WorldWideScience

Sample records for line hep g2

  1. Hepatoma cell line HepG2.2.15 demonstrates distinct biological features compared with parental HepG2

    Institute of Scientific and Technical Information of China (English)

    Ran Zhao; Tian-Zhen Wang; Dan Kong; Lei Zhang; Hong-Xue Meng; Yang Jiang; Yi-Qi Wu; Zu-Xi Yu; Xiao-Ming Jin

    2011-01-01

    AIM: To investigate the biological features of hepatitis B virus (HBV)-transfected HepG2.2.15 cells. METHODS: The cell ultrastructure, cell cycle and apop-tosis, and the abilities of proliferation and invasion of HBV-transfected HepG2.2.15 and the parent HepG2 cells were examined by electron microscopy, flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trans-well assay. Oncogenicity of the two cell lines was compared via subcutaneous injection and orthotopic injection or implantation in nude mice, and the pathological analysis of tumor formation was performed. Two cytoskeletal proteins were detected by Western blotting.RESULTS: Compared with HepG2 cells, HepG2.2.15 cells showed organelle degeneration and filopodia disappear-ance under electron microscope. HepG2.2.15 cells pro-liferated and migrated slowly in vitro, and hardly formed tumor and lung metastasis in nude mice. Flow cytom-etry showed that the majority of HepG2.2.15 cells were arrested in G1 phase, and apoptosis was minor in both cell lines. Furthermore, the levels of cytoskeletal pro-teins F-actin and Ezrin were decreased in HepG2.2.15 cells.CONCLUSION: HepG2.2.15 cells demonstrated a low-er proliferation and invasion ability than the HepG2 cells due to HBV transfection.

  2. [Observation of radiobiological characteristics in a HepG2 cell line with mitochondrial DNA deletion].

    Science.gov (United States)

    Sun, Hengwen; Pan, Yi; Zeng, Zijun; Fang, Liangyi; Zhang, Hongdan; Xie, Songxi; Li, Weixiong; Xu, Jiabin

    2015-06-01

    To study the radiobiological characteristics of a HepG2 cell line with mitochondrial DNA (mtDNA) deletion. HepG2 cells were cultured in a medium containing ethidium bromide, acetylformic acid and uracil. The HepG2 cell line with mtDNA deletion (ρ(0)HepG2 cells) were acquired after 30 subcultures by limited dilution cloning. The cell survival was then observed in the absence of acetylformic acid and uracil, and the total mtDNA deletion in the cells was confirmed by PCR. The radiosensitivity of HepG2 and ρ(0)HepG2 cells was evaluated by exposure to gradient doses of 6 MV X ray irradiation. The cell apoptosis was assessed following a 2 Gy X-ray exposure with Hochest33342 staining, and the invasiveness of ρ(0)HepG2 cells was measured by Transwell assay. HepG2 cells could survive 30 subcultures in the presence of ethidium bromide, and massive cell death occurred after removal of acetylformic acid and uracil from the medium. PCR confirmed total mtDNA deletion from ρ(0)HepG2 cells, whose α/β value was significantly lower than that of HepG2 cells. ρ(0)Hep-G2 cells showed an obviously lowered cell apoptosis rate following X-ray exposure with enhanced cell invasiveness. HepG2 cells can be induced by ethidium bromide into ρ(0)HepG2 cells with an increased radiation resistance, anti-apoptosis ability and cell invasiveness.

  3. Establishment of hepatocellular carcinoma multidrug resistant monoclone cell line HepG2/mdr1

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-bing; XIE Jian-guo; YANG Jia-yin; YAN Lü-nan; YAN Mao-lin; GONG Jian-ping; XIA Ren-pin; LIU Li-xin; LI Ning; LU Shi-chun; ZHANG Jing-guang; ZENG Dao-bing

    2007-01-01

    Background The multidrug resistance (MDR) associated with the expression of the mdr1 gene and its product P-glycoprotein is a major factor in the prognosis of hepatocellular carcinoma cell (HCC) patients treated with chemotherapy. Our study was to establish a stable HCC MDR cell line where a de novo acquisition of multidrug resistance specifically related to overexpression of a transgenic mdr1.Methods The 4.5-kb mdr1 cDNA obtained from the plasmid pHaMDR1-1 was cloned into the PCI-neo mammalian expression vector, later was transferred by liposome to human hepatocarcinoma cell line HepG2. Then the transfected HepG2 cells resisting G418 were clustered and cultured and the specific fragment of mdr1 cDNA, mRNA and the P-glycoprotein (Pgp) in these HepG2 cells were detected by PCR, RT-PCR and flow cytometry, respectively. The accumulation of the daunorubicin was determinated by flow cytometry simultaneously. The nude mice model of grafting tumour was established by injecting subcutaneously HepG2/mdr1 cells in the right axilla. When the tumour diameter reached 5 mm, adriamycin was injected into peritoneal cavity. The size and growth inhibition of tumour were evaluated.Results The mdr1 expression vector was constructed successfully and the MDR HCC line HepG2/mdr1 developed.The PCR analysis showed that the specific fragment of mdr1 cDNA in HepG2/mdr1 cells, but not in the control group HepG2 cells. Furthermore, the content of the specific fragment of mdr1 mRNA and Pgp expression in HepG2/mdr1 cells were (59.7±7.9)% and (12.28±2.09)%, respectively, compared with (16.9±3.2)% and (3.07±1.06)% in HepG2 cells.In the nude mice HCC model, the tumour genes of both groups were identified. After ADM therapy, the mean size of HepG2 cell tumours was significantly smaller than HepG2/mdr1 cell tumours.Conclusion The approach using the transfer of mdr1 cDNA may be applicable to the development of MDR hepatocarcinoma cell line, whose MDR mechanism is known. This would provide the

  4. Initial study on apoptosis in HepG-2 Human heptocarcinoma cell line by CSS

    Institute of Scientific and Technical Information of China (English)

    YU Lei; CUI Rong-tian; MO Ke; WANG Wei; JI Yu-bin; ZOU Xiang

    2008-01-01

    Objective To discuss on mechanism of the killing and apoptosis inducing effect induced by total alkaloid in the CSS(Capparis spinosa L. saponin, CSS)on human hepatocarcinoma cell Line HepG-2. Methods The killing effect of the CSS on human hepatocarcinoma cell Line HepG-2 was observed by MTT method. Morphological observation of the HepG-2 cells was completed by fluorescence microscope. This test was signed to observe the changes of the cell cycle of HepG-2 cells affected by the CSS by PI single-staining, and to observe if there were typical apoptosis peaks. The apoptosis inducing effect and changing of mitochondria membrane potential of the CSS on the HepG-2 cells were studied by flow cytometry. The effect of intraceUular Ca2+ level of CSS on the HepG-2 cells was measured by laser confocal microscope. Results CSS has growth inhibiting on the HepG-2 and seems to be enhanced with the increasing concentration of CSS, and its IC50 value was 46.16 μg·mL-1. The HepG-2 cells are characteristic apoptosis morphologic changed, and the apoptosis percentage is increased to 66.652 % in the 50 μg·mL-1 dosage group. The cells cycle has been changed obviously that the progresses of cells cycle of G1 period and G2 period in high dosage group have been blocked, and the cellular proportion in G2 period is decreased by the function of CSS for 24 h. The mitochondria membrane potential of HepG-2 cells induced by CSS is decreased in various degrees. In addition, the intracellular Ca2+ level is increased by the function of CSS in the middle and high dose groups. Conclusions The CSS has obviously killing and apoptosis inducing effect on human hepatoearcinoma cell Line HepG-2 by the mechanism of decreasing the mitochondria membrane potential and increasing the intracellular Ca2+ level.

  5. Anticancer and apoptosis-inducing effects of Moringa concanensis using hepG2 cell lines

    Directory of Open Access Journals (Sweden)

    V. Balamurugan

    2014-12-01

    Full Text Available The objective of the present investigation is focused on the anticancer activity of the ethanolic crude extract of Moringa concanensis leaf and bark against HepG2 cell line. The study was facilitated by collecting the plant sample and subjected to ethanol crude extraction. The anticancer activity of the crude extracted sample against HepG2 cell line was examined by MTT assay. The study confirms that the leaf crude extract of M. concanensis has pronounced anticancer potential against HepG2 cell lines while compared to that of the bark extract. The plant investigated possesses remarkable anticancer activity and hence isolation of the compound contributing to the activity may lead to develop at a novel and natural phytomedicine for the disease.

  6. Differential expression of several drug transporter genes in HepG2 and Huh-7 cell lines.

    Science.gov (United States)

    Louisa, Melva; Suyatna, Frans D; Wanandi, Septelia Inawati; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    Cell culture techniques have many advantages for investigation of drug transport to target organ like liver. HepG2 and Huh-7 are two cell lines available from hepatoma that can be used as a model for hepatic drug transport. The present study is aimed to analyze the expression level of several drug transporter genes in two hepatoma cell lines, HepG2 and Huh-7 and their response to inhibitors. This is an in vitro study using HepG2 and Huh-7 cells. The expression level of the following drug transporter genes was quantified: P-glycoprotein/multidrug resistance protein 1, Organic Anionic Transporter Protein 1B1 (OATP1B1) and Organic Cationic Transporter-1 (OCT1). Ribonucleic acid was extracted from the cells using Tripure isolation reagent, then gene expression level of the transporters is quantified using Applied Biosystems quantitative reverse transcriptase polymerase chain reaction. Verapamil (P-glycoprotein inhibitor), nelfinavir (OATP1B1 inhibitor), quinidine (OCT1 inhibitor) were used to differentiate the inhibitory properties of these agents to the transporter expressions in HepG2 and Huh-7 cells. Huh-7 shows a higher level of P-glycoprotein, OATP1B1 and OCT1 expressions compared with those of HepG2. Verapamil reduces the expressions of P-glycoprotein in HepG2 and Huh-7; nelfinavir reduces the expression of OATP1B1 in HepG2 and Huh-7; while quinidine reduces the OCT1 gene expressions in HepG2, but not in Huh-7 cells. This study indicates that HepG2 might be a more suitable in vitro model than Huh-7 to study drug transport in hepatocytes involving drug transporters.

  7. Effect of Rb on Proliferation of HepG2 Cell Line%Rb对HepG2肝癌细胞系增殖的影响

    Institute of Scientific and Technical Information of China (English)

    刘清源; 施学忠; 李来生; 孙斌

    2006-01-01

    目的 研究Rb基因及其产物对HepG2肝癌细胞系增殖的影响.方法 转染pRb质粒进入HepG2肝癌细胞系,用MTT法检测转染前后细胞增殖的变化,并将转染pRb质粒的HepG2肝癌细胞接种在裸鼠皮下建立肝癌裸鼠种植瘤模型,观察转染pRb质粒前后裸鼠体内种植瘤生长的变化.结果 转染pRb质粒的HepG2肝癌细胞与未转染pRb质粒者相比细胞增殖受到抑制.成功建立HepG2肝癌细胞裸鼠体内种植瘤模型,转染pRb质粒的HepG2肝癌细胞的裸鼠体内种植瘤生长受抑制.转染组种植瘤体积第4周(429.7±114.987)mm3,第5周(657.90±187.27)mm3,第6周(892.56±258.73)mm3.结论 Rb在体内和体外均能抑制肝癌细胞的增殖.

  8. Verbesina encelioides: cytotoxicity, cell cycle arrest, and oxidative DNA damage in human liver cancer (HepG2) cell line.

    Science.gov (United States)

    Al-Oqail, Mai M; Siddiqui, Maqsood A; Al-Sheddi, Ebtesam S; Saquib, Quaiser; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Farshori, Nida N

    2016-05-10

    Cancer is a major health problem and exploiting natural products have been one of the most successful methods to combat this disease. Verbesina encelioides is a notorious weed with various pharmacological properties. The aim of the present investigation was to screen the anticancer potential of V. encelioides extract against human lung cancer (A-549), breast cancer (MCF-7), and liver cancer (HepG2) cell lines. A-549, MCF-7, and HepG2 cells were exposed to various concentrations of (10-1000 μg/ml) of V. encelioides for 24 h. Further, cytotoxic concentrations (250, 500, and 1000 μg/ml) of V. encelioides induced oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage in HepG2 cells were studied. The exposure of cells to 10-1000 μg/ml of extract for 24 h, revealed the concentrations 250-1000 μg/ml was cytotoxic against MCF-7 and HepG2 cells, but not against A-549 cells. Moreover, the extract showed higher decrease in the cell viability against HepG2 cells than MCF-7 cells. Therefore, HepG2 cells were selected for further studies viz. oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage. The results revealed differential anticancer activity of V. encelioides against A-549, MCF-7 and HepG2 cells. A significant induction of oxidative stress, ROS generation, and MMP levels was observed in HepG2 cells. The cell cycle analysis and comet assay showed that V. encelioides significantly induced G2/M arrests and DNA damage. These results indicate that V. encelioides possess substantial cytotoxic potential and may warrant further investigation to develop potential anticancer agent.

  9. Quinoline-azetidinone hybrids: Synthesis and in vitro antiproliferation activity against Hep G2 and Hep 3B human cell lines.

    Science.gov (United States)

    Alegaon, S G; Parchure, P; Araujo, L D; Salve, P S; Alagawadi, K R; Jalalpure, S S; Kumbar, V M

    2017-04-01

    In search of new heterocyclic anticancer agents, a new quinoline-azetidinone hybrid template have been designed, synthesized and screened for their cytotoxic activity against human cancer cell lines such as Hep G2, and Hep 3B by the MTT assay and results were compared with paclitaxel, 5-fluorouracil and doxorubicin. Interestingly, some of the compounds were found significantly active against both cell lines. The compound 6f (IC50=0.04±0.01µM) exhibited potent antiproliferation activity against Hep G2 cell line, and 6j compound (IC50=0.66±0.01µM) demonstrated potent antiproliferation activity against Hep 3B cell line and provide to be more potent as cytotoxic agents than standard drugs. Morphological changes suggest the induction of apoptosis and describe the mechanism of action of these hybrid antitumor agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Selection of scFvs specific for the HepG2 cell line using ribosome display

    Indian Academy of Sciences (India)

    Lei Zhou; Wei-Ping Mao; Juan Fen; Hong-Yun Liu; Chuan-Jing Wei; Wen-Xiu Li; Feng-Yun Zhou

    2009-06-01

    The aim of this study was to construct a ribosome display library of single chain variable fragments (scFvs) associated with hepatocarcinoma and screen such a library for hepatocarcinoma-binding scFvs. mRNA was isolated from the spleens of mice immunized with hepatocellular carcinoma cell line HepG2. Heavy and k chain genes (VH and k) were amplified separately by RT-PCR, and an anti-HepG2 VH/k chain ribosome display library was constructed by assembling VH and k into the VH/k chain with a specially constructed linker by SOE-PCR. The VH/k chain library was transcribed and translated in vitro using a rabbit reticulocyte lysate system. In order to isolate specific scFvs, recognizing HepG2 negative selection on a normal hepatocyte line WRL-68 was carried out before three rounds of positive selection on HepG2. After three rounds of panning, cell enzyme-linked immunosorbent assay (ELISA) showed that one of the scFvs had high affinity for the HepG2 cell and lower affinity for the WRL-68 cell. In this study, we successfully constructed a native ribosome display library. Such a library would prove useful for direct intact cell panning using ribosome display technology. The selected scFv had a potential value for hepatocarcinoma treatment.

  11. The role of alkaline phosphatase in intracellular lipid accumulation in the human hepatocarcinoma cell line, HepG2.

    Science.gov (United States)

    Chirambo, George M; van Niekerk, Chantal; Crowther, Nigel J

    2017-04-01

    Inhibition of tissue non-specific alkaline phosphatase (TNALP) decreases intracellular lipid accumulation in human preadipocytes and the murine preadipocyte cell line, 3T3-L1. Therefore, the current study was performed to determine if TNALP is required for intracellular lipid deposition in the human hepatocyte cell line, HepG2. Intracellular lipid accumulation, TNALP activity and peroxisome proliferator activated receptor (PPAR) γ gene expression were measured in HepG2 and 3T3-L1 cells in the presence and absence of the TNALP inhibitors levamisole and histidine. Sub-cellular TNALP activity was localized using cytochemical analysis. Both PPARγ gene expression and TNALP activity increased during intracellular lipid accumulation in HepG2 and 3T3-L1 cells. Inhibition of TNALP blocked intracellular lipid accumulation but did not alter expression of the PPARγ gene. In HepG2 cells, TNALP co-localized with adipophilin on the lipid droplet membrane. These data suggest a role for TNALP in lipid droplet formation, possibly downstream from PPARγ, within HepG2 and 3T3-L1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Synthesis and Evaluation of New Pyrazoline Derivatives as Potential Anticancer Agents in HepG-2 Cell Line

    Directory of Open Access Journals (Sweden)

    Weijie Xu

    2017-03-01

    Full Text Available Cancer is a major public health concern worldwide. Adverse effects of cancer treatments still compromise patients’ quality of life. To identify new potential anticancer agents, a series of novel pyrazoline derivatives were synthesized and evaluated for cytotoxic effects on HepG-2 (human liver hepatocellular carcinoma cell line and primary hepatocytes. Compound structures were confirmed by 1H-NMR, mass spectrometry, and infrared imaging. An in vitro assay demonstrated that several compounds exerted cytotoxicity in the micromolar range. Benzo[b]thiophen-2-yl-[5-(4-hydroxy-3,5-dimethoxy-phenyl-3-(2-hydroxy-phenyl-4,5-dihydo-pyrazol-1-yl]-methanone (b17 was the most effective anticancer agent against HepG-2 cells owing to its notable inhibitory effect on HepG-2 with an IC50 value of 3.57 µM when compared with cisplatin (IC50 = 8.45 µM and low cytotoxicity against primary hepatocytes. Cell cycle analysis and apoptosis/necrosis evaluation using this compound revealed that b17 notably arrested HepG-2 cells in the G2/M phase and induced HepG-2 cells apoptosis. Our findings indicate that compound b17 may be a promising anticancer drug candidate.

  13. Ovothiol Isolated from Sea Urchin Oocytes Induces Autophagy in the Hep-G2 Cell Line

    Directory of Open Access Journals (Sweden)

    Gian Luigi Russo

    2014-07-01

    Full Text Available Ovothiols are histidine-derived thiols isolated from sea urchin eggs, where they play a key role in the protection of cells toward the oxidative burst associated with fertilization by controlling the cellular redox balance and recycling oxidized glutathione. In this study, we show that treatment of a human liver carcinoma cell line, Hep-G2, with ovothiol A, isolated from Paracentrotus lividus oocytes, results in a decrease of cell proliferation in a dose-dependent manner. The activation of an autophagic process is revealed by phase contrast and fluorescence microscopy, together with the expression of the specific autophagic molecular markers, LC3 II and Beclin-1. The effect of ovothiol is not due to its antioxidant capacity or to hydrogen peroxide generation. The concentration of ovothiol A in the culture media, as monitored by HPLC analysis, decreased by about 24% within 30 min from treatment. The proliferation of normal human embryonic lung cells is not affected by ovothiol A. These results hint at ovothiol as a promising bioactive molecule from marine organisms able to inhibit cell proliferation in cancer cells.

  14. Heterologous expression of human cytochrome P450 2E1 in HepG2 cell line

    Institute of Scientific and Technical Information of China (English)

    Jian Zhuge; Ye Luo; Ying-Nian Yu

    2003-01-01

    AIM: Human cytochrome P-450 2E1 (CYP2E1) takes part in the biotransformation of ethanol, acetone, many smallmolecule substrates and volatile anesthetics. CYP2E1 is involved in chemical activation of many carcinogens,procarcinogens, and toxicants. To assess the metabolic and toxicological characteristics of CYP2E1, we cloned CYP2E1 cDNA and established a HepG2 cell line stably expressing recombinant CYP 2E1.METHODS: Human CYP2E1 cDNA was amplified with reverse transcription-polymerase chain reaction (RT-PCR)from total RNAs extracted from human liver and cloned into pGEM-T vector. The cDNA segment was identified by DNA sequencing and subcloned into a mammalian expression vector pREP9. A transgenic cell line was established by transfecting the recombinant plasmid of pREP9-CYP2E1 to HepG2 cells. The expression of CYP2E1 mRNA was validated by RT-PCR. The enzyme activity of CYP2E1 catalyzing oxidation of 4-nitrophenol in postmitochondrial supernate (S9) fraction of the cells was determined by spectrophotometry. The metabolic activation of HepG2-CYP2E1 cells was assayed by N-nitrosodiethylamine (NDEA)cytotoxicity and micronucleus test.RESULTS: The cloned CYP2E1 cDNA segment was identical to that reported by Umeno et al(GenBank access No.J02843). HepG2-CYP2E1 cells expressed CYP2E1 mRNA and had 4-nitrophenol hydroxylase activity (0.162±0.025nmol.min-1.mg-1 S9 protein), which were undetectable in parent HepG2 cells. HepG2-CYP2E1 cells increased the cytotoxicity and micronucleus rate of NDEA in comparison with those of HepG2 cells.CONCLUSION: The cDNA of human CYP2E1 can be successfully cloned, and a cell line, HepG2-CYP2E1, which can efficiently express mRNA and has CYP2E1 activity, is established. The cell line is useful for testing the cytotoxicity,mutagenicity and metabolism of xenobiotics, which may possibly be activated or metabolized by CYP2E1.

  15. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line.

    Science.gov (United States)

    Abu Bakar, Mohd Fadzelly; Ahmad, Nor Ezani; Suleiman, Monica; Rahmat, Asmah; Isha, Azizul

    2015-01-01

    Garcinia dulcis or locally known in Malaysia as "mundu" belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell.

  16. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Mohd Fadzelly Abu Bakar

    2015-01-01

    Full Text Available Garcinia dulcis or locally known in Malaysia as “mundu” belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis. GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature, could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell.

  17. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line

    Science.gov (United States)

    Abu Bakar, Mohd Fadzelly; Ahmad, Nor Ezani; Suleiman, Monica; Rahmat, Asmah; Isha, Azizul

    2015-01-01

    Garcinia dulcis or locally known in Malaysia as “mundu” belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell. PMID:26557713

  18. Induction of apoptosis in human liver carcinoma HepG2 cell line by 5-allyl-7-gen-difluoromethylenechrysin

    Institute of Scientific and Technical Information of China (English)

    Xiang-Wen Tan; Hong Xia; Jin-Hua Xu; Jian-Guo Cao

    2009-01-01

    AIM: To investigate the effect of 5-allyl-7-gen-difluoromethylenechrysin (ADFMChR) on apoptosis of human liver carcinoma HepG2 cell line and the molecular mechanisms involved. METHODS: HepG2 cells and L-02 cells were cultured in vitro and the inhibitory effect of ADFMChR on their proliferation was measured by MTT assay. The apoptosis of HepG2 cells was determined by flow cytometry (FCM) using propidium iodide (PI) fluorescence staining.DNA ladder bands were observed by DNA agarose gel electrophoresis. The influence of ADFMChR on the proxisome proliferator-activated receptor γ (PPARγ), NF-κB, Bcl-2 and Bax protein expression of HepG2 cells were analyzed by Western blotting. RESULTS: MTT assay showed that ADFMChR significantly inhibited proliferation of HepG2 cells in a dosedependent manner, with little effect on growth of L-02 cells, and when IC50 was measured as 8.45 μmol/L and 191.55 μmol/L respectively, the potency of ADFMChR to HepG2 cells, was found to be similar to 5-fluorouracil (5-FU, IC50 was 9.27 μmol/L). The selective index of ADFMChR cytotoxicity to HepG2 cells was 22.67 (191.55/8.45), higher than 5-FU (SI was 7.05 (65.37/9.27). FCM with PI staining demonstrated that the apoptosis rates of HepG2 cells treated with 3.0, 10.0 and 30.0 μmol/L ADFMChR for 48 h were 5.79%, 9.29% and 37.8%, respectively, and were significantly higher when treated with 30.0 μmol/L ADFMChR than when treated with 30.0 μmol/L ChR (16.0%) ( P < 0.05) and were similar to those obtained with 30.0 μmol/L 5-FU (41.0%). DNA agarose gel electrophoresis showed that treatment of HepG2 cells with 10.0 μmol/L ADFMChR for 48 h and 72 h resulted in typical DNA ladders which could be reversed by 10.00 μmol/L GW9662, a blocker of PPARγ. Western blotting analysis revealed that after 24 h of treatment with 3.0, 10.0, 30.0 μmol/L ADFMChR, PPARγ and Bax protein expression in HepG2 cells increased but Bcl-2 and NF-κB expression decreased; however, pre-incubation with 10.0 μmol/L GW

  19. Human papillomavirus type 18 E6 and E7 genes integrate into human hepatoma derived cell line Hep G2.

    Science.gov (United States)

    Ma, Tianzhong; Su, Zhongjing; Chen, Ling; Liu, Shuyan; Zhu, Ningxia; Wen, Lifeng; Yuan, Yan; Lv, Leili; Chen, Xiancai; Huang, Jianmin; Chen, Haibin

    2012-01-01

    Human papillomaviruses have been linked causally to some human cancers such as cervical carcinoma, but there is very little research addressing the effect of HPV infection on human liver cells. We chose the human hepatoma derived cell line Hep G2 to investigate whether HPV gene integration took place in liver cells as well. We applied PCR to detect the possible integration of HPV genes in Hep G2 cells. We also investigated the expression of the integrated E6 and E7 genes by using RT-PCR and Western blotting. Then, we silenced E6 and E7 expression and checked the cell proliferation and apoptosis in Hep G2 cells. Furthermore, we analyzed the potential genes involved in cell cycle and apoptosis regulatory pathways. Finally, we used in situ hybridization to detect HPV 16/18 in hepatocellular carcinoma samples. Hep G2 cell line contains integrated HPV 18 DNA, leading to the expression of the E6 and E7 oncogenic proteins. Knockdown of the E7 and E6 genes expression reduced cell proliferation, caused the cell cycle arrest at the S phase, and increased apoptosis. The human cell cycle and apoptosis real-time PCR arrays analysis demonstrated E6 and E7-mediated regulation of some genes such as Cyclin H, UBA1, E2F4, p53, p107, FASLG, NOL3 and CASP14. HPV16/18 was found in only 9% (9/100) of patients with hepatocellular carcinoma. Our investigations showed that HPV 18 E6 and E7 genes can be integrated into the Hep G2, and we observed a low prevalence of HPV 16/18 in hepatocellular carcinoma samples. However, the precise risk of HPV as causative agent of hepatocellular carcinoma needs further study.

  20. Retroendocytosis of high density lipoproteins by the human hepatoma cell line, HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Kambouris, A.M.; Roach, P.D.; Calvert, G.D.; Nestel, P.J. (CSIRO, Division of Human Nutrition, Adelaide (Australia))

    1990-07-01

    When human HepG2 hepatoma cells were pulsed with 125I-labeled high density lipoproteins (HDL) and chased in fresh medium, up to 65% of the radioactivity released was precipitable with trichloroacetic acid. Cell-internalized 125I-HDL contributed to the release of acid-precipitable material; when cells were treated with trypsin before the chase to remove 125I-HDL bound to the outer cell membrane, 50% of the released material was still acid-precipitable. Characterization of the radioactive material resecreted by trypsinized cells revealed the presence of particles that were similar in size and density to mature HDL and contained intact apolipoproteins (apo) A-I and A-II. The release of internalized label occurred at 37 degrees C but not at 4 degrees C. Monensin, which inhibits endosomal recycling of receptors, decreased the binding of 125I-HDL to cells by 75%, inhibited the release of internalized radioactivity as acid-precipitable material by 80%, and increased the release of acid-soluble material by 90%. In contrast, the lysosomal inhibitor chloroquine increased the association of 125I-HDL to cells by 25%, inhibited the release of precipitable material by 10%, and inhibited the release of acid-soluble radioactivity by 80%. Pre-incubation with cholesterol caused a 50% increase in the specific binding, internalization, and resecretion of HDL label. Cholesterol affected the release of acid-precipitable label much more (+90%) than that of acid-soluble material (+20%). Taken together, these findings suggest that HepG2 cells can bind, internalize, and resecrete HDL by a retroendocytotic process. Furthermore, the results with cholesterol and monensin indicate that a regulated, recycling, receptor-like molecule is involved in the binding and intracellular routing of HDL.

  1. Transfection of p27 kip1 enhances radiosensitivity induced by 60Coγ-irradiation in hepatocellular carcinoma HepG2 cell line

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xiang Guan; Long-Bang Chen; Gui-Xia Ding; Wei De; Ai-Hua Zhang

    2004-01-01

    AIM: To study the cell cycle alterations of human hepatoma cell line HepG2 in vitro after 60Co γ-irradiation and further to examine the mechanisms underlying the enhancement of radiosensitivity to γ-irradiation in HepG2 transiently transfected with wild type p27kip1.METHODS: The proliferation of HepG2 cells was evaluated with MTT assay, and the cell cycle profile and apoptosis were assessed by cell morphology, DNA fragmentation analysis and flow cytometry. HepG2 cells were transfected with p27kip1 wild type by using Lipofectamine (LF2000), and the expression and subcellular localization of p27kip1 in HepG2were detected by immunocytochemistry.RESULTS: 60Co γ-irradiation inhibited the growth of HepG2cells in a dose-dependent manner. Apoptosis of HepG2 cells was induced 48 h after γ ray exposure. Furthermore research was carried out to induce exogenous expression of p27kip1in HepG2. The expression of p27kip1 induced G0/G1 phase arrest in HepG2 cells. The overexpression of p27kip1 enhanced 60Co γ-irradiation-induced radiosensitivity in HepG2 cells.CONCLUSION: Overexpression of p27kip1 is a rational approach to improve conventional radiotherapy outcomes, which may be a possible strategy for human hepatoma therapy.

  2. Effect of TSLC1 Gene on Proliferation, Invasion and Apoptosis of Human Hepatocellular Carcinoma Cell Line HepG2

    Institute of Scientific and Technical Information of China (English)

    QIN Li; ZHU Wentao; XU Tao; HAO Youhua; ZHANG Zhengmao; TIAN Yongjun; YANG Dongliang

    2007-01-01

    The recombinant plasmid pCI-TSLC1 carrying TSLC1 gene was stably transfected into human hepatocellular carcinoma cell line HepG2. Cell proliferation was analyzed by MTT assay. The ability of migration was determined by transwell and FACSort flow cytometry was used to detect the cell cycle distribution and apoptosis. Western blotting revealed that H4 expressed higher amounts of TSLC1 protein than H15 and H0 did. The growth of TSLC1-transfected cells was significantly sup- pressed in vitro, and the ability of migration was reduced as well. The re-expression of TSLC1 could induce cell apoptosis. It was concluded that TSLC1 strongly inhibited the growth and ability of mi- gration of HepG2 cell line in vitro and also induced apoptosis, suggesting that TSLC1 could reduce the tumorigenicity of human hepatocellular carcinoma cell line HepG2 in vitro, which provided a ba-sis for further exploring the roles of TSLC1 in hepatocellular cellular carcinoma.

  3. 奥美拉唑对肝癌HepG2细胞增殖与凋亡的影响%Effects of Omeprazole on the Proliferation and Apoptosis of Hepatoma Cell Line HepG2

    Institute of Scientific and Technical Information of China (English)

    魏艳; 梁宁林; 朱永军; 吴文超; 刘小菁; 杨丽

    2012-01-01

    Objective To investigate the effects of omeprazole (OME), a proton pump inhibitor, on the proliferation and apoptosis of human hepatoma cell line HepG2. Methods HepG2 cells were cultured to the logarithmic phase, and then treated with OME of different concentrations (10, 20, 40, 80, 160 mg/L) for 24 h or 48 h. Cell proliferation was evaluated by MTT assay, DNA synthesis was measured with 5 ethynyl-2'-deoxyuridine (Edu) fluorescent assay and the apoptosis of cells was measured by the Hoechst33342 assay. Results MTT assay showed that OME (40, 80 and 160 mg/L concentrations) could inhibit the proliferation of HepG2 cells for 24 h or 48 h treatment (P<0. 05) and 80 mg/L group has strongest effect. Compared with that of 24 h treatment, the same concentration of OME could inhibit HepG2 more significantly with 48 h treatment. After different concentrations of OME treatment for 24 h and then incubation with Edu for 2 h, compared with the control group, the proportion of Cells in S phase in 20, 40, 80, 160 mg/L groups decreased. Hoechst33342 staining demonstrated that treatment with OME (40,80,160 mg/L) for 24 h could significantly promote the cell apoptosis. Conclusion Omeprazole could inhibit human hepatoma cell line HepG2 cell proliferation and promote apoptosis.%目的 探讨质子泵抑制剂奥美拉唑(omeprazole,OME)对肝癌HepG2细胞增殖和细胞凋亡的影响.方法 不同浓度(0、10、20、40、80、160 mg/L)的OME作用于HepG2细胞后,分别于不同时间(24 h、48 h),采用甲基四唑蓝(MTT)法测定OME对HepG2细胞增殖的影响;5-乙炔基-2’-脱氧尿嘧啶核苷(Edu)荧光检测法测定DNA合成期(S期)细胞所占比例;Hoechst33342染色法检测细胞凋亡.结果 MTT结果示,10、20 mg/L OME对HepG2细胞增殖无明显抑制,而40、80、160 mg/L OME可产生明显抑制作用,其中80 mg/L OME作用最强;且相同浓度OME作用下,48 h较24 h对HepG2的抑制率增加.Edu荧光检测法表明,不同浓度OME处理细胞24h

  4. Knockdown of Decoy Receptor 3 Impairs Growth and Invasiveness of Hepatocellular Carcinoma Cell Line of HepG2

    Institute of Scientific and Technical Information of China (English)

    Xiao-Na Zhou; Guang-Ming Li; Ying-Chen Xu; Tuan-Jie Zhao; Ji-Xiang Wu

    2016-01-01

    Background:Decoy receptor 3 (DcR3) binds to Fas ligand (FasL) and inhibits FasL-induced apoptosis.The receptor is overexpressed in hepatocellular carcinoma (HCC),and it is associated with the growth and metastatic spread of tumors.DcR3 holds promises as a new target for the treatment of HCC,but little is known regarding the molecular mechanisms underlying the oncogenic properties of DcR3.The present work,therefore,examined the role of DcR3 in regulating the growth and invasive property of liver cancer cell HepG2.Methods:HepG2 cells were stably transfected with lentivirus-based short hairpin RNA vector targeting DcR3.After the knockdown of DcR3 was confirmed,cell proliferation,clone formation,ability of migrating across transwell membrane,and wound healing were assessed in vitro.Matrix metalloproteinase-9 (MMP 9) and vascular epithelial growth factor (VEGF)-C and D expressions of the DcR3 knockdown were also studied.Comparisons between multiple groups were done using one-way analysis of variance (ANOVA),while pairwise comparisons were performed using Student's t test.P < 0.05 was regarded statistically significant.Results:DcR3 was overexpressed in HepG2 compared to other HCC cell lines and normal hepatocyte Lo-2.Stable knockdown of DcR3 slowed down the growth of HepG2 (P < 0.05) and reduced the number of clones formed by 50% compared to those without DcR3 knockdown (P < 0.05).The knockdown also reduced the migration of HepG2 across transwell matrix membrane by five folds compared to the control (P < 0.05) and suppressed the closure of scratch wound (P < 0.05).In addition,the messenger RNA levels of MMP 9,VEGF-C,and VEGF-D were significantly suppressed by DcR3 knockdown by 90% when compared with the mock control (P < 0.05).Conclusions:Loss of DcR3 impaired the growth and invasive property of HCC cell line of HepG2.Targeting DcR3 may be a potential therapeutic approach for the treatment of HCC.

  5. Phosphoramidate protides of five flavones and their antiproliferative activity against HepG2 and L-O2 cell lines.

    Science.gov (United States)

    Li, Yue-Qing; Yang, Fei; Wang, Liu; Cao, Zhi; Han, Tian-Jiao; Duan, Zhe-Ang; Li, Zhen; Zhao, Wei-Jie

    2016-04-13

    A series of flavone-7-phosphoramidate derivatives were synthesized and tested for their antiproliferative activity in vitro against human hepatoma cell line HepG2 and human normal hepatic cell line L-O2. Compound 8d, 16d and 17d, incorporating the amino acid alanine, exhibited high inhibitory activity on HepG2 cell line with IC50 values of 9.0 μmol/L, 5.5 μmol/L and 6.6 μmol/L. The introduction of acyl groups played a pivotal role in the selective inhibition toward human hepatoma HepG2 cells, except for compound 8a, 9a and 16b. Compound 8d, 16d and 17d could significantly induce G2/M arrest in HepG2 cells. Specially, Compound 16d could lead early apoptosis in HepG2 cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Cytotoxic and apoptotic effects of six herbal plants against the human hepatocarcinoma (HepG2 cell line

    Directory of Open Access Journals (Sweden)

    Nonpunya Apiyada

    2011-10-01

    Full Text Available Abstract Background Six plants from Thailand were evaluated for their cytotoxicity and apoptosis induction in human hepatocarcinoma (HepG2 as compared to normal African green monkey kidney epithelial cell lines. Methods Ethanol-water crude extracts of the six plants were tested with neutral red assay for their cytotoxicity after 24 hours of exposure to the cells. Apoptotic induction was tested in the HepG2 cells with diamidino-2-phenylindole staining. DNA fragmentation, indicative of apoptosis, was analyzed with agarose gel electrophoresis. Alkylation, indicative of DNA damage, was also evaluated in vitro by 4-(4'-nitrobenzyl pyridine assay. Results The extract of Pinus kesiya showed the highest selectivity (selectivity index = 9.6 and potent cytotoxicity in the HepG2 cell line, with an IC50 value of 52.0 ± 5.8 μg/ml (mean ± standard deviation. Extract of Catimbium speciosum exerted cytotoxicity with an IC50 value of 55.7 ± 8.1 μg/ml. Crude extracts from Glochidion daltonii, Cladogynos orientalis, Acorus tatarinowii and Amomum villosum exhibited cytotoxicity with IC50 values ranging 100-500 μg/ml. All crude extracts showed different alkylating abilities in vitro. Extracts of P. kesiya, C. speciosum and C. orientalis caused nuclei morphological changes and DNA laddering. Conclusion The extracts of C. speciosum, C. orientalis and P. kesiya induced apoptosis. Among the three plants, P. kesiya possessed the most robust anticancer activity, with specific selectivity against HepG2 cells.

  7. Anticancer effect of the extracts from Polyalthia evecta against human hepatoma cell line (HepG2)

    Institute of Scientific and Technical Information of China (English)

    Sasipawan Machana; Natthida Weerapreeyakul; Sahapat Barusrux

    2012-01-01

    Objective: To investigate the anticancer activity of Polyalthia evecta (P. evecta) (Pierre) Finet& Gagnep against human hepatoma cell line (HepG2). Methods: The anticancer activity was based on (a) the cytotoxicity against human hepatoma cells (HepG2) assessed using a neutral red assay and (b) apoptosis induction determined by evaluation of nuclei morphological changes after DAPI staining. Preliminary phytochemical analysis of the crude extract was assessed by HPLC analysis. Results: The 50% ethanol-water crude leaf extract of P. evecta (EW-L) showed greater potential anticancer activity with high cytotoxicity [IC50 = (62.8 ± 7.3)μg/mL] and higher selectivity in HepG2 cells than normal Vero cells [selective index (SI) = 7.9]. The SI of EW-L was higher than the positive control, melphalan (SI = 1.6) and the apoptotic cells (46.4 ± 2.6) % induced by EW-L was higher than the melphalan (41.6 ± 2.1)% (P<0.05). The HPLC chromatogram of the EW-L revealed the presence of various kinds of polyphenolics and flavonoids in it. Conclusions:P. evecta is a potential plant with anticancer activity. The isolation of pure compounds and determination of the bioactivity of individual compounds will be further performed.

  8. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Javed [Department of Zoology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Ahamed, Maqusood, E-mail: maqusood@gmail.com [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Akhtar, Mohd Javed [Fibre Toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow-226001 (India); Alrokayan, Salman A. [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Siddiqui, Maqsood A.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2012-03-01

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion of glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.

  9. Fabrication of nanoparticles using Annona squamosa leaf and assessment of its effect on liver (Hep G2) cancer cell line

    Science.gov (United States)

    Vanitha, V.; Hemalatha, S.; Pushpabharathi, N.; Amudha, P.; Jayalakshmi, M.

    2017-04-01

    Annona squamosa is a fruit bearing plant possesses potent bioactive compounds in all its part. In this present investigation iron oxide nanoparticle was synthesized from hydroethanol extract of Annona squamosa leaves at 60°C temperature. Production of iron oxide nanoparticles in extraction is detected by UV-V spectrophotometer, Scanning electron microscopy was employed to analyse the structure of nanoparticles. Fourier transform infrared spectroscopy (FT-IR) analysis were performed, in order to determine the functional groups on Annona squamosa leaves extract. The synthesized Fe3O4 NPs shows potential cytotoxicity against liver carcinoma cell line (HepG2), and there is no toxicity on the normal liver cell line. Our reports confirmed that the Annona squamosa leaf is a very good eco-friendly and nontoxic bioreductant for the synthesis of Iron oxide nanoparticle and opens up further opportunities for fabrication of drugs towards cancer therapy.

  10. De novo LINE-1 retrotransposition in HepG2 cells preferentially targets gene poor regions of chromosome 13.

    Science.gov (United States)

    Bojang, Pasano; Anderton, Mark J; Roberts, Ruth A; Ramos, Kenneth S

    2014-08-01

    Long interspersed nuclear elements (Line-1 or L1s) account for ~17% of the human genome. While the majority of human L1s are inactive, ~80-100 elements remain retrotransposition competent and mobilize through RNA intermediates to different locations within the genome. De novo insertions of L1s account for polymorphic variation of the human genome and disruption of target loci at their new location. In the present study, fluorescence in situ hybridization and DNA sequencing were used to characterize retrotransposition profiles of L1(RP) in cultured human HepG2 cells. While expression of synthetic L1(RP) was associated with full-length and truncated insertions throughout the entire genome, a strong preference for gene-poor regions, such as those found in chromosome 13 was observed for full-length insertions. These findings shed light into L1 targeting mechanisms within the human genome and question the putative randomness of L1 retrotransposition.

  11. Mechanism of Arctigenin-Induced Specific Cytotoxicity against Human Hepatocellular Carcinoma Cell Lines: Hep G2 and SMMC7721.

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    Full Text Available Arctigenin (ARG has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment.

  12. Mechanism of Arctigenin-Induced Specific Cytotoxicity against Human Hepatocellular Carcinoma Cell Lines: Hep G2 and SMMC7721.

    Science.gov (United States)

    Lu, Zheng; Cao, Shengbo; Zhou, Hongbo; Hua, Ling; Zhang, Shishuo; Cao, Jiyue

    2015-01-01

    Arctigenin (ARG) has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC) was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose) polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment.

  13. Evaluating the extent of LINE-1 mobility following exposure to heavy metals in HepG2 cells.

    Science.gov (United States)

    Karimi, Abbas; Madjd, Zahra; Habibi, Laleh; Akrami, Seyed Mohammad

    2014-07-01

    The long interspersed elements-1 (LINE1 or L1 retrotransposon) constitute 17% of the human genome and retain mobility properties within the genome. At present, 80-100 human L1 elements are thought to be active in the genome. The mobilization of these active elements may be influenced upon exposure to the heavy metals. In the present study, we evaluated the association of aluminum, lead, and copper exposure with L1 retrotransposition in human hepatocellular carcinoma (HepG2) cell line. An in vitro retrotransposition assay using an enhanced green fluorescent protein (EGFP)-tagged L1RP cassette was established to track EGFP shining as the mark of retrotransposition. Following determination of noncytotoxic concentrations of these metals, pL1RP-EGFP-transfected HepG2 cells were subjected to long-term treatment. Flow cytometry analysis of cells treated with various concentrations of these metals along with quantitative real-time PCR was used to quantify L1 retrotransposition frequencies. Aluminum significantly increased L1 retrotransposition frequency, while no significant association was found concerning lead exposure and L1 retrotransposition. Copper treatment downregulated L1 retrotransposition as a result of EGFP-tagged L1RP expression. Our findings suggest that aluminum might have the potential to cause genomic instability by the enhancement of L1 mobilization. Thus, the risk of induced L1 retrotransposition should be considered during drug safety evaluation and risk assessments of exposure to toxic environmental agents. Further studies are needed for a more robust assay to evaluate any associations between long-term lead exposure and L1 mobility in cell culture assay.

  14. Screening and identification of a novel target specific for hepatoma cell line HepG2 from the FliTrx bacterial peptide library

    Institute of Scientific and Technical Information of China (English)

    Wenhan Li; Ping Lei; Bing Yu; Sha Wu; Jilin Peng; Xiaoping Zhao; Huffen Zhu; Michael Kirschfink; Guanxin Shen

    2008-01-01

    To explore new targets for hepatoma research, we used a surface display library to screen novel tumor cell-specific peptides. The bacterial FliTrx system was screened with living normal liver cell line L02 and hepatoma cell line HepG2 successively to search for hepatoma-specific peptides. Three clones (Hep1, Hep2, and Hep3) were identified to be specific to HepG2 compared with L02 and other cancer cell lines.Three-dimensional structural prediction proved that peptides inserted into the active site of Escherichia coli thioredoxin (TrxA) formed certain loop structures protruding out of the surface. Western blot analysis showed that FliC/TrxA-pepfide fusion proteins could be directly used to detect HepG2 cells.Three different FliC/TrxA-peptide fusion proteins targeted the same molecule, at approximately 140 kDa, on HepG2 cells.This work presented for the first time the application of the FliTrx library in screening living cells. Three peptides were obtained that could be potential candidates for targeted liver cancer therapy.

  15. Zinc affects miR-548n, SMAD4, SMAD5 expression in HepG2 hepatocyte and HEp-2 lung cell lines.

    Science.gov (United States)

    Grider, Arthur; Lewis, Richard D; Laing, Emma M; Bakre, Abhijeet A; Tripp, Ralph A

    2015-12-01

    MicroRNAs affect disease progression and nutrient status. miR-548n increased 57 % in Zn supplemented plasma from adolescent females (ages 9 to 13 years). The purpose of this study was to determine the effects of Zn concentration in cell culture on the expression of miR-548n, SMAD4 and SMAD5 in hepatocyte (HepG2) and lung epithelium (HEp-2) cell lines. Cells were incubated for 48 h in media containing 10 % Chelex 100-treated FBS (0 μM Zn), or with 15 or 50 μM Zn, before isolation of total RNA and cDNA. Expression of miR-548n, SMAD4 and SMAD5 was measured by qPCR. The ΔΔCT method was used to calculate the fold-change, and 15 µM expression levels were used as reference values. HepG2 miR-548n expression decreased 5-fold, and SMAD4 expression increased 4-fold in the absence of Zn, while HEp-2 miR-548n expression increased 10.5-fold, and SMAD5 expression increased 20-fold in the absence of Zn. HEp-2 miR-548n expression increased 23-fold, while SMAD4 expression decreased twofold, in 50 μM Zn-treated cells. However, SMAD4 and SMAD5 expression was not correlated. These data indicate that miR-548n expression is in part regulated by Zn in a cell-specific manner. SMAD4 and SMAD5 are genes in the TGF-β/BMP signaling pathway, and SMAD5 is a putative target for miR-548n; Zn participates in regulating this pathway through controlling SMAD4 and SMAD5 expression. However, SMAD5 expression may be more sensitive to Zn than to miR-548n since SMAD5 expression was not inversely correlated with miR-548n expression.

  16. DNA-PKcs subunits in radiosensitization by hyperthermia on hepatocellular carcinoma hepG2 cell line

    Institute of Scientific and Technical Information of China (English)

    Zhao-Chong Zeng; Guo-Liang Jiang; Guo-Min Wang; Zhao-You Tang; Walter J. Curran; George Iliakis

    2002-01-01

    AIM: To investigate the role of DNA-PKcs subunits inradiosensitization by hyperthermia on hepatocellularcarcinoma HepG2 cell lines.METHODS: Hep G2 cells were exposed to hyperthermiaand irradiation. Hyperthermia was given at 45.5 ℃Cellsurvival was determined by an in vitro clonogenic assay forthe cells treated with or without hyperthermia at varioustime points. DNA DSB rejoining was measured usingasymmetric field inversion gel electrophoresis (AFIGE). TheDNA-PKcs activities were measured using DNA-PKcs enzymeassay system.RESULTS: Hyperthermia can significantly enhanceirradiation-killing cells. Thermal enhancement ratio ascalculated at 10 % survival was 2.02. The difference inradiosensitivity between two treatment modes manifestedas a difference in the α components and the almost sameβ components, which α value was considerably higher inthe cells of combined radiation and hyperthermia ascompared with irradiating cells (1.07 Gy-1 versus 0.44 Gy1). Survival fraction showed 1 logarithm increase after an8-hour interval between heat and irradiation, whereas DNA-PKcs activity did not show any recovery. The cells wereexposed to heat 5 minutes only, DNA-PKcs activity wasinhibited at the nadir, even though the exposure time waslengthened. Whereas the ability of DNA DSB rejoining wasinhibited with the increase of the length of hyperthermictime. The repair kinetics of DNA DSB rejoining aftertreatment with Wortmannin is different from thehyperthermic group due to the striking high slow rejoiningcomponent.CONCLUSION: Determination with the cell extracts andthe peptide phosphorylation assay, DNA-PKcs activity wasinactivated by heat treatment at 45.5 C, and could notrestore. Cell survival is not associated with the DNA-PKcsinactivity after heat. DNA-PKcs is not a unique factor affectingthe DNA DSB repair. This suggests that DNA-PKcs do notplay a crucial role in the enhancement of cellularradiosensitivity by hyperthermia.

  17. The binding of human lipoprotein lipase treated VLDL by the human hepatoma cell line HepG2

    NARCIS (Netherlands)

    Mulder, M.; Wit, E.de; Havekes, L.M.

    1991-01-01

    It has been suggested that besides the LDL-receptor, hepatocytes possess an apo E or remnant receptor. To evaluate which hepatic lipoprotein receptor is involved in VLDL remnant catabolism, we studied the binding of VLDL remnants to HepG2 cells. Native VLDL was obtained from type IIb hyperlipidemic

  18. THE EFFECTS OF 3-BROMOPYRUVATE ON THE PROLIFERATION AND APOPTOSIS IN HepG-2 CELL LINE%3-溴丙酮酸对人肝癌HepG-2细胞增殖和凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    张海丽; 曾常茜; 郑学仿

    2010-01-01

    目的:通过3-溴丙酮酸作用于HepG-2细胞,观察3-溴丙酮酸对HepG-2细胞增殖和凋亡的影响.方法:MTT法检测细胞增殖,倒置显微镜和透射电镜观察细胞形态,流式细胞术检测细胞周期分布和细胞凋亡.结果:3-溴丙酮酸在25~75 μg/mL范围内,对HepG-2细胞的增殖具有明显的抑制作用并呈现剂量依赖性.3-溴丙酮酸处理HepG-2细胞后,倒置显微镜观察到细胞生长稀疏,细胞质透亮度下降,细胞脱落增多;透射电镜观察到染色质固缩、边集,核质内可见空泡.流式细胞术结果显示3-溴丙酮酸可将HepG-2细胞阻滞于S期,且DNA直方图上可见亚二倍体峰.在3.125~25 μg/mL范围内,3-溴丙酮酸可剂量依赖性的诱导HepG-2细胞凋亡.结论:3-溴丙酮酸抑制HepG-2增殖并诱导HepG-2凋亡.

  19. Mitochondria are required for ATM activation by extranuclear oxidative stress in cultured human hepatoblastoma cell line Hep G2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Akinori, E-mail: morita@tokushima-u.ac.jp [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Department of Radiological Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8509 (Japan); Tanimoto, Keiji; Murakami, Tomoki; Morinaga, Takeshi [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Hosoi, Yoshio, E-mail: hosoi@med.tohoku.ac.jp [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Department of Radiation Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan)

    2014-01-24

    Highlights: • Oxidative ATM activation can occur in the absence of nuclear DNA damage response. • The oxidized Hep G2 cells were subjected to subcellular fractionation. • The obtained results suggest that the ATM activation occurs in mitochondria. • ATM failed to respond to oxidative stress in mitochondria-depleted Hep G2 cells. • Mitochondria are required for the oxidative activation of ATM. - Abstract: Ataxia–telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in DNA damage response (DDR). A recent study reported that oxidized ATM can be active in the absence of DDR. However, the issue of where ATM is activated by oxidative stress remains unclear. Regarding the localization of ATM, two possible locations, namely, mitochondria and peroxisomes are possible. We report herein that ATM can be activated when exposed to hydrogen peroxide without inducing nuclear DDR in Hep G2 cells, and the oxidized cells could be subjected to subcellular fractionation. The first detergent-based fractionation experiment revealed that active, phosphorylated ATM was located in the second fraction, which also contained both mitochondria and peroxisomes. An alternative fractionation method involving homogenization and differential centrifugation, which permits the light membrane fraction containing peroxisomes to be produced, but not mitochondria, revealed that the light membrane fraction contained only traces of ATM. In contrast, the heavy membrane fraction, which mainly contained mitochondrial components, was enriched in ATM and active ATM, suggesting that the oxidative activation of ATM occurs in mitochondria and not in peroxisomes. In Rho 0-Hep G2 cells, which lack mitochondrial DNA and functional mitochondria, ATM failed to respond to hydrogen peroxide, indicating that mitochondria are required for the oxidative activation of ATM. These findings strongly suggest that ATM can be activated in response to oxidative stress in mitochondria

  20. Activation of apoptosis by ethyl acetate fraction of ethanol extract of Dianthus superbus in HepG2 cell line.

    Science.gov (United States)

    Yu, Jian-Qing; Yin, Yan; Lei, Jia-Chuan; Zhang, Xiu-Qiao; Chen, Wei; Ding, Cheng-Li; Wu, Shan; He, Xiao-Yu; Liu, Yan-Wen; Zou, Guo-Lin

    2012-02-01

    Dianthus superbus L. is commonly used as a traditional Chinese medicine. We recently showed that ethyl acetate fraction (EE-DS) from ethanol extract of D. superbus exhibited the strongest antioxidant and cytotoxic activities. In this study, we examined apoptosis of HepG2 cells induced by EE-DS, and the mechanism underlying apoptosis was also investigated. Treatment of HepG2 cells with EE-DS (20-80 μg/ml) for 48 h led to a significant dose-dependent increase in the percentage of cells in sub-G1 phase by analysis of the content of DNA in cells, and a large number of apoptotic bodies containing nuclear fragments were observed in cells treated with 80 μg/ml of EE-DS for 24 h by using Hoechst 33258 staining. These data show that EE-DS can induce apoptosis of HepG2 cells. Immunoblot analysis showed that EE-DS significantly suppressed the expressions of Bcl-2 and NF-κB. Treatment of cells with EE-DS (80 μg/ml) for 48 h resulted in significant increase of cytochrome c in the cytosol, which indicated cytochrome c release from mitochondria. Activation of caspase-9 and -3 were also determined when the cells treated with EE-DS. The results suggest that apoptosis of HepG2 cells induced by EE-DS could be through the mitochondrial intrinsic pathway. High performance liquid chromatography (HPLC) data showed that the composition of EE-DS is complicated. Further studies are needed to find the effective constituents of EE-DS.

  1. Functional involvement of proteins, interacting with sphingolipids, in sphingolipid transport to the canalicular membrane in the human hepatocytic cell line, HepG2?

    NARCIS (Netherlands)

    Zegers, MMP; Zaal, KJM; Hoekstra, D

    A photoreactive sphingolipid precursor was used to investigate the potential involvement of protein-lipid interactions that may convey specificity to sphingolipid transport in the human hepatoma cell line, HepG2, A I-125-labeled, photoreactive ceramide, I-125-N-3-Cer, was incubated with the cells

  2. HepG2Hep3B细胞中肿瘤干细胞相关标志分子的表达%Expression of cancer stem cell-associated markers in liver cancer cell lines HepG2 and Hep3B

    Institute of Scientific and Technical Information of China (English)

    贾茜; 高建; 张小丽; 向颖; 邓涛

    2012-01-01

    Objective To explore the expression of cancer stem cell ( CSC) -associated markers CD90, CD133, octamer4 (Oct4) and ATP-binding cassette transporter G2 (ABCG2) in liver cancer cell lines HepG2 and Hep3B, and to preliminarily analyze the significance. Methods Liver CSCs were separated from the HepG2 and Hep3B cell lines by flow cytometry, and were cultured in serum-free medium to form spheres. The liver cancer cells were assigned as a control group. Cell proliferation capacity was examined by single-cell clone formation assay. Cell viability was detected by MTT assay after treated with doxorubicin. The mRNA and protein expression levels of CD90, CD133, Oct4 and ABCG2 were detected by real-time PCR and Western blotting , respectively. Results The single cell proliferation capacity of the liver CSCs was stronger than that of the liver cancer cells. The single-cell clone formation assay showed that the colony formation rate of the Hep3B cells was lower than that of the Hep3B CSCs after cultured for 14 d [8/27 (30% ) vs 12/23 (52% ) , P <0. 05 ] , and the colony formation rate of the HepG2 cells was also lower than that of the HepG2 CSCs [7/38 (18% ) vs 9/26 (35%), P <0. 05]. MTT assay showed that the cell viability significantly increased in the liver CSCs compared with that in the liver cancer cells after treated with doxorubicin for 48 h [ HepG2 cells (38. 17 ± 6. 92)% vs HepG2 CSCs (69. 88 ±5. 43)% , P <0. 05; Hep3B cells (50. 16 ±4. 89)% vs Hep3B CSCs (78.53 ± 7. 86 ) % , P < 0. 05 ]. The Real-time PCR results showed that the mRNA expression levels of CD90, CD133, Oct4 and ABCG2 were significantly increased in the liver CSCs compared with those in the parental cells (P < 0. 05 ) . Western blotting results showed that the protein expression levels of Oct4 and ABCG2 significantly increased in the liver CSCs compared with those in the parental cells ( P < 0. 05 ) . Conclusion The CSC-associated markers CD90, CD133, Oct4 and ABCG2 are highly expressed in liver CSCs

  3. Study of carcinogenic activity of carnosic acid and rosmarinic acid in cancer cells line of Hep- G2

    Directory of Open Access Journals (Sweden)

    Narges Njarpour

    2016-06-01

    Full Text Available Background: As anti-apoptotic properties of polyphenols have been proved in past years. In this study, carcinogenic activity of carnosic acid and rosmarinic acid inhuman hepatocellular carcinomaHep- G2cellswere studied. Method:In this experimental study, Hep-G2 cells were cultured in DMEM supplemented containing bovine fetal serum and antibiotics. Cells with double dilution were then cultured from 0 to 70 µM for 24 h and viability of cells was determined by MTT method. In order to evaluate activity of caspase3 and caspase9 enzymes after 24 hours of incubation of the cells with treated materials, cells were centrifuged and cell lysis solution was added. This mixture was centrifuged and then an appropriate substrate was added into each enzyme and after incubation, absorbance of the resulted solution was read at 405 nm using a spectrophotometer device. To measure the level of ceramide, a recombinant acid ceramidase enzyme and naphthalene-2, 3-dialdehyde, which is fluorescent and is connected to sphingosine resulted from acid ceramidase, were added to the cell extract and was ultimately determined by HPLC. Results: Carnosic acid increased cell viability and caused noinduction of apoptosis to a dose-dependent species in Hep-G2 cells by reducing ceramide levels and decreasing activity of caspase 3 and caspase 9 enzymes. Rosmarinic acid in concentrations of up to 50 µM decreased cell viability by increasing ceramide levels and activity of caspase 9 enzyme.also this substance in concentrations of up to 40 µM caused increasing activity of caspase 3 enzyme. Conclusion: Although in most cases, polyphenols have caused induction of apoptosis and have decreased cell viability percentage. However in some cases, they have affected inversely and have caused cell growth.

  4. Hypocholesterolemic mechanism of phenolics-enriched extract from Moringa oleifera leaves in HepG2 cell lines

    Directory of Open Access Journals (Sweden)

    Peera Tabboon

    2016-04-01

    Full Text Available Previous studies have demonstrated the hypolipidemic activity of Moringa oleifera (MO leaves via lowering serum levels of cholesterol, but the mechanism of action is unknown. In this study, we demonstrated the hypocholesterolemic mechanism of a phenolics-enriched extract of Moringa oleifera leaf (PMO in HepG2 cells. When compared to the control treatment, PMO significantly decreased total intracellular cholesterol, inhibited the activity of HMG CoA reductase in a dosedependent manner and enhanced LDL receptor binding activity. Moreover, PMO also significantly increased the genetic expressions of HMG CoA reductase and LDL receptor.

  5. Effect of Salvianolic acid A on mitochondrial transmembrane potential of human hepatocellular carcinoma cell line HepG2%丹酚酸A对肝癌HepG2细胞线粒体跨膜电位的影响

    Institute of Scientific and Technical Information of China (English)

    毕蕾; 陈卫平; 姜泽群; 冯全服

    2012-01-01

    Objective: Study the effect of Salvianolic acid A(SalA) on mitochondrial transmembrane potential of human hepatocellular carcinoma cell line HepG2, to explore the mechanism of SalA in vitro inhibition of hepatocellular carcinoma cell. Methods: Hepatocellular carcinoma cell line HepG2 were used as target cells, and MTT method was used to observe the effects of different concentrations of SalA on HepG2 cells. Thermo Cellomics ArrayScan Vti was used for detecting the effect of mitochondrial transmembrane potential and cytotoxicity of Salvianolic acid A(SalA) on HepG2 cells by Hoechst and Mito-tracke double staining. Results: The growth of HepG-2 cells was inhibited by SalA, and show a certain degree of dose dependent. Through the Thermo Cellomics ArrayScan Vti testing found that SalA can reduce the mitochondrial transmembrane potential , levels of HepG-2 cells, and decreased more obviously with the increasing concentration. Conclusion: SalA can inhibit HepG2 cells. Its mechanism may be decreasing mitochondrial transmembrane potential, and triggering the cells apoptosis.%目的:通过研究丹酚酸A(SalA)对肝癌HepG2细胞株线粒体跨膜电位的影响,来探讨SalA抑制肝癌细胞增殖的作用机制.方法:以肝癌HepG2细胞为靶细胞,采用MTT法观察不同浓度的SalA对HepG2细胞增殖的影响;通过Hoechst和Mito-tracke双染,经Thermo Cellomics ArrayScan VTi检测SalA对HepG2细胞的线粒体跨膜电位和细胞毒性的影响.结果:SalA对HepG-2细胞增殖有抑制作用,并呈现剂量依赖性;SalA能降低HepG2细胞内线粒体跨膜电位水平,且随浓度增加降低越明显.结论:SalA具有抑制肝癌HepG2细胞增殖的作用,其作用机制可能与降低线粒体跨膜电位,通过线粒体途径触发细胞凋亡有关.

  6. A study of Nigella sativa induced growth inhibition of MCF and HepG2 cell lines: An anti-neoplastic study along with its mechanism of action

    Directory of Open Access Journals (Sweden)

    Y Padmanabha Reddy

    2015-01-01

    Full Text Available Objective: To evaluate the anticancer potential of seeds of Nigella sativa using MCF and HepG2 cell lines along with its mechanism of action. Materials and Methods: (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and acridine orange/ethidium bromide nuclear staining technique were selected to evaluate anticancer potential and mechanism of action of test extract. Results: Aqueous extract of N.sativa at a test dose of 180 mg and 300 mg was identified to be the best as anticancer agent against MCF and HepG2 cell lines among different solvent test extract where doxorubicin and cisplatin were employed as standard references. Discussion: Further study including separation and characterization of active principles in the aqueous extract shall prove beneficial.

  7. Downregulation of hepcidin and haemojuvelin expression in the hepatocyte cell-line HepG2 induced by thalassaemic sera.

    Science.gov (United States)

    Weizer-Stern, Orly; Adamsky, Konstantin; Amariglio, Ninette; Levin, Carina; Koren, Ariel; Breuer, William; Rachmilewitz, Eliezer; Breda, Laura; Rivella, Stefano; Cabantchik, Z Ioav; Rechavi, Gideon

    2006-10-01

    Beta-thalassaemia represents a group of diseases, in which ineffective erythropoiesis is accompanied by iron overload. In a mouse model of beta-thalassaemia, we observed that the liver expressed relatively low levels of hepcidin, which is a key factor in the regulation of iron absorption by the gut and of iron recycling by the reticuloendothelial system. It was hypothesised that, despite the overt iron overload, a putative plasma factor found in beta-thalassaemia might suppress liver hepcidin expression. Sera from beta-thalassaemia and haemochromatosis (C282Y mutation) patients were compared with those of healthy individuals regarding their capacity to induce changes the expression of key genes of iron metabolism in human HepG2 hepatoma cells. Sera from beta-thalassaemia major patients induced a major decrease in hepcidin (HAMP) and lipocalin2 (oncogene 24p3) (LCN2) expression, as well as a moderate decrease in haemojuvelin (HFE2) expression, compared with sera from healthy individuals. A significant correlation was found between the degree of downregulation of HAMP and HFE2 induced by beta-thalassaemia major sera (r = 0.852, P < 0.0009). Decreased HAMP expression was also found in HepG2 cells treated with sera from beta-thalassaemia intermedia patients. In contrast, the majority of sera from hereditary haemochromatosis patients induced an increase in HAMP expression, which correlated with transferrin (Tf) saturation (r = 0.765, P < 0.0099). Our results suggest that, in beta-thalassaemia, serum factors might override the potential effect of iron overload on HAMP expression, thereby providing an explanation for the failure to arrest excessive intestinal iron absorption in these patients.

  8. Unsaturated fatty acids and phytosterols regulate cholesterol transporter genes in Caco-2 and HepG2 cell lines.

    Science.gov (United States)

    Park, Youngki; Carr, Timothy P

    2013-02-01

    Dietary consumption of phytosterols and certain fatty acids has been shown to reduce cholesterol absorption and plasma cholesterol concentrations. However, it has not been fully elucidated whether phytosterols or fatty acids can alter the expression of cholesterol transporters by functioning as signaling molecules. This study tested the hypothesis that various fatty acids and phytosterols commonly found in the food supply can modulate the expression of transporters including Niemann-Pick C1-like 1, low-density lipoprotein receptor, and scavenger receptor class B type I and 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the intestine and liver. Caco-2 cells were used as models of enterocytes, and HepG2 cells were used as a model of hepatocytes. The cells were treated for 18 hours with 100 μmol/L of a fatty acid, or for 24 hours with 10 μmol/L of 25α-hydroxycholesterol, or 100 μmol/L of cholesterol, sitosterol, and stigmasterol to measure expression of genes involved in cholesterol transport using quantitative real-time polymerase chain reaction. Polyunsaturated fatty acids in Caco-2 cells and sterols in HepG2 cells significantly reduced the messenger RNA expression levels of Niemann-Pick C1-like 1, scavenger receptor class B type I, low-density lipoprotein receptor, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Importantly, sitosterol and stigmasterol reduced the messenger RNA levels of genes to a similar extent as cholesterol. The data support the hypothesis that unsaturated fatty acid and phytosterols can act as signaling molecules and alter the expression of genes involved in cholesterol transport and metabolism.

  9. Antiproliferative Effect of Xiaochaihu Tang on HepG2 Cell Line in Vitro%小柴胡汤对体外培养人肝癌细胞株HepG2增殖的影响

    Institute of Scientific and Technical Information of China (English)

    廖晖; David J de Vries; Linda K Banbury; David N Leach

    2010-01-01

    目的 探讨小柴胡汤45%乙醇提取物对体外培养人肝癌细胞株HepG2增殖的影响及其可能的机理.方法 采用ATP-Lite法测定不同浓度小柴胡汤对体外培养的HepG2增殖的作用,同时利用氧自由基清除能(ORAC)法测定样品的抗氧化活性;以LPS刺激小鼠巨噬细胞RAW 264.7产生一氧化氮(NO),Griess法测定NO的终产物亚硝酸盐的含量,观察样品对NO生成的影响.结果 小柴胡汤在62.5-500 mg/L浓度范围内可以显著抑制HepG2增殖,抑制作用呈剂量相关性,计算半数抑制浓度(IC50)为(90.7±23.7)mg/L.小柴胡汤提取物具有一定的抗氧化活性,其抗氧化能力为阳性对照维生素C的1.3倍.小柴胡汤在3.125~50 mg/L浓度范围内均可以显著抑制NO的生成(P<0.05,P<0.01).结论 小柴胡汤具有体外抑制人肝癌细胞株HepG2增殖的作用,其抑制作用可能与其抗氧化活性及抑制NO生成有关.

  10. 线粒体DNA缺失HepG2细胞系的建立、鉴定及放射生物学特性%Observation of radiobiological characteristics in a HepG2 cell line with mitochondrial DNA deletion

    Institute of Scientific and Technical Information of China (English)

    孙恒文; 潘燚; 曾子君; 方良毅; 张红丹; 谢松喜; 李伟雄; 许家彬

    2015-01-01

    目的:为研究人肝癌细胞系HepG2线粒体DNA(mtDNA)缺失后的放射生物学特性,建立并鉴定mtDNA缺失HepG2(ρ0HepG2)细胞系。测定辐射干预下mtDNA缺失(Rho0)肝癌细胞的凋亡情况、侵袭能力以及辐射敏感性的变化。方法在含有溴化乙锭(EB)、丙酮酸、尿嘧啶的特殊培养基中培养HepG2细胞,经30次传代后,有限稀释法筛选完全去除mtDNA的克隆。去除丙酮酸及尿嘧啶后,观察细胞的存活情况。PCR法鉴定mtDNA的缺失。用6MvX射线梯度剂量照射HepG2细胞和ρ0HepG2细胞,平板克隆法绘制生长曲线,线性二次方程拟合生存曲线,计算α/β。2Gy剂量辐射细胞,24 h后用Hochest33342细胞核染色,比较HepG2细胞与ρ0HepG2凋亡率的差异。用Transwell法测定两种不同细胞的侵袭能力。结果在含EB特殊培养环境下,HepG2细胞可持续生长传代至30代,去除丙酮酸和尿嘧啶后,细胞短时间内大量死亡。经PCR法证实mtDNA完全缺失。ρ0HepG2细胞α/β显著低于正常HepG2细胞,辐射抵抗能力增强。辐射干预后ρ0HepG2的凋亡比例显著减少。ρ0HepG2穿膜细胞数显著增多。结论在EB长期诱导下,HepG2肝癌细胞可被成功诱导为mtDNA缺失细胞。ρ0HepG2细胞的辐射抵抗性显著增强,抗凋亡能力及侵袭能力均提高。%Objective To study the radiobiological characteristics of a HepG2 cell line with mitochondrial DNA (mtDNA) deletion. Methods HepG2 cells were cultured in a medium containing ethidium bromide, acetylformic acid and uracil. The HepG2 cell line with mtDNA deletion (ρ0HepG2 cells) were acquired after 30 subcultures by limited dilution cloning. The cell survival was then observed in the absence of acetylformic acid and uracil, and the total mtDNA deletion in the cells was confirmed by PCR. The radiosensitivity of HepG2 andρ0HepG2 cells was evaluated by exposure to gradient doses of 6 MV X ray irradiation. The

  11. Potential role of novel hepatocellular carcinoma-associated gene IDD01 in promoting tumorigenesis of HepG2 cell line

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiang-yu; LI Jian-sheng; MA Jun; DUAN Fang-ling; ZHONG Peng

    2006-01-01

    Background We have used suppression subtractive hybridization to construct a subtracted cDNA library of hepatocellular carcinoma (HCC) and isolated a panel of differential expression sequence tag (ESTs). By using bioinformatics and rapid amplification of cDNA ends (RACE), we found a novel HCC-associated gene IDD01.To further investigate its function, a recombinant eukaryotic vector pEGFP/ORF was constructed and transfected into the HepG2 cell line.Methods The open reading frame (ORF) of IDD01 was amplified by RT-PCR, digested with Bamh I and Hind Ⅲ, and subcloned into the pEGFP-C 1 vector. The ligation reaction was conducted with T4 DNA ligase, and the recombinant vector was named pEGFP/ORF. Untransfer control (control group), pEGFP-C 1 (HepG2/C 1 group)and pEGFP/ORF (HepG2/ORF group) transfer groups were designed. Gene transfer was conducted with lipofectamine. To obtain stable transfection in HepG2 cells, selection was initiated with 500μg/ml G418. Cellular IDD01 mRNA levels were assayed by semi-quantitative RT-PCR. The MTT colorimetric method and flow cytometry were used to determine the cell proliferation. The tumorigenic potential of transformed cells was determined from their ability to grow as anchorage-independent colonies on soft agar. Transient transfections were performed to observe subcellular location of GFP-IDD01 fusion protein.Results A 778 bp specific band of ORF was obtained by RT-PCR, and the positive clone of recombinant plasmid pEGFP/ORF (5.5 Kb) was identified by restriction endonuclease cleavage and sequence. The brighmess ratio of IDD01 mRNA was not obvious between control and pEGFP/C1 groups, whereas the ratio of pEGFP/ORF was higher than that in the other two groups. After culture for 24-72 hours, the A490 values in pEGFP/ORF were higher than those in the other two groups (P<0.01). On histograms of flow cytometry, the S phase ratio of HepG2/ORF cells was significantly higher than that of the control and HepG2/C1 groups. The HepG2/ORF

  12. The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro.

    Science.gov (United States)

    Kloskowski, Tomasz; Gurtowska, Natalia; Nowak, Monika; Joachimiak, Romana; Bajek, Anna; Olkowska, Joanna; Drewa, Tomasz

    2011-01-01

    Ciprofloxacin is a chemotherapeutic agent mainly used in the treatment of the pulmonary and urinary tract infections but is also known for its anticancer properties. The aim of these study was to check the anticancer effect of ciprofloxacin on selected five cell lines. Human non-small cell lung cancer line A549, human hepatocellular carcinoma line HepG2, human and mouse melanoma lines (A375.S2 and B16) and rat glioblastoma line C6 were used for evaluation of cytotoxic properties of ciprofloxacin (in concentration range: 10-1000 microg/mL). Viability was established using trypan blue assay and MTT. Ciprofloxacin induced morphological changes and decreased viability of A549 cells in a concentration and time dependent manner. In case of A375.S2 and B16 cell lines, cytotoxicyty of ciprofloxacin was observed but we were not able to eradicate all cells from A375.S2 and B16 cultures. HepG2 line was sensitive to ciprofloxacin, but this effect was independent from concentration and incubation time. The C6 cells were insensitive to ciprofloxacin. Our results showed that ciprofloxacin can be potentially used for the experimental adjunctive therapy of lung cancer.

  13. Antioxidant and Proapoptotic Activities of Sclerocarya birrea [(A. Rich. Hochst.] Methanolic Root Extract on the Hepatocellular Carcinoma Cell Line HepG2

    Directory of Open Access Journals (Sweden)

    Maria Francesca Armentano

    2015-01-01

    Full Text Available The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE. Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC, suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death.

  14. Induction of apoptosis by pistachio (Pistacia vera L.) hull extract and its molecular mechanisms of action in human hepatoma cell line HepG2.

    Science.gov (United States)

    Fathalizadeh, J; Bagheri, V; Khorramdelazad, H; Kazemi Arababadi, M; Jafarzadeh, A; Mirzaei, M R; Shamsizadeh, A; Hajizadeh, M R

    2015-11-30

    Several important Pistacia species such as P. vera have been traditionally used for treating a wide range of diseases (for instance, liver-related disorders). There is a relative lack of research into pharmacological aspects of pistachio hull. Hence, this study was aimed at investigating whether pistachio rosy hull (PRH) extract exerts apoptotic impacts on HepG2 liver cancer cell line. In order to evaluate cell viability and apoptosis in response to treatment with the extract, MTT assay and Annexin-V-fluorescein/propidium iodide (PI) double staining were performed, respectively. Moreover, molecular mechanism of apoptosis induced by the extract was determined using human apoptosis PCR array. Our findings showed that PRH extract treatment reduced cell viability (IC50 ~ 0.3 mg/ml) in a dose-dependent manner. Flow cytometric analysis revealed that the extract significantly induced apoptosis in HepG2 cells. In addition, quantitative PCR array results demonstrated the regulation of a considerable number of apoptosis-related genes belonging to the TNF, BCL2, IAP, TRAF, and caspase families. We observed altered expression of both pro-apoptotic and anti-apoptotic genes associated with the extrinsic and intrinsic apoptosis signaling pathways. These results suggest that the aqueous extract of PRH possesses apoptotic activity through cytotoxic and apoptosis-inducing effects on HepG2 cells.

  15. Antioxidant and Proapoptotic Activities of Sclerocarya birrea [(A. Rich.) Hochst.] Methanolic Root Extract on the Hepatocellular Carcinoma Cell Line HepG2

    Science.gov (United States)

    Armentano, Maria Francesca; Bisaccia, Faustino; Miglionico, Rocchina; Russo, Daniela; Nolfi, Nicoletta; Carmosino, Monica; Andrade, Paula B.; Valentão, Patrícia; Diop, Moussoukhoye Sissokho

    2015-01-01

    The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death. PMID:26075245

  16. Camel milk triggers apoptotic signaling pathways in human hepatoma HepG2 and breast cancer MCF7 cell lines through transcriptional mechanism.

    Science.gov (United States)

    Korashy, Hesham M; Maayah, Zaid H; Abd-Allah, Adel R; El-Kadi, Ayman O S; Alhaider, Abdulqader A

    2012-01-01

    Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2) and human breast (MCF7) cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  17. Camel Milk Triggers Apoptotic Signaling Pathways in Human Hepatoma HepG2 and Breast Cancer MCF7 Cell Lines through Transcriptional Mechanism

    Directory of Open Access Journals (Sweden)

    Hesham M. Korashy

    2012-01-01

    Full Text Available Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2 and human breast (MCF7 cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  18. Protective potential [correction of potencial] of Euphorbia hirta against cytotoxicity induced in hepatocytes and a HepG2 cell line.

    Science.gov (United States)

    Brindha, D; Saroja, S; Jeyanthi, G P

    2010-01-01

    Medicinal plants play a key role in human health care. Frustration over the side effects of allopathic drugs has driven the medical world to take asylum in the plant kingdom for the treatment of various ailments. Euphorbia hirta belonging to the family of Euphorbiacae has been reported to possess antibacterial, antiviral, and anticancer activity. The aim of the present study was to investigate the protective effect of E. hirta against antitubercular drug-induced cytotoxicity in freshly isolated hepatocytes. The extent of cytotoxicity of the plant extracts was also analyzed using human liver derived HepG2 cell line by estimating the viability of cells (MTT assay). The alcoholic plant extract normalized the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), triacylglycerol (TAG), cholesterol, total protein, albumin, total and direct bilirubin, which were altered due to antitubercular drug intoxication. A dose-dependent increase in percent viability was observed when antitubercular drug exposed HepG2 cells were treated with different concentrations of plant extracts (125, 250, 500 and 1000 microg/mL) which were compared with a standard hepatoprotective drug silymarin. The highest percentage viability of HepG2 was observed at a concentration of 1000 microg/mL. The results suggest that E. hirta exerts protection against antitubercular drug-induced cytotoxicity in this vitro model system.

  19. Differential action of 13-HPODE on PPARalpha downstream genes in rat Fao and human HepG2 hepatoma cell lines.

    Science.gov (United States)

    König, Bettina; Eder, Klaus

    2006-06-01

    In rats, oxidized fats activate the peroxisome proliferator-activated receptor alpha (PPARalpha), leading to reduced triglyceride concentrations in liver, plasma and very low density lipoproteins. Oxidation products of linoleic acid constitute an important portion of oxidized dietary fats. This study was conducted to check whether the primary lipid peroxidation product of linoleic acid, 13-hydroperoxy-9,11-octadecadienoic acid (13-HPODE), might be involved in the PPARalpha-activating effect of oxidized fats. Therefore, we examined the effect of 13-HPODE on the expression of PPARalpha target genes in the rat Fao and the human HepG2 hepatoma cell lines. In Fao cells, 13-HPODE increased the mRNA concentration of the PPARalpha target genes acyl-CoA oxidase (ACO), cytochrome P450 4A1 and carnitine-palmitoyltransferase 1A (CPT1A). Furthermore, the concentration of cellular and secreted triglycerides was reduced in Fao cells treated with 13-HPODE. Because PPARalpha mRNA was not influenced, we conclude that these effects are due to an activation of PPARalpha by 13-HPODE. In contrast, HepG2 cells seemed to be resistant to PPARalpha activation by 13-HPODE because no remarkable induction of the PPARalpha target genes ACO, CPT1A, mitochondrial HMG-CoA synthase and delta9-desaturase was observed. Consequently, cellular and secreted triglyceride levels were not changed after incubation of HepG2 cells with 13-HPODE. In conclusion, this study shows that 13-HPODE activates PPARalpha in rat Fao but not in human HepG2 hepatoma cells.

  20. Differential expression of five protein kinase C isoenzymes in FAO and HepG2 hepatoma cell lines compared with normal rat hepatocytes.

    Science.gov (United States)

    Ducher, L; Croquet, F; Gil, S; Davy, J; Féger, J; Bréhier, A

    1995-12-14

    We analyzed the expression of five protein kinase C (PKC) isoforms in cytosolic and membrane fractions from normal rat hepatocytes compared with those of two tumorigenic cell lines FAO and HepG2. Western blots with PKC-specific isoenzymes polyclonal antibodies provide evidences for the presence of the five isoforms alpha, beta II, delta, epsilon and zeta in normal rat hepatocytes. In hepatoma cells, we show differences in the level of expression, the molecular sizes and the responses to Phorbol 12-myristate 13-acetate (PMA).

  1. Amygdalin isolated from Semen Persicae (Tao Ren) extracts induces the expression of follistatin in HepG2 and C2C12 cell lines.

    Science.gov (United States)

    Yang, Chuanbin; Li, Xuechen; Rong, Jianhui

    2014-01-01

    The Chinese medicine formulation ISF-1 (also known as Bu-Yang-Huan-Wu-Tang) for post-stroke rehabilitation could increase the expression of growth-regulating protein follistatin by approximately 4-fold. This study aims to identify the active compounds of ISF-1 for the induction of follistatin expression. Active compounds in ISF-1 responsible for induction of follistatin were identified by a bioactivity-guided fractionation procedure involving liquid-liquid extraction, HPLC separation and RT-PCR detection. The aqueous extracts of seven ISF-1 ingredients including Semen Persicae (Tao Ren) and the S. Persicae-derived fractions were assayed for the induction of follistatin mRNA expression in human hepatocarcinoma HepG2 cells by RT-PCR. The concentrations of isolated compounds were proportionally normalized to the reported IC50 concentration (5.8 mg/mL) of the formulation ISF-1 in HepG2. The active fractions were characterized by reverse-phase HPLC on a C18 column and identified by mass spectrometry. Three ingredients of ISF-1, namely S. Persicae (Tao Ren), Pheretima (Di Long), and Flos Carthami (Hong Hua), induced the expression of follistatin mRNA. Among these, the ingredient S. Persicae were the most active, and amygdalin from S. Persicae extract was identified as a novel follistatin inducer. Amygdalin stimulated the growth of skeletal muscle cell line C2C12 cells in a concentration-dependent manner. Amygdalin isolated from S. Persicae extract in ISF-1 through a bioactivity-guided fractionation procedure induced the expression of follistatin in HepG2 and C2C12 cell lines.

  2. Characterization of a new monoclonal anti-glypican-3 antibody specific to the hepatocellular carcinoma cell line, HepG2.

    Science.gov (United States)

    Vongchan, Preeyanat; Linhardt, Robert J

    2017-03-08

    To characterize the antigen on HepG2 cell that is specifically recognized by a new monoclonal antibody raised against human liver heparan sulfate proteoglycan (HSPG), clone 1E4-1D9. The antigen recognized by mAb 1E4-1D9 was immunoprecipitated and its amino acid sequence was analyzed LC/MS. The transmembrane domain, number of cysteine residues, and glycosylation sites were predicted from these entire sequences. Data from amino acid analysis was aligned with glypican-3 (https://www.ebi.ac.uk/Tools/msa/clustalo/). The competitive reaction of mAb 1E4-1D9 and anti-glypican-3 on HepG2 cells was demonstrated by indirect immunofluorescence and analyzed by flow cytometry. Moreover, co-immunoprecipitation of mAb 1E4-1D9 and anti-glypican-3 was performed in HepG2 cells by Western immunoblotting. The recognition by mAb 1E4-1D9 of a specific epitope on solid tumor and hematopoietic cell lines was studied using indirect immunofluorescence and analyzed by flow cytometry. Monoclonal antibody 1E4-1D9 reacted with an HSPG isolated from human liver and a band of 67 kD was detected under both reducing and non-reducing conditions. The specific antigen pulled down by mAb 1E4-1D9, having a MW of 135 kD, was analyzed. The results showed two sequences of interest, gi30722350 (1478 amino acid) and gi60219551 (1378 amino acid). In both sequences no transmembrane regions were observed. Sequence number gi30722350 was 99.7% showed a match to FYCO1, a molecule involved in induction of autophagy. Sequence number gi60219551 contained 15 cysteines and 11 putative glycosylation sites with 6 predicted N-glycosylation sites. It was also matched with all PDZ domain proteins. Moreover, it showed an 85.7% match to glypican-3. Glypican-3 on HepG2 cells competitively reacted with both phycoerythrin-conjugated anti-glypican-3 and mAb 1E4-1C2 and resulted in an increase of double-stained cell population when higher concentration of mAb 1E4-1D9 was used. Moreover, antigens precipitated from HepG2 cell by anti

  3. Preliminary Analysis of Gene Expression Profiles in HepG2 Cell Line Induced by Different Genotype Core Proteins of HCV

    Institute of Scientific and Technical Information of China (English)

    Jun Dou; Pengbo Liu; Jing Wang; Xinjian Zhang

    2006-01-01

    In present investigation, we constructed recombinants expressing the HCV genotypes 1b, 2a, and 4d core proteins,and established human hepatocellular carcinoma (HepG2) cell line that expressed various genotype core proteins.The gene expression profiles in the cells expressing different HCV genotype core proteins were compared with those in the control by microarray analysis. In data analysis, a threshold was set to eliminate all genes that were not increased or decreased by 2.5-fold change in a comparison between the transfected cells and control cells. The preliminary microarray analysis suggests that the gene expression profiles regulated by three kinds of genotype core proteins are mainly involved in transport, signal transduction, regulation of transcription, protease activity, etc.,and that some pathogenesis/oncogenesis gene expressions are up/down- regulated simultaneously in the HepG2 cell line. The data suggest that each core protein has its gene expressions profile and that the profiles are implicated in HCV replication and pathogenesis, which may open up a novel way to understand the function of the HCV variant core proteins biological and their pathogenic mechanism.

  4. Polyunsaturated fatty acids reduce Fatty Acid Synthase and Hydroxy-Methyl-Glutaryl CoA-Reductase gene expression and promote apoptosis in HepG2 cell line

    Directory of Open Access Journals (Sweden)

    Miccolis Angelica

    2011-01-01

    Full Text Available Abstract Background n-3 and n-6 polyunsaturated fatty acids (PUFAs are the two major classes of PUFAs encountered in the diet, and both classes of fatty acids are required for normal human health. Moreover, PUFAs have effects on diverse pathological processes impacting chronic disease, such as cardiovascular and immune disease, neurological disease, and cancer. Aim To investigate the effects of eicosapentaenoic acid (EPA and arachidonic acid (ARA on the proliferation and apoptosis of human hepatoma cell line HepG2 after exposure to increasing concentrations of EPA or ARA for 48 h. Moreover, in the same cells the gene expression of Fatty Acid Synthase (FAS and 3-Hydroxy-3-Methyl-Glutaryl Coenzyme A Reductase (HMG-CoAR was also investigated. Method Cell growth and apoptosis were assayed by MTT and ELISA test, respectively after cell exposure to increasing concentrations of EPA and ARA. Reverse-transcription and real-time PCR was used to detect FAS and HMG-CoAR mRNA levels in treated cells. Results Our findings show that EPA inhibits HepG2 cell growth in a dose-dependent manner, starting from 25 μM (P Conclusion Our results demonstrate that EPA and ARA inhibit HepG2 cell proliferation and induce apoptosis. The down-regulation of FAS and HMG-CoAR gene expression by EPA and ARA might be one of the mechanisms for the anti-proliferative properties of PUFAs in an in vitro model of hepatocellular carcinoma.

  5. Effects of p53 on fisetin-induced apoptosis in hepatocellular carcinoma cell line HepG2%p53在漆树黄酮诱导人肝癌细胞系HepG2细胞凋亡的作用

    Institute of Scientific and Technical Information of China (English)

    李蓉; 黎小兵; 蔡康荣; 陈锦; 黄培春

    2011-01-01

    目的 观察漆树黄酮诱导人肝癌细胞系HepG2细胞凋亡的现象,研究p53在漆树黄酮诱导人肝癌细胞系HepG2细胞凋亡的作用.方法 用不同浓度的漆树黄酮(50、100、200 μmol/L)处理HepG2细胞24 h和100 μmol/L漆树黄酮处理HepG2细胞不同时间(12、24、48 h),流式细胞技术和Hoechst/PI免疫荧光法观察漆树黄酮作用HepG2细胞的凋亡情况; Westem Blot法检测漆树黄酮对HepG2细胞P53、Caspase-3 和Caspase-8蛋白的表达情况.结果 漆树黄酮能诱导HepG2细胞凋亡,呈剂量-时间依赖性; 漆树黄酮可增加P53蛋白的表达,降解Caspase-3、Caspase-8酶原,提高Caspase-3、Caspase-8活性.P53蛋白的上调与凋亡的发生呈正相关(r=0.586,r=0.592,均P<0.01),Caspase-3、Caspase-8酶原的降解与与凋亡的发生呈负相关(r=-0.585~-0.583,均P<0.01).结论 漆树黄酮可诱导HepG2细胞凋亡,其机制可能与上调p53表达,活化Caspase-3、 Caspase-8有关.%Objective To study the effects of p53 on fisetin - induced apoptosis in hepatocellular carcinoma cell line HepG2 cells. Methods HepG2 cells were treated with fisetin at different concentrations (50. 100, 200 μmol/L)for 24h and with fisetin of 100 μmol/L with different duration ( 12 , 24 , 48 h) . Cell apoptosis was assessed with Hoechst/PI double staining assay and flow cytometry ( FCM) . The expression levels of P53 , Caspase - 3 and Caspase - 8 proteins in HepG2 cells were measured by Western Blot. Results Fisetin - induced apoptosis in HepG2 cells followed dose - and time - dependent manners. Chromatin condensation was observed with Hoechst/PI staining in fisetin - treated cells. The level of P53 was significantly elevated in HepG2 cells after fisetin treatment, while the levels of Caspase - 3 and Caspase - 8 were significantly reduced. Significant positive correlation was observed between up - regulation of P53 and cellular apoptosis , while negative correlation was observed between down - regulation of

  6. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line.

    Science.gov (United States)

    Lin, Chuan-Chuan; Lin, Hung-Yin; Chi, Ming-Hung; Shen, Chin-Min; Chen, Hwan-Wen; Yang, Wen-Jen; Lee, Mei-Hwa

    2014-07-01

    The choice of surfactants and cosurfactants for preparation of oral formulation in microemulsions is limited. In this report, a curcumin-encapsulated phospholipids-based microemulsion (ME) using food-grade ingredients soybean oil and soybean lecithin to replace ethyl oleate and purified lecithin from our previous study was established and compared. The results indicated soybean oil is superior to ethyl oleate as the oil phase in curcumin microemulsion, as proven by the broadened microemulsion region with increasing range of surfactant/soybean oil ratio (approx. 1:1-12:1). Further preparation of two formula with different particle sizes of formula A (30nm) and B (80nm) exhibited differential effects on the cytotoxicity of hepatocellular HepG2 cell lines. At 15μM of concentration, curcumin-ME in formula A with smaller particle size resulted in the lowest viability (approx. 5%), which might be explained by increasing intake of curcumin, as observed by fluorescence microscopy. In addition, the cytotoxic effect of curcumin-ME is exclusively prominent on HepG2, not on HEK293, which showed over 80% of viability at 15μM. The results from this study might provide an innovative applied technique in the area of nutraceuticals and functional foods.

  7. 漆树黄酮逆转人肝癌细胞HepG2上皮间质转化的实验研究%Effect of fisetin on epithelial-mesenchymal transition in hepatocellular carcinoma cell line HepG2

    Institute of Scientific and Technical Information of China (English)

    李蓉; 黎小兵; 敬敏; 陈锦; 黄培春

    2011-01-01

    目的 研究漆树黄酮对人肝癌细胞HepG2上皮间质转化的影响及其可能机制.方法 用不同浓度的漆树黄酮(50、100、200 μmol·L-1)处理HepG2细胞;MTT法检测漆树黄酮对HepG2细胞的细胞毒作用;用Transwell小室法检测漆树黄酮对HepG2细胞侵袭能力和趋化运动能力的影响,RT-PCR法检测p38MAPK、E-cadherin和vimentin mRNA表达,Western blot检测p38MAPK、E-cadherin和vimentin蛋白表达.结果 漆树黄酮作用细胞24 h后能抑制HepG2细胞体外趋化运动和侵袭能力.漆树黄酮能引起HepG2细胞形态学的变化,能降低p38MAPK和vimentin mRNA和蛋白表达,但不能改变E-Cadherin的表达.结论 漆树黄酮能逆转人肝癌细胞HepG2的上皮间质转化,其抗肿瘤侵袭运动的机制可能与抑制p38MAPK的表达有关.%Aim To investigate the effect of fisetin on epithelial-mesenchymal transition in hepatoma cell line HepG2 and its possible mechanism.Methods HepG2cell were treated with fisetin( 50.100, 200 μmol·L-1 );MTT assay was used to examine the cytotoxicity of fisetin in HepG2 cells ; Transwell Chamber assay was performed to determine the effect on invasion and migratory capacity of the cells by fisetin; The mRNA expression of p3 8 MAPK , E-cadherin , vimentin was determined by RT-PCR, and the protein expression of p38MAPK , E-cadherin , vimentin was detected by Western blotting.Results Fisetin inhibited migration and invasion capacity of HepG2 cells in vitro.The morphologic changes had been observed by the treatment of fisetin.The mRNA expression and the protein expres sion of p38MAPK and vimentin in HepG2 cells were also decreased by the treatment of fisetin, but those of E-cadherin manifest no change.Conclusion The characteristic morphology and molecular changes of EMT was reversed by fisetin and its possible anti-invasion and anti-migration mechanism was associated with downregulation of p38MAPK in HepG2.

  8. Effects of PARP-1 inhibitors AG-014699 and AZD2281 on proliferation and apoptosis of human hepatoma cell line HepG2

    Directory of Open Access Journals (Sweden)

    DU Senrong

    2015-06-01

    Full Text Available ObjectiveTo observe the inhibitory and pro-apoptotic effects of two poly(ADP-ribose polymerase (PARP-1 inhibitors, AG-014699 and AZD2281, on human hepatoma HepG2 cells and preliminarily explore the mechanism by which AG-014699 induces HepG2 cell apoptosis, and to provide a new therapeutic target for hepatoma. MethodsThe effects of different concentrations of AG-014699 and AZD2281 on HepG2 cell proliferation were determined by MTT assay. The cell apoptosis rate was measured by flow cytometry. The expression levels of caspase-3 and caspase-8 were measured by Western Blot. Inter-group comparison was made by t test. ResultsBoth AG-014699 and AZD2281 suppressed HepG2 cell proliferation in a time- and dose-dependent manner. However, the sensitivity of HepG2 cells to the two PARP-1 inhibitors was different. The half-maximal inhibitory concentrations of AG-014699 and AZD2281 at 48 h determined by MTT assay were about 20 μmol/L and 400 μmol/L, respectively. Flow cytometry and Western blot were not used to evaluate the apoptosis of HepG2 cells exposed to AZD2281 to which these cells were not sensitive. HepG2 cell apoptosis could be induced by 10, 30, and 50 μmol/L AG-014699, and the highest apoptosis rate at 48 h was significantly higher than that of the control group (3100%±2.13% vs 09%±0013%, P<0.01. Compared with those in the control group, the protein levels of caspase-3 and caspase-8 in HepG2 cells after 48-h exposure to 30, and 50 μmol/L AG-014699 increased. ConclusionThe two PARP-1 inhibitors AG-014699 and AZD2281 can inhibit the proliferation of HepG2 cells, which showed different sensitivities to the two inhibitors. AG-014699 can induce HepG2 cell apoptosis by up-regulating the protein expression of caspase-3 and caspase-8.

  9. Assessment of genotoxicity and cytotoxicity of standardized aqueous extract from leaves ofErythroxylum cuneatum in human HepG2 and WRL68 cells line

    Institute of Scientific and Technical Information of China (English)

    RK Wesam; AN Ghanya; HH Mizaton; M ILham; A Aishah

    2013-01-01

    Objective:To investigate the cytotoxicity and the genotoxicity of standardized aqueous of dry leaves ofErythroxylum cuneatum(E. cuneatum) in humanHepG2 andWRL68 cells. Methods:The cytotoxicity ofE. cuneatum extract was evaluated by bothMTS andLDH assays. Genotoxicity study onE. cuneatum extract was assessed by the single cell gel electrophoresis (comet assay).The protective effect ofE. cuneatum against menadione-induced cytotoxicity was also investigated.Results:Results from this study showed thatE. cuneatum extract exhibited cytotoxic activities towards the cells withIC50 value of(125±12) and(125±14) μg/mL forHepG2 andWRL68 cells respectively, after72 h incubation period as determined byMTS assay.LDH leakage was detected at(251±19) and(199.5±12.0) μg/mL forHepG2 andWRL68 respectively. Genotoxicity study results showed that treatment withE. cuneatum up to1 mg/mLdid not cause obviousDNA damage inWRL68 andHepG2 cells.Addition ofE. cunaetum did not show significant protection towards menadione inWRL68 andHepG2Cells.Conclusions:E. cuneatum standardized aqueous extract might be developed in order to establish new pharmacological possibilities for its application.

  10. The protective effects of carvacrol and thymol against paracetamol-induced toxicity on human hepatocellular carcinoma cell lines (HepG2).

    Science.gov (United States)

    Palabiyik, S S; Karakus, E; Halici, Z; Cadirci, E; Bayir, Y; Ayaz, G; Cinar, I

    2016-12-01

    Acetaminophen (APAP) overdose could induce liver damage and lead to acute liver failure. The treatment of APAP overdoses could be improved by new therapeutic strategies. Thymus spp., which has many beneficial effects and has been used in folk medicine, is one such potential strategy. In the present study, the hepatoprotective activity of the main constituents of Thymus spp., carvacrol and thymol, were evaluated in light of APAP-induced hepatotoxicity. We hoped to understand the hepatoprotective mechanism of these agents on the antioxidant system and pro-inflammatory cytokines in vitro. Dose-dependent effects of thymol and carvacrol (25, 50, and 100 µM) were tested on cultured HepG2 cells. N-Acetylcysteine (NAC) was tested as positive control. We showed that APAP inhibited HepG2 cell growth by inducing inflammation and oxidative stress. Incubating APAP-exposed HepG2 cells with carvacrol and thymol for 24 h ameliorated this inflammation and oxidative stress. We also evaluated alanine transaminase and lactate dehydrogenase levels of HepG2 cells. We found that thymol and carvacrol protected against APAP-induced toxicity in HepG2 cells by increasing antioxidant activity and reducing pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β. Taking together high-dose thymol and carvacrol treatment has an effect close to NAC treatment in APAP toxicity, but thymol has better treatment effect than carvacrol. © The Author(s) 2016.

  11. Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line.

    Science.gov (United States)

    El Kassas, Hala Yassin; Attia, Azza Ahmed

    2014-01-01

    Nano-biotechnology is recognized as offering revolutionary changes in various fields of medicine. Biologically synthesized silver nanoparticles have a wide range of applications. Silver nanoparticles (AgNPs) were biosynthesized with an aqueous extract of Pterocladiella (Pterocladia) capillacea, used as a reducing and stabilizing agent, and characterized using UV-VIS spectroscopy, Fourier Transform Infra red (FT-IR) spectroscopy, transmission electron microscopy (TEM) and energy dispersive analysis (EDX). The biosynthesized AgNPs were tested for cytotoxic activity in a human hepatocellular carcinoma (HepG2) cell line cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, 1% antibiotic and antimycotic solution and 2 mM glutamine. Bacterial susceptibility to AgNPs was assessed with Staphylococcus aureus, Bacillus subtilis [Gram+ve] and Pseudomonas aeruginosa and Escherichia coli [Gram-ve]. The agar well diffusion technique was adopted to evaluate the bactericidal activity of the biosynthesized AgNPs using Ampicillin and Gentamicin as gram+ve and gram-ve antibacterial standard drugs, respectively. The biosynthesized AgNPs were 11.4±3.52 nm in diameter. FT-IR analysis showed that carbonyl groups from the amino acid residues and proteins could assist in formation and stabilization of AgNPs. The AgNPs showed potent cytotoxic activity against the human hepatocellular carcinoma (HepG2) cell line at higher concentrations. The results also showed that the biosynthesized AgNPs inhibited the entire panel of tested bacteria with a marked specificity towards Bacillus subtillus. Cytotoxic activity of the biosynthesized AgNPs may be due to the presence of alkaloids present in the algal extract. Our AgNPs appear more bactericidal against gram-positive bacteria (B. subtillus).

  12. 松花粉对肝癌细胞株HepG2的PIVKA-Ⅱ、AFP和VEGF含量的影响%Infl uence of pine pollen on content of PIVKA-Ⅱ、AFP and VEGF of hepatoma cell line HepG2

    Institute of Scientific and Technical Information of China (English)

    于雯珺; 陈源红

    2016-01-01

    Objective To detect in vitro the infl uence of pine pollen on content of PIVKA-Ⅱ,AFP and VEGF of hepatoma cell line HepG2 with the optimal concentration(2 mg/hole) and effect time(48 h).Method ELISA was applied to detect content of PIVKA-Ⅱ,AFP and VEGF in the supernatant of culture cells in pine pollen treat group and HepG2 control group.Result Compared with HepG2 control group, content of PIVKA-Ⅱ and AFP in pine pollen treat group decreased (P<0.05), while VEGF content of that group reduced significantly (P<0.05). Conclusion The proliferative inhibition and apoptosis-promoting effect of pine pollen on HepG2 cells might be related to down regulation of PIVKA-Ⅱ,AFP and VEGF.%目的:体外检测最佳作用浓度(2 mg/孔)和最佳作用时间(48 h)松花粉对肝癌细胞株HepG2的PIVKA-Ⅱ、AFP和VEGF含量的影响。方法用ELISA法检测松花粉治疗组与HepG2对照组培养细胞上清液中PIVKA-Ⅱ、AFP和VEGF的含量。结果松花粉治疗组与HepG2对照组相比,PIVKA-Ⅱ、AFP的含量下降,差异有统计学意义(P<0.05);VEGF的含量极显著下降,差异有统计学意义(P<0.05)。结论松花粉对HepG2细胞的增殖抑制作用和促凋亡作用可能与下调PIVKA-Ⅱ、AFP和VEGF有关。

  13. Evaluation of hepatitis B virus replication and proteornic analysis of HepG2.2.15 cell line after cyclosporine A treatment

    Institute of Scientific and Technical Information of China (English)

    Hai-yang XIE; Wei-liang XIA; Chun-chao ZHANG; Li-ming WU; Hao-feng JI; Yu CHENG; Shu-sen ZHENG

    2007-01-01

    Aim: The effect of cyclosporine A (CsA) on hepatitis B virus (HBV) replication was investigated, and proteomics expression differentiation after CsA treatment was studied in order to provide clues to explore the effect of CsA on HBV replication. Methods: Methyl thiazolyl tetrazolium (MTT) assay was used to evaluate the cytotoxicity of CsA. The HBV replication level in the HBV genomic DNA transfected HepG2.2.15 cell line was determined by an ELISA analysis of hepatitis B surface antigens (HBsAg) and Hepatitis B e antigens (HBeAg) in culture supernatant, while the intracellular HBV DNA replication level was ana-lyzed by slot blot hybridization. Two-dimensional electrophoresis was used to investigate the alteration of protein expression in HepG2.2.15 after CsA treatment in vitro. The differentially-expressed proteins were identified by Matrix-assisted laser desorption/ionization-time of flight mass spectrometry combined with an online database search. Results: CsA was able to inhibit the expression of HBsAg, HBeAg, and HBV DNA replication in vitro in a dose-dependent manner. A proteomics analysis indicated that the expression of 17 proteins changed signifi-cantly in the CsA treatment group compared to the control group. Eleven of the 17 proteins were identified, including the overexpression of eukaryotic translation initiation factors (elF) 3k, otubain 1, 14.3.3 protein, elF2-1α, elF5A, and the tyrosine 3/tryptophan 5-mono-oxygenase activation protein in CsA-treated HepG2.2.15 cells. The down.regulation of the ferritin light subunit, erythrocyte cytosolic protein of 51 kDa (ECP-51), stathmin l/oncoprotein, adenine phosphoribosyl-transferase, and the position of a tumor protein, translationally-controlled 1, was shifted, suggesting it had undergone posttranslational modifications. Conclusion: Our study identified the inhibitory effect of CsA on HBV replication, and found that a group of proteins may be responsible for this inhibitory effect.

  14. Specific COX-2 inhibitor NS398 induces apoptosis in human liver cancer cell line HepG2 through BCL-2

    Institute of Scientific and Technical Information of China (English)

    Dong-Sheng Huang; Ke-Zhen Shen; Jian-Feng Wei; Ting-Bo Liang; Shu-Sen Zheng; Hai-Yang Xie

    2005-01-01

    AIM: To evaluate the effects of NS-398, a cyclooxygenase2 (COX-2) inhibitor, on the proliferation and apoptosis of HepG2 cells.METHODS: The effects of NS-398 on the proliferation of HepG2 cells were evaluated by MTT. DNA fragmentation gel analysis was used to analyze the apoptotic cells. DNA ploidy and apoptotic cell percentage were calculated by flow cytometry.The expression of COX-2 and Bcl-2 mRNA was identified by competitive RT-PCR. Furthermore, expression level of Bcl-2 was detected using Western blot in HepG2 after treated with NS-398.RESULTS: NS-398 inhibited cell proliferation and induced apoptosis of HepG2 cells in a concentration-dependent manner. DNA ploidy analysis showed that S phase cells were significantly decreased with increase of NS-398 concentration.The quiescent G0/G1 phase was accumulated with decrease of Bcl-2 mRNA. Whereas NS-398 had no effect on the expression of COX-2 mRNA, and no correlations were found between COX-2 mRNA and HepG2 cell proliferation and apoptosis induced by NS-398 (r = 0.056 and r= 0.119,respectively). Bcl-2 protein level was inhibited after treated with NS-398.CONCLUSION: NS-398 significantly inhibits the proliferation and induces apoptosis of HepG2 cells. Mechanisms involved may be accumulation of quiescent G0/G1 phase and decrease of Bcl-2 expression.

  15. Plasmatic concentration of organochlorine lindane acts as metabolic disruptors in HepG2 liver cell line by inducing mitochondrial disorder

    Energy Technology Data Exchange (ETDEWEB)

    Benarbia, Mohammed el Amine [LUNAM Université, Angers (France); Inserm 1063, Angers (France); Macherel, David [LUNAM Université, Angers (France); UMR 1345 IRHS, Angers (France); Faure, Sébastien; Jacques, Caroline; Andriantsitohaina, Ramaroson [LUNAM Université, Angers (France); Inserm 1063, Angers (France); Malthièry, Yves, E-mail: yves.malthiery@univ-angers.fr [LUNAM Université, Angers (France); Inserm 1063, Angers (France)

    2013-10-15

    Lindane (LD) is a persistent environmental pollutant that has been the subject of several toxicological studies. However, concentrations used in most of the reported studies were relatively higher than those found in the blood of the contaminated area residents and effects of low concentrations remain poorly investigated. Moreover, effects on cell metabolism and mitochondrial function of exposure to LD have received little attention. This study was designed to explore the effects of low concentrations of LD on cellular metabolism and mitochondrial function, using the hepatocarcinoma cell line HepG2. Cells were exposed to LD for 24, 48 and 72 h and different parameters linked with mitochondrial regulation and energy metabolism were analyzed. Despite having any impact on cellular viability, exposure to LD at plasmatic concentrations led to an increase of maximal respiratory capacity, complex I activity, intracellular ATP and NO release but decreased uncoupled respiration to ATP synthesis and medium lactate levels. In addition, LD exposure resulted in the upregulation of mitochondrial biogenesis genes. We suggest that, at plasmatic concentrations, LD acts as a metabolic disruptor through impaired mitochondrial function and regulation with an impact on cellular energetic metabolism. In addition, we propose that a cellular assay based on the analysis of mitochondria function, such as described here for LD, may be applicable for larger studies on the effects of low concentrations of xenobiotics, because of the exquisite sensitivity of this organelle. - Highlights: Our data clearly demonstrated in HepG2 cells that exposure at plasmatic low concentrations of LD were able to: • Impair mitochondrial function • Caused alteration on nucleo-mitochondrial cross-talk • Increase nitric oxide release and protein nitration • Impair cellular energetic metabolism and lipid accumulation.

  16. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Maisanaba, Sara, E-mail: saramh@us.es [Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González no. 2, 41012 Seville (Spain); Hercog, Klara; Filipic, Metka [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Jos, Ángeles [Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González no. 2, 41012 Seville (Spain); Zegura, Bojana [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna pot 111, 1000 Ljubljana (Slovenia)

    2016-03-05

    Highlights: • Cloisite{sup ®}Na{sup +} has a wide range of well-documented and novel applications. • Cloisite{sup ®}Na{sup +} induces micronucleus, but not nuclear bridges or nuclear buds in HepG2 cells. • Cloisite{sup ®}Na{sup +} induces changes in the gene expression. • Gene alteration is presented mainly after 24 h of exposure to Cloisite{sup ®}Na{sup +}. - Abstract: Montmorillonite, also known as Cloisite{sup ®}Na{sup +} (CNa{sup +}), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa{sup +} arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa{sup +} (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa{sup +} on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa{sup +} increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa{sup +} is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa{sup +} are needed for hazard identification and human safety assessment.

  17. Amygdalin isolated from Semen Persicae (Tao Ren) extracts induces the expression of follistatin in HepG2 and C2C12 cell lines

    National Research Council Canada - National Science Library

    Yang, Chuanbin; Li, Xuechen; Rong, Jianhui

    2014-01-01

    .... The aqueous extracts of seven ISF-1 ingredients including Semen Persicae (Tao Ren) and the S. Persicae-derived fractions were assayed for the induction of follistatin mRNA expression in human hepatocarcinoma HepG2 cells by RT-PCR...

  18. Sodium cantharidinate induces HepG2 cell apoptosis through LC3 autophagy pathway.

    Science.gov (United States)

    Tao, Ran; Sun, Wen-Yi; Yu, De-Hai; Qiu, Wei; Yan, Wei-Qun; Ding, Yan-Hua; Wang, Guang-Yi; Li, Hai-Jun

    2017-08-01

    The function of sodium cantharidinate on inducing hepatocellular carcinoma cell apoptosis was investigated for the first time. Sodium cantharidinate inhibits HepG2 cell growth mainly by LC3 autophagy pathway. MTT results show that sodium cantharidinate effectively inhibits the proliferation of HepG2 cells in a dose- and time-dependent manner and induce cell apoptosis by caspase-3 activity. The further western blotting and FACS detection show that sodium cantharidinate initiates HepG2 cell autophagy program by LC3 pathway. Autophagy-specific inhibitor 3-MA reduce sodium cantharidinate-induced caspase-3 activity and HepG2 cell apoptosis. Silence of the LC3 gene in HepG2 cell lines also reduce sodium cantharidinate-induced cell apoptosis. Collectively, our data indicate that sodium cantharidinate induces HepG2 cell apoptosis through LC3 autophagy pathway. Sodium cantharidinate has potential for development as a new drug for treatment of human HCC.

  19. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    Directory of Open Access Journals (Sweden)

    Acharya Balakrishna

    2015-01-01

    Full Text Available Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562. All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 104 cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1, Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL. The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells, and blank (only medium. The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  20. Changes in gene expression induced by polycyclic aromatic hydrocarbons in the human cell lines HepG2 and A549.

    Science.gov (United States)

    Castorena-Torres, Fabiola; Bermúdez de León, Mario; Cisneros, Bulmaro; Zapata-Pérez, Omar; Salinas, Juan E; Albores, Arnulfo

    2008-03-01

    Polycyclic aromatic hydrocarbons (PAH) are the main components of emissions generated by coke oven factories and many of these chemicals are carcinogenic. The goal of this study was to examine changes in gene expression in two human cell lines, HepG2 and A549, induced by exposure to a soil extract containing PAH using microarry technology. Soil samples were obtained from the vicinity of a coke oven factory in northeastern Mexico. For comparison, the gene expression pattern induced by Benz[a]pyrene (BaP) was also analyzed. The number of altered genes by both treatments was 2-fold higher in hepatic than in pulmonary cells. Differentially-modulated genes in the two cell lines were identified and grouped by biological function using genomic databases. A group of nine genes up- and down-regulated by either the PAH extract or BaP were selected for validation by real-time PCR. The cellular functions of these PAH-responsive genes included: xenobiotic metabolism (CYP1A1 and CYP1B1), DNA repair (ERCC5), oxidative stress response and cell proliferation (FTH1 and PRDX1), protein degradation (PSMD7), ion transport (FXYD3), steroid biosynthesis (FDFT1), and signaling pathways (PTGER3). The real-time PCR analysis confirmed most of the microarray data with significant correlation. Additional studies are required to determine the mechanisms involved in the PAH-mediated modulation of these genes and to associate these changes with human health.

  1. Study on preliminary mechanism of apoptosis in HepG-2 by CSA

    Institute of Scientific and Technical Information of China (English)

    YU Lei; MU Ke; WANG Wei; CUI Rong-tian; JI Yu-bin; ZOU Xiang

    2008-01-01

    t Objective To study on the mechanism of killing and apoptosis inducing effect of total alkaloid in the CSA(Capparis spinosa L. alkaloid, CSA)on human hepatoearcinoma cell Line HepG-2. Methods The killing effect of the CSA on human hepatoeareinoma cell Line HepG-2 was measured by MTT method. Morphological observation of the HepG-2 cells was completed by fluorescence microscope. The apoptosis indueing effect and changing of mitoehondria membrane potential of the CSA on the HepG-2 cells were measured by flow cytometry. In addition, effect of intraeellular Ca2+ level of the CSA on the HepG-2 cells was studied by laser confocal microscope. Results The CSA has obvious cytotoxicity on the HepG-2 and seems to be dose-dependent, and its IC50 value is 162.4 μg·mL-1. The HepG-2 cells have characteristic morphologic changes of apoptosis by the function of CSA, and the apoptosis percentage is higher than the natural one. The progress of cells cycle from S phase to G2 phase has been blocked, and the mitochondria membrane potential is markedly decreased, and the intraecllular Ca2+ level is increased by the function of CSA. Conclusions The CSA has obviously killing and apoptosis inducing effect on human hepatoearcinoma cell Line HepG-2 by the mechanism of decreasing the mitoehondria membrane potential and increasing the intracellular Ca2+ level.

  2. Cytotoxicity of hydro-alcoholic extracts of Cucurbita pepo and Solanum nigrum on HepG2 and CT26 cancer cell lines

    Directory of Open Access Journals (Sweden)

    M Shokrzadeh

    2010-01-01

    Full Text Available Plants are used worldwide for the treatment of diseases, and novel drugs continue to be developed through research from plants. There are more than 20,000 species of plants used in traditional medicines, and these are all potential reservoirs for new drugs. Cucurbita pepo has been used in traditional folk medicine to treat cold and alleviate ache. Previous pharmacological tests have shown that it possesses antiviral, anti-inflammatory, and analgesic effects. Also, Solanum nigrum has been used as a diuretic and an antipyretic agent and it has also been used to cure inflammation, edema, mastitis and hepatic cancer. In this investigation, cytotoxicity of specific concentrations of hydro-alcoholic extracts of C. pepo and S. nigrum was studied on normal [Chinese hamster ovarian cells (CHO and rat fibroblast] and cancer (HepG2 and CT26 cell lines. The cytotoxic effects and IC 50 of the extracts on the selected cell lines were studied followed by colonogenic assay method. The results showed that IC 50 of S. nigrum extract was significantly lower than that of the C. pepo extract on all four cell lines (P < 0.05. On the other hand, IC 50 of S. nigrum extract was significantly higher than the extract of Taxus baccata and Cisplatin, herbal and chemical control positive anticancer compounds, respectively, on all four cell lines (P < 0.05. As a result, it is concluded that the extract of S. nigrum has almost similar cytotoxicity to the extract of T. baccata on cancer cells.

  3. In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application.

    Science.gov (United States)

    Kumar, Brajesh; Smita, Kumari; Seqqat, Rachid; Benalcazar, Karen; Grijalva, Marcelo; Cumbal, Luis

    2016-06-01

    In this article, biosynthesis of silver nanoparticles (AgNPs) using Andean Mora (Rubus glaucus Benth.) leaf has been reported. Different analytical techniques including UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used for the characterization of AgNPs. The initial appearance of color change with the intense surface plasmon resonance (SPR) bands around 440-455 in UV-visible spectra revealing the formation of AgNPs. The TEM image showed the AgNPs to be anisotropic, quasi-spherical in shape with sizes in the range of 12-50nm. On the other hand, XRD studies revealed the formation of face-centered cubic structure for AgNPs. The surface modified AgNPs showed no cytotoxicity at the concentration ranging from 0.01μM to 1.0μM on the Hepatic cancer (Hep-G2) cell line and observed antioxidant efficacy >70% at the concentration 0.05mM/0.20mL against 1, 1-diphenyl-2-picrylhydrazyl. From the results obtained it is suggested that AgNPs could be used effectively in future drug delivery systems and other biomedical concerns. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Individual and combined effects of Aflatoxin B1, Deoxynivalenol and Zearalenone on HepG2 and RAW 264.7 cell lines.

    Science.gov (United States)

    Zhou, Hongyuan; George, Saji; Hay, Crystal; Lee, Joel; Qian, He; Sun, Xiulan

    2017-05-01

    To understand the combinatorial toxicity of mycotoxins, we measured the effects of individual, binary and tertiary combinations of Aflatoxin B1 (AFB1), Deoxynivalenol (DON) and Zearalenone (ZEN) on the cell viability and cellular perturbations of HepG2 and RAW 264.7 cells. The nature of mycotoxins interactions was assessed using mathematical modeling (Chou-Talalay). Mechanisms of cytotoxicity were studied using high content screening (HCS) that probed cytotoxicity responses, such as changes in intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), intracellular calcium ([Ca(2+)]i) flux, and cell membrane damage. Our results showed that individual cytotoxicity of mycotoxins in a decreasing order was DON>AFB1>ZEN. Varying combinations of mycotoxins at differing concentrations showed different types of interactions. Most of the mixtures showed increasing toxic effects-synergism and/or addition while antagonistic effects were observed with combination of AFB1+ZEN. Generally, combination of mycotoxins showed significantly increased intracellular ROS production and [Ca(2+)]i flux, and decreased MMP in both cell lines, showing that the synergistic and additive effects of mycotoxin combination originate from perturbations of multiple cellular functions. Additionally, this study demonstrated the applicability of HCS for gaining mechanistic understanding on the toxicity of individual as well as combinatorial mycotoxins, and also provided scientific bases for formulating regulatory policies. Copyright © 2017. Published by Elsevier Ltd.

  5. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2.

    Science.gov (United States)

    Maisanaba, Sara; Hercog, Klara; Filipic, Metka; Jos, Ángeles; Zegura, Bojana

    2016-03-01

    Montmorillonite, also known as Cloisite(®)Na(+) (CNa(+)), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa(+) arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa(+) (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa(+) on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa(+) increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa(+) is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa(+) are needed for hazard identification and human safety assessment.

  6. Cytotoxic, apoptotic, and sensitization properties of ent-kaurane-type diterpenoids from Croton tonkinensis Gagnep on human liver cancer HepG2 and Hep3b cell lines.

    Science.gov (United States)

    Pham, Minh Quan; Iscache, Anne Laure; Pham, Quoc Long; Gairin, Jean Edouard

    2016-04-01

    Human hepatocellular carcinoma (HCC) is the most common type of liver cancer, the second most common cause of death from cancer worldwide. A very poor prognosis and a lack of effective treatments make liver cancer a major public health problem, notably in less developed regions, particularly in eastern Asia. This fully justifies the search of new molecules and therapeutic strategies against HCC. Ent-kaurane diterpenoids are natural compounds displaying a broad spectrum of potential therapeutic effects including anticancer activity. In this study, we analyzed the pharmacological properties of a family of ent-kaurane diterpenoids from Croton tonkinensis Gagnep in human HepG2 and Hep3b cell lines, used as cellular reference models for in vitro evaluation of new molecules active on HCC. A structure-related cytotoxicity was observed against both HCC cell lines, enlighting the role of the 16-en-15-one skeleton of ent-kaurane diterpenoids. Cytotoxicity was closely correlated to apoptosis, evidenced by concentration-dependent subG1 cell accumulation, and increased annexin V expression. In addition, subtoxic concentration of ent-kaurane diterpenoid dramatically enhanced the sensitivity of HCC cells to doxorubicin. All together, our data bring strong support to the potential interest of ent-kaurane diterpenoids, alone or in combination with a cytotoxic agent, in cancer and more precisely against HCC.

  7. 苦参碱对人类肝癌细胞HepG2增殖、细胞周期及凋亡的影响%Effects of matrine on proliferation, cell cycle and apoptosis of human hepatocarcinoma cell line HepG2

    Institute of Scientific and Technical Information of China (English)

    朱丹丹; 姚树坤; 闫建国; 李红艳

    2010-01-01

    目的 探讨苦参碱(MT)对人类肝癌细胞株HepG2增殖、细胞周期及凋亡的影响.方法 用不同质量浓度的MT(0.0125、0.025、0.05、0.1、0.2、0.4、0.8、1.6 g/L)对培养的HepG2细胞作用不同时间(24、48、72 h),用四氮噻唑蓝(MTT)比色法检测MT对细胞增殖的影响;流式细胞术(FCM)检测MT对HepG2细胞周期及凋亡的影响.结果 质量浓度≥0.1 g/L的MT有抑制HepG2细胞增殖的作用,且作用随药物质量浓度的增加及时间的延长而加强(P<0.01).FCM检测分析显示,0.8 g/LMT作用48 h能将HepG2细胞阻滞在G1期[(75.3±6.5)%对(64.1±6.3)%](P<0.05),1.6 g/L MT作用48 h能将HepG2细胞阻滞在G2期[(29.1±9.1)%对(11.6±2.1)%](P<0.01).0.4、0.8、1.6 g/LMT作用12、24、48 h对HepG2细胞都有诱导凋亡作用,且作用随药物质量浓度的增加及作用时间的延长而加强(P<0.01).结论 MT能够抑制HepG2细胞的增殖、诱导其凋亡并影响其细胞周期,呈时间和剂量依赖性.MT抗肝癌的机制可能与影响肝癌细胞周期、抑制细胞增殖及诱导凋亡有关.%Objective To study the effects of matrine on proliferation, cell cycle and apoptosis of human hepatocarcinoma cell line HepG2 and probe into the mechanisms of its anti-hepatocarcinoma effects.Methods The HepG2 cells were treated with different concentration of matrine (0.0125, 0.02, 0.05, 0.1, 0.2,0.4, 0.8, 1.6 g/L) for different time (24, 48, 72 h), then investigate the effects of matrine on cell proliferation by MTT, and the effects on cell cycle and apoptosis by flow cytometry. Results Matrine can inhibit the HepG2 cells proliferation at the concentration of 0.1 g/L and above in a concentration-dependent and timedependent manner(P <0.01). The result of FCM showed that the cell cycle of HepG2 was retarded at G1 phase treated with matrine for 48 h at the concentration of 0.8 g/L [(75.3±6.5)% vs (64.1±6.3)%, P <0.05], whereas was retarded at G2 phase treated with matrine for 48 h at

  8. Comparative effects of food-derived polyphenols on the viability and apoptosis of a human hepatoma cell line (HepG2).

    Science.gov (United States)

    Ramos, Sonia; Alía, Mario; Bravo, Laura; Goya, Luis

    2005-02-23

    Consumption of fruits and vegetables, which are rich in polyphenols, has been associated with a reduced risk of chronic diseases such as cancer. Dietary polyphenols have antioxidant and antiproliferative properties that might explain their beneficial effect on cancer prevention. The aim of this study was to investigate the effects of different pure polyphenols [quercetin, chlorogenic acid, and (-)-epicatechin] and natural fruit extracts (strawberry and plum) on viability or apoptosis of human hepatoma HepG2 cells. The treatment of cells for 18 h with quercetin and fruit extracts reduced cell viability in a dose-dependent manner; however, chlorogenic acid and (-)-epicatechin had no prominent effects on the cell death rate. Similarly, quercetin and strawberry and plum extracts, rather than chlorogenic acid and (-)-epicatechin, induced apoptosis in HepG2 cells. Moreover, quercetin and fruit extracts arrested the G1 phase in the cell cycle progression prior to apoptosis. Quercetin and strawberry and plum extracts may induce apoptosis and contribute to a reduced cell viability in HepG2 cells.

  9. Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2).

    Science.gov (United States)

    Alía, Mario; Ramos, Sonia; Mateos, Raquel; Bravo, Laura; Goya, Luis

    2005-01-01

    The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.

  10. Suppressor of Cytokine Signaling-3 (SOCS-3) Induces Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) Expression in Hepatic HepG2 Cell Line*

    Science.gov (United States)

    Ruscica, Massimiliano; Ricci, Chiara; Macchi, Chiara; Magni, Paolo; Cristofani, Riccardo; Liu, Jingwen; Corsini, Alberto; Ferri, Nicola

    2016-01-01

    The suppressor of cytokine signaling (SOCS) proteins are negative regulators of the JAK/STAT pathway activated by proinflammatory cytokines, including the tumor necrosis factor-α (TNF-α). SOCS3 is also implicated in hypertriglyceridemia associated to insulin resistance. Proprotein convertase subtilisin kexin type 9 (PCSK9) levels are frequently found to be positively correlated to insulin resistance and plasma very low density lipoprotein (VLDL) triglycerides concentrations. The present study aimed to investigate the possible role of TNF-α and JAK/STAT pathway on de novo lipogenesis and PCSK9 expression in HepG2 cells. TNF-α induced both SOCS3 and PCSK9 in a concentration-dependent manner. This effect was inhibited by transfection with siRNA anti-STAT3, suggesting the involvement of the JAK/STAT pathway. Retroviral overexpression of SOCS3 in HepG2 cells (HepG2SOCS3) strongly inhibited STAT3 phosphorylation and induced PCSK9 mRNA and protein, with no effect on its promoter activity and mRNA stability. Consistently, siRNA anti-SOCS3 reduced PCSK9 mRNA levels, whereas an opposite effect was observed with siRNA anti-STAT3. In addition, HepG2SOCS3 express higher mRNA levels of key enzymes involved in the de novo lipogenesis, such as fattyacid synthase, stearoyl-CoA desaturase (SCD)-1, and apoB. These responses were associated with a significant increase of SCD-1 protein, activation of sterol regulatory element-binding protein-1c (SREBP-1), accumulation of cellular triglycerides, and secretion of apoB. HepG2SOCS3 show lower phosphorylation levels of insulin receptor substrate 1 (IRS-1) Tyr896 and Akt Ser473 in response to insulin. Finally, insulin stimulation produced an additive effect with SOCS3 overexpression, further inducing PCSK9, SREBP-1, fatty acid synthase, and apoB mRNA. In conclusion, our data candidate PCSK9 as a gene involved in lipid metabolism regulated by proinflammatory cytokine TNF-α in a SOCS3-dependent manner. PMID:26668321

  11. 口虾蛄乙酸乙酯提取物联合阿霉素或顺铂对人肝癌HepG2细胞的增殖抑制效应研究%Inhibitory effects on proliferation of human hepatoma line HepG2 by ethyl acetate extract of squilla oratoria in combination with adriamycin or cisplatin

    Institute of Scientific and Technical Information of China (English)

    邵松军; 李明勇; 张湘宁; 黄培春

    2013-01-01

    目的研究海洋生物口虾蛄乙酸乙酯提取物联合阿霉素或顺铂对人肝癌 HepG2细胞株的增殖抑制效应,并定量分析其协同、相加或拮抗的作用。  方法不同浓度的口虾蛄乙酸乙酯提取物联合阿霉素或顺铂处理肝癌 HepG2细胞株24 h,用 MTT 法测定细胞的生长抑制作用,并用中效原理法、金氏修正公式分析药物的联合作用。  结果口虾蛄乙酸乙酯提取物、阿霉素、顺铂单用或联合用药作用于肝癌 HepG2细胞株,均能抑制细胞的增殖,呈现量-效依赖性。口虾蛄乙酸乙酯提取物与传统化疗药物的联合用药增加了传统化疗药物对肝癌细胞的毒性作用,呈现出低浓度拮抗,而高浓度协同的作用。  结论海洋生物口虾蛄乙酸乙酯提取物作为一类新型、天然的抗肿瘤药物,可有效地抑制肝癌 HepG2细胞的增殖。%Objective To study inhibitory effects on proliferation of human hepatoma line HepG2 by ethyl acetate extract of squilla oratoria (ESO) in combination with routine anticancer chemotherapeutic agents adriamycin or cisplation, and qunatatively analyze the additive or antagonist effects between ESO and the two drugs. Methods The HepG2 cells were treated with either ESO, adriamycin or cisplatin alone, or ESO/adriamycin, ESO/cisplatin in combination for 24 h. The growth inhibition was assayed with MTT method, and the synergistic effect of different drugs was evaluated with Median-effect principle, the Revised Jin’s formula. Results The three drugs all exerted inhibitory effect on the growth of HepG2 cells in a dose-dependent manner, and the combination also decreased the proliferation of the cells. The combination with different chemotherapy agents increased cytotoxic effects on cells, and low concentration showed a synergistic effect, but the high concentrations demonstrated the antagonistic effect. Conclusions Marine squilla oratoria as a new class of natural

  12. 骨髓间充质干细胞对HepG2肝癌细胞增殖的影响%The effects of bone marrow-derived mesenchymal stem cells on proliferation of human hepatocellular carcinoma cell line HepG2 in vitro

    Institute of Scientific and Technical Information of China (English)

    唐甜; 李红; 薛冰; 唐小军; 陈汐敏; 仇镇宁; 朱进; Tom C Tsang; 冯振卿

    2012-01-01

    Objective; To investigate the effects of rat bone marrow-derived mesenchymal stem cells (MSCs) on the proliferation and cell cycle distribution of human hepatocellular carcinoma cell line HepG2 in vitro. Methods: Rat bone marrow-derived mesenchymal stem cells were isolated and identified by FACS and were expanded ex vino and the supernatant wag collected. Cell growth was measured by MTT assay,colony formation and soft agar colony formation assay. Cell cycle progression was analyzed by flow cytometry. Western blot assays were used to detect the expression of Cyclin Dl. Results: Mesenchymal stem cells promoted the proliferation and clonogenicity of cell line HepG2 indirectly by MSC-CM(P < 0.05). Cell number in G0/G1 phase was decreased and that in S and G2/M phase was increased (P < 0.05). MSCs promote the expression of protein Cyclin Dl in HepG2 (P < 0.05). Conclusion: Mesenchymal stem cells can promote the proliferation of hepatocellular carcinoma cell line by upregulating Cyclin Dl.%目的:观察大鼠骨髓间充质干细胞对HepG2肝癌细胞增殖的影响,并初步探讨其机制.方法:全骨髓贴壁法分离培养大鼠骨髓间充质干细胞,流式细胞术鉴定其分子表面标志,体外扩增培养并收集培养上清.MTT法、平板克隆实验及软琼脂克隆实验检测大鼠间充质干细胞对人肝癌细胞株HepG2增殖的影响,流式细胞术检测肝癌细胞周期的改变,Western blot法检测细胞周期相关蛋白Cyclin D1表达情况.结果:骨髓间充质干细胞CD105和CD90表达阳性,CD34和CD45表达阴性.在骨髓间充质干细胞培养上清作用下,MTT法显示实验组肝癌细胞光密度值增加(P<0.05),平板克隆法显示实验组肝癌细胞克隆形成率比对照组明显升高(P<0.05),软琼脂克隆法显示实验组肝癌细胞空间克隆形成率比对照组明显升高(P<0.05),流式细胞术显示实验组细胞周期G1期比例降低,S期、G2期比例增加.Western blot

  13. 前S2区突变LHBs与C53蛋白相互作用对HepG2细胞生物学功能的影响%Study on the effects on cell biology functions of HepG2 cell line by interaction between LHBs and C53

    Institute of Scientific and Technical Information of China (English)

    刘灏; 林智琪; 黄显莹; 符方勇; 叶玲; 周忠信; 刘正军

    2013-01-01

    目的 明确肝癌细胞系HepG2中前S2区突变乙型肝炎表面抗原大蛋白(hepatitis B virus large surface protein,LHBs)与C53蛋白相互作用对细胞生物学功能的影响.方法 分别构建pCMV-5a-pre S2 LHBs和pCDNA-4-C53质粒,共同转染肝癌细胞系HepG2后,分别检测其相互作用对Chk1活性的影响;BrdU法细胞增殖检测明确其对细胞有丝分裂及增殖的影响.结果 成功构建pCMV-5a-pre S2 LHBs和pCDNA-4-C53质粒;其在细胞内的相互作用增加细胞Cdk1活性并促进细胞的增殖和有丝分裂过程.结论 肝癌细胞系HepG2内pre S2 LHBs及C53的相互作用对细胞生物学功能存在影响,提示可能与HBV后肝癌的发病机制相关.%Objective To identify the effects on cell biology functions of HepG2 cells by interaction between pre-S2 LHBs and C53.Methods The plasmids pCMV-5a-pre-S2 LHBs and pCDNA-4-C53 were reconstructed.The plasmids pCMV-5a-LHBs and pCDNA-4-C53 were cotransfected into the hepatoma cell line HepG2,the roles of the binding of pre-S2 LHBs with C53 on Cdk1,Chk1 activation and mitotic entry were studied.Results The plasmids pCMV-5a-LHBs and pCDNA-4-C53 were reconstructed successfully.The binding of pre S2 LHBs with C53 increased Cdk1 activation and mitotic entry.Conclusions By counteracting C53,pre-S2 LHBs promotes Cdk1 activation and mitotic entry in both unperturbed cell cycle progression and delayed the function of Chk1,which may be a novel potential mechanism for HBV-induced hepatocellular carcinoma (HCC).

  14. XPD Functions as a Tumor Suppressor and Dysregulates Autophagy in Cultured HepG2 Cells.

    Science.gov (United States)

    Zheng, Jian-Feng; Li, Lin-Lin; Lu, Juan; Yan, Kun; Guo, Wu-Hua; Zhang, Ji-Xiang

    2015-05-29

    Recent clinical studies have linked polymorphisms in the xeroderma pigmentosum group D (XPD) gene, a key repair gene involved in nucleotide excision repair, to increased risk of hepatocellular carcinoma (HCC). However, the cellular effects of XPD expression in cultured HCC cells remain largely uncharacterized. Therefore, the aim of this study was to characterize the in vitro cellular effects of XPD expression on the HCC cell line HepG2. HepG2 cells were transfected as follows to create four experimental groups: pEGFP-N2/XPD plasmid (XPD) group, EGFP-N2 plasmid (N2) control group, lipofectamine™ 2000 (lipid) control group, and non-transfected (CON) control group. An MTT cell proliferation assay, Annexin V-APC apoptosis assay, colony formation assay, scratch wound migration assay, Transwell migration assay, and Western blotting of the autophagic proteins LC3 and p62 were conducted. XPD expression significantly inhibited HepG2 cell proliferation (pHepG2 cell apoptosis (pHepG2 colony formation (pHepG2 cells' migratory ability (pHepG2 cells' invasive capacity (pHepG2 cells in vitro. Further in vivo pre-clinical studies and clinical trials are needed to validate XPD's potential as a tumor-suppressive gene therapy.

  15. Propylparaben-induced disruption of energy metabolism in human HepG2 cell line leads to increased synthesis of superoxide anions and apoptosis.

    Science.gov (United States)

    Szeląg, S; Zabłocka, A; Trzeciak, K; Drozd, A; Baranowska-Bosiacka, I; Kolasa, A; Goschorska, M; Chlubek, D; Gutowska, I

    2016-03-01

    The effect of propylparaben (in final concentrations 0.4 ng/ml, 2.3 ng/ml and 4.6 ng/ml) on the energy metabolism of HepG2 hepatocytes, superoxide anion synthesis, apoptosis and necrosis is described. Propylparaben can be toxic to liver cells due to the increased production of superoxide anions, which can contribute to a reduced concentration of superoxide dismutase in vivo and impairment of the body's antioxidant mechanisms. Finally, a further reduction in the mitochondrial membrane potential and uncoupling of the respiratory chain resulting in a reduction in ATP concentration as a result of mitochondrial damage may lead to cell death by apoptosis.

  16. Effects of Salinomycin on Proliferative, Invasive and Metastatic Abilities of Hepatoma Cell Line HepG2 in vitro%盐霉素对肝癌HepG2细胞体外增殖和侵袭转移能力的影响

    Institute of Scientific and Technical Information of China (English)

    王晶宇; 王一辰; 王丽; 王志平

    2013-01-01

    探讨盐霉素对人肝癌细胞HepG2增殖、侵袭转移能力影响的作用机制.MTT法检测盐霉素对肝癌HepG2细胞和正常肝细胞L02增殖的影响;利用FITC标记的鬼笔环肽进行微丝免疫荧光染色,激光共聚焦技术获得盐霉素作用下F-actin细胞骨架的形态变化;Transwell小室法测定盐霉素对HepG2细胞体外迁移侵袭能力的变化.Western blot法检测盐霉素对HepG2细胞中β-连环蛋白(β-catenin)、基质金属蛋白酶-2(MMP-2)及基质金属蛋白酶-9(MMP-9)蛋白表达的影响.结果显示,盐霉素抑制HepG2细胞的增殖,并呈现出时间、剂量依赖效应;而盐霉素对正常肝细胞L02的增殖抑制作用不明显.经过盐霉素(1 μmol/L和4μmol/L)处理的HepG2细胞,迁移和侵袭实验中穿膜细胞数均明显低于对照组(P<0.05),且以F-actin为基础的微丝骨架结构发生紊乱.盐霉素(4μmol/L和8 μmol/L)还可明显下调MMP-2、MMP-9及β-catenin蛋白的表达水平(P<0.05).这些结果提示,盐霉素能有效抑制人肝癌细胞HepG2的增殖、迁移和侵袭,其作用机制可能与降低MMP-2、MMP-9及β-catenin蛋白的表达有关.%To investigate effects of salinomycin on the proliferative,invasive and metastatic abilities of hepatoma cell line HepG2 in vitro and analyze the possible mechanisms,MTT was used for determining the proliferative abilities of HepG2 and human normal liver L02 cells.The cytoskeleton was observed using confocal laser scanning microscopy after F-actin staining by FITC-labeled phalloidin.The invasive and migratory abilities were detected by Transwell assay.The protein expressions of β-catenin,MMP-2 and MMP-9 at protein levels were evaluated by Western blot.The results showed that the treatment of L02 cells with salinomycin (0~8 μmol/L) for 24 h and 48 h had no significant effects on cell viability.However,treatment of similar doses of salinomycin suppressed the growth of HepG2 cells in a time and concentration

  17. PCBP-1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells

    Directory of Open Access Journals (Sweden)

    Ge Changhui

    2010-04-01

    Full Text Available Abstract Background PCBP1 (or alpha CP1 or hnRNP E1, a member of the PCBP family, is widely expressed in many human tissues and involved in regulation of transcription, transportation process, and function of RNA molecules. However, the role of PCBP1 in CD44 variants splicing still remains elusive. Results We found that enforced PCBP1 expression inhibited CD44 variants expression including v3, v5, v6, v8, and v10 in HepG2 cells, and knockdown of endogenous PCBP1 induced these variants splicing. Invasion assay suggested that PCBP1 played a negative role in tumor invasion and re-expression of v6 partly reversed the inhibition effect by PCBP1. A correlation of PCBP1 down-regulation and v6 up-regulation was detected in primary HCC tissues. Conclusions We first characterized PCBP1 as a negative regulator of CD44 variants splicing in HepG2 cells, and loss of PCBP1 in human hepatic tumor contributes to the formation of a metastatic phenotype.

  18. The apoptotic effect of sunitinib on human hepatocellular carcinoma cell line HepG2 and its mechanism%舒尼替尼促进人肝癌细胞HepG2的凋亡及其分子机制

    Institute of Scientific and Technical Information of China (English)

    黄宇贤; 陈心彤; 蔡宋浩; 李玉华; 吴秉毅; 宋朝阳; 贺艳杰; 郭坤元

    2015-01-01

    目的:探讨苹果酸舒尼替尼对人肝癌HepG2细胞凋亡的作用及其机制.方法:常规体外培养HepG2细胞,利用MTT法检测舒尼替尼杀伤HepG2细胞的IC50,Western blotting检测药物处理前后HepG2细胞分子靶点蛋白表达,膜联蛋白(Annexin-Ⅴ)/碘化丙啶(PI)双标法和TUNEL染色法检测舒尼替尼处理前后HepG2细胞凋亡情况,实时荧光定量PCR检测药物处理前后HepG2细胞凋亡基因mRNA的表达情况.结果:舒尼替尼杀伤HepG2细胞的IC50值为(3.22±0.50) μmol/L.以对HepG2细胞无明显抑制作用的剂量1μmol/L舒尼替尼处理HepG2细胞后,细胞内VEGFR1、VEGFR2、PDGFRα、Kit、FLT3蛋白表达均有不同水平下降(均P<0.05),HepG2细胞的凋亡率[(15.18±1.28)%vs(5.90±0.45)%,P<0.05]、凋亡指数(AI)[(23.54±4.73) vs (4.17±0.64),P<0.05]均显著升高.舒尼替尼处理HepG2细胞后,上调促凋亡基因Bax、NOXA、PUMA、P53 mRNA表达水平(均P<0.05),降低抑凋亡基因Bcl-2、X-IAP mRNA表达水平(均P<0.05).结论:舒尼替尼能够诱导肝癌HepG2细胞凋亡,其机制可能是通过上调促凋亡基因的表达及降低抑凋亡基因表达水平来实现的.

  19. TRAIL及其受体在咖啡因抑制肝癌细胞系HepG2增殖中的作用%The role of TRAIL and its receptors in the inhibitory effect of caffeine on the proliferation of hepatocellular carcinoma cell line HepG2

    Institute of Scientific and Technical Information of China (English)

    吕雄文; 李俊; 靳弟; 代雪飞; 吴宝明; 张磊

    2010-01-01

    目的 探讨TRAIL及其受体在咖啡因(caffeine)抑制肝癌细胞系HepG2增殖中的作用.方法 HepG2细胞分别经caffeine、TRAIL及caffeine+TRAIL作用24 h,采用MTT法检测HepG2细胞增殖抑制情况,根据中效原理进行联合用药效应评价;流式细胞仪检测细胞凋亡和细胞周期分布;Western blot法检测caffeine作用不同时间HepG2细胞中TRAIL受体相关蛋白的表达.结果 在1.25~20 mmol·L-1浓度范围内,caffeine明显抑制HepG2细胞增殖;在0.01275~0.2040 μmol·L-1浓度范围内,TRAIL可明显抑制HepG2细胞增殖. Caffeine联合TRAIL在多数效应范围内的合用指数小于1,具有协同作用.Caffeine 5 mmol·L-1和TRAIL 0.0510 μmol·L-1联合用药组HepG2细胞凋亡率明显高于各单独用药组,且两者联合用药对HepG2细胞周期具有明显的影响,使G0/G1期细胞比例明显增加,S期及G2/M期细胞比例明显减少;caffeine 5 mmol·L-1作用HepG2细胞24 h时,其DR4及DR5的表达量明显增加,而DcR1和DcR2的表达无改变.结论 TRAIL在caffeine抑制HepG2细胞增殖过程中具有一定的协同作用,其机制可能与caffeine上调HepG2细胞表面DR4、DR5的表达,联合TRAIL后能够进一步诱导凋亡及调节细胞周期有关.

  20. Moving into advanced nanomaterials. Toxicity of rutile TiO2 nanoparticles immobilized in nanokaolin nanocomposites on HepG2 cell line.

    Science.gov (United States)

    Bessa, Maria João; Costa, Carla; Reinosa, Julian; Pereira, Cristiana; Fraga, Sónia; Fernández, José; Bañares, Miguel A; Teixeira, João Paulo

    2017-02-01

    Immobilization of nanoparticles on inorganic supports has been recently developed, resulting in the creation of nanocomposites. Concerning titanium dioxide nanoparticles (TiO2 NPs(1)), these have already been developed in conjugation with clays, but so far there are no available toxicological studies on these nanocomposites. The present work intended to evaluate the hepatic toxicity of nanocomposites (C-TiO2(2)), constituted by rutile TiO2 NPs immobilized in nanokaolin (NK(3)) clay, and its individual components. These nanomaterials were analysed by means of FE-SEM(4) and DLS(5) analysis for physicochemical characterization. HepG2 cells were exposed to rutile TiO2 NPs, NK clay and C-TiO2 nanocomposite, in the presence and absence of serum for different exposure periods. Possible interferences with the methodological procedures were determined for MTT,(6) neutral red uptake, alamar blue (AB), LDH,(7) and comet assays, for all studied nanomaterials. Results showed that MTT, AB and alkaline comet assay were suitable for toxicity analysis of the present materials after slight modifications to the protocol. Significant decreases in cell viability were observed after exposure to all studied nanomaterials. Furthermore, an increase in HepG2 DNA damage was observed after shorter periods of exposure in the absence of serum proteins and longer periods of exposure in their presence. Although the immobilization of nanoparticles in micron-sized supports could, in theory, decrease the toxicity of single nanoparticles, the selection of a suitable support is essential. The present results suggest that NK clay is not the appropriate substrate to decrease TiO2 NPs toxicity. Therefore, for future studies, it is critical to select a more appropriate substrate for the immobilization of TiO2 NPs.

  1. RNA干扰HIF-1α对肝癌细胞系HepG2生物学特性的影响%Effects of RNAi mediated downregulation of HIF-1α on the biological behavior of HCC cel line(HepG2)

    Institute of Scientific and Technical Information of China (English)

    周焕城; 彭广福; 宋越; 张彩云; 温治强; 徐继威; 温苑章; 李嘉

    2013-01-01

      目的缺氧诱导因子-1α(HIF-1α)是参与肿瘤细胞代谢的核心转录因子。本研究旨在于评估RNAi下调HIF-1a对肝癌细胞系HepG2生物学特性的影响。方法化学合成特异性HIF-1a siRNA,转染缺氧条件下培养的肝细胞肝癌细胞系HepG2,利用Westernblot技术检测转染后HIF-1a,血管生产因子,和基质金属蛋白酶2表达情况。MTT分析及裸鼠皮下接种肿瘤细胞明确细胞增殖率。结果乏氧条件培养,HIF-1α表达减少61.54%,VEGF表达减少64.71%;MMP-2表达减少53.33%。HepG2细胞增殖力下降50%,接种裸鼠肿瘤形成缓慢。结论 HIF-1a SiRNA抑制HIF-1α表达,抑制肝癌细胞系生长。其机制可能与下调血管生成因子和基质金属蛋白酶表达有关。%  Objective Hypoxia-inducible factor-1 α (HIF-1 α) is a central transcriptional factor involved in the celular responses related to various aspects of cancer biology. The aim of this study is to evaluate the impact of RNAi mediated downregulation of HIF-1α on the biological behavior of hepatocelular carcinoma cel line (HepG2).Methods Knockdown of HIF-1α expression was constructed by chemicaly synthesized siRNA, and HCC cel lines infected with HIF-1α siRNA were cultured under a hypoxia condition.. Folowing infection, the expression levels of HIF-1 α, VEGF, and matrix metaloproteinase (MMP) were examined using Western blotting. Cel proliferation was measured by a cel proliferation assay (MTT assay) and implanting into nude mouse.Results Under a hypoxia condition, expression levels of HIF-1a, VEGF and MMP-2 protein were declined 61.54%, 64.71% and 53.33%, respectively, compared to the control groups. Cel proliferation rate was suppressed 50 %, and mice in the siRNA groups had slower HCC growth. Conclusions HIF-1 α siRNA induced suppression of tumor growth in hepG2 cel line. It may be related to down-regulated the expression of angiogenesis factor and MMP proteins..

  2. Apoptosis of Hepatoma Cell Line HepG2 Induced by the Combination of Radiotherapy and Thermotherapy and Its Relationship with Bcl-2/Bax Protein Expressions%放疗联合热疗诱导肝癌HepG2细胞凋亡及其与Bcl-2和Bax蛋白表达关系的研究

    Institute of Scientific and Technical Information of China (English)

    张力; 龚明玉; 李毅学; 张立广; 王兴艳

    2011-01-01

    Objective To explore the apoptosis of hepatoma cell line HepG2 induced by the combination of radiotherapy and thermotherapy and its relationship with Bcl - 2/Bax protein expressions. Methods In vitro cultured HepG2 cells were randomly divided into four groups: control group ( not treated ), radiotherapy group, thermotherapy group, and combination group. The apoptosis of HepG2 cells were detected by flow cytometry. The expressions of the apoptosis-related proteins of Bcl-2 and Bax were detected by immunohistochemical methods. Results The apoptosis rates of HepG2 cells were significantly different among these four groups ( P < 0. 05 ). The apoptosis rates were significantly higher in radiotherapy group, thermotherapy group, and combination group than in control group ( P <0. 05 ). It was also significantly higher in combination group than in radiotherapy group and thermotherapy group ( P < 0. 05 ). The expressions of Bcl-2 and Bax and the Bax/Bcl-2 ratio were also significantly different among these four groups ( P <0. 05 ). The expression of Bcl -2 protein were significantly decreased and the expression of Bax protein significantly increased in radiotherapy group, thermotherapy group, and combination group than in control group ( both P < 0. 05 ), and the Bax/Bcl - 2 ratio was also significantly increased ( P < 0. 05 ). The expression of Bcl - 2 protein were significantly decreased and the expression of Bax protein significantly increased in combination group than in radiotherapy group and thermotherapy group ( both P < 0. 05 ), and the Bax/Bcl - 2 ratio was also significantly increased ( P < 0. 05 ). Conclusion The combination of radiotherapy and thermotherapy can more effectively induce the apoptosis of HepG2, and it may be achieved by inhibiting the expression of Bcl - 2 protein and promoting the expression of Bax protein.%目的 探讨放疗联合热疗诱导人肝癌HepG2细胞凋亡及其与Bcl-2和Bax蛋白表达的关系.方法 将体外培养的肝癌HepG

  3. 丹酚酸A诱导HepG2细胞凋亡及抑制c-Met表达%Salvianolic Acid A Induces Apoptosis and Inhibits the C-Met Expression in Hepatocellular Carcinoma HepG2 Cell Line

    Institute of Scientific and Technical Information of China (English)

    唐志华; 丁洁卫; 肖幸丰

    2014-01-01

    目的 通过研究丹酚酸A(salvianol acid A,SalA)对肝癌HepG2细胞株c-Met蛋白表达的影响,探讨SalA抑制肝癌细胞增殖,诱导细胞凋亡的可能作用机制.方法 以肝癌HepG2细胞株为研究对象,采用MTT法及流式细胞术检测SalA作用后细胞存活、增殖及凋亡情况;同时运用Western blot法及PCR法检测HepG2细胞c-Met及其下游信号通路中关键蛋白和基因表达的改变.结果 肝癌HepG2细胞经SalA处理后,其细胞增殖显著抑制,细胞凋亡比例亦升高,且呈浓度依赖性;同时HepG2细胞中c-Met及其下游信号分子AKT的磷酸化水平显著下调,凋亡相关蛋白Bax、caspase-3和caspase-9的表达亦明显上调.结论 SalA能有效抑制肝癌HepG2细胞的增殖并诱导细胞凋亡,其作用机制可能与其抑制HepG2细胞中c-Met蛋白及其下游信号通路中AKT蛋白的磷酸化水平有关.

  4. Inactivation of PTEN is responsible for the survival of Hep G2 cells in response to etoposide-induced damage.

    Science.gov (United States)

    Mukherjee, Ananda; Samanta, Saheli; Karmakar, Parimal

    2011-10-01

    The chemo-resistance character of human hepatocellular carcinoma cells is well known but the anomalies associated with such resistance character are not completely understood. In this study, etoposide-induced signaling events in human hepatocellular carcinoma cell line, Hep G2 has been compared with Chang Liver cells, a normal human liver cell line. Hep G2 cells are resistant to etoposide when compared with Chang Liver cells. Etoposide-induced γH2AX foci in Hep G2 cells are persisted for a longer time without affecting cell cycle, indicating that Hep G2 cells are able to maintain its growth with damaged DNA. Further, Akt signaling pathway is deregulated in Hep G2 cells. The upstream negative regulator of Akt, PTEN remains inactive, as it is hyperphosphorylated in Hep G2 cells. Inhibition of PI-3K pathway by wortmannin partially reverses the etoposide-resistance character of Hep G2 cells. Either Hep G2 or Chang Liver cells when transfected with plasmid carrying active Akt (myr-Akt) become resistance towards etoposide compared to the cells transfected with empty vectors or kinase defective Akt. Transient transfection of wild type PTEN in Hep G2 cells does not change its response towards etoposide whereas Chang Liver cells become sensitive after transfection with same plasmid. These results suggest that inactivation of PTEN, which renders activation of Akt, may contribute largely for the etoposide-resistance character of Hep G2 cells. 2011 Elsevier B.V. All rights reserved.

  5. Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines.

    Science.gov (United States)

    Slamenová, Darina; Horváthová, Eva; Wsólová, Ladislava; Sramková, Monika; Navarová, Jana

    2009-01-01

    Plant volatiles, which can get into the human organism in food, medicines, or cosmetic preparations, frequently manifest antibacterial, antifungal, antiviral and other effects. We studied anti-oxidative, cytotoxic, genotoxic and possible DNA-protective effects of eugenol and borneol. Anti-oxidative activities of aqueous and ethanolic solutions of these two volatile compounds of plants were determined by a spectrophotometric method by the use of the stable DPPH radical. Borneol did not show any anti-oxidative activity even at the highest concentrations soluble in water or ethanol (eugenol did manifest anti-oxidative activity, and at much lower concentrations (5-100 microM). The cytotoxicity of eugenol and borneol as well as their DNA-damaging effects and their influence on sensitivity of cells against the DNA-damaging effects of H(2)O(2) were investigated in three different cell lines, i.e. malignant HepG2 hepatoma cells, malignant Caco-2 colon cells, and nonmalignant human VH10 fibroblasts. The trypan-blue exclusion assay showed that in the three cell lines the cytotoxicity of eugenol was significantly higher than that of borneol. Single-cell gel electrophoresis revealed that borneol did not cause any DNA strand-breaks at the concentrations studied, but showed that all concentrations of eugenol (eugenol were not observed in metabolically active HepG2 hepatoma cells. Borneol and eugenol differed also with respect to their DNA-protective effects. While borneol protected HepG2 and, to a lesser extent, VH10 cells (but not Caco-2) against H(2)O(2)-induced DNA damage, eugenol either did not change the cellular sensitivity to H(2)O(2) (HepG2 cells) or it even increased the sensitivity (Caco-2 and VH10 cells). These results do not indicate any correlation between the DNA-protective and the anti-oxidative capacities of eugenol and borneol.

  6. The Inhibitory Effect of C-phycocyanin Containing Protein Extract (C-PC Extract) on Human Matrix Metalloproteinases (MMP-2 and MMP-9) in Hepatocellular Cancer Cell Line (HepG2).

    Science.gov (United States)

    Kunte, Mugdha; Desai, Krutika

    2017-03-30

    Spirulina platensis :have been studied for several biological activities. In the current study C-phycocyanin containing protein extract (C-PC extract) of Spirulina platensis have been studied for its effect on human matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and tissue inhibitors of MMPs (TIMP-1 and TIMP-2). In the present study, breast cancer cell line (MDA-MB 231) and hepatocellular cancer cell line (HepG2) were examined for inhibition of MMPs at different levels of expression after C-PC extract treatment. Herein, we have demonstrated that C-PC extract significantly reduced activity of MMP-2 by 55.13% and MMP-9 by 57.9% in HepG2 cells at 15 μg concentration. Additionally, the treatment has reduced mRNA expression of MMP-2 and MMP-9 at 20 μg concentration by 1.65-folds and 1.66-folds respectively. The C-PC extract treatment have also downregulated a mRNA expression of TIMP-2 by 1.12 folds at 20 μg concentration in HepG2 cells. Together, these results indicate that C-PC, extract successfully inhibited MMP-2 and -9 at different levels of expression and TIMP-2 at a mRNA expression level; however, extract did not have any effect on MMP-1 expressed in MDA-MB231 and TIMP-1 expressed in HepG2 cells as well as the exact mechanism of inhibition of MMP-2, MMP-9 and TIMP-2 remained unclear.

  7. In vitro antitumor efficacy of berberine: solid lipid nanoparticles against human HepG2, Huh7 and EC9706 cancer cell lines

    Science.gov (United States)

    Meng, Xiang-Ping; Wang, Xiao; Wang, Huai-ling; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2016-03-01

    Hepatocarcinoma and esophageal squamous cell carcinomas threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma and esophageal carcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma and antiesophageal carcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded solid lipid nanoparticles (Ber-SLN) was prepared by hot melting and then high pressure homogenization technique. The in vitro anti-hepatocarcinoma and antiesophageal carcinoma effects of Ber-SLN relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-SLN were 154.3 ± 4.1 nm and -11.7 ± 1.8 mV, respectively. MTT assay showed that Ber-SLN effectively inhibited the proliferation of human HepG2 and Huh7 and EC9706 cells, and the corresponding IC50 value was 10.6 μg/ml, 5.1 μg/ml, and 7.3 μg/ml (18.3μg/ml, 6.5μg/ml, and 12.4μg/ml μg/ml of bulk Ber solution), respectively. These results suggest that the delivery of Ber-SLN is a promising approach for treating tumors.

  8. Anti-hepatocarcinoma effects of berberine-nanostructured lipid carriers against human HepG2, Huh7, and EC9706 cancer cell lines

    Science.gov (United States)

    Meng, Xiang-Ping; Fan, Hua; Wang, Yi-fei; Wang, Zhi-ping; Chen, Tong-sheng

    2016-10-01

    Hepatocarcinoma and esophageal squamous cell carcinomas threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma and esophageal carcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma and antiesophageal carcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded nanostructured lipid carriers (Ber-NLC) was prepared by hot melting and then high pressure homogenization technique. The in vitro anti-hepatocarcinoma and antiesophageal carcinoma effects of Ber-NLC relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-NLC were 189.3 +/- 3.7 nm and -19.3 +/- 1.4 mV, respectively. MTT assay showed that Ber-NLC effectively inhibited the proliferation of human HepG2 and Huh7 and EC9706 cells, and the corresponding IC50 value was 9.1 μg/ml, 4.4 μg/ml, and 6.3 μg/ml (18.3μg/ml, 6.5μg/ml, and 12.4μg/ml μg/ml of bulk Ber solution), respectively. These results suggest that the delivery of Ber-NLC is a promising approach for treating tumors.

  9. Quantitative Structure-Activity Relationship Analysis of Xanthone Derivates as Cytotoxic Agents in Liver Cancer Cell Line HepG2

    Directory of Open Access Journals (Sweden)

    Isnatin Miladiyah

    2016-05-01

    Full Text Available The study of xanthone derivatives as cytotoxic agents in cancer is increasing. This study was conducted to explore the Quantitative Structure-Activity Relationship (QSAR of xanthones as cytotoxic agents in HepG2 cells, to find compounds with better potency. The data set were taken from the previous study, involving 26 xanthone derivates and their cytotoxic activities in Inhibitory Concentration 50% (IC50. The parameters (descriptors were obtained from quantum mechanics calculation using semiempirical AM1 method and QSAR models determined with principle component regression, with log (1/IC50 as a dependent variable and five latent variables as independent variables. From the 26 main descriptors, PCR reduced them to five latent variables (1st– 5th LV. The QSAR analysis gave the best model as follows: log (1/IC50 = 4.592 – 0.204 LV1 + 0.295 LV2 + 0.028 LV3 (n = 26, r = 0.571, SE = 0.234, Fcount/Ftable ratio = 1.165, PRESS value = 3.766. The study concluded that the descriptors contributed to anticancer activity were volume, mass, surface area, log P, dipole moment, HOMO energy, LUMO energy, and atomic net charge of some atoms. Modifications of substitution that would contribute to cytotoxic activity can be performed at phenyl ring A and C, but not at B.

  10. Lipoamino Acid Coated Superparamagnetic Iron Oxide Nanoparticles Concentration and Time Dependently Enhanced Growth of Human Hepatocarcinoma Cell Line (Hep-G2

    Directory of Open Access Journals (Sweden)

    Ahmad Gholami

    2015-01-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION have been widely used in medicine for magnetic resonance imaging, hyperthermia, and drug delivery applications. The effect of SPION on animal cells has been a controversial issue on which there are many contradictions. This study focused on preparation of SPION with novel biocompatible coatings, their characterization, and cytotoxicity evaluation. An amino acid (glycine and two novel lipo-amino acids (2 amino-hexanoic acid and 2 amino-hexadecanoic acid coated magnetic nanoparticles were characterized by various physicochemical means such as X-ray diffraction (XRD, transmission electron microscopy (TEM, vibrating sample magnetometry (VSM, differential scanning calorimetry (DSC, and infrared spectroscopy (FT-IR. The cytotoxicity profile of the synthesized nanoparticles on Hep-G2 cells as measured by MTT assay showed the nanoparticles are nontoxic and the cell growth is promoted by SPION. Moreover, lipoamino acid coating SPION appear more beneficial than the other ones. By increasing concentration of SPION, growth enhancing impact will attenuate and toxicity will appear. Although the aggregation of SPION can affect the results, the gradual delivery of ferric/ferrous ions into cells is the main cause of this growth promotion effect. Conclusively, this study shows that lipoamino acid coating SPION can be used for various biomedical purposes.

  11. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2).

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2006-11-01

    Dietary polyphenols have been associated with the reduced risk of chronic diseases such as cancer, but the precise underlying mechanism of protection remains unclear. The aim of this study was to investigate the effect of quercetin on the activation of the apoptotic pathway in a human hepatoma cell line (HepG2). Treatment of cells for 18 h with quercetin induced cell death in a dose-dependent manner; however, a shorter treatment (4 h) had no effect on cell viability. Incubation of HepG2 cells with quercetin for 18 h induced apoptosis by the activation of caspase-3 and -9, but not caspase-8. Moreover, this flavonoid decreased the Bcl-xL:Bcl-xS ratio and increased translocation of Bax to the mitochondrial membrane. A sustained inhibition of the major survival signals, Akt and extracellular regulated kinase (ERK), also occurred in quercetin-treated cells. These data suggest that quercetin may induce apoptosis by direct activation of caspase cascade (mitochondrial pathway) and by inhibiting survival signaling in HepG2.

  12. On-line comprehensive two-dimensional HepG2 cell membrane chromatographic analysis system for charactering anti-hepatoma components from rat serum after oral administration of Radix scutellariae: A strategy for rapid screening active compounds in vivo.

    Science.gov (United States)

    Jia, Dan; Chen, Xiaofei; Cao, Yan; Wu, Xunxun; Ding, Xuan; Zhang, Hai; Zhang, Chuan; Chai, Yifeng; Zhu, Zhenyu

    2016-01-25

    Cell membrane chromatography (CMC) is a bioaffinity chromatography technique for characterizing interactions between drugs and membrane receptors and has been widely used to screen active components from complex samples such as herbal medicines (HMs). However, it has never been applied in vivo due to its relatively high limit of detection (LOD) and the matrix interferences. In this study, a novel on-line comprehensive two-dimensional HepG2/CMC/enrich columns/high performance liquid chromatography/time-of-flight mass spectrometry system was developed to rapidly screen potential anti-hepatoma components from drug-containing serum of rats after oral administration of Radix scutellariae. A matrix interference deduction method with a home-written program in MATLAB was developed, which could successfully eliminate the interference of endogenous substances in serum. Baicalein, wogonin, chrysin, oroxylin A, neobaicalein and rivularin from Radix scutellariae extraction were significantly retained in the HepG2/CMC column. Three potential active components, wogonin, oroxylin A and neobaicalein were firstly screened from the drug-containing serum as well. The cell counting kit-8 assay demonstrated that wogonin, oroxylin A and chrysin showed high inhibitory activities in a dose-dependent manner on HepG2 cells at the concentration of 12.5-200 μM (pactive components from complex biological samples and could be applied to other biochromatography models.

  13. Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping Yang; Ling Liu; Ping Wang; Sheng-Lin Ma

    2015-01-01

    Background:Human sulfatase-1 (Hsulf-l) is an endosulfatase that selectively removes sulfate groups from heparan sulfate proteoglycans (HSPGs),altering the binding of several growth factors and cytokines to HSPG to regulate cell proliferation,cell motility,and apoptosis.We investigated the role of combined cancer gene therapy with Hsulf-l and cytosine deaminase/5-fluorocytosine (CD/5-FC) suicide gene on a hepatocellular carcinoma (HCC) cell line,HepG2,in vitro and in vivo.Methods:Reverse transcription polymerase chain reaction and immunohistochemistry were used to determine the expression of Hsulf-1 in HCC.Cell apoptosis was observed through flow cytometry instrument and mechanism of Hsulf-1 to enhance the cytotoxicity of 5-FC against HCC was analyzed in HCC by confocal microscopy.We also establish a nude mice model of HCC to address the effect of Hsulf-1 expression on the CD/5-FC suicide gene therapy in vivo.Results:A significant decrease in HepG2 cell proliferation and an increase in HepG2 cell apoptosis were observed when Hsulf-1 expression was combined with the CD/5-FC gene suicide system.A noticeable bystander effect was observed when the Hsulf-1 and CD genes were co-expressed.Intracellular calcium was also increased after HepG2 cells were infected with the Hsulf-1 gene.In vivo studies showed that the suppression of tumor growth was more pronounced in animals treated with the Hsulf-1 plus CD than those treated with either gene therapy alone,and the combined treatment resulted in a significant increase in survival.Conclusions:Hsulf-1 expression combined with the CD/5-FC gene suicide system could be an effective treatment approach for HCC.

  14. LINE-1 gene hypomethylation and p16 gene hypermethylation in HepG2 cells induced by low-dose and long-term triclosan exposure: The role of hydroxyl group.

    Science.gov (United States)

    Zeng, Liudan; Ma, Huimin; Pan, Shangxia; You, Jing; Zhang, Gan; Yu, Zhiqing; Sheng, Guoying; Fu, Jiamo

    2016-08-01

    Triclosan (TCS), a frequently used antimicrobial agent in pharmaceuticals and personal care products, exerts liver tumor promoter activities in mice. Previous work showed high-dose TCS (1.25-10μM) induced global DNA hypomethylation in HepG2 cells. However, whether or how tumor suppressor gene methylation changed in HepG2 cells after low-dose and long-term TCS exposure is still unknown. We investigate here the effects and mechanisms of DNA methylation of global DNA(GDM), repetitive genes, and liver tumor suppressor gene (p16) after exposing HepG2 cells to low-dose TCS (0.625-5nM)for two weeks using HPLC-MS/MS, Methylight, Q-MSP, Pyrosequencing, and Massarray methods. We found that low-dose TCS exposure decreased repetitive elements LINE-1 methylation levels, but not global DNA methylation, through down-regulating DNMT1 (DNA methyltransferase 1) and MeCP2 (methylated DNA binding domain) expression, and up-regulating 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. Interestingly, low-dose TCS elevated p16 gene methylation and inhibited p16 expression, which were not observed in high-dose (10μM) group. Meanwhile, methyl-triclosan could not induce these two types of DNA methylation changes, suggesting the involvement of hydroxyl in TCS-mediated DNA methylation changes. Collectively, our results suggested low concentrations of TCS adversely affected HepG2 cells through DNA methylation dysregulation, and hydroxyl group in TCS played an important role in the effects. This study provided a better understanding on hepatotoxicity of TCS at environmentally relevant concentrations through epigenetic pathway.

  15. Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Yang

    2015-01-01

    Full Text Available Background: Human sulfatase-1 (Hsulf-1 is an endosulfatase that selectively removes sulfate groups from heparan sulfate proteoglycans (HSPGs, altering the binding of several growth factors and cytokines to HSPG to regulate cell proliferation, cell motility, and apoptosis. We investigated the role of combined cancer gene therapy with Hsulf-1 and cytosine deaminase/5-fluorocytosine (CD/5-FC suicide gene on a hepatocellular carcinoma (HCC cell line, HepG2, in vitro and in vivo. Methods: Reverse transcription polymerase chain reaction and immunohistochemistry were used to determine the expression of Hsulf-1 in HCC. Cell apoptosis was observed through flow cytometry instrument and mechanism of Hsulf-1 to enhance the cytotoxicity of 5-FC against HCC was analyzed in HCC by confocal microscopy. We also establish a nude mice model of HCC to address the effect of Hsulf-1 expression on the CD/5-FC suicide gene therapy in vivo. Results: A significant decrease in HepG2 cell proliferation and an increase in HepG2 cell apoptosis were observed when Hsulf-1 expression was combined with the CD/5-FC gene suicide system. A noticeable bystander effect was observed when the Hsulf-1 and CD genes were co-expressed. Intracellular calcium was also increased after HepG2 cells were infected with the Hsulf-1 gene. In vivo studies showed that the suppression of tumor growth was more pronounced in animals treated with the Hsulf-1 plus CD than those treated with either gene therapy alone, and the combined treatment resulted in a significant increase in survival. Conclusions: Hsulf-1 expression combined with the CD/5-FC gene suicide system could be an effective treatment approach for HCC.

  16. Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo

    Science.gov (United States)

    Yang, Xiao-Ping; Liu, Ling; Wang, Ping; Ma, Sheng-Lin

    2015-01-01

    Background: Human sulfatase-1 (Hsulf-1) is an endosulfatase that selectively removes sulfate groups from heparan sulfate proteoglycans (HSPGs), altering the binding of several growth factors and cytokines to HSPG to regulate cell proliferation, cell motility, and apoptosis. We investigated the role of combined cancer gene therapy with Hsulf-1 and cytosine deaminase/5-fluorocytosine (CD/5-FC) suicide gene on a hepatocellular carcinoma (HCC) cell line, HepG2, in vitro and in vivo. Methods: Reverse transcription polymerase chain reaction and immunohistochemistry were used to determine the expression of Hsulf-1 in HCC. Cell apoptosis was observed through flow cytometry instrument and mechanism of Hsulf-1 to enhance the cytotoxicity of 5-FC against HCC was analyzed in HCC by confocal microscopy. We also establish a nude mice model of HCC to address the effect of Hsulf-1 expression on the CD/5-FC suicide gene therapy in vivo. Results: A significant decrease in HepG2 cell proliferation and an increase in HepG2 cell apoptosis were observed when Hsulf-1 expression was combined with the CD/5-FC gene suicide system. A noticeable bystander effect was observed when the Hsulf-1 and CD genes were co-expressed. Intracellular calcium was also increased after HepG2 cells were infected with the Hsulf-1 gene. In vivo studies showed that the suppression of tumor growth was more pronounced in animals treated with the Hsulf-1 plus CD than those treated with either gene therapy alone, and the combined treatment resulted in a significant increase in survival. Conclusions: Hsulf-1 expression combined with the CD/5-FC gene suicide system could be an effective treatment approach for HCC. PMID:25963362

  17. TSA对人肝癌HepG2细胞增殖、凋亡及FHIT表达的影响%Effect of TSA on the proliferation ,apoptosis and expression of FHIT in human hepatoma cell line HepG2

    Institute of Scientific and Technical Information of China (English)

    王丽; 刘晓燕; 段承刚; 程基焱; 何涛

    2010-01-01

    目的 观察曲古抑菌素A(TSA)的体外抗人肝癌HepG2细胞作用及机制.方法 取人肝癌HepG2细胞培养至对数生长期后随机分为TSA组、对照组、空白组,TSA组加入TSA至终浓度分别为125、250、500、1 000、2 000 nmol/L,对照组加入等量二甲基亚砜(DMSO),空白组只加培养基、无细胞,每组设6个复孔,作用24~72 h后MTT比色法测定HepG2细胞增殖抑制率(IR),倒置显微镜和电镜观察HepG2细胞形态变化,TUNEL法检测细胞凋亡率,实时荧光定量PCR检测脆性组氨酸三联体(FHIT)基因表达,Western blot检测FHIT蛋白表达.结果 与对照组相比,TSA组IR随TSA浓度增加和作用时间延长而增加(P<0.05),透射电镜下TSA组HepG2细胞出现凋亡早期改变;与对照组比较,TSA组细胞凋亡率升高, FHIT mRNA及蛋白表达增强(P均<0.01).结论 TSA体外能有效抑制肝癌细胞株HepG2生长并促进其凋亡,机制可能为上调FHIT表达.

  18. 顺铂作用于人肝癌细胞系HepG2后肿瘤干细胞标志物增加%The increase of tumor stem cells in the presence of cisplatin on human hepatocellular carcinoma HepG2 cell line

    Institute of Scientific and Technical Information of China (English)

    赵小鸽; 田美丽; 杨阳; 童冬冬; 陈伟

    2015-01-01

    目的 探讨顺铂(cisplatin)作用于人肝癌细胞系HepG2后细胞增殖能力和周期的变化,及残余细胞中CD133、ABCG2及ICAM-1表达量的变化.方法 以人肝癌细胞系HepG2为研究对象,分别采用MTT比色法和PI染色法检测不同浓度cisplatin作用后细胞增殖能力及细胞周期分布的变化;免疫荧光法检测cisplatin对肿瘤干细胞标志物表达量的影响.结果 不同浓度cisplatin作用后均可明显抑制HepG2细胞的增殖.进一步研究发现,分别使用4 mg/L和2mg/L的cisplatin作用48 h后对HepG2细胞周期Go/G1期及S期有显著影响,cisplatin处理使残留HepG2细胞中CD133、ABCG2及ICAM-I的表达量明显升高.结论 HepG2细胞中存在的小部分肝癌干细胞能够逃脱cisplatin的杀伤作用,此种逃避过程的发生可能是临床上肝癌经治疗后复发的重要原因.

  19. 二甲双胍对人肝癌细胞 HepG2增殖及脂肪酸合酶的影响%Effects of metformin on cell proliferation and fatty acid synthase in human hepatocellular carcinoma cell line HepG2

    Institute of Scientific and Technical Information of China (English)

    彭晓韧; 刘燕; 邹大进; 李娟

    2015-01-01

    Objective The cancer risk of patients with diabetes mellitus who are treated by metformin declines remarkably in comparison to patients receiving other drug therapies.The article was to investigate the relationship between antineopastic activity and fatty acid synthase (FASN) of metformin in human hepatocellular carcinoma cell(HCC) line HepG2. Methods HepG2 cells were treated with various concentrations of metformin( 0, 1, 5, 10, 15 mmol/L) for 24, 48 and 72 h respectively and cell growth was assessed by CCK-8 assay.Positive control(paclitaxel 10μg/mL) and negative control(metformin 0mmol/L) were set up simultaneously.After being treated with doses of metformin(0, 5, 10,15mmol/L) for 72h, protein expression levels of AMPKα、P-AMPKα、FASN、P-mTOR and P-Akt were measured by western blotting analysis and FASN mRNA expression levels were measured by RT-PCR. Results Being treated with vari-ous doses of metformin(1, 5, 10, 15 mmol/L) for 24, 48 and 72 h, the growth of HepG2 cells were inhibited by metformin in dose-dependent and time-dependent manner( P0.05) .FASN mRNA expression levels decreased significantly in all metformin-treated groups( P<0.05) . Conclusion Met-formin actitiviates AMPK, inhibits mTOR and downregulates FASN, which are implicated in its antineopastic activity on HCC.Although metformin inhibits mTOR activation, it is not involved in Akt upregulation through a negative loop.%目的:二甲双胍治疗的糖尿病患者癌症发生风险较其他药物治疗者显著降低。探讨二甲双胍在人肝癌细胞HepG2中的抗肿瘤活性与脂肪酸合酶的关系。方法选取不同浓度(1、5、10、15 mmol/L)二甲双胍处理HepG2细胞24、48、72 h,用CCK-8法检测其对细胞增殖的影响。同时设阳性对照(紫杉醇10μg/mL),阴性对照(二甲双胍0 mmol/L)。设0、5、10、15 mmol/L二甲双胍处理72 h,用Western blot检测腺苷酸活化蛋白激酶( adenosine monophosphate activated protein

  20. In vitro Evaluation of Cytotoxic Activities of Essential Oil from Moringa oleifera Seeds on HeLa, HepG2, MCF-7, CACO-2 and L929 Cell Lines.

    Science.gov (United States)

    Elsayed, Elsayed Ahmed; Sharaf-Eldin, Mahmoud A; Wadaan, Mohammad

    2015-01-01

    Moringa oleifera Lam. (Moringaceae) is widely consumed in tropical and subtropical regions for their valuable nutritional and medicinal characteristics. Recently, extensive research has been conducted on leaf extracts of M. oleifera to evaluate their potential cytotoxic effects. However, with the exception of antimicrobial and antioxidant activities, little information is present on the cytotoxic activity of the essential oil obtained from M. oleifera seeds. Therefore, the present investigation was designed to investigate the potential cytotoxic activity of seed essential oil obtained from M. oleifera on HeLa, HepG2, MCF-7, CACO-2 and L929 cell lines. The different cell lines were subjected to increasing oil concentrations ranging from 0.15 to 1 mg/mL for 24h, and the cytotoxicity was assessed using MTT assay. All treated cell lines showed a significant reduction in cell viability in response to the increasing oil concentration. Moreover, the reduction depended on the cell line as well as the oil concentration applied. Additionally, HeLa cells were the most affected cells followed by HepG2, MCF-7, L929 and CACO-2, where the percentages of cell toxicity recorded were 76.1, 65.1, 59.5, 57.0 and 49.7%, respectively. Furthermore, the IC50 values obtained for MCF-7, HeLa and HepG2 cells were 226.1, 422.8 and 751.9 μg/mL, respectively. Conclusively, the present investigation provides preliminary results which suggest that seed essential oil from M. oleifera has potent cytotoxic activities against cancer cell lines.

  1. Clitocine reversal of P-glycoprotein associated multi-drug resistance through down-regulation of transcription factor NF-κB in R-HepG2 cell line.

    Directory of Open Access Journals (Sweden)

    Jianguo Sun

    Full Text Available Multidrug resistance (MDR is one of the major reasons for failure in cancer chemotherapy and its suppression may increase the efficacy of therapy. The human multidrug resistance 1 (MDR1 gene encodes the plasma membrane P-glycoprotein (P-gp that pumps various anti-cancer agents out of the cancer cell. R-HepG2 and MES-SA/Dx5 cells are doxorubicin induced P-gp over-expressed MDR sublines of human hepatocellular carcinoma HepG2 cells and human uterine carcinoma MES-SA cells respectively. Herein, we observed that clitocine, a natural compound extracted from Leucopaxillus giganteus, presented similar cytotoxicity in multidrug resistant cell lines compared with their parental cell lines and significantly suppressed the expression of P-gp in R-HepG2 and MES-SA/Dx5 cells. Further study showed that the clitocine increased the sensitivity and intracellular accumulation of doxorubicin in R-HepG2 cells accompanying down-regulated MDR1 mRNA level and promoter activity, indicating the reversal effect of MDR by clitocine. A 5'-serial truncation analysis of the MDR1 promoter defined a region from position -450 to -193 to be critical for clitocine suppression of MDR1. Mutation of a consensus NF-κB binding site in the defined region and overexpression of NF-κB p65 could offset the suppression effect of clitocine on MDR1 promoter. By immunohistochemistry, clitocine was confirmed to suppress the protein levels of both P-gp and NF-κB p65 in R-HepG2 cells and tumors. Clitocine also inhibited the expression of NF-κB p65 in MES-SA/Dx5. More importantly, clitocine could suppress the NF-κB activation even in presence of doxorubicin. Taken together; our results suggested that clitocine could reverse P-gp associated MDR via down-regulation of NF-κB.

  2. Effect of Oleanic Acid on Key Enzyme Activity in Insulin-Resistant HepG2 Cell Line%齐墩果酸对胰岛素抵抗 HepG2关键酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    王晓峰; 周建

    2015-01-01

    Objective To explore the effect of oleanic acid on key enzyme activity in insulin-resistant HepG2 cells. Methods The HepG2 cells were divided into normal control,model control,metformin,and oleanic acid groups.Glycogen content in insulin-resistant HepG2 cell model were detected by hepatic glycogen test kit upon treatment with oleanic acid.Activities of glucokinase ( GK) ,phosphoenolpyruvate carboxylase kinase (PEPCK),and glucose-6-phosphatase (G-6-Pase) were assayed by the glucose 6-phosphate dehydrogenase coupling colorimetric, lactate dehydrogenase coupling colorimetric and ammonium molybdate constant phosphorus methods. Results The oleanic acid enhanced glucose consumption,lowered the activity of G-6-Pase and PEPCK by 54.8% and 18.8%,respectively,and increased the activity of GK and glycogen content in also insulin-resistant HepG2 cells by 100.6% and 98.6%,respectively. Conclusion Aqueous extracts of shirako play a role in lowering PEPCK and G-6-Pase activities and inhibiting glucogenesis, resulting in the reduction of endogenous glucose in the cell. In addition,it can augment the activity of GK,accelerate the process of glucolysis,increase the glycogen content,and alleviate insulin resistance of HepG2.%目的:探讨齐墩果酸对胰岛素抵抗人肝癌细胞(HepG2)关键酶活性的影响。方法将 HepG2细胞分别设正常对照组、模型对照组、二甲双胍组、齐墩果酸组。采用肝糖原测定试剂盒检测齐墩果酸对胰岛素抵抗 HepG2细胞糖原含量的影响;采用葡萄糖-6-磷酸脱氢酶耦联比色法、乳酸脱氢酶耦联比色法及钼酸铵定磷法测定葡萄糖激酶(GK)、磷酸烯醇式丙酮酸羧激酶(PEPCK)和葡萄糖-6-磷酸酶( G-6-Pase)的活性。结果齐墩果酸能够促进胰岛素抵抗HepG2细胞的葡萄糖消耗,使 G-6-Pase 及 PEPCK 活性分别降低54.8%,18.8%,使 GK 活性和糖原含量分别升高100.6%,98.6%。结论齐墩果酸可降低胰岛素抵抗 HepG2细胞 G-6-Pase

  3. Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening.

    Science.gov (United States)

    Wilson, Jodie; Berntsen, Hanne Friis; Zimmer, Karin Elisabeth; Frizzell, Caroline; Verhaegen, Steven; Ropstad, Erik; Connolly, Lisa

    2016-03-01

    Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POPs were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p'-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2h and 48h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC+Br mixture in comparison to the effects of the individual mixtures. No significant effects were detected in the Br+Cl, PFC+Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Evaluation of hepatitis B viral replication and proteomic analysis of HepG2.2.15 cell line after knockdown of HBx

    Institute of Scientific and Technical Information of China (English)

    Hai-Yang Xie; Jun Cheng; Chun-Yang Xing; Jin-Jin Wang; Rong Su; Xu-Yong Wei; Lin Zhou; Shu-Sen Zheng

    2011-01-01

    BACKGROUND: Hepatitis B virus (HBV) is one of the major pathogens of human liver disease. Studies have shown that HBV X protein (HBx) plays an important role in promoting viral gene expression and replication. In this study we performed a global proteomic  profiling  to  identify  the  downstream  functional proteins of HBx, thereby detecting the mechanisms of action of HBx on virion replication. METHODS: HBx  in  the  HepG2.2.15  cell  line  was  knocked down by the transfection of small interfering RNA (siRNA). The replication level of HBV was evaluated by microparticle enzyme  immunoassay  analysis  of  HBsAg  and  HBeAg  in  the culture supernatant, and real-time quantitative PCR analysis of  HBV  DNA.  Two-dimensional  electrophoresis  combined with MALDI-TOF/TOF was performed to analyze the changes in protein expression profile after treatment with HBx siRNA. RESULTS: Knockdown  of  HBx  disturbed  HBV  replication in vitro.  HBx  target  siRNA  significantly  inhibited  the expression  of  HBsAg,  HBeAg  and  the  replication  of  HBV DNA.  Twelve  significantly  changed  proteins  (7  upregulated and 5 downregulated) were successfully identified by MALDI-TOF/TOF  using  proteomics  differential  expression  analysis after the knockdown of HBx. Among these identified proteins, HSP70 was validated by Western blotting. CONCLUSION: The  results  of  the  study  indicated  the positive  effect  of  HBx  on  HBV  replication,  and  a  group  of downstream  target proteins  of HBx  may  be  responsible for this effect.

  5. 松花粉对肝癌细胞株HepG2的PIVKA-Ⅱ、AFP和VEGF含量的影响%Influence of Pine Pollen on Content of PIVKA-Ⅱ, AFP and VEGF of Hepatoma Cell Line HepG2

    Institute of Scientific and Technical Information of China (English)

    于雯珺; 于沛涛; 罗艳红

    2016-01-01

    目的 研究体外检测最佳作用浓度(2mg/孔)和最佳作用时间(48h)松花粉对肝癌细胞株HepG2的PIVKA-Ⅱ、AFP和VEGF含量的影响.方法 用ELISA法检测松花粉治疗组与HepG2对照组培养细胞上清液中PIVKA-Ⅱ、AFP和VEGF的含量变化.结果 松花粉治疗组与HepG2对照组相比,PIVKA-Ⅱ、AFP的含量下降( <0.05);VEGF的含量极显著下降( <0.01).结论 松花粉对HepG2细胞的增殖抑制作用和促凋亡作用可能与下调PIVKA-Ⅱ、AFP和VEGF有关.

  6. 白子菜水提液对胰岛素抵抗HepG2细胞关键酶活性的影响%Effect of Aqueous Extracts from Shirako on Key Enzyme Activity in Insulin-Resistant HepG2 Cell Line

    Institute of Scientific and Technical Information of China (English)

    韦乃球; 杨柯; 冼寒梅; 郝永靖; 柳俊辉; 黄旭

    2013-01-01

    Objective To explore the effect of aqueous extracts from shirako on key enzyme activity in insulin-resistant HepG2 cells. Methods Glucose consumption and glycogen content of insulin-resistant HepG2 were detected by glucose clinic test kit and hepatic glycogen test kit after treatment with water extracts of shirako. Activities of glucokinase ( GK) , phosphoenol-pyruvate carboxylase kinase (PEPCK) , and glucose-6-phosphatase (G-6-Pase) were assayed by the glucose 6-phosphate dehy-drogenase coupling colorimetric, lactate dehydrogenase coupling colorimetric and ammonium molybdate constant phosphorus methods. Results The aqueous extracts of shirako enhanced glucose consumption, lowered the activity of G-6-Pase and PEPCK (71.41% ,82. 14% ) , increased the activity of GK and glycogen content of insulin-resistant HepG2(28. 77% ,96. 73% ). Conclusion Aqueous extracts of shirako plays a role in lowering PEPCK and G-6-Pase activities and inhibiting glucogenesis, resulting in the reduction of endogenous glucose in the cell. In addition, it also can augment the activity of GK, accelerate the process of glucolysis, increase the glycogen content, and alleviate insulin resistance of HepG2.%目的 探讨白子菜水提液对胰岛素抵抗HepG2细胞关键酶活性的影响.方法 采用葡萄糖临床检测试剂盒、肝糖原测定试剂盒检测白子菜水提液对胰岛素抵抗HepG2细胞葡萄糖消耗和HepG2细胞的耱原含量的影响;采用葡萄糖-6-磷酸脱氢酶耦联比色法、乳酸脱氢酶耦联比色法及钼酸铵定磷法测定葡萄糖激酶(GK)、磷酸烯醇式丙酮酸羧激酶(PEPCK)和葡萄糖-6-磷酸酶(G-6-Pase)的活性.结果 白子菜水提液能够促进胰岛素抵抗HepG2细胞的葡萄糖消耗,使G-6-Pase及PEPCK活性分别降低71.41%,82.14%,使GK活性和糖原含量分别提高28.77%,96.73%.结论 白子菜水提液可降低胰岛素抵抗HepG2细胞G-6-Pase和PEPCK的活性,抑制糖异生作用,从而减少细胞内源

  7. Ammonia metabolism capacity of HepG2 cells with high expression of human glutamine synthetase

    Institute of Scientific and Technical Information of China (English)

    Nan-Hong Tang; Xiao-Qian Wang; Xiu-Jin Li; Yan-Ling Chen

    2008-01-01

    BACKGROUND:Currently, one of the tough problems for the application of bioartiifcial liver (BAL) is the shortage of suitable hepatocytes. There are reports on different types of BAL assistance developed with porcine hepatocytes and HepG2 C3A cells, but their defects are obvious. In recent years, some studies focus more on liver cells with features of human origin and improved detoxiifcation. In this study, a hepatocyte line with high expression of human glutamine synthetase (hGS) was raised and its capacity for ammonia metabolism was investigated. METHODS:hGS cDNA and alpha-fetoprotein transcription regulatory element (AFP-TRE) were cloned with the designed primers. The eukaryotic expression vectors, pLNChGS and pLNAFhGS, were constructed and transfected into PA317 cells. Recombinant retroviruses (Retro-hGS and Retro-AFhGS) were produced and then infected into HepG2 cells. G418-resistant cell clones, HepG2/pLNChGS and HepG2/pLNAFhGS, were selected and ampliifed. Then hGS mRNA was measured by semi-quantitative RT-PCR;hGS enzymatic activity and ammonia metabolism analysis in different concentration of NH4+were detected with a quantitative biochemistry kit. The cell proliferation was also detected by MTT chromatometry. RESULTS:The expression of hGS mRNA in HepG2/pLNChGS cells (8.306±0.336) and HepG2/pLNAFhGS cells (21.358±1.716) was much stronger than in control cells (P CONCLUSION:The constructed hepatocytes (HepG2 cells) with speciifc high-expression of hGS have a powerful ability to degrade ammonia in vitro, and provide necessary experimental data for the selection of biomaterials in BAL.

  8. Effects of sargentgloryvine stem extracts on HepG-2 cells in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Ming-Hua Wang; Min Long; Bao-Yi Zhu; Shu-Hui Yang; Ji-Hong Ren; Hui-Zhong Zhang

    2011-01-01

    AIM: To observe the effects of sargentgloryvine stem extracts (SSE) on the hepatoma cell line HepG-2 in vitro and in vivo and determine its mechanisms of action.METHODS: Cultured HepG-2 cells treated with SSE were analysed by 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-Diphenyltetrazolium bromide and clone formation assay.The cell cycle and apoptosis analysis were conducted by flow cytometric, TdT-Mediated dUTP Nick End Labeling and acridine orange/ethidium bromide staining methods,and protein expression was examined by both reverse transcriptase-polymerase chain reaction and Western blotting.The pathological changes of the tumor cells were observed by haematoxylin and eosin staining. Tumor growth inhibition and side effects were determined in a xenograft mouse model.RESULTS: SSE treatment could not only inhibit HepG-2 cell proliferation in a dose- and time-dependent manner but also induce apoptosis and cell cycle arrest at the S phase. The number of colonies formed by SSEtreated tumor cells was fewer than that of the controls (P 0.05). Systemic administration of SSE could inhibit the HepG-2 xenograft tumor growth with no obvious toxic side effects on normal tissues.CONCLUSION: SSE can induce apoptosis of HepG-2 cells in vitro and in vivo through decreasing expression of Bcl-xl and Mcl-1 and increasing expression of Bax.

  9. siRNA干扰ski基因的表达对人肝癌HepG2细胞生物学功能的影响%Effect of ski-siRNA on biological function of human hepatoma cell line HepG2

    Institute of Scientific and Technical Information of China (English)

    姜丹丹; 杨生生; 陈欢; 陈松; 郝强; 陈励藻; 蔡在龙

    2008-01-01

    目的:设计并化学合成针对原癌基因ski的siRNA分子片段,转染人肝癌HepG2细胞,观察其对HepG2细胞增殖、细胞周期和凋亡等生物学功能方面的影响.方法:设计并化学合成针对原癌基因ski的3个siRNA分子序列,阳离子脂质体法瞬间转染HepG2细胞,运用实时定量PCR法和Western印迹法检测细胞中ski基因在mRNA水平和蛋白水平的变化.然后利用MTT法和流式细胞术检测转染ski-siRNA的HepG2细胞增殖、细胞周期和凋亡等生物学功能方面指标的变化.结果:3对特异性ski-siRNA均有效地抑制了ski基因的表达,以siRNA-B抑制效果最好,可达到70%,而且随着转染时间的延长,ski的表达呈逐步下降趋势.转染ski-siRNA后HepG2细胞的增殖能力明显受到抑制(P<0.05),S期细胞明显减少,是阴性对照组的2倍以上.结论:靶向ski基因的siRNA分子片段可以有效地抑制人肝癌HepG2细胞的生长,使进入S期的细胞明显减少,其作用与下调ski基因的表达有关,ski可能是肝癌治疗的一个潜在靶点.

  10. Demonstration of the presence of the "deleted" MIR122 gene in HepG2 cells.

    Science.gov (United States)

    Hamad, Ibrahim A Y; Fei, Yue; Kalea, Anastasia Z; Yin, Dan; Smith, Andrew J P; Palmen, Jutta; Humphries, Steve E; Talmud, Philippa J; Walker, Ann P

    2015-01-01

    MicroRNA 122 (miR-122) is highly expressed in the liver where it influences diverse biological processes and pathways, including hepatitis C virus replication and metabolism of iron and cholesterol. It is processed from a long non-coding primary transcript (~7.5 kb) and the gene has two evolutionarily-conserved regions containing the pri-mir-122 promoter and pre-mir-122 hairpin region. Several groups reported that the widely-used hepatocytic cell line HepG2 had deficient expression of miR-122, previously ascribed to deletion of the pre-mir-122 stem-loop region. We aimed to characterise this deletion by direct sequencing of 6078 bp containing the pri-mir-122 promoter and pre-mir-122 stem-loop region in HepG2 and Huh-7, a control hepatocytic cell line reported to express miR-122, supported by sequence analysis of cloned genomic DNA. In contrast to previous findings, the entire sequence was present in both cell lines. Ten SNPs were heterozygous in HepG2 indicating that DNA was present in two copies. Three validation isolates of HepG2 were sequenced, showing identical genotype to the original in two, whereas the third was different. Investigation of promoter chromatin status by FAIRE showed that Huh-7 cells had 6.2 ± 0.19- and 2.7 ± 0.01- fold more accessible chromatin at the proximal (HNF4α-binding) and distal DR1 transcription factor sites, compared to HepG2 cells (p=0.03 and 0.001, respectively). This was substantiated by ENCODE genome annotations, which showed a DNAse I hypersensitive site in the pri-mir-122 promoter in Huh-7 that was absent in HepG2 cells. While the origin of the reported deletion is unclear, cell lines should be obtained from a reputable source and used at low passage number to avoid discrepant results. Deficiency of miR-122 expression in HepG2 cells may be related to a relative deficiency of accessible promoter chromatin in HepG2 versus Huh-7 cells.

  11. TCM matrine inducescell arrest and apoptosis with recovery expression of the hepato-specific miR122a in human hepatocellular carcinomaHep G2cell line.

    Science.gov (United States)

    Zhou, Wuyuan; Xu, Xiang; Gao, Jie; Sun, Pengfei; Li, Lei; Shi, Xuetao; Li, Jie

    2015-01-01

    Hepatocellular carcinoma (HCC) accounts for 80% to 90% of liver cancers and it is one of the most prevalent carcinomas throughout the world. Traditional chemotherapy is often developed chemoresistance HCC patients.Matrine is an active component oftraditional Chinese medicine (TCM) and is a promising alternative HCC drug. In this study, the therapeutic effects and the underlying molecular mechanisms of matrine on the human HCC cell lineHep G2 were investigated. High dosage of matrine (1.0 mg/mL) could significantly (P matrine appeared. Up-regulation of the hepato-specific miR122a followed by down expression of its targetcyclin G1 (CG1) gene by low concentration of matrine (0.2 mg/mL) was detected using was observed using quantitative real-time PCR, immunohistochemistry (IHC) and western blot assays. In conclusion, matrineinducescell arrest and apoptosis with recovery expression of the hepato-specific miR122a in human hepatocellular carcinoma Hep G2 cell line.

  12. Gene Network Analysis of Glucose Linked Signaling Pathways and Their Role in Human Hepatocellular Carcinoma Cell Growth and Survival in HuH7 and HepG2 Cell Lines

    Science.gov (United States)

    Berger, Emmanuelle; Vega, Nathalie; Weiss-Gayet, Michèle; Géloën, Alain

    2015-01-01

    Cancer progression may be affected by metabolism. In this study, we aimed to analyze the effect of glucose on the proliferation and/or survival of human hepatocellular carcinoma (HCC) cells. Human gene datasets regulated by glucose were compared to gene datasets either dysregulated in HCC or regulated by other signaling pathways. Significant numbers of common genes suggested putative involvement in transcriptional regulations by glucose. Real-time proliferation assays using high (4.5 g/L) versus low (1 g/L) glucose on two human HCC cell lines and specific inhibitors of selected pathways were used for experimental validations. High glucose promoted HuH7 cell proliferation but not that of HepG2 cell line. Gene network analyses suggest that gene transcription by glucose could be mediated at 92% through ChREBP in HepG2 cells, compared to 40% in either other human cells or rodent healthy liver, with alteration of LKB1 (serine/threonine kinase 11) and NOX (NADPH oxidases) signaling pathways and loss of transcriptional regulation of PPARGC1A (peroxisome-proliferator activated receptors gamma coactivator 1) target genes by high glucose. Both PPARA and PPARGC1A regulate transcription of genes commonly regulated by glycolysis, by the antidiabetic agent metformin and by NOX, suggesting their major interplay in the control of HCC progression. PMID:26380295

  13. [Biological function and molecular mechanism of URI in HepG2 cells].

    Science.gov (United States)

    Zhou, Wei; Zhong, Yanyu; Wang, Hongmin; Yang, Sijun; Wei, Wenxiang

    2014-11-01

    To explore the effect and molecular mechanism of the unconventional prefoldin RPB5 interactor (URI) in hepatocellular carcinoma HepG2 cells. The cDNA sequence and shRNA of URI were obtained and sub-cloned into eukaryotic expression vectors. Then those vectors were transfected into HepG2 cells to obtain stable transfection cell line. The cell proliferation and anchor-independent growth in URI-overexpressing and knockdown HepG2 cells were determined by CCK-8 and soft agar colony assay. Flow cytometry was applied to detect the cell cycle and apoptosis of γ-ray irradiated cells. Apoptosis related genes were detected by Western blot. The pCDNA3.1-URI and pGPU6-URIi eukaryotic expression vectors were constructed successfully and corresponding stable transfection cell lines were obtained. Cell proliferation rates of the HepG2, pCDNA3.1-URI-HepG2 and pGPU6-URIi-HepG2 cells were (588.78 ± 32.12)%, (959.33 ± 58.8)% and (393.93 ± 39.7)%, respectively (P HepG2, pCDNA3.1-URI-HepG2 and pGPU6-URIi-HepG2 cells were 43 ± 7, 85 ± 5 and 20 ± 4 (P HepG2 cells, the relative protein expression levels of URI, Bax and Bcl-2 were 0.92 ± 0.03, 1.11 ± 0.13 and 0.82 ± 0.01 (P HepG2 cells, the relative protein expression levels of URI, Bax and Bcl-2 were 1.79 ± 0.12, 0.48 ± 0.01 and 2.20 ± 0.30 (P HepG2 cells, the relative protein expression levels of URI, Bax and Bcl-2 were 0.50 ± 0.04, 1.52 ± 0.20 and 0.38 ± 0.01 (P < 0.05), respectively. The expression of Bax was down-regulated and Bcl-2 was up-regulated in the URI-overexpressing cell line. However, on the contrary, expression of Bax was up-regulated and Bcl-2 was down-regulated in the URI-depleted cell line. URI may promote the growth of hepatocellular carcinoma cells via inhibition of cell proliferation and reducing the apoptosis in hepatocellular carcinoma cells in vitro. After the impairment of URI expression, the proliferation ability of hepatocellular carcinoma cells is suppressed and the ability to resist

  14. Evaluation of cytotoxic compounds in different organs of the sea bream Sarpa salpa as related to phytoplankton consumption: an in vitro study in human liver cell lines HepG2 and WRL68.

    Science.gov (United States)

    Bellassoued, Khaled; Hamza, Asma; Van Pelt, Jos; Elfeki, Abdelfattah

    2012-09-01

    The present study was aimed to assess the cytotoxic effects of not-yet identified compounds present in organ extracts of Sarpa salpa, collected in autumn, the period with a peak in health problems. In addition, we studied the cytotoxicity of extracts of epiphytes found in the stomach content of S. salpa collected in summer and of epiphytes collected from the sea in the Sfax area at the end of spring. We tested these fractions in two human hepatic cell lines: HepG2 and WRL68. We observed a significant loss of viable cells when HepG2 cells were exposed for 72 h to acetone extracts of livers of S. salpa at a concentration of 2.5 mg/ml protein. Proteins extracted from brain or muscle did not significantly induce cell death at the studied concentrations (≤10 mg/ml). There was a significant loss of viable cells when treated with liver extract of S. salpa dissolved in DMSO. Extracts of epiphytes collected in late spring showed a cytotoxic effect in a concentration-dependent manner. Moreover, we observed a significantly decreased cell viability of HepG2 at a dilution (1/40) of epiphyte extracts from stomach contents of two fish we had collected. The cytotoxic effect of the observed epiphyte extracts confirms the transfer of toxins originating from toxic dinoflagellates which live in epiphyte on the Posidonia oceanica leaves to fish organs by grazing. Hence, the liver of this fish can cause a threat to human health and consumption should for this reason be dissuaded.

  15. Comparative analysis of 3D culture methods on human HepG2 cells.

    Science.gov (United States)

    Luckert, Claudia; Schulz, Christina; Lehmann, Nadja; Thomas, Maria; Hofmann, Ute; Hammad, Seddik; Hengstler, Jan G; Braeuning, Albert; Lampen, Alfonso; Hessel, Stefanie

    2017-01-01

    Human primary hepatocytes represent a gold standard in in vitro liver research. Due to their low availability and high costs alternative liver cell models with comparable morphological and biochemical characteristics have come into focus. The human hepatocarcinoma cell line HepG2 is often used as a liver model for toxicity studies. However, under two-dimensional (2D) cultivation conditions the expression of xenobiotic-metabolizing enzymes and typical liver markers such as albumin is very low. Cultivation for 21 days in a three-dimensional (3D) Matrigel culture system has been reported to strongly increase the metabolic competence of HepG2 cells. In our present study we further compared HepG2 cell cultivation in three different 3D systems: collagen, Matrigel and Alvetex culture. Cell morphology, albumin secretion, cytochrome P450 monooxygenase enzyme activities, as well as gene expression of xenobiotic-metabolizing and liver-specific enzymes were analyzed after 3, 7, 14, and 21 days of cultivation. Our results show that the previously reported increase of metabolic competence of HepG2 cells is not primarily the result of 3D culture but a consequence of the duration of cultivation. HepG2 cells grown for 21 days in 2D monolayer exhibit comparable biochemical characteristics, CYP activities and gene expression patterns as all 3D culture systems used in our study. However, CYP activities did not reach the level of HepaRG cells. In conclusion, the increase of metabolic competence of the hepatocarcinoma cell line HepG2 is not due to 3D cultivation but rather a result of prolonged cultivation time.

  16. Effects of Verapamil on the Proliferation, DNA Synthesis and Migration of Human Hepatoma Cell Line HepG2%维拉帕米对肝癌细胞株HepG2细胞增殖及迁移的影响

    Institute of Scientific and Technical Information of China (English)

    梁宁林; 魏艳; 吴文超; 刘小菁; 杨丽

    2011-01-01

    目的 探讨钙离子通道阻滞剂维拉帕米(VR)对人肝痛细胞株HepG2细胞增殖、DNA合成及细胞迁移的影响.方法 在HepG2细胞培养液中加入不同浓度的VR(0、1、5、10、1 5、20 μg/mL),采用甲基四唑蓝(MTT)法测定VR对HepG2细胞增殖的影响;5-乙炔基-2'-脱氧尿嘧啶核苷(5-ethynyl-2'deoxyuridine,Edu)荧光检测法测定细胞DNA合成期(S期)细胞所占比例;划痕试验测定细胞的迁移距离.结果 MTT结果 显示经VR处理24 h、48 h后除1、5 μg/mLVR在24 h对细胞无抑制作用外(P>0.05),其余浓度及时间段对HepG2的增殖均有抑制作用(P<0.05),并且相同浓度VR刺激48 h较24 h对HepG2的抑制率增加(P<0.05).Edu结果 显示HepG2经VR作用24 h后,0、1、5、10、15、20μg/mL处理组HepG2的S期细胞所占比例分别为51.5%±3.78%、52.4%±3.26%、53.1%±1.94%、39.6%±4.25%、40.2%±2.67%、42.6%±3.13%.10、15、20 μg/m1处理组S期细胞所占比例较1、5μg/mL组及对照组下降(P<0.05),与MTT结果 一致.划痕试验结果 显示经10、15、20ug/mLVR处理24 h后,与对照组相比,细胞迁移距离缩短(P<0.05).结论 VR对肝癌细胞株HepG2的增殖及迁移均有抑制作用,VR可能成为肝痛治疗的新靶标.

  17. Inferring Toxicological Responses of HepG2 Cells from ...

    Science.gov (United States)

    Understanding the dynamic perturbation of cell states by chemicals can aid in for predicting their adverse effects. High-content imaging (HCI) was used to measure the state of HepG2 cells over three time points (1, 24, and 72 h) in response to 976 ToxCast chemicals for 10 different concentrations (0.39-200µM). Cell state was characterized by p53 activation (p53), c-Jun activation (SK), phospho-Histone H2A.x (OS), phospho-Histone H3 (MA), alpha tubulin (Mt), mitochondrial membrane potential (MMP), mitochondrial mass (MM), cell cycle arrest (CCA), nuclear size (NS) and cell number (CN). Dynamic cell state perturbations due to each chemical concentration were utilized to infer coarse-grained dependencies between cellular functions as Boolean networks (BNs). BNs were inferred from data in two steps. First, the data for each state variable were discretized into changed/active (> 1 standard deviation), and unchanged/inactive values. Second, the discretized data were used to learn Boolean relationships between variables. In our case, a BN is a wiring diagram between nodes that represent 10 previously described observable phenotypes. Functional relationships between nodes were represented as Boolean functions. We found that inferred BN show that HepG2 cell response is chemical and concentration specific. We observed presence of both point and cycle BN attractors. In addition, there are instances where Boolean functions were not found. We believe that this may be either

  18. 受强力霉素调控表达的人肝癌HepG2细胞系的建立%The establishment of a Tet-on transfected human hepatoma HepG2 cell line regulated by doxycycline

    Institute of Scientific and Technical Information of China (English)

    李东华; 陈孝平; 全晓明

    2004-01-01

    目的建立受强力霉素(doxycycline)调控表达的人肝癌HepG2细胞系.方法用阳离子脂质体lipofectamine 20000将pTet-on质粒转染人肝癌HepG2细胞,通过G418筛选得到稳定转染的抗性克隆;将抗性克隆细胞分别培养扩增,通过pTRE-luc质粒瞬时转染,加入终浓度为1 μg/ml的doxycycline诱导剂培养48 h后,逐一检测每个细胞株的荧光素酶表达活性.结果第6号克隆的细胞诱导后荧光素酶的表达活性为16764,而非诱导状态下该细胞株的背景活性为87,诱导后的活性增加192倍.结论 HepG2/Tet-on细胞株是可调控基因表达的人肝癌细胞株,为研究肝癌的发病和基因治疗提供了较为理想的研究工具.

  19. Esterification of Ginsenoside Rh2 Enhanced Its Cellular Uptake and Antitumor Activity in Human HepG2 Cells.

    Science.gov (United States)

    Chen, Fang; Deng, Ze-Yuan; Zhang, Bing; Xiong, Zeng-Xing; Zheng, Shi-Lian; Tan, Chao-Li; Hu, Jiang-Ning

    2016-01-13

    Our previous research had indicated that the octyl ester derivative of ginsenoside Rh2 (Rh2-O) might have a higher bioavailability than Rh2 in the Caco-2 cell line. The aim of this study was to investigate the cellular uptake and antitumor effects of Rh2-O in human HepG2 cells as well as its underlying mechanism compared with Rh2. Results showed that Rh2-O exhibited a higher cellular uptake (63.24%) than Rh2 (36.76%) when incubated with HepG2 cells for 24 h. Rh2-O possessed a dose- and time-dependent inhibitory effect against the proliferation of HepG2 cells. The IC50 value of Rh2-O for inhibition of HepG2 cell proliferation was 20.15 μM, which was roughly half the value of Rh2. Rh2-O induced apoptosis of HepG2 cells through a mitochondrial-mediated intrinsic pathway. In addition, the accumulation of ROS was detected in Rh2-O-treated HepG2 cells, which participated in the apoptosis of HepG2 cells. Conclusively, the findings above all suggested that Rh2-O as well as Rh2 inducing HepG2 cells apoptosis might involve similar mechanisms; however, Rh2-O had better antitumor activities than Rh2, probably due to its higher cellular uptake.

  20. Overexpression of cyclooxygenase-2 in human HepG2, Bel-7402 and SMMC-7721 hepatoma cell lines and mechanism of cyclooxygenase-2 selective inhibitor celecoxib-induced cell growth inhibition and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ning-Bo Liu; Tao Peng; Chao Pan; Yu-Yu Yao; Bo Shen; Jing Leng

    2005-01-01

    AIM: To investigate the cyclooxygenase-2 (COX-2)expression level in human HepG2, Bel-7402 and SMMC-7721hepatoma cell lines and the molecular mechanism of COX-2 selective inhibitor celecoxib-induced cell growth inhibition and cell apoptosis.METHODS: Hepatoma cells were cultured and treated with celecoxib. Cell in situ hybridization (ISH) and immunocytochemistry were used to detect COX-2 mRNA and protein expression. Proliferating cell nuclear antigen and phosphorylated Akt were also detected by immunocytochemistry assay. Cell growth rates were assessed by 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium (MTT) bromide colorimetric assay. Celecoxibinduced cell apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and flow cytometry (FCM). The phosphorylated Akt and activated fragments of caspase-9, caspase-3 were examined by Western blotting analysis.RESULTS: Increased COX-2 mRNA and protein expression were detected in all three hepatoma cell lines. Celecoxib could significantly inhibit cell growth and the inhibitory effect was in a dose- and time-dependent manner evidenced by MTr assays and morphological changes.The apoptotic index measured by TUNEL increased correspondingly with the increased concentration of celecoxib and the reaction time. With 50 μmol/L celecoxib treatment for 24 h, the apoptotic index of HepG2, BEL-7402and SMMC-7721 cells was 25.01±3.08%, 26.40±3.05%,and 30.60±2.89%, respectively. Western blotting analysis showed remarkable activation of caspase-9, caspase-3and dephosphorylation of Akt (Thr308). Immunocytochemistry also showed the reduction of PCNA expression and phosphorylation Akt (Thr308) after treatment with celecoxib.CONCLUSION: COX-2 mRNA and protein overexpression in HepG2, Bel-7402 and SMMC-7721 cell lines correlate with the increased cell growth rate. Celecoxib can inhibit proliferation and induce apoptosis of hepatoma cell strains in a dose- and time-dependent manner.

  1. Effects of PRELI in Oxidative-Stressed HepG2 Cells.

    Science.gov (United States)

    Kim, Bo Yong; Cho, Min Ho; Kim, Kyung Joo; Cho, Kyung Jin; Kim, Suhng Wook; Kim, Hyun Sook; Jung, Woon-Won; Lee, Boo Hyung; Lee, Bong Hee; Lee, Seung Gwan

    2015-01-01

    Protein of relevant evolutionary and lymphoid interest (PRELI) is known for preventing apoptosis by mediating intramitochondrial transport of phosphatidic acid. However, the role of PRELI remains unclear. This study has demonstrated functions of PRELI through PRELI-knockdown in hepatocellular carcinoma (HepG2) cells exposed to oxidative stress by hydrogen peroxide. Results show that PRELI has three functions in HepG2 cells with regard to oxidative stress. First, PRELI affects expressional regulation of SOD-1 and caspase-3 genes in HepG2 cells. PRELI knockdown HepG2 cells have shown up-regulation of caspase-3 and down-regulation of SOD-1. Second, PRELI suppresses mitochondrial apoptosis in HepG2 cells. Fluorescence intensity related to mitochondrial apoptosis in PRELI-knockdown HepG2 cells increased more than two-fold compared to normal HepG2 cells. Third, PRELI suppresses senescence of HepG2 cells with oxidative stress. PRELI knockdown HepG2 cells showed higher levels of senescence than normal HepG2 cells. These results suggest that PRELI is a crucial protein in the suppression of apoptosis in HepG2 cells in response to oxidative stress. © 2015 by the Association of Clinical Scientists, Inc.

  2. PPARγ pathway activation results in apoptosis and COX-2 inhibition in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Ming-Yi Li; Hua Deng; Jia-Ming Zhao; Dong Dai; Xiao-Yu Tan

    2003-01-01

    AIM: To investigate whether troglitazone (TGZ), theperoxisome proliferator-activated receptor (PPAR) gammaligand, can induce apoptosis and inhibit cell proliferation inhuman liver cancer cell line HepG2 and to explore themolecular mechanisms. METHODS: [3-(4,5)-dimethyithiazol-2-yl]-2,5-diphenyltetrazolium bromide (NTT), [3H] Thymidine incorporation,Hochest33258 staining, DNA ladder, enzyme-linkedimmunosorbent assay (ELISA), RT-PCR, Northern and Western blotting analyses were employed to investigate the effect of TGZ on HepG2 cells and related molecular mechanisms.RESULTS: TGZ was found to inhibit the growth of HepG2cells and to induce apoptosis. During the process, the expression of COX-2 mRNA and protein and Bcl-2 protein was down-regulated, while that of Bax and Bak proteins was up-regulated, and the activity of caspase-3 was elevated.Furthermore, the level of PGE2 was decreased transiently after 12 h of treatment with 30 gM troglitazone. CONCLUSION: TGZ inhibits cell proliferation and induces apoptosis in HepG2 cells, which may be associated with the activation of caspase-3-like proteases, down-regulation of the expression of COX-2 mRNA and protein, Bcl-2 protein,the elevation of PGE2 levels, and up-regulation of the expressions of Bax and Bak proteins.

  3. Mangiferin: A xanthone attenuates mercury chloride induced cytotoxicity and genotoxicity in HepG2 cells.

    Science.gov (United States)

    Kaivalya, Mudholkar; Nageshwar Rao, B N; Satish Rao, B S

    2011-01-01

    Mangiferin (MGN), a dietary C-glucosylxanthone present in Mangifera indica, is known to possess a spectrum of beneficial pharmacological properties. This study demonstrates antigenotoxic potential of MGN against mercuric chloride (HgCl2)-induced genotoxicity in HepG2 cell line. Treatment of HepG2 cells with various concentrations of HgCl2 for 3 h caused a dose-dependent increase in micronuclei frequency and elevation in DNA strand breaks (olive tail moment and tail DNA). Pretreatment with MGN significantly (p inhibited HgCl2 -induced (20 µM for 30 h) DNA damage. An optimal antigenotoxic effect of MGN, both in micronuclei and comet assay, was observed at a concentration of 50 µM. Furthermore, HepG2 cells treated with various concentrations of HgCl2 resulted in a dose-dependent increase in the dichlorofluorescein fluorescence, indicating an increase in the generation of reactive oxygen species (ROS). However, MGN by itself failed to generate ROS at a concentration of 50 µM, whereas it could significantly decrease HgCl2 -induced ROS. Our study clearly demonstrates that MGN pretreatment reduced the HgCl2-induced DNA damage in HepG2 cells, thus demonstrating the genoprotective potential of MGN, which is mediated mainly by the inhibition of oxidative stress.

  4. Sesamin induces cell cycle arrest and apoptosis through the inhibition of signal transducer and activator of transcription 3 signalling in human hepatocellular carcinoma cell line HepG2.

    Science.gov (United States)

    Deng, Pengyi; Wang, Chen; Chen, Liulin; Wang, Cheng; Du, Yuhan; Yan, Xu; Chen, Mingjie; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    Sesamin, one of the most abundant lignans in sesame seeds, has been shown to exhibit various pharmacological effects. The aim of this study was to elucidate whether sesamin promotes cell cycle arrest and induces apoptosis in HepG2 cells and further to explore the underlying molecular mechanisms. Here, we found that sesamin inhibited HepG2 cell growth by inducing G2/M phase arrest and apoptosis. Furthermore, sesamin suppressed the constitutive and interleukin (IL)-6-induced signal transducer and activator of transcription 3 (STAT3) signalling pathway in HepG2 cells, leading to regulate the downstream genes, including p53, p21, cyclin proteins and the Bcl-2 protein family. Our studies showed that STAT3 signalling played a key role in sesamin-induced G2/M phase arrest and apoptosis in HepG2 cells. These findings provided a molecular basis for understanding of the effects of sesamin in hepatocellular carcinoma tumour cell proliferation. Therefore, sesamin may thus be a potential chemotherapy drug for liver cancer.

  5. Expression of Bd-2 and Bax Genes in the Liver Cancer Cell Line HepG2 after Apoptosis Induced by Essential Oils from Rosmarinus officinalis%迷迭香精油诱导肝癌HepG2细胞凋亡后bcl-2和bax基因表达变化的研究

    Institute of Scientific and Technical Information of China (English)

    魏凤香; 刘君星; 王琳; 李红枝; 罗佳滨

    2008-01-01

    目的:探讨凋亡相关基因bcl-2和bax在迷迭香精油诱导肝癌HepG2细胞凋亡后表达的变化.方法:水蒸气蒸馏法提取迷迭备精油,GC-MS鉴定其成分.采用免疫组化法检测bcl-2蛋白和bax蛋白表达.结果:不同浓度的迷迭香精油处理细胞12、24、48 h后bcl-2蛋白的表达降低,bax蛋白的表达升高,与对照组比较均有显著性差异,并且均现时间和剂量依赖性.结论:迷迭香精油诱导肝癌HepG2细胞凋亡与凋亡调控基因bax表达增强,bcl-2表达减少有关.

  6. The influence on cell proliferation and apoptosis of combined afatinib with Mithramycin A in human hepatocellular carcinoma cell line HepG2%阿法替尼联合Mithramycin A对人肝癌HepG2细胞增殖、凋亡及基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    黄子凌; 黄兰姗; 沈思乔; 冯振博

    2015-01-01

    目的:观察阿法替尼(afatinib)联合Mithramycin A(MIT)对人肝癌HepG2细胞增殖、凋亡的作用以及相关因子表达的影响.方法:将afatinib与MIT单独或联合作用于肝癌HepG2细胞,采用MTT法测定药物对细胞生长的抑制率,并运用倒置显微镜观察药物作用后细胞形态学变化;以流式细胞技术测定药物对细胞周期和凋亡的影响;以实时荧光定量聚合酶链反应(qRT-PCR)定量测定细胞内表皮生长因子受体(EGFR)、Sp1、Sp3以及增殖、凋亡相关因子Cyclin-D1、Cyclin-E2、Bcl-2、Caspase3、Caspase9和p53的表达变化.结果:afatinib与MIT均能有效抑制肝癌HepG2细胞的生长,并且呈现时间依赖性,两药联合作用能明显增加抑制率(P均< 0.05);联合用药48 h后,可诱导HepG2细胞产生G0/G1期阻滞并诱发凋亡,抑制作用及凋亡率均较单药组增高(P均< 0.05);另外,给药72 h后,单药组均出现不同程度的Cyclin-D1、Cyclin-E2、Bcl-2 mRNA表达量下降,并伴有Caspase3基因上调.单用afatinib组同时出现Caspase9和p53的表达上调,MIT组检测到EGFR、Sp1和Sp3的同步减少,联合用药组以上改变较单药组明显(P均< 0.05).结论:afatinib联合MIT能有效抑制肝癌HepG2细胞增殖、促进凋亡,这可能与药物作用后Cyclin-D1、Cyclin-E2、Bcl-2下调以及Caspase3、Caspase9和p53的表达上调相关.此项研究可能为以EGFR为中心的肝癌联合治疗提供新方向.

  7. Cytotoxic and antimigratory effects of Cratoxy formosum extract against HepG2 liver cancer cells.

    Science.gov (United States)

    Buranrat, Benjaporn; Mairuae, Nootchanat; Kanchanarach, Watchara

    2017-04-01

    The aim of the present study was to investigate the molecular mechanisms underlying Cratoxylum formosum (CF) Dyer-induced cancer cell death and antimigratory effects in HepG2 liver cancer cells. The cytotoxic, antiproliferative and antimigratory effects of CF leaf extract on human liver cancer HepG2 cell lines were evaluated using sulforhodamine B, colony formation, and wound healing assays. In addition, apoptosis induction mechanisms were investigated via reactive oxygen species (ROS) formation, caspase 3 activities, and mitochondrial membrane potential (ΔΨm) disruption. Gene expression and apoptosis-associated protein levels were measured by reverse transcription-quantitative polymerase chain reaction and western blotting. CF induced HepG2 cell death in a time- and dose-dependent manner with half maximal inhibitory concentration values of 219.03±9.96 and 124.90±6.86 µg/ml at 24 and 48 h, respectively. Treatment with CF caused a significant and dose-dependent decrease in colony forming ability and cell migration. Furthermore, the present study demonstrated that CF induced ROS formation, increased caspase 3 activities, decreased the ΔΨm, and caused HepG2 apoptosis. CF marginally decreased the expression level of the cell cycle regulatory protein, ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1) and the downstream protein, cyclin dependent kinase 6. Additionally, CF significantly enhanced p21 levels, reduced cyclin D1 protein levels and triggered cancer cell death. CF leaf extracts induced cell death, stimulated apoptosis and inhibited migration in HepG2 cells. Thus, CF may be useful for developing an anticancer drug candidate for the treatment of liver cancer.

  8. Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2 exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Directory of Open Access Journals (Sweden)

    Manuela Göttel

    2014-01-01

    Full Text Available The prototype dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD is known to exert anti-estrogenic effects via activation of the aryl hydrocarbon receptor (AhR by interfering with the regulation of oestrogen homeostasis and the estrogen receptor α (ERα signalling pathway. The AhR/ER cross-talk is considered to play a crucial role in TCDD- and E2-dependent mechanisms of carcinogenesis, though the concerted mechanism of action in the liver is not yet elucidated. The present study investigated TCDD's impact on the transcriptional cross-talk between AhR and ERα and its modulation by 17β-estradiol (E2 in the human hepatoma cell line HepG2, which is AhR-responsive but ERα-negative. Transient transfection assays with co-transfection of hERα and supplementation of receptor antagonists showed anti-estrogenic action of TCDD via down-regulation of E2-induced ERα signaling. In contrast, enhancement of AhR signaling dependent on ERα was observed providing evidence for increased cytochrome P450 (CYP induction to promote E2 metabolism. However, relative mRNA levels of major E2-metabolizing CYP1A1 and 1B1 and the main E2-detoxifying catechol-O-methyltransferase were not affected by the co-treatments. This study provides new evidence of a TCDD-activated AhR-mediated molecular AhR/ERα cross-talk mechanism at transcriptional level via indirect inhibition of ERα and enhanced transcriptional activity of AhR in HepG2 cells.

  9. Pooled human liver preparations, HepaRG, or HepG2 cell lines for metabolism studies of new psychoactive substances? A study using MDMA, MDBD, butylone, MDPPP, MDPV, MDPB, 5-MAPB, and 5-API as examples.

    Science.gov (United States)

    Richter, Lilian H J; Flockerzi, Veit; Maurer, Hans H; Meyer, Markus R

    2017-09-05

    Metabolism studies play an important role in clinical and forensic toxicology. Because of potential species differences in metabolism, human samples are best suitable for elucidating metabolism. However, in the case of new psychoactive substances (NPS), human samples of controlled studies are not available. Primary human hepatocytes have been described as gold standard for in vitro metabolism studies, but there are some disadvantages such as high costs, limited availability, and variability of metabolic enzymes. Therefore, the aim of our study was to investigate and compare the metabolism of six methylenedioxy derivatives (MDMA, MDBD, butylone, MDPPP, MDPV, MDPB) and two bioisosteric analogues (5-MAPB, 5-API) using pooled human liver microsomes (pHLM) combined with cytosol (pHLC) or pooled human liver S9 fraction (pS9) all after addition of co-substrates for six phase I and II reactions. In addition, HepaRG and HepG2 cell lines were used. Results of the different in vitro tools were compared to each other, to corresponding published data, and to metabolites identified in human urine after consumption of MDMA, MDPV, or 5-MAPB. Incubations with pHLM plus pHLC showed similar results as pS9. A more cost efficient model for prediction of targets for toxicological screening procedures in human urine should be identified. As expected, the incubations with HepaRG provided better results than those with HepG2 concerning number and signal abundance of the metabolites. Due to easy handling without special equipment, incubations with pooled liver preparations should be the most suitable alternative to find targets for toxicological screening procedures for methylenedioxy derivatives and bioisosteric analogues. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sensitivity of Hep G2 cells to Bacillus cereus emetic toxin.

    Science.gov (United States)

    Kamata, Yoichi; Kanno, Shinji; Mizutani, Noriko; Agata, Norio; Kawakami, Hiroshi; Sugiyama, Kei-ichi; Sugita-Konishi, Yoshiko

    2012-11-01

    We herein examined the sensitivity of Hep G2 human hepatoma cells to Bacillus cereus emetic toxin. Hep G2 cells were treated with the emetic toxin, and the cell shape was observed. The same experiments were performed for comparison purposes, using HEp-2 cells, which are currently used by most laboratories for a bioassay of the emetic toxin. Hep G2 cells showed clearer vacuolation in the cytosol within 2 hr and required a shorter incubation period than HEp-2 cells (10 hr). The number of vacuoles in the Hep G2 cells was greater, and the size of the vacuoles was larger than those observed in HEp-2 cells. The minimal concentration of the emetic toxin required to induce the vacuolation of Hep G2 cells was 0.04 ng/ml. The concentration for the HEp-2 cells was 1 ng/ml. These findings indicate that Hep G2 cells show higher sensitivity to the emetic toxin. Hep G2 cells may be superior to the currently used HEp-2 cells for the bioassay of the emetic toxin.

  11. Development and validation of a high-content screening in vitro micronucleus assay in CHO-k1 and HepG2 cells

    NARCIS (Netherlands)

    Westerink, W.M.; Schirris, T.J.J.; Horbach, G.J.; Schoonen, W.G.

    2011-01-01

    In the present study an automated image analysis assisted in vitro micronucleus assay was developed with the rodent cell line CHO-k1 and the human hepatoma cell line HepG2, which are both commonly used in regulatory genotoxicity assays. The HepG2 cell line was chosen because of the presence in these

  12. Development and validation of a high-content screening in vitro micronucleus assay in CHO-k1 and HepG2 cells

    NARCIS (Netherlands)

    Westerink, W.M.; Schirris, T.J.J.; Horbach, G.J.; Schoonen, W.G.

    2011-01-01

    In the present study an automated image analysis assisted in vitro micronucleus assay was developed with the rodent cell line CHO-k1 and the human hepatoma cell line HepG2, which are both commonly used in regulatory genotoxicity assays. The HepG2 cell line was chosen because of the presence in these

  13. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2).

    Science.gov (United States)

    Abdel-Lateef, Ezzat; Mahmoud, Faten; Hammam, Olfat; El-Ahwany, Eman; El-Wakil, Eman; Kandil, Sherihan; Abu Taleb, Hoda; El-Sayed, Mortada; Hassenein, Hanaa

    2016-09-01

    The present study was designed to identify the chemical constituents of the methanolic extract of Curcuma longa L. rhizomes and their inhibitory effect on a hepatoma cell line. The methanolic extract was subjected to GC-MS analysis to identify the volatile constituents and the other part of the same extract was subjected to liquid column chromatographic separation to isolate curcumin. The inhibition of cell growth in the hepatoma cell line and the cytopathological changes were studied. GC-MS analysis showed the presence of fifty compounds in the methanolic extract of C. longa. The major compounds were ar-turmerone (20.50 %), β-sesquiphellandrene (5.20 %) and curcumenol (5.11 %). Curcumin was identified using IR, 1H and 13C NMR. The inhibition of cell growth by curcumin (IC50 = 41.69 ± 2.87 μg mL-1) was much more effective than that of methanolic extract (IC50 = 196.12 ± 5.25 μg mL-1). Degenerative and apoptotic changes were more evident in curcumin- treated hepatoma cells than in those treated with the methanol extract. Antitumor potential of the methanolic extract may be attributed to the presence of sesquiterpenes and phenolic constituents including curcumin (0.051 %, 511.39 μg g-1 dried methanol extract) in C. longa rhizomes.

  14. The Human NADPH Oxidase, Nox4, Regulates Cytoskeletal Organization in Two Cancer Cell Lines, HepG2 and SH-SY5Y

    Directory of Open Access Journals (Sweden)

    Simon Auer

    2017-05-01

    Full Text Available NADPH oxidases of human cells are not only functional in defense against invading microorganisms and for oxidative reactions needed for specialized biosynthetic pathways but also during the past few years have been established as signaling modules. It has been shown that human Nox4 is expressed in most somatic cell types and produces hydrogen peroxide, which signals to remodel the actin cytoskeleton. This correlates well with the function of Yno1, the only NADPH oxidase of yeast cells. Using two established tumor cell lines, which are derived from hepatic and neuroblastoma tumors, respectively, we are showing here that in both tumor models Nox4 is expressed in the ER (like the yeast NADPH oxidase, where according to published literature, it produces hydrogen peroxide. Reducing this biochemical activity by downregulating Nox4 transcription leads to loss of F-actin stress fibers. This phenotype is reversible by adding hydrogen peroxide to the cells. The effect of the Nox4 silencer RNA is specific for this gene as it does not influence the expression of Nox2. In the case of the SH-SY5Y neuronal cell line, Nox4 inhibition leads to loss of cell mobility as measured in scratch assays. We propose that inhibition of Nox4 (which is known to be strongly expressed in many tumors could be studied as a new target for cancer treatment, in particular for inhibition of metastasis.

  15. Synthesis, characterization of 1,2,4-triazole Schiff base derived 3d-metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study

    Science.gov (United States)

    Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika

    2017-01-01

    Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.

  16. STUDY OF THE EFFECT OF HDACS INHIBITOR——TRICHOSTATIN A ON HUMAN HEPATOCELLULAR CARCINOMA HEPG2 CELL LINE%HDACS抑制剂对人肝癌细胞株HepG2作用的研究

    Institute of Scientific and Technical Information of China (English)

    段承刚; 代永红; 王丽; 刘晓燕; 梅志强; 何涛

    2011-01-01

    目的:通过组蛋白去乙酰化酶(histone deacetylase,HDACS)抑制剂古抑菌素A(Trichostatin A,TSA)对人肝癌细胞株HepG2(以下简称HepG2)和正常肝细胞株LO2(以下简称LO2)增殖与凋亡作用的比较,探讨TSA对肝癌的作用机制.方法:应用光学显微镜、透射电镜、四氮唑蓝(MTT)法、脱氧核苷酸末端转移酶介导的dTP缺口末端标记技术(TUNEL法)、免疫细胞化学法观察经不同浓度TSA处理后的HepG2和LO2的增殖、凋亡与凋亡相关蛋白的改变.结果:(1)HepG2细胞经TSA处理后,电镜下超微结构发生了凋亡早期改变.(2)小剂量TSA(250nmol/L)对HepG2细胞具有较强的生长抑制作用,对LO2细胞影响不明显,当TSA浓度达到1000nmol/L以上时,对LO2表现出明显的细胞毒性作用.(3)TSA可诱导HepG2细胞凋亡,并增加凋亡相关蛋白Bax的表达.结论:TSA可明显抑制肝癌细胞HepG2的增殖,其机制可能与上调Bax的表达,诱导细胞凋亡有关.

  17. Effect of shikonin on multidrug resistance in HepG2: The role of SIRT1.

    Science.gov (United States)

    Jin, Yong-Dong; Ren, Yi; Wu, Ming-Wei; Chen, Ping; Lu, Jin

    2015-07-01

    Overexpression of SIRT1 is considered to enhance the resistance of HepG2 cells to irradiation. Shikonin, a naturally occurring naphthoquinone compound, displays anticancer effects and circumvents cancer drug resistance. This study investigated the MDR reversal effect of shikonin induced by the overexpression of SIRT1. The overexpression of SIRT1 in HepG2 cells was established by lentivirus infection. Five days after transduction, real-time quantitative polymerase chain reaction and western blotting were used to detect the expression of SIRT1 and MDR1/P-gp. Drug resistance was also evaluated by flow cytometry after rhodamine-123 staining. On day 5, the multidrug resistance cells were treated by shikonin (10(-7), 10(-6), and 10(-5) µmol/L) one time. The cell viability was detected by the MTT assay, and apoptosis was evaluated by Hoechst 33342 staining and caspase-3 activity 24 h after shikonin treatment. Overexpression of SIRT1 decreased rhodamine-123 staining and successfully produced the R-HepG2 cell line. Compared with HepG2, the expression of MDR1/P-gp mRNA (3.45 ± 0.35) and protein (1.40 ± 0.05) were both upregulated in R-HepG2. Shikonin inhibited cell viability (from 93.9 ± 2.1 to 66.7 ± 1.5%), induced apoptosis of R-HepG2 (apoptotic ratio from 3.5 ± 0.8 to 47.5 ± 2.7%, caspase-3 activity from 103.5 ± 1.9 to 329.2 ± 14.9%, respectively), downregulated the mRNA and protein expression of SIRT1 and MDR1/P-gp, and decreased rhodamin 123 efflux. In the present study, we demonstrated that shikonin is able to overcome drug resistance in hepatocellular carcinoma cells, and the mechanism is related to the SIRT1-MDR1/P-gp signaling pathway.

  18. Apoptosis and its pathway in X gene-transfected HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Na Lin; Hong-Ying Chen; Dan Li; Sheng-Jun Zhang; Zhi-Xin Cheng; Xiao-Zhong Wang

    2005-01-01

    AIM: To investigate the effect of hepatitis B virus (HBV) X gene on apoptosis and expressions of apoptosis factors in X gene-transfected HepG2 cells.METHODS: The HBV X gene eukaryon expression vector pcDNVA3-Xwas transiently transfected into HepG2 cells by lipid-media transfection. Untransfected HepG2 and HepG2 transfected with pcDNA3 were used as controls. Expression of HBx in HepG2 was identified by PT-PCR. MTT and TUNEL were employed to measure proliferation and apoptosis of cells in.three groups. Semi-quantified RT-PCR was used to evaluate the expression levels of Fas/FasL, Bax/Bcl-xL,and c-myc in each group.RESULTS: HBV X gene was transfected into HepG2 cells successfully. RT-PCR showed that HBx was only expressed in HepG2/pcDNA3-X cells, but not expressed in HepG2 and HepG2/pcDNA3 cells. Analyzed by MTT, cell proliferation capacity was obviously lower in HepG2/pcDNA3-X cells (0.08910±0.003164) than in HepG2 (0.14410±0.004927)and HepG2/pcDNA3 cells (0.12150±0.007159) (P<0.05and P<0.01). Analyzed by TUNEL, cell apoptosis was much more in HepG2/pcDNA3-X cells (980/2 000) than HepG2 (420/2 000), HepG2/pcDNA3 cells (520/2 000) (P<0.05 and P<0.01). Evaluated by semi-quantified RT-PCR, the expression level of Fas/FasL was significantly higher in HepG2 cells transfected with HBx than in HepG2 and HepG2/pcDNA3 cells (P<0.05 and P<0.01). Bax/Bcl-xL expression level was also elevated in HepG2/pcDNA3-X cells (P<0.05and P<0.01). Expression of c-myc was markedly higher in HepG2/pcDNA3-X cells than in HepG2 and HepG2/pcDNA3 cells (P<0.05 and P<0.01).CONCLUSION: HBV X gene can impair cell proliferation capacity, improve cell apoptosis, and upregulate expression of apoptosis factors. The intervention of HBV X gene on the expression of apoptosis factors may be a possible mechanism responsible for the change in cell apoptosis and proliferation.

  19. Cytotoxic effect of oxaloacetate on HepG2-human hepatic carcinoma cells via apoptosis and ROS accumulation.

    Science.gov (United States)

    Jiao, Y; Ji, L; Kuang, Y; Yang, Q

    2017-01-01

    Oxaloacetate (OA) is one of the intermediates of the Krebs cycle. In addition to its role in energy production, OA may have other effects on the cell. We report here that OA could have a cell type dependent cytotoxic effect on the human hepatic carcinoma cell line HepG2 through induction of apoptosis and reactive oxygen species (ROS) accumulation. In our study, OA decreased the viability and colony formation of HepG2 cells and induced cell death. Caspase-3 activity was increased, the pro-apoptotic protein Bax was up-regulated, and the anti-apoptotic protein Bcl-2 was down-regulated in OA-treated HepG2 cells indicating that apoptosis through the intrinsic pathway was involved in the cell death. The ROS level in OA-treated HepG2 cells was increased. The anti-oxidant N-acetylcysteine (NAC) and glutathione (GSH) prevented the OA-induced decrease in cell but did not alter the enhanced apoptotic Bax/Bcl-2 mRNA ratio. These results suggest that the OA-induced apoptosis of HepG2 cell is not driven by oxidative damage and at least two distinct mechanisms, one mediated by ROS and one involving apoptosis, result in the cytotoxic effects of OA on HepG2 cells. These studies expand the biological functional repertoire of OA and provide a mechanism by which hepatocellular carcinoma may be targeted by OA.

  20. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells.

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    Full Text Available Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC. Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2, estrogen receptor-α (ER-α selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients.

  1. Cacao polyphenols influence the regulation of apolipoprotein in HepG2 and Caco2 cells.

    Science.gov (United States)

    Yasuda, Akiko; Natsume, Midori; Osakabe, Naomi; Kawahata, Keiko; Koga, Jinichiro

    2011-02-23

    Cocoa powder is rich in polyphenols, such as catechins and procyanidins, and has been shown to inhibit low-density lipoprotein (LDL) oxidation and atherogenesis in a variety of models. Human studies have also shown daily intake of cocoa increases plasma high-density lipoprotein (HDL) and decreases LDL levels. However, the mechanisms responsible for these effects of cocoa on cholesterol metabolism have yet to be fully elucidated. The present study investigated the effects of cacao polyphenols on the production of apolipoproteins A1 and B in human hepatoma HepG2 and intestinal Caco2 cell lines. The cultured HepG2 cells or Caco2 cells were incubated for 24 h in the presence of cacao polyphenols such as (-)-epicatechin, (+)-catechin, procyanidin B2, procyanidin C1, and cinnamtannin A2. The concentration of apolipoproteins in the cell culture media was quantified using an enzyme-linked immunoassay, and the mRNA expression was quantified by RT-PCR. Cacao polyphenols increased apolipoprotein A1 protein levels and mRNA expression, even though apolipoprotein B protein and the mRNA expression were slightly decreased in both HepG2 cells and Caco2 cells. In addition, cacao polyphenols increased sterol regulatory element binding proteins (SREBPs) and activated LDL receptors in HepG2 cells. These results suggest that cacao polyphenols may increase the production of mature form SREBPs and LDL receptor activity, thereby increasing ApoA1 and decreasing ApoB levels. These results elucidate a novel mechanism by which HDL cholesterol levels become elevated with daily cocoa intake.

  2. The Establishment of HepG2 Cell Line with TALEN-mediated Knockout of CXCR4%TALEN介导的CXCR4敲除肝癌细胞株的建立

    Institute of Scientific and Technical Information of China (English)

    张文美; 丁妍; 郭兴荣; 李东升; 赵万红; 王小莉

    2016-01-01

    通过TALEN打靶建立CXCR4的细胞株,旨在研究CXCR4对肝癌的影响.选用肝癌细胞株HepG2,采用转录激活样效应物核酸酶(TALEN)干扰细胞中CXCR4的表达.构建的CXCR4 TALEN质粒转入HepG2细胞,通过T7E1酶切确定打靶效率为40%,并通过测序筛选出了CXCR4敲除的单克隆细胞,免疫荧光和Western blot进一步证实CXCR4基因表达显著下调.

  3. Estrogen receptor alpha augments changes in hemostatic gene expression in HepG2 cells treated with estradiol and phytoestrogens.

    Science.gov (United States)

    Kelly, Lynne A; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; O'Leary, John J; Norris, Lucy A

    2014-01-15

    Phytoestrogens are popular alternatives to estrogen therapy however their effects on hemostasis in post-menopausal women are unknown. The aim of this study was to determine the effect of the phytoestrogens, genistein, daidzein and equol on the expression of key genes from the hemostatic system in human hepatocyte cell models and to determine the role of estrogen receptors in mediating any response seen. HepG2 cells and Hep89 cells (expressing estrogen receptor alpha (ERα)) were incubated for 24 h with 50 nM 17β-estradiol, genistein, daidzein or equol. Tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1), Factor VII, fibrinogen γ, protein C and protein S mRNA expression were determined using TaqMan PCR. Genistein and equol increased tPA and PAI-1 expression in Hep89 cells with fold changes greater than those observed for estradiol. In HepG2 cells (which do not express ERα), PAI-1 and tPA expression were unchanged. Increased expression of Factor VII was observed in phytoestrogen treated Hep89 cells but not in similarly treated HepG2s. Prothrombin gene expression was increased in equol and daidzein treated HepG2 cells in the absence of the classical estrogen receptors. These data suggest that phytoestrogens can regulate the expression of coagulation and fibrinolytic genes in a human hepatocyte cell line; an effect which is augmented by ERα.

  4. RNA-Seq gene expression profiling of HepG2 cells: the influence of experimental factors and comparison with liver tissue.

    Science.gov (United States)

    Tyakht, Alexander V; Ilina, Elena N; Alexeev, Dmitry G; Ischenko, Dmitry S; Gorbachev, Alexey Y; Semashko, Tatiana A; Larin, Andrei K; Selezneva, Oksana V; Kostryukova, Elena S; Karalkin, Pavel A; Vakhrushev, Igor V; Kurbatov, Leonid K; Archakov, Alexander I; Govorun, Vadim M

    2014-12-15

    Human hepatoma HepG2 cells are used as an in vitro model of the human liver. High-throughput transcriptomic sequencing is an advanced approach for assessing the functional state of a tissue or cell type. However, the influence of experimental factors, such as the sample preparation method and inter-laboratory variation, on the transcriptomic profile has not been evaluated. The whole-transcriptome sequencing of HepG2 cells was performed using the SOLiD platform and validated using droplet digital PCR. The gene expression profile was compared to the results obtained with the same sequencing method in another laboratory and using another sample preparation method. We also compared the transcriptomic profile HepG2 cells with that of liver tissue. Comparison of the gene expression profiles between the HepG2 cell line and liver tissue revealed the highest variation, followed by HepG2 cells submitted to two different sample preparation protocols. The lowest variation was observed between HepG2 cells prepared by two different laboratories using the same protocol. The enrichment analysis of the genes that were differentially expressed between HepG2 cells and liver tissue mainly revealed the cancer-associated gene signature of HepG2 cells and the activation of the response to chemical stimuli in the liver tissue. The HepG2 transcriptome obtained with the SOLiD platform was highly correlated with the published transcriptome obtained with the Illumina and Helicos platforms, with moderate correspondence to microarrays. In the present study, we assessed the influence of experimental factors on the HepG2 transcriptome and identified differences in gene expression between the HepG2 cell line and liver cells. These findings will facilitate robust experimental design in the fields of pharmacology and toxicology. Our results were supported by a comparative analysis with previous HepG2 gene expression studies.

  5. Enhancing effect of taurine on CYP7A1 mRNA expression in Hep G2 cells.

    Science.gov (United States)

    Lam, N V; Chen, W; Suruga, K; Nishimura, N; Goda, T; Yokogoshi, H

    2006-02-01

    Taurine has been reported to enhance cholesterol 7alpha-hydroxylase (CYP7A1) mRNA expression in animal models. However, no in vitro studies of this effect have been reported. The Hep G2 human hepatoma cell line has been recognized as a good model for studying the regulation of human CYP7A1. This work characterizes the effects of taurine on CYP7A1 mRNA levels of Hep G2 cells in a dose- and time-dependent manner. In the dose-dependent experiment, Hep G2 cells were treated with 0, 2, 10 or 20 mM taurine in the presence or absence of cholesterol 0.2 mM for 48 h. In the time-dependent experiment, Hep G2 cells were treated with 0 or 20 mM taurine for 4, 24 and 48 h with and without cholesterol 0.2 mM. Our data revealed that taurine showed time- and dose-response effects on CYP7A1 mRNA levels in Hep G2 cells. However, glycine - a structural analogue of taurine - did not have an effect on CYP7A1 gene expression. These results show that, in agreement to previous studies on animal models, taurine induces the mRNA levels of CYP7A1 in Hep G2 cells, which could enhance cholesterol conversion into bile acids. Also, Hep G2 cell line may be an appropriate model to study the effects of taurine on human cholesterol metabolism.

  6. Differential expression of genes in HepG2 cells caused by UC001kfo RNAi as shown by RNA-seq.

    Science.gov (United States)

    Pan, Yan-Feng; Su, Tong; Chen, Li-Dan; Qin, Tao

    2017-08-01

    The differential expression of genes in HepG2 cells caused by UC001kfo RNAi was investigated using RNA-seq. HepG2 cells were infected by Lenti-shUC001kfo lentivirus particles. The expression of UC001kfo mRNA in the HepG2-shUC001kfo cell line was detected by real-time PCR. RNA-seq technology was used to identify the difference in the expression of genes regulated by lncRNA UC001kfo in the HepG2 cell line. Gene ontology and signaling pathway analysis were performed to reveal the biological functions of the genes encoding of significantly different mRNAs. The results showed that mRNAs were differentially expressed between the HepG2-shUC001kfo cell line and the HepG2 cell line. The UC001kfo mRNA was significantly down-regulated in the stable cell line HepG2-shUC001kfo (PHepG2 cell line after the down-regulation of lncRNA-UC001kfo. Some took part in the extracellular matrix, cell adhesion, motility, growth, and localization. The genes encoding of differentially expressed mRNAs may participate in cell invasion and metastasis.

  7. Induction of apoptosis in HepG2 cells by solanine and Bcl-2 protein.

    Science.gov (United States)

    Ji, Y B; Gao, S Y; Ji, C F; Zou, X

    2008-01-17

    The nightshade (Solanum nigrum Linn.) has been widely used in Chinese traditional medicine as a remedy for the treatment of digestive system cancer. The anti-tumor activity of solanine, a steroid alkaloid isolated from the nightshade has been demonstrated. To observe the effect of anti-tumor and mechanism of solanine. The MTT assay was used to evaluate the IC(50) on the three digestive system tumor cell lines. The effect on the morphology was observed with a laser confocal microscopy; the rate of apoptosis and the cell cycle were measured using flow cytometry (FCM); the expression of Bcl-2 protein was measured by Western blot. The results show that the IC(50) for HepG(2), SGC-7901, and LS-174 were 14.47, >50, and >50 microg/ml, respectively; the morphology of cells in the negative control was normal; for the treated groups, typical signs for apoptosis were found. The rate of apoptosis in HepG(2) cells induced by solanine was found to be 6.0, 14.4, 17.3, 18.9, and 32.2%, respectively. Observation of the cell cycle showed that cells in the G(2)/M phases disappeared while the number of cells in the S phase increased significantly for treated groups. Western blot showed that solanine decreased the expression of Bcl-2 protein. Therefore, the target of solanine in inducing apoptosis in HepG(2) cells seems to be mediated by the inhibition in the expression of Bcl-2 protein.

  8. TMEM2 inhibits hepatitis B virus infection in HepG2 and HepG2.2.15 cells by activating the JAK-STAT signaling pathway.

    Science.gov (United States)

    Zhu, X; Xie, C; Li, Y-M; Huang, Z-L; Zhao, Q-Y; Hu, Z-X; Wang, P-P; Gu, Y-R; Gao, Z-L; Peng, L

    2016-06-02

    We have previously observed the downregulation of TMEM2 in the liver tissue of patients with chronic hepatitis B virus (HBV) infection and in HepG2.2.15 cells with HBV genomic DNA. In the present study, we investigated the role and mechanism of TMEM2 in HepG2 and HepG2.2.15 during HBV infection HepG2 and HepG2.2.15. HepG2 shTMEM2 cells with stable TMEM2 knockdown and HepG2 TMEM2 and HepG2.2.15 TMEM2 cells with stable TMEM2 overexpression were established using lentivirus vectors. We observed reduced expression of TMEM2 in HBV-infected liver tissues and HepG2.2.15 cells. HBsAg, HBcAg, HBV DNA, and HBV cccDNA levels were significantly increased in HepG2 shTMEM2 cells but decreased in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells compared with naive HepG2 cells. On the basis of the western blotting results, the JAK-STAT signaling pathway was inhibited in HepG2 shTMEM2 cells but activated in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells. In addition, reduced and increased expression of the antiviral proteins MxA and OAS1 was observed in TMEM2-silenced cells (HepG2 shTMEM2 cells) and TMEM2-overexpressing cells (HepG2 TMEM2 and HepG2.2.15 TMEM2 cells), respectively. The expression of Interferon regulatory factor 9 (IRF9) was not affected by TMEM2. However, we found that overexpression and knockdown of TMEM2, respectively, promoted and inhibited importation of IRF9 into nuclei. The luciferase reporter assay showed that IRF9 nuclear translocation affected interferon-stimulated response element activities. In addition, the inhibitory effects of TMEM2 on HBV infection in HepG2 shTMEM2 cells was significantly enhanced by pre-treatment with interferon but significantly inhibited in HepG2.2.15 TMEM2 cells by pre-treatment with JAK1 inhibitor. TMEM2 inhibits HBV infection in HepG2 and HepG2.2.15 by activating the JAK-STAT signaling pathway.

  9. TMEM2 inhibits hepatitis B virus infection in HepG2 and HepG2.2.15 cells by activating the JAK–STAT signaling pathway

    Science.gov (United States)

    Zhu, X; Xie, C; Li, Y-m; Huang, Z-l; Zhao, Q-y; Hu, Z-x; Wang, P-p; Gu, Y-r; Gao, Z-l; Peng, L

    2016-01-01

    We have previously observed the downregulation of TMEM2 in the liver tissue of patients with chronic hepatitis B virus (HBV) infection and in HepG2.2.15 cells with HBV genomic DNA. In the present study, we investigated the role and mechanism of TMEM2 in HepG2 and HepG2.2.15 during HBV infection HepG2 and HepG2.2.15. HepG2 shTMEM2 cells with stable TMEM2 knockdown and HepG2 TMEM2 and HepG2.2.15 TMEM2 cells with stable TMEM2 overexpression were established using lentivirus vectors. We observed reduced expression of TMEM2 in HBV-infected liver tissues and HepG2.2.15 cells. HBsAg, HBcAg, HBV DNA, and HBV cccDNA levels were significantly increased in HepG2 shTMEM2 cells but decreased in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells compared with naive HepG2 cells. On the basis of the western blotting results, the JAK–STAT signaling pathway was inhibited in HepG2 shTMEM2 cells but activated in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells. In addition, reduced and increased expression of the antiviral proteins MxA and OAS1 was observed in TMEM2-silenced cells (HepG2 shTMEM2 cells) and TMEM2-overexpressing cells (HepG2 TMEM2 and HepG2.2.15 TMEM2 cells), respectively. The expression of Interferon regulatory factor 9 (IRF9) was not affected by TMEM2. However, we found that overexpression and knockdown of TMEM2, respectively, promoted and inhibited importation of IRF9 into nuclei. The luciferase reporter assay showed that IRF9 nuclear translocation affected interferon-stimulated response element activities. In addition, the inhibitory effects of TMEM2 on HBV infection in HepG2 shTMEM2 cells was significantly enhanced by pre-treatment with interferon but significantly inhibited in HepG2.2.15 TMEM2 cells by pre-treatment with JAK1 inhibitor. TMEM2 inhibits HBV infection in HepG2 and HepG2.2.15 by activating the JAK–STAT signaling pathway. PMID:27253403

  10. HepG2 cells acquire stem cell-like characteristics after immune cell stimulation.

    Science.gov (United States)

    Wang, Hang; Yang, Miqing; Lin, Ling; Ren, Hongzhen; Lin, Chaotong; Lin, Suling; Shen, Guoying; Ji, Binfeng; Meng, Chun

    2016-02-01

    The presence of cancer stem cells (CSCs) is currently regarded as one of the main culprits of tumor formation and therapy failure. It is known that chronic inflammation is associated with CSCs, but it is not clear yet how inflammation affects the development of CSCs. In the present study we aimed to examine the relationship between cancer cell stimulation mediated by immune cells and the acquisition of a CSC-like phenotype. Cancer cells derived from single hepatocarcinoma HepG2 cells were treated with mouse splenic B cells (MSBCs) and mouse peritoneal macrophage cells (MPMCs), respectively. The stem cell-like characteristics of the resulting HepG2 cells (MSBC-HepG2 and MPMC-HepG2) were evaluated using different assays, including biomarker assays, in vitro tumoroid and colony forming assays, in vivo tumor forming assays and signal transduction pathway activation assays. Various stemness characteristics of HepG2 cells, including self-renewal, proliferation, chemoresistance and tumorigenicity were evaluated. The expression levels of stemness-related genes and its encoded proteins in the MSBC-HepG2 and MPMC-HepG2 cells were assessed using RT-PCR and FACS analyses. We found that MSBC-HepG2 and MPMC-HepG2 cells possess hepatic CSC properties, including persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and over-expression of CSC-related genes and proteins (i.e., EpCAM, ALDH, CD133 and CD44), compared to the parental cells. We also found that 1x10(3) MSBC-HepG2 and MPMC-HepG2 cells were able to form tumors in NOD/SCID mice and that the Notch and SHH signaling pathways were highly activated in MSBC-HepG2 cells. We conclude that the immune system may have a double-edge effect on cancer development. On one hand, immune cells such as B lymphocytes and macrophages may recognize, attack and eliminate cancer cells, whereas on the other hand, they may promote a subset of cancer cells to acquire stem cell-like characteristics.

  11. Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing.

    Science.gov (United States)

    Gómez-Lechón, M José; Tolosa, Laia; Donato, M Teresa

    2017-02-01

    Drug attrition rates due to hepatotoxicity are an important safety issue considered in drug development. The HepG2 hepatoma cell line is currently being used for drug-induced hepatotoxicity evaluations, but its expression of drug-metabolizing enzymes is poor compared with hepatocytes. Different approaches have been proposed to upgrade HepG2 cells for more reliable drug-induced liver injury predictions. Areas covered: We describe the advantages and limitations of HepG2 cells transduced with adenoviral vectors that encode drug-metabolizing enzymes for safety risk assessments of bioactivable compounds. Adenoviral transduction facilitates efficient and controlled delivery of multiple drug-metabolizing activities to HepG2 cells at comparable levels to primary human hepatocytes by generating an 'artificial hepatocyte'. Furthermore, adenoviral transduction enables the design of tailored cells expressing particular metabolic capacities. Expert opinion: Upgraded HepG2 cells that recreate known inter-individual variations in hepatic CYP and conjugating activities due to both genetic (e.g., polymorphisms) or environmental (e.g., induction, inhibition) factors seems a suitable model to identify bioactivable drug and conduct hepatotoxicity risk assessments. This strategy should enable the generation of customized cells by reproducing human pheno- and genotypic CYP variability to represent a valuable human hepatic cell model to develop new safer drugs and to improve existing predictive toxicity assays.

  12. Effects of nitric oxide on the biological behavior of HepG2 human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhou, Lei; Zhang, Heng; Wu, Jie

    2016-05-01

    Many studies have found the function of nitric oxide (NO) in cancer as a pro-neoplastic vs. an anti-neoplastic effector, but the role of NO in hepatocellular carcinoma (HCC) remains unclear. The present study aimed to investigate the effects of nitric oxide (NO) on the biological behavior of the human hepatocellular carcinoma cell line HepG2. HepG2 cell was cultured in vitro and treated with or without sodium nitroprusside (SNP), a NO donor. Subsequently, we evaluated the effects of NO in cell proliferation, cell cycle, apoptosis, migration and invasion by MTT assay, flow cytometry, wound healing assay and Matrigel invasion assay. We demonstrate that NO significantly inhibited HepG2 cell proliferation by inducing G0/G1 phase arrest in a dose-dependent manner. In addition, compared to the control group, cells treated with SNP showed obviously higher apoptosis ratios in a dose-dependent manner. Furthermore, we revealed that NO effectively inhibited the ability of migration and invasion of HepG2 cells. Taken together, our results suggested that NO has an important role in the regulation of biological behavior in HepG2 cells and the potential for use in the prevention and treatment of HCC.

  13. Demonstration of the Presence of the “Deleted” MIR122 Gene in HepG2 Cells

    Science.gov (United States)

    Hamad, Ibrahim A. Y.; Fei, Yue; Kalea, Anastasia Z.; Yin, Dan; Smith, Andrew J. P.; Palmen, Jutta; Humphries, Steve E.; Talmud, Philippa J.; Walker, Ann P.

    2015-01-01

    MicroRNA 122 (miR-122) is highly expressed in the liver where it influences diverse biological processes and pathways, including hepatitis C virus replication and metabolism of iron and cholesterol. It is processed from a long non-coding primary transcript (~7.5 kb) and the gene has two evolutionarily-conserved regions containing the pri-mir-122 promoter and pre-mir-122 hairpin region. Several groups reported that the widely-used hepatocytic cell line HepG2 had deficient expression of miR-122, previously ascribed to deletion of the pre-mir-122 stem-loop region. We aimed to characterise this deletion by direct sequencing of 6078 bp containing the pri-mir-122 promoter and pre-mir-122 stem-loop region in HepG2 and Huh-7, a control hepatocytic cell line reported to express miR-122, supported by sequence analysis of cloned genomic DNA. In contrast to previous findings, the entire sequence was present in both cell lines. Ten SNPs were heterozygous in HepG2 indicating that DNA was present in two copies. Three validation isolates of HepG2 were sequenced, showing identical genotype to the original in two, whereas the third was different. Investigation of promoter chromatin status by FAIRE showed that Huh-7 cells had 6.2 ± 0.19- and 2.7 ± 0.01- fold more accessible chromatin at the proximal (HNF4α-binding) and distal DR1 transcription factor sites, compared to HepG2 cells (p=0.03 and 0.001, respectively). This was substantiated by ENCODE genome annotations, which showed a DNAse I hypersensitive site in the pri-mir-122 promoter in Huh-7 that was absent in HepG2 cells. While the origin of the reported deletion is unclear, cell lines should be obtained from a reputable source and used at low passage number to avoid discrepant results. Deficiency of miR-122 expression in HepG2 cells may be related to a relative deficiency of accessible promoter chromatin in HepG2 versus Huh-7 cells. PMID:25811611

  14. Lipid synthesis and secretion in HepG2 cells is not affected by ACTH

    Directory of Open Access Journals (Sweden)

    Nilsson-Ehle Peter

    2010-05-01

    Full Text Available Abstract Apolipoprotein B (apoB containing lipoproteins, i.e. VLDL, LDL and Lp(a, are consequently lowered by ACTH treatment in humans. This is also seen as reduced plasma apoB by 20-30% and total cholesterol by 30-40%, mostly accounted for by a decrease in LDL-cholesterol. Studies in hepatic cell line (HepG2 cells showed that apoB mRNA expression is reduced in response to ACTH incubation and is followed by a reduced apoB secretion, which may hypothesize that ACTH lowering apoB containing lipoproteins in humans may be mediated by the inhibition of hepatic apoB synthesis. This was recently confirmed in vivo in a human postprandial study, where ACTH reduced transient apoB48 elevation from the small intestine, however, the exogenic lipid turnover seemed unimpaired. In the present study we investigated if lipid synthesis and/or secretion in HepG2 cells were also affected by pharmacological levels of ACTH to accompany the reduced apoB output. HepG2 cells were incubated with radiolabelled precursors ([14C]acetate and [3H]glycerol either before or during ACTH stimuli. Cellular and secreted lipids were extracted with chloroform:methanol and separated by the thin layer chromatography (TLC, and [14C]labelled cholesterol and cholesteryl ester and [3H]labelled triglycerides and phospholipids were quantitated by the liquid scintillation counting. It demonstrated that ACTH administration did not result in any significant change in neither synthesis nor secretion of the studied lipids, this regardless of presence or absence of oleic acid, which is known to stabilize apoB and enhance apoB production. The present study suggests that ACTH lowers plasma lipids in humans mainly mediated by the inhibition of apoB synthesis and did not via the reduced lipid synthesis.

  15. Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53

    Directory of Open Access Journals (Sweden)

    Zakaria Yusmazura

    2009-06-01

    Full Text Available Abstract Background Eurycomanone is a cytotoxic compound found in Eurycoma longifolia Jack. Previous studies had noted the cytotoxic effect against various cancer cell lines. The aim of this study is to investigate the cytotoxicity against human hepato carcinoma cell in vitro and the mode of action. The cytotoxicity of eurycomanone was evaluated using MTT assay and the mode of cell death was detected by Hoechst 33258 nuclear staining and flow cytometry with Annexin-V/propidium iodide double staining. The protein expression Bax, Bcl-2, p53 and cytochrome C were studied by flow cytometry using a spesific antibody conjugated fluorescent dye to confirm the up-regulation of p53 and Bax in cancer cells. Results The findings suggested that eurycomanone was cytotoxic on cancerous liver cell, HepG2 and less toxic on normal cells Chang's liver and WLR-68. Furthermore, various methods proved that apoptosis was the mode of death in eurycomanone-treated HepG2 cells. The characteristics of apoptosis including chromatin condensation, DNA fragmentation and apoptotic bodies were found following eurycomanone treatment. This study also found that apoptotic process triggered by eurycomanone involved the up-regulation of p53 tumor suppressor protein. The up-regulation of p53 was followed by the increasing of pro-apoptotic Bax and decreasing of anti-apoptotic Bcl-2. The increased of cytochrome C levels in cytosol also results in induction of apoptosis. Conclusion The data suggest that eurycomanone was cytotoxic on HepG2 cells by inducing apoptosis through the up-regulation of p53 and Bax, and down-regulation of Bcl-2.

  16. Surface Grafted Glycopolymer Brushes to Enhance Selective Adhesion of HepG2 Cells

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Jensen, Bettina Elisabeth Brøgger; Shimizu, Kyoko

    2013-01-01

    process on a previously formed poly(LAMA) brushes. The morphology of human hepatocellular carcinoma cancer cells (HepG2) on the comb-like poly(LAMA) brush layer has been studied. The fluorescent images of the HepG2 cells on the glycopolymer brush surface display distinct protrusions that extend outside...... of the cell periphery. On the other hand the cells on bare glass substrate display spheroid morphology. Further analysis using ToF-SIMS imaging shows that the HepG2 cells on glycopolymer surfaces is enriched with protein fragment along the cell periphery which is absent in the case of cells on bare glass...... substrate. It is suggested that the interaction of the galactose units of the polymer brush with the asialoglycoprotein receptor (ASGPR) of HepG2 cells has resulted in the protein enrichment along the cell periphery....

  17. High Permissivity of Human HepG2 Hepatoma Cells for Influenza Viruses

    OpenAIRE

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-01-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represe...

  18. pCDNA3.1/NY-ESO-1真核表达质粒的构建及在肝癌细胞系HepG2中稳定高表达%To construct the eukaryotic expression plasmid pCDNA3.1/NY-ESO-1 and to establish a NY-ESO-1 highly expressed HepG2 cell line

    Institute of Scientific and Technical Information of China (English)

    徐珩; 杨硕; 顾娜; 冯丹丹; 闾军; 汪思应

    2010-01-01

    目的 建立癌-睾丸抗原NY-ESO-1稳定表达的HepG2肝癌细胞系.方法 设计NY-ESO-1的引物,PCR法从NY-ESO-1阳性表达的睾丸癌组织中扩增出目的片段,克隆至T载体,双酶切后定向连入pCDNA3.1载体,构建pCDNA3.1/NY-ESO-1真核表达质粒.经酶切、PCR、测序检测其构建的正确性,脂质体转染法将重组质粒转入HepG2细胞,G418药物筛选出稳定转染的细胞系,RT-PCR法、间接免疫荧光法分别检测稳定转染HepG2细胞中NY-ESO-1基因、蛋白的表达水平.结果 构建的pCDNA3.1/NY-ESO-1质粒经酶切、测序等检验表明质粒构建成功,筛选获得稳定高表达NY-ESO-1的HepG2细胞.结论 构建了pCDNA3.1/NY-ESO-1真核表达质粒及稳定高表达NY-ESO-1的HepG2细胞株,为下一步以NY-ESO-1为靶标进行肝癌的抗原特异性免疫治疗研究奠定了实验基础.

  19. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  20. Cytostatic and genotoxic effect of temephos in human lymphocytes and HepG2 cells.

    Science.gov (United States)

    Benitez-Trinidad, A B; Herrera-Moreno, J F; Vázquez-Estrada, G; Verdín-Betancourt, F A; Sordo, M; Ostrosky-Wegman, P; Bernal-Hernández, Y Y; Medina-Díaz, I M; Barrón-Vivanco, B S; Robledo-Marenco, M L; Salazar, A M; Rojas-García, A E

    2015-06-01

    Temephos is an organophosphorus pesticide that is used in control campaigns against Aedes aegypti mosquitoes, which transmit dengue. In spite of the widespread use of temephos, few studies have examined its genotoxic potential. The aim of this study was to evaluate the cytotoxic, cytostatic and genotoxic effects of temephos in human lymphocytes and hepatoma cells (HepG2). The cytotoxicity was evaluated with simultaneous staining (FDA/EtBr). The cytostatic and genotoxic effects were evaluated using comet assays and the micronucleus technique. We found that temephos was not cytotoxic in either lymphocytes or HepG2 cells. Regarding the cytostatic effect in human lymphocytes, temephos (10 μM) caused a significant decrease in the percentage of binucleated cells and in the nuclear division index as well as an increase in the apoptotic cell frequency, which was not the case for HepG2 cells. The comet assay showed that temephos increased the DNA damage levels in human lymphocytes, but it did not increase the MN frequency. In contrast, in HepG2 cells, temephos increased the tail length, tail moment and MN frequency in HepG2 cells compared to control cells. In conclusion, temephos causes stable DNA damage in HepG2 cells but not in human lymphocytes. These findings suggest the importance of temephos biotransformation in its genotoxic effect.

  1. Suppression of E-cadherin mediates gallotannin induced apoptosis in Hep G2 hepatocelluar carcinoma cells.

    Science.gov (United States)

    Han, Hee Jeong; Kwon, Hee Young; Sohn, Eun Jung; Ko, Hyunsuk; Kim, Bogeun; Jung, Kwon; Lew, Jae Hwan; Kim, Sung-Hoon

    2014-01-01

    Though gallotannin was known to have anti-oxidant and antitumor activity, the underlying antitumor mechanism of gallotannin still remains unclear. Thus, in the present study, antitumor mechanism of gallotannin was elucidated in hepatocellular carcinoma cells. Gallotannin significantly exerted cytotoxicity against Hep G2 and Chang hepatocellular carcinoma cells with the accumulation of the sub-G1 population and increase of terminal deoxynucleotidyltransferasedUTP nick end labeling (TUNEL) positive cells as an apoptotic feature. Also, gallotannin attenuated the expression of pro-caspase9, pro-caspase3, Bcl2 and integrin β1 and cleaved poly(ADP)-ribose polymerase (PARP) in Hep G2 and Chang cancer cells. Furthermore, gallotannin suppressed cell repair motility by wound healing assay and also inhibited cell adhesion in Hep G2 cells. Of note, gallotannin attenuated the expression of epithelial cadherin (E-cadherin) to form cell-cell adhesion from the early stage, and also beta-catenin at late phase in Hep G2 cells. Consistently, Immunofluorescence assay showed that E-cadherin or β-catenin expression was suppressed in a time dependent manner by gallotannin. Furthermore, silencing of E-cadherin by siRNA transfection method enhanced PAPR cleavage, caspase 3 activation and sub G1 population and attenuated the cell adhesion induced by gallotannin in Hep G2 cells. Overall, our findings demonstrate that the disruption of cell adhesion junction by suppression of E-cadherin mediates gallotannin enhanced apoptosis in Hep G2 liver cancer cells.

  2. Antitumor effects of polysaccharide from Sargassum fusiforme against human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Fan, Sairong; Zhang, Junfeng; Nie, Wenjian; Zhou, Wenyuan; Jin, Liqin; Chen, Xiaoming; Lu, Jianxin

    2017-04-01

    Sargassum fusiforme (Harv.) Setchel, a kind of brown algae, has been applied as a therapeutic for thousands of years. This study was designed to investigate the antitumor effects of the polysaccharide (SFPS) from S. fusiform in liver cancer. The mice inoculated with HepG2 cells were orally administrated with SFPS at the doses of 100, 200 and 400 mg/kg body weight for 28 days. The products from peritoneal macrophages and serum in HepG2-bearing mice were measured. The effect of SFPS-induced cell apoptosis was measured by flow cytometry. Meanwhile, the expression levels of Bax and Bcl-2 were detected. Furthermore, the cytotoxicity of SFPS was evaluated by CCK-8 assay. Results showed that SFPS significantly inhibited growth of human HepG2 cell-transplanted tumor in nude mice, and remarkably increased serum TNF-α, IL-1, NO and IgM levels in HepG2-bearing mice. SFPS also promoted the cytokines (IL-1 and TNF-α) secreted by peritoneal macrophages in HepG2-bearing mice. SFPS exerted a stimulatory effect on apoptosis of HepG2 cells, increased the expression of Bax, and decreased the expression of Bcl-2. The results indicated that SFPS has anti-tumor and immunomodulatory activities at the high concentration, and it could be used as a potential chemopreventative and/or adjuvant chemotherapeutic agent in liver cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 龙葵碱诱导HepG2细胞凋亡的观察%Study of solanine on apoptosis in HepG2 cell

    Institute of Scientific and Technical Information of China (English)

    高世勇; 邹翔; 汲晨锋; 王宏亮

    2007-01-01

    观察龙葵碱对3种消化系统肿瘤细胞株人肝癌细胞HepG2、人胃癌细胞SGC-7901、人大肠癌细胞Ls-174的细胞毒作用.并从细胞凋亡角度揭示龙葵碱对敏感细胞株的作用机制.采用MTT法观察龙葵碱对3种肿瘤细胞株的细胞毒作用;采用AO/EB双染,激光共聚焦扫描显微术(eonfocal)观察龙葵碱对HepG,肿瘤细胞形态的影响;PI单染,流式细胞仪测定龙葵碱诱导HepG2细胞凋亡的凋亡率及对细胞周期的影响.龙葵碱作用于HepG2、SGC-7901、LS-174的IC50分别为14.47μg/mL、>50μg/mL、>50μg/mL;在形态学观察实验中,阴性对照组细胞形态正常,0.003 2μg/mL、0.016μg/mL龙葵碱使细胞外周呈微弱皱缩状改变,0.08、0.4、2μg/mL龙葵碱使HepG2细胞出现大量碎片及凋亡小体等典型的细胞凋亡形态.凋亡率测定结果表明5个剂量龙葵碱诱导HepG2细胞凋亡率分别为6.0%、14.4%、17.3%、18.9%、32.2%,0.08μg/mL喜树碱诱导HepG2细胞的凋亡率为21.9%.细胞周期观察发现龙葵碱各组G2/M期均消失,S期明显升高.龙葵碱对HepG2人肝癌细胞株比较敏感,能够诱导HepG2细胞凋亡,并将HepG2细胞阻止在S期,影响肿瘤细胞DNA合成.

  4. Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells.

    Science.gov (United States)

    Ahamed, Maqusood; Alhadlaq, Hisham A; Ahmad, Javed; Siddiqui, Maqsood A; Khan, Shams T; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2015-06-01

    Dolomite is a natural mineral of great industrial and commercial importance. With the advent of nanotechnology, natural minerals including dolomite in the form of nanoparticles (NPs) are being utilized in various applications to improve the quality of products. However, safety or toxicity information of dolomite NPs is largely lacking. This study evaluated the cytotoxicity of dolomite NPs in two widely used in vitro cell culture models: human airway epithelial (HEp2) and human liver (HepG2) cells. Concentration-dependent decreased cell viability and damaged cell membrane integrity revealed the cytotoxicity of dolomite NPs. We further observed that dolomite NPs induce oxidative stress in a concentration-dependent manner, as indicated by depletion of glutathione and induction of reactive oxygen species (ROS) and lipid peroxidation. Quantitative real-time PCR data demonstrated that the mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were up-regulated whereas the anti-apoptotic gene bcl-2 was down-regulated in HEp2 and HepG2 cells exposed to dolomite NPs. Moreover, the activity of apoptotic enzymes (caspase-3 and caspase-9) was also higher in both kinds of cells treated with dolomite NPs. It is also worth mentioning that HEp2 cells seem to be marginally more susceptible to dolomite NPs exposure than HepG2 cells. Cytotoxicity induced by dolomite NPs was efficiently prevented by N-acetyl cysteine treatment, which suggests that oxidative stress is primarily responsible for the cytotoxicity of dolomite NPs in both HEp2 and HepG2 cells. Toxicity mechanisms of dolomite NPs warrant further investigations at the in vivo level.

  5. Novel dammarane saponins from Gynostemma pentaphyllum and their cytotoxic activities against HepG2 cells.

    Science.gov (United States)

    Piao, Xiang-Lan; Xing, Shao-Fang; Lou, Cai-Xia; Chen, Dao-Jin

    2014-10-15

    Two new dammarane saponins, 2α,3β,12β-trihydroxydammar-20(22),24-diene-3-O-[β-D-glucopyranoxyl(1→2)-β-D-6″-O-acetylglucopyranoside (1, namely damulin C) and 2α,3β,12β-trihydroxydammar-20(21),24-diene-3-O-[β-D-glucopyranoxyl(1→2)-β-D-6″-O-acetylglucopyranoside (2, namely damulin D), were isolated from the ethanol extract of Gynostemma pentaphyllum, which had been heat processed by steaming at 125 °C. The NMR spectroscopic data of the novel saponins were completely assigned by using a combination of 2D NMR experiments including (1)H-(1)H COSY, HSQC, and HMBC. Their cytotoxic activities of human liver adenocarcinoma HepG2 cells were evaluated in vitro. They showed cytotoxicities against HepG2 cell line with IC50 of 40±0.7 and 38±0.5 μg/ml, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Carvacrol and rosemary oil at higher concentrations induce apoptosis in human hepatoma HepG2 cells.

    Science.gov (United States)

    Melušová, Martina; Jantová, Soňa; Horváthová, Eva

    2014-12-01

    Natural essential oils are volatile herbal complex compounds which manifest cytotoxic effects on living cells depending on their type and concentration but usually they are not genotoxic. Our previous studies showed that carvacrol (CA) and rosemary essential oil (RO) induced growth inhibition of both human cell lines HepG2 and BHNF-1, with hepatoma HepG2 cells being more sensitive to either compound tested. Cytotoxic concentrations of CA and RO induced the formation of DNA strand breaks. Further ex vivo studies showed that extracts prepared from hepatocytes of CA- and RO-supplemented rats did not increase incision repair activity compared to extracts from liver cells of control animals. Therefore, the aim of this work was to determine the effect of cytotoxic concentrations of CA and RO on the cell cycle and the ability of both natural volatiles to induce DNA fragmentation and apoptotic death of human hepatoma HepG2 cells. These effects were measured after 24 h incubation of HepG2 cells with CA and RO using three independent methods - flow cytometry, internucleosomal DNA fragmentation (electrophoresis) and micronucleus assay. Evaluation of morphological changes and formation of micronuclei in HepG2 cells showed no increase in the number of micronuclei in cells treated by CA and RO compared to control cells. On the other hand, CA and RO induced morphological changes typical for apoptosis in concentration-dependent manner. The presence of necrosis was negligible. Both natural compounds caused shrinking of cytoplasmic membrane and formation of apoptotic bodies. In addition, the highest concentrations of CA and RO induced internucleosomal DNA fragmentation (formation of DNA ladder) in HepG2 cells. Cell cycle analysis revealed the accumulation of cells in the G1 phase, which was accompanied by a reduction in the number of cells in the S phase after 24 h exposure to the substances tested. The cell division was thus slowed down or stopped and this process resulted in cell

  7. Effect of baicalin-copper on the induction of apoptosis in human hepatoblastoma cancer HepG2 cells.

    Science.gov (United States)

    Li, Xiaoli; Zou, Kaili; Gou, Jing; Du, Qin; Li, Dejuan; He, Xiaoyan; Li, Zhubo

    2015-03-01

    The medical properties of baicalin have been well known for many years. However, the discovery that baicalin in the presence of metal ions is more effective than baicalin alone changed the course of drug research. The present study was designed to investigate the effect and possible mechanism of apoptosis induced by baicalin-copper in a human hepatoblastoma cancer cell line (HepG2) and in vivo. This study demonstrated that baicalin-copper suppresses the proliferation of HepG2 cells in a dose-dependent manner. Intraperitoneal injection of baicalin-copper resulted in a significant decrease in tumor growth in xenografts in nude mice. Acridine orange staining and flow cytometry analysis demonstrated that baicalin-copper induced apoptosis in HepG2 cells and caused cells to arrest in G2-M phase of the cell cycle. Furthermore, baicalin-copper treatment significantly increased the Bax/Bcl-2 ratio and p38 levels, as well as decreased the expression of caspase-3, p-PI3K, p-Akt and p-mTOR (P copper induces apoptosis in HepG2 cells by down-regulating the PI3K/Akt/mTOR signaling pathway.

  8. The study on apoptosis of liver cancer cell line HepG2 induced by culture supernatant of DCs transfection with recombinant plasmid pEGFP-N1/CpG-HBcAg(ISS)%重组质粒pEGFP-N1/CpG-HBcAg(ISS)转染DC培养上清诱导HepG2株凋亡的研究

    Institute of Scientific and Technical Information of China (English)

    周健; 田德英; 许东; 张振纲; 陈淼; 章述军; 吴会玲

    2010-01-01

    目的:探讨人类乙肝核心抗原重组质粒pEGFP-N1/CpG-HBcAg(ISS)转染人外周血单核细胞来源树突状细胞后,细胞培养上清诱导肝癌细胞株HepG2凋亡的作用及机制.方法:构建真核表达质粒pEGFP-N1/CpG-HBcAg(ISSa,c),将其转染人外周血来源DC,用培养上清诱导HepG2的凋亡.用流式细胞仪检测已转染DC表面CD80和CD86的表达,检测培养上清诱导HepG2凋亡的变化.用ELISA法检测转染后DC培养上清的IFN-γ、IL-2、IL-12、IL-4和IL-10的水平.结果:pEGFP-N1/CpG-HBcAg(ISSa)转染DC表面CD80和CD86的表达均有明显升高(P<0.01).转染后上清中Th1型细胞因子 IFN-γ、IL-2和IL-12的表达增强(P<0.01),Th2型细胞因子IL-4和IL-10的表达下降(P<0.05),pEGFP-N1/CpG-HBcAg(ISSa)组培养上清对HepG2细胞具有促凋亡作用,随着培养时间延长,细胞凋亡率逐渐增加,HepG2细胞在诱导后24小时凋亡率达到最大,为18.4%.结论:重组质粒pEGFP-N1/CpG-HBcAg(ISSa)转染培养上清能明显促进肝癌细胞株HepG2的凋亡.

  9. Apoptosis Induction by Polygonum minus Is Related to Antioxidant Capacity, Alterations in Expression of Apoptotic-Related Genes, and S-Phase Cell Cycle Arrest in HepG2 Cell Line

    Directory of Open Access Journals (Sweden)

    Mohd Alfazari Mohd Ghazali

    2014-01-01

    Full Text Available Polygonum minus (Polygonaceae is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1–F7. Antioxidant activity was measured via total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH, and ferric reducing antioxidant power (FRAP assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16±6.2 mg GAE/g extract, DPPH; EC50: 30.5±3.2 μg/mL, FRAP; 1169±20.3 μmol Fe (II/mg extract and selective antiproliferative effect (IC50: 25.75±1.5 μg/mL. F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3 and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects.

  10. Overexpression of Bmi‑1 promotes epithelial‑mesenchymal transition in CD133+Hep G2 cells.

    Science.gov (United States)

    Zhang, Zefeng; Wang, Qiyi; Bu, Xiaoling; Zhang, Chuangqiang; Chen, Hao; Sha, Weihong; Liu, Wanwei

    2017-08-24

    Cancer stem cells (CSCs) and epithelial‑mesenchymal transition (EMT) are critical factors contributing to tumor metastasis and recurrence. The BMI1 proto‑oncogene (Bmi‑1) promotes the development and progression of hematologic malignancies and of several types of solid tumors. The aim of the present study was to explore the mechanism by which Bmi‑1 may promote invasion and migration of hepatocellular carcinoma Hep G2 cells. CD133 antigen is a transmembrane glycoprotein and regarded as a cancer stem cells marker in hepatocellular carcinoma. CD133+Hep G2 cells were enriched by magnetic‑activated cell sorting and exhibited greater viability compared with CD133‑Hep G2 cells, as measured by Cell Counting kit‑8 assay. Then, Bmi‑1 was overexpressed in CD133+Hep G2 cells by transfection with the Bmi‑1/pcDNA3.1(+) expression plasmid, and overexpression was confirmed by reverse‑transcription‑polymerase chain reaction and western blotting. Overexpression of Bmi‑1in CD133+Hep G2 cells resulted in the downregulation of E‑cadherin and upregulation of Vimentin at the protein level. The invasion and migration abilities of CD133+Hep G2 cells were increased in the Bmi‑1/pcDNA3.1(+)‑transfected group, as measured by Transwell invasion and wound healing assays, respectively. In conclusion, Bmi‑1 promoted invasion and migration of CD133+Hep G2 cells most likely through inducing EMT. The present findings may offer a potential novel target for the development of hepatocellular carcinoma therapies.

  11. Inhibition of aldose reductase ameliorates ethanol‑induced steatosis in HepG2 cells.

    Science.gov (United States)

    Qiu, Longxin; Cai, Chengchao; Zhao, Xiangqian; Fang, Yan; Tang, Weibiao; Guo, Chang

    2017-05-01

    Aldose reductase (AR) expression is increased in liver tissue of patients with ethanol‑induced liver disease. However, the exact role of AR in the development of ethanol‑induced liver disease has yet to be elucidated. The present study aimed to determine the effect of an AR inhibitor on ethanol‑induced steatosis in HepG2 cells and to identify possible underlying molecular mechanisms. Steatosis was induced in HepG2 cells by stimulating cells with 100 mM absolute ethanol for 48 h. Oil Red O staining was used to detect the lipid droplet accumulation in cells. Western blot analyses were used to determine protein expression levels and reverse transcription‑quantitative polymerase chain reaction was used to analyze mRNA expression levels. The results showed that AR protein expression was elevated in HepG2 cells stimulated with ethanol. HepG2 cells exhibited marked improvement of ethanol‑induced lipid accumulation following treatment with the AR inhibitor zopolrestat. Phosphorylation levels of 5' adenosine monophosphate‑activated protein kinase (AMPK) were markedly higher, whereas the mRNA expression levels of sterol‑regulatory element‑binding protein (SREBP)‑1c and fatty acid synthase (FAS) were significantly lower in zopolrestat‑treated and ethanol‑stimulated HepG2 cells compared with in untreated ethanol‑stimulated HepG2 cells. In addition, zopolrestat inhibited the ethanol‑induced expression of tumor necrosis factor (TNF)‑α. These results suggested that zopolrestat attenuated ethanol‑induced steatosis by activating AMPK and subsequently inhibiting the expression of SREBP‑1c and FAS, and by suppressing the expression of TNF‑α in HepG2 cells.

  12. Developmental Stage-Specific Embryonic Induction of HepG2 Cell Differentiation.

    Science.gov (United States)

    Li, Yanning; Zong, Yanhong; Xiao, Zhigang; Zhu, Mengxuan; Xiao, Hui; Qi, Jinsheng; Liu, Kun; Wang, Hui

    2016-04-01

    Although hepatocellular carcinoma cells can sometimes undergo differentiation in an embryonic microenvironment, the mechanism is poorly understood. The developmental stage-specific embryonic induction of tumor cell differentiation was investigated. Both chick and mouse liver extracts and hepatoblast-enriched cells at different developmental stages were used to treat human hepatoma HepG2 cells, and the effects on the induction of differentiation were evaluated. The nuclear factors controlling differentiation, hepatocyte nuclear factor (HNF)-4α, HNF-1α, HNF-6 and upstream stimulatory factor-1 (USF-1), and the oncogene Myc and alpha-fetoprotein (AFP) were measured. HNF-4α RNA interference was used to verify the role of HNF-4α. Embryonic induction effects were further tested in vivo by injecting HepG2 tumor cells into immunodeficient nude mice. The 9-11-days chick liver extracts and 13.5-14.5-days mouse hepatoblast-enriched cells could inhibit proliferation and induce differentiation of HepG2 cells, leading to either death or maturation to hepatocytes. The maturation of surviving HepG2 cells was confirmed by increases in the expressions of HNF-4α, HNF-1α, HNF-6, and USF-1, and decreases in Myc and AFP. The embryonic induction of HepG2 cell maturation could be attenuated by HNF-4α RNA interference. Furthermore, the 13.5-days mouse hepatoblast culture completely eliminated HepG2 tumors with inhibited Myc and induced HNF-4α, confirming this embryonic induction effect in vivo. This study demonstrated that developmental stage-specific embryonic induction of HepG2 cell differentiation might help in understanding embryonic differentiation and oncogenesis.

  13. Altered cellular metabolism of HepG2 cells caused by microcystin-LR.

    Science.gov (United States)

    Ma, Junguo; Feng, Yiyi; Jiang, Siyu; Li, Xiaoyu

    2017-06-01

    This study aimed to evaluate the possible effects of microcystin-LR (MC-LR) exposure on the metabolism and drug resistance of human hepatocellular carcinoma (HepG2) cells. For this purpose, we first conducted an experiment to make sure that MC-LR could penetrate the HepG2 cell membrane effectively. The transcriptional levels of phase I (such as CYP2E1, CYP3A4, and CYP26B1) and phase II (such as EPHX1, SULTs, and GSTM) enzymes and export pump genes (such as MRP1 and MDR1) were altered by MC-LR-exposure for 24 h, indicating that MC-LR treatment may destabilize the metabolism of HepG2 cells. Further research showed that the CYP inducers omeprazole, ethanol, and rifampicin inhibited cell viability, in particular, ethanol, a CYP2E1 inducer, induced ROS generation, lipid peroxidation, and apoptosis in HepG2 cells treated with MC-LR. The CYP2E1 inhibitor chlormethiazole inhibited ROS generation, mitochondrial membrane potential loss, caspase-3 activity, and cytotoxicity caused by MC-LR. Meanwhile, the results also showed that co-incubation with the ROS scavenger l-ascorbic acid and MC-LR decreased ROS levels and effectively prevented apoptosis. These findings provide an interesting mechanistic explanation of cellular metabolism associated with MC-LR, i.e., MC-LR-exposure exerted toxicity on HepG2 cells and induced apoptosis of HepG2 cells via promoting CYP2E1 expression and inducing excessive ROS in HepG2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. BDNF表达下调抑制HepG2细胞侵袭的相关分子机制研究%Down-regulation of BDNF suppressed invasion of HepG2 cells and associated molecular mechanisms

    Institute of Scientific and Technical Information of China (English)

    郭大伟; 侯学忠; 孙文郁; 朱磊; 张弘彬; 姜晓峰; 梁健

    2012-01-01

    Objective: To investigate the effects of siRNA specificly for BDNF on apoptosis and invasion of HepG2 cells and its potential molecular mechanism. Methods; The expression of BDNF in cells was examined by western blot and BDNF secretion was evaluated by ELISA in human HCC cell lines of HepG2. BDNF knockdown was performed by specific BDNF - siRNA transfection in HepG2 cells, actin cytoskelelon was shown by FITC - phalloidin staining and the activations of RhoA, Racl or Cdc42 were determined by Western blot. Cell apoptosis and invasion were examined by flow cytometry and transwell assay respectively. Results: The expression of BDNF was found in HepG2 cells. BDNF concentration in the supernatant of HepG2 cells was 88.56 ±7.45 pg/ml. Inhibited expression of BDNF by specific siRNA showed impaired actin polymerization and decreased activations of RhoA or Racl in HepG2 cells. BDNF knockdown also induced apoptosis and suppressed invasion of HepG2 cells. Conclusion: BDNF knockdown inhibited cell invasion probably through the blocked actin polymerization and the correlated inactivation of RhoA or Racl. Aiming at BDNF/TrkB signaling interruption may be an effective strategy to prevent HCC progression.%目的:应用特异性siRNA下调HepG2细胞中BDNF表达,观察对细胞凋亡和侵袭的影响并探讨相关分子机制.方法:在人HCC细胞系HepG2中,采用Western blot方法检测BDNF的表达,采用ELISA方法检测培养液上清BDNF的分泌水平.特异性BDNF-siRNA转染细胞,采用FITC-phalloidin染色方法检测actin 细胞骨架的变化,采用Western blot方法检测细胞内RhoA、Rac1、Cdc42的活化情况.同时,流式细胞术检测细胞凋亡,Transwell小室测定细胞侵袭能力的变化.结果:HepG2细胞培养上清中BDNF含量为88.56±7.45 pg/ml.在HepG2细胞中,特异性BDNF-siRNA显著抑制BDNF的表达,干扰细胞内actin细胞骨架聚合,RhoA或Racl活性受到抑制,同时凋亡细胞数增加、细胞侵袭能力下降.结论:干

  15. Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2.

    Science.gov (United States)

    Kang, Seok-Jin; Lee, Hyuk-Mi; Park, Young-Il; Yi, Hee; Lee, Hunjoo; So, ByungJae; Song, Jae-Young; Kang, Hwan-Goo

    2016-10-01

    Stem cell-induced hepatocytes (SC-iHeps) have been suggested as a valuable model for evaluating drug toxicology. Here, human-induced pluripotent stem cells (QIA7) and embryonic stem cells (WA01) were differentiated into hepatocytes, and the hepatotoxic effects of acetaminophen (AAP) and aflatoxin B1 (AFB1) were compared with primary hepatocytes (p-Heps) and HepG2. In a cytotoxicity assay, the IC50 of SC-iHeps was similar to that in p-Heps and HepG2 in the AAP groups but different from that in p-Heps of the AFB1 groups. In a multi-parameter assay, phenotypic changes in mitochondrial membrane potential, calcium influx and oxidative stress were similar between QIA7-iHeps and p-Heps following AAP and AFB1 treatment but relatively low in WA01-iHeps and HepG2. Most hepatic functional markers (hepatocyte-specific genes, albumin/urea secretion, and the CYP450 enzyme activity) were decreased in a dose-dependent manner following AAP and AFB1 treatment in SC-iHeps and p-Heps but not in HepG2. Regarding CYP450 inhibition, the cell viability of SC-iHeps and p-Heps was increased by ketoconazole, a CYP3A4 inhibitor. Collectively, SC-iHeps and p-Heps showed similar cytotoxicity and hepatocyte functional effects for AAP and AFB1 compared with HepG2. Therefore, SC-iHeps have phenotypic characteristics and sensitivity to cytotoxic chemicals that are more similar to p-Heps than to HepG2 cells.

  16. Insulin resistance contributes to multidrug resistance in HepG2 cells via activation of the PERK signaling pathway and upregulation of Bcl-2 and P-gp.

    Science.gov (United States)

    Liu, Xinyue; Li, Linjing; Li, Jing; Cheng, Yan; Chen, Jing; Shen, Minghui; Zhang, Shangdi; Wei, Hulai

    2016-05-01

    Liver tumorigenesis frequently causes insulin resistance which may be used as an independent risk factor for evaluation of survival and post-surgery relapse of liver cancer patients. In the present study, HepG2/IR, an insulin resistant HepG2 cell line, was established by exposing HepG2 cells to 0.5 µmol/l of insulin for 72 h, and comparison of HepG2/IR with the parental HepG2 cells indicated that the HepG2/IR cells showed significantly enhanced resistance to the most frequently used chemotherapeutics for solid tumors, such as cisplatin, 5-fluorouracil, vincristine and mitomycin. Flow cytometric analysis of cisplatin-treated HepG2/IR cells showed a significantly decreased hypodiploid peak and a significantly downregulated expression level of pro-apoptotic protein caspase-3 compared with the parental HepG2 cells. Our data further showed swollen endoplasmic reticulum (ER) in the cisplatin-treated HepG2/IR cells with significantly increased levels of glucose-regulated protein 78 (GRP78), phosphorylated protein kinase R-like ER kinase (p-PERK) and P-glycoprotein (P-gp). There was also an upregulated expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) whereas no significant change was observed for CCAAT-enhancer-binding protein homologous protein (CHOP), which is known to be induced by ER stress and to mediate apoptosis. Our results demonstrated that insulin resistance in HepG2 cells promoted a protective unfolded protein response and upregulated the expression of ER chaperone protein GRP78, which resulted in the phosphorylation of PERK kinase to activate the PERK-mediated ER stress signal transduction pathway and the upregulation of Bcl-2 and P-gp, leading to the inhibition of the caspase-3-dependent apoptosis pathway and to the survival of liver tumor cells.

  17. [PCR analysis of the absolute number of copies of human chromosome 18 transcripts in liver and HepG2 cells].

    Science.gov (United States)

    Kiseleva, Y Y; Ptitsyn, K G; Tikhonova, O V; Radko, S P; Kurbatov, L K; Vakhrushev, I V; Zgoda, V G; Ponomarenko, E A; Lisitsa, A V; Archakov, A I

    2017-03-01

    Using reverse transcription in conjunction with the quantitative real-time PCR or digital droplet PCR, the transcriptome profiling of human chromosome 18 has been carried out in liver hepatocytes and hepatoblastoma cells (HepG2 cell line) in terms of the absolute number of each transcript per cell. The transcript abundance varies within the range of 0.006 to 9635 and 0.011 to 4819 copies per cell for HepG2 cell line and hepatocytes, respectively. The expression profiles for genes of chromosome 18 in hepatocytes and HepG2 cells were found to significantly correlate: the Spearman's correlation coefficient was equal to 0.81. The distribution of frequency of transcripts over their abundance was bimodal for HepG2 cells and unimodal for liver hepatocytes. Bioinformatic analysis of the differential gene expression has revealed that genes of chromosome 18, overexpressed in HepG2 cells compared to hepatocytes, are associated with cell division and cell adhesion processes. It is assumed that the enhanced expression of those genes in HepG2 cells is related to the proliferation activity of cultured cells. The differences in transcriptome profiles have to be taken into account when modelling liver hepatocytes with cultured HepG2 cells.

  18. Pro-apoptotic effects of tectorigenin on human hepatocellular carcinoma HepG2 cells

    Science.gov (United States)

    Jiang, Chun-Ping; Ding, Hui; Shi, Da-Hua; Wang, Yu-Rong; Li, Er-Guang; Wu, Jun-Hua

    2012-01-01

    AIM: To investigate the effects of tectorigenin on human hepatocellular carcinoma (HCC) HepG2 cells. METHODS: Tectorigenin, one of the main components of rhizome of Iris tectorum, was prepared by simple methods, such as extraction, filtration, concentration, precipitation and recrystallization. HepG2 cells were incubated with tectorigenin at different concentrations, and their viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was detected by morphological observation of nuclear change, agarose gel electrophoresis of DNA ladder, and flow cytometry with Hoechst 33342, Annexin V-EGFP and propidium iodide staining. Generation of reactive oxygen species was quantified using DCFH-DA. Intracellular Ca2+ was monitored by Fura 2-AM. Mitochondrial membrane potential was monitored using Rhodamine 123. Release of cytochrome c from mitochondria to cytosol was detected by Western blotting. Activities of caspase-3, -8 and -9 were investigated by Caspase Activity Assay Kit. RESULTS: The viability of HepG2 cells treated by tectorigenin decreased in a concentration- and time-dependent manner. The concentration that reduced the number of viable HepG2 cells by 50% (IC50) after 12, 24 and 48 h of incubation was 35.72 mg/L, 21.19 mg/L and 11.06 mg/L, respectively. However, treatment with tectorigenin at 20 mg/L resulted in a very slight cytotoxicity to L02 cells after incubation for 12, 24 or 48 h. Tectorigenin at a concentration of 20 mg/L greatly inhibited the viability of HepG2 cells and induced the condensation of chromatin and fragmentation of nuclei. Tectorigenin induced apoptosis of HepG2 cells in a time- and dose-dependent manner. Compared with the viability rate, induction of apoptosis was the main mechanism of the anti-proliferation effect of tectorigenin in HepG2 cells. Furthermore, tectorigenin-induced apoptosis of HepG2 cells was associated with the generation of reactive oxygen species, increased intracellular [Ca2+]i

  19. Ginseng (Panax quinquefolius and Licorice (Glycyrrhiza uralensis Root Extract Combinations Increase Hepatocarcinoma Cell (Hep-G2 Viability

    Directory of Open Access Journals (Sweden)

    David G. Popovich

    2011-01-01

    Full Text Available The combined cytoactive effects of American ginseng (Panax quinquefolius and licorice (Glycyrrhiza uralensis root extracts were investigated in a hepatocarcinoma cell line (Hep-G2. An isobolographic analysis was utilized to express the possibility of synergistic, additive or antagonistic interaction between the two extracts. Both ginseng and licorice roots are widely utilized in traditional Chinese medicine preparations to treat a variety of ailments. However, the effect of the herbs in combination is currently unknown in cultured Hep-G2 cells. Ginseng (GE and licorice (LE extracts were both able to reduce cell viability. The LC50 values, after 72 h, were found to be 0.64 ± 0.02 mg/mL (GE and 0.53 ± 0.02 mg/mL (LE. An isobologram was plotted, which included five theoretical LC50s calculated, based on the fixed fraction method of combination ginseng to licorice extracts to establish a line of additivity. All combinations of GE to LE (1/5, 1/3, 1/2, 2/3, 4/5 produced an effect on Hep-G2 cell viability but they were all found to be antagonistic. The LC50 of fractions 1/3, 1/2, 2/3 were 23%, 21% and 18% above the theoretical LC50. Lactate dehydrogenase release indicated that as the proportion of GE to LE increased beyond 50%, the influence on membrane permeability increased. Cell-cycle analysis showed a slight but significant arrest at the G1 phase of cell cycle for LE. Both GE and LE reduced Hep-G2 viability independently; however, the combinations of both extracts were found to have an antagonistic effect on cell viability and increased cultured Hep-G2 survival.

  20. Midkine accumulated in nucleolus of HepG2 cells involved in rRNA transcription

    Institute of Scientific and Technical Information of China (English)

    Li-Cheng Dai; Jian-Zhong Shao; Li-Shan Min; Yong-Tao Xiao; Li-Xin Xiang; Zhi-Hong Ma

    2008-01-01

    AIM: To invesgate the ultrastructural location of midkine (MK) in nucleolus and function corresponding to its location. METHODS: To investigate the ultrastructural location of MK in nucleolus with immunoelectronic microscopy. To study the role that MK plays in ribosomal biogenesis by real-time PCR. The effect of MK on anti-apoptotic activity of HepG2 cells was studied with FITC-conjugated annexin V and propidium iodide PI double staining through FACS assay. RESULTS: MK mainly localized in the granular component (GC), dense fibrillar component (DFC) and the border between the DF-C and fibrillar center (FC). The production of 45S precursor rRNA level was decreased significantly in the presence of IK antisense oligonucleotide in the HepG2 cells. Furthermore, it was found that exogenous MK could protect HepG2 from apoptosis significantly. CONCLUSION: NK was constitutively translocated to the nucleolus of HepG2 cells, where it accumulated and mostly distributed at DFC, GC components and at the region between FC and DFC, MK played an important role in rRNA transcription, ribosome biogenesis, and cell proliferation in HepG2 cells. MK might serve as a molecular target for therapeutic intervention of human carcinomas.

  1. Buckwheat trypsin inhibitor enters Hep G2 cells by clathrin-dependent endocytosis.

    Science.gov (United States)

    Cui, Xiaodong; Wang, Zhuanhua; Li, Yuying; Li, Chen

    2013-12-01

    Recombinant buckwheat trypsin inhibitor (rBTI) was studied to evaluate if it could enter cancer cells and to determine the mechanism. Fluorescein isothiocyanate-labelled buckwheat trypsin inhibitor (FITC-BTI) entered Hep G2 cells in a concentration-dependent manner. FITC-BTI colocalised with labelled transferrin (Tf) in the punctate structure, implying that rBTI enters Hep G2 cells by clathrin-dependent endocytosis. Incubation of Hep G2 cells with different chemical inhibitors abolished diffuse, but not punctate fluorescence, thus indicating that membrane potential plays a critical role in this process. Impairment of clathrin-mediated endocytosis by RNAi with clathrin heavy chain greatly reduced or completely abolished both diffuse and punctate fluorescence, further supporting a theory of a single route of endocytosis. Consistent with our working hypothesis, Hep G2 cells which were arrested in the M phase did not show any vesicular or diffuse FITC-BTI. We conclude from these results that both endocytosis and membrane potential are required for rBTI entry into Hep G2 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. GRK2 negatively regulates IGF-1R signaling pathway and cyclins' expression in HepG2 cells.

    Science.gov (United States)

    Wei, Zhengyu; Hurtt, Reginald; Gu, Tina; Bodzin, Adam S; Koch, Walter J; Doria, Cataldo

    2013-09-01

    G protein coupled receptor kinase 2 (GRK2) plays a central role in the regulation of a variety of important signaling pathways. Alternation of GRK2 protein level and activity casts profound effects on cell physiological functions and causes diseases such as heart failure, rheumatoid arthritis, and obesity. We have previously reported that overexpression of GRK2 has an inhibitory role in cancer cell growth. To further examine the role of GRK2 in cancer, in this study, we investigated the effects of reduced protein level of GRK2 on insulin-like growth factor 1 receptor (IGF-1R) signaling pathway in human hepatocellular carcinoma (HCC) HepG2 cells. We created a GRK2 knockdown cell line using a lentiviral vector mediated expression of GRK2 specific short hairpin RNA (shRNA). Under IGF-1 stimulation, HepG2 cells with reduced level of GRK2 showed elevated total IGF-1R protein expression as well as tyrosine phosphorylation of receptor. In addition, HepG2 cells with reduced level of GRK2 also demonstrated increased tyrosine phosphorylation of IRS1 at the residue 612 and increased phosphorylation of Akt, indicating a stronger activation of IGF-1R signaling pathway. However, HepG2 cells with reduced level of GRK2 did not display any growth advantage in culture as compared with the scramble control cells. We further detected that reduced level of GRK2 induced a small cell cycle arrest at G2/M phase by enhancing the expression of cyclin A, B1, and E. Our results indicate that GRK2 has contrasting roles on HepG2 cell growth by negatively regulating the IGF-1R signaling pathway and cyclins' expression.

  3. Zebularine upregulates expression of CYP genes through inhibition of DNMT1 and PKR in HepG2 cells

    Science.gov (United States)

    Nakamura, Kazuaki; Aizawa, Kazuko; Aung, Kyaw Htet; Yamauchi, Junji; Tanoue, Akito

    2017-01-01

    Drug-induced hepatotoxicity is one of the major reasons cited for drug withdrawal. Therefore, it is of extreme importance to detect human hepatotoxic candidates as early as possible during the drug development process. In this study, we aimed to enhance hepatocyte functions such as CYP gene expression in HepG2 cells, one of the most extensively used cell lines in evaluating hepatotoxicity of chemicals and drugs. We found that zebularine, a potent inhibitor of DNA methylation, remarkably upregulates the expression of CYP genes in HepG2 cells. In addition, we revealed that the upregulation of CYP gene expression by zebularine was mediated through the inhibition of both DNA methyltransferase 1 (DNMT1) and double-stranded RNA-dependent protein kinase (PKR). Furthermore, HepG2 cells treated with zebularine were more sensitive than control cells to drug toxicity. Taken together, our results show that zebularine may make HepG2 cells high-functioning and thus could be useful for evaluating the hepatotoxicity of chemicals and drugs speedily and accurately in in-vitro systems. The finding that zebularine upregulates CYP gene expression through DNMT1 and PKR modulation sheds light on the mechanisms controlling hepatocyte function and thus may aid in the development of new in-vitro systems using high-functioning hepatocytes. PMID:28112215

  4. Selective Cytotoxicity of Goniothalamin against Hepatoblastoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Noorjahan B. Alitheen

    2011-04-01

    Full Text Available Liver cancer has become one of the major types of cancer with high mortality and liver cancer is not responsive to the current cytotoxic agents used in chemotherapy. The purpose of this study was to examine the in vitro cytotoxicity of goniothalamin on human hepatoblastoma HepG2 cells and normal liver Chang cells. The cytotoxicity of goniothalamin against HepG2 and liver Chang cell was tested using MTT cell viability assay, LDH leakage assay, cell cycle flow cytometry PI analysis, BrdU proliferation ELISA assay and trypan blue dye exclusion assay. Goniothalamin selectively inhibited HepG2 cells [IC50 = 4.6 (±0.23 µM in the MTT assay; IC50 = 5.20 (±0.01 µM for LDH assay at 72 hours], with less sensitivity in Chang cells [IC50 = 35.0 (±0.09 µM for MTT assay; IC50 = 32.5 (±0.04 µM for LDH assay at 72 hours]. In the trypan blue dye exclusion assay, the Viability Indexes were 52 ± 1.73% for HepG2 cells and 62 ± 4.36% for Chang cells at IC50 after 72 hours. Cytotoxicity of goniothalamin was related to inhibition of DNA synthesis, as revealed by the reduction of BrdU incorporation. At 72 hours, the lowest concentration of goniothalamin (2.3 µL retained 97.6% of normal liver Chang cells proliferation while it reduced HepG2 cell proliferation to 19.8% as compared to control. Besides, goniothalamin caused accumulation of hypodiploid apoptosis and different degree of G2/M arrested as shown in cell cycle analysis by flow cytometry. Goniothalamin selectively killed liver cancer cell through suppression of proliferation and induction of apoptosis. These results suggest that goniothalamin shows potential cytotoxicity against hepatoblastoma HepG2 cells.

  5. Expression of albumin and cytochrome P450 enzymes in HepG2 cells cultured with a nanotechnology-based culture plate with microfabricated scaffold.

    Science.gov (United States)

    Nakamura, Kazuaki; Kato, Natsuko; Aizawa, Kazuko; Mizutani, Reiko; Yamauchi, Junji; Tanoue, Akito

    2011-10-01

    The Nanoculture plate (NCP) is a recently developed plate which essentially consists of a textured surface with specific characteristics that induce spheroid formation: microfabrications with a micro-square pattern on the culture surface. The NCP can be used to generate uniform adhesive spheroids of cancer cell lines using conventional techniques without the need of any animal compounds. In this study, we assessed the performance of human hepatoma cell line HepG2 cells cultured with an NCP to evaluate the effects of the NCP on their hepatocyte-specific functions. The NCP facilitated the formation of three-dimensional (3D) HepG2 cell architecture. HepG2 cells cultured with an NCP exhibited enhanced mRNA expression levels of albumin and cytochrome P450 (CYP) enzymes compared to those cultured with a two-dimensional (2D) conventional plate. The expression levels of two specific liver-enriched transcription factors, hepatocyte nuclear factor 4α (HNF4α) and CCAAT/enhancer binding protein α (C/EBPα), were higher in HepG2 cells grown with the NCP than those in HepG2 cells grown with conventional plates before albumin and CYP enzymes expression levels were increased. The inducibility of CYP1A2 and CYP3A4 mRNA following exposure to inducers in HepG2 cells cultured with an NCP was comparable to that in HepG2 cells cultured with conventional plates, while the expression levels of CYP1A2 and CYP3A4 mRNA following exposure to inducers were higher when using an NCP than when using conventional plates. These results suggest that the use of an NCP enhances the hepatocyte-specific functions of HepG2 cells, such as drug-metabolizing enzyme expression, making the NCP/HepG2 system a useful tool for evaluating drug metabolism in vitro.

  6. Anti-hepatocarcinoma effects of resveratrol nanoethosomes against human HepG2 cells

    Science.gov (United States)

    Meng, Xiang-Ping; Zhang, Zhen; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2017-02-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Resveratrol (Res) has been widely investigated with its strong anti-tumor activity. However, its low oral bioavailability restricts its wide application. In this study, we prepared resveratrol nanoethosomes (ResN) via ethanol injection method. The in vitro anti-hepatocarcinoma effects of ResN relative to efficacy of bulk Res were evaluated on proliferation and apoptosis of human HepG2 cells. ResN were spherical vesicles and its particle diameter, zeta potential were (115.8 +/- 1.3) nm and (-12.8 +/- 1.9) mV, respectively. ResN exhibited significant inhibitory effects against human HepG2 cells by MTT assay, and the IC50 value was 49.2 μg/ml (105.4 μg/ml of Res bulk solution). By flow cytometry assay, there was an increase in G2/M phase cells treated with ResN. The results demonstrated ResN could effectively block the G2/M phase of HepG2 cells, which can also enhance the inhibitory effect of Res against HepG2 cells.

  7. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rathinaraj, Pierson [Auckland University of Technology, Institute of Biomedical Technologies (New Zealand); Lee, Kyubae; Choi, Yuri; Park, Soo-Young [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of); Kwon, Oh Hyeong [Kumoh National Institute of Technology, Department of Polymer Science and Engineering (Korea, Republic of); Kang, Inn-Kyu, E-mail: ikkang@knu.ac.kr [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of)

    2015-07-15

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

  8. Simultaneous recovery of dual pathways for ammonia metabolism do not improve further detoxification of ammonia in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Fei-Yuan Zhang; Nan-Hong Tang; Xiao-Qian Wang; Xiu-Jin Li and Yan-Ling Chen

    2013-01-01

    BACKGROUND: Key  enzyme  deficiency  in  the  dual-pathway of  ammonia  metabolism  leads  to  low  detoxification  capacity of  HepG2  cells.  Previously,  we  established  a  HepG2/AFhGS cell  line  with  overexpression  of  human  glutamine  synthetase (hGS)  in  pathway    1  and  a  HepG2/(hArgI+hOTC)4  cell  line with overexpression of human arginase I (hArgI) and human ornithine transcarbamylase (hOTC) in pathway 2. The present study  aimed  to  investigate  whether  simultaneous  recovery  of the  two  pathways  contributes  to  the  further  improvement  of ammonia detoxification in HepG2 cells. METHODS: We  adopted  a  recombinant  retrovirus  carrying the  hGS  gene  to  infect  HepG2/(hArgI+hOTC)4  cells  and selected a new recombinant HepG2 cell line. The capacities of ammonia tolerance and detoxification in cells were detected by biochemical methods. Cell cycle PCR chip was used to assess the changes of gene expression. RESULTS: Introducing  hGS  into  HepG2/(hArgI+hOTC)4 cells did not lead to hGS overexpression, but inhibited hArgI expression.  The  levels  of  synthetic  glutamine  and  urea  in HepG2/(hArgI+hOTC+AFhGS)1 cells were significantly lower than  those  in  HepG2/(hArgI+hOTC)4  cells  when  cultured in  the  medium  with  10  and  15  mmol/L  glutamate  (Glu)  and with 60 and 180 mmol/L NH4Cl, respectively. In addition, the comparison of different cell growth showed that HepG2/AFhGS cells significantly lagged behind the other cells by the 5th and 7th  day,  indicating  that  introduction  of  hGS  impedes  HepG2 cell

  9. HepG2 cells recovered from apoptosis show altered drug responses and invasiveness

    Institute of Scientific and Technical Information of China (English)

    Shan-Shan Wang; Xin Xie; Chung Sing Timothy Wong

    2014-01-01

    BACKGROUND: Cancer  relapse,  associated  with  increased drug resistance and rate of metastasis, often follows completion of chemotherapy but the cancer escape mechanisms are still incompletely understood. Percutaneous ethanol injection (PEI) has been used for treating hepatocellular carcinoma (HCC) for decades, while the recurrence after PEI treatment remains a major limitation. Recent evidence mounted that cancer cells could survive from chemical induced apoptosis, suggesting a potential route through which cancer relapse may occur. This study focuses on the consequence of HepG2 recovery from ethanol-induced apoptotic event. METHODS: The  model  of  HepG2  recovery  from  ethanol-induced apoptotic event was established by live cell imaging, BrdU assay and Western blotting. MTT assay, wound healing assay and invasion assay were used to investigate the behavior of HepG2 after recovery. RESULTS: HepG2 cells could recover from ethanol-induced apoptosis. These cells changed their behaviors such as drug resistance, mobility and invasiveness. On average, the recovered HepG2 cell clones were found to be 46% more resistant to ethanol and 84% higher in mobility. The recovered clones became 58.2% more sensitive to 5-lfuorouracil. CONCLUSIONS: HepG2  cells  can  recover  from  ethanol-induced apoptotic event. These cells became more resistant to ethanol and more invasive. Although the recovered cell clones were more resistant to ethanol, they became more sensitive to 5-lfuorouracil treatment.

  10. Butyrylcholinesterase expression is regulated by fatty acids in HepG2 cells.

    Science.gov (United States)

    Gok, Muslum; Zeybek, N Dilara; Bodur, Ebru

    2016-11-25

    Butyrylcholinesterase (BChE) is mostly associated with the detoxification of xenobiotics. In this study to analyze the involvement of BChE in lipid metabolism, linoleic acid (LA) and α-linolenic acid (ALA) were applied to HepG2 cells along with expression of wild type human BChE. After 48 h of these treatments WST-1 cell proliferation assay, FACS analysis, RT-PCR, Oil Red O staining and activity assays were performed. Application of high concentrations of LA to HepG2 cells without BChE transfection lead to detachment of the cells. The IC50 value LA was found as 149.3 μM whereas the IC50 value for ALA could not be calculated. Hence, in order to display minimal effects on cell viability, 5 μM was chosen as appropriate concentration for LA and ALA application to HepG2 cells. Transfection of wild-type BChE plasmid to HepG2 cells yielded increased BChE expression. Application of 5 μM ALA after BChE transfection to HepG2 cells resulted in increased expression of BChE. Although with this low concentration the number of apoptotic cells was decreased with ALA treatments, LA application did not cause a similar result with the same dose. Moreover ghost cell like property was observed in LA-treated cells. Application of ALA, on the other hand, led to an overall increase in cell numbers, BChE expression and activity. Our results indicate that BChE expression might be regulated by ALA in HepG2 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. An autophagic process is activated in HepG2 cells to mediate BDE-100-induced toxicity.

    Science.gov (United States)

    Pereira, Lilian Cristina; Duarte, Filipe Valente; Varela, Ana Teresa Inácio Ferreira; Rolo, Anabela Pinto; Palmeira, Carlos Manuel Marques; Dorta, Daniel Junqueira

    2017-02-01

    To reduce flammability and meet regulatory requirements, Brominated Flame Retardants (BFRs) are added to a wide variety of consumer products including furniture, textiles, electronics, and construction materials. Exposure to polybrominated phenyl ethers (PBDEs) adversely affects the human health. Bearing in mind that (i) PBDEs are potentially toxic, (ii) the mechanism of PBDE toxicity is unclear, and (iii) the importance of the autophagy to the field of toxicology is overlooked, this study investigates whether an autophagic process is activated in HepG2 cells (human hepatoblastoma cell line) to mediate BDE-100-induced toxicity. HepG2 cells were exposed with BDE-100 at three concentrations (0.1, 5, and 25μM), selected from preliminary toxicity tests, for 24 and 48h. To assess autophagy, immunocytochemistry was performed after exposure of HepG2 cells to BDE-100. Labeling of HepG2 cells with 100nM LysoTracker Red DND-99 aided examination of lysosome distribution. Proteins that are key to the autophagic process (p62 and LC3) were evaluated by western blotting. DNA was isolated and quantified to assess mitochondrial DNA copy number by qPCR on the basis of the number of DNA copies of a mitochondrial encoded gene normalized against a nuclear encoded gene. Conversion of LC3-I to LC3-II increased in HepG2 cells. Pre-addition of 100nM wortmannin decreased the amount of LC3 in the punctuate form and increased nuclear fragmentation (apoptotic feature). HepG2 cells exposed to BDE-100 presented increased staining with the lysosomal dye and had larger LC3 and p62 content after pre-treatment with ammonium chloride. The mitochondrial DNA copy number decreased, which probably constituted an attempt of the cell to manage mitochondrial damage by selective mitochondrial degradation (mitophagy). In conclusion, an autophagic process is activated in HepG2 cells to mediate BDE-100-induced toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Recombinant production of native human α-1-antitrypsin protein in the liver HepG2 cells.

    Science.gov (United States)

    Jaberie, Hajar; Naghibalhossaini, Fakhraddin

    2016-10-01

    Alpha-1 antitrypsin (A1AT) deficiency is associated with emphysema and liver disease. Only plasma-derived A1AT protein is available for augmentation therapy. Recombinant A1AT (recA1AT) protein expressed in various types of available hosts are either non-glycosylated or aberrantly glycosylated resulting into reduced stability and biological activity. To overcome these limitations, we have used the human liver HepG2 cell line to produce recA1AT protein. HepG2 cells were transfected by A1AT cDNA and cell populations were generated that stably overexpressed A1AT protein. Real-time RT-PCR and rocket immunoelectrophoresis of cell culture supernatants indicated that the transfection resulted more than two-fold increase in A1AT production compared to that of control parental cells. Immunoblot analysis showed that both plasma and HepG2-produced A1AT proteins have identical molecular weight in either glycosylated or deglycosylated form. Partial digestion with PNGase F indicated that the three N-glycosylation sites of recA1AT, like the native A1AT protein in plasma, are occupied. Recombinant A1AT also like the native A1AT was thermostable and could efficiently inhibit trypsin proteolytic activity against BSA and BAPNA chromogenic substrate. The recombinant HepG2 cells cultured in media containing B27 serum free supplement released recA1AT at the same level as in the serum containing media. RecA1AT production in HepG2 cells grown under serum free condition at a large scale could provide a reliable source of the native protein suitable for therapeutic use in human.

  13. High permissivity of human HepG2 hepatoma cells for influenza viruses.

    Science.gov (United States)

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-12-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represent a new approach for study of the interrelations of this complex with influenza viruses.

  14. Synthesis of apoptotic chalcone analogues in HepG2 human hepatocellular carcinoma cells.

    Science.gov (United States)

    Park, Cheon-Soo; Ahn, Yongchel; Lee, Dahae; Moon, Sung Won; Kim, Ki Hyun; Yamabe, Noriko; Hwang, Gwi Seo; Jang, Hyuk Jai; Lee, Heesu; Kang, Ki Sung; Lee, Jae Wook

    2015-12-15

    Eight chalcone analogues were prepared and evaluated for their cytotoxic effects in human hepatoma HepG2 cells. Compound 5 had a potent cytotoxic effect. The percentage of apoptotic cells was significantly higher in compound 5-treated cells than in control cells. Exposure to compound 5 for 24h induced cleavage of caspase-8 and -3, and poly (ADP-ribose) polymerase (PARP). Our findings suggest that compound 5 is the active chalcone analogue that contributes to cell death in HepG2 cells via the extrinsic apoptotic pathway.

  15. Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells.

    Science.gov (United States)

    Quesada, Isabel M; Bustos, Mario; Blay, Mayte; Pujadas, Gerard; Ardèvol, Anna; Salvadó, M Josepa; Bladé, Cinta; Arola, Lluís; Fernández-Larrea, Juan

    2011-02-01

    Catechins and their polymers procyanidins are health-promoting flavonoids found in edible vegetables and fruits. They act as antioxidants by scavenging reactive oxygen species and by chelating the redox-active metals iron and copper. They also behave as signaling molecules, modulating multiple cell signalling pathways and gene expression, including that of antioxidant enzymes. This study aimed at determining whether catechins and procyanidins interact with the redox-inactive metal zinc and at assessing their effect on cellular zinc homeostasis. We found that a grape-seed procyanidin extract (GSPE) and the green tea flavonoid (-)-epigallocatechin-3-gallate (EGCG) bind zinc cations in solution with higher affinity than the zinc-specific chelator Zinquin, and dose-dependently prevent zinc-induced toxicity in the human hepatocarcinoma cell line HepG2, evaluated by the lactate dehydrogenase test. GSPE and EGCG hinder intracellular accumulation of total zinc, measured by atomic flame absorption spectrometry, concomitantly increasing the level of cytoplasmic labile zinc detectable by Zinquin fluorescence. Concurrently, GSPE and EGCG inhibit the expression, evaluated at the mRNA level by quantitative reverse transcriptase-polymerase chain reaction, of zinc-binding metallothioneins and of plasma membrane zinc exporter ZnT1 (SLC30A1), while enhancing the expression of cellular zinc importers ZIP1 (SLC39A1) and ZIP4 (SLC39A4). GSPE and EGCG also produce all these effects when HepG2 cells are stimulated to import zinc by treatment with supplemental zinc or the proinflammatory cytokine interleukin-6. We suggest that extracellular complexation of zinc cations and the elevation of cytoplasmic labile zinc may be relevant mechanisms underlying the modulation of diverse cell signaling and metabolic pathways by catechins and procyanidins.

  16. SiC nanoparticles cyto- and genotoxicity to Hep-G2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Barillet, Sabrina; Jugan, Mary-Line; Simon-Deckers, Angelique; Carriere, Marie [Laboratoire Pierre Suee, CEA-CNRS UMR9956, IRAMIS, CEA Saclay, 91191 Gif sur Yvette (France)], E-mail: marie.carriere@cea.fr; Leconte, Yann; Herlin-Boime, Nathalie; Mayne-l' Hermite, Martine; Reynaud, Cecile [Laboratoire Francis Perrin, CEA-CNRS URA2453, IRAMIS, CEA Saclay, 91191 Gif sur Yvette (France)

    2009-05-01

    While emerging nanotechnologies have seen significant development in recent years, knowledge on exposure levels as well as data on toxicity of nanoparticles are still quite limited. Indeed, there is a general agreement that development of nanotechnologies may lead to considerable dissemination of nanoparticles in the environment. Nevertheless, questions relative to toxicity versus innocuousness of such materials still remain. Our present study has thus been carried out with the purpose of assessing some aspects of toxicological capacities of three kinds of nano-sized particles: TiO{sub 2} and SiC nanoparticles, as well as multi-walled carbon nanotubes (CNT). In order to address the question of their potential toxicity toward living cells, we chose several cellular models. Assuming inhalation as the most probable exposure scenario, we used A549 alveolar epithelial cells as a model for mammalian primary target organ (lung). Furthermore, we considered that nanoparticles that would deposit into the pulmonary system may be translocated to the circulatory system. Thus, we decided to study the effect of nanoparticles on potentially secondary target organs: liver (WIF-B9, Can-10, HepG2) and kidneys (NRK-52E, LLC-PK1). Herein, we will focus our attention on results obtained on the HepG2 cell line exposed to SiC nanoparticles. Scarce literature exists on SiC nanotoxicology. According to the authors that have already carried out studies on this particular nanoparticle, it would seem that SiC nanoparticles do not induce cytotoxicity. That is one of the reasons of the potential use of these nanoparticles as biological labels [1]. We thus were interested in acquiring more data on biological effects induced by SiC nanoparticles. Furthermore, one of the particular aspects of the present study lies in the fact that we tried to specify the influence of physico-chemical characteristics of nanoparticles on toxicological endpoints (cytotoxicity and genotoxicity)

  17. Octreotide induces caspase activation and apoptosis inhuman hepatoma HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Nikos J Tsagarakis; Ioannis Drygiannakis; Antonis G Batistakis; George Kolios; Elias A Kouroumalis

    2011-01-01

    AIM: To investigate the role of octreotide on cellular proliferation and apoptosis of human hepatoma (HepG2) cells.METHODS: We studied cellular proliferation, apoptosis and the possible internal caspase-mediated apoptosis pathway involved, after treatment of HepG2 carcinomacells with octreotide in comparison with the apoptosis caused by tumor necrosis factor-α (TNF-α). Activities of caspase-3, caspase-9, caspase-8 and caspase-2 were studied, while apoptosis was investigated through detection of DNA fragmentation and through identification of apoptotic cells with the annexin-V/propidium iodide flow cytometric method.RESULTS: After an initial increase in HepG2 cellular proliferation, a significant inhibition was observed with 10-8 mol/L octreotide, while TNF-α dose-dependentlydecreased proliferation. Early and late apoptosis was significantly increased with both substances. Octreotide significantly increased caspase-3, caspase-8 andcaspase-2 activity. TNF-α significantly increased only caspase-2. Cellular proliferation was decreased after treatment with octreotide or TNF-α alone but, in contrast to TNF-α, octreotide decreased proliferation onlyat concentrations of 10-8 mol/L, while lower concentrations increased proliferation.CONCLUSION: Our findings are suggestive of caspasemediated signaling pathways of octreotide antitumor activity in HepG2 cells, and indicate that measurementsof serum octreotide levels may be important, at least in clinical trials, to verify optimal therapeutic drug concentrations.

  18. Effects of elaidic acid in a HepG2-SF liver cell model

    DEFF Research Database (Denmark)

    Hansen, Toke Peter Krogager

    lipidmetabolismen når HepG2-SF celler blev inkuberet med elaidinsyre sammenlignet med oleinsyre eller stearinsyre. Den mest fremtrædende ændring var en opregulering af enzymer som syntetiserer kolesterol og fedtsyrer, hvilken indikerede aktivering af sterol regulatory element-binding proteins (SREBPs). Dog blev...

  19. Curcumin and (-)-epigallocatechin-3-gallate attenuate acrylamide-induced proliferation in HepG2 cells.

    Science.gov (United States)

    Shan, Xiaoyun; Li, Yuan; Meng, Xulian; Wang, Pengqi; Jiang, Pan; Feng, Qing

    2014-04-01

    Acrylamide, a proven rodent carcinogen, is present in carbohydrate-rich food heated at high temperatures. It can be metabolized into glycidamide mainly by cytochrome P450 2E1 (CYP2E1). The fact that acrylamide is a potential carcinogen to human-beings draws public attention recently. This study aimed to elucidate the effect of acrylamide at low doses on proliferation of HepG2 cells, and to test whether the two well-studied chemopreventive agents, curcumin and (-)-epigallocatechin-3-gallate (EGCG), would have antagonistic effects against acrylamide. The results showed that lower concentration of acrylamide (⩽100μM) significantly increased the proliferation of HepG2 cells, but not of the other cancer cells (MDA-231, HeLa, A549, and PC-3). Only in HepG2 cells, low concentration of acrylamide was able to induce CYP2E1 expression significantly. Knockdown of CYP2E1 restrained acrylamide to increase viability of HepG2 cells. In addition, acrylamide raised expression of epidermal growth factor receptor (EGFR), cyclin D1 and nuclear factor-κB (NF-κB), which contributed to cell proliferation. Both curcumin and EGCG effectively reduced acrylamide-induced proliferation, as well as protein expression of CYP2E1, EGFR, cyclin D1 and NF-κB. All these results suggest that low concentration of acrylamide may contribute to progression of hepatocellular carcinoma (HCC). Curcumin or EGCG could prevent acrylamide triggering this effect.

  20. Hyperglycemia and anthocyanin inhibit quercetin metabolism in HepG2 cells

    Science.gov (United States)

    A high glucose (Glu) milieu promotes generation of reactive oxygen species, which may not only cause cellular damage, but also modulate phase II enzymes that are responsible for the metabolism of flavonoids. Thus, we examined the effect of a high Glu milieu on quercetin (Q) metabolism in HepG2 cells...

  1. Surface Grafted Glycopolymer Brushes to Enhance Selective Adhesion of HepG2 Cells

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Jensen, Bettina Elisabeth Brøgger; Shimizu, Kyoko;

    2013-01-01

    of the cell periphery. On the other hand the cells on bare glass substrate display spheroid morphology. Further analysis using ToF-SIMS imaging shows that the HepG2 cells on glycopolymer surfaces is enriched with protein fragment along the cell periphery which is absent in the case of cells on bare glass...

  2. Polarization Restricts Hepatitis C Virus Entry into HepG2 Hepatoma Cells

    NARCIS (Netherlands)

    Mee, Christopher J.; Harris, Helen J.; Farquhar, Michelle J.; Wilson, Garrick; Reynolds, Gary; Davis, Christopher; van IJzendoorn, Sven C. D.; Balfe, Peter; McKeating, Jane A.

    2009-01-01

    The primary reservoir for hepatitis C virus (HCV) replication is believed to be hepatocytes, which are highly polarized with tight junctions (TJ) separating their basolateral and apical domains. HepG2 cells develop polarity over time, resulting in the formation and remodeling of bile canalicular

  3. TGF-β1 promotes human hepatic carcinoma HepG2 cells invasion by upregulating autophagy.

    Science.gov (United States)

    Ma, C-L; Qiao, S; Li, Y-C; Wang, X-F; Sun, R-J; Zhang, X; Qian, R-K; Song, S-D

    2017-06-01

    To study the role of TGF-β1 in autophagy and invasion ability of human hepatic carcinoma HepG2 cells. Cultured HepG2 cells were treated with different concentrations of TGF-β1 for 24 h. The protein expression levels of autophagy relative marker LC3 and Beclin1 were detected by Western blot. The effect of TGF-β1 on invasion ability of HepG2 cells was detected with transwell method. The results demonstrated that TGF-β1 was able to activate autophagy of HepG2 cells in a dose-dependent manner. Autophagy inhibitor 3-methyladenine (3-MA) could reverse TGF-β1 induced autophagy process. Also, TGF-β1 significantly promotes the invasion ability of HepG2 cells; however, this process could effectively reverse by autophagy inhibitor 3-MA. TGF-β1 enhances HepG2 cells invasion by upregulating autophagy.

  4. Fucoidan induces apoptosis of HepG2 cells by down-regulating p-Stat3.

    Science.gov (United States)

    Roshan, Sadia; Liu, Yun-yi; Banafa, Amal; Chen, Hui-jie; Li, Ke-xiu; Yang, Guang-xiao; He, Guang-yuan; Chen, Ming-jie

    2014-06-01

    Fucoidan is one of the main bioactive components of polysaccharides. The current study was focused on the anti-tumor effects of fucoidan on human heptoma cell line HepG2 and the possible mechanisms. Fucoidan treatment resulted in cell cycle arrest and apoptosis of HepG2 cells in a dose-dependent manner detected by MTT assay, flow cytometry and fluorescent microscopy. The results of flow cytometric analysis revealed that fucoidan induced G2/M arrest in the cell cycle progression. Hoechst 33258 and Annexin V/PI staining results showed that the apoptotic cell number was increased, which was associated with a dose-dependent up-regulation of Bax and down-regulation of Bcl-2 and p-Stat3. In parallel, the up-regulation of p53 and the increase in reactive oxygen species were also observed, which may play important roles in the inhibition of HepG2 growth by fucoidan. In the meantime, Cyclin B1 and CDK1 were down-regulated by fucoidan treatment. Down-regulation of p-Stat3 by fucoidan resulted in apoptosis and an increase in ROS in response to fucoidan exposure. We therefore concluded that fucoidan induces apoptosis through the down-regulation of p-Stat3. These results suggest that fucoidan may be used as a novel anti-cancer agent for hepatocarcinoma.

  5. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate.

    Science.gov (United States)

    Pereira da Silva, Ana Paula; El-Bacha, Tatiana; Kyaw, Nattascha; dos Santos, Reinaldo Sousa; da-Silva, Wagner Seixas; Almeida, Fabio C L; Da Poian, Andrea T; Galina, Antonio

    2009-02-01

    3-BrPA (3-bromopyruvate) is an alkylating agent with anti-tumoral activity on hepatocellular carcinoma. This compound inhibits cellular ATP production owing to its action on glycolysis and oxidative phosphorylation; however, the specific metabolic steps and mechanisms of 3-BrPA action in human hepatocellular carcinomas, particularly its effects on mitochondrial energetics, are poorly understood. In the present study it was found that incubation of HepG2 cells with a low concentration of 3-BrPA for a short period (150 microM for 30 min) significantly affected both glycolysis and mitochondrial respiratory functions. The activity of mitochondrial hexokinase was not inhibited by 150 microM 3-BrPA, but this concentration caused more than 70% inhibition of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 3-phosphoglycerate kinase activities. Additionally, 3-BrPA treatment significantly impaired lactate production by HepG2 cells, even when glucose was withdrawn from the incubation medium. Oxygen consumption of HepG2 cells supported by either pyruvate/malate or succinate was inhibited when cells were pre-incubated with 3-BrPA in glucose-free medium. On the other hand, when cells were pre-incubated in glucose-supplemented medium, oxygen consumption was affected only when succinate was used as the oxidizable substrate. An increase in oligomycin-independent respiration was observed in HepG2 cells treated with 3-BrPA only when incubated in glucose-supplemented medium, indicating that 3-BrPA induces mitochondrial proton leakage as well as blocking the electron transport system. The activity of succinate dehydrogenase was inhibited by 70% by 3-BrPA treatment. These results suggest that the combined action of 3-BrPA on succinate dehydrogenase and on glycolysis, inhibiting steps downstream of the phosphorylation of glucose, play an important role in HepG2 cell death.

  6. Restoration of miR-20a expression suppresses cell proliferation, migration, and invasion in HepG2 cells.

    Science.gov (United States)

    Chen, Guang Shun; Zhou, Ning; Li, Jie-Qun; Li, Ting; Zhang, Zhong-Qiang; Si, Zhong-Zhou

    2016-01-01

    To study microRNA (miR)-20a expression in hepatocellular carcinoma (HCC) and its effects on the proliferation, migration, and invasion of HepG2. The real-time polymerase chain reaction was used to detect the expression of miR-20a in HCC tissue and normal tissue, as well as in HCC cell lines and normal liver cells. miR-20a mimic and miR negative control (NC) were transfected into HepG2 cells. MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay was used to detect cell proliferation. Annexin fluorescein isothiocyanate/propidium iodide assay was run to examine the early apoptosis of cells. Transwell chamber assay was carried out to investigate the cell invasion and migration abilities. miR-20a was lowly expressed both in HCC tissues and HCC cell lines. After transfection of exogenous miR-20 mimics, miR-20a expression in HepG2 cells was significantly increased by 61.29% compared to the blank group (PHepG2 cells in the miR-20a mimics group was significantly inhibited, and optical density values during the 36-96 hour time period were dramatically decreased compared to the blank group (PHepG2 cells, the number of cell migration and invasion in the small interfering (si)-CCND1 group were 0.444 and 0.435 times that of the si-NC group (PHepG2 cells, and is therefore promising as a new molecular target for diagnosis and therapy of HCC.

  7. HepG2 cells support viral replication and gene expression of hepatitis C virus genotype 4 in vitro

    Science.gov (United States)

    El-Awady, Mostafa K; Tabll, Ashraf A; El-Abd, Yasmine S; Bahgat, Mahmoud M; Shoeb, Hussein A; Youssef, Samar S; Din, Noha G Bader El; Redwan, El-Rashdy M; El-Demellawy, Maha; Omran, Moataza H; El-Garf, Wael T; Goueli, Said A

    2006-01-01

    AIM: To establish a cell culture system with long-term replication of hepatitis C virus (HCV) genome and expression of viral antigens in vitro. METHODS: HepG2 cell line was tested for its susceptibility to HCV by incubation with a serum from a patient with chronic hepatitis C. Cells and supernatant were harvested at various time points during the culture. Culture supernatant was tested for its ability to infect naïve cells. The presence of minus (antisense) RNA strand, and the detection of core and E1 antigens in cells were examined by RT-PCR and immunological techniques (flow cytometry and Western blot) respectively. RESULTS: The intracellular HCV RNA was first detected on d 3 after infection and then could be consistently detected in both cells and supernatant over a period of at least three months. The fresh cells could be infected with supernatant from cultured infected cells. Flow cytometric analysis showed surface and intracellular HCV antigen expression using in house made polyclonal antibodies (anti-core, and anti-E1). Western blot analysis showed the expression of a cluster of immunogenic peptides at molecular weights extended between 31 and 45 kDa in an one month old culture of infected cells whereas this cluster was undetectable in uninfected HepG2 cells. CONCLUSION: HepG2 cell line is not only susceptible to HCV infection but also supports its replication in vitro. Expression of HCV structural proteins can be detected in infected HepG2 cells. These cells are also capable of shedding viral particles into culture media which in turn become infectious to uninfected cells. PMID:16937465

  8. HepG2 cells support viral replication and gene expression of hepatitis C virus genotype 4 in vitro

    Institute of Scientific and Technical Information of China (English)

    Mostafa K El-Awady; Moataza H Omran; Wael T El-Garf; Said A Goueli; Ashraf A Tabll; Yasmine S El-Abd; Mahmoud M Bahgat; Hussein A Shoeb; Samar S Youssef; Noha G Bader El Din; El-Rashdy M Redwan; Maha El-Demellawy

    2006-01-01

    AIM: To establish a cell culture system with longterm replication of hepatitis C virus (HCV) genome and expression of viral antigens in vitro. METHODS: HepG2 cell line was tested for its susceptibility to HCV by incubation with a serum from a patient with chronic hepatitis C. Cells and supernatant were harvested at various time points during the culture. Culture supernatant was tested for its ability to infect naive cells. The presence of minus (antisense) RNA strand, and the detection of core and E1 antigens in cells were examined by RT-PCR and immunological techniques (flow cytometry and Western blot) respectively. RESULTS: The intracellular HCV RNA was first detected on d 3 after infection and then could be consistently detected in both cells and supernatant over a period of at least three months. The fresh cells could be infected with supernatant from cultured infected cells. Flow cytometric analysis showed surface and intracellular HCV antigen expression using in house made polyclonal antibodies (anti-core, and anti-E1). Western blot analysis showed the expression of a cluster of immunogenic peptides at molecular weights extended between 31 and 45 kDa in an one month old culture of infected cells whereas this cluster was undetectable in uninfected HepG2 cells. CONCLUSION: HepG2 cell line is not only susceptible to HCV infection but also supports its replication in vitro. Expression of HCV structural proteins can be detected in infected HepG2 cells. These cells are also capable of shedding viral particles into culture media which in turn become infectious to uninfected cells.

  9. [Hepatitis B virus X promotes HepG2 cell cycle progression and growth via downregulation expression of p16 protein].

    Science.gov (United States)

    Mai, Li; Yang, Lin; Kuang, Jian-yu; Zhu, Jian-yun; Kang, Yan-hong; Zhang, Fu-cheng; Xie, Qi-feng; Gao, Zhi-liang

    2013-08-01

    To investigate the effects and related mechanisms of hepatitis B virus X (HBx) protein on cell cycle and growth in hepatocellular carcinoma. A human hepatocyte HepG2 cell line stably expressing a green fluorescent protein (GFP)-tagged HBx (HepG2/GFP-HBx cells) was used for the experiment, and HepG2 parental and HepG2/GFP cells was used as the controls. Effect of HBx on cell growth was evaluated by the MTT cell proliferation assay and on cell cycle progression by flow cytometry analysis of cells with or without treatment with 5-aza-2'-deoxycytidine (5-Aza-CdR; 5 pmol/L). Effect of HBx expression on promoter methylation status of the p16INK4A tumor-suppressor gene was detected by methylation-specific polymerase chain reaction and on p16 protein level was analyzed with western blotting. The HepG2/GFP-HBx cells showed significantly higher cell proliferation at 72 hrs of culture (3.225+/-0.038 A490) than either control (HepG2: 2.012+/-0.022 A490, t = -46.86, P less than 0.001; HepG2/GFP: 2.038+/-0.029 A490, t = 42.51, P less than 0.001). The HepG2/GFP-HBx cells also showed significantly lower proportion of cells in the G0/G1 phase (16.45%+/-0.45%) than either control (HepG2: 44.81%+/-1.36%, t = -34.202, P less than 0.001; HepG2/GFP: 42.76%+/-1.58%, t = -28.88, P less than 0.001). However, 5-Aza-CdR treatment did lead to a significant amount of HepG2/GFP-HBx cells being arrested in the G0/G1 phase (33.25%+/-0.79%, t = 31.85, P less than 0.001). The p16INK4A promoter was methylated in the HepG2/GFP-HBx cells, and became demethylation after treatment with 5-Aza-CdR. However, no methylation of p16INK4A promoter was observed in both HepG2 and HepG2/GFP cells. The p16 protein level was significantly lower in the HepG2/GFP-HBx (vs. HepG2 and HepG2/GFP cells) and this level increased after treatment with 5-Aza-CdR. HBx protein promotes hepatocellular carcinoma cell cycle progression and growth by shortening the G0/G1 phase, and the underlying mechanism may involve inducing p16

  10. Effects of matrine on the growth and expression of DLK1 in HepG2 cells%苦参碱对HepG2细胞DLK1基因表达及细胞生长的影响

    Institute of Scientific and Technical Information of China (English)

    罗耀玲; 黄铀新; 刘瑶

    2012-01-01

    Objective To investingate the effects of matrine on the growth and expression of DLK1 in human hepato cellular carcinoma cell line HepG2. Methods HepG2 cells were treated with different concentrations of matrine, RT-PCR was used for the detection of DLK1 gene expression level; MTT, transwell and flow cytometry were used for the detections of HepG2 cell growth, invasiveness and apoptosis. Results After treated with matrine, HepG2 cells DLK1 gene mRNA expression, cell growth rate and invasive ability decreased. Conclusion Matrine can effectively inhibit DLK1 gene expression, cell growth, proliferation and invasion of HepG2.%目的:探讨苦参碱能否重新诱导HepG2细胞DLK1基因被印记及对细胞生长的影响.方法:RT-PCR检测不同浓度苦参碱处理HepG2细胞后DLK1基因表达水平变化;MTT、transwell和流式细胞术检测苦参碱作用后HepG2细胞的增殖、凋亡及侵袭力的变化.结果:HepG2细胞经苦参碱处理后,DLK1基因的Mrna 表达量降低,细胞的增殖能力、侵袭能力均降低,细胞抑制在G1期.结论:苦参碱能有效地抑制DLK1基因的表达,且能抑制肿瘤细胞HepG2生长、增殖和侵袭能力.

  11. Stable expression of human cytochrome P450 2D6*10 in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Jian Zhuge; Ying-Nian Yu; Xiao-Dan Wu

    2004-01-01

    AIM: Over 90% of drugs are metabolized by the cytochrome P-450 (CYP) family of liver isoenzymes. The most important enzymes are CYP1A2, 3A4, 2C9/19, 2D6 and 2E1. Although CYP2D6 accounts for <2% of the total CYP liver enzyme content, it mediates metabolism in almost 25% of drugs. In order to study its enzymatic activity for drug metabolism, its cDNA was cloned and a HepG2 cell line stably expressing CYP2D6 was established.METHODS: Human CYP2D6 cDNA was amplified with reverse transcription-polymerase chain reaction (RT-PCR)from total RNA extracted from human liver tissue and cloned into pGEM-T vector, cDNA segment was identified by DNA sequencing and subcloned into a mammalian expression vector pREP9. A cell line was established by transfecting the recombinant plasmid of pREP9-CYP2D6 to hepatoma HepG2 cells. Expression of mRNA was validated by RT-PCR.Enzyme activity of catalyzing dextromethorphan O-demethylation in postmitochondrial supernant (S9) fraction of the cells was determined by high performance liquid chromatography (HPLC).RESULTS: The cloned cDNA had 4 base differences, e.g.100 C→T, 336 T→C, 408 C→G and 1 457 G→C, which resulted in P34S, and S486T amino acid substitutions, and two samesense mutations were 112 F and 136 V compared with that reported by Kimura et al(GenBank accession number: M33388). P34S and S486T amino acid substitutions were the characteristics of CYP2D6*10 allele. The relative activity of S9 fraction of HepG2-CYP2D6*10 metabolized detromethorphan O-demethylation was found to be 2.31±0.19 nmol.min-1.mg-1 S9 protein (n=3), but was undetectable in parental HepG2 cells.CONCLUSION: cDNA of human CYP2D6*10can be successfully doned. A cell line, HepG2-CYP2D6*10, expressing CYP2D6*10 mRNA and having metabolic activity, has been established.

  12. Anti-tumor effects of bemiparin in HepG2 and MIA PaCa-2 cells.

    Science.gov (United States)

    Alur, İhsan; Dodurga, Yavuz; Seçme, Mücahit; Elmas, Levent; Bağcı, Gülseren; Gökşin, İbrahim; Avcı, Çığır Biray

    2016-07-10

    Recent researches have demonstrated improved survival in oncologic patients treated with low molecular weight heparins (LMWHs) which are anticoagulant drugs. We evaluated "second generation" LMWH bemiparin and its in vitro anti-tumor effects on HepG2 hepatocellular carcinoma and MIA PaCa-2 cancer cells. The aim of the study is to investigate anti-cancer mechanism of bemiparin in HepG2 and Mia-Paca-2 cancer cells. Cytotoxic effects of bemiparin were determined by XTT assay. IC50 dose of bemiparin was found to be 200 IU/mL in the 48th hour in the MiaPaCa-2 cell line and 50 IU/mL in the 48th hour in the HepG2 cell line. CCND1 (cyclin D1), CDK4, CDK6, p21, p16, p53, caspase-3, caspase-9, caspase-8, Bcl-2, BID, DR4, DR5, FADD, TRADD, Bax, gene mRNA expressions were evaluated by Real-time PCR. Real-time PCR analysis showed that CCND1 expression was reduced in HepG2 dose the group cells when compared with the control group cells and p53, caspase-3, caspase p21, caspase-8 and expressions were increased in the dose group cells when compared with the control group cells. CCND1, CDK4 and CDK6 expressions were reduced in MIA PaCa-2 dose group cells when compared with the control group cells and p53 expression was increased in the dose group cells when compared with the control group cells. Other expressions of genes were found statistically insignificant both of cell lines. It was found that bemiparin in HepG2 and MIA PaCa-2 cells suppressed invasion, migration, and colony formation by using matrigel invasion chamber, and colony formation assay, respectively. In conclusion, it is thought that bemiparin indicates anti-tumor activity by affecting cell cycle arrest, apoptosis, invasion, migration, and colony formation on cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Knockdown of nucleophosmin induces S-phase arrest in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Qing-Qing Wang; Zhi-Yi Zhang; Jian-Yong Xiao; Chun Yi; Lin-Zi Li; Yan Huang; Jing-Ping Yun

    2011-01-01

    Nucleophosmin/B23 (NPM) is a universally expressed nucleolar phosphoprotein that participates in proliferation,apoptosis,ribosome assembly,and centrosome duplication; however,the role of NPM in cell cycle regulation is not well characterized.We investigated the mechanism by which NPM is involved in cell cycle regulation.NPM was knocked down using siRNA in HepG2 hepatoblastoma cells.NPM translocation following actinomycin D (ActD) treatment was investigated using immunofluorescent staining.Expression of NPM and other factors involved in cell cycle regulation was examined by Westem blotting.Cell cycle distribution was measured using flow cytometry to detect 5-ethynyl-2'-deoxyuddine (EdU) incorporation.Cell proliferation was quantified by the MTT assay.Knockdown of NPM increased the percentage of HepG2 calls in S phase and led to decreased expression of P53 and P21Cp1/WAF1.S-phase arrest in HepG2 cells was significantly enhanced by ActD treatment.Furthermore,knockdown of NPM abrogated ActD-induced G2/M phase call cycle arrest.Taken together,these data demonstrate that inhibition of NPM has a significant effect on the cell cycle.

  14. DNA binding and apoptotic induction ability of harmalol in HepG2: Biophysical and biochemical approaches.

    Science.gov (United States)

    Sarkar, Sarita; Bhattacharjee, Paromita; Bhadra, Kakali

    2016-10-25

    Harmalol administration caused remarkable reduction in proliferation of HepG2 cells with GI50 of 14.2 μM, without showing much cytotoxicity in embryonic liver cell line, WRL-68. Data from circular dichroism (CD) and differential scanning calorimetric (DSC) analysis of harmalol-CT DNA complex shows conformational changes with prominent CD perturbation and stabilization of CT DNA by 8 °C. Binding constant and stoichiometry was calculated using the above biophysical techniques. The Scatchard plot constructed from CD data showed cooperative binding, from which the cooperative binding affinity (K'ω) of 4.65 ± 0.7 × 10(5) M(-1), and n value of 4.16 were deduced. The binding parameter obtained from DSC melting data was in good agreement with the above CD data. Furthermore, dose dependent apoptotic induction ability of harmalol was studied in HepG2 cells using different biochemical assays. Generation of ROS, DNA damage, changes in cellular external and ultramorphology, alteration of membrane, formation of comet tail, decreased mitochondrial membrane potential and a significant increase in Sub Go/G1 population made the cancer cell, HepG2, prone to apoptosis. Up regulation of p53 and caspase 3 further indicated the apoptotic role of harmalol.

  15. Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

    Science.gov (United States)

    Koo, Hyun-Na; Hong, Seung-Heon; Song, Bong-Keun; Kim, Cheorl-Ho; Yoo, Young-Hyun; Kim, Hyung-Min

    2004-01-16

    Taraxacum officinale (TO) has been frequently used as a remedy for women's disease (e.g. breast and uterus cancer) and disorders of the liver and gallbladder. Several earlier studies have indicated that TO exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we investigated the effect of TO on the cytotoxicity and production of cytokines in human hepatoma cell line, Hep G2. Our results show that TO decreased the cell viability by 26%, and significantly increased the tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha production compared with media control (about 1.6-fold for TNF-alpha, and 2.4-fold for IL-1alpha, P < 0.05). Also, TO strongly induced apoptosis of Hep G2 cells as determined by flow cytometry. Increased amounts of TNF-alpha and IL-1alpha contributed to TO-induced apoptosis. Anti-TNF-alpha and IL-1alpha antibodies almost abolished it. These results suggest that TO induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

  16. Role of mitochondrial permeability transition in human hepatocellular carcinoma Hep-G2 cell death induced by rhein.

    Science.gov (United States)

    Du, Qiong; Bian, Xiao-Lan; Xu, Xiao-Le; Zhu, Bin; Yu, Bo; Zhai, Qing

    2013-12-01

    Rhein, a compound found as a glucoside in the root of rhubarb, is currently a subject of interest for its antitumor properties. The apoptosis of tumor cell lines induced by rhein was observed, and the involvement of mitochondria was established; however, the role of mitochondrial permeability transition (MPT) remains unknown. Here we report that MPT plays an important role in the apoptosis of human hepatocellular carcinoma Hep-G2 cells induced by rhein. After adding rhein to the isolated hepatic mitochondria, swelling effects and the leakage of Ca(2+) were observed. These alterations were suppressed by cyclosporin A (CsA), an MPT inhibitor. Furthermore, in Hep-G2 cells, the decrease of ATP production, the loss of mitochondrial transmembrane potential (MTP), the release of cytochrome c (Cyto c), and the activation of caspase 3 were also observed. These toxic effects of rhein can also be attenuated by CsA as well. Moreover, TUNEL assay confirmed that in the presence of CsA, rhein-induced apoptosis was largely inhibited. These results suggest that MPT plays a critical role in the pathogenesis of Hep-G2 cell injury induced by rhein, and imply that MPT may contribute to the anti-cancer activity of rhein. © 2013.

  17. Curcumin up-regulates LDL receptor expression via the sterol regulatory element pathway in HepG2 cells.

    Science.gov (United States)

    Dou, Xiaobing; Fan, Chunlei; Wo, Like; Yan, Jin; Qian, Ying; Wo, Xingde

    2008-09-01

    Plasma low-density lipoprotein-cholesterol (LDL-C) is mainly taken up and cleared by the hepatocellular LDL receptor (LDL-R). LDL-R gene expression is regulated by the sterol regulatory element binding proteins (SREBPs). Previous studies have shown that curcumin reduces plasma LDL-C and has hypolipidemic and anti-atherosclerotic effects. Herein, we investigated the effect of curcumin on LDL-R expression and its molecular mechanism in HepG2 cells. Curcumin increased LDL-R expression (mRNA and protein) and the resultant uptake of DiI-LDL in a dose- and time-dependent manner. Using a GFP reporter system in a transfected HepG2/SRE-GFP cell line, we found that curcumin activated the sterol regulatory element of the LDL-R promoter. In HepG2/Insig2 cells, curcumin reversed the inhibition of LDL-R expression induced by Insig2 overexpression. These data demonstrate that curcumin increases LDL-R protein expression and uptake activity via the SREBPs pathway. These findings contribute to our further understanding of the cholesterol-lowering and anti-atherosclerotic effects of curcumin.

  18. Microarray analysis of genes differentially expressed in HepG2 cells cultured in simulated microgravity: preliminary report

    Science.gov (United States)

    Khaoustov, V. I.; Risin, D.; Pellis, N. R.; Yoffe, B.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Developed at NASA, the rotary cell culture system (RCCS) allows the creation of unique microgravity environment of low shear force, high-mass transfer, and enables three-dimensional (3D) cell culture of dissimilar cell types. Recently we demonstrated that a simulated microgravity is conducive for maintaining long-term cultures of functional hepatocytes and promote 3D cell assembly. Using deoxyribonucleic acid (DNA) microarray technology, it is now possible to measure the levels of thousands of different messenger ribonucleic acids (mRNAs) in a single hybridization step. This technique is particularly powerful for comparing gene expression in the same tissue under different environmental conditions. The aim of this research was to analyze gene expression of hepatoblastoma cell line (HepG2) during early stage of 3D-cell assembly in simulated microgravity. For this, mRNA from HepG2 cultured in the RCCS was analyzed by deoxyribonucleic acid microarray. Analyses of HepG2 mRNA by using 6K glass DNA microarray revealed changes in expression of 95 genes (overexpression of 85 genes and downregulation of 10 genes). Our preliminary results indicated that simulated microgravity modifies the expression of several genes and that microarray technology may provide new understanding of the fundamental biological questions of how gravity affects the development and function of individual cells.

  19. 吡非尼酮对肝癌HepG2细胞增殖和凋亡的影响%Effect of Pirfenidone on Proliferation and Apoptosis of Human Hepatocellu-lar Carcinoma HepG2 Cells

    Institute of Scientific and Technical Information of China (English)

    韩枫; 凌心

    2015-01-01

    Objective: To investigate the effect of pirfenidone (PF) on cell proliferation and apoptosis of HepG2 cells in vitro. Methods: The cell proliferation inhibition of HepG2 cells by PF was observed by CCK-8 assay. The morphology of HepG2 cells with Hoechst 33258 staining was observed under a fluores-cent microscope. The apoptosis was analyzed by flow cytometry. Results: PF obviously inhibited the prolif-eration of HepG2 cells in a time and dose dependent manner. Hoechst 33258 staining showed apoptosis was induced after PF treatment. Flow cytometry results showed that PF could induce HepG2 cells apopto-sis, compared with the control group (P<0.01). Conclusion: PF inhibits the proliferation of HepG2 cells probably because of inducing HepG2 cells apoptosis.%目的:研究吡非尼酮(pirfenidone,PF)对人肝癌细胞系HepG2增殖和凋亡的影响。方法:CCK-8法测定不同浓度PF对HepG2细胞增殖活性的影响;Hoechst 33258荧光染色法观察PF处理后HepG2细胞形态的变化;流式细胞仪检测细胞凋亡率。结果:PF对HepG2细胞具有显著增殖抑制作用,并呈浓度和时间依赖性;Hoechst 33258染色可见PF处理后细胞出现典型的凋亡形态学变化;流式细胞仪检测结果显示,与空白组比较,PF处理后的HepG2细胞凋亡率显著增加(P﹤0.01)。结论:PF对人肝癌细胞系HepG2细胞增殖具有抑制作用,且与诱导HepG2细胞凋亡有关。

  20. Amitriptyline induces mitophagy that precedes apoptosis in human HepG2 cells

    Science.gov (United States)

    Villanueva-Paz, Marina; Cordero, Mario D.; Pavón, Ana Delgado; Vega, Beatriz Castejón; Cotán, David; De la Mata, Mario; Oropesa-Ávila, Manuel; Alcocer-Gomez, Elizabet; de Lavera, Isabel; Garrido-Maraver, Juan; Carrascosa, José; Zaderenko, Ana Paula; Muntané, Jordi; de Miguel, Manuel; Sánchez-Alcázar, José Antonio

    2016-01-01

    Systemic treatments for hepatocellular carcinoma (HCC) have been largely unsuccessful. This study investigated the antitumoral activity of Amitriptyline, a tricyclic antidepressant, in hepatoma cells. Amitriptyline-induced toxicity involved early mitophagy activation that subsequently switched to apoptosis. Amitriptyline induced mitochondria dysfunction and oxidative stress in HepG2 cells. Amitriptyline specifically inhibited mitochondrial complex III activity that is associated with decreased mitochondrial membrane potential (∆Ψm) and increased reactive oxygen species (ROS) production. Transmission electron microscopy (TEM) studies revealed structurally abnormal mitochondria that were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitophagy activation, fluorescence microscopy analysis showed mitochondrial Parkin recruitment and colocalization of mitochondria with autophagosome protein markers. Pharmacological or genetic inhibition of autophagy exacerbated the deleterious effects of Amitriptyline on hepatoma cells and led to increased apoptosis. These results suggest that mitophagy acts as an initial adaptive mechanism of cell survival. However persistent mitochondrial damage induced extensive and lethal mitophagy, autophagy stress and autophagolysome permeabilization leading eventually to cell death by apoptosis. Amitriptyline also induced cell death in hepatoma cells lines with mutated p53 and non-sense p53 mutation. Our results support the hypothesis that Amitriptyline-induced mitochondrial dysfunction can be a useful therapeutic strategy for HCC treatment, especially in tumors showing p53 mutations and/or resistant to genotoxic treatments. PMID:27738496

  1. Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells.

    Science.gov (United States)

    Rajendran, Kumar; Karunagaran, Vithiya; Mahanty, Biswanath; Sen, Shampa

    2015-03-01

    Iron oxide nanoparticles were gaining significant importance in a variety of applications due to its paramagnetic properties and biocompatibility. Various chemical methods were employed for hematite nanoparticle synthesis which require special equipment or a complex production process. In this study, protein capped crystalline hexagonal hematite (α-Fe2O3) nanoparticles were synthesized by green approach using culture supernatant of a newly isolated bacterium, Bacillus cereus SVK1 at ambient conditions. The synthesized nanoparticles were characterized by electron microscopy, X-ray diffraction, UV-visible spectroscopy and Fourier transform infrared spectroscopic analysis. Nanoparticles were evaluated for its possible anticancer activity against HepG2 liver cancer cells by MTT assay. Hematite nanoparticles with an average diameter of 30.2 nm, exhibited a significant cytotoxicity toward HepG2 cells in a concentration-dependent manner (CTC50=704 ng/ml). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. [Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].

    Science.gov (United States)

    Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong

    2014-07-01

    Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.

  3. Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells

    Science.gov (United States)

    Engineered nanoparticles are reported to cause liver toxicity in vivo. To better assess the mechanism of the in vivo liver toxicity, we used the human hepatocarcinoma cells (HepG2) as a model system. Human HepG2 cells were exposed to 6 TiO2 nanomaterials (with dry primary partic...

  4. CLA对HepG2细胞脂肪堆积的影响

    Institute of Scientific and Technical Information of China (English)

    张艳; 张丽; 张威

    2011-01-01

    目的 研究共轭亚油酸对H e p G2细胞中脂质沉积的影响.方法 以H e p G2细胞为研究对象,以不同浓度C L A(10μmol·L-1、50μmol·L-1、100μmol·L-1)作用细胞24小时,采用油红染色、RT-PCR等方法检测肝脏脂肪沉积、ACC mRNA表达,观察CLA对肝细胞内脂质沉积的影响.结果 CLA增加HepG2细胞中脂质沉积,50μmol·L-1CLA组细胞中红染脂滴与对照组相比明显增多;CL A使H e pG2细胞培养液中游离脂肪酸降低,50μm o l·L-1组的培养液中游离脂肪酸与对照组相比含量降低了50%(P<0.05);CLA增加HepG2细胞ACC mRNA的表达,ACC mRNA表达水平随CLA浓度增加而增高.结论 CLA可增加HepG2细胞的脂肪沉积;其机制可能与CLA能够改变肝细胞中ACC的表达有关.

  5. Gene Transfection Mediated by Ultrasound and Pluronic P85 in HepG2 Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Fen; LI Kaiyan; CHEN Yunchao; DENG Yuan; HONG Kai

    2007-01-01

    In order to assess whether gene transfection could be mediated by ultrasound in associa- tion with P85 and find the appropriate parameters of ultrasound irradiation, the effects of ultrasound with or without P85 on gene transfection of HepG2 cells were examined. The HepG2 cells were irra- diated by ultrasound at 1 MHz, 0.4-2.0 W/cm2 and 50% duty cycle with plasmid encoding enhanced green fluorescent protein (EGFP) as a report gene. Forty-eight h later, the expression of EGFP was detected under the fluorescence microscopy. Transfection efficacy was quantitatively assessed by flow cytometry, and cell viability was evaluated by trypan blue exclusion. The results showed that the transfection efficacy was increased with the increases in ultrasound output power and the ideal trans- fection efficacy was achieved in HepG2 cells irradiated by ultrasound at 0.8 W/cm2 for 30 s. The transfection efficacy in ulstrasound+P85 group was three times higher than in single ultrasound group [(17.63±1.07)% vs (5.57±0.56)%, P<0.051. The cell viability was about 81% and 62% in ultrasound group and ultrasound+P85 group respectively. It was concluded that ultrasound in combination with P85 could mediate the gene transfection of HepG2 cells, ideal transfection efficacy was achieved by ultrasound irradiation at 0.8 W/cm2 for 30 s, and P85 could somewhat increase the damage to cells caused by ultrasound.

  6. 水杨酸对人肝癌HepG2细胞体外生长的影响的研究*%Influence of Salicylic Acid on Human Hepatic Cancer HepG2 Cells Growth In-vitro

    Institute of Scientific and Technical Information of China (English)

    林冰; 郎锦义; 雷晴

    2014-01-01

    Objective: Salicylic acid ( SA) and its derivatives have been shown to induce apoptosis in a variety of cancer cells. The aim of this study is to investigate influence of SA on human hepatic cancer HepG2 cells growth in-vitro. Methods:MTT assay was used to determine the effect of SA on viability of HepG2 cells, EdU assay was used to detect the impact of SA on the proliferation activity of HepG2 cells, and the cell cycle progress altered and apoptosis of HepG2 cells induced by SA were determined using flow cytometry ( FCM) . Results:SA reduced significantly viability of hepatic cancer HepG2 cells in a concentration-dependent manner and had an IC50 value of (8. 92 ± 0. 45)mmol/L;EdU assay showed that the red fluorescence produced by incorporation of EdU decreased in HepG2 cells treated with SA for 24hr, thereby depress-ing the proliferation activity of HepG2 cells;FCM assay showed that compared to control, SA induced obviously cell cycle G0/G1-phase arrest ( 65. 5% ± 1. 21% vs. 34. 3% ± 0. 89%, P <0. 05 ) and delayed in entering S phase 24. 2% ± 0. 89% vs. 44. 0% ± 0. 64%, P<0. 05), and promoted apoptosis in HepG2 cells(24. 9% ± 0. 32% vs. 2. 3% ± 0. 11%, P<0. 05). Conclusion:SA would inhibits the growth of HepG2 cells by altering cell cycle progress, depressing prolifera-tion activity and promoting cell apoptosis.%目的:探讨水杨酸( salicylic acid, SA)对人肝癌HepG2细胞体外生长的影响。方法:利用MTT法测定SA对HepG2细胞存活性的作用;利用EdU法检测SA对HepG2细胞增殖活性的影响;利用流式细胞分析法测定SA诱导的HepG2细胞周期进程和凋亡。结果:SA显著且呈浓度依赖的降低人肝癌HepG2细胞的存活率,其半数抑制浓度(IC50)为(8.92±0.45)mmol/L;EdU分析显示,SA作用24hr,EdU掺入的红色荧光强度明显减弱,降低了HepG2细胞的增殖活性;FCM分析显示,与对照比较,SA诱导HepG2细胞周期阻滞于G0/G1期(65.5%±1.21%vs.34.3%±0.89%, P<0.05

  7. SUMO-1 Enhancing the p53-induced HepG2 Cell Apoptosis

    Institute of Scientific and Technical Information of China (English)

    LU Xingrong; YI Jilin

    2005-01-01

    Summary: In order to investigate the effect of small ubiquitin-like modifier-1 (SUMO-1) on the p53-induced HepG2 cell apoptosis, HepG2 cells were transfected by recombinant plasmids as pwtp53, pMDM2 and pSUMO-1 respectively. Western blot was employed to detect the protein expression of the transfected recombinant plasmids and the rate of apoptosis was measured by flow cytometry. The results showed that in cells transfected with pwtp53 and pwtp53+pSUMO-1, the apoptosis rate was (16.79±1.62) % and (18.15±1.36) % respectively, while transfected with pwtp53+pMDM2, the rate was decreased to (5.17±1.23) %. The apoptosis rate was (14.06±1.84) % in the cells transfected with pwtp53+pMDM2+pSUMO-1, significantly higher than that in the cells Transfected with pwtp53+pMDM2 (P<0.01). The apoptosis rates in the cells were all less than 2 % and had no significant difference among the groups. It was suggested that in the HepG2 cells, SUMO-1 can increase the apoptosis induced by wild-type p53 through binding to p53 protein, post-translational modification and inhibiting the p53 degradation by MDM2.

  8. [Establishment of a model for evaluating hypolipidemic effect in HepG2 cells].

    Science.gov (United States)

    Niu, Yucun; Lü, Na; Li, Ying; Zhao, Dan; Sun, Changhao

    2010-03-01

    To establish a model of evaluating hypolipidemic effect in vitro. Adding cholesterol to the culture medium for HepG2 cells to induce a hypercholesterolemia model. The content of cellular cholesterol and the expression of protein regulating cholesterol metabolism in HepG2 cells were determined. The validation of the model was identified by lovastatin, a widely used cholesterol-lowering drug. Free fatty acid was added to the culture medium for HepG2 cells to induce a hypertriglyceridemia model. The content of cellular triglyceride and the absorption rate of free fatty acid were determined. The validation of the model was identified by fenofibrate, a triglyceride-lowering drug. Cellular cholesterol content was increased and the expression of HMG-CoA redutase, SREBP-2 and LDLR were decreased after adding cholesterol and 25-hydrocholesterol to the culture medium. Cellular cholesterol was decreased and the expression of SREBP-2 and LDLR were up-regulated by Lovastatin. The absorption of oleic acid in cells was up to 40% after adding oleic acid (50 micromol) to the culture medium for 6 h. The absorption of free fatty acid was increased but the content of cellular triglyceride was not increased in cells by Fenofibrate. This model might be an effective method for screening and assessing functional factors for lowing plasma lipids.

  9. Tea pigments induce cell-cycle arrest and apoptosis in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Xu-Dong Jia; Chi Han; Jun-Shi Chen

    2005-01-01

    AIM: To investigate the molecular mechanisms by which tea pigments exert preventive effects on liver carcinogenesis.METHODS: HepG2 cells were seeded at a density of 5×105/well in six-well culture dishes and incubated overnight. The cells then were treated with various concentrations of tea pigments over 3 d, harvested by trypsinization, and counted using a hemocytometer. Flow cytometric analysis was performed by a flow cytometer after propidium iodide labeling. Bcl-2 and p21WAF1 proteins were determined by Western blotting. In addition, DNA laddering assay was performed on treated and untreated cultured HepG2 cells.RESULTS: Tea pigments inhibited the growth of HepG2 cells in a dose-dependent manner. Flow-cytometric analysis showed that tea pigments arrested cell cycle progression at G1 phase. DNA laddering was used to investigate apoptotic cell death, and the result showed that 100 mg/L of tea pigments caused typical DNA laddering. Our study also showed that tea pigments induced upregulation of p21WAF1 protein and downregulation of Bcl-2 protein.CONCLUSION: Tea pigments induce cell-cycle arrest and apoptosis. Tea pigments may be used as an ideal chemopreventive agent.

  10. Potentiation of resveratrol-induced apoptosis by matrine in human hepatoma HepG2 cells.

    Science.gov (United States)

    Ou, Xiuyuan; Chen, Yan; Cheng, Xinxin; Zhang, Xumeng; He, Qiyang

    2014-12-01

    Resveratrol, a natural polyphenolic phytochemical, has received considerable attention due to its potential chemopreventive and chemotherapeutic properties. In the present study, we first evaluated the growth-inhibitory effect of resveratrol on HepG2 cells and explored the underlying molecular mechanisms. Resveratrol inhibited proliferation and induced apoptosis in HepG2 cells via activation of caspase-9 and caspase-3, upregulation of the Bax/Bcl-2 ratio and induction of p53 expression. Cell cycle analysis demonstrated that resveratrol arrested cell cycle progression in the G1 and S phase. We further focused on the combination of matrine, a natural component extracted from the traditional Chinese medical herb Sophora flavescens Ait., as a mechanism to potentiate the growth-inhibitory effect of resveratrol on HepG2 cells. Both MTT and colony formation assay results indicated that the combined treatment of resveratrol and matrine exhibited a synergistic antiproliferative effect. In addition, resveratrol-induced apoptosis was significantly enhanced by matrine, which could be attributed to activation of caspase-3 and caspase-9, downregulation of survivin, induction of reactive oxygen species (ROS) generation and disruption of mitochondria membrane potential (Δψm). Our findings suggest that the combination treatment of resveratrol and matrine is a promising novel anticancer strategy for liver cancer; it also provides new insights into the mechanisms of combined therapy.

  11. Protection of human HepG2 cells against oxidative stress by cocoa phenolic extract.

    Science.gov (United States)

    Martín, María Angeles; Ramos, Sonia; Mateos, Raquel; Granado Serrano, Ana Belén; Izquierdo-Pulido, María; Bravo, Laura; Goya, Luis

    2008-09-10

    Cocoa is a rich source of flavanols and procyanidin oligomers with antioxidative properties, providing protection against oxidation and nitration. The present study investigated the potential protective effect of a polyphenolic extract from cocoa on cell viability and antioxidant defenses of cultured human HepG2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (t-BOOH). Pretreatment of cells with 0.05-50 microg/mL of cocoa polyphenolic extract (CPE) for 2 or 20 h completely prevented cell damage and enhanced activity of antioxidant enzymes induced by a treatment with t-BOOH. Moreover, lower levels of GSH caused by t-BOOH in HepG2 cells were partly recovered by a pretreatment with CPE. Increased reactive oxygen species (ROS) induced by t-BOOH was dose-dependently prevented when cells were pretreated for 2 or 20 h with CPE. These results show that treatment of HepG2 in culture with CPE (within the physiological range of concentrations) confers a significant protection against oxidation to the cells.

  12. Time-course regulation of survival pathways by epicatechin on HepG2 cells.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Angeles Martín, María; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2009-02-01

    Polyphenols, such as epicatechin, have been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin of survival/proliferation pathways in HepG2 cells. Treatment of HepG2 cells with 10 micromol/L epicatechin did not result in any cell damage up to 18 h, as evaluated by the lactate dehydrogenase assay. Moreover, the enhanced cell death evoked by an oxidative stress induced with tert-butyl hydroperoxide was prevented in the cells pretreated 4 or 18 h with epicatechin. Epicatechin-induced survival was a rapid event that was accompanied by early and sustained activation of major survival signaling proteins, such as AKT/phosphatidylinositol 3-kinase and extracellular-regulated kinase (activated from 5 min to 18 h), as well as protein kinase C (PKC)-alpha (30 min to 18 h), in concert with unaltered c-jun N-amino terminal kinase levels and early inactivation of key death-related signals like PKC-delta (5 min to 18 h). Additionally, reactive oxygen species generation was transiently reduced when cells were treated with 10 micromol/L epicatechin (15-240 min). These data suggest that epicatechin induces cellular survival through a tight regulation of survival/proliferation pathways that requires the integration of different signals and persists over time, the ultimate effect on HepG2 cells being regulated by the balance among these signals.

  13. Pentoxifylline induces apoptosis of HepG2 cells by reducing reactive oxygen species production and activating the MAPK signaling.

    Science.gov (United States)

    Wang, Yan; Dong, Lei; Li, Jing; Luo, Miaosha; Shang, Boxin

    2017-08-15

    Pentoxifylline (PTX) is a methylxanthine derivative and has potent anti-tumor activity. This study aimed at investigating the anti-HCC effects of PTX and associated molecular mechanisms. The effects of varying doses of PTX on viability, cell cycle and apoptosis of HepG2 cells were determined by MTT and flow cytometry, respectively. The effects of PTX on the production of reactive oxygen species (ROS), expression of pro- and anti-apoptotic regulators and activation of the MAPK signaling in HepG2 cells were analyzed by flow cytometry and Western blot assays. The effects of PTX on the growth of implanted HepG2 cells and their apoptosis in mice were examined. Our results indicated that PTX inhibited proliferation of HepG2 cells and induced HepG2 cell cycle arrest at G0/G1 phase and apoptosis in a dose- and time-dependent manner. Treatment with PTX reduced levels of ROS and Bcl-XL expression, but increased caspase 3 and caspase 9 expression and JNK and ERK1/2 phosphorylation in HepG2 cells. Pre-treatment with n-acetyl-l-cysteine (NAC), a ROS scavenger, enhanced PTX-mediated cell cycle arrest, apoptosis and the JNK and ERK MAPK activation, while pre-treatment with SP600125 or PD98509 attenuated PTX-mediated effects in HepG2 cells. Treatment with PTX inhibited the growth of implanted HCC and promoted HCC apoptosis in mice. Our data demonstrate that PTX inhibits proliferation of HepG2 cells and induces HepG2 cell apoptosis by attenuating ROS production and enhancing the MAPK activation in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The endoplasmic reticulum stress response is associated with insulin resistance-mediated drug resistance in HepG2 cells.

    Science.gov (United States)

    Li, L; Li, G; Wei, H; Sun, J; Chen, J; Xie, B; Wang, B; Gu, J; Li, C; Tian, B; Wang, F

    2015-01-01

    Insulin resistance has a close relationship with tumorigenesis, tumor progression, and cancer prognosis. Importantly, the liver is the main target tissue of insulin, and the resistance to chemotherapeutic agents has been reported in hepatocarcinoma. However, little is known about the relationship between drug resistance and insulin resistance in hepatocarcinoma. Therefore, we treated HepG2 cells (a human hepatoma cell line) with high concentrations of insulin to establish a cell-based model of insulin resistance (HepG2/IR cells) to define the relationship between insulin resistance and the resistance to chemotherapy. We identified that HepG2/IR cells exhibited stable insulin resistance, with decreased glucose consumption, reduced glycogen synthesis, and decreased expression of the insulin receptor gene. HepG2/IR cells also exhibited endoplasmic reticulum (ER) dilatation and degranulation. Molecular markers of endoplasmic reticulum stress, including glucose-regulated protein78 (GRP78) and phosphorylated protein kinase R-like ER kinase (p-PERK), increased significantly, which was accompanied by increased reactive oxygen metabolism and decreased mitochondrial membrane potential. In addition, HepG2/IR cells were resistant to the chemotherapy agent Adriamycin, which was accompanied by the upregulation of multidrug resistance gene 1/ P-glycoprotein (P-gp; an endoplasmic reticulum chaperone that plays a role in ER stress), and enhanced drug efflux. These data suggest that the endoplasmic reticulum (ER) stress response was active in HepG2/IR cells, and that insulin resistance was related to drug resistance in HepG2 cells. Interestingly, the ER stress and chemotherapy resistance observed in HepG2/IR cells could be reversed by treatment with the insulin sensitizer pioglitazone. Therefore, our study suggests that there is a close relationship between the resistance to chemotherapy and insulin resistance in HepG2 cells, and that the ER stress response play a role in insulin

  15. Simultaneous detection of MCF-7 and HepG2 cells in blood by ICP-MS with gold nanoparticles and quantum dots as elemental tags.

    Science.gov (United States)

    Li, Xiaoting; Chen, Beibei; He, Man; Wang, Han; Xiao, Guangyang; Yang, Bin; Hu, Bin

    2017-04-15

    In this work, we demonstrate a novel method based on inductively coupled plasma mass spectrometry (ICP-MS) detection with gold nanoparticles (Au NPs) and quantum dots (QDs) labeling for the simultaneous counting of two circulating tumor cell lines (MCF-7 and HepG2 cells) in human blood. MCF-7 and HepG2 cells were captured by magnetic beads coupled with anti-EpCAM and then specifically labeled by CdSe QDs-anti-ASGPR and Au NPs-anti-MUC1, respectively, which were used as signal probes for ICP-MS measurement. Under the optimal experimental conditions, the limits of detection of 50 MCF-7, 89 HepG2 cells and the linear ranges of 200-40000 MCF-7, 300-30000 HepG2 cells were obtained, and the relative standard deviations for seven replicate detections of 800 MCF-7 and HepG2 cells were 4.6% and 5.7%, respectively. This method has the advantages of high sensitivity, low sample consumption, wide linear range and can be extended to the simultaneous detection of multiple CTC lines in human peripheral blood. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. EFFECT OF TSA ON THE CELL APOPTOSIS IN THE HUMAN HEPATOMA CELL LINE HEPG2 AND THE EXPRESSION OF FRAGILE HISTIDINE TRIAD%TSA诱导人肝癌HepG2细胞凋亡及对FHIT表达的影响

    Institute of Scientific and Technical Information of China (English)

    刘晓燕; 王丽; 郑勇; 何涛; 段承刚

    2011-01-01

    [目的]研究去乙酰化转移酶抑制剂TSA对人肝癌HepG2细胞的作用及其FHIT表达的影响.[方法]培养的人肝癌HepG2细胞随机分为两组:对照组给予等量DMSO,实验组给予终浓度分别为125、250、500、1000、2000nmol/L的TSA,培养24h后收集细胞,MTT比色法检测细胞活性,TUNEL法检测细胞凋亡率,逆转录聚合酶链反应(RT-PCR)和免疫细胞化学检测FHIT的mRNA和蛋白表达水平.[结果]与对照组相比,经TSA处理的细胞增殖速度明显减慢,TUNEL阳性细胞百分率随TSA浓度的升高呈剂量依赖性增高(P<0.01),细胞FHIT mRNA表达增强(P<0.01),FHIT蛋白表达差异具有统计学意义(P<0.01).[结论],TSA可能通过抑制HDACs的活性,上调FHIT表达,诱导细胞凋亡而抑制肝癌细胞生长.%[ Objective] To study the role of histone deacetylase inhibitors ( TSA) to the human hepatoma cell line HepG2 and the effect of fragile histidine triad (FHIT) expression. [Methods] Cultured cells were divided into conlrol group and experimental group at random, which given with DMSO and TSA (125, 250, 500, 1 000 and 2 000 nmol/L) respectively. 24 hours later the cells were collected. The effect of TSA on the activity of cells was observed by MIT. Apoptosis index was determined by using TUNEL technique and the expression of FHIT was analyzed by using RT-PCR and immunocytochemistry.[ Results] Compared with control group, the proliferation of HepG2 cell was inhibited significantly after the treatment of TSA.Apoptosis index significantly increased (P < 0.01) , and the expression of FWT mRNA and protein were significantly increased (P < 0.01). [Conclusion] Histone deacetylase inhibitor TSA could inhibit the proliferation of HDACs, which may be related to the change of FHIT and apoptosis.

  17. Effect of continuous irradiation with 125I radioactive seeds in inhibiting HepG2 cell proliferation and related mechanisms

    Directory of Open Access Journals (Sweden)

    CIDAN Wangjiu

    2016-10-01

    Full Text Available Objective To investigate the effect of continuous irradiation with 125I radioactive seeds in inhibiting HepG2 cell proliferation and possible mechanisms in inducing apoptosis. Methods Human hepatoma cell line HepG2 was selected as the research object and exposed to continuous irradiation with 125I radioactive seeds. The initial dose rate was 5.32 cGy/h, and HepG2 cells were exposed to a dose of 0, 2, or 4 Gy. A light microscope and Hoechst33258 staining were used to observe the morphological change of HepG2 cells, the colony-forming assay was used to calculate plating efficiency, the scratch test was used to evaluate the change in migration ability, flow cytometry was used to measure cell apoptosis, and Western Blot was used to measure the expression of apoptosis-related proteins. An analysis of variance was used for comparison between multiple groups, and the least significant difference method was used for further comparison between any two groups. Results After HepG2 cells were exposed to 125I radioactive seeds at a dose of 0 Gy, 2 Gy, or 4 Gy, the 4 Gy group showed a reduction in cell density and an increase in the number of spherical free dead cells, as was shown by the light microscope; Hoechst33258 staining showed that the 4 Gy group had typical features of apoptotic cells, such as karyopyknosis, fragmentation, and margination. The colony-forming assay showed that there were significant differences in plating efficiency between the control group, 2 Gy group, and 4 Gy group (120.00%±3.61%, 112.00%±2.00%, and 45.00%±3.61%, F=508.90, P<0.001. The scratch test showed that there were significant differences in cell migration rate between the control group, 2 Gy group, and 4 Gy group (21.24%±4.36%, 19.93%±3.37%, and 11.42%±0.65%, F=8.29, P<0.001. The results of flow cytometry for cell apoptosis showed that there were significant differences in cell apoptosis rate between the control group, 2 Gy group, and 4 Gy group (4.33%±0.67%, 6

  18. Mangiferin, a Dietary Xanthone Protects Against Mercury-Induced Toxicity in HepG2 Cells

    Science.gov (United States)

    Agarwala, Sobhika; Rao, B. Nageshwar; Mudholkar, Kaivalya; Bhuwania, Ridhirama; Rao, B. S. Satish

    2012-01-01

    Mercury is one of the noxious heavy metal environmental toxicants and is a cause of concern for human exposure. Mangiferin (MGN), a glucosylxanthone found in Mangifera indica, reported to have a wide range of pharmacological properties. The objective of this study was to evaluate the cytoprotective potential of MGN, against mercury chloride (HgCl2) induced toxicity in HepG2 cell line. The cytoprotective effect of MGN on HgCl2 induced toxicity was assessed by colony formation assay, while antiapoptotic effect by fluorescence microscopy, flow cytometric DNA analysis, and DNA fragmentation pattern assays. Further, the cytoprotective effect of MGN against HgCl2 toxicity was assessed by using biochemical parameters like reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) by spectrophotometrically, mitochondrial membrane potential by flowcytometry and the changes in reactive oxygen species levels by DCFH-DA spectrofluoremetric analysis. A significant increase in the surviving fraction was observed with 50 µM of MGN administered two hours prior to various concentrations of HgCl2. Further, pretreatment of MGN significantly decreased the percentage of HgCl2 induced apoptotic cells. Similarly, the levels of ROS generated by the HgCl2 treatment were inhibited significantly (P < 0.01) by MGN. MGN also significantly (P < 0.01) inhibited the HgCl2 induced decrease in GSH, GST, SOD, and CAT levels at all the post incubation intervals. Our study demonstrated the cytoprotective potential of MGN, which may be attributed to quenching of the ROS generated in the cells due to oxidative stress induced by HgCl2, restoration of mitochondrial membrane potential and normalization of cellular antioxidant levels. PMID:20629087

  19. Pfaffosidic Fraction from Hebanthe paniculata Induces Cell Cycle Arrest and Caspase-3-Induced Apoptosis in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Tereza Cristina da Silva

    2015-01-01

    Full Text Available Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27KIP1 overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27KIP1 overexpression, besides induction of apoptosis through caspase-3 activation.

  20. Anti-proliferative effects of Atractylis lancea (Thunb.) DC. via down-regulation of the c-myc/hTERT/telomerase pathway in Hep-G2 cells.

    Science.gov (United States)

    Guo, Wei-Qiang; Li, Liang-Zhi; He, Zhuo-Yang; Zhang, Qi; Liu, Jia; Hu, Cui-Ying; Qin, Fen-Ju; Wang, Tao-Yun

    2013-01-01

    Atractylis lancea (Thunb.) DC. (AL), an important medicinal herb in Asia, has been shown to have anti-tumor effects on cancer cells, but the involved mechanisms are poorly understood. This study focused on potential effects and molecular mechanisms of AL on the proliferation of the Hep-G2 liver cancer cell line in vitro. Cell viability was assessed by MTT test in Hep-G2 cells incubated with an ethanol extract of AL. Then, the effects of AL on apoptosis and cell cycle progression were determined by flow cytometry. Telomeric repeat amplification protocol (TRAP) assays was performed to investigate telomerase activity. The mRNA and protein expression of human telomerase reverse transcriptase (hTERT) and c-myc were determined by real-time RT-PCR and Western blotting. Our results show that AL effectively inhibits proliferation in Hep-G2 cells in a concentration- and time-dependent manner. When Hep-G2 cells were treated with AL after 48h,the IC50 was about 72.1 μg/ mL. Apoptosis was induced by AL via arresting the cells in the G1 phase. Furthermore, AL effectively reduced telomerase activity through inhibition of mRNA and protein expression of hTERT and c-myc. Hence, these data demonstrate that AL exerts anti-proliferative effects in Hep-G2 cells via down-regulation of the c-myc/hTERT/ telomerase pathway.

  1. Apoptosis induced by nucleosides in the human hepatoma HepG2

    Institute of Scientific and Technical Information of China (English)

    Suh-Ching Yang; Che-Lin Chiu; Chi-Chang Huang; Jiun-Rong Chen

    2005-01-01

    AIM: To investigate the apoptotic effects of nucleosides on the human hepatoma HepG2.METHODS: The nucleosides included inosine (I), cytidine(C), uridine (U), thymidine (T), adenosine (A), and guanosine (G). Cells were incubated by the mediums with or without nucleosides at 37 ℃ in a 50 mL/L CO2 humidified atmosphere.RESULTS: It was found that the cell viabilities were significantly decreased, when cells were treated with 30 mmol/L I, 30 mmol/L C, 30 mmol/L U, 30 mmol/L T,0.5 mmol/L A, and 0.5 mmol/L G after 12 h incubation (P<0.05). About the apoptotic phenomenon, the cell percentages of sub-G1 cells were significantly increased in the mediums containing nucleosides such as C, U, T,A, and G (P<0.05). Furthermore, the caspase-3 activity was increased, when the cells were incubated with T(P<0.05). The protein expressions of p53 and p21 showed no difference in each group. To investigate the mechanism of apoptosis induced by nucleosides, it was found that the contents of soluble Fas ligand contents were increased in HepG2 cells following I, U, T, and A treatment (P<0.05).But, TNF-α and cytochrome c were undetectable.CONCLUSION: Thymidine may induce the apoptosis in HepG2, but the effective dosages and reactive time must be investigated in the future study. However, the apoptosis-inducing abilities of other nucleosides were still unclear in this study.

  2. Metallomics Study of CdSe/ZnS Quantum Dots in HepG2 Cells.

    Science.gov (United States)

    Peng, Lu; He, Man; Chen, Beibei; Qiao, Yu; Hu, Bin

    2015-10-27

    Toxicity of quantum dots (QDs) has been a hot research concern in the past decade, and there is a lot of challenge in this field. The physicochemical characteristics of QDs can affect their toxicity, while little is known about the specific chemical form of QDs in living cells after incubation so far. In this work, speciation of four CdSe/ZnS QDs in HepG2 cells was carried out from the metallomics' point of view for the first time by using size exclusion chromatography (SEC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). On the basis of the signal of Cd, two kinds of chemical forms, named as QD-1 and QD-2, were observed in HepG2 cells incubated with CdSe/ZnS QDs. QD-1 was demonstrated to be a kind of QD-like nanoparticles, confirmed by chromatographic retention time, transmission electron microscopy (TEM) characterization, and fluorescence detection. QD-2 was demonstrated to be cadmium-metallothioneins complex (Cd-MTs) by reversed phase liquid chromatography (RPLC) synchronously coupled with ICP-MS and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) analysis. Meanwhile, speciation of QDs in HepG2 cells incubated with different conditions was analyzed. With the variation of QDs incubation concentration/time, and elimination time, the species of QD-1 and QD-2 were also observed without other obvious species, and both the amount of QD-1 and QD-2 increased with incubation concentration and time. The obtained results provide valuable information and a strategy for the study of existing chemical form of QDs, greatly benefiting the understanding of QDs toxicity in living cells.

  3. Pinolenic Acid Downregulates Lipid Anabolic Pathway in HepG2 Cells.

    Science.gov (United States)

    Lee, Ah Ron; Han, Sung Nim

    2016-07-01

    Pine nut oil (PNO) was reported to reduce lipid accumulation in the liver. However, the specific effect of pinolenic acid (18:3, all-cis-Δ5,9,12), a unique component of PNO, on lipid metabolism has not been studied. We hypothesized that pinolenic acid downregulates the lipid anabolic pathway in HepG2 cells. HepG2 cells were incubated in serum-free medium supplemented with 50 μM bovine serum albumin (BSA), palmitic acid, oleic acid, γ-linolenic acid, pinolenic acid, eicosapentaenoic acid (EPA), or α-linolenic acid for 24 h. Lipid accumulation was determined by Oil Red O (ORO) staining. The mRNA levels of genes related to fatty acid biosynthesis (SREBP1c, FAS, SCD1, and ACC1), fatty acid oxidation (ACC2, PPARα, CPT1A, and ACADL), cholesterol synthesis (SREBP2 and HMGCR), and lipoprotein uptake (LDLr) and of genes that may be involved in the downregulation of the lipogenic pathway (ACSL3, ACSL4, and ACSL5) were determined by qPCR. LDLR protein levels were measured by Western blot analysis. The mRNA levels of SREBP1c, FAS, and SCD1 were significantly downregulated by pinolenic acid treatment compared to BSA control (53, 54, and 38 % lower, respectively). In addition, the mRNA levels of HMGCR, ACSL3, and LDLr were significantly lower (30, 30, and 43 % lower, respectively), and ACSL4 tended to be lower in the pinolenic acid group (20 % lower, P = 0.082) relative to the control group. In conclusion, pinolenic acid downregulated the lipid anabolic pathway in HepG2 cells by reducing expression of genes related to lipid synthesis, lipoprotein uptake, and the regulation of the lipogenic pathway.

  4. 龙葵碱对人肝癌HepG2细胞N-乙酰基转移酶活性的影响%Effect of solanine on N-acetyltransferase activity in HepG2 cell

    Institute of Scientific and Technical Information of China (English)

    高世勇; 季字彬

    2008-01-01

    目的 探讨龙葵碱对HepG2细胞Ⅳ-乙酰基转移酶(NAT)活性的影响.方法 采用HPLC方法,以2-氨基芴(2-AF)为底物,以2-AF被NAT乙酰化为2-乙酰氨基芴(2-AAF)的量来反应NAT的活性.结果 龙葵碱能显著降低HepG2完整细胞NAT的活性;龙葵碱能够降低HepG2细胞质内NAT的活性,作用具有剂量依赖性.结论 龙葵碱通过抑制HepG2细胞NAT的活性发挥细胞毒作用.

  5. Spectroscopic characterization and antiproliferative activity on HepG2 human hepatoblastoma cells of flavonoid C-glycosides from Petrorhagia velutina.

    Science.gov (United States)

    Pacifico, Severina; Scognamiglio, Monica; D'Abrosca, Brigida; Piccolella, Simona; Tsafantakis, Nikolaos; Gallicchio, Marialuisa; Ricci, Andreina; Fiorentino, Antonio

    2010-12-27

    Eight flavonoid C-glycosides, including three new analogues, have been isolated from leaf and root methanolic extracts of Petrorhagia velutina, a Mediterranean herbaceous plant. The antiproliferative activity against human hepatoblastoma cancer cell line HepG2 has been analyzed by the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) test. Isoorientin (4) significantly reduces the proliferation of HepG2 cells as determined by the complete conversion of the tetrazolium probe into formazan after 48 h of exposure.

  6. Effect of the venom of the spider Macrothele raveni on the expression of p21 gene in HepG2 cells%雷氏大疣蛛毒液对人肝癌HepG2细胞p21基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    高莉; 沈金宝; 孙捷; 单保恩

    2007-01-01

    本文研究了雷氏大疣蛛毒液对人肝癌细胞株HepG2增殖抑制作用及其分子机制.采用XTT法观察到雷氏大疣蛛毒液剂量依赖抑制HepG2细胞增殖;流式细胞仪检测发现,经过雷氏大疣蛛毒液作用的HepG2细胞周期发生明显的选择性改变;RT-PCR方法检测到p21基因表达增强;Western blot检测发现,p21蛋白表达增加.结果提示,雷氏大疣蛛毒液抑制人肝癌细胞HepG2增殖的可能机制之一是使p21基因和蛋白表达增加,G2/M细胞周期被阻滞,从而诱导细胞凋亡.%This paper focuses on the effect of the venom of the spider Macrothele raveni on the proliferation of human hepatocelluar carcinoma cell line HepG2 and the related molecular mechanism. XTT test showed that the proliferation of HepG2 cells in vitro was inhibited by the spider venom (P<0.05) in a concentration-dependent manner. By using flow cytometry, it was found that the spider venom caused selective G2/M cell cycle arrest in HepG2 cells. RT-PCR and Western blot indicated the expressions of p21 mRNA and protein in HepG2 cells were obviously up-regulated by the spider venom. The venom of the spider Macrothele raveni inhibited the proliferation of HepG2 cells. These results suggest that the possible mechanism of the spider venom is to activate the expressions of p21 gene and protein and to cause selective cell cycle arrest at G2/M phase, leading to HepG2 cell apoptosis.

  7. Study of anticancer activity of quercetin and expression of PDGFR- βin HepG2 cells%Quercetin对HepG2细胞的抑制作用及PDGFR-β的表达

    Institute of Scientific and Technical Information of China (English)

    单智焱; 刘慧雯

    2005-01-01

    目的探讨植物化学物质槲皮素(Quercetin)对人类肝癌细胞HepG2的抑制作用和血小板衍生生长因子β受体(PDGFR-β)表达的关系.方法采用免疫组化SABC法观察Quercetin抑制HepG2中PDGFR-β表达,并采用透射电镜观察Quercetin作用后HepG2细胞的凋亡情况.结果细胞增殖率检测表明Quercetin可以抑制HepG2细胞的增殖,且呈剂量依赖性;Quercetin可以抑制HepG2细胞PDGFR-β的表达,且呈剂量依赖性;透射电镜下可见凋亡小体.结论槲皮素对HepG2细胞增殖有明显抑制作用,其机制可能是诱导PDGFR-β的增加,再通过PDGFR-β介导的细胞内信号体系控制细胞凋亡而实现的.

  8. Low dose actinomycin treatment induces HepG2 cell cycle G2 arrest%低浓度放线菌素D诱导HepG2细胞周期G2阻滞的分子机制研究

    Institute of Scientific and Technical Information of China (English)

    肖建勇; 刘相富; 云径平

    2012-01-01

    Objective; To explore the mechanism of HepG2 cell cycle G2 arrest caused by Actinomycin D treatment. Method: HepG2 cell treated with low dose Actinomycin D for different time durations was analyzed by Flow cytometry. The translocation of Nucleophosmin (NPM) /B23 after low dose Actinomycin D treatment wasobserved by immunofluorescence. The expression changes of B23, P53 and P21 with or without Actinomycin D treatment were detected by western blotting. Result; Low dose Actinomycin D inhibited HepG2 cell growth, and caused cell cycle G2 arrest When exposed to Actinomycin D, NPM translocated from nucleolus to plasma but its expression level showed no remarkable change . Actinomycin D treatment resulted in the upregulations of P53 and P21. Conclusion; Low dose Actinomycin D treatment caused HepG2 cell cycle G2 arrest whose underlying mechanism might relate to the translocation of NPM and upregulation of P53 and P21.%目的:探讨低浓度放线菌素D处理导致HepG2细胞周期G2阻滞的分子机制.方法:应用低浓度放线菌素D处理HepG2细胞不同时间,然后应用流式细胞仪检测HepG2生长周期变化;免疫荧光观察核磷蛋白B23(NPM)定位的变化;免疫印迹法检测NPM及其细胞周期相关蛋白P53和P21表达水平.结果:低浓度放线菌素D能够抑制HepG2细胞生长并使细胞周期阻滞于G2期;在放线菌素D作用下,NPM蛋白表达水平没有明显改变,但出现定位改变,即从核仁移位到核浆;放线菌素D处理引起P53和P21蛋白表达水平上调.结论:低浓度放线菌素D作用HepG2细胞导致细胞周期G2阻滞,其机制可能与NPM移位促使其相互作用靶蛋白P53和P21蛋白水平上调有关.

  9. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Zhao, Peng; Mao, Jun-Min; Zhang, Shu-Yun; Zhou, Ze-Quan; Tan, Yang; Zhang, Yu

    2014-08-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a 'chemopreventer'. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer.

  10. A proteomic analysis of mushroom polysaccharide-treated HepG2 cells

    Science.gov (United States)

    Chai, Yangyang; Wang, Guibin; Fan, Lili; Zhao, Min

    2016-01-01

    The anti-tumor properties of fungal polysaccharides have gained significant recognition in Asia and tropical America. In this study, the differential expression of proteins in normal HepG2 cells and those treated with polysaccharides that had been isolated from Phellinus linteus (PL), Ganoderma lucidum (GL) and Auricularia auricula (AA) was investigated. Using two-dimensional electrophoresis (2DE), a total of 104 protein spots were determined to be overexpressed in these cells compared with noncancerous regions. A total of 59 differentially expressed proteins were identified through MALDI-TOF-MS. In addition, 400 biological processes (BP), 133 cell components (CC) and 146 molecular functions (MF) were enriched by Gene Ontology (GO) analysis, and 78 KEGG pathways were enriched by pathway enrichment. Protein-Protein Interaction (PPI) analysis demonstrated the interaction networks affected by polysaccharides in HepG2 cells. Then, DJ-1 and 14-3-3 were identified as the key proteins in the networks, and the expression of the mRNA and proteins were evaluated using Real-time quantitative PCR (qRT-PCR) and Western blotting (WB), respectively. The results were in agreement with the 2DE. These results provided information on significant proteins of hepatocellular carcinoma (HCC) and form an important basis for the future development of valuable medicinal mushroom resources. PMID:27020667

  11. Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Nagao Koji

    2008-10-01

    Full Text Available Abstract Background Higher concentrations of serum lipids and apolipoprotein B100 (apoB are major individual risk factors of atherosclerosis and coronary heart disease. Therefore ameliorative effects of food components against the diseases are being paid attention in the affluent countries. The present study was undertaken to investigate the effect of taurine on apoB secretion and lipid metabolism in human liver model HepG2 cells. Results The results demonstrated that an addition of taurine to the culture media reduces triacylglycerol (TG-mass in the cells and the medium. Similarly, cellular cholesterol-mass was decreased. Taurine inhibited the incorporation of [14C] oleate into cellular and medium TG, suggesting the inhibition of TG synthesis. In addition, taurine reduced the synthesis of cellular cholesterol ester and its secretion, suggesting the inhibition of acyl-coenzyme A:cholesterol acyltransferase activity. Furthermore, taurine reduced the secretion of apoB, which is a major protein component of very low-density lipoprotein. Conclusion This is a first report to demonstrate that taurine inhibits the secretion of apoB from HepG2 cells.

  12. Metabolic Flux Distribution during Defatting of Steatotic Human Hepatoma (HepG2) Cells.

    Science.gov (United States)

    Yarmush, Gabriel; Santos, Lucas; Yarmush, Joshua; Koundinyan, Srivathsan; Saleem, Mubasher; Nativ, Nir I; Schloss, Rene S; Yarmush, Martin L; Maguire, Timothy J; Berthiaume, Francois

    2016-01-04

    Methods that rapidly decrease fat in steatotic hepatocytes may be helpful to recover severely fatty livers for transplantation. Defatting kinetics are highly dependent upon the extracellular medium composition; however, the pathways involved are poorly understood. Steatosis was induced in human hepatoma cells (HepG2) by exposure to high levels of free fatty acids, followed by defatting using plain medium containing no fatty acids, or medium supplemented with a cocktail of defatting agents previously described before. We measured the levels of 28 extracellular metabolites and intracellular triglyceride, and fed the data into a steady-state mass balance model to estimate strictly intracellular fluxes. We found that during defatting, triglyceride content decreased, while beta-oxidation, the tricarboxylic acid cycle, and the urea cycle increased. These fluxes were augmented by defatting agents, and even more so by hyperoxic conditions. In all defatting conditions, the rate of extracellular glucose uptake/release was very small compared to the internal supply from glycogenolysis, and glycolysis remained highly active. Thus, in steatotic HepG2 cells, glycolysis and fatty acid oxidation may co-exist. Together, these pathways generate reducing equivalents that are supplied to mitochondrial oxidative phosphorylation.

  13. Molecular mechanisms of methylmercury-induced cell death in human HepG2 cells.

    Science.gov (United States)

    Cuello, Susana; Goya, Luis; Madrid, Yolanda; Campuzano, Susana; Pedrero, Maria; Bravo, Laura; Cámara, Carmen; Ramos, Sonia

    2010-05-01

    Methylmercury (MeHg) has been suggested to exert cytotoxicity through multiple mechanisms, but the precise biochemical machinery has not been fully defined. This study was aimed at investigating the time-course (0-24h) effect of 2mg/L MeHg on cell death in human HepG2 cells. MeHg decreased cell viability in a time-dependent manner, which was concomitant with increased LDH leakage, reduced GSH levels, CAT activity and altered activity of the antioxidant enzymes GPx and GR at the longest times of incubation (16 and 24h). Activity of the detoxifying enzyme GST was also early enhanced (2h). Caspase-3 activity reached a maximum value at 8h and continued increased up to 24h. This feature was preceded by an enhancement in the caspase-9 activity (2h), whereas caspase-8 activity remained unchanged. MeHg early diminished Bcl-x(L)/Bcl-x(S) ratio and increased levels of the pro-apoptotic Bax and Bad. Moreover, MeHg-induced cytotoxicity was completely inhibited by the antioxidants (GSH and NAC) and notably by the mitochondrial complex I inhibitor rotenone, but not by the NADH oxidase inhibitor DPI. In summary, MeHg induced an oxidative stress responsible for apoptosis in HepG2 cells through direct activation of the caspase cascade and altered the cellular antioxidant and detoxificant enzymatic system to later provoke necrosis at later stages. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Crambescin C1 Exerts a Cytoprotective Effect on HepG2 Cells through Metallothionein Induction

    Directory of Open Access Journals (Sweden)

    María Roel

    2015-07-01

    Full Text Available The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1 on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities.

  15. Biscuit melanoidins of different molecular masses protect human HepG2 cells against oxidative stress.

    Science.gov (United States)

    Martín, María Angeles; Ramos, Sonia; Mateos, Raquel; Rufián-Henares, José Angel; Morales, Francisco José; Bravo, Laura; Goya, Luis

    2009-08-26

    Soluble melanoidins from biscuits were enzymatically solubilized and isolated by sequential ultrafiltration and separated by molecular mass in three different fractions, below 3 kDa, between 3 and 10 kDa, and over 10 kDa; the latter was subsequently digested by simulating gastric plus pancreatic digestive conditions. The four fractions were investigated for their protective effect against an oxidative challenge in HepG2 cells. Pretreatment of cells for 20 h with 0.5-10 microg/mL of any of the four fractions prevented the increased cell damage evoked by the challenge but, except for the intermediate size fraction, did not suppress the increased reactive oxygen species. Antioxidant defenses were rapidly restored after the challenge, and the increase of the oxidative stress biomarker malondialdehyde was prevented by the pretreatment with all but the undigested high molecular mass fraction. The results show that treatment of HepG2 cells with concentrations of biscuit melanoidins within the expected physiological range confers on the cells a significant protection against an oxidative challenge.

  16. Protection of human HepG2 cells against oxidative stress by the flavonoid epicatechin.

    Science.gov (United States)

    Martín, María Angeles; Ramos, Sonia; Mateos, Raquel; Izquierdo-Pulido, María; Bravo, Laura; Goya, Luis

    2010-04-01

    Flavanols, such as epicatechin (EC), constitute an important part of the human diet; they can be found in green tea, grapes and cocoa and possess different biological activities such as antioxidant, anti-inflammatory and anticarcinogenic. This study investigated the potential chemo-protective effect of EC against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on human HepG2 cells. Cell viability by lactate dehydrogenase assay and markers of oxidative status: reduced glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS), glutathione peroxidase (GPx) and glutathione reductase (GR) were evaluated. Pretreatment of cells with EC for 20 h prevented the enhanced cell damage and GPx and GR activities as well as the decrease in GSH induced by t-BOOH. The increased ROS generation induced by t-BOOH was also partly prevented by a pretreatment for 20 h with EC. In addition, pretreatment of cells with EC for 20 h recovered the t-BOOH-induced MDA concentration to control values. A pretreatment for 2 h with EC did not reduce cell damage but partly recovered GSH, reduced ROS levels and muffled the increase of GPx and GR after exposure to t-BOOH. Treatment of HepG2 cells with concentrations of EC in the micromolar range confers a significant protection against oxidative stress.

  17. Proanthocyanidins modulate microRNA expression in human HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Anna Arola-Arnal

    Full Text Available Mi(croRNAs are small non-coding RNAs of 18-25 nucleotides in length that modulate gene expression at the post-transcriptional level. These RNAs have been shown to be involved in a several biological processes, human diseases and metabolic disorders. Proanthocyanidins, which are the most abundant polyphenol class in the human diet, have positive health effects on a variety of metabolic disorders such as inflammation, obesity, diabetes and insulin resistance. The present study aimed to evaluate whether proanthocyanidin-rich natural extracts modulate miRNA expression. Using microarray analysis and Q-PCR, we investigated miRNA expression in HepG2 cells treated with proanthocyanidins. Our results showed that when HepG2 cells were treated with grape seed proanthocyanidin extract (GSPE, cocoa proanthocyanidin extract (CPE or pure epigallocatechin gallate isolated from green tea (EGCG, fifteen, six and five differentially expressed miRNAs, respectively, were identified out of 904 mRNAs. Specifically, miR-30b* was downregulated by the three treatments, and treatment with GSPE or CPE upregulated miR-1224-3p, miR-197 and miR-532-3p. Therefore, these results provide evidence of the capacity of dietary proanthocyanidins to influence microRNA expression, suggesting a new mechanism of action of proanthocyanidins.

  18. Metabolic Flux Distribution during Defatting of Steatotic Human Hepatoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Gabriel Yarmush

    2016-01-01

    Full Text Available Methods that rapidly decrease fat in steatotic hepatocytes may be helpful to recover severely fatty livers for transplantation. Defatting kinetics are highly dependent upon the extracellular medium composition; however, the pathways involved are poorly understood. Steatosis was induced in human hepatoma cells (HepG2 by exposure to high levels of free fatty acids, followed by defatting using plain medium containing no fatty acids, or medium supplemented with a cocktail of defatting agents previously described before. We measured the levels of 28 extracellular metabolites and intracellular triglyceride, and fed the data into a steady-state mass balance model to estimate strictly intracellular fluxes. We found that during defatting, triglyceride content decreased, while beta-oxidation, the tricarboxylic acid cycle, and the urea cycle increased. These fluxes were augmented by defatting agents, and even more so by hyperoxic conditions. In all defatting conditions, the rate of extracellular glucose uptake/release was very small compared to the internal supply from glycogenolysis, and glycolysis remained highly active. Thus, in steatotic HepG2 cells, glycolysis and fatty acid oxidation may co-exist. Together, these pathways generate reducing equivalents that are supplied to mitochondrial oxidative phosphorylation.

  19. Nuclear matrix associated protein PML: an arsenic trioxide apoptosis therapeutic target protein in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    于鼎; 王子慧; 朱立元; 邱殷庆

    2003-01-01

    Objective To investigate arsenic trioxide (As2O3)-induced apoptosis and the effects on cell nuclear matrix related protein promyelocytic leukaemia (PML). Methods HepG2 cells were cultured in MEM medium and treated with 0.5, 2, 5 and 10 μmol/L As2O3 for either 24 h or 96 h at each concentration. In situ terminal deoxynucleotidyl transferase (TdT) labeling (TUNEL) and DNA ladders were used to detect apoptosis. Confocal microscopy and Western blotting were used to observe the expression of PML. Results The growth rates of HepG2 cells were slower in the As2O3 treated than the untreated control group. DNA ladder and TUNEL positive apoptotic cells could be detected in As2O3 treated groups. The expression of PML decreased in HepG2 cells with 2 μmol/L As2O3 treatment. Confocal images demonstrated that the expression of PML protein in HepG2 cell nuclei decreased after treatment with 2 μmol/L As2O3, and micropunctates characteristic of PML protein in HepG2 cell nuclei disappeared after treatment with 5 μmol/L As2O3.Conclusions Our results show that arsenic trioxide can significantly inhibit the growth of HepG2 cells in vitro. As2O3 induces apoptosis in HepG2 tumor cells in a time and concentration dependent manner. As2O3 may degrade the PML protein in HepG2 cell nuclei. The decreased expression of PML in As2O3 treated tumor cells is most likely to be caused by apoptosis. Nuclear matrix associated protein PML could be the target of As2O3 therapy.

  20. Early Transcriptional Responses of HepG2-A 16 Liver Cells to Infection by Plasmodium falciparum Sporozoites

    Science.gov (United States)

    2011-07-29

    286, ’JC 30, pp Early Transcriptional Responses of HepG2-A 16 Liver Cells to Infection by Plasmodium falciparum Sporozoites*[i] Received for...7500 and󈧏Sun BioMedical Technologies Inc., Ridgecrest, California 93555 Invasion of hepatocytes by Plasmodium sporozoites depos- ited by Anopheles...expression profiling of human HepG2-A16liver cells infected with Plasmodium falciparum sporozoites to understand the host early cellular events and

  1. Decorin protects human hepatoma HepG2 cells against oxygen-glucose deprivation via modulating autophagy.

    Science.gov (United States)

    Ju, Wenbo; Li, Shubo; Wang, Zhaohui; Liu, Yanfeng; Wang, Dawei

    2015-01-01

    This study is to investigate the effects of decorin (DCN) on human hepatoma HepG2 cells under oxygen-glucose deprivation (OGD) condition. HepG2 cells were cultured under OGD condition. CCK-8 assay was used to assess the cell survival, and flow cytometry was performed to detect the apoptosis. Protein expression levels were detected with Western blot analysis. Transfection was performed with liposome, and cells were screened with G418. The cell survival rates were significantly decreased in the OGD groups. When treated with autophagy inhibitor 3-MA, the survival rates were further declined in these cells. Moreover, flow cytometry indicated that apoptosis occurred in the HepG2 cells under OGD condition, and the apoptosis rates were significantly increased by the 3-MA treatment. Western blot analysis showed that, the expression levels of DCN were significantly elevated in OGD-preconditioned HepG2 cells. Meanwhile, the expression level of Beclin1 and the LC3BI/LC3BII ratio were significantly increased, while the expression level of P62 was significantly decreased, in HepG2 cells under OGD condition. Over-expression of DCN significantly increased the expression level of Beclin1 and the LC3BI/LC3BII ratio, while no significant changes were observed in the P62 expression level, in HepG2 cells. Under the OGD condition, the apoptosis rate was also significantly decreased in DCN-transfected HepG2 cells. DCN protects HepG2 cells against OGD-induced injury, via regulating autophagy. These results might contribute to a better understanding of the roles of DCN and autophagy in hepatocellular carcinoma, and the potential treatment for the disease.

  2. Autophagy inhibition sensitizes KU-0063794-mediated anti-HepG2 hepatocellular carcinoma cell activity in vitro and in vivo.

    Science.gov (United States)

    Yongxi, Tong; Haijun, Huang; Jiaping, Zheng; Guoliang, Shao; Hongying, Pan

    2015-09-25

    Recent studies have indicated that mammalian target of rapamycin (mTOR) signaling has a critical role in the pathogenesis of hepatocellular carcinoma (HCC). In the current study, we investigated the activity of KU-0063794, a novel mTOR kinase inhibitor, against HepG2 HCC cells. Our results demonstrated that KU-0063794 blocked mTOR complex 1/2 (mTORC1/2) activation, and downregulated mTOR-regulated genes (Cyclin D1 and hypoxia-inducible factor 1α) in HepG2 cells. Consequently, KU-0063794 induced significant anti-survival and pro-apoptotic activities against HepG2 cells. When analyzing the possible KU-0063794-resistance factors, we showed that KU-0063794 induced cyto-protective autophagy activation in HepG2 cells, evidenced by GFP-light chain 3B (LC3B) puncta formation, p62 degradation, Beclin-1 expression and LC3B-I to LC3B-II conversion. Correspondingly, autophagy inhibitors, including bafliomycin A1, 3-methyladenine (3-MA) and chloroquine, dramatically enhanced KU-0063794-induced cytotoxicity against HepG2 cells. Further, RNAi knockdown of Beclin-1 also increased KU-0063794 sensitivity in HepG2 cells. In vivo, oral administration of KU-0063794 repressed HepG2 xenograft growth in severe combined immunodeficient (SCID) mice, and its activity was further enhanced with co-administration of the autophagy inhibitor 3-MA. In summary, KU-0063794 inhibits HepG2 cell growth in vitro and in vivo, its activity could be further enhanced with autophagy inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Cytotoxicity, oxidative stress, and apoptosis in HepG2 cells induced by ionic liquid 1-methyl-3-octylimidazolium bromide.

    Science.gov (United States)

    Li, Xiaoyu; Ma, Junguo; Wang, Jianji

    2015-10-01

    The present study aimed to determine the cytotoxicity of 1-methyl-3-octylimidazolium bromide ([C8mim]Br) on the human hepatocellular carcinoma (HepG2) cells in order to elucidate the biochemical and molecular mechanism of [C8mim]Br-cytotoxicity. For this purpose, cell viability, oxidative stress, apoptosis, caspase activity, and apoptosis-related gene expression in HepG2 cells following [C8mim]Br-exposure were evaluated. The results showed that viability of HepG2 cells was decreased by [C8mim]Br-exposure in a concentration-dependent pattern. Moreover, biochemical assays reveal that [C8mim]Br-exposure can induce apoptosis, cause overproduction of reactive oxygen species (ROS), inhibit superoxide dismutase and catalase, reduce glutathione content, and increase the cellular malondialdehyde level of HepG2 cells. The transcriptions of p53 and bax were markedly up-regulated while bcl-2 was significantly down-regulated in HepG2 cells after [C8mim]Br-exposure, suggesting that p53 and bcl-2 family may be involved in the cytotoxicity and apoptosis of HepG2 cells caused by [C8mim]Br. In addition, we also found that caspase-3, caspase-8, and caspase-9 were significantly activated in HepG2 cells following [C8mim]Br-exposure. Our results suggest that ROS may be a key early signal of [C8mim]Br-induced apoptosis and caspases play a key role in the initiation and execution of apoptosis of HepG2 cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Quercetin reduces cyclin D1 activity and induces G1 phase arrest in HepG2 cells.

    Science.gov (United States)

    Zhou, Jin; Li, L U; Fang, L I; Xie, Hua; Yao, Wenxiu; Zhou, Xiang; Xiong, Zhujuan; Wang, L I; Li, Zhixi; Luo, Feng

    2016-07-01

    Quercetin is able to inhibit proliferation of malignant tumor cells; however, the exact mechanism involved in this biological process remains unclear. The current study utilized a quantitative proteomic analysis to explore the antitumor mechanisms of quercetin. The leucine of HepG2 cells treated with quercetin was labeled as d3 by stable isotope labeling by amino acids in cell culture (SILAC). The isotope peaks of control HepG2 cells were compared with the d3-labeled HepG2 cells by mass spectrometry (MS) to identify significantly altered proteins. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analyses were subsequently employed to verify the results of the MS analysis. A flow cytometry assay was designed to observe the influence of various quercetin treatment concentrations on the cell cycle distribution of HepG2 cells. The results indicated that quercetin is able to substantially inhibit proliferation of HepG2 cells and induce an obvious morphological alteration of cells. According to the MS results, the 70 credibly-changed proteins that were identified may play important roles in multiple cellular processes, including protein synthesis, signaling, cytoskeletal processes and metabolism. Among these functional proteins, the expression of cyclin D1 (CCND1) was found to be significantly decreased. RT-PCR and western blot analyses verified the SILAC-MS results of decreased CCND1 expression. In summary, flow cytometry revealed that quercetin is able to induce G1 phase arrest in HepG2 cells. Based on the aforementioned observations, it is suggested that quercetin exerts antitumor activity in HepG2 cells through multiple pathways, including interfering with CCND1 gene expression to disrupt the cell cycle and proliferation of HepG2 cells. In the future, we aim to explore this effect in vivo.

  5. Mechanisms of dysregulation of low-density lipoprotein receptor expression in HepG2 cells induced by inflammatory cytokines

    Institute of Scientific and Technical Information of China (English)

    CHEN Ya-xi; RUAN Xiong-zhong; HUANG Ai-long; LI Qiu; John F. Moorhead; Zac Varghese

    2007-01-01

    Background Low-density lipoprotein(LDL)receptor is normally regulated via a feedback system that is dependent on intracellular cholesterol levels.We have demonstrated that cytokines disrupt cholesterol-mediated LDL receptor feedback regulation causing intracellular accumulation of unmodified LDL in peripheral cells.Liver is the centraI organ for lipid homeostasis.The aim of this study was to investigate the regulation of cholesterol exogenous uptake via LDL receptor and its underlying mechanisms in human hepatic cell line(HepG2)cells under physiological and inflammatory conditions.Methods Intracellular total cholesterol(TC),free cholesterol(FC)and cholesterol ester(CE)were measured by an enzymic assay.Oil Red O staining was used to visualize lipid droplet accumulation in cells.Total cellular RNA was isolated from cells for detecting LDL receptor,sterol regulatory element binding protein (SREBP)-2 and SREBP cleavage-activating protein(SCAP)mRNA levels using real-time quantitative PCR.LDL receptor and SREBP-2 protein expression were examined by Western blotting.Confocal microscopy was used to investigate the translocation of SCAP-SREBP complex from the endoplasmic reticulum(ER)to the Golgi by dual staining with anti-human SCAP and anti-Golgin antibodies.Results LDL loading increased intracellular cholesterol level,thereby reduced LDL receptor mRNA and protein expression in HepG2 cells under physiological conditions.However,interleukin 1β(IL-1β)further increased intracellular cholesterol level in the presence of LDL by increasing both LDL receptor mRNA and protein expression in HepG2.LDL also reduced the SREBP and SCAP mRNA level under physiological conditions.Exposure to IL-1β caused Over-expression of SREBP-2 and also disrupted normal distribution of SCAP-SREBP complex in HepG2 by enhancing translocation of SCAP-SREBP from the ER to the Golgi despite a high concentration of LDL in the culture medium.Conclusions IL-1β disrupts cholesterol-mediated LDL receptor

  6. Investigation of quercetin-induced HepG2 cell apoptosis-associated cellular biophysical alterations by atomic force microscopy.

    Science.gov (United States)

    Pi, Jiang; Li, Baole; Tu, Lvying; Zhu, Haiyan; Jin, Hua; Yang, Fen; Bai, Haihua; Cai, Huaihong; Cai, Jiye

    2016-01-01

    Quercetin, a wildly distributed bioflavonoid, has been proved to possess excellent antitumor activity on hepatocellular carcinoma (HCC). In the present study, the biophysical properties of HepG2 cells were qualitatively and quantitatively determined using high resolution atomic force microscopy (AFM) to understand the anticancer effects of quercetin on HCC cells at nanoscale. The results showed that quercetin could induce severe apoptosis in HepG2 cells through arrest of cell cycle and disruption of mitochondria membrane potential. Additionally, the nuclei and F-actin structures of HepG2 cells were destroyed by quercetin treatment as well. AFM morphological data showed some typical apoptotic characterization of HepG2 cells with increased particle size and roughness in the ultrastructure of cell surface upon quercetin treatment. As an important biophysical property of cells, the membrane stiffness of HepG2 cells was further quantified by AFM force measurements, which indicated that HepG2 cells became much stiffer after quercetin treatment. These results collectively suggest that quercetin can be served as a potential therapeutic agent for HCC, which not only extends our understanding of the anticancer effects of quercetin against HCC cells into nanoscale, but also highlights the applications of AFM for the investigation of anticancer drugs.

  7. Autophagy in anti-apoptotic effect of augmenter of liver regeneration in HepG2 cells.

    Science.gov (United States)

    Shi, Hong-Bo; Sun, Hai-Qing; Shi, Hong-Lin; Ren, Feng; Chen, Yu; Chen, De-Xi; Lou, Jin-Li; Duan, Zhong-Ping

    2015-05-07

    To investigate the role of autophagy in the anti-apoptotic effect of augmenter of liver regeneration (ALR). Autophagy was induced through serum deprivation. An ALR-expressing plasmid was transfected into HepG2 cells, and autophagic flux was determined using fluorescence microscopy, electron microscopy, Western blot and quantitative polymerase chain reaction (qPCR) assays. After ALR-expressing plasmid transfection, an autophagy inhibitor [3-methyladenine (3-MA)] was added to HepG2 cells, and apoptosis was observed using fluorescence microscopy and flow cytometry. Autophagy was activated in HepG2 cells, peaking at 24 h after serum deprivation. Microtubule-associated protein light chain three-II levels were higher in HepG2 cells treated with ALR than in control cells, fluorescence microscopy, electron microscopy and qPCR studies showed the similar trend, and p62 levels showed the opposite trend, which indicated that ALR may play an important role in increasing autophagy flux. The numbers of apoptotic cells were substantially higher in HepG2 cells treated with both ALR and 3-MA than in cells treated with ALR alone. Therefore, the protective effect of ALR was significantly attenuated or abolished when autophagy was inhibited, indicating that the anti-apoptotic effect of ALR may be related to autophagy. ALR protects cells from apoptosis partly through increased autophagy in HepG2 cells and may be valuable as a new therapeutic treatment for liver disease.

  8. Cisplatin combined with hyperthermia kills HepG2 cells in intraoperative blood salvage but preserves the function of erythrocytes.

    Science.gov (United States)

    Yang, Jin-ting; Tang, Li-hui; Liu, Yun-qing; Wang, Yin; Wang, Lie-ju; Zhang, Feng-jiang; Yan, Min

    2015-05-01

    The safe use of intraoperative blood salvage (IBS) in cancer surgery remains controversial. Here, we investigated the killing effect of cisplatin combined with hyperthermia on human hepatocarcinoma (HepG2) cells and erythrocytes from IBS in vitro. HepG2 cells were mixed with concentrated erythrocytes and pretreated with cisplatin (50, 100, and 200 μg/ml) alone at 37 °C for 60 min and cisplatin (25, 50, 100, and 200 μg/ml) combined with hyperthermia at 42 °C for 60 min. After pretreatment, the cell viability, colony formation and DNA metabolism in HepG2 and the Na(+)-K(+)-ATPase activity, 2,3-diphosphoglycerate (2,3-DPG) concentration, free hemoglobin (Hb) level, osmotic fragility, membrane phosphatidylserine externalization, and blood gas variables in erythrocytes were determined. Pretreatment with cisplatin (50, 100, and 200 μg/ml) combined with hyperthermia (42 °C) for 60 min significantly decreased HepG2 cell viability, and completely inhibited colony formation and DNA metabolism when the HepG2 cell concentration was 5×10(4) ml(-1) in the erythrocyte (P0.05). In conclusion, pretreatment with cisplatin (50 μg/ml) combined with hyperthermia (42 °C) for 60 min effectively eliminated HepG2 cells from IBS but did not significantly affect erythrocytes in vitro.

  9. Galactomannan from Schizolobium amazonicum seed and its sulfated derivatives impair metabolism in HepG2 cells.

    Science.gov (United States)

    Cunha de Padua, Monique Meyenberg; Suter Correia Cadena, Silvia Maria; de Oliveira Petkowicz, Carmen Lucia; Martinez, Glaucia Regina; Rodrigues Noleto, Guilhermina

    2017-08-01

    This study evaluated the effects of native galactomannan from Schizolobium amazonicum seeds and its sulfated forms on certain metabolic parameters of HepG2 cells. Aqueous extraction from S. amazonicum seeds furnished galactomannan with 3.2:1 Man:Gal ratio (SAGM) and molar mass of 4.34×10(5)g/mol. The SAGM fraction was subjected to sulfation using chlorosulfonic acid to obtain SAGMS1 and SAGMS2 with DS of 0.4 and 0.6, respectively. Cytotoxicity of SAGM, SAGMS1, and SAGMS2 was evaluated in human hepatocellular carcinoma cells (HepG2). After 72h, SAGM decreased the viability of HepG2 cells by 50% at 250μg/mL, while SAGMS1 reduced it by 30% at the same concentration. SAGM, SAGMS1, and SAGMS2 promoted a reduction in oxygen consumption and an increase in lactate production in non-permeabilized HepG2 cells after 72h of treatment. These results suggest that SAGM, SAGMS1, and SAGMS2 could be recognized by HepG2 cells and might trigger alterations that impair its survival. These effects could be implicated in the modification of the oxidative phosphorylation process in HepG2 cells and activation of the glycolytic pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiling; Li, Ridong [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing (China); Li, Li [Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing (China); Ge, Zemei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing (China); Zhou, Rouli, E-mail: rlzhou@bjmu.edu.cn [Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Runtao, E-mail: lirt@bjmu.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing (China)

    2015-02-27

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{sub 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.

  11. Synthesis and anticancer activity of novel benzimidazole and benzothiazole derivatives against HepG2 liver cancer cells.

    Science.gov (United States)

    Youssef, Amal M; Malki, Ahmed; Badr, Mona H; Elbayaa, Rasha Y; Sultan, Ahmed S

    2012-03-01

    Most of cancer chemotherapeutics and chemopreventives exert their effects by triggering apoptotic cell death. In this study, novel benzimidazole and benzothiazole derivatives have been synthesized to investigate their effects on HepG2 liver cancer cell lines after initial screening study. A dose response curve was constructed and the most active derivatives were further studied for apoptotic analysis. Six active benzimidazole derivatives (8, 9, 10, 12, 13 and 14) significantly induced apoptosis compared to control group. Two compounds 10 and 12 induced apoptosis by arresting cells in G1 phase of cell cycle which is confirmed by increased expression level of p21. The activity of caspase-3 which is well known as one of the key executioners of apoptosis was determined in the presence and absence of the tested derivatives. Our results indicated that compounds 10 and 12 significantly increased caspase-3 activity compared to control group. Moreover, a docked pose of compounds 10 and 12 was obtained bound to caspase-3 active site using Molecular Operating Environment module. This study demonstrated that benzimidazole derivatives 10 and 12 provoke cytotoxicity and induced apoptosis in liver cancer cells HepG2.

  12. Cytoprotective and antigenotoxic potential of Mangiferin, a glucosylxanthone against cadmium chloride induced toxicity in HepG2 cells.

    Science.gov (United States)

    Satish Rao, B S; Sreedevi, M V; Nageshwar Rao, B

    2009-03-01

    Mangiferin (MGN), a glucosylxanthone present in large amounts in the leaves and edible mango fruits of Mangifera indica. Here, we report about MGN's potential for mitigating cadmium chloride (CdCl(2)) induced cytotoxic and genotoxic effects in HepG2 cells growing in vitro. The cytoprotective potential was assessed by MTT, clonogenic and apoptotic assays, while antigenotoxic effect by micronucleus and comet assay. The established cytotoxic and genotoxic effects were well indicated after CdCl(2) treatment and was mitigated by pretreatment with MGN. MGN prior to CdCl(2) treatment increased the cell survival (MTT), surviving fraction (clonogenic assay) and inhibited sub-G(1) population (flow cytometric analysis). Further, inhibition of CdCl(2) induced apoptotic cell death by MGN was confirmed by microscopic and DNA fragmentation assays. A significant (pinhibited significantly (p<0.001) by MGN. Taken together, our study revealed that MGN has potent cytoprotective and antigenotoxic effect against CdCl(2) induced toxicity in HepG2 cell line and which may be attributed to decrease in CdCl(2) induced reactive oxygen species levels and resultant oxidative stress.

  13. Emodin inhibits the growth of hepatoma cells: finding the common anti-cancer pathway using Huh7, Hep3B, and HepG2 cells.

    Science.gov (United States)

    Hsu, Chin-Mu; Hsu, Yu-An; Tsai, Yuhsin; Shieh, Fa-Kuen; Huang, Su-Hua; Wan, Lei; Tsai, Fuu-Jen

    2010-02-19

    Emodin--a major component of Rheum palmatum L.-exerts antiproliferative effects in cancer cells that are regulated by different signaling pathways. Hepatocellular carcinoma has high-incidence rates and is associated with poor prognosis and high mortality rates. This study was designed to evaluate the effects of emodin on human hepatocarcinoma cell viability and investigate its mechanisms of action in Huh7, Hep3B, and HepG2 cells. To define the molecular changes associated with this process, expression profiles were compared in emodin-treated hepatoma cells by cDNA microarray hybridization, quantitative RT-PCRs, and Western blot analysis. G2/M phase arrest was observed in all 3 cell lines. Cell cycle regulatory gene analysis showed increased protein levels of cyclin A, cyclin B, Chk2, Cdk2, and P27 in hepatoma cells after time courses of emodin treatment, and Western blot analysis showed decreased protein levels of Cdc25c and P21. Microarray expression profile data and quantitative PCR revealed that 15 representative genes were associated with emodin treatment response in hepatoma cell lines. The RNA expression levels of CYP1A1, CYP1B1, GDF15, SERPINE1, SOS1, RASD1, and MRAS were upregulated and those of NR1H4, PALMD, and TXNIP were downregulated in all three hepatoma cells. Moreover, at 6h after emodin treatment, the levels of GDF15, CYP1A1, CYP1B1, and CYR61 were upregulated. Here, we show that emodin treatment caused G2/M arrest in liver cancer cells and increased the expression levels of various genes both in mRNA and protein level. It is likely that these genes act as biomarkers for hepatocellular carcinoma therapy.

  14. Effects of Cinnamon Polyphenols Improving HepG2 Cells Insulin Resistance%肉桂多酚改善HepG2细胞胰岛素抵抗作用研究

    Institute of Scientific and Technical Information of China (English)

    卢兆莲; 黄才国

    2013-01-01

    目的:探讨肉桂多酚对HepG2细胞胰岛素抵抗的影响.方法:将HepG2细胞分为空白组、模型组、二甲双胍组(剂量10μg/mL)和肉桂多酚组(剂量分别为5、10和15 μ g/mL),用四甲基偶氮唑盐(MTT)的方法检测肉桂多酚对细胞活性的影响;采用高胰岛素诱导的方法建立胰岛素抵抗的细胞模型,研究肉桂多酚对胰岛素抵抗的HepG2细胞葡萄糖消耗的影响.结果:肉桂多酚浓度大于15μg/mL时,对HepG2细胞的生长活性具有抑制作用;肉桂多酚可促进HepG2细胞和胰岛素抵抗的HepG2细胞对葡萄糖的消耗,且呈明显的剂量依赖性.结论:肉桂多酚能明显促进HepG2细胞和胰岛素抵抗的HepG2细胞对葡萄糖的消耗,提高了细胞对胰岛素的敏感性,对高浓度的胰岛素诱导的胰岛素抵抗具有明显的改善作用.%Objective: To study the influence of the cinnamon polyphenols on HepG2 cells insulin resistance. Methods:HepG2 cells were divided into control group, model group, metformin group (10 μg/mL)and cinnamon polyphenols groups with different doses (5,10,15μg/mL ). The effect of cinnamon polyphenols on viability of HepG2 cells was determined by 3- ( 4,5-dimethylthiazol-2-yl ) -2, 5-diphenylterazolium bromide ( MTT ) assay; insulin resistance cell model was induced by high concentrations of insulin, the hypoglycemic effect of cinnamon polyphenols in HepG2 cells was detected. Results : At the concentrations ( 1~ 15 μg/mL), the cinnamon polyphenols had no depressant effect on the cells activity. Cinnamon polyphenols could significantly promote extracellular glucose consumption in the HepG2 cells and the insulin resistance, moreover, with the increase of concentration, cinnamon polyphenols had more apparent hypoglycemic effect. Conclusion : Cinnamon polyphenols could significantly promote extracellular glucose consumption and the insulin resistance in the normal HepG2 cells, the low concentration can significantly enhance the cell

  15. Using the stable HSPA1A promoter-driven luciferase reporter HepG2 cells to assess the overall toxicity of coke oven emissions

    Institute of Scientific and Technical Information of China (English)

    信丽丽

    2013-01-01

    Objective Using the stable HSPA1A(HSP70-1) promoter-driven luciferase reporter HepG2 cells(HepG2/HSPA1A cells) to assess the overall toxicity of coke oven emissions. Methods The stable HepG2/HSPA1A cells were treated with different concentrations of coke oven

  16. Effect of solanine on N-acetylaransferase activity in HepG2 cell%龙葵碱对HepG2细胞NAT1酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    高世勇; 苏怡君; 季宇彬

    2010-01-01

    探讨龙葵碱对HepG2人肝癌细胞的N-乙酰基转移酶1(NAT1)酶活性的影响. 采用高效液相色谱法(HPLC),以对氨基苯甲酸(PABA)为底物,以PABA被NAT1乙酰化为乙酰对氨基苯甲酸(Ac-PABA)的量反应NAT1酶的活性.观察不同质量浓度、不同时间龙葵碱对完整HepG2细胞NAT1酶活性的影响;龙葵碱对HepG2细胞细胞质中NAT1酶活性的影响.结果表明,在NAT1酶活性测定中,龙葵碱能显著降低HepG2完整细胞NAT1的活性;龙葵碱能够降低HepG2细胞质内NAT1的活性,且作用具有剂量依赖性;随着时间的增加NAT1转化产物的量逐渐增加,但龙葵碱能显著降低同一时段NAT1的活性.提示龙葵碱通过抑制HepG2细胞中NAT1的活性是龙葵碱抑制人肝癌细胞HepG2增殖的作用机制之一.

  17. Effect of Human Hepatocellular Carcinoma HepG2 Cell-derived Exosome on the Differentiation of Mesenchymal Stem Cells and Their Interaction.

    Science.gov (United States)

    Luo, Fei; Sun, Zhao; Han, Qin; Xue, Chunling; Bai, Chunmei

    2017-06-20

    -catenin(P=0.038),fibronectin(P=0.029),and Vimentin(P=0.013)and inhibit the expression of epithelial related genes zonula ocdudens-1(P=0.010).Conclusions Exosome extracted from HepG2 cells can induce human adipose-derived MSC to differentiate into cancer-associated myofibroblasts. CAF-like cells can promote the migration of the liver cancer cell line HepG2.

  18. EFFECT OF INOSITOL HEXAPHOSPHATE ON MULTIPLICATION OF LIVER CANCER CELL HepG2%肌醇六磷酸对肝癌HepG2细胞增殖的影响

    Institute of Scientific and Technical Information of China (English)

    杨伟品; 宋扬; 孟显锋

    2011-01-01

    Objective To study the effect and mechanisms of inositol hexaphosphate (IP6) on proliferation of human liver cancer cell HepG2. Methods HepG2 cells were cultured in vitro and treated with various concentrations of IP6. MTT assay was used to observe the effect of IP6 on proliferation of HepG2 cells, and plate colony-forming assay to detect the colony-forming efficiency. The expressions of P53 and P21 were tested by immunocytochemical technique. Results Compared with the control, IP6 group (1.0, 2.0, 3.0 mmol/L) declined the colony formation of the cells and raised the clone-inhibiting rate. IP6 inhibited the expression of P53, and promoted the expression of P21. Conclusion IP6 plays a role in inhibiting the proliferation and declining the clonality of HepG2 cells. The mechanism of inhibiting the proliferation of HepG2 cells is, probably, by regulating the expressions of P53 and P21, resulting in blockage of the cell cycle.%目的 研究肌醇六磷酸(IP6)对人肝癌HepG2细胞增殖的影响并探讨其作用机制.方法 体外培养HepG2细胞,应用MTT实验观察IP6对HepG2细胞增殖的影响,平板集落形成实验检测IP6作用后HepG2细胞的克隆形成能力,免疫细胞化学法检测IP6作用后HepG2细胞突变型P53、细胞周期抑制蛋白P21的表达.结果 IP6能抑制HepG2细胞的增殖,且呈剂量-时间效应关系;与对照组比,IP6作用组(1.0、2.0、3.0 mmol/L)可降低细胞集落形成能力,使克隆形成抑制率升高;IP6可抑制P53的表达,促进P21的表达.结论 IP6具有抑制HepG2细胞增殖、降低其克隆形成能力的作用,可能通过调节P53、P21的表达,使细胞周期发生阻滞,从而抑制HepG2细胞的增殖.

  19. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hengwen [Department of Radiation, Cancer Center of Guangdong General Hospital (Guangdong Academy of Medical Science), Guangzhou, 510080, Guangdong (China); Yang, Shana; Li, Jianhua [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Gao, Dongsheng [Department of Oncology, Guangdong Medical College Affiliated Pengpai Memorial Hospital, Hai Feng, 516400, Gungdong (China); Zhao, Shenting, E-mail: zhaoshenting@126.com [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China)

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  20. HBsAg inhibits the translocation of JTB into mitochondria in HepG2 cells and potentially plays a role in HCC progression.

    Directory of Open Access Journals (Sweden)

    Yun-Peng Liu

    Full Text Available BACKGROUND AND AIMS: The expression of the jumping translocation breakpoint (JTB gene is upregulated in malignant liver tissues; however, JTB is associated with unbalanced translocations in many other types of cancer that suppress JTB expression. No comprehensive analysis on its function in human hepatocellular carcinoma (HCC has been performed to date. We aimed to define the biological consequences for interaction between JTB and HBsAg in HCC cell lines. METHODS: We employed the stable transfection to establish small HBsAg expressing HepG2 cell line, and stably silenced the JTB expression using short hairpin RNA in HepG2 cell line. The effects of JTB and small HBsAg in vitro were determined by assessing cell apoptosis and motility. RESULTS: Silencing of JTB expression promoted cancer cell motility and reduced cell apoptosis, which was significantly enhanced by HBs expression. Expression of HBsAg inhibited the translocation of JTB to the mitochondria. Furthermore, silencing of the JTB resulted in an increase in the phosphorylation of p65 in HepG2 cells and HepG2-HBs cells, whereas HBsAg expression decreased the phosphorylation of p65. The silencing of JTB in HepG2-HBs cells conferred increased advantages in cell motility and anti-apoptosis. CONCLUSION: HBsAg inhibited the translocation of JTB to the mitochondria and decreased the phosphorylation of p65 through the interaction with JTB, After JTB knockdown, HBsAg exhibited a stronger potential to promote tumor progression. Our data suggested that JTB act as a tumor suppressor gene in regards to HBV infection and its activation might be applied as a therapeutic strategy for in control of HBV related HCC development.

  1. Increased Hyaluronan Levels in HABP1/p32/gC1qR Overexpressing HepG2 Cells Inhibit Autophagic Vacuolation Regulating Tumor Potency

    Science.gov (United States)

    Saha, Paramita; Ghosh, Ilora; Datta, Kasturi

    2014-01-01

    Tumor growth and development is influenced by its microenvironment. A major extracellular matrix molecule involved in cancer progression is hyaluronan (HA). Hyaluronan and expression of a number of hyaladherin family proteins are dramatically increased in many cancer malignancies. One such hyaladherin, hyaluronan-binding protein 1 (HABP1/p32/gC1qR) has been considered to be a biomarker for tumor progression. Interestingly, overexpression of HABP1 in fibroblast has been shown to increase autophagy via generation of excess reactive oxygen species (ROS) and depletion of HA leading to apoptosis. Cancerous cells are often found to exhibit decreased rate of proteolysis/autophagy in comparison to their normal counterparts. To determine if HABP1 levels alter tumorigenicity of cancerous cells, HepR21, the stable transfectant overexpressing HABP1 in HepG2 cell line was derived. HepR21 has been shown to have increased proliferation rate than HepG2, intracellular HA cable formation and enhanced tumor potency without any significant alteration of intracellular ROS. In this paper we have observed that HepR21 cells containing higher endogenous HA levels, have downregulated expression of the autophagic marker, MAP-LC3, consistent with unaltered levels of endogenous ROS. In fact, HepR21 cells seem to have significant resistance to exogenous ROS stimuli and glutathione depletion. HepR21 cells were also found to be more resilient to nutrient starvation in comparison to its parent cell line. Decline in intracellular HA levels and HA cables in HepR21 cells upon treatment with HAS inhibitor (4-MU), induced a surge in ROS levels leading to increased expression of MAP-LC3 and tumor suppressors Beclin 1 and PTEN. This suggests the importance of HABP1 induced HA cable formation in enhancing tumor potency by maintaining the oxidant levels and subsequent autophagic vacuolation. PMID:25061661

  2. Cytotoxicity of mequindox and its metabolites in HepG2 cells in vitro and murine hepatocytes in vivo.

    Science.gov (United States)

    Liu, Yingchun; Jiang, Wei; Chen, Yongjun; Liu, Yanyan; Zeng, Peng; Xue, Feiqun; Wang, Quan

    2016-02-01

    Mequindox, a quinoxaline 1,4-dioxide, is widely used as a feed additive in the Chinese livestock industry because of its effective antibacterial properties. Many recent studies have found that mequindox is rapidly metabolized to numerous metabolites following administration to animals. There have, however, been few reports describing the cytotoxicity of mequindox metabolites. In this study, HepG2 cells were treated with mequindox (0, 2, 10, 50 or 100 μg/ml) or its major metabolites (0, 40, 100, 250 or 500 μg/ml) for 24h. Mice were administrated with mequindox (0, 50, 200 or 500 mg/kg.bw) for five days. DNA damage in the HepG2 cells and mouse hepatocytes was then assessed using an SCGE assay. The cell cycle of the HepG2 cells was also determined by flow cytometry. Mequindox was found to induce cell cycle arrest to the G2/M phase and cause dose-dependent DNA damage in HepG2 cells in vitro and in murine hepatocytes in vivo. Compared with mequindox, the major metabolites had much smaller effects on the cell cycle and caused much less DNA damage in HepG2 cells. And the results indicated that the process of metabolites formed by reduction of the MEQ acetyl group or reduction of the N → O groups could contribute to DNA damage in murine hepatocytes in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Characterization of dengue virus entry into HepG2 cells

    Directory of Open Access Journals (Sweden)

    Suksanpaisan Lukkana

    2009-02-01

    Full Text Available Abstract Background Despite infections by the dengue virus being a significant problem in tropical and sub-tropical countries, the mechanism by which the dengue virus enters into mammalian cells remains poorly described. Methods A combination of biochemical inhibition, dominant negative transfection of Eps15 and siRNA mediated gene silencing was used to explore the entry mechanism of dengue into HepG2 cells. Results Results were consistent with entry via multiple pathways, specifically via clathrin coated pit mediated endocytosis and macropinocytosis, with clathrin mediated endocytosis being the predominant pathway. Conclusion We propose that entry of the dengue virus to mammalian cells can occur by multiple pathways, and this opens the possibility of the virus being directed to multiple cellular compartments. This would have significant implications in understanding the interaction of the dengue virus with the host cell machinery.

  4. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xuan Liu

    2015-05-01

    Full Text Available Hexavalent chromium (Cr(VI is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI detoxification in mammalian cells.

  5. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells.

    Science.gov (United States)

    Liu, Xuan; Wu, Gaofeng; Zhang, Yanli; Wu, Dan; Li, Xiangkai; Liu, Pu

    2015-05-26

    Hexavalent chromium (Cr(VI)) is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI) induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI) than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI)-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI) stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI)-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI) detoxification in mammalian cells.

  6. HCMV Activates the IL-6-JAK-STAT3 Axis in HepG2 Cells and Primary Human Hepatocytes

    Science.gov (United States)

    Kumar, Amit; Tripathy, Manoj K.; Herbein, Georges

    2013-01-01

    Objectives There has been increased interest in the possible role of human cytomegalovirus (HCMV) in carcinogenesis during the last decade. HCMV seroprevalence was enhanced in patients with hepatocellular carcinoma (HCC) but a possible relationship between HCC and HCMV infection remained to be assessed. The aim of this work was to investigate the pro-tumor influence of HCMV on primary human hepatocytes (PHH) and HepG2 cells. Methods Following infection of PHH and HepG2 cells by two different strains of HCMV, we measured the production of IL-6 in culture supernatants by ELISA and the protein levels of STAT3, pSTAT3, JAK, cyclin D1, survivin, p53, p21, and Mdm2 by western Blotting in infected and uninfected cells. Cell proliferation and transformation were investigated using Ki67Ag expression measurement and soft-agar colony formation assay respectively. Results Infection of HepG2 cells and PHH by HCMV resulted in the production of IL-6 and the subsequent activation of the IL-6R-JAK-STAT3 pathway. HCMV increased the expression of cyclin D1 and survivin. Cell proliferation was enhanced in HepG2 and PHH infected with HCMV, despite a paradoxical overexpression of p53 and p21. More importantly, we observed the formation of colonies in soft agar seeded with PHH infected with HCMV and when we challenged the HepG2 cultures to form tumorspheres, we found that the HCMV-infected cultures formed 2.5-fold more tumorspheres than uninfected cultures. Conclusion HCMV activated the IL-6-JAK-STAT3 pathway in PHH and HepG2 cells, favored cellular proliferation, induced PHH transformation and enhanced HepG2 tumorsphere formation. Our observations raise the possibility that HCMV infection might be involved in the genesis of hepatocellular carcinoma. PMID:23555719

  7. [Experimental study on the immune response of fusion tumor vaccine of HepG2 and dendritic cells in vitro].

    Science.gov (United States)

    Pang, Y B; Cui, B Y; He, J; Huang, X P; Liang, W; Li, L Q; Luo, X L

    2017-02-21

    Objective: To estimate the immune response of HepG2/dendritic cell (DC) fusion cells vaccines against HepG2 cells in vitro. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from healthy donors by Ficoll-Hypaque density-gradient centrifugation.Then DC were obtain from PBMCs by culturing in medium containing granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 5 days.DC and HepG2 fusion cells were induced by polythyleneglycol (PEG). The fusion cells were examined under fluorescence microscope by labeling DCs and HepG2 with green and red fluorescein, respectively, and then the fusion rates were analyzed by flow cytometry.The capacity of fusion cells to secrete interleukin (IL)-12 and stimulate the proliferation of T lymphocyte was assessed by ELISA and Flow cytometry, respectively.ELISPOT was used to assess the interferon gamma (IFN-γ) produced by cytotoxicity T lymphocyte (CTL), and the specific killing ability of fusion cells induce-CTL targeting HepG2 was estimated. Results: The fusion rate of HepG2/DC was 54.5%, and the fusion cells expressed a higher levels of DC mature marker CD80 and costimulatory molecules CD83, CD86 and MHC-Ⅰ, MHC-Ⅱ molecules HLA-ABC and HLA-DR than those in immature DCs (Pfusion cells could efficiently stimulate T lymphocytes to generate specific CTL targeting HepG2 cells.It might be a promising strategy of immunotherapy for HCC.

  8. 龙葵碱诱导HepG2细胞凋亡的线粒体通路研究%Study on Mitochondrion Pathway of the Apoptosis of HepG2 Induced by Solanine

    Institute of Scientific and Technical Information of China (English)

    季宇彬; 高世勇

    2008-01-01

    目的 观察龙葵碱诱导HepG2细胞凋亡与线粒体通路的关系.方法 MTT法测定龙葵碱对HepG2细胞的细胞毒作用;AO/EB双染,激光共聚焦扫描显微镜观察龙葵碱对HepG2细胞形态学的影响;TMRE和Fluo-3/AM双染,激光共聚焦扫描显微镜同时观察细胞线粒体膜电位和细胞内[Ca2+];的变化.结果 龙葵碱对HepG2细胞有细胞毒作用;龙葵碱诱导HepG2细胞形态出现凋亡形态时TMRE和Fluo-3/AM双染观察表明,龙葵碱在降低线粒体膜电位的同时能够升高细胞内[Ca2+];浓度.结论 龙葵碱降低膜电位,开放细胞膜PT通道,使细胞内Ca2+顺浓度梯度转运,从而升高细胞内Ca2+浓度启动细胞凋亡机制.

  9. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model.

    Science.gov (United States)

    Komulainen, Tuomas; Lodge, Tiffany; Hinttala, Reetta; Bolszak, Maija; Pietilä, Mika; Koivunen, Peppi; Hakkola, Jukka; Poulton, Joanna; Morten, Karl J; Uusimaa, Johanna

    2015-05-04

    Sodium valproate (VPA) is a potentially hepatotoxic antiepileptic drug. Risk of VPA-induced hepatotoxicity is increased in patients with mitochondrial diseases and especially in patients with POLG1 gene mutations. We used a HepG2 cell in vitro model to investigate the effect of VPA on mitochondrial activity. Cells were incubated in glucose medium and mitochondrial respiration-inducing medium supplemented with galactose and pyruvate. VPA treatments were carried out at concentrations of 0-2.0mM for 24-72 h. In both media, VPA caused decrease in oxygen consumption rates and mitochondrial membrane potential. VPA exposure led to depleted ATP levels in HepG2 cells incubated in galactose medium suggesting dysfunction in mitochondrial ATP production. In addition, VPA exposure for 72 h increased levels of mitochondrial reactive oxygen species (ROS), but adversely decreased protein levels of mitochondrial superoxide dismutase SOD2, suggesting oxidative stress caused by impaired elimination of mitochondrial ROS and a novel pathomechanism related to VPA toxicity. Increased cell death and decrease in cell number was detected under both metabolic conditions. However, immunoblotting did not show any changes in the protein levels of the catalytic subunit A of mitochondrial DNA polymerase γ, the mitochondrial respiratory chain complexes I, II and IV, ATP synthase, E3 subunit dihydrolipoyl dehydrogenase of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glutathione peroxidase. Our results show that VPA inhibits mitochondrial respiration and leads to mitochondrial dysfunction, oxidative stress and increased cell death, thus suggesting an essential role of mitochondria in VPA-induced hepatotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Pregnane X receptor protects HepG2 cells from BaP-induced DNA damage.

    Science.gov (United States)

    Naspinski, Christine; Gu, Xinsheng; Zhou, Guo-Dong; Mertens-Talcott, Susanne U; Donnelly, Kirby C; Tian, Yanan

    2008-07-01

    Pregnane X receptor (PXR) is a nuclear receptor that coordinately regulates transcriptional expression of both phase I and phase II metabolizing enzymes. PXR plays an important role in the pharmacokinetics of a broad spectrum of endogenous and xenobiotic compounds and appears to have evolved in part to protect organisms from toxic xenobiotics. Metabolism of benzo[a]pyrene (BaP), a well-established carcinogen and ubiquitous environmental contaminant, can result in either detoxification or bioactivation to its genotoxic forms. Therefore, PXR could modulate the genotoxicity of BaP by changing the balance of the metabolic pathways in favor of BaP detoxification. To examine the role of PXR in BaP genotoxicity, BaP-DNA adduct formation was measured by 32P-postlabeling in BaP-treated parental HepG2 cells and human PXR-transfected HepG2 cells. The presence of transfected PXR significantly reduced the level of adducts relative to parental cells by 50-65% (p BaP. To analyze potential PXR-regulated detoxification pathways in liver cells, a panel of genes involved in phase I and phase II metabolism and excretion was surveyed with real-time quantitative reverse transcription PCR. The messenger RNA levels of CYP1A2, GSTA1, GSTA2, GSTM1, UGT1A6, and BCRP (ABCG2) were significantly higher in cells overexpressing PXR, independent of exposure to BaP. In addition, the total GST enzymatic activity, which favors the metabolic detoxification of BaP, was significantly increased by the presence of PXR (p BaP exposure. Taken together, these results suggest that PXR plays an important role in protection against DNA damage by polycyclic aromatic hydrocarbons (PAHs) such as BaP, and that these protective effects may be through a coordinated regulation of genes involved in xenobiotic metabolism.

  11. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells.

    Science.gov (United States)

    Luo, Yi; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.

  12. α-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells

    Directory of Open Access Journals (Sweden)

    Bottema Cynthia DK

    2003-05-01

    Full Text Available Abstract The aim of this study was to determine the effects of vitamin E (α-tocopherol on the low density lipoprotein (LDL receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of α, δ, or γ-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of α-tocopherol was biphasic. Up to a concentration of 50 μM, α-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 μM α-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 μM α-tocopherol. However, at α-tocopherol concentrations higher than 50 μM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for α-tocopherol in that δ and γ-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, α-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.

  13. Chronic ecotoxic effects to Pseudomonas putida and Vibrio fischeri, and cytostatic and genotoxic effects to the hepatoma cell line (HepG2) of ofloxacin photo(cata)lytically treated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M.I. [University of Cyprus, Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Street, 1678 Nicosia (Cyprus); Nireas International Water Research Center, University of Cyprus (Cyprus); Garcia-Käufer, M. [University Medical Centre Freiburg, Department of Environmental Health Sciences, 115 B, Breisacher Straße, 79106 Freiburg (Germany); Hapeshi, E. [University of Cyprus, Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Street, 1678 Nicosia (Cyprus); Nireas International Water Research Center, University of Cyprus (Cyprus); Menz, J. [Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1/C13, 21335 Lüneburg (Germany); Kostarelos, K.; Fatta-Kassinos, D. [University of Cyprus, Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Street, 1678 Nicosia (Cyprus); Nireas International Water Research Center, University of Cyprus (Cyprus); Kümmerer, K., E-mail: Klaus.Kuemmerer@uni.leuphana.de [Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1/C13, 21335 Lüneburg (Germany)

    2013-04-15

    Ofloxacin (OFL), a broad-spectrum and widespread-used photolabile fluoroquinolone, is frequently found in treated wastewaters, aquatic and terrestrial ecosystems leading to increasing concern during the past decades regarding its effects to the environment and human health. The elimination of OFL and other xenobiotics by the application of advanced oxidation processes using photolytic (PL) and photocatalytic (PC) treatments seems promising. However, an integrated assessment scheme is needed, in which, not only the removal of the parent compound, but also the effects of the photo-transformation products (PTPs) are investigated. For this purpose, in the present study, a chronic ecotoxic assessment using representative bacteria of marine and terrestrial ecosystems and a cytostatic and genotoxic evaluation using hepatoma cell line were performed. PL and PC treatments of OFL were applied using UV radiation. The photo-transformation of OFL during the treatments was monitored by DOC measurements and UPLC–MS/MS analysis. The chronic ecotoxicity of OFL and treated samples was evaluated using Pseudomonas putida and Vibrio fischeri; whereas the cytostasis and genotoxicity were estimated by the cytokinesis-block micronucleus assay (CBMN). The main results suggest that photo-transformation of OFL took place during these treatments since the concentration of OFL decreased when the irradiation time increased, as quantified by UPLC–MS/MS analysis, and this was not coupled with an analogous DOC removal. Furthermore, nine compounds were identified as probable PTPs formed through piperazinyl dealkylation and decarboxylation. The ecotoxicity of treated solutions to the bacteria studied decreased while the cytostasis to the hepatoma cell line remained at low levels during both treatments. However, the genotoxicity to the hepatoma cell line demonstrated a different pattern in which treated samples induced a greater number of MNi for the 4–16 min of irradiation (p < 0.05) during

  14. 重组人凝血因子Ⅷ表达质粒的构建及其在HepG2细胞中的表达%Construction and expression of the recombinant plasmid containing BDDhFⅧ in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    赵倩; 解金辉; 李双玉; 董磊; 种靖慧; 闫莉娜; 刘运德; 袁玉华

    2012-01-01

    Objective: To get stable cell line expressing B domain-deleted human FVU1 (BDDhFVIII) by constructing the eulunyotic expression plasmid. Methods: Eukaryotic expression plasmid containing BDDhFVIII was constructed and transfected into HepG2 cells via elec-troporation. The expression and purification of the target protein was detected by Western blot. Results: Results of enzyme digestion and sequence analysis demonstrated that the gene of BDDhFVIII was correctly inserted into the eukaryotic expression vector pcDNA4/v5-his. Western blot confirmed the successful expression of BDDhFVUl at the protein levels in HepG2 cells. Conclusion: Tne constructed eukaryotic expression vector was able to generate high level expression of human FVQI in HepG2 cells, thus could construct human blood coagulation FVHI stable cell line successfully.%目的:构建含有B区缺失型(△760aa-1639aa)人凝血因子ⅧⅢ(B domain-deleted human FⅧ,BDDhFⅧ)的真核表达质粒,转染HepG2细胞使其稳定表达人凝血因子Ⅷ.方法:将BDDhFⅧ基因片段插入pcDNA4/v5-his空载体中构建重组真核表达质粒,测序正确后电转入HepG2细胞,经Ni-NTA纯化,利用Western blot检测凝血因子Ⅷ在HepG2细胞中的表达,持续培养获得稳定表达BDDhFⅧ蛋白的细胞株.结果:经限制性酶切和测序鉴定均证实重组真核表达质粒pcDNA4/v5-his-BDDhFⅧ成功构建,在转染HepG2细胞后,Western blot检测证实人凝血因子Ⅷ可以在HepG2细胞中正确表达.结论:成功构建了人凝血因子Ⅷ的稳定细胞株,并能在HepG2细胞表达目的蛋白.

  15. Endoplasmic reticulum stress mediates sulforaphane-induced apoptosis of HepG2 human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zou, Xiang; Qu, Zhongyuan; Fang, Yueni; Shi, Xin; Ji, Yubin

    2017-01-01

    Sulforaphane (SFN) is a naturally occurring chemopreventive agent, which effectively inhibits proliferation of HepG2 human hepatocellular carcinoma cells via mitochondria‑mediated apoptosis. Endoplasmic reticulum stress is considered the most important cause of cell apoptosis; therefore, the present study aimed to determine whether the endoplasmic reticulum pathway was involved in SFN-induced apoptosis of HepG2 cells. An MTT assay was used to detect the inhibitory effects of SFN on HepG2 cells. Fluorescence microscopy was used to observe the morphological changes in apoptotic cells, and western blot analysis was conducted to detect the expression of binding immunoglobulin protein (Bip)/glucose-regulated protein 78 (GRP78), X‑box binding protein‑1 (XBP‑1) and BH3 interacting domain death agonist (Bid). Furthermore, flow cytometry was used to determine the apoptotic rate of HepG2 cells, and the protein expression of C/EBP homologous protein (CHOP)/growth arrest‑ and DNA damage‑inducible gene 153 (GADD153) and caspase-12 in HepG2 cells. The results indicated that SFN significantly inhibited the proliferation of HepG2 cells; the half maximal inhibitory concentration values were 32.03±0.96, 20.90±1.96 and 13.87±0.44 µmol/l, following treatment with SFN for 24, 48 and 72 h, respectively. Following 48 h of SFN treatment (10, 20 and 40 µmol/l), the apoptotic rates of HepG2 cells were 31.8, 61.3 and 77.1%, respectively. Furthermore, after 48 h of exposure to SFN, the cells presented typical morphological alterations of apoptosis, as detected under fluorescence microscopy. Treatment with SFN for 48 h also significantly upregulated the protein expression levels of Bip/GRP78, XBP‑1, caspase‑12, CHOP/GADD153 and Bid in HepG2 cells. In conclusion, endoplasmic reticulum stress may be considered the most important mechanism underlying SFN-induced apoptosis in HepG2 cells.

  16. Studies on Cytotoxic Activity against HepG-2 Cells of Naphthoquinones from Green Walnut Husks of Juglans mandshurica Maxim

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhou

    2015-08-01

    Full Text Available Twenty-seven naphthoquinones and their derivatives, including four new naphthalenyl glucosides and twenty-three known compounds, were isolated from green walnut husks, which came from Juglans mandshurica Maxim. The structures of four new naphthalenyl glucosides were elucidated based on extensive spectroscopic analyses. All of these compounds were evaluated for their cytotoxic activities against the growth of human cancer cells lines HepG-2 by MTT [3-(4,5-dimethylthiazo l-2-yl-2,5 diphenyl tetrazolium bromide] assay. The results were shown that most naphthoquinones in an aglycone form exhibited better cytotoxicity in vitro than naphthalenyl glucosides with IC50 values in the range of 7.33–88.23 μM. Meanwhile, preliminary structure-activity relationships for these compounds were discussed.

  17. Studies on Cytotoxic Activity against HepG-2 Cells of Naphthoquinones from Green Walnut Husks of Juglans mandshurica Maxim.

    Science.gov (United States)

    Zhou, Yuanyuan; Yang, Bingyou; Jiang, Yanqiu; Liu, Zhaoxi; Liu, Yuxin; Wang, Xiaoli; Kuang, Haixue

    2015-01-01

    Twenty-seven naphthoquinones and their derivatives, including four new naphthalenyl glucosides and twenty-three known compounds, were isolated from green walnut husks, which came from Juglans mandshurica Maxim. The structures of four new naphthalenyl glucosides were elucidated based on extensive spectroscopic analyses. All of these compounds were evaluated for their cytotoxic activities against the growth of human cancer cells lines HepG-2 by MTT [3-(4,5-dimethylthiazo l-2-yl)-2,5 diphenyl tetrazolium bromide] assay. The results were shown that most naphthoquinones in an aglycone form exhibited better cytotoxicity in vitro than naphthalenyl glucosides with IC50 values in the range of 7.33-88.23 μM. Meanwhile, preliminary structure-activity relationships for these compounds were discussed.

  18. 分泌型PTD4-Apoptin融合蛋白诱导HepG2细胞凋亡%Effect of Secretive PTD4-Apoptin Fusion Protein on Apoptosis of HepG2 Cells

    Institute of Scientific and Technical Information of China (English)

    陈庆; 杨辰苏; 陈虎; 陈道达; 龙跃平; 郑海

    2012-01-01

    Objective To investigate the effect of PTD4-Apoptin secreted by human umbilical venous endothelial cellsCHU-VECs)on apoptosis of HepG2 cells and the possible application for hepatocellular carcinoma gene therapy. Methods Recombi-nant plasmid of pSecTag2-PTD4-Apoptin was constructed and identified by restriction enzyme digestion analysis and DNA sequencing. HUVKCs were transiently transfected with pSecTag2-PTD4-Apoptin by lipofectamine and the culture supernatant was collected at 48 h after transfection. The expression and secretion of the PTD4-Apoptin fusion protein were detected by Western blot. HepG2 and L02 cells were co-cultured with the supernatant respectively. At 24 h after culture, the distribution of PTD4-Apoptin fusion protein in cells was detected by Western blot and apoptosis rate was measured by flow cytometry. Results The PTD4-Apoptin fusion protein secreted by pSecTag2-PTD4-Apoptin-transfected HUVECs could reenter adjacent untrans-fected HepG2 and L02 cells. The PTD4-Apoptin fusion protein could assemble in HepG2 nucleus and induce apoptosis of HepG2 cells(47. 4% ,P<0. 001). This effect was not detected in L02 cells. Conclusion The PTD4-Apoptin fusion protein secreted by pSecTag2-PTD4-Apoptin-transfected HUVECs can induce the apoptosis of adjacent untransfected HepG2 cells but not in L02 cells.%目的 研究分泌型的含蛋白质转导结构域的凋亡素(PTD4-Apoptin)融合基因经人脐静脉血管内皮细胞(HUVEC)表达和分泌后,对人肝癌HepG2细胞凋亡的影响,探讨其用于肝癌治疗的可能性.方法 构建PTD4-Apoptin融合基因的pSecTag2分泌型真核表达载体,并采用脂质体介导将其转染入HUVEC细胞,Western blot检测PTD4-Apoptin融合蛋白的表达及分泌,转染48 h后收集培养上清作为条件培养液,用于HepG2、L02细胞培养,共培养24 h后,采用Western blot检测细胞内和核内Apoptin的含量,流式细胞术检测细胞凋亡.结果 瞬时转染pSecTag2-PTD4-Apoptin

  19. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs, including acetaminophen (APAP, have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP causes liver injury in humans and animals. Hepatic glutathione (GSH depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST and multidrug resistance (MDR1 proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM, a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  20. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Science.gov (United States)

    Raza, Haider; John, Annie

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs), including acetaminophen (APAP), have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP) causes liver injury in humans and animals. Hepatic glutathione (GSH) depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST) and multidrug resistance (MDR1) proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM), a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h) exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  1. Enhancement of amygdalin activated with β-D-glucosidase on HepG2 cells proliferation and apoptosis.

    Science.gov (United States)

    Zhou, Cunshan; Qian, Lichun; Ma, Haile; Yu, Xiaojie; Zhang, Youzuo; Qu, Wenjuan; Zhang, Xiaoxu; Xia, Wei

    2012-09-01

    The growth inhibition and induction of apoptosis brought by amygdalin and activated with β-D-glucosidase were tested for cytoactivity in HepG2 cells. The MTT viability assay showed that all samples had effects on HepG2 proliferation in dose and time response manners. IC50 of stand-alone amygdalin and activation with β-D-glucosidase on the proliferation of HepG2 cells for 48 h were 458.10 mg/mL and 3.2 mg/mL, respectively. Moreover, apoptotic cells were determined by AO/EB (acridine orange/ethidium bromide) fluorescent staining method and Annexin V-FITC/PI staining flow cytometry cell cycle analysis. With increasing of amygdalin concentration and the incubation time, the apoptotic rate was heightened. Compared with the control, there was significant difference (pamygdalin had no strong anti-HepG2 activity; however the ingredients of amygdalin activated with β-D-glucosidase had a higher and efficient anti-HepG2 activity. It was therefore suggested that this combination strategy may be applicable for treating tumors with a higher activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Differential effect of manool--a diterpene from Salvia officinalis, on genotoxicity induced by methyl methanesulfonate in V79 and HepG2 cells.

    Science.gov (United States)

    Nicolella, Heloiza Diniz; de Oliveira, Pollyanna Francielli; Munari, Carla Carolina; Costa, Gizela Faleiros Dias; Moreira, Monique Rodrigues; Veneziani, Rodrigo Cassio Sola; Tavares, Denise Crispim

    2014-10-01

    Salvia officinalis (sage) is a perennial woody subshrub native to the Mediterranean region that is commonly used as a condiment and as an anti-inflammatory, antioxidant and antimicrobial agent due to its biological activities. Manool is the most abundant micro-metabolite found in Salvia officinalis essential oils and extracts. We therefore decided to evaluate the cytotoxic, genotoxic and antigenotoxic potential of manool in Chinese hamster lung fibroblasts (V79) and human hepatoma cells (HepG2). Cytotoxicity was assessed by the colony-forming assay in V79 cells and toxic effects were observed at concentrations of up to 8.0 μg/mL. The micronucleus test was used to evaluate the genotoxicity and antigenotoxicity of manool in V79 and HepG2 cells at concentrations of 0.5-6.0 μg/mL and 0.5-8.0 μg/mL, respectively. For evaluation of antigenotoxicity, the concentrations of manool were combined with methyl methanesulfonate (MMS, 44 μg/mL). The results showed a significant increase in the frequency of micronuclei in cultures of both cell lines treated with the highest concentration tested, demonstrating a genotoxic effect. On the other hand, manool exhibited a protective effect against chromosome damage induced by MMS in HepG2 cells, but not in V79 cells. These data suggest that some manool metabolite may be responsible for the antigenotoxic effect observed in HepG2 cells.

  3. Induction of apoptosis in HepG2 cells by polysaccharide MEP-II from the fermentation broth of Morchella esculenta.

    Science.gov (United States)

    Hu, Meili; Chen, Yan; Wang, Cui; Cui, Huali; Duan, Peilu; Zhai, Tianlong; Yang, Yuling; Li, Shaofei

    2013-01-01

    A novel polysaccharide, MEP-II, isolated from the fermentation broth of Morchella esculenta inhibited the proliferation of human hepatoma cell line (HepG2) through an apoptotic pathway. After HepG2 cells were treated with 150-600 μg MEP-II/ml, typical apoptotic characteristics including externalization of phosphatidylserine residues on the cell surface, nuclear fragmentation, chromatin condensation and cytoplasm shrinkage were observed. Furthermore, reactive oxygen species (ROS) burst and the collapse of mitochondrial membrane potential (Δψm) also occurred in HepG2 cells after incubation of 150-600 μg MEP-II/ml. The antioxidant, 1 mM N-acetyl-L-cysteine inhibited MEP-II-induced apoptosis, suggesting that ROS are the key mediators for MEP-II-induced apoptosis. MEP-II is therefore a potential anti-tumor agent that induces apoptosis of HepG2 cells through ROS generation.

  4. Cellular interactions and biological responses to titanium dioxide nanoparticles in HepG2 and BEAS-2B cells: role of cell culture media.

    Science.gov (United States)

    Prasad, Raju Y; Simmons, Steven O; Killius, Micaela G; Zucker, Robert M; Kligerman, Andrew D; Blackman, Carl F; Fry, Rebecca C; Demarini, David M

    2014-05-01

    We showed previously that exposure of human lung cells (BEAS-2B) to TiO2 nanoparticles (nano-TiO2 ) produced micronuclei (MN) only when the final concentration of protein in the cell-culture medium was at least 1%. Nanoparticles localize in the liver; thus, we exposed human liver cells (HepG2) to nano-TiO2 and found the same requirement for MN induction. Nano-TiO2 also formed small agglomerates in medium containing as little as 1% protein and caused cellular interaction as measured by side scatter by flow cytometry and DNA damage (comet assay) in HepG2 cells. Nano-TiO2 also increased the activity of the inflammatory factor NFkB but not of AP1 in a reporter-gene HepG2 cell line. Suspension of nano-TiO2 in medium containing 0.1% protein was sufficient for induction of MN by the nanoparticles in either BEAS-2B or HepG2 cells as long the final concentration of protein in the cell-culture medium was at least 1%.

  5. Functional genomics analysis of low concentration of ethanol in human hepatocellular carcinoma (HepG2 cells. Role of genes involved in transcriptional and translational processes

    Directory of Open Access Journals (Sweden)

    Francisco Castaneda, Sigrid Rosin-Steiner, Klaus Jung

    2007-01-01

    Full Text Available We previously found that ethanol at millimolar level (1 mM activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3 genes and one down-regulated (ANK3 gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line.

  6. Ethyl acetate extract of Squilla oratoria suppresses growth of HepG2 cells by inducing S phase arrest

    Directory of Open Access Journals (Sweden)

    Xiangwei Qi

    2013-08-01

    Full Text Available Objective: The oceans and seas are a rich source of organisms from which anti-cancer drugs can be isolated and developed. Marine organisms have been screened in our laboratory, and organic solvent extracts of Squilla oratoria (ESO have been shown to possess cytostatic effects on cancer cell lines of diverse origins. To explore the underlying mechanisms, the growth inhibition by ESO was investigated in the present study. Methods: Human hepatocellular carcinoma (HCC derived cells (HepG2 were used. The cells were challenged with ESO, cell cycle profile was assayed, and level of proliferating cell nuclear antigen (PCNA expression and that of cyclin D1 and cyclin A were evaluated with flow cytomtery. The in vivo antitumor effect of ESO was tested in nude mouse xenografts. PCNA expression was evaluated immunohistochemically in nude mouse xenograft tissues. Results: With the increase in dose of injected ESO, expression of PCNA by human HCC xenografts increased. ESO inhibited the growth of human HCC HepG2 cells both in vitro and in vivo. The effect was correlated with arrest of the cell cycle in S phase. Expression of PCNA, which is a cell-cycle regulator that promotes S phase entry, was elevated in both cell lines and xenografts whereas that of cyclins that promote M phase entry was down-regulated by exposure to ESO. Conclusion: Growth inhibition was explained by arrest of the cell cycle in S phase and down-regulation of molecules that promote cells to enter S phase. [J Exp Integr Med 2013; 3(4.000: 313-322

  7. The color and size of chili peppers (Capsicum annuum) influence Hep-G2 cell growth.

    Science.gov (United States)

    Popovich, David G; Sia, Sharon Y; Zhang, Wei; Lim, Mon L

    2014-11-01

    Four types of chili (Capsicum annuum) extracts, categorized according to color; green and red, and size; small and large were studied in Hep-G2 cells. Red small (RS) chili had an LC50 value of 0.378 ± 0.029 compared to green big (GB) 1.034 ± 0.061 and green small (GS) 1.070 ± 0.21 mg/mL. Red big (RB) was not cytotoxic. Capsaicin content was highest in RS and produced a greater percentage sub-G1 cells (6.47 ± 1.8%) after 24 h compared to GS (2.96 ± 1.3%) and control (1.29 ± 0.8%) cells. G2/M phase was reduced by GS compared to RS and control cells. RS at the LC50 concentration contained 1.6 times the amount of pure capsaicin LC50 to achieve the same effect of capsaicin alone. GS and GB capsaicin content at the LC50 value was lower (0.2 and 0.66, respectively) compared to the amount of capsaicin to achieve a similar reduction in cell growth.

  8. Cytotoxic effects of the synthetic oestrogens and androgens on Balb/c 3T3 and HepG2 cells

    Directory of Open Access Journals (Sweden)

    Minta Maria

    2014-12-01

    Full Text Available The aim of the study was to test and compare the cytotoxic potential of two synthetic oestrogens: diethylstilboestrol (DES and ethinyloestradiol (EE2 and two androgens: testosterone propionate (TP and trenbolone (TREN on two cell lines. The fibroblast cell line Balb/c 3T3 and the hepatoma cell line HepG2 were selected. To get more insight into the mode of toxic action, four methods were used, which evaluated different biochemical endpoints: mitochondrial activity (3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide reduction assay, lysosomal activity (neutral red uptake assay, total protein content, and lactate dehydrogenase release. Cytotoxicity was assessed after 24, 48, and 72 h exposure to eight concentrations ranging from 0.78 to 100 μg/mL. Concentration- and time- dependent effects were observed. Depending on the line and assay used, half maximal effective concentration after 72 h (EC50-72h values ranged as follows: DES 1-13.7 μg/mL (Balb/c 3T3 and 3.7-5.2 μg/mL (HepG2; EE2 2.1-14.3 μg/mL (Balb/c 3T3 and 1.8-7.8 μg/mL (HepG2; TP-14.9-17.5 μg/mL (Balb/c 3T3, and 63.9- 100 μg/mL (HepG2; and TREN 11.3-31.4 μg/mL (Balb/c 3T3 and 12.5-59.4 μg/mL (HepG2. The results revealed that oestrogens were more toxic than androgens and the most affected endpoint was mitochondrial activity. In contrast to oestrogens, for which EC50-72h values were similar in both lines and by all assays used, Balb/c 3T3 cells were more sensitive than HepG2 cells to TP.

  9. Inflammation response at the transcriptional level of HepG2 cells induced by multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Piret, Jean-Pascal; Vankoningsloo, Sebastien; Noel, Florence; Saout, Christelle; Toussaint, Olivier [Research Unit in Cellular Biology (URBC), Narilis, University of Namur, 5000 Namur (Belgium); Mendoza, Jorge Mejia; Lucas, Stephane, E-mail: olivier.toussaint@fundp.ac.be [Research Center for the Physics of Matter and Radiation (PMR), Narilis, University of Namur, 5000 Namur (Belgium)

    2011-07-06

    Poor information are currently available about the biological effects of multi-walled carbon nanotubes (MWCNT) on the liver. In this study, we evaluated the effects of MWCNT at the transcriptional level on the classical in vitro model of HepG2 hepatocarcinoma cells. The expression levels of 96 transcript species implicated in the inflammatory and immune responses was studied after a 24h incubation of HepG2 cells in presence of raw MWCNT dispersed in water by stirring. Among the 46 transcript species detected, only a few transcripts including mRNA coding for interleukine-7, chemokines receptor of the C-C families CCR7, as well as Endothelin-1, were statistically more abundant after treatment with MWCNT. Altogether, these data indicate that MWCNT can only induce a weak inflammatory response in HepG2 cells.

  10. Inflammation response at the transcriptional level of HepG2 cells induced by multi-walled carbon nanotubes

    Science.gov (United States)

    Piret, Jean-Pascal; Vankoningsloo, Sébastien; Noël, Florence; Mejia Mendoza, Jorge; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2011-07-01

    Poor information are currently available about the biological effects of multi-walled carbon nanotubes (MWCNT) on the liver. In this study, we evaluated the effects of MWCNT at the transcriptional level on the classical in vitro model of HepG2 hepatocarcinoma cells. The expression levels of 96 transcript species implicated in the inflammatory and immune responses was studied after a 24h incubation of HepG2 cells in presence of raw MWCNT dispersed in water by stirring. Among the 46 transcript species detected, only a few transcripts including mRNA coding for interleukine-7, chemokines receptor of the C-C families CCR7, as well as Endothelin-1, were statistically more abundant after treatment with MWCNT. Altogether, these data indicate that MWCNT can only induce a weak inflammatory response in HepG2 cells.

  11. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin [Key Laboratory of Tea Biochemistry and Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036 (China); College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Li, Feng [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Fang, Yong; Yang, Wenjian [College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China); An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Hu, Qiuhui, E-mail: qiuhuihu@njau.edu.cn [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China)

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  12. Solanine-induced reactive oxygen species inhibit the growth of human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Meng, Xue-Qin; Zhang, Wei; Zhang, Feng; Yin, Sheng-Yong; Xie, Hai-Yang; Zhou, Lin; Zheng, Shu-Sen

    2016-03-01

    The aim of the present study was to investigate the effect of solanine on promoting human hepatocellular carcinoma HepG2 cells to produce reactive oxygen species (ROS), and the molecular mechanisms leading to tumor cell apoptosis. Solanine was administered to HepG2 cells in vitro. A selection of probes targeting various cellular localizations of ROS were used to detect ROS expression using flow cytometry. The expression levels of apoptosis-associated proteins, including apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin binding protein 2 (TBP-2), and proliferation-associated proteins, including histone deacetylase 1 (HDAC1), were detected using western blotting. The percentage of cells undergoing apoptosis was measured using an Annexin V-fluorescein isothiocyanate/propidium iodide assay, and cell morphology was examined using Wright's stain followed by inverted microscopy analysis. ROS detection probes 2',7'-dichlorofluorescin diacetate and dihydrorhodamine 123 identified that abundant ROS, including hydroxyl radical (OH(-)) and hydrogen peroxide (H2O2), were produced in the cytoplasm and mitochondria of the solanine-treated HepG2 cells compared with the control cells (Psolanine treatment compared with the control cells (P>0.05). Western blotting results revealed that solanine upregulated the expression levels of ASK1 and TBP-2 and enhanced their kinase activities, whereas solanine decreased the expression level of the proliferation-associated protein, HDAC1. The cell apoptotic rate was significantly increased (Psolanine-treated HepG2 cells compared with the control cells. (Psolanine induces HepG2 cells to produce ROS, mainly OH(-) and H2O2, in a mitochondria-dependent and -independent manner. In addition, solanine stimulates the expression of ASK1 and TBP-2, and their kinase activities, but inhibits the expression of proliferation-associated proteins, such as HDAC1, thus contributing to HepG2 cell apoptosis.

  13. MicroRNA expression in the vildagliptin-treated two- and three-dimensional HepG2 cells.

    Science.gov (United States)

    Yamashita, Yasunari; Asakura, Mitsutoshi; Mitsugi, Ryo; Fujii, Hideaki; Nagai, Kenichiro; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-06-01

    Vildagliptin is an inhibitor of dipeptidyl peptidase-4 that is used for the treatment of type 2 diabetes mellitus. While vildagliptin can induce hepatic dysfunction in humans, the molecular mechanism has not been determined yet. Recent studies indicated that certain types of microRNA (miRNA) were linking to the development of drug-induced hepatotoxicity. In the present study, therefore, we identified hepatic miRNAs that were highly induced or reduced by the vildagliptin treatment in mice. MiR-222 and miR-877, toxicity-associated miRNAs, were induced 31- and 53-fold, respectively, by vildagliptin in the liver. While a number of miRNAs were significantly regulated by the orally treated vildagliptin in vivo, such regulation was not observed in the vildagliptin-treated HepG2 cells. In addition to the regular two-dimensional (2D) culture, we carried out the three-dimensional (3D) culturing of HepG2 cells. In the 3D-HepG2 cells, a significant reduction of miR-222 was observed compared to the expression level in 2D-HepG2 cells. A slight induction of miR-222 by vildagliptin was observed in the 3D-HepG2 cells, although miR-877 was not induced by vildagliptin even in the 3D-HepG2 cells. Further investigations are needed to overcome the discrepancy in the responsiveness of the miRNA expressions to vildagliptin between in vivo and in vitro. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  14. [Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].

    Science.gov (United States)

    Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang

    2017-04-01

    Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell(TM) assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.

  15. Inhibitory effect of FSLLRY-NH2 on inflammatory responses induced by hydrogen peroxide in HepG2 cells.

    Science.gov (United States)

    Lee, Yeon Joo; Kim, Su Jin; Kwon, Kyoung Wan; Lee, Won Mo; Im, Wi Joon; Sohn, Uy Dong

    2017-07-01

    Proteinase activated receptor 2 (PAR2), which is localized in the GI tract, the respiratory system, and the kidney tubules is a G protein-coupled receptor associated with inflammation, metabolism, and disease. The aim of this study was to explore the role of PAR2 in hydrogen peroxide (H2O2)-induced HepG2 cells by using FSLLRY-NH2 a PAR2 antagonist. H2O2 treatment resulted in induction of PAR2 in esophageal, gastric, and liver cells, with the most robust response being in HepG2 cells. Furthermore, this effect was dose-dependent in HepG2 cells. Treatment with H2O2 at concentrations above 400 μM for 24 h also reduced HepG2 cell viability. H2O2 treatment increased both the protein and mRNA levels of IL-1β, IL-8, and TNF-α, as well as those of SAPK/JNK. The increased levels of these pro-inflammatory genes and SAPK/JNK induced by H2O2 were attenuated in a dose-dependent manner when cells were co-treated with H2O2 and FSLLRY-NH2. In summary, the PAR2 antagonist peptide, FSLLRY-NH2, reduces the level of the pro-inflammatory genes IL-8, IL-1β, and TNF-α induced by H2O2, through the SAPK/JNK pathways in HepG2 cells. These data suggest that a PAR2 antagonist could be an anti-inflammatory agent in HepG2 cells.

  16. Alcohol Dehydrogenase 5 Is a Source of Formate for De Novo Purine Biosynthesis in HepG2 Cells.

    Science.gov (United States)

    Bae, Sajin; Chon, James; Field, Martha S; Stover, Patrick J

    2017-04-01

    Background: Formate provides one-carbon units for de novo purine and thymidylate (dTMP) synthesis and is produced via both folate-dependent and folate-independent pathways. Folate-independent pathways are mediated by cytosolic alcohol dehydrogenase 5 (ADH5) and mitochondrial aldehyde dehydrogenase 2 (ALDH2), which generate formate by oxidizing formaldehyde. Formate is a potential biomarker of B-vitamin-dependent one-carbon metabolism.Objective: This study investigated the contributions of ADH5 and ALDH2 to formate production and folate-dependent de novo purine and dTMP synthesis in HepG2 cells.Methods:ADH5 knockout and ALDH2 knockdown HepG2 cells were cultured in folate-deficient [0 nM (6S) 5-formyltetrahydrofolate] or folate-sufficient [25 nM (6S) 5-formyltetrahydrofolate] medium. Purine biosynthesis was quantified as the ratio of [(14)C]-formate to [(3)H]-hypoxanthine incorporated into genomic DNA, which indicates the contribution of the de novo purine synthesis pathway relative to salvage synthesis. dTMP synthesis was quantified as the ratio of [(14)C]-deoxyuridine to [(3)H]-thymidine incorporation into genomic DNA, which indicates the capacity of de novo dTMP synthesis relative to salvage synthesis.Results: The [(14)C]-formate-to-[(3)H]-hypoxanthine ratio was greater in ADH5 knockout than in wild-type HepG2 cells, under conditions of both folate deficiency (+30%; P HepG2 cells, indicating decreased use of exogenous formate, or increased endogenous formate synthesis, for de novo purine biosynthesis.Conclusions: In HepG2 cells, ADH5 is a source of formate for de novo purine biosynthesis, especially during folate deficiency when folate-dependent formate production is limited. Formate is also shown to be limiting in the growth of HepG2 cells. © 2017 American Society for Nutrition.

  17. Relationship of HepG2 cell sensitivity to continuous low dose-rate irradiation with ATM phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Quelin Mei; Jianyong Yang; Duanming Du; Zaizhong Cheng; Pengcheng liu

    2008-01-01

    Objective: To investigate the change of ATM phosphorylation in HepG2 cells and its effect on HepG2 cell survival under a continuous low dose-rate irradiation.Methods: HepG2 cells were exposed to equivalent doses of irradiation delivered at either a continuous low dose-rate (7.76 cGy/h) or a high dose-rate (4500 cGy/h).The ATM phosphorylated proteins and surviving fraction of HepG2 cell after low dose-rate irradiation were compared with that after equivalent doses of high dose-rate irradiation.Results: The phosphorylation of ATM protein was maximal at 0.5 Gy irradiation delivered at either a high dose-rate or a continuous low dose-rate.As the radiation dose increased, the phosphorylation of ATM protein decreased under continuous low dose-rate irradiation.However, the phosphorylation of ATM protein was remained stable under high dose-rate irradiation.When the phosphorylation of ATM protein under continuous low dose-rate irradiation was equal to that under high dose-rate irradiation, there was no significant difference in the surviving fraction of HepG2 cells between two ir-radiation methods (P>0.05).When the phosphorylation of ATM protein significantly decreased after continuous low dose-rate irradiation compared with that after high dose-rate irradiation, increased amounts of cell killing was found in low dose-rate irradiation (P<0.01).Conclusion: Continuous low dose-rate irradiation increases HepG2 cells radiosensitivity compared with high dose-rate irradiation.The increased amounts of cell killing following continuous low dose-rate exposures are associated with reduced ATM phosphorylated protein.

  18. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  19. Dihydrotestosterone regulating apolipoprotein M expression mediates via protein kinase C in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Yi-zhou Ye

    2012-12-01

    Full Text Available Abstract Background Administration of androgens decreases plasma concentrations of high-density lipid cholesterol (HDL-C. However, the mechanisms by which androgens mediate lipid metabolism remain unknown. This present study used HepG2 cell cultures and ovariectomized C57BL/6 J mice to determine whether apolipoprotein M (ApoM, a constituent of HDL, was affected by dihydrotestosterone (DHT. Methods HepG2 cells were cultured in the presence of either DHT, agonist of protein kinase C (PKC, phorbol-12-myristate-13-acetate (PMA, blocker of androgen receptor flutamide together with different concentrations of DHT, or DHT together with staurosporine at different concentrations for 24 hrs. Ovariectomized C57BL/6 J mice were treated with DHT or vehicle for 7d or 14d and the levels of plasma ApoM and livers ApoM mRNA were measured. The mRNA levels of ApoM, ApoAI were determined by real-time RT-PCR. ApoM and ApoAI were determined by western blotting analysis. Results Addition of DHT to cell culture medium selectively down-regulated ApoM mRNA expression and ApoM secretion in a dose-dependent manner. At 10 nM DHT, the ApoM mRNA levels were about 20% lower than in untreated cells and about 40% lower at 1000 nM DHT than in the control cells. The secretion of ApoM into the medium was reduced to a similar extent. The inhibitory effect of DHT on ApoM secretion was not blocked by the classical androgen receptor blocker flutamide but by an antagonist of PKC, Staurosporine. Agonist of PKC, PMA, also reduced ApoM. At 0.5 μM PMA, the ApoM mRNA levels and the secretion of ApoM into the medium were about 30% lower than in the control cells. The mRNA expression levels and secretion of another HDL-associated apolipoprotein AI (ApoAI were not affected by DHT. The levels of plasma ApoM and liver ApoM mRNA of DHT-treated C57BL/6 J mice were lower than those of vehicle-treated mice. Conclusions DHT directly and selectively down-regulated the level of ApoM mRNA and the

  20. Time- and concentration-dependent effects of resveratrol in HL-60 and HepG2 cells

    DEFF Research Database (Denmark)

    Stervbo, Ulrik; Vang, Ole; Bonnesen, Christine

    2006-01-01

    , an increase in nuclear size and granularity was observed in the G1 and S phases of HL-60 treated and HepG2-treated cells. Apoptosis was also stimulated by resveratrol in a concentration-dependent manner in HL-60 and HepG2 cells. In conclusion, resveratrol inhibits cell proliferation in a concentration......- and time-dependent manner by interfering with different stages of the cell cycle. Furthermore, resveratrol treatment causes stimulation of apoptosis as well as an increase in nuclear size and granularity....

  1. Data on HepG2 cells changes following exposure to cadmium sulphide quantum dots (CdS QDs

    Directory of Open Access Journals (Sweden)

    Laura Paesano

    2017-04-01

    Full Text Available The data included in this paper are associated with the research article entitled "Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria" (Paesano et al. [1]. The article concerns the cytotoxic and genotoxic effects of CdS QDs in HepG2 cells and the mechanisms involved. In this dataset, changes in expression levels of candidate genes are reported, together with details concerning synthesis and properties of CdS QDs, additional information obtained through literature survey, measures of the mitochondrial membrane potential and the glutathione redox state.

  2. IRE1α links Nck1 deficiency to attenuated PTP1B expression in HepG2 cells.

    Science.gov (United States)

    Li, Hui; Li, Bing; Larose, Louise

    2017-08-01

    PTP1B, a prototype of the non-receptor subfamily of the protein tyrosine phosphatase superfamily, plays a key role in regulating intracellular signaling from various receptor and non-receptor protein tyrosine kinases. Previously, we reported that silencing Nck1 in human hepatocellular carcinoma HepG2 cells enhances basal and growth factor-induced activation of the PI3K-Akt pathway through attenuating PTP1B expression. However, the underlying mechanism by which Nck1 depletion represses PTP1B expression remains unclear. In this study, we found that silencing Nck1 attenuates PTP1B expression in HepG2 cells through down-regulation of IRE1α. Indeed, we show that silencing Nck1 in HepG2 cells leads to decreased IRE1α expression and signaling. Accordingly, IRE1α depletion using siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation, reproducing the effects of silencing Nck1 on activation of this pathway. In addition, depletion of IRE1α also leads to reduced PTP1B expression, which was rescued by ectopic expression of IRE1α in Nck1-depleted cells. Mechanistically, we found that silencing either Nck1 or IRE1α in HepG2 cells decreases PTP1B mRNA levels and stability. However, despite miR-122 levels, a miRNA targeting PTP1B 3' UTR and inducing PTP1B mRNA degradation in HepG2 cells, are increased in both Nck1- and IRE1α-depleted HepG2 cells, a miR-122 antagomir did not rescue PTP1B expression in these cells. Overall, this study highlights an important role for Nck1 in fine-tuning IRE1α expression and signaling that regulate PTP1B expression and subsequent activation of the PI3K-Akt pathway in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells.

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines.

  4. ERK1/2 contributes negative regulation to STAT3 activity in HSS-transfected HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Signal transducer and activator of transcription 3 (STAT3) is a recently characterized transcription factor which is essential to liver regeneration. We have previously reported that hepatic stimulator substance (HSS), a novel growthpromoting substance, phosphorylated the epidermal growth factor (EGF) receptors and activated downstream RasMAP kinase (extracellular signal-regulated kinases, ERK1/2) cascade. However, whether HSS signal is related to STAT3pathway remains unclear. The present study is aiming to explore the regulatory effect of activation of ERK1/2 evoked by HSS on STAT3 phosphorylation and STAT3 signaling. Human hepatoma cell line HepG2 was stably transfected with HSS cDNA and HSS expression was measured by Northern blot. The results showed that the transfection of HSS into HepG2 resulted in remarkable increase in cellular proliferation as compared with the non-transfected cells, and it was further proved that the cellular proliferation in the HSS-transfected cells was related to ERK1/2 activation. Treatment of the cells with 50 μM of PD98059, an ERK1/2 specific upstream inhibitor, resulted in ERK1/2 inactivation completely.Inhibition of ERK1/2 allowed the tyrosine of STAT3 to be phosphorylated in a dose-dependent manner to PD98059.Furthermore, transient transfection of STAT3 mutant (STAT3S727A) into HSS-bearing cells could remarkably reverse the inhibitory effect of ERK1/2 on STAT3 phosphorylation. Based upon these results, it is concluded that ERK1/2negatively modulates STAT3 phosphorylation and this function is dependent on residual serine-727 (S727) of STAT3.

  5. Chronic Hyperinsulinism Induced Down-regulation of Insulin Post-Recentor Signaling Transduction in Hep G2 Cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Summary: To study the regulatory effect of acute and chronic insulin treatment on insulin post-re-ceptor signaling transduction pathway in a human hepatoma cell line (Hep G2), Hep G2 cells wereincubated in the presence or absence of insulin with different concentrations in serum free mediafor 16 h and then stimulated with 100 nmol/L insulin for 1 min. Protein levels of insulin receptorβ-subunit (IRβ), insulin receptor substrate-1 (IRS-1) and p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) were determined in total cell lysates by Western-immunoblot. Phosphorylat-ed proteins IRβ, IRS-1 and interaction of PI 3-kinase with IRS-1 were determined by immunopre-cipitation. Results showed that 1-min insulin stimulation rapidly induced tyrosine phosphorylationof IRβ and IRS-l, which in turn, resulting in association of PI 3-kinase with IRS-1. 1-100 nmol/L chronic insulin treatment induced a dose-dependent decrease in the protein level of IRβ and aslight decrease in the protein level of IRS-1. There wass more marked reduction in the phospho-rylation of IRβ, IRS-1, reaching a nadir of 22 % (P<0. 01) and 15 % (P<0. 01) of control lev-els, respectively, after 16 h treatment with 100 nmol/L insulin. The association between IRS-1and PI 3-kinase was decreased by 66 % (P<0. 01). There was no significant change in PI 3-ki-nase protein levels. These data suggest that chronic insulin treatment can induce alterations ofIRβ, IRS-1 and PI 3-kinase three early steps in insulin action, which contributes significantly toinsulin resistance, and may account for desensitization of insulin action.

  6. A New HPLC-MS Method for Measuring Maslinic Acid and Oleanolic Acid in HT29 and HepG2 Human Cancer Cells

    Science.gov (United States)

    Peragón, Juan; Rufino-Palomares, Eva E.; Muñoz-Espada, Irene; Reyes-Zurita, Fernando J.; Lupiáñez, José A.

    2015-01-01

    Maslinic acid (MA) and oleanolic acid (OA), the main triterpenic acids present in olive, have important properties for health and disease prevention. MA selectively inhibits cell proliferation of the HT29 human colon-cancer cell line by inducing selective apoptosis. For measuring the MA and OA concentration inside the cell and in the culture medium, a new HPLC-MS procedure has been developed. With this method, a determination of the amount of MA and OA incorporated into HT29 and HepG2 human cancer-cell lines incubated with different concentrations of MA corresponding to 50% growth inhibitory concentration (IC50), IC50/2, IC50/4, and IC50/8 has been made. The results demonstrate that this method is appropriate for determining the MA and OA concentration in different types of cultured cells and reveals the specific dynamics of entry of MA into HT29 and HepG2 cells. PMID:26370984

  7. The mechanisms of apoptosis induced by TanshinoneⅡA in human hepatoma HepG2 cells%丹参酮ⅡA诱导人肝癌HepG2细胞凋亡的机制

    Institute of Scientific and Technical Information of China (English)

    陈阳; 赵秋宇; 宋囡; 贾连群

    2015-01-01

    Objective To examine the effects of tanshinoneⅡA on growth and apoptosis in HepG2 cells.Methods HepG2 cells were treated with various concentrations of tanshinoneⅡA.Assays were performed to determine cell viability;cell cycle arrest, apoptosis and protein expression were measured by MTT, MUSE cytoanalyze, PI staining and Western blotting.Results After HepG2 cells were treated with different concentrations of tanshinoneⅡA ( 5~50 μmol/L) , the growth of HepG2 cells were significantly inhibited compared with those of control group(P<0.01), the HepG2 cells displayed typical morphological changes and induced G2/M-phase arrest of the cell cycle and apoptosis.TanshinoneⅡA increased expressions of p53 and Bax as well as caused down-regulation of Bcl-2 expression.Conclusions TanshinoneⅡA could inhibit the growth of HepG2 cells via inducing G2/M arrest followed by the mitochondrial pathway of apoptosis.%目的:探讨中药活性单体丹参酮ⅡA 对人肝癌 HepG2细胞株增殖抑制和诱导凋亡的可能机制。方法用5、10、20、30、40、50μmol/L丹参酮ⅡA处理HepG2细胞,应用MTT法分析细胞活力,MUSE细胞分析仪、PI染色等检测细胞增殖抑制、细胞周期以及凋亡情况。免疫蛋白印迹技术检测p53、Bax及Bcl-2等凋亡相关蛋白的表达。结果5~50μmol/L丹参酮ⅡA显著降低细胞存活率( P<0.01),形态学观察可见细胞凋亡改变,细胞发生G2/M期周期阻滞。免疫印迹结果显示丹参酮ⅡA上调 p53、Bax蛋白的表达,下调 Bcl-2蛋白的表达。结论丹参酮ⅡA对HepG2细胞的增殖抑制作用可能部分通过诱导细胞G2/M周期阻滞和线粒体途径凋亡实现。

  8. Effects of solanine on [Ca2+]i in HepG2 cell%龙葵碱对HepG2细胞内[Ca2+]i的影响

    Institute of Scientific and Technical Information of China (English)

    高世勇; 邹翔; 王宏亮; 季宇彬

    2007-01-01

    探讨龙葵碱对HepG2细胞形态及细胞内[Ca2+]i的影响,揭示龙葵碱诱导细胞凋亡的机制.以人肝癌细胞HepG2为研究对象,采用AO/EB双染HepG2细胞,激光共聚焦扫描显微镜观察细胞形态学改变,Fluo-3/AM单染HePG2细胞,激光共聚焦扫描显微镜观察细胞内[Ca2+]i的改变.结果发现龙葵碱作用于HepG2 48 h后,细胞形态出现典型的细胞凋亡形态;细胞内[Ca2+]i浓度明显升高.表明龙葵碱升高细胞内Ca2+浓度启动细胞凋亡机制.

  9. TALEN-mediated Knock-out of Betatrophin on HepG2 cells%TALEN介导的Betatrophin敲除HepG2细胞株的建立

    Institute of Scientific and Technical Information of China (English)

    郭兴荣; 陈云; 李东升

    2015-01-01

    目的:构建新基因Betatrophin敲除HepG2细胞株,为研究该基因功能提供模型细胞.方法:构建的Betatrophin TALEN质粒转入HepG2细胞,通过T7E1酶切确定打靶效率高达50%以上,并通过测序筛选出Betatrophin双基因敲除的单克隆细胞,Western blot进一步证实Betatrophin基因表达完全沉默.结果:通过TALEN打靶获得了Betatrophin双基因敲除的HepG2细胞株.结论:Betatrophin双基因敲除HepG2细胞株的建立为后期进一步研究Betatrophin在肝细胞中调控糖代谢和改善胰岛素抵抗作用机制奠定基础.

  10. Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biran [Laboratoire de Physique de la Matière Condensée (LPMC), CNRS UMR 7336, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice (France); Institut de Chimie de Nice, UMR 7272, Université de Nice Sophia Antipolis, CNRS, 28 Avenue de Valrose, F-06100 Nice (France); Bienvenu, Céline [Institut de Chimie de Nice, UMR 7272, Université de Nice Sophia Antipolis, CNRS, 28 Avenue de Valrose, F-06100 Nice (France); Mendez-Garza, Juan; Lançon, Pascal; Madeira, Alexandra [Laboratoire de Physique de la Matière Condensée (LPMC), CNRS UMR 7336, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice (France); Vierling, Pierre [Institut de Chimie de Nice, UMR 7272, Université de Nice Sophia Antipolis, CNRS, 28 Avenue de Valrose, F-06100 Nice (France); Di Giorgio, Christophe, E-mail: christophe.di-giorgio@unice.fr [Institut de Chimie de Nice, UMR 7272, Université de Nice Sophia Antipolis, CNRS, 28 Avenue de Valrose, F-06100 Nice (France); Bossis, Georges, E-mail: bossis@unice.fr [Laboratoire de Physique de la Matière Condensée (LPMC), CNRS UMR 7336, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice (France)

    2013-10-15

    Experiments of magnetolysis, i.e., destruction of cells induced with magnetic particles (MPs) submitted to the application of a magnetic field, were conducted on HepG2 cancer cells. We herein demonstrate the usefulness of combining anisotropic MPs with an alternative magnetic field in magnetolysis. Thus, the application of an alternative magnetic field of low frequency (a few Hertz) in the presence of anisotropic, submicronic particles allowed the destruction of cancer cells “in vitro”. We also show that a constant magnetic field is far less efficient than an oscillating one. Moreover, we demonstrate that, at equal particle volume, it is much more efficient to utilize spindle shaped particles rather than spherical ones. In order to get deeper insight into the mechanism of magnetolysis experiments, we performed a study by AFM, which strongly supports that the magnetic field induces the formation of clusters of particles becoming then large enough todamage cell membranes. - Highlights: • Magnetic force was applied on cancer cells through magnetic particles. • The penetration depth was predicted, both for spherical and ellipsoidal particles. • Alternative force was shown to damage the cells contrary to static force. • The effect of indentation of magnetic particles was compared to the one of AFM tips. • The damage was attributed to the formation of clusters of particles.

  11. Evaluation of anti-hepatocarcinoma capacity of puerarin nanosuspensions against human HepG2 cells

    Science.gov (United States)

    Meng, Xiang-Ping; Zhang, Zhen; Wang, Yi-Fei; Wang, Zhi-ping; Chen, Tong-sheng

    2017-02-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Puerarin (Pue), a major active ingredient in the traditional Chinese medicine Gegen, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Pue nanosuspension (Pue-NS) composed of Pue and poloxamer 188 was prepared by high pressure homogenization technique. The in vitro anti-hepatocarcinoma effects of Pue-NS relative to efficacy of bulk Pue were evaluated. The particle size and zeta potential of Pue-NS were 218.5 nm and -18.8 mV, respectively. MTT assay showed that Pue-NS effectively inhibited the proliferation of HepG2 cells, and the corresponding IC50 values of Pue-NS and bulk Pue were 3.39 and 5.73 μg/ml. These results suggest that the delivery of Pue-NS is a promising approach for treating tumors.

  12. Antioxidant potential of herbs extracts and impact on HepG2 cells viability

    Directory of Open Access Journals (Sweden)

    Anna Gramza-Michałowska

    2008-12-01

    Full Text Available Mercury poisoning is responsible for inducing serious adverse effects in living organisms. One of protection factors could be substances proven to possess high antioxidant and metal chelating activity – plant polyphenols. There are many sources of polyphenols in plant kingdom but the most interesting for food industry could be widely consumed herbs. Aim of the research was to evaluate antioxidative potential of selected plant extracts and its influence on HepG2 cells in different conditions. Ethanolic herbs extracts were characterised by total polyphenol content. Antioxidant activity was estimated with use of DPPH• and ABTS+• radicals scavenging methods and FRAP. Research included cells viability estimation by the MTT assay and cells exposition to HgCl2, chemical agent inducing cell death. Analysis of herbs extracts antioxidative activity showed best potential represented thyme and marjoram, highest FRAP was evaluated in samples with mint and marjoram extracts. On the basis of received results it was found that examined plant extracts showed weak protection against Hg presence in examined cells environment.

  13. Cytotoxicity evaluation of symmetrically branched glycerol trimer in human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Miyamoto, Licht; Watanabe, Masashi; Kono, Mai; Matsushita, Tsuyoshi; Hattori, Hatsuhiko; Ishizawa, Keisuke; Nemoto, Hisao; Tsuchiya, Koichiro

    2012-01-01

    An appropriate balance between lipophilicity and hydrophilicity is necessary for pharmaceuticals to achieve fine Absorption, Distribution, Metabolism and Excretion (ADME) properties including absorption and distribution, in particular. We have designed and proposed symmetrically branched oligoglycerols (BGL) as an alternative approach to improve the lipophilic-hydrophilic balance. We have previously shown that stability in circulation and water-solubility of such molecules as proteins, liposomes and hydrophobic compounds are much improved by conjugation to BGL. Albeit these successful applications of BGL, little was known whether BGL could be used in safety. Thus we conducted evaluation of the cytotoxicity of a representative BGL, symmetrically branched glycerol trimer (BGL003) in the cultured cells to clarify its biological safeness. Here we demonstrate that water-solubility of an extremely hydrophobic agent, fenofibrate was more than 2,000-fold improved just by conjugated with BGL003. BGL003 did not exhibit any significant cytotoxicity in human hepatocarcinoma HepG2 cells. Thus BGL003 should be safe and suitable strategy to endow hydrophobic molecules with much hydrophilicity.

  14. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    Science.gov (United States)

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.

  15. Does Resveratrol Improve Insulin Signalling in HepG2 Cells?

    Science.gov (United States)

    Norouzzadeh, Marjan; Amiri, Fatemehsadat; Saboor-Yaraghi, Ali Akbar; Shemirani, Farnoosh; Kalikias, Yas; Sharifi, Loghman; Seyyedsalehi, Monireh Sadat; Mahmoudi, Maryam

    2017-04-01

    Diabetes mellitus is a common metabolic disorder with high global prevalence. It is characterized by a decrease in insulin secretion or a decrease in insulin sensitivity or both. The aim of the present study was to investigate the effects of resveratrol treatment on the expression of the genes involved in insulin signalling cascade, such as Forkhead box protein O1 (FoxO1), 3-phosphoinositide-dependent protein kinase 1 (PDPK1) and mammalian target of rapamycin (mTOR). HepG2 cells were cultured in serum-free medium with high concentrations of glucose and insulin and then were treated with resveratrol (5, 10 and 20 µM) for 24 and 48 hours. Complementary deoxyribonucleic acids (cDNAs) were synthesized followed by RNA extraction. Real-time quantitative reverse transcription polymerase chain reaction was used to analyze the expression of FoxO1, PDPK1 and mTOR. Resveratrol increased the expression of PDPK1, mTOR and FoxO1. No significant difference was seen among differing dosages of resveratrol, but treatments for 48 hours exerted the greatest effectiveness. Our results were consistent with other studies showing the beneficial effects of resveratrol on diabetes. However, considering the effects of resveratrol in increasing FoxO1 and gluconeogenic gene expression, long-term usage of resveratrol should be investigated in greater depth in future studies. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  16. Cholesterol-lowing effect of taurine in HepG2 cell.

    Science.gov (United States)

    Guo, Junxia; Gao, Ya; Cao, Xuelian; Zhang, Jing; Chen, Wen

    2017-03-16

    A number of studies indicate that taurine promotes cholesterol conversion to bile acids by upregulating CYP7A1 gene expression. Few in vitro studies are concerned the concentration change of cholesterol and its product of bile acids, and the molecular mechanism of CYP7A1 induction by taurine. The levels of intracellular total cholesterol (TC), free cholesterol (FC), cholesterol ester (EC), total bile acids (TBA) and medium TBA were determined after HepG2 cells were cultured for 24/48 h in DMEM supplemented with taurine at the final concentrations of 1/10/20 mM respectively. The protein expressions of CYP7A1, MEK1/2, c-Jun, p-c-Jun and HNF-4α were detected. Taurine significantly reduced cellular TC and FC in dose -and time-dependent ways, and obviously increased intracellular/medium TBA and CYP7A1 expressions. There was no change in c-Jun expression, but the protein expressions of MEK1/2 and p-c-Jun were increased at 24 h and inhibited at 48 h by 20 mM taurine while HNF4α was induced after both of the 24 h and 48 h treatment. Taurine could enhance CYP7A1 expression by inducing HNF4α and inhibiting MEK1/2 and p-c-Jun expressions to promote intracellular cholesterol metabolism.

  17. 冬凌草甲素对人肝癌细胞HepG2缝隙连接功能的影响%Effects of oridonin onHepG2 in human

    Institute of Scientific and Technical Information of China (English)

    赵增强; 竺江玲

    2015-01-01

    目的:观察冬凌草甲素对人肝癌细胞 HepG2缝隙连接功能(GJIC)的影响.方法:采用划痕标记染料示踪技术(Scrape-loading Dye Transfer Assay,SL/DT),观察不同浓度的冬凌草甲素处理人肝癌细胞HepG2之后细胞间隙连接通讯功能.结果:空白对照组细胞的荧光染料主要出现在划痕旁1~2列细胞中(±),且划痕两边被染色的细胞较少;细胞经冬凌草甲素处理48h 后,荧光染料不仅出现在划痕的附近细胞内,而且在划痕以外的 3~4 列细胞内也出现了荧光(++++),划痕两边被染色的细胞明显增多,出现了明显的细胞间染料传输现象,呈浓度依赖性.结论:冬凌草甲素能增强HepG2细胞间缝隙连接功能,可能是其抗肿瘤作用机制之一.%Objective: To observe effects of oridonin on HepG2. Methods: After dispose HepG2 with different concentrations of oridonin, the HepG2 function of gap junctional intercellular communication was observed by SL/DT. Results: Fluorochrome of the untreated control group mainly occurred in the cells which were located 1-2 row (±) beside scratches and had less dyed cells in the scratches on both sides. Cells treated with oridonin treatment after 48 hours, fluorochrome mainly occurred in the cells which were located beside scratches and 3~4 row (++++) other than scratches. Dyed cells increased in the scratches on both sides, appeared intracellular dye transfer phenomenon and appeared a concentration dependent manner. Conclusion: Oridonin can enhance the function of HepG2 gap junction intercellular and may be one of antitumor mechanism.

  18. Comparative Analysis of Ο-glycans from Human Hepatocellular Carcinoma HepG2 and Normal Liver Cells L02†%人肝癌细胞HepG2与正常肝细胞L02的Ο-糖链的比较分析

    Institute of Scientific and Technical Information of China (English)

    潘丽英; 顾笑; 王承健; 强珊; 黄琳娟; 张英; 王仲孚

    2015-01-01

    HepG2 ( a primary hepatocellular carcinoma cell line ) and L02 ( ones derived from normal liver tissue) cells were chosen as model cell lines for research. The O-glycans of the total proteins extracted from HepG2 and L02 cells were released by Carlson reductive β-elimination. The released O-glycans previously purified by Dowex 50 WX8-400 cation exchange resin and C18 cartridges were identified by electrospray ioniza-tion mass spectrometry( ESI-MS) and MS/MS. For comparision studies, β-cyclodextrin was used as the inter-nal standard for relative quantitative analysis of the O-glycans derived from HepG2 and L02 cells by MS. As results, 10 O-glycans were observed in HepG2 cell line and 9 O-glycans were detected in L02 cell line. More-over, 9 O-glycans were observed in both HepG2 and L02 cells, wherears 1 truncated O-glycan assigned as H1A1(NeuAc-GalNAc, sialyl Tn antigen, ubiquitous in cancer cells), was only found in HepG2 cells. t-Test results show that 5 and 2 O-glycans in HepG2 cells have significant differences ( P<0. 01 and P<0. 05 , recpectively) , when compared to those of L02 cells. Our studies show methodological significance in structural investigation of O-glycans expressed in hepatocellular carcinoma and early biomarker discovery in clinical diag-nose.%以培养的原发性肝细胞癌HepG2细胞和正常肝细胞L02为研究对象,用细胞裂解液提取总蛋白,然后采用Carlson还原性β-消除法释放O-糖链,以阳离子交换柱结合C18柱纯化分离O-糖链,用电喷雾电离质谱( ESI-MS)和串联质谱( MS/MS)对O-糖链进行序列鉴定,以β-环糊精为内标对2种细胞系的O-糖链进行定量比较分析.结果表明,在肝癌细胞系HepG2中检测到10种O-糖链,正常细胞系L02中检测到9种O-糖链,其中9种O-糖链是2种细胞系中共有的,但HepG2中存在癌细胞中特有的缩短的O-糖链N1A1( NeuAc-GalNAc, sialyl Tn 抗原). t检验结果表明, HepG2与L02相比,在检测到的10种O-糖链中有5种的

  19. Membrane cholesterol mediates the endocannabinoids-anandamide effection on HepG2 cells%脂筏介导的内源性大麻素对HepG2细胞的作用及其机制

    Institute of Scientific and Technical Information of China (English)

    吴文杰; 阳乔; 曹芹芳; 张耀文; 夏雨佳; 胡晓文; 唐望先

    2010-01-01

    Objective To study the effect of anandamide(AEA)on necrosis in HepG2 cells and to explore the role of AEA in progression of liver cancer.Methods Localization of the fatty acid hydrolytic enzyme(FAAH),cannabinoid receptors1(CB1)and cannabinoid receptors2(CB2)proteins was detected in L02 and HepG2 cells using immunofluorescenee.L02 and HepG2 cells were treated with different concentrations of AEA and methyl-β-cyclodextrin,and the rates of cells necrosis were examined by PI stain.Meanwhile,the expression levels of FAAH,CB1 and CB2 receptor proteins,as well as P38 mitogen-activated protein kinase(p-P38 MAPK)and c-Jun-NH2-terminal kinase(p-JNK)proteins,were analyzed by Western blot.Results The FAAH,CB1 and CB2 receptor proteins were observed both in cytoplasm and on membrane in L02 and HepG2 cells.The expression level of FAAH protein was higher in HepG2 than in L02 cells.The expression level of CB1 receptor protein was very low in both L02 and HepG2 cells.The expression level of CB2 receptor protein was high in both L02 and HepG2 cells.AEA treatment induced necrosis in HepG2 cells but not in L02 cells.Methyl-β-cyciodextrin treatment prevented necrosis in HepG2 cells(t=3.702;5.274;3.503,P < 0.05).The expression patterns of FAAH,CB1 and CB2 receptor protein in L02 and HepG2 cells were confirmed by western blot,which were consistent with the immunofluorescence results.AEA treatment increased the levels of p-P38MAPK and p-JNK proteins in a dose-dependant manner in HepG2 cells (F=11.908;26.054,P < 0.05)and the increase can be partially by prevented by MCD(t=2.801;t=12.829,P < 0.05).Conclusion AEA treatment induces necrosis in HepG2 cells via CB1 and CB2 receptors and lipid rafts.%目的 研究内源性大麻素(AEA)以脂质为基础的信号途径对肝癌细胞株HepG2的作用机制,探讨AEA在肝癌发生和发展中的作用.方法 免疫荧光检测脂肪酸水解酶、大麻素受体(CB)1和CB2在胎肝细胞株L02和肝癌细胞株HepG2中的定位.以不同浓

  20. Correlation of the effects of hydrogen peroxide on HepG2 with the signal pathway of NF-κB and sensitive phase of HepG2%过氧化氢作用HepG2对NF-κB途径和细胞敏感时相的相关研究

    Institute of Scientific and Technical Information of China (English)

    李成刚; 刘瑞; 李嘉琳; 梁欣; 海春旭

    2004-01-01

    BACKGROUND: Low-dose active oxygen can promote the proliferation and differentiation of normal cells and tumor cells, but the relationship between the signal pathway and cell sensitive phase involved in this process is unclear at present.OBJECTIVE: To observe the relationship between HepG2 cell proliferations induced by hydrogen peroxide(HP), and NF-κB signal pathway and sensitive phase through the blockage of intracellular NF-κB signal pathway and the induction of difference cell phase to provide theoretical gist for inhibiting and preventing the development of tumor cell and improving prognosis of the patients.DESIGN: A complete randomized controlled study.SETTING: Staff Room of Toxicology, Department of Preventive Medicine,Fourth Military Medical University of Chinese PLA.PARTICIPANTS: The study was conducted in the Staff Room of Toxicology, Department of Preventive Medicine, Fourth Military Medical University of Chinese PLA from April to August 2004. The material was human liver cancer cell strain HepG2 cell, which was a present from the Department of Pathology of the Faculty of Basic Medicine, Fourth Military Medical University of Chinese PLA.METHODS: HP was directly acted on the cultured HepG2 cell in different dosages for the screening of concentration of HP, which could adequately promote the proliferation of HepG2 cell. 50 μmol/L of HP was used to manage HepG2 cell pre-managed by NF-κB inhibitor(pyrrolidine dithiocarbamate, PDTC) or the HepG2 cells in G1, G2/M or S phase obtained through the synchronization by thymidine separately.MAIN OUTCOME MEASURES: Absorbency of the cell in each group was detected by MTT colorimetric method after 1, 24 and 48 hours of the management by HP for the comparison of cellular proliferation activity.RESULTS: After 24 hours of the reaction by 50 μmol/L of HP, the absorbency of HepG2 cell in MTT assay was significantly higher than that of the control group( t =0. 001, P < 0.01) . There was no significant difference of

  1. Effects of Ricinus communis Root Extract on proliferation and Apoptosis of HepG2,NCI-H460 and SGC-7901 cell%蓖麻根提取物对HepG2,NCI-H460和SGC-7901细胞增殖及凋亡作用的影响

    Institute of Scientific and Technical Information of China (English)

    唐祖年; 韦京辰

    2011-01-01

    探讨蓖麻根不同提取物对肝癌HepG2细胞株、肺癌NCI-H460细胞株和胃癌SGC-7901细胞株增殖及其凋亡的影响.采用MTT法检测蓖麻根不同提取物处理48h、72h对HepG2细胞、NCI-H460细胞和SGC-7901细胞增殖的抑制率;Hoechst 33258荧光染料染色法观察HepG2细胞凋亡,流式细胞术检测HepG2细胞周期.结果表明:蓖麻根石油醚提取物对HepG2细胞、NCI-H460细胞和SGC-7901细胞增殖有较强抑制作用,48 h的IC50分别为88.6、134.3、138.1 μg/mL,72 h的IC50分别为65.6、133.3、136.6μg/mL;乙酸乙酯提取物对HepG2细胞、NCI-H460细胞和SGC-7901细胞增殖在72h有中等强度抑制作用,IC50分别为90.2、138.5、188.2,μg/mL;氯仿提取物对NCI-H460细胞和SGC-7901细胞增殖抑制作用弱,对HepG2细胞增殖基本无抑制作用;Hoechst 33258荧光染色显示石油醚提取物60 μg/mL可使HepG2细胞出现凋亡细胞,流式细胞术检测显示石油醚提取物60 μg/mL可将HepG2细胞阻滞于S期(与对照组比较P<0.05).%Effects of Ricinus communis root extracts on proliferation and apoptosis in human hepatoma cell lines HepG2,lung cancer cell lines NCI-H460 and gastric cancer cell lines SGC-7901 were investigated. Cell proliferation rate of different root extracts on HepG2 cells, NCI-H460 cells and SGC-7901 cells was determined by MTT assay. The apoptosis of HepG2 cells was observed by fluorescent dye staining with Hoechst 33258. HepG2 cell cycle was measured by flow cytometry. The results showed that petroleum ether extract of R. Communis root had a strong inhibitory effect on proliferation of HepG2 cells,NCI-H460 cells and SGC-7901 cells,the IC50 respectively were 88. 6, 134. 3 and 138. 1 g/mL in 48h,the IC50 were respectively 65. 6,133. 3 and 136. 6 μg/mL in 72h. Ethyl acetate extract also had a moderate inhibitory effect on proliferation of HepG2 cells,NCI-H46O cells and SGC-7901 cells in 72 h,the IC50 respectively were 90. 2,138. 5 and 188. 2

  2. Effect of taurine on the proliferation and apoptosis of human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Tu, Shuo; Zhang, Xiali; Luo, Daya; Liu, Zhuoqi; Yang, Xiaohong; Wan, Huifang; Yu, Lehan; Li, Hua; Wan, Fusheng

    2015-07-01

    The aim of the present study was to observe the effect and molecular mechanism of taurine (Tau) on the cell proliferation and apoptosis of human hepatocellular carcinoma (HHCC) HepG2 cells. HHCC HepG2 cells were used as target cells, and the cell survival rate was assessed using a multi-time-step method. The p53 upregulated modulator of apoptosis (PUMA) gene was transiently transfected by lipofection and subsequently silenced with specific small interfering (si)RNA. The cell apoptosis rate was detected by flow cytometry, and protein expression levels were analyzed with western blotting. Addition of 20-160 mM Tau was shown to have a significant inhibitory effect on cell proliferation, while promoting the induction of HHCC HepG2 cell apoptosis (PHepG2 cells. In addition, transfection of the PUMA gene increased the protein expression of B-cell lymphoma-2-associated X and reduced the expression of B-cell lymphoma-2 (PHepG2 cells (PHepG2 cells.

  3. Effects of AFP gene silencing on Survivin mRNA expression inhibition in HepG2 cells.

    Science.gov (United States)

    Fang, Z L; Fang, N; Han, X N; Huang, G; Fu, X J; Xie, G S; Wang, N R; Xiong, J P

    2015-04-10

    We investigated the effects of alpha-fetoprotein (AFP) gene silencing on Survivin expression in HepG2 cells. Small interfering RNA technology was used to downregulate AFP expression in HepG2 cells. An enzyme-linked immunosorbent assay was used to measure AFP concentration in the supernatant before and after transfection. An MTT assay was used to detect cell proliferation activity before and after transfection. We performed flow cytometric analysis to detect the cell apoptosis rate, and reverse transcription-polymerase chain reaction to detect Survivin mRNA levels before and after transfection. Forty-eight hours after transfection, AFP concentration in the supernatant of the experimental group significantly decreased, hepatocellular carcinoma cell growth was inhibited by 43.1%, and the apoptosis rate increased by 24.3%. Survivin mRNA expression was reduced by 78.0% in HepG2 cells. These indicators in the control group and in the blank group did not change significantly. Silencing of AFP expression in HepG2 cells can effectively inhibit the growth of hepatoma cells and promote apoptosis, which may be useful for reducing intracellular Survivin mRNA levels.

  4. Impairment of oxidative phosphorylation increases the toxicity of SYD-1 on hepatocarcinoma cells (HepG2).

    Science.gov (United States)

    Brandt, Anna Paula; Gozzi, Gustavo Jabor; Pires, Amanda do Rocio Andrade; Martinez, Glaucia Regina; Dos Santos Canuto, André Vinícius; Echevarria, Aurea; Di Pietro, Attilio; Cadena, Sílvia Maria Suter Correia

    2016-08-25

    Toxicity of the SYD-1 mesoionic compound (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) was evaluated on human liver cancer cells (HepG2) grown in either high glucose (HG) or galactose (GAL) medium, and also on suspended cells kept in HG medium. SYD-1 was able to decrease the viability of cultured HepG2 cells in a dose-dependent manner, as assessed by MTT, LDH release and dye with crystal violet assays, but no effect was observed on suspended cells after 1-40 min of treatment. Respiration analysis was performed after 2 min (suspended cells) or 24 h (cultured cells) of treatment: no change was observed in suspended cells, whereas SYD-1 inhibited as well basal, leak and uncoupled states of the respiration in cultured cells with HG medium. These inhibitions were consistent with the decrease in pyruvate level and increase in lactate level. Even more extended results were obtained with HepG2 cells grown in GAL medium where, additionally, the ATP amount was reduced. Furthermore, SYD-1 appears not to be transported by the main ABC multidrug transporters. These results show that SYD-1 is able to change the metabolism of HepG2 cells, and suggest that its cytotoxicity is related to impairment of mitochondrial metabolism. Therefore, we may propose that SYD-1 is a potential candidate for hepatocarcinoma treatment.

  5. Differential genomic effects on signaling pathways by two different CeO2 nanoparticles in HepG2 cells

    Science.gov (United States)

    To investigate genomic effects, human liver hepatocellular carcinoma (HepG2) cells were exposed for three days to two different forms of nanoparticles both composed of Ce02 (0.3, 3 and 30 µg/mL). The two Ce02 nanopartices had dry primary particle sizes of 8 nanometers {(M) ...

  6. Citreoviridin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis in Human Liver HepG2 Cells.

    Science.gov (United States)

    Wang, Yuexia; Liu, Yanan; Liu, Xiaofang; Jiang, Liping; Yang, Guang; Sun, Xiance; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Chen, Min

    2015-08-06

    Citreoviridin (CIT) is a mycotoxin derived from fungal species in moldy cereals. In our previous study, we reported that CIT stimulated autophagosome formation in human liver HepG2 cells. Here, we aimed to explore the relationship of autophagy with lysosomal membrane permeabilization and apoptosis in CIT-treated cells. Our data showed that CIT increased the expression of LC3-II, an autophagosome biomarker, from the early stage of treatment (6 h). After treatment with CIT for 12 h, lysosomal membrane permeabilization occurred, followed by the release of cathepsin D in HepG2 cells. Inhibition of autophagosome formation with siRNA against Atg5 attenuated CIT-induced lysosomal membrane permeabilization. In addition, CIT induced collapse of mitochondrial transmembrane potential as assessed by JC-1 staining. Furthermore, caspase-3 activity assay showed that CIT induced apoptosis in HepG2 cells. Inhibition of autophagosome formation attenuated CIT-induced apoptosis, indicating that CIT-induced apoptosis was autophagy-dependent. Cathepsin D inhibitor, pepstatin A, relieved CIT-induced apoptosis as well, suggesting the involvement of the lysosomal-mitochondrial axis in CIT-induced apoptosis. Taken together, our data demonstrated that CIT induced autophagy-dependent apoptosis through the lysosomal-mitochondrial axis in HepG2 cells. The study thus provides essential mechanistic insight, and suggests clues for the effective management and treatment of CIT-related diseases.

  7. Biochemical Effects of six Ti02 and four Ce02 Nanomaterials in HepG2 cells

    Science.gov (United States)

    Abstract The potential mammalian hepatotoxicity of nanomaterials were explored in dose-response and structure-activity studies with human hepatic HepG2 cells exposed to between 10 and 1000 ug/ml of six different TiO2 and four CeO2 nanomaterials for 3 days. Var...

  8. Anticancer Effect of Nemopilema nomurai Jellyfish Venom on HepG2 Cells and a Tumor Xenograft Animal Model

    Directory of Open Access Journals (Sweden)

    Hyunkyoung Lee

    2017-01-01

    Full Text Available Various kinds of animal venoms and their components have been widely studied for potential therapeutic applications. This study evaluated whether Nemopilema nomurai jellyfish venom (NnV has anticancer activity. NnV strongly induced cytotoxicity of HepG2 cells through apoptotic cell death, as demonstrated by alterations of chromatic morphology, activation of procaspase-3, and an increase in the Bax/Bcl-2 ratio. Furthermore, NnV inhibited the phosphorylation of PI3K, PDK1, Akt, mTOR, p70S6K, and 4EBP1, whereas it enhanced the expression of p-PTEN. Interestingly, NnV also inactivated the negative feedback loops associated with Akt activation, as demonstrated by downregulation of Akt at Ser473 and mTOR at Ser2481. The anticancer effect of NnV was significant in a HepG2 xenograft mouse model, with no obvious toxicity. HepG2 cell death by NnV was inhibited by tetracycline, metalloprotease inhibitor, suggesting that metalloprotease component in NnV is closely related to the anticancer effects. This study demonstrates, for the first time, that NnV exerts highly selective cytotoxicity in HepG2 cells via dual inhibition of the Akt and mTOR signaling pathways, but not in normal cells.

  9. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide.

    Science.gov (United States)

    Alía, Mario; Ramos, Sonia; Mateos, Raquel; Granado-Serrano, Ana Belén; Bravo, Laura; Goya, Luis

    2006-04-15

    Flavonols such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The objective of the present study was to investigate the protective effect of quercetin on cell viability and redox status of cultured HepG2 cells submitted to oxidative stress induced by tert-butyl hydroperoxide. Concentrations of reduced glutathione and malondialdehyde, generation of reactive oxygen species and activity and gene expression of antioxidant enzymes were used as markers of cellular oxidative status. Pretreatment of HepG2 with 10 microM quercetin completely prevented lactate dehydrogenase leakage from the cells. Pretreatment for 2 or 20 h with all doses of quercetin (0.1-10 microM) prevented the decrease of reduced glutathione and the increase of malondialdehyde evoked by tert-butyl hydroperoxide in HepG2 cells. Reactive oxygen species generation induced by tert-butyl hydroperoxide was significantly reduced when cells were pretreated for 2 or 20 h with 10 microM and for 20 h with 5 microM quercetin. Finally, some of the quercetin treatments prevented the significant increase of glutathione peroxidase, superoxide dismutase, glutathione reductase and catalase activities induced by tert-butyl hydroperoxide. Gene expression of antioxidant enzymes was also affected by the treatment with the polyphenol. The results of the biomarkers analyzed clearly show that treatment of HepG2 cells in culture with the natural dietary antioxidant quercetin strongly protects the cells against an oxidative insult.

  10. Inferring Toxicological Responses of HepG2 Cells from ToxCast High Content Imaging Data (SOT)

    Science.gov (United States)

    Understanding the dynamic perturbation of cell states by chemicals can aid in for predicting their adverse effects. High-content imaging (HCI) was used to measure the state of HepG2 cells over three time points (1, 24, and 72 h) in response to 976 ToxCast chemicals for 10 differe...

  11. Xanthine oxidase inhibition by allopurinol increases in vitro pyrazinamide-induced hepatotoxicity in HepG2 cells.

    NARCIS (Netherlands)

    Tostmann, A.; Aarnoutse, R.E.; Peters, W.H.M.; Richard, P.N.; Boeree, M.J.

    2010-01-01

    Despite the important role of pyrazinamide in tuberculosis treatment, little is known about the mechanism of pyrazinamide-induced hepatotoxicity. We inhibited xanthine oxidase in HepG2 cells by using a nontoxic concentration of allopurinol, a well-known xanthine-oxidase inhibitor. This increased in

  12. Biochemical Effects of six Ti02 and four Ce02 Nanomaterials in HepG2 cells

    Science.gov (United States)

    Abstract The potential mammalian hepatotoxicity of nanomaterials were explored in dose-response and structure-activity studies with human hepatic HepG2 cells exposed to between 10 and 1000 ug/ml of six different TiO2 and four CeO2 nanomaterials for 3 days. Var...

  13. Oncostatin M regulates membrane traffic and stimulates bile canalicular membrane biogenesis in HepG2 cells

    NARCIS (Netherlands)

    Van der Wouden, Johanna M.; Van IJzendoorn, Sven C.D.; Hoekstra, Dick

    2002-01-01

    Hepatocytes are the major epithelial cells of the liver and they display membrane polarity: the sinusoidal membrane representing the basolateral surface, while the bile canalicular membrane is typical of the apical membrane. In polarized HepG2 cells an endosomal organelle, SAC, fulfills a prominent

  14. Differential genomic effects on signaling pathways by two different CeO2 nanoparticles in HepG2 cells

    Science.gov (United States)

    To investigate genomic effects, human liver hepatocellular carcinoma (HepG2) cells were exposed for three days to two different forms of nanoparticles both composed of Ce02 (0.3, 3 and 30 µg/mL). The two Ce02 nanopartices had dry primary particle sizes of 8 nanometers {(M) ...

  15. Effects of the radiolysis products of sennoside A on HepG2 and PC-3 cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Jo, Min Ho [Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-11-15

    Radiolysis of sennoside A was carried out by gamma irradiation and the anti-cancer activities of the radiolysis product were evaluated. An aqueous solution of sennoside A was exposed to 0.5-3 kGy of gamma irradiation and the radiolysis products were analyzed by HPLC. A fraction of radiolysis product (RLF) of sennoside A was isolated and the RLF was presumed as a rhein-8-β-D-glucoside. The anticancer effect of the RLF was compared with the sennoside and rhein using a in vitro assay system of human prostate cancer cells (PC-3) and human hepatoma HepG2 cells. The cell viability of PC-3 and HepG2 cell was significantly decreased to 12.4±1.2% and 32.4±2.1%, respectively, by the treatment of 0.6 μM of RLF. The sennoside A (range from 0 to 25 μM) had no cytotoxic effect on PC-3 and HepG2 cells, while the rhein had the effect on HepG2 cells with a LD{sub 50} at 80 μM.

  16. Curdlan sulphate modulates protein synthesis and enhances NF-κB and C/EBP binding activity in HepG2 cells

    Directory of Open Access Journals (Sweden)

    A. Guzdek

    1997-01-01

    Full Text Available In human hepatoma HepG2 cell line curdlan sulphate enhances basal and interleukin-6-stimulated fibrinogen and antichymotrypsin (ACT synthesis, slightly increases basal ceruloplasmin production and exerts only minor effects on alpha-1-proteinase inhibitor and transferrin. Curdlan sulphate may, at least in part, affect protein synthesis at a pretranslational level, as the expression of ACT mRNA was found to be increased, whereas intracellular enzyme, manganese superoxide dismutase mRNA level was decreased in the cell culture treated with curdlan sulphate. Gel mobility shift analysis revealed that curdlan sulphate increases the DNA binding activity of NF-κB and C/EBP, suggesting that these transcription factors may participate in the regulatory effects of curdlan sulphate in HepG2 cells.

  17. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells

    Directory of Open Access Journals (Sweden)

    Giang Thanh Thi Ho

    2017-01-01

    Full Text Available Type 2 diabetes (T2D is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes.

  18. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo

    Science.gov (United States)

    Li, Lin; Yao, Wenxiu; Xiong, Zhujuan; Zhou, Xiang

    2017-01-01

    Quercetin, a natural polyphenolic flavonoid compound, can inhibit the growth of several malignant cancers. However, the mechanism still remains unclear. Our previous findings have suggested that quercetin can significantly inhibit HepG2 cell proliferation and induce cell apoptosis in vitro. It can also affect cell cycle distribution and significantly decrease cyclin D1 expression. In this study, we investigated the anti-cancer effect of quercetin on HepG2 tumor-bearing nude mice and its effect on cyclin D1 expression in the tumor tissue. First, the nude murine tumor model was established by subcutaneous inoculation of HepG2 cells, then quercetin was administered intraperitoneally, and the mice injected with saline solution were used as controls. The daily behavior of the tumor-bearing mice was observed and differences in tumor growth and survival rate were monitored. The expression of cyclin D1 in isolated tumor sections was evaluated by immunohistochemistry. We found that HepG2 tumor became palpable in the mice one-week post-inoculation. Tumors in the control group grew rapidly and the daily behavior of the mice changed significantly, including listlessness, poor feeding and ataxia. The mice in quercetin-treated group showed delayed tumor growth, no significant changes in daily behavior, and the survival rate was significantly improved. Finally, we observed increased tumor necrosis and a lighter cyclin D1 staining with reduced staining areas. Our findings thus suggest that quercetin can significantly inhibit HepG2 cell proliferation, and this effect may be achieved through the regulation of cyclin D1 expression. PMID:28264020

  19. Curcumin induced nanoscale CD44 molecular redistribution and antigen-antibody interaction on HepG2 cell surface

    Energy Technology Data Exchange (ETDEWEB)

    Wang Mu [Department of Chemistry, Jinan University, 601 Huangpu Road West, Tianhe District, Guangzhou 510632 (China); Ruan Yuxia [Department of Ophthalmology, The First Affiliated Hospital, Jinan University, 601 Huangpu Road West, Tianhe District, Guangzhou 510632 (China); Xing Xiaobo; Chen Qian; Peng, Yuan [Department of Chemistry, Jinan University, 601 Huangpu Road West, Tianhe District, Guangzhou 510632 (China); Cai Jiye, E-mail: tjycai@jnu.edu.cn [Department of Chemistry, Jinan University, 601 Huangpu Road West, Tianhe District, Guangzhou 510632 (China)

    2011-07-04

    Graphical abstract: Highlights: > In this study, we investigate the changes of CD44 expression and distribution on HepG2 cells after curcumin treatment. > We find curcumin is able to change the morphology and ultrastructure of HepG2 cells. > Curcumin can reduce the expression of CD44 molecules and induce the nanoscale molecular redistribution on cell surface. > The binding force between CD44-modified AFM tip and the HepG2 cell surface decreases after curcumin-treatment. - Abstract: The cell surface glycoprotein CD44 was implicated in the progression, metastasis and apoptosis of certain human tumors. In this study, we used atomic force microscope (AFM) to monitor the effect of curcumin on human hepatocellular carcinoma (HepG2) cell surface nanoscale structure. High-resolution imaging revealed that cell morphology and ultrastructure changed a lot after being treated with curcumin. The membrane average roughness increased (10.88 {+-} 4.62 nm to 129.70 {+-} 43.72 nm) and the expression of CD44 decreased (99.79 {+-} 0.16% to 75.14 {+-} 8.37%). Laser scanning confocal microscope (LSCM) imaging showed that CD44 molecules were located on the cell membrane. The florescence intensity in control group was weaker than that in curcumin treated cells. Most of the binding forces between CD44 antibodies and untreated HepG2 cell membrane were around 120-220 pN. After being incubated with curcumin, the major forces focused on 70-150 pN (10 {mu}M curcumin-treated) and 50-120 pN (20 {mu}M curcumin-treated). These results suggested that, as result of nanoscale molecular redistribution, changes of the cell surface were in response to external treatment of curcumin. The combination of AFM and LSCM could be a powerful method to detect the distribution of cell surface molecules and interactions between molecules and their ligands.

  20. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway.

    Science.gov (United States)

    Guo, Haiqing; Ren, Feng; Zhang, Li; Zhang, Xiangying; Yang, Rongrong; Xie, Bangxiang; Li, Zhuo; Hu, Zhongjie; Duan, Zhongping; Zhang, Jing

    2016-03-01

    Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.

  1. Galactosylated poly(ε-caprolactone) membrane promoted liver-specific functions of HepG2 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan, E-mail: zhang_yan@ecust.edu.cn [The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Yi [The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Min; Zhou, Yan [The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-08-01

    The lack of pendant functional groups on the PCL backbone has been a great challenge for surface bioactivation of poly(ε-caprolactone) (PCL). In the present study, covalently galactosylated PCL (GPCL) was developed through coupling between the amino-functionalized PCL (NPCL) and the lactobionic acid (LA) and its potential application in maintenance of physiological functions of HepG2 cells was further evaluated. The structure and properties of GPCL were explored by {sup 1}H NMR, FT-IR, GPC and DSC. Moreover, the incorporation of galactose ligands onto GPCL membranes not only promoted higher wettability, but also radically changed surface morphology in comparison with PCL and NPCL according to the contact angle measurement and atomic force microscopy. When HepG2 cells were seeded onto these membranes, the cells on GPCL membranes showed more pronounced cell adhesion and tended to form aggregates during the initial adhesion stage and then progressively grew into multi-layer structures compared to those without galactose ligands by the observation with fluorescence microscope and scanning electron microscopy. Furthermore, live–dead assay and functional tests demonstrated that HepG2 cells on GPCL membranes had superior viability and maintained better liver-specific functions. Collectively, GPCL has great potential for hepatic tissue engineering scaffolds. - Graphical abstract: The specific recognition between the galactose ligands on the galactosylated poly(ε-caprolactone) membrane and the ASGPR on the HepG2 cell surface. The galactosylated poly(ε-caprolactone) membranes improved the cell-matrix interaction. The galactosylated functionalized PCL scaffold is a potential candidate for liver tissue engineering. - Highlights: • The specific recognition between the galactose ligands on the galactosylated poly(ε-caprolactone) membrane and the ASGPR on the HepG2 cell surface. • The galactosylated poly(ε-caprolactone) membranes improved the cell-matrix interaction.

  2. Cytotoxic effect of Agaricus bisporus and Lactarius rufus β-D-glucans on HepG2 cells.

    Science.gov (United States)

    Pires, Amanda do Rocio Andrade; Ruthes, Andrea Caroline; Cadena, Silvia Maria Suter Correia; Acco, Alexandra; Gorin, Philip Albert James; Iacomini, Marcello

    2013-07-01

    The cytotoxic activity of β-D-glucans isolated from Agaricus bisporus and Lactarius rufus fruiting bodies was evaluated on human hepatocellular carcinoma cells (HepG2). NMR and methylation analysis suggest that these β-d-glucans were composed of a linear (1→6)-linked and a branched (1→3), (1→6)-linked backbone, respectively. They both decreased cell viability at concentrations of up to 100 μg mL(-1), as shown by MTT assay. The amount of LDH released and the analysis of cell morphology corroborated these values and also showed that the β-D-glucan of L. rufus was more cytotoxic to HepG2 cells than that of A. bisporus. The treatment of HepG2 cells with L. rufus and A. bisporus β-D-glucans at a dose of 200 μg mL(-1) for 24h promoted an increase of cytochrome c release and a decrease of ATP content, suggesting that these polysaccharides could promote cell death by apoptosis. Both β-D-glucans were tested against murine primary hepatocytes at a dose of 200 μg mL(-1). The results suggest that the L. rufus β-d-glucan was as cytotoxic for hepatocytes as for HepG2 cells, whereas the A. bisporus β-D-glucan, under the same conditions, was cytotoxic only for HepG2 cells, suggesting cell selectivity. These results open new possibilities for use of mushroom β-D-glucans in cancer therapy.

  3. ssDNA Aptamer Specifically Targets and Selectively Delivers Cytotoxic Drug Doxorubicin to HepG2 Cells.

    Directory of Open Access Journals (Sweden)

    Ge Yu

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of death due to cancer worldwide with over 500,000 people affected annually. Although chemotherapy has been widely used to treat patients with HCC, alternate modalities to specifically deliver therapeutic cargos to cancer cells have been sought in recent years due to the severe side effects of chemotherapy. In this respect, aptamer-based tumor targeted drug delivery has emerged as a promising approach to increase the efficacy of chemotherapy and reduce or eliminate drug toxicity. In this study, we developed a new HepG2-specific aptamer (HCA#3 by a procedure known as systematic evolution of ligands by exponential enrichment (SELEX and exploited its role as a targeting ligand to deliver doxorubicin (Dox to HepG2 cells in vitro. The selected 76-base nucleotide aptamer preferentially bound to HepG2 hepatocellular carcinoma cells but not to control cells. The aptamer HCA#3 was modified with paired CG repeats at the 5'-end to carry and deliver a high payload of intercalated Dox molecules at the CG sites. Four Dox molecules (mol/mol were fully intercalated in each conjugate aptamer-Dox (ApDC molecule. Biostability analysis showed that the ApDC molecules are stable in serum. Functional analysis showed that ApDC specifically targeted and released Dox within HepG2 cells but not in control cells, and treatment with HCA#3 ApDC induced HepG2 cell apoptosis but had minimal effect on control cells. Our study demonstrated that HCA#3 ApDC is a promising aptamer-targeted therapeutic that can specifically deliver and release a high doxorubicin payload in HCC cells.

  4. Cytotoxicity of various chemicals and mycotoxins in fresh primary duck embryonic fibroblasts: a comparison to HepG2 cells.

    Science.gov (United States)

    Chen, Xi; Murdoch, Rhonda; Shafer, Daniel J; Ajuwon, Kolapo M; Applegate, Todd J

    2016-11-01

    To screen cost-effectively the overall toxicity of a sample, particularly in the case of food and feed ingredient quality control, a sensitive bioassay is necessary. With the wide variety of cytotoxicity assays, performance comparison between assays using different cells has become of interest. Fresh primary duck embryonic fibroblasts (DEF) were hypothesized to be a sensitive tool for in vitro cytotoxicity screening; cell viability of DEF in response to various cytotoxins was determined and compared with response of HepG2 cells. The IC50 values by the alamar blue assay in the DEF cells had a high correlation (R(2)  = 0.96) with those obtained in HepG2 cells. Within the same toxin, primary DEF yielded significantly lower IC50 values than that obtained from HepG2 cells using the MTT and alamar blue assay. Additionally, primary DEF responded to all mycotoxins tested using the alamar blue assay, while HepG2 was less sensitive, particularly at short exposure times. The estimated IC50 for aflatoxin B1 , fumonisins B1 and deoxynivalenol in DEF after 72 h incubation were 3.69, 4.19 and 1.26 μg ml(-1) , respectively. Results from the current study suggest that primary DEF are more sensitive to cytotoxins and mycotoxins compared to HepG2, and thus may have great potential as an effective tool for cytotoxicity assessment. The question remains whether in vitro IC50 values can accurately predict in vivo toxicity; however, the current study accentuates the need for further attention to identify sensitive cell models for in vitro cytotoxicity screening and subsequent exploration of species-specific prediction models for in vivo toxicity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes.

    Science.gov (United States)

    Wang, Yanxin; Watford, Malcolm

    2007-04-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. Culture of Hep G2 cells without glutamine resulted in very high levels of protein, again with no change in mRNA abundance. Insulin was without effect in both C2C12 and Hep G2 cells. In 3T3 L1 adipocytes glucocorticoids increased the abundance of both glutamine synthetase mRNA and protein, insulin added alone had no effect but in the presence of glucocorticoids resulted in lower mRNA levels than seen with glucocorticoids alone, although protein levels remained high under such conditions. In contrast to the other cell lines glutamine synthetase protein levels were relatively unchanged by culture in the absence of glutamine. The results support the hypothesis that in myocytes, and hepatomas, but not in adipocytes, glutamine acts to moderate glutamine synthetase induction by glucocorticoids.

  6. Antisense oligonucleotide inhibition of hepatitis C virus genotype 4 replication in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Omran Moataza H

    2006-06-01

    Full Text Available Abstract Background Hepatitis C (HCV viral infection is a serious medical problem in Egypt and it has a devastating impact on the Egyptian economy. It is estimated that over 15% of Egyptians are infected by the virus and thus finding a cure for this disease is of utmost importance. Current therapies for hepatitis C virus (HCV genotype 4 with interferon/ribavirin have not been successful and thus the development of alternative therapy for this genotype is disparately needed. Results Although previous studies utilizing viral subgenomic or full cDNA fragments linked to reporter genes transfected into adhered cells or in a cell free system showed promise, demonstration of efficient viral replication was lacking. Thus, we utilized HepG2 cells infected with native HCV RNA genomes in a replication competent system and used antisense phosphorothioate Oligonucleotides (S-ODN against stem loop IIId and the AUG translation start site of the viral polyprotein precursor to monitor viral replication. We were able to show complete arrest of intracellular replication of HCV-4 at 1 uM S-ODN, thus providing a proof of concept for the potential antiviral activity of S-ODN on native genomic replication of HCV genotype 4. Conclusion We have successfully demonstrated that by using two S-ODNs [(S-ODN1 (nt 326–348 and S-ODN-2 (nt 264–282], we were able to completely inhibit viral replication in culture, thus confirming earlier reports on subgenomic constructs and suggesting a potential therapeutic value in HCV type 4.

  7. Effects of HBV X gene and arsenic trioxide on the expression of p53 in cultured HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    LEI Jian-hua; HE Xing-e; YANG Xu; ZHANG Min; LIAN Jun; LUO Hong-yu; WANG Wen-long

    2007-01-01

    Background Hepatitis B virus(HBV)X protein(HBx)and p53 could mutually down-regulate at transcriptional level and HBx could bind with p53 protein within its transactivation domain and inhibit the function of p53 protein.In recent years,effects of arsenic trioxide(As2O3)on the expression of p53 protein have been widely studied,while little is known about the activity of p53 protein.This study was undertaken to delineate the effect of HBV X gene and As2O3 on p53 protein expression(level and activity)in HepG2 cells by small hairpin RNA(shRNA)-mediated RNA interference(RNAi)technique.Methods Cell line HepG2 and cells with stable expression of HBV X gene(HepG2-X)were treated with 2 μmol/L As2O3,with corresponding untreated cells serving as controls.Cell lysates and nuclear extracts were extracted.Total level and the relative activity of p53 protein were detected by modified enzyme-linked immunosorbent assay(ELISA).HBV X gene sequence-specific shRNA expression vector(pXi-1 and pXi-2)and sequence-unrelated control(pXi-3)were transfected into HepG2-X.Single cell clone with stable expression of shRNA was selected and exposed to propagating culture.The effect of As2O3 on p53 protein expression and activity was re-observed.Results Total p53 protein level was up-regulated and its relative activity ratio was enhanced by As2O3 in HepG2 and HepG2-X cells.The total p53 protein level induced by As2O3 was up-regulated by HBV X gene expression,while its relative activity was significantly suppressed.The suppression was removed after HBV X gene expression was repressed by shRNA.Conclusions As2O3 up-regulates p53 protein expression and enhance its activity.HBV X up-regulates As2O3 induced-p53 protein expression while suppresses its activity.

  8. 缺氧诱导HepG2细胞脂类代谢紊乱的作用机制%Mechanism of hypoxia-induced disturbance of lipid metabolism in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    曹日昇; 赵晓丹; 李硕; 任丽华; 陈伟煦; 施瑞华

    2013-01-01

    目的 探讨缺氧应激诱导肝癌HepG2细胞脂类代谢紊乱的作用机制.方法 分别在常氧及缺氧条件下培养HepG2细胞,采用尼罗红和非律平Ⅲ荧光染色分别检测细胞脂质和游离胆固醇蓄积,实时定量PCR和Western blot法检测胆固醇及脂肪酸代谢相关基因的表达.结果 与常氧条件相比,缺氧处理后HepG2细胞中脂类物质及游离胆固醇蓄积显著增加,胆固醇及脂肪酸外排、分解代谢相关基因表达受到抑制,脂肪酸摄取途径基因表达增强.结论 缺氧应激通过调节脂类摄取、外排及分解途径作用于细胞内脂类代谢紊乱,为缺氧性脂类代谢综合疾病的治疗提供了新思路.%Objective To investigate the underlying for hypoxia-induced disturbance of lipid metabolism in HepG2 cells of hepatic carcinoma.Methods The HepG2 cells were cultured under normoxia and hypoxia conditions at different times.Accumulations of intracellular lipid and free cholesterol were detected by Nile Red and Filipin Ⅲ] staining,respectively.The expressions of key genes relevant to cholesterol and lipid metabolism were determined by RQ-PCR and Western blot.Results Compared with normoxia group,the levels of intracellular lipid and free cholesterol were significantly increased,the expressions of key genes relevant to excretion and catabolism of cholesterol and fatty acid were downregulated,while gene expressions in fatty acid uptake pathway were upregulated in hypoxia-treated HepG2 cells.Conclusion Hypoxia can induce dysturbance of lipid metabolism by regulating uptake,catabolism and excretion of fatty acid and cholesterol,which may provide a new clue for the treatment of hypoxic lipid metabolism syndrome.

  9. 龙葵碱对HepG2人肝癌细胞NAT酶动力学常数的影响%Effects of solanine on kinetic constants of NATase in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    季宇彬; 高世勇; 汲晨锋; 邹翔

    2008-01-01

    目的 探讨龙葵碱对HepG2细胞NAT酶米氏常数Km及最大反应速率Vmax的影响.方法 MTT法测定龙葵碱对消化系统SGC-7901人胃癌、HepG2人肝癌、Ls-174人大肠癌3种肿瘤细胞株的细胞毒作用,采用高效液相色谱(HPLC)法,以2-AF为底物,以2-AF的浓度为底物浓度,在以HepG2完整细胞及细胞质内2-AF被NAT酶乙酰化为2-AAF的速度为NAT酶的反应速率,采用双倒数作图法,以底物2-AF浓度的倒数1/S对NAT反应速率的倒数1/V作直线,得出回归方程,计算Km和Vmax.结果 MTT法测定表明龙葵碱对HepG2人肝癌细胞比较敏感,酶动力学研究表明,以2-AF为底物,对于HepG2完整细胞,阴性对照组的Km和Vmax分别为(2.37×10-3±8.37×10-5) mmol·L-1、(9.16×10-4±7.54×10-5) nmol·106 cells-1,龙葵碱组的Km和Vmax分别为(2.22×10-3±9.05×10-5) mmol·L-1和(5.14×10-4±3.72×10-5) nmol·106 cells-1.对于HepG2细胞质,阴性对照组的Km和Vmax分别为(8.95×10-3±2.61×10-4) mmol·L-1、(2.55×10-6±1.92×10-8) μmol·min-1g-1 Pro,龙葵碱组的Km和Vmax分别为(9.48×10-3±3.63×10-4) mmol·L-1和(2.43×10-6±1.32×10-8) μmol·min-1 g-1 Pro,统计学表明对于HepG2完整细胞和细胞质,阴性对照组和龙葵碱组的Km没有差异,而Vmax差异有显著性(完整细胞P<0.01,细胞质P<0.05).结论 龙葵碱是HepG2人肝癌细胞NAT酶2-AF底物的非竞争性抑制剂.

  10. The Nitric Oxide Prodrug JS-K Induces Ca(2+)-Mediated Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells.

    Science.gov (United States)

    Liu, Ling; Wang, Dongmei; Wang, Jiangang; Wang, Shuying

    2016-04-01

    Hepatocellular carcinoma is one of the most common and deadly forms of human malignancies. JS-K, O(2)-(2, 4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1, 2-diolate, has the ability to induce apoptosis of tumor cell lines. In the present study, JS-K inhibited the proliferation of HepG2 cells in a time- and concentration-dependent manner and significantly induced apoptosis. JS-K enhanced the ratio of Bax-to-Bcl-2, released of cytochrome c (Cyt c) from mitochondria and the activated caspase-9/3. JS-K caused an increasing cytosolic Ca(2+) and the loss of mitochondrial membrane potential. Carboxy-PTIO (a NO scavenger) and BAPTA-AM (an intracellular Ca(2+) chelator) significantly blocked an increasing cytosolic Ca(2+) in JS-K-induced HepG2 cells apoptosis, especially Carboxy-PTIO. Meanwhile, Carboxy-PTIO and BAPTA-AM treatment both attenuate JS-K-induced apoptosis through upregulation of Bcl-2, downregulation of Bax, reduction of Cyt c release from mitochondria to cytoplasm and inactivation of caspase-9/3. In summary, JS-K induced HepG2 cells apoptosis via Ca(2+)/caspase-3-mediated mitochondrial pathway.

  11. In vitro antiproliferative and antioxidant effects of urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells.

    Science.gov (United States)

    Wang, Yun; Qiu, Zhenpeng; Zhou, Benhong; Liu, Cong; Ruan, Jinlan; Yan, Qiujin; Liao, Jianming; Zhu, Fan

    2015-08-01

    The intestinal metabolites of ellagic acid (EA), urolithins are known to effectively inhibit cancer cell proliferation. This study investigates antiproliferative and antioxidant effects of urolithin A (UA) on cell survival of the HepG2 hepatic carcinomas cell line. The antiproliferative effects of UA (0-500 μM) on HepG2 cells were determined using a CCK assay following 12-36 h exposure. Effects on β-catenin and other factors of expression were assessed by using real-time PCR and Western blot. We found that UA showed potent antiproliferative activity on HepG2 cells. When cell death was induced by UA, it was found that the expression of β-catenin, c-Myc and Cyclin D1 were decreased and TCF/LEF transcriptional activation was notably down-regulated. UA also increased protein expression of p53, p38-MAPK and caspase-3, but suppressed expression of NF-κB p65 and other inflammatory mediators. Furthermore, the antioxidant assay afforded by UA and EA treatments was associated with decreases in intracellular ROS levels, and increases in intracellular SOD and GSH-Px activity. These results suggested that UA could inhibit cell proliferation and reduce oxidative stress status in liver cancer, thus acting as a viably effective constituent for HCC prevention and treatment.

  12. 胡椒碱对人肝癌HepG2细胞抗肿瘤活性的体外实验研究%Inhibitory effect of piperine on human HepG2 hepatocarcinoma cell in vitro

    Institute of Scientific and Technical Information of China (English)

    郑斌; 王欣; 麻彤辉

    2012-01-01

    Objective To study the inhibitory effect of pipcrinc on HcpG2 cell in vitro. Methods The human hepa-tocarcinoma HcpG2 cells were cultured in vitro and divided into control group and pipcrinc-trcatcd group. MTT assay was performed to evaluate the proliferation inhibitory effects of pipcrinc on HcpG2 cells and freshly prepared peripheral white blood cells. Hocchst 33258 nuclear staining was performed to detect the mode of cell death. Flow cytomctry was used to assess the effects of pipcrinc treatment on cell apoptosis in human HcpG2 cells. Results The inhibitory effect of pipcrinc treatment on HcpG2 cell proliferation increases with the dose, and the half inhibition concentration(IC50) was 15. 13 + 3. 21 μmol/L, which was lower than that for peripheral white blood cell(IC50 = 64. 52 + 5. 32 μmol/L). Pipcrinc treated HcpG2 cells showed typical apoptotic characteristics. After treated with 20 μmol/L pipcrinc for 24 h,the apoptosis rate increased from 2. 89% of control group to 21. 76%. Conclusion Pipcrinc has cytotoxicity effect on cultured human HcpG2 cells in vitro,and can inhibit proliferation and induce apoptosis.%目的 探讨胡椒碱(piperine)对人HpeG2肝癌细胞株的增殖、杀伤和细胞凋亡的影响,为肝癌的治疗提供理论依据.方法 体外培养的HpeG2细胞,采用MTT比色法检测不同浓度胡椒碱对体外培养的HepG2细胞和新分离的外周血白细胞的增殖抑制作用.Hoechst 33258染色观察细胞凋亡形态,采用流式细胞术测定胡椒碱对HepG2细胞的凋亡.结果 胡椒碱对HepG2细胞增殖的抑制率随着浓度的升高而增加,半量抑制浓度(IC50)为15.13±3.21 μmol/L,低于其对外周血白细胞的抑制率(64.52±5.32 μmol/L).Hoechst 33258染色后,胡椒碱处理癌细胞组表现出典型的细胞凋亡特征,流式细胞仪检测20 μmol/L的胡椒碱处理HepG2细胞24 h后,细胞凋亡率由对照组的2.89%上升到了21.76%.结论 胡椒碱具有抑制HepG2细胞增殖和诱导凋

  13. Juglanthraquinone C, a novel natural compound derived from Juglans mandshurica Maxim, induces S phase arrest and apoptosis in HepG2 cells.

    Science.gov (United States)

    Yao, Yao; Zhang, Yu-Wei; Sun, Lu-Guo; Liu, Biao; Bao, Yong-Li; Lin, Hua; Zhang, Yu; Zheng, Li-Hua; Sun, Ying; Yu, Chun-Lei; Wu, Yin; Wang, Guan-Nan; Li, Yu-Xin

    2012-08-01

    Juglanthraquinone C (1,5-dihydroxy-9,10-anthraquinone-3-carboxylic acid, JC), a naturally occurring anthraquinone isolated from the stem bark of Juglans mandshurica, shows strong cytotoxicity in various human cancer cells in vitro. Here, we first performed a structure-activity relationship study of six anthraquinone compounds (JC, rhein, emodin, aloe-emodin, physcion and chrysophanol) to exploit the relationship between their structural features and activity. The results showed that JC exhibited the strongest cytotoxicity of all compounds evaluated. Next, we used JC to treat several human cancer cell lines and found that JC showed an inhibitory effect on cell viability in dose-dependent (2.5-10 μg/ml JC) and time-dependent (24-48 h) manners. Importantly, the inhibitory effect of JC on HepG2 (human hepatocellular carcinoma) cells was more significant as shown by an IC(50) value of 9 ± 1.4 μg/ml, and 36 ± 1.2 μg/ml in L02 (human normal liver) cells. Further study suggested that JC-induced inhibition HepG2 cell proliferation was associated with S phase arrest, decreased protein expression of proliferation marker Ki67, cyclin A and cyclin-dependent kinase (CDK) 2, and increased expression of cyclin E and CDK inhibitory protein Cip1/p21. In addition, JC significantly triggered apoptosis in HepG2 cells, which was characterized by increased chromatin condensation and DNA fragmentation, activation of caspase-9 and -3, and induction of a higher Bax/Bcl2 ratio. Collectively, our study demonstrated that JC can efficiently inhibit proliferation and induce apoptosis in HepG2 cells.

  14. Synthetic peptides from two Pf sporozoite invasion-associated proteins specifically interact with HeLa and HepG2 cells.

    Science.gov (United States)

    Arévalo-Pinzón, Gabriela; Curtidor, Hernando; Muñoz, Marina; Patarroyo, Manuel A; Patarroyo, Manuel E

    2011-09-01

    Two recently described molecules have been associated with sporozoite traversal ability and hepatocyte entry: sporozoite invasion-associated proteins (SIAP)-1 and -2. The HeLa and HepG2 cell binding ability of synthetic peptides spanning the whole SIAP-1 and -2 sequences has been studied in the search for identifying these proteins' functionally active specific regions. Twelve HepG-2 and seventeen HeLa cell high-activity binding peptides (HABPs) have been identified in SIAP-1, 8 of them having high specific binding affinity for both cell lines. Four HepG2 HABPs and two HeLa HABPs have been identified in SIAP-2, one of them interacting with both HeLa and HepG2 cells. SIAP-1 and SIAP-2 HABPs bound specifically and saturably to heparin sulfate and chondroitin sulfate-type membrane receptors on host cells. Circular dichroism assays have shown high α-helix content in SIAP-1 and SIAP-2 HABP secondary structure. Immunofluorescence analysis has revealed that specific peptides against SIAP proteins are highly immunogenic in mice and that anti-SIAP-1 and -2 antibodies recognize the native protein in Plasmodium falciparum sporozoites. Polymorphism studies have shown that a most SIAP-1 and -2 HABPs are conserved among P. falciparum strains. Our results have suggested that SIAP-1 and -2 participate in host-pathogen interactions during cell-traversal and hepatocyte invasion and highlighted the relevance of the ongoing identification and study of potentially new molecules when designing a fully protective antimalarial vaccine.

  15. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography-tandem mass spectrometry. Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased by >8-fold. Our findings provide strong

  16. Alisol A 24-Acetate Prevents Hepatic Steatosis and Metabolic Disorders in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Lu Zeng

    2016-11-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is closely associated with metabolic disorders including hepatic lipid accumulation and inflammation. Alisol A 24-acetate, a triterpene from Alismatis rhizome, has multiple biologic activities such as hypolipidemic, anti-inflammatory and anti-diabetic. Thus we hypothesized that Alisol A 24 -acetate would have effect on NAFLD. The present study was conducted to investigate the therapeutic effects and potential mechanisms of Alisol A 24-acetate against hepatic steatosis in a free fatty acids (FFAs induced NAFLD cell model. Methods: This study was divided into four groups including Control group, Model group (FFA group, Alisol A 24-acetate (FFA+A group, Fenofibrate (FFA+F group. Preventive role of Alisol A 24-acetate was evaluated using 10µM Alisol A 24-acetate plus 1 mM FFA (oleate:palmitate=2:1 incubated with HepG2 cells for 24 h, which was determined by Oil Red O Staining, Oil Red O based colorimetric assay and intracellular triglyceride (TG content. Besides, the inflammatory cytokines tumor necrosis factor (TNF- α, interleukin (IL-6 levels as well as the protein and mRNA expressions that were involved in fatty acid synthesis and oxidation including Adiponectin, AMP-activated protein kinase (AMPK α, peroxisome proliferator-activated receptor (PPAR α, sterol regulatory element binding protein 1c (SREBP-1c, acetyl-CoA carboxylase (ACC, fatty acid synthase (FAS, carnitine palmitoyltransferase 1 (CPT1 and acyl coenzyme A oxidase 1 (ACOX1 were detected. Results: Alisol A 24-acetate significantly decreased the numbers of lipid droplets, Oil Red O lipid content, and intracellular TG content. Besides, inflammatory cytokines TNF-α, IL-6 levels were markedly inhibited by Alisol A 24-acetate. Furthermore, Alisol A 24-acetate effectively increased the protein and mRNA expressions of Adiponectin, the phosphorylation of AMPKα, CPT1 and ACOX1, whereas decreased SREBP-1c, the phosphorylation of ACC and

  17. 龙葵碱对HepG2细胞磷脂酰丝氨酸及断裂DNA研究%Study on PS and cracking DNA in HepG2 cells induced by solanine

    Institute of Scientific and Technical Information of China (English)

    季宇彬; 徐丽丽; 高世勇

    2008-01-01

    研究龙葵碱对肝癌细胞HepG2的诱导凋亡作用.采用倒置显微镜观察形态学变化,Annexin V-FITC 联合PI双染法和Tunel法检测龙葵碱诱导人肝癌HepG2细胞凋亡作用.结果发现龙葵碱作用24 h后,贴壁细胞数量减少、体积缩小,变圆等明显凋亡形态;在激光共聚焦显微镜下观察到Annexin V-FITC阳性信号为绿色荧光,PI为红色荧光;Tunel阳性信号为绿色荧光.表明龙葵碱通过诱导HepG2细胞凋亡达到抗肿瘤的作用.

  18. FGF-21促进HepG2细胞摄取葡萄糖研究%Study on FGF-21 regulates glucose uptake in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    刘铭瑶; 王文飞; 侯玉婷; 任桂萍; 吴云舟; 李德山

    2016-01-01

    Liver is a metabolic center, plays an important role in regulating glucose and lipid metabolism. FGF-21 is an important candidate drug to treat diabetes; so to study the effect and mechanism of its effects on regulation of the glucose metabolism in liver is very important for drug research. We chose HepG2 cells as a model to study the effects of FGF-21 on glucose uptake in liver and the mechanism of its action. After treated by FGF-21, the glucose uptake by the HepG2 cells was detected by the method of glucose oxidizes·peroxides (GOD-POD);glycogen synthesis was examined by anthrone method, the synergy between insulin and FGF-21 was evaluated. With the purpose to study the mechanism of FGF-21 on glucose uptake, the mRNA expression of GLUTs was detected by semiquantitative PCR and real-time PCR with specific primers. The results showed that FGF-21 stimulated glucose uptake by the HepG2 cells in a does-dependent manner and had a synergistic effect with insulin. FGF-21 could also increase glycogen synthesis in the HepG2 cells, with the same action as insulin. The result of the semiquantative PCR showed that only GLUT1 mRNA was increased with FGF-21 stimulation. FGF-21 induced a significant increase of GLUT1 mRNA in the HepG2 cells detected by real-time PCR. The fold of GLUT1 mRNA expression was raised most at 6 hours, more than 5-fold was increased. Thus, we concluded that FGF-21 stimulates glucose uptake and glycogen synthesis in HepG2 cells, and enhanced glucose absorption of HepG2 cells probably through GLUT1 activation.%肝脏是代谢的中枢性器官,在糖脂代谢中扮演重要角色。FGF-21是近年来发现的一种治疗糖尿病新型药物,研究其对肝脏糖代谢影响及机制将为FGF-21成药性提供理论依据。以HepG2细胞为肝细胞模型,探究FGF-21对HepG2细胞葡萄糖吸收影响及作用机制。FGF-21处理HepG2细胞,采用葡萄糖氧化酶-过氧化物酶(GOD-POD)法检测细胞对葡萄糖摄取情

  19. Effect of matrine on HepG2 cells:role of glutathione and cytochrome c%苦参碱对HepG2细胞杀伤作用及机制研究

    Institute of Scientific and Technical Information of China (English)

    Xiangdong Cheng; Yian Du; Ling Huang; Zhiming Jing; Zhiguo Zheng

    2008-01-01

    Objective:To investigate the death mode of human hepatoma cells exposed to matrine and the role of glutathione (GSH) and cytochrome c.Methods:The MTT test and Cell Death Detection ELISA were used to identify cell death mode and viability of cells exposed to matrine.The volume of intracellular GSH was detected by GSH reductase.Finally Western blotting was chosen to analyze the expression of cytochrome c and Caspase-9 in HepG2 cells treated by matrine.Results:The apoptotic cell death induced by matrine in Hep G2 cells dramatically increased in the time-,dose-dependent manner.Matrine can exhaust intracellular GSH effectively to change the redox state in cells.Furthermore it affect the cytotoxicity of matrine.Results of Western blotting showed that matrine induced the release of cytochrome c from mitochondria to cytoplasm,and then stimulate the cleavage of Cespese-9 in a time-dependent manner.Conclusion:Matrine induced apoptosis in Hep G2 cells through the mitochondrial pathway,and oxidative stress via depletion of GSH is directly involved in the apoptotic process.

  20. Gene expression profiles in human HepG2 cells treated with extracts of the Tamarindus indica fruit pulp.

    Science.gov (United States)

    Razali, Nurhanani; Aziz, Azlina A; Junit, Sarni M

    2010-12-01

    Tamarindus indicaL. (T. indica) or locally known as asam jawa belongs to the family of Leguminosae. The fruit pulp had been reported to have antioxidant activities and possess hypolipidaemic effects. In this study, we attempted to investigate the gene expression patterns in human hepatoma HepG2 cell line in response to treatment with low concentration of the fruit pulp extracts. Microarray analysis using Affymetrix Human Genome 1.0 S.T arrays was used in the study. Microarray data were validated using semi-quantitative RT-PCR and real-time RT-PCR. Amongst the significantly up-regulated genes were those that code for the metallothioneins (MT1M, MT1F, MT1X) and glutathione S-transferases (GSTA1, GSTA2, GST02) that are involved in stress response. APOA4, APOA5, ABCG5 and MTTP genes were also significantly regulated that could be linked to hypolipidaemic activities of the T. indica fruit pulp.

  1. Apigenin induces apoptosis in Hep G2 cells: possible role of TNF-alpha and IFN-gamma.

    Science.gov (United States)

    Khan, Tajdar Husain; Sultana, Sarwat

    2006-01-16

    Flavonoids are one of the biologically active plant food constituents, possessing potential chemopreventive properties against a wide variety of chronic diseases. Apigenin, a common dietary flavonoid abundantly present in fruits and vegetables is believed to possess preventive and therapeutic potential against various cancers. In the present study, we have evaluated regulation of apoptotic cell death by apigenin (25 and 50 microM) in human hepatoblastoma derived cell line Hep G2. Apigenin-induced programme cell death in terms of TNF-alpha, IFN-gamma release and induction of caspases activity. TNF-alpha and IFN-gamma levels in apigenin-pretreated groups were significantly and dose dependently elevated as compared to the control values (28-39% and 66-85%), (208-336% and 579-1088%), respectively. Treatment of apigenin significantly induced caspase-3, -7, -10 and caspase-9 activity (160-209% and 203-270%) in a dose-dependent manner. The effects on caspases, TNF-alpha, and IFN-gamma processes mediate the plausible mechanism of apoptosis induction of apigenin.

  2. Cytotoxicity of Triterpenes from Green Walnut Husks of Juglans mandshurica Maxim in HepG-2 Cancer Cells.

    Science.gov (United States)

    Zhou, Yuanyuan; Yang, Bingyou; Liu, Zhaoxi; Jiang, Yanqiu; Liu, Yuxin; Fu, Lei; Wang, Xiaoli; Kuang, Haixue

    2015-01-01

    Among the classes of identified natural products, triterpenoids, one of the largest families, have been studied extensively for their diverse structures and variety of biological activities, including antitumor effects. In the present study, a phytochemical study of the green walnut husks of Juglans mandshurica Maxim led to the isolation of a new dammarane triterpene, 12β, 20(R), 24(R)-trihydroxydammar-25-en-3-one (6), together with sixteen known compounds, chiefly from chloroform and ethyl acetate extracts. According to their structural characteristics, these compounds were divided into dammarane-type, oleanane- and ursane-type. Dammarane-type triterpenoids were isolated for the first time from the Juglans genus. As part of our continuing search for biologically active compounds from this plant, all of these compounds were also evaluated for their cytotoxic activities against the growth of human cancer cells lines HepG-2 by the MTT assay. The results were shown that 20(S)-protopanaxadiol, 2α,3β,23-trihydroxyolean-12-en-28-oic acid and 2α,3β,23-trihydroxyurs-12-en-28-oic acid exhibited better cytotoxicity in vitro with IC50 values of 10.32±1.13, 16.13±3.83, 15.97±2.47 μM, respectively. Preliminary structure-activity relationships for these compounds were discussed.

  3. Gomisin A alters substrate interaction and reverses P-glycoprotein-mediated multidrug resistance in HepG2-DR cells.

    Science.gov (United States)

    Wan, Chi-Keung; Zhu, Guo-Yuan; Shen, Xiao-Ling; Chattopadhyay, Apurba; Dey, Saibal; Fong, Wang-Fun

    2006-09-28

    Through an extensive herbal drug screening program, we found that gomisin A, a dibenzocyclooctadiene compound isolated from Schisandra chinensis, reversed multidrug resistance (MDR) in Pgp-overexpressing HepG2-DR cells. Gomisin A was relatively non-toxic but without altering Pgp expression, it restored the cytotoxic actions of anticancer drugs such as vinblastine and doxorubicin that are Pgp substrates but may act by different mechanisms. Several lines of evidence suggest that gomisin A alters Pgp-substrate interaction but itself is neither a Pgp substrate nor competitive inhibitor. (1) First unlike Pgp substrates gomisin A inhibited the basal Pgp-associated ATPase (Pgp-ATPase) activity. (2) The cytotoxicity of gomisin A was not affected by Pgp competitive inhibitors such as verapamil. (3) Gomisin A acted as an uncompetitive inhibitor for Pgp-ATPase activity stimulated by the transport substrates verapamil and progesterone. (4) On the inhibition of rhodamine-123 efflux the effects of gomisin A and the competitive inhibitor verapamil were additive, so were the effects of gomisin A and the ATPase inhibitor vanadate. (5) Binding of transport substrates with Pgp would result in a Pgp conformational change favoring UIC-2 antibody reactivity but gomisin A impeded UIC-2 binding. (6) Photocrosslinking of Pgp with its transport substrate [125I]iodoarylazidoprazosin was inhibited by gomisin A in a concentration-dependent manner. Taken together our results suggest that gomisin A may bind to Pgp simultaneously with substrates and alters Pgp-substrate interaction.

  4. Chemical characterization of Pleurotus eryngii polysaccharide and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cells.

    Science.gov (United States)

    Ren, Daoyuan; Wang, Ning; Guo, Jianjun; Yuan, Li; Yang, Xingbin

    2016-03-15

    This study was designed to investigate the chemical characterization and antitumor effects of Pleurotus eryngii polysaccharides (PEP). The crude PEP was fractionated into two fractions, namely PEP-1 and PEP-2. HPLC analysis showed that PEP-1 and PEP-2 were heteropolysaccharides mainly composed of glucose with the average molecular weights of 2.54×10(4)Da (PEP-1) and 4.63×10(5)Da (PEP-2), respectively. High molecular mass PEP-2 was shown to exhibit stronger growth inhibition against human hepatoblastoma HepG-2 cells in comparison with PEP-1. Flow cytometric analysis showed that PEP-2 exerted a stimulatory effect on apoptosis of HepG-2 cells, and induced the cell-cycle arrest at the S-phase, with the observation of intracellular ROS production. These findings suggest that the polysaccharides, especially PEP-2, are very important nutritional ingredients responsible for the anticancer health benefits of P. eryngii.

  5. Inhibition of MEK/ERK activation attenuates autophagy and potentiates pemetrexed-induced activity against HepG2 hepatocellular carcinoma cells.

    Science.gov (United States)

    Tong, Yongxi; Huang, Haijun; Pan, Hongying

    2015-01-02

    Identification of efficient chemo-therapeutic/chemo-preventive agents for treatment of hepatocellular carcinoma (HCC) is important. In this study, we examined the activity of pemetrexed, an anti-folate chemotherapy drug, against HepG2 human HCC cells. Pemetrexed treatment in vitro exerted weak but significant cytotoxic activity against HepG2 cells. When analyzing the possible pemetrexed-resistance factors, we indentified that pemetrexed treatment in HepG2 cells induced cyto-protective autophagy activation, evidenced by GFP-light chain 3B (LC3B) puncta formation, p62 downregulation and Beclin-1/LC3B-II upregulation. Correspondingly, autophagy inhibitors, including bafliomycin A1, 3-methyladenine and chloroquine, enhanced pemetrexed-induced cytotoxicity against HepG2 cells. Further, RNAi-mediated knockdown of Beclin-1 in HepG2 cells also increased pemetrexed sensitivity. Pemetrexed activated MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) signaling in HepG2 cells, which was required for autophagy induction. Pharmacological inhibition of MEK/ERK activation attenuated pemetrexed-induced autophagy, enhanced HepG2 cell death and apoptosis. In summary, pemetrexed activates MEK/ERK-dependent cyto-protective autophagy, and inhibition of this pathway potentiates pemetrexed's activity in HepG2 cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. 当归酰天芥菜定对 L1210,HepG2和HCC细胞的抑制作用%Inhibitory effects of angeloyl-heliotridine on L1210, HepG2 and HCC cells

    Institute of Scientific and Technical Information of China (English)

    王跃虎; 王建华

    2003-01-01

    目的: 研究当归酰天芥菜定(AH)的抗肿瘤活性及机制. 方法: 通过细胞生长曲线的绘制,分析AH对L1210细胞的抑制作用;通过MTT比色法,测定AH对L1210,HepG2和HCC细胞的抑制率;通过流式细胞术(FCM)检测AH对L1210细胞周期的影响. 结果: 在AH作用下,L1210细胞生长曲线斜率和最大生长密度降低. AH 80 mg*L-1对L1210细胞的抑制率为18.18%;AH 320 mg*L-1对HepG2和HCC细胞抑制率分别为12.28%和10.24%. FCM检测表明,AH 80 mg*L-1作用24 h后,L1210细胞的G2-M期细胞明显增加(P<0.01). 结论: AH对L1210细胞有一定的抑制作用,对HepG2和HCC细胞抑制作用较差. AH对L1210细胞的抑制作用发生在细胞周期的G2-M期.

  7. 苯并恶嗪酮类化合物对HepG2细胞生长的影响%Benzoxazine Compounds on The Growth of HepG2 Cells

    Institute of Scientific and Technical Information of China (English)

    闫宇鹏; 商现星; 李旭琴; 汪一波

    2016-01-01

    目的 研究三种苯并恶嗪酮类化合物对HepG2细胞生长的影响,从而确定对肝细胞毒副作用情况.方法 HepG2细胞分别在药物处理组(luM,10uM,50uM,75uM,100uM)及对照组(单纯培养液)中体外培养24h.应用CCK-8检测细胞增殖情况;荧光倒置显微镜下观察对照组和药物处理组HepG2细胞的形态学变化;同时用Muse细胞分析计数仪器计算细胞死亡情况.结果 药物处理组HepG2细胞的增殖率均低于对照组,与对照组相比,浓度为1uM的药物处理组无显著性差别(P>0.05);其他浓度的药物处理组则能显著地抑制细胞增殖.并且苯并恶嗪酮类化合物对HepG2细胞的增殖抑制率均随着药物浓度的升高而逐渐升高;经吖啶橙染色后,在荧光倒置显微镜下观察,可见细胞数量减少,体积缩小,核浓缩等变化;在用Muse计数时加药组随着药物浓度升高细胞死亡或凋亡数量会增加.结论 苯并恶嗪酮类化合物对肝癌细胞生长有影响,推测该药物可能对肝细胞毒副作用大.