready to open for users. Materials-Life Science Facility (MLF) of J-PARC is composed from very intensive pulsed neutron and muon facilities at 1 MW of the accelerated proton power. The neutron peak flux will be as high as several hundred times of existing high flux reactors. Therefore, it is highly expected that new sciences will be explored by J-PARC, MLF. The first neutrons was already produced in the last May. The MLF facility has 23 neutron beam ports. About 12 instruments are under commissioning or construction. Out of four instruments are already opened for users since December, 2008.. In the commissioning High Resolution Powder Diffractometer showed the world highest resolution d/d=0.04% as was designed. Other instruments, high intensity powder diffractometer, protein crystal diffractometer, residual stress analysis diffractometer, high intensity chopper spectrometer, confirmed expected intensity and spectrum from neutron beam line. By the end of March, a cold neutron chopper spectrometer will also come on line. Those instruments are taking advantages with optical devices for neutron transport to realize very high flux at sample position. By taking high performances of neutron moderators of MLF, the instruments will realize the world class resolution and high intensity. Ranging from Bio-science, material science, engineering, industrial use of neutrons to fundamental physics, we are exciting to see cutting-edge sciences with great anticipation to be produced from J-PARC, MLF. (author)

  14. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac

    Directory of Open Access Journals (Sweden)

    A Ghasemi

    2015-01-01

    Full Text Available Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF 3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER utilizing conversion factors of American Association of Physicist in Medicine′s (AAPM report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10 -6 (3 m from isocenter in +Y direction, 0 × 0 field size and 8.36 × 10 -8 Sv/min (in maze, 40 × 40 field size, respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10 -5 and 1.74 × 10 -5 Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size, respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons.

  15. Measurement and simulation of neutron detection efficiency in lead-scintillating fiber calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M.; Bertolucci, S. [Laboratori Nazionali di Frascati, INFN (Italy); Bini, C. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Branchini, P. [INFN Sezione di Roma Tre, Roma (Italy); Curceanu, C. [Laboratori Nazionali di Frascati, INFN (Italy); De Zorzi, G.; Di Domenico, A. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Di Micco, B. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Ferrari, A. [Fondazione CNAO, Milano (Italy); Fiore, S.; Gauzzi, P. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Giovannella, S., E-mail: simona.giovannella@lnf.infn.i [Laboratori Nazionali di Frascati, INFN (Italy); Happacher, F. [Laboratori Nazionali di Frascati, INFN (Italy); Iliescu, M. [Laboratori Nazionali di Frascati, INFN (Italy); IFIN-HH, Bucharest (Romania); Martini, M. [Laboratori Nazionali di Frascati, INFN (Italy); Dipartimento di Energetica dell' Universita ' La Sapienza' , Roma (Italy); Miscetti, S. [Laboratori Nazionali di Frascati, INFN (Italy); Nguyen, F. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Passeri, A. [INFN Sezione di Roma Tre, Roma (Italy); Prokofiev, A. [Svedberg Laboratory, Uppsala University (Sweden); Sciascia, B. [Laboratori Nazionali di Frascati, INFN (Italy)

    2009-12-15

    The overall detection efficiency to neutrons of a small prototype of the KLOE lead-scintillating fiber calorimeter has been measured at the neutron beam facility of The Svedberg Laboratory, TSL, Uppsala, in the kinetic energy range [5-175] MeV. The measurement of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 30% to 50%. This value largely exceeds the estimated 8-15% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. First data-MC comparisons are encouraging and allow to disentangle a neutron halo component in the beam.

  16. Measurement and simulation of neutron detection efficiency in lead-scintillating fiber calorimeters

    International Nuclear Information System (INIS)

    Anelli, M.; Bertolucci, S.; Bini, C.; Branchini, P.; Curceanu, C.; De Zorzi, G.; Di Domenico, A.; Di Micco, B.; Ferrari, A.; Fiore, S.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Martini, M.; Miscetti, S.; Nguyen, F.; Passeri, A.; Prokofiev, A.; Sciascia, B.

    2009-01-01

    The overall detection efficiency to neutrons of a small prototype of the KLOE lead-scintillating fiber calorimeter has been measured at the neutron beam facility of The Svedberg Laboratory, TSL, Uppsala, in the kinetic energy range [5-175] MeV. The measurement of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 30% to 50%. This value largely exceeds the estimated 8-15% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. First data-MC comparisons are encouraging and allow to disentangle a neutron halo component in the beam.

  17. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    International Nuclear Information System (INIS)

    Gilpatrick, John D.; Batygin, Yuri K.; Gonzales, Fermin; Gruchalla, Michael E.; Kutac, Vincent G.; Martinez, Derwin; Sedillo, James Daniel; Pillai, Chandra; Rodriguez Esparza, Sergio; Smith, Brian G.

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H - beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  18. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  19. Neutron contamination of Varian Clinac iX 10 MV photon beam using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yani, S; Haryanto, F; Arif, I; Tursinah, R; Rhani, M F; Soh, R C X

    2016-01-01

    High energy medical accelerators are commonly used in radiotherapy to increase the effectiveness of treatments. As we know neutrons can be emitted from a medical accelerator if there is an incident of X-ray that hits any of its materials. This issue becomes a point of view of many researchers. The neutron contamination has caused many problems such as image resolution and radiation protection for patients and radio oncologists. This study concerns the simulation of neutron contamination emitted from Varian Clinac iX 10 MV using Monte Carlo code system. As neutron production process is very complex, Monte Carlo simulation with MCNPX code system was carried out to study this contamination. The design of this medical accelerator was modelled based on the actual materials and geometry. The maximum energy of photons and neutron in the scoring plane was 10.5 and 2.239 MeV, respectively. The number and energy of the particles produced depend on the depth and distance from beam axis. From these results, it is pointed out that the neutron produced by linac 10 MV photon beam in a typical treatment is not negligible. (paper)

  20. An Energy-Stabilized Varied-Line-Space-Monochromator Undulator Beam Line for PEEM Illumination and Magnetic Circular Dichroism

    International Nuclear Information System (INIS)

    Warwick, Tony; McKinney, Wayne; Domning, Ed; Doran, Andrew; Padmore, Howard

    2006-01-01

    A new undulator beam line has been built and commissioned at the Advanced Light Source for illumination of the PEEM3 microscope. The beam line delivers high flux beams over an energy range from C1s through the transition metals to include the M edges of the magnetic rare earth elements. We present details of the optical design, and data on the performance of the zero-order tracking of the photon energy

  1. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  2. Neutron polarization measurements using the pulsed-polarized proton and deuteron beams at TUNL

    International Nuclear Information System (INIS)

    Walter, R.L.

    1981-01-01

    Nanosecond wide pulses of polarized protons or deuterons at a repetition rate of 4 MHz are now routinely available for studying interactions involving outgoing neutrons. Up to 90 nA of protons and 200 nA of deuterons have been observed on target. The authors' first experiments involved the determination of the analyzing power A /SUB y/ (UJ) for a few (→p,n) and (→d,n) reactions using conventional neutron time-of-flight detection. A major program for observing polarization effects in neutron elastic scattering has been initiated. The source of polarized neutrons for this program is the 2 H(→d,n→) 3 He reaction which yields a neutron beam having 90% of the polarization of the incident deuterons

  3. Nuclear studies at TUNL using polarized neutron beams

    International Nuclear Information System (INIS)

    Walter, R.L.; Howell, C.R.; Tornow, W.

    1992-01-01

    Experimental data obtained using polarized neutron beams has proven to be essential for determining the nucleon-nucleon and the nucleon-nucleus interaction. The present paper reviews the experimental methods and some results of the Triangle Universities Nuclear Laboratory for a variety of polarization experiments involving neutron elastic scattering. A brief introduction to the nucleon-nucleon problem and its relation to the three-nucleon problem is presented; data for n-p and n-d analyzing powers are highlighted. Measurements involving heavier targets ( 93 Nb and 208 Pb) and their connection to the development of conventional and dispersive optical models are shown. The importance of the dispersive model for 27 Al in relation to conclusions about the nucleon-nucleus spin-spin potential is presented. Comparisons of microscopic models to data for 10 B and 28 Si are described

  4. Beam diagnostics and data acquisition system for ion beam transport line used in applied research

    International Nuclear Information System (INIS)

    Skuratov, V.A.; Didyk, A.Yu.; Arkhipov, A.V.; Illes, A.; Bodnar, K.; Illes, Z.; Havancsak, K.

    1999-01-01

    Ion beam transport line for applied research on U-400 cyclotron, beam diagnostics and data acquisition system for condensed matter studies are described. The main features of Windows-based real time program are considered

  5. Spallation RI beam facility and heavy element nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    An outline of the spallation RI (Radioactive Ion) beam facility is presented. Neutron-rich nuclides are produced in the reaction of high intensity (10-1000 {mu}A) protons with energy of 1.5 GeV and an uranium carbide target. Produced nuclides are ionized in an isotope separator on-line (ISOL) and accelerated by the JAERI tandem and the booster linac. Current progress and a future project on the development of the RI beam facility are given. Studies of transactinide elements, including the synthesis of superheavy elements, nuclear structure far from stability, and RI-probed material science are planned with RI beams. An outlook of the transactinide nuclear chemistry studies using neutron-rich RI beams is described. (author)

  6. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    Science.gov (United States)

    Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.

    2013-11-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  7. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    International Nuclear Information System (INIS)

    Islam, M R; Collums, T L; Monson, J; Benton, E R; Zheng, Y

    2013-01-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy −1  for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy −1  for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body. (paper)

  8. Properties of neutron-rich hafnium high-spin isomers

    CERN Multimedia

    Tungate, G; Walker, P M; Neyens, G; Billowes, J; Flanagan, K; Koester, U H; Litvinov, Y

    It is proposed to study highly-excited multi-quasiparticle isomers in neutron-rich hafnium (Z=72) isotopes. Long half-lives have already been measured for such isomers in the storage ring at GSI, ensuring their accessibility with ISOL production. The present proposal focuses on:\\\\ (i) an on-line experiment to measure isomer properties in $^{183}$Hf and $^{184}$Hf, and\\\\ (ii) an off-line molecular breakup test using REXTRAP, to provide Hf$^{+}$ beams for future laser spectroscopy and greater sensitivity for the future study of more neutron-rich isotopes.

  9. Installation and testing of an optimized epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Kalef-Ezra, J.; Saraf, S.K.; Fiarman, S.; Ramsey, E.; Wielopolski, L.; Laster, B.; Wheeler, F. (Brookhaven National Lab., Upton, NY (USA); Ioannina Univ. (Greece); Brookhaven National Lab., Upton, NY (USA); State Univ. of New York, Stony Brook, NY (USA). Health Science Center; Brookhaven National Lab., Upton, NY (USA); EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-01-01

    Various calculations indicate that an optimized epithermal neutron beam can be produced by moderating fission neutrons either with a combination of Al and D{sub 2}O, or with Al{sub 2}O{sub 3}. We have designed, installed and tested an Al{sub 2}O{sub 3} moderated epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). The epithermal neutron fluence rate of 1.8 {times} 10{sup 9} n/cm{sup 2}-sec produces a peak thermal neutron fluence rate of 1.9 to 2.8 {times} 10{sup 9} n/cm{sup 2}-sec in a tissue equivalent (TE) phantom head, depending on the configuration. Thus a single therapy treatment of 5 {times} 10{sup 12} n/cm{sup 2} can be delivered in 30--45 minutes. All irradiation times are given for a BMRR power of 3 MW, which is the highest power which can be delivered continuously. 18 refs., 8 figs., 4 tabs.

  10. Experimental technique of neutron reflection

    International Nuclear Information System (INIS)

    Chen Bo; Huang Chaoqiang; Li Xinxi

    2006-12-01

    It is presented that the classifications, structures and components of neutron reflectometer (NR), as well s functions and parameters of each components, detailed characters of NR facility 'PRN-2M'. Based on the practical experiments, the basic experimental techniques, the measurement and the related experimental settings are described, including the choice of experimental conditions, adjustments of polarized neutron beam line, basic experimental technique and approach of measurement. The above can be an instruction for NR experiments and a reference for NR construction. (authors)

  11. Initial performance of the Cornell cold neutron beam

    International Nuclear Information System (INIS)

    Clark, D.D.; Spern, S.A.; Atwood, A.G.

    1997-01-01

    The cold source for a guided neutron beam has been installed in a Cornell TRIGA beamport and has successfully undergone thermal tests up to full power (normally 480 kW). Tests to date (8/1/96) include spectral and yield measurements at 10 kW with the first three meters of the 2-cm by 5-cm Ni-on-glass guide in place. A 110-cm 3 Al chamber, located 17 cm from the core, contains solid mesitylene and is cooled by conduction through a 269-cm long Cu rod connected to a cryorefrigerator outside the reactor shield. Distributions of flux per unit velocity have been measured at 10 kW by time-of-flight. Anticipated properties of the complete 13 m long beam at full power are discussed. (author)

  12. Time Resolved Spectrometry on the Test Beam Line at CTF3

    CERN Document Server

    Olvegård, M; Lefèvre, T; Döbert, S; Adli, E

    2009-01-01

    The CTF3 provides a high current (28 A) high frequency (12 GHz) electron beam, which is used to generate high power radiofrequency pulses at 12 GHz by decelerating the electrons in resonant structures. A Test Beam Line (TBL) is currently being built in order to prove the efficiency and the reliability of the RF power production with the lowest level of particle losses. As the beam propagates along the line, its energy spread grows up to 60%. For instrumentation, this unusual characteristic implies the development of new and innovative techniques. One of the most important tasks is to measure the beam energy spread with a fast time resolution. The detector must be able to detect the energy transient due to beam loading in the decelerating structures (nanosecond) but should also be capable to measure bunch-to-bunch fluctuations (12 GHz). This paper presents the design of the spectrometer line detectors.

  13. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheson, A. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States)]. E-mail: hutch@tunl.duke.edu; Angell, C.T. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermor