WorldWideScience

Sample records for line expressing gfp

  1. [Identification of occult disseminated tumor cells by recombinant herpes simplex virus expressing GFP (HSV(GFP))].

    Science.gov (United States)

    Han, Xiang-ping; Shi, Gui-lan; Wang, Cheng-feng; Li, Jie; Zhang, Jian-wei; Zhang, Yu; Zhang, Shu-ren; Liu, Bin-lei

    2012-12-01

    To develop a novel rapid protocol for the detection of occult disseminated tumor cells by a recombinant herpes simplex virus expressing GFP (HSV(GFP)). Tumor cells of seven cell lines were exposed to HSV(GFP) and then examined for GFP expression by fluorescence microscopy. Various numbers of tumor cells (10, 100, 1000, 10 000) were mixed into 2 ml human whole blood, separated with lymphocytes separation medium, exposed to HSV(GFP), incubated at 37°C for 6 - 24 h and then counted for the number of green cells under the fluorescence microscope. Some clinical samples including peripheral blood, pleural effusion, ascites, spinal fluid from tumor-bearing patients were screened using this protocol in parallel with routine cytological examination. HSV(GFP) was able to infect all 7 tumor cell lines indicating that the HSV(GFP) can be used to detect different types of tumor cells. The detection sensitivity was 10 cancer cells in 2 ml whole blood. In the clinical samples, there were 4/15 positive by routine cytological examination but 11/15 positive by HSV(GFP), indicating a higher sensitivity of this new protocol. Recombinant herpes simplex virus-mediated green fluorescence is a simple and sensitive technique for the identification of occult disseminated cancer cells including circulating tumor cells (CTCs).

  2. Ghrelin receptor expression and colocalization with anterior pituitary hormones using a GHSR-GFP mouse line.

    Science.gov (United States)

    Reichenbach, Alex; Steyn, Frederik J; Sleeman, Mark W; Andrews, Zane B

    2012-11-01

    Ghrelin is the endogenous ligand for the GH secretagogue receptor (GHSR) and robustly stimulates GH release from the anterior pituitary gland. Ghrelin also regulates the secretion of anterior pituitary hormones including TSH, LH, prolactin (PRL), and ACTH. However, the relative contribution of a direct action at the GHSR in the anterior pituitary gland vs. an indirect action at the GHSR in the hypothalamus remains undefined. We used a novel GHSR-enhanced green fluorescent protein (eGFP) reporter mouse to quantify GHSR coexpression with GH, TSH, LH, PRL, and ACTH anterior pituitary cells in males vs. females and in chow-fed or calorie-restricted (CR) mice. GHSR-eGFP-expressing cells were only observed in anterior pituitary. The number of GHSR-eGFP-expressing cells was higher in male compared with females, and CR did not affect the GHSR-eGFP cell number. Double staining revealed 77% of somatotrophs expressed GHSR-eGFP in both males and females. Nineteen percent and 12.6% of corticotrophs, 21% and 9% of lactotrophs, 18% and 19% of gonadotrophs, and 3% and 9% of males and females, respectively, expressed GHSR-eGFP. CR increased the number of TSH cells, but suppressed the number of lactotrophs and gonadotrophs, expressing GHSR-eGFP compared with controls. These studies support a robust stimulatory action of ghrelin via the GHSR on GH secretion and identify a previously unknown sexual dimorphism in the GHSR expression in the anterior pituitary. CR affects GHSR-eGFP expression on lactotrophs, gonadotrophs, and thyrotrophs, which may mediate reproductive function and energy metabolism during periods of negative energy balance. The low to moderate expression of GHSR-eGFP suggests that ghrelin plays a minor direct role on remaining anterior pituitary cells.

  3. Expression Analysis of CB2-GFP BAC Transgenic Mice.

    Science.gov (United States)

    Schmöle, Anne-Caroline; Lundt, Ramona; Gennequin, Benjamin; Schrage, Hanna; Beins, Eva; Krämer, Alexandra; Zimmer, Till; Limmer, Andreas; Zimmer, Andreas; Otte, David-Marian

    2015-01-01

    The endocannabinoid system (ECS) is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2). As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg) to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

  4. Expression Analysis of CB2-GFP BAC Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Anne-Caroline Schmöle

    Full Text Available The endocannabinoid system (ECS is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2. As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

  5. The effect of excess expression of GFP in a novel heart-specific green fluorescence zebrafish regulated by nppa enhancer at early embryonic development.

    Science.gov (United States)

    Huang, Wen; Deng, Yun; Dong, Wei; Yuan, Wuzhou; Wan, Yongqi; Mo, Xiaoyan; Li, Yongqing; Wang, Zequn; Wang, Yuequn; Ocorr, Karen; Zhang, Bo; Lin, Shuo; Wu, Xiushan

    2011-02-01

    In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.

  6. Transient GFP expression in Nicotiana plumbaginifolia suspension cells: the role of gene silencing, cell death and T-DNA loss.

    Science.gov (United States)

    Weld, R; Heinemann, J; Eady, C

    2001-03-01

    The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.

  7. Plasmodium yoelii yoelii 17XNL constitutively expressing GFP throughout the life cycle.

    Science.gov (United States)

    Ono, Takeshi; Tadakuma, Takushi; Rodriguez, Ana

    2007-03-01

    Plasmodium yoelii is a rodent parasite commonly used as a model to study malaria infection. It is the preferred model parasite for liver-stage immunological studies and is also widely used to study hepatocyte, erythrocyte and mosquito infection. We have generated a P. yoelii yoelii 17XNL line that is stably transfected with the green fluorescent protein (gfp) gene. This parasite line constitutively expresses high levels of GFP during the complete parasite life cycle including liver, blood and mosquito stages. These fluorescent parasites can be used in combination with fluorescence activated cell sorting or live microscopy for a wide range of experimental applications.

  8. Welfare assessment in transgenic pigs expressing green fluorescent protein (GFP)

    DEFF Research Database (Denmark)

    Huber, Reinhard C.; Remuge, Liliana; Carlisle, Ailsa

    2012-01-01

    Since large animal transgenesis has been successfully attempted for the first time about 25 years ago, the technology has been applied in various lines of transgenic pigs. Nevertheless one of the concerns with the technology—animal welfare—has not been approached through systematic assessment...... and statements regarding the welfare of transgenic pigs have been based on anecdotal observations during early stages of transgenic programs. The main aim of the present study was therefore to perform an extensive welfare assessment comparing heterozygous transgenic animals expressing GFP with wildtype animals...... months. The absence of significant differences between GFP and wildtype animals in the parameters observed suggests that the transgenic animals in question are unlikely to suffer from deleterious effects of transgene expression on their welfare and thus support existing anecdotal observations of pigs...

  9. Prolongation of GFP-expressed skin graft after intrathymic injection of GFP positive splenocytes in adult rat

    Science.gov (United States)

    Hakamata, Yoji; Igarashi, Yuka; Murakami, Takashi; Kobayashi, Eiji

    2006-02-01

    GFP is a fluorescent product of the jellyfish Aequorea victoria and has been used for a variety of biological experiments as a reporter molecule. While GFP possesses advantages for the non-invasive imaging of viable cells, GFP-positive cells are still considered potential xeno-antigens. It is difficult to observe the precise fate of transplanted cells/organs in recipients without immunological control. The aim of this study was to determine whether intrathymic injection of GFP to recipients and the depletion of peripheral lymphocytes could lead to donor-specific unresponsiveness to GFP-expressed cell. LEW rats were administered intraperitoneally with 0.2 ml of anti-rat lymphocyte serum (ALS) 1 day prior to intrathymic injection of donor splenocytes or adeno-GFP vector. Donor cells and vector were non-invasively inoculated into the thymus under high frequency ultrasound imaging using an echo-guide. All animals subsequently received a 7 days GFP-expressed skin graft from the same genetic background GFP LEW transgenic rat. Skin graft survival was greater in rats injected with donor splenocytes (23.6+/-9.1) compared with adeno-GFP (13.0+/-3.7) or untreated control rats (9.5+/-1.0). Intrathymic injection of donor antigen into adult rats can induce donor-specific unresponsiveness. Donor cells can be observed for a long-term in recipients with normal immunity using this strategy.

  10. Chemical clearing and dehydration of GFP expressing mouse brains.

    Science.gov (United States)

    Becker, Klaus; Jährling, Nina; Saghafi, Saiedeh; Weiler, Reto; Dodt, Hans-Ulrich

    2012-01-01

    Generally, chemical tissue clearing is performed by a solution consisting of two parts benzyl benzoate and one part benzyl alcohol. However, prolonged exposure to this mixture markedly reduces the fluorescence of GFP expressing specimens, so that one has to compromise between clearing quality and fluorescence preservation. This can be a severe drawback when working with specimens exhibiting low GFP expression rates. Thus, we screened for a substitute and found that dibenzyl ether (phenylmethoxymethylbenzene, CAS 103-50-4) can be applied as a more GFP-friendly clearing medium. Clearing with dibenzyl ether provides improved tissue transparency and strikingly improved fluorescence intensity in GFP expressing mouse brains and other samples as mouse spinal cords, or embryos. Chemical clearing, staining, and embedding of biological samples mostly requires careful foregoing tissue dehydration. The commonly applied tissue dehydration medium is ethanol, which also can markedly impair GFP fluorescence. Screening for a substitute also for ethanol we found that tetrahydrofuran (CAS 109-99-9) is a more GFP-friendly dehydration medium than ethanol, providing better tissue transparency obtained by successive clearing. Combined, tetrahydrofuran and dibenzyl ether allow dehydration and chemical clearing of even delicate samples for UM, confocal microscopy, and other microscopy techniques.

  11. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    International Nuclear Information System (INIS)

    Wang Hongmin; Monteiro, Mervyn J.

    2007-01-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner. Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases

  12. Chemical clearing and dehydration of GFP expressing mouse brains.

    Directory of Open Access Journals (Sweden)

    Klaus Becker

    Full Text Available Generally, chemical tissue clearing is performed by a solution consisting of two parts benzyl benzoate and one part benzyl alcohol. However, prolonged exposure to this mixture markedly reduces the fluorescence of GFP expressing specimens, so that one has to compromise between clearing quality and fluorescence preservation. This can be a severe drawback when working with specimens exhibiting low GFP expression rates. Thus, we screened for a substitute and found that dibenzyl ether (phenylmethoxymethylbenzene, CAS 103-50-4 can be applied as a more GFP-friendly clearing medium. Clearing with dibenzyl ether provides improved tissue transparency and strikingly improved fluorescence intensity in GFP expressing mouse brains and other samples as mouse spinal cords, or embryos. Chemical clearing, staining, and embedding of biological samples mostly requires careful foregoing tissue dehydration. The commonly applied tissue dehydration medium is ethanol, which also can markedly impair GFP fluorescence. Screening for a substitute also for ethanol we found that tetrahydrofuran (CAS 109-99-9 is a more GFP-friendly dehydration medium than ethanol, providing better tissue transparency obtained by successive clearing. Combined, tetrahydrofuran and dibenzyl ether allow dehydration and chemical clearing of even delicate samples for UM, confocal microscopy, and other microscopy techniques.

  13. Variable expression of GFP in different populations of peripheral cholinergic neurons of ChATBAC-eGFP transgenic mice.

    Science.gov (United States)

    Brown, T Christopher; Bond, Cherie E; Hoover, Donald B

    2018-03-01

    Immunohistochemistry is used widely to identify cholinergic neurons, but this approach has some limitations. To address these problems, investigators developed transgenic mice that express enhanced green fluorescent protein (GFP) directed by the promoter for choline acetyltransferase (ChAT), the acetylcholine synthetic enzyme. Although, it was reported that these mice express GFP in all cholinergic neurons and non-neuronal cholinergic cells, we could not detect GFP in cardiac cholinergic nerves in preliminary experiments. Our goals for this study were to confirm our initial observation and perform a qualitative screen of other representative autonomic structures for the presences of GFP in cholinergic innervation of effector tissues. We evaluated GFP fluorescence of intact, unfixed tissues and the cellular localization of GFP and vesicular acetylcholine transporter (VAChT), a specific cholinergic marker, in tissue sections and intestinal whole mounts. Our experiments identified two major tissues where cholinergic neurons and/or nerve fibers lacked GFP: 1) most cholinergic neurons of the intrinsic cardiac ganglia and all cholinergic nerve fibers in the heart and 2) most cholinergic nerve fibers innervating airway smooth muscle. Most cholinergic neurons in airway ganglia stained for GFP. Cholinergic systems in the bladder and intestines were fully delineated by GFP staining. GFP labeling of input to ganglia with long preganglionic projections (vagal) was sparse or weak, while that to ganglia with short preganglionic projections (spinal) was strong. Total absence of GFP might be due to splicing out of the GFP gene. Lack of GFP in nerve projections from GFP-positive cell bodies might reflect a transport deficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cell Type-Specific Manipulation with GFP-Dependent Cre Recombinase

    Science.gov (United States)

    Tang, Jonathan C Y; Rudolph, Stephanie; Dhande, Onkar S; Abraira, Victoria E; Choi, Seungwon; Lapan, Sylvain; Drew, Iain R; Drokhlyansky, Eugene; Huberman, Andrew D; Regehr, Wade G; Cepko, Constance L

    2016-01-01

    Summary There are many transgenic GFP reporter lines that allow visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. Here we report the creation of a method that exploits GFP for gene manipulation, Cre Recombinase Dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, leading to effective recombination selectively in GFP-labeled cells. Further, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP+ cells, we demonstrate that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins. PMID:26258682

  15. Expression of the Acyl-Coenzyme A: Cholesterol Acyltransferase GFP Fusion Protein in Sf21 Insect Cells

    Science.gov (United States)

    Mahtani, H. K.; Richmond, R. C.; Chang, T. Y.; Chang, C. C. Y.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    . Protein crystals grown in microgravity are often larger and have fewer defects than those grown on earth. The analysis of higher quality space-grown crystals will assist in structure-based drug design. We have successfully grown GCAT-infected Sf21 cells in both adhesion and suspension cultures. Expression levels of GCAT in cell lines such as Sf9 and High Five appear to be reduced. We intend to replicate GCAT expression in all three cell lines using the NASA rotating wall bioreactor which effectively duplicates a microgravity environment. The bioreactor itself could be launched to study the expression of the GFP and GCAT proteins in the actual microgravity environment achieved in orbit.

  16. GFP expression by intracellular gene delivery of GFP-coding fragments using nanocrystal quantum dots

    International Nuclear Information System (INIS)

    Hoshino, Akiyoshi; Manabe, Noriyoshi; Fujioka, Kouki; Hanada, Sanshiro; Yamamoto, Kenji; Yasuhara, Masato; Kondo, Akihiko

    2008-01-01

    Gene therapy is an attractive approach to supplement a deficient gene function. Although there has been some success with specific gene delivery using various methods including viral vectors and liposomes, most of these methods have a limited efficiency or also carry a risk for oncogenesis. We herein report that quantum dots (QDs) conjugated with nuclear localizing signal peptides (NLSP) successfully introduced gene-fragments with promoter elements, which promoted the expression of the enhanced green fluorescent protein (eGFP) gene in mammalian cells. The expression of eGFP protein was observed when the QD/gene-construct was added to the culture media. The gene-expression efficiency varied depending on multiple factors around QDs, such as (1) the reading direction of the gene-fragments, (2) the quantity of gene-fragments attached on the surface of the QD-constructs, (3) the surface electronic charges varied according to the structure of the QD/gene-constructs, and (4) the particle size of QD/gene complex varied according to the structure and amounts of gene-fragments. Using this QD/gene-construct system, eGFP protein could be detected 28 days after the gene-introduction whereas the fluorescence of QDs had disappeared. This system therefore provides another method for the intracellular delivery of gene-fragments without using either viral vectors or specific liposomes.

  17. The expression of GFP under the control of fibroin promotor in ...

    Indian Academy of Sciences (India)

    ... mediated rapid amplification of cDNA ends (RLM-RACE). The expression vector (pGFP-N2/Fib) was constructed by use of replacing the CMV promoter with the fibroin promoter. The results of visual screening under a fluorescent inverted microscope and Western blot analysis indicated that the GFP gene was expressed in ...

  18. Assessing phagotrophy in the mixotrophic ciliate Paramecium bursaria using GFP-expressing yeast cells.

    Science.gov (United States)

    Miura, Takashi; Moriya, Hisao; Iwai, Sosuke

    2017-07-03

    We used cells of the yeast Saccharomyces cerevisiae expressing green fluorescent protein (GFP) as fluorescently labelled prey to assess the phagocytic activities of the mixotrophic ciliate Paramecium bursaria, which harbours symbiotic Chlorella-like algae. Because of different fluorescence spectra of GFP and algal chlorophyll, ingested GFP-expressing yeast cells can be distinguished from endosymbiotic algal cells and directly counted in individual P. bursaria cells using fluorescence microscopy. By using GFP-expressing yeast cells, we found that P. bursaria altered ingestion activities under different physiological conditions, such as different growth phases or the presence/absence of endosymbionts. Use of GFP-expressing yeast cells allowed us to estimate the digestion rates of live prey of the ciliate. In contrast to the ingestion activities, the digestion rate within food vacuoles was not affected by the presence of endosymbionts, consistent with previous findings that food and perialgal vacuoles are spatially and functionally separated in P. bursaria. Thus, GFP-expressing yeast may provide a valuable tool to assess both ingestion and digestion activities of ciliates that feed on eukaryotic organisms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Polarized expression of the GFP-tagged rat V(1a) vasopressin receptor.

    Science.gov (United States)

    Campos, D M; Reyes, C E; Sarmiento, J; Navarro, J; González, C B

    2001-11-30

    We investigated the targeting of the V(1a) receptor fused with the green fluorescence protein (V(1a)R-GFP) in polarized MDCK cells. Cells expressing V(1a)R-GFP displayed binding to vasopressin (AVP) and AVP-induced calcium responses, similar to cells expressing the wild-type V1a receptor. Interestingly, as with the wild-type V(1a)R, V(1a)R-GFP is preferentially distributed in the basolateral side of MDCK cells as monitored by confocal microscopy. Furthermore, AVP induced internalization of GFP-tagged receptors. Therefore, the GFP-tagged V(1a) receptor retains all the sorting signals of the wild-type receptor and offers an excellent system to elucidate the mechanisms of cell trafficking of V(1a) receptors.

  20. Identification of Secretory Odontoblasts Using DMP1-GFP Transgenic Mice

    Science.gov (United States)

    Balic, Anamaria; Mina, Mina

    2011-01-01

    Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts. PMID:21172466

  1. Detection of gfp expression from gfp-labelled bacteria spot ...

    African Journals Online (AJOL)

    SERVER

    Green fluorescent protein (GFP) as a marker gene has facilitated biological research ... behaviour of B501gfp1 in sugarcane plant tissues over .... Bacteria population changes over time on the stem tissue (parenchyma tissues and intercellular.

  2. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    Directory of Open Access Journals (Sweden)

    Arthur M Talman

    2010-02-01

    Full Text Available The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.

  3. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    Science.gov (United States)

    Talman, Arthur M; Blagborough, Andrew M; Sinden, Robert E

    2010-02-10

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.

  4. A replicating plasmid-based vector for GFP expression in Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Ishag, H Z A; Liu, M J; Yang, R S; Xiong, Q Y; Feng, Z X; Shao, G Q

    2016-04-28

    Mycoplasma hyopneumoniae (M. hyopneumoniae) causes porcine enzootic pneumonia (PEP) that significantly affects the pig industry worldwide. Despite the availability of the whole genome sequence, studies on the pathogenesis of this organism have been limited due to the lack of a genetic manipulation system. Therefore, the aim of the current study was to generate a general GFP reporter vector based on a replicating plasmid. Here, we describe the feasibility of GFP reporter expression in M. hyopneumoniae (strain 168L) controlled by the p97 gene promoter of this mycoplasma. An expression plasmid (pMD18-TOgfp) containing the p97 gene promoter, and origin of replication (oriC) of M. hyopneumoniae, tetracycline resistant marker (tetM), and GFP was constructed and used to transform competent M. hyopneumoniae cells. We observed green fluorescence in M. hyopneumoniae transformants under fluorescence microscopy, which indicates that there was expression of the GFP reporter that was driven by the p97 gene promoter. Additionally, an electroporation method for M. hyopneumoniae with an efficiency of approximately 1 x 10(-6) transformants/μg plasmid DNA was optimized and is described herein. In conclusion, our data demonstrate the susceptibility of M. hyopneumoniae to genetic manipulation whereby foreign genes are expressed. This work may encourage the development of genetic tools to manipulate the genome of M. hyopneumoniae for functional genomic analyses.

  5. eGFP expression under the Uchl1 promoter labels corticospinal motor neurons and a subpopulation of degeneration resistant spinal motor neurons in ALS mouse models

    Science.gov (United States)

    Yasvoina, Marina V.

    Current understanding of basic cellular and molecular mechanisms for motor neuron vulnerability during motor neuron disease initiation and progression is incomplete. The complex cytoarchitecture and cellular heterogeneity of the cortex and spinal cord greatly impedes our ability to visualize, isolate, and study specific neuron populations in both healthy and diseased states. We generated a novel reporter line, the Uchl1-eGFP mouse, in which cortical and spinal components of motor neuron circuitry are genetically labeled with eGFP under the Uchl1 promoter. A series of cellular and anatomical analyses combined with retrograde labeling, molecular marker expression, and electrophysiology were employed to determine identity of eGFP expressing cells in the motor cortex and the spinal cord of novel Uchl1-eGFP reporter mice. We conclude that eGFP is expressed in corticospinal motor neurons (CSMN) in the motor cortex and a subset of S-type alpha and gamma spinal motor neurons (SMN) in the spinal cord. hSOD1G93A and Alsin-/- mice, mouse models for amyotrophic lateral sclerosis (ALS), were bred to Uchl1-eGFP reporter mouse line to investigate the pathophysiology and underlying mechanisms of CSMN degeneration in vivo. Evidence suggests early and progressive degeneration of CSMN and SMN in the hSOD1G93A transgenic mice. We show an early increase of autophagosome formation in the apical dendrites of vulnerable CSMN in hSOD1G93A-UeGFP mice, which is localized to the apical dendrites. In addition, labeling S-type alpha and gamma SMN in the hSOD1G93A-UeGFP mice provide a unique opportunity to study basis of their resistance to degeneration. Mice lacking alsin show moderate clinical phenotype and mild CSMN axon degeneration in the spinal cord, which suggests vulnerability of CSMN. Therefore, we investigated the CSMN cellular and axon defects in aged Alsin-/- mice bred to Uchl1-eGFP reporter mouse line. We show that while CSMN are preserved and lack signs of degeneration, CSMN axons

  6. The hTH-GFP reporter rat model for the study of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Lorraine Iacovitti

    Full Text Available Parkinson disease (PD is the second leading neurodegenerative disease in the US. As there is no known cause or cure for PD, researchers continue to investigate disease mechanisms and potential new therapies in cell culture and in animal models of PD. In PD, one of the most profoundly affected neuronal populations is the tyrosine hydroxylase (TH-expressing dopaminergic (DA neurons of the substantia nigra pars compacta (SNpc. These DA-producing neurons undergo degeneration while neighboring DA-producing cells of the ventral tegmental area (VTA are largely spared. To aid in these studies, The Michael J. Fox Foundation (MJFF partnered with Thomas Jefferson University and Taconic Inc. to generate new transgenic rat lines carrying the human TH gene promoter driving EGFP using a 11 kb construct used previously to create a hTH-GFP mouse reporter line. Of the five rat founder lines that were generated, three exhibited high level specific GFP fluorescence in DA brain structures (ie. SN, VTA, striatum, olfactory bulb, hypothalamus. As with the hTH-GFP mouse, none of the rat lines exhibit reporter expression in adrenergic structures like the adrenal gland. Line 12141, with its high levels of GFP in adult DA brain structures and minimal ectopic GFP expression in non-DA structures, was characterized in detail. We show here that this line allows for anatomical visualization and microdissection of the rat midbrain into SNpc and/or VTA, enabling detailed analysis of midbrain DA neurons and axonal projections after toxin treatment in vivo. Moreover, we further show that embryonic SNpc and/or VTA neurons, enriched by microdissection or FACS, can be used in culture or transplant studies of PD. Thus, the hTH-GFP reporter rat should be a valuable tool for Parkinson's disease research.

  7. Identification of Cells at Early and Late Stages of Polarization During Odontoblast Differentiation Using pOBCol3.6GFP and pOBCol2.3GFP Transgenic Mice

    Science.gov (United States)

    Balic, Anamaria; Aguila, H. Leonardo; Mina, Mina

    2010-01-01

    Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stage of differentiation along a lineage. In the present study we used primary cell cultures derived from the dental pulp from pOBCol3.6GFP and pOBCol2.3GFP transgenic mice as a model to develop markers for early stages of odontoblast differentiation from progenitor cells. We analyzed the temporal and spatial expression of 2.3-GFP and 3.6-GFP during in vitro mineralization. Using FACS to separate cells based on GFP expression, we obtained relatively homogenous sub-populations of cells and analyzed their dentinogenic potentials and their progression into odontoblasts. Our observations showed that these transgenes were activated before the onset of matrix deposition and in cells at different stages of polarization. The 3.6-GFP transgene was activated in cells in early stages of polarization whereas the 2.3-GFP transgene was activated at a later stage of polarization just before or at the time of formation of secretory odontoblast. PMID:20728593

  8. Two types of Tet-On transgenic lines for doxycycline-inducible gene expression in zebrafish rod photoreceptors and a gateway-based tet-on toolkit.

    Directory of Open Access Journals (Sweden)

    Leah J Campbell

    Full Text Available The ability to control transgene expression within specific tissues is an important tool for studying the molecular and cellular mechanisms of development, physiology, and disease. We developed a Tet-On system for spatial and temporal control of transgene expression in zebrafish rod photoreceptors. We generated two transgenic lines using the Xenopus rhodopsin promoter to drive the reverse tetracycline-controlled transcriptional transactivator (rtTA, one with self-reporting GFP activity and one with an epitope tagged rtTA. The self-reporting line includes a tetracycline response element (TRE-driven GFP and, in the presence of doxycycline, expresses GFP in larval and adult rods. A time-course of doxycycline treatment demonstrates that maximal induction of GFP expression, as determined by the number of GFP-positive rods, is reached within approximately 24 hours of drug treatment. The epitope-tagged transgenic line eliminates the need for the self-reporting GFP activity by expressing a FLAG-tagged rtTA protein. Both lines demonstrate strong induction of TRE-driven transgenes from plasmids microinjected into one-cell embryos. These results show that spatial and temporal control of transgene expression can be achieved in rod photoreceptors. Additionally, system components are constructed in Gateway compatible vectors for the rapid cloning of doxycycline-inducible transgenes and use in other areas of zebrafish research.

  9. Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines.

    Directory of Open Access Journals (Sweden)

    Margaret Rohrbaugh

    Full Text Available Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern.We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31 gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl, a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology.These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these proteins.

  10. A modified GFP facilitates counting membrane protein subunits by step-wise photobleaching in Arabidopsis.

    Science.gov (United States)

    Song, Kai; Xue, Yiqun; Wang, Xiaohua; Wan, Yinglang; Deng, Xin; Lin, Jinxing

    2017-06-01

    Membrane proteins exert functions by forming oligomers or molecular complexes. Currently, step-wise photobleaching has been applied to count the fluorescently labelled subunits in plant cells, for which an accurate and reliable control is required to distinguish individual subunits and define the basal fluorescence. However, the common procedure using immobilized GFP molecules is obviously not applicable for analysis in living plant cells. Using the spatial intensity distribution analysis (SpIDA), we found that the A206K mutation reduced the dimerization of GFP molecules. Further ectopic expression of Myristoyl-GFP A206K driven by the endogenous AtCLC2 promoter allowed imaging of individual molecules at a low expression level. As a result, the percentage of dimers in the transgenic pCLC2::Myristoyl-mGFP A206K line was significantly reduced in comparison to that of the pCLC2::Myristoyl-GFP line, confirming its application in defining the basal fluorescence intensity of GFP. Taken together, our results demonstrated that pCLC2::Myristoyl-mGFP A206K can be used as a standard control for monomer GFP, facilitating the analysis of the step-wise photobleaching of membrane proteins in Arabidopsis thaliana. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii

    Science.gov (United States)

    Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping

    2008-08-01

    To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.

  12. Flt3 ligand-eGFP-reporter expression characterizes functionally distinct subpopulations of CD150+ long-term repopulating murine hematopoietic stem cells.

    Science.gov (United States)

    Tornack, Julia; Kawano, Yohei; Garbi, Natalio; Hämmerling, Günter J; Melchers, Fritz; Tsuneto, Motokazu

    2017-09-01

    The pool of hematopoietic stem cells (HSCs) in the bone marrow is a mixture of resting, proliferating, and differentiating cells. Long-term repopulating HSCs (LT-HSC) are routinely enriched as Lin - Sca1 + c-Kit + CD34 - Flt3 - CD150 + CD48 - cells. The Flt3 ligand (Flt3L) and its receptor Flt3 are important regulators of HSC maintenance, expansion and differentiation. Using Flt3L-eGFP reporter mice, we show that endogenous Flt3L-eGFP-reporter RNA expression correlates with eGFP-protein expression. This Flt3L-eGFP-reporter expression distinguishes two LT-HSC populations with differences in gene expressions and reconstituting potential. Thus, Flt3L-eGFP-reporter low cells are identified as predominantly resting HSCs with long-term repopulating capacities. In contrast, Flt3L-eGFP-reporter high cells are in majority proliferating HSCs with only short-term repopulating capacities. Flt3L-eGFP-reporter low cells express hypoxia, autophagy-inducing, and the LT-HSC-associated genes HoxB5 and Fgd5, while Flt3L-eGFP-reporter high HSCs upregulate genes involved in HSC differentiation. Flt3L-eGFP-reporter low cells develop to Flt3L-eGFP-reporter high cells in vitro, although Flt3L-eGFP-reporter high cells remain Flt3L-eGFP-reporter high . CD150 + Flt3L-eGFP-reporter low cells express either endothelial protein C receptor (EPCR) or CD41, while Flt3L-eGFP-reporter high cells do express EPCR but not CD41. Thus, FACS-enrichment of Flt3/ Flt3L-eGFP-reporter negative, Lin - CD150 + CD48 - EPCR + CD41 + HSCs allows a further 5-fold enrichment of functional LT-HSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Plasmodium falciparum Strain Expressing GFP throughout the Parasite's Life-Cycle

    OpenAIRE

    Talman, Arthur M.; Blagborough, Andrew M.; Sinden, Robert E.

    2010-01-01

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete spo...

  14. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo.

    Science.gov (United States)

    Iqbal, Asif J; McNeill, Eileen; Kapellos, Theodore S; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E W; Stylianou, Elena; McShane, Helen; Channon, Keith M; Chawla, Ajay; Greaves, David R

    2014-10-09

    The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. © 2014 by The American Society of Hematology.

  15. Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2000-01-01

    Microtubule organization plays an important role in plant morphogenesis; however, little is known about how microtubule arrays transit from one organized state to another. The use of a genetically incorporated fluorescent marker would allow long-term observation of microtubule behavior in living cells. Here, we have characterized a Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell line that had been stably transformed with a gfp-mbd construct previously demonstrated to label microtubules (J. Marc et al., 1998, Plant Cell 10: 1927-1939). Fluorescence levels were low, but interphase and mitotic microtubule arrays, as well as the transitions between these arrays, could be observed in individual gfp-mbd-transformed cells. By comparing several attributes of transformed and untransformed cells it was concluded that the transgenic cells are not adversely affected by low-level expression of the transgene and that these cells will serve as a useful and accurate model system for observing microtubule reorganization in vivo. Indeed, some initial observations were made that are consistent with the involvement of motor proteins in the transition between the spindle and phragmoplast arrays. Our observations also support the role of the perinuclear region in nucleating microtubules at the end of cell division with a progressive shift of these microtubules and/or nucleating activity to the cortex to form the interphase cortical array.

  16. AUTOCOUNTER, an ImageJ JavaScript to analyze LC3B-GFP expression dynamics in autophagy-induced astrocytoma cells.

    Science.gov (United States)

    Fassina, L; Magenes, G; Inzaghi, A; Palumbo, S; Allavena, G; Miracco, C; Pirtoli, L; Biggiogera, M; Comincini, S

    2012-10-11

    An ImageJ JavaScript, AUTOCOUNTER, was specifically developed to monitor and measure LC3B-GFP expression in living human astrocytoma cells, namely T98G and U373-MG. Discrete intracellular GFP fluorescent spots derived from transduction of a Baculovirus replication-defective vector (BacMam LC3B-GFP), followed by microscope examinations at different times. After viral transgene expression, autophagy was induced by Rapamycin administration and assayed in ph-p70S6K/p70S6K and LC3B immunoblotting expression as well as by electron microscopy examinations. A mutated transgene, defective in LC3B lipidation, was employed as a negative control to further exclude fluorescent dots derived from protein intracellular aggregation. The ImageJ JavaScript was then employed to evaluate and score the dynamics changes of the number and area of LC3B-GFP puncta per cell in time course assays and in complex microscope examinations. In conclusion, AUTOCOUNTER enabled to quantify LC3B-GFP expression and to monitor dynamics changes in number and shapes of autophagosomal-like vesicles: it might therefore represent a suitable algorithmic tool for in vitro autophagy modulation studies.

  17. Generation and characterization of neurogenin1-GFP transgenic medaka with potential for rapid developmental neurotoxicity screening

    International Nuclear Information System (INIS)

    Fan Chunyang; Simmons, Steven O.; Law, Sheran H.W.; Jensen, Karl; Cowden, John; Hinton, David; Padilla, Stephanie; Ramabhadran, Ram

    2011-01-01

    Fish models such as zebrafish and medaka are increasingly used as alternatives to rodents in developmental and toxicological studies. These developmental and toxicological studies can be facilitated by the use of transgenic reporters that permit the real-time, noninvasive observation of the fish. Here we report the construction and characterization of transgenic medaka lines expressing green fluorescent protein (GFP) under the control of the zebrafish neurogenin 1 (ngn1) gene promoter. Neurogenin (ngn1) is a helix-loop-helix transcription factor expressed in proliferating neuronal progenitor cells early in neuronal differentiation and plays a crucial role in directing neurogenesis. GFP expression was detected from 24 h post-fertilization until hatching, in a spatial pattern consistent with the previously reported zebrafish ngn1 expression. Temporal expression of the transgene parallels the expression profile of the endogenous medaka ngn1 transcript. Further, we demonstrate that embryos from the transgenic line permit the non-destructive, real-time screening of ngn1 promoter-directed GFP expression in a 96-well format, enabling higher throughput studies of developmental neurotoxicants. This strain has been deposited with and maintained by the National BioResource Project and is available on request ( (http://www.shigen.nig.ac.jp/medaka/strainDetailAction.do?quickSearch=true and strainId=5660)).

  18. Overexpression of the Synthetic Chimeric Native-T-phylloplanin-GFP Genes Optimized for Monocot and Dicot Plants Renders Enhanced Resistance to Blue Mold Disease in Tobacco (N. tabacum L.

    Directory of Open Access Journals (Sweden)

    Dipak K. Sahoo

    2014-01-01

    Full Text Available To enhance the natural plant resistance and to evaluate the antimicrobial properties of phylloplanin against blue mold, we have expressed a synthetic chimeric native-phylloplanin-GFP protein fusion in transgenic Nicotiana tabacum cv. KY14, a cultivar that is highly susceptible to infection by Peronospora tabacina. The coding sequence of the tobacco phylloplanin gene along with its native signal peptide was fused with GFP at the carboxy terminus. The synthetic chimeric gene (native-phylloplanin-GFP was placed between the modified Mirabilis mosaic virus full-length transcript promoter with duplicated enhancer domains and the terminator sequence from the rbcSE9 gene. The chimeric gene, expressed in transgenic tobacco, was stably inherited in successive plant generations as shown by molecular characterization, GFP quantification, and confocal fluorescent microscopy. Transgenic plants were morphologically similar to wild-type plants and showed no deleterious effects due to transgene expression. Blue mold-sensitivity assays of tobacco lines were performed by applying P. tabacina sporangia to the upper leaf surface. Transgenic lines expressing the fused synthetic native-phyllopanin-GFP gene in the leaf apoplast showed resistance to infection. Our results demonstrate that in vivo expression of a synthetic fused native-phylloplanin-GFP gene in plants can potentially achieve natural protection against microbial plant pathogens, including P. tabacina in tobacco.

  19. Generation of chickens expressing Cre recombinase.

    Science.gov (United States)

    Leighton, Philip A; Pedersen, Darlene; Ching, Kathryn; Collarini, Ellen J; Izquierdo, Shelley; Jacob, Roy; van de Lavoir, Marie-Cecile

    2016-10-01

    Cre recombinase has been extensively used for genome engineering in transgenic mice yet its use in other species has been more limited. Here we describe the generation of transgenic chickens expressing Cre recombinase. Green fluorescent protein (GFP)-positive chicken primordial germ cells were stably transfected with β-actin-Cre-recombinase using phiC31 integrase and transgenic chickens were generated. Cre recombinase activity was verified by mating Cre birds to birds carrying a floxed transgene. Floxed sequences were only excised in offspring from roosters that inherited the Cre recombinase but were excised in all offspring from hens carrying the Cre recombinase irrespective of the presence of the Cre transgene. The Cre recombinase transgenic birds were healthy and reproductively normal. The Cre and GFP genes in two of the lines were closely linked whereas the genes segregated independently in a third line. These founders allowed development of GFP-expressing and non-GFP-expressing Cre recombinase lines. These lines of birds create a myriad of opportunities to study developmentally-regulated and tissue-specific expression of transgenes in chickens.

  20. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    International Nuclear Information System (INIS)

    Semaan, Sheila J; Nickells, Robert W

    2010-01-01

    Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116 BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. HCT116 BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the

  1. Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry.

    Directory of Open Access Journals (Sweden)

    François Vromman

    Full Text Available Chlamydiae are obligate intracellular bacteria. These pathogens develop inside host cells through a biphasic cycle alternating between two morphologically distinct forms, the infectious elementary body and the replicative reticulate body. Recently, C. trachomatis strains stably expressing fluorescent proteins were obtained. The fluorochromes are expressed during the intracellular growth of the microbe, allowing bacterial visualization by fluorescence microscopy. Whether they are also present in the infectious form, the elementary body, to a detectable level has not been studied. Here, we show that a C. trachomatis strain transformed with a plasmid expressing the green fluorescent protein (GFP accumulates sufficient quantities of the probe in elementary bodies for detection by microscopy and flow cytometry. Adhesion of single bacteria was detected. The precise kinetics of bacterial entry were determined by microscopy using automated procedures. We show that during the intracellular replication phase, GFP is a convenient read-out for bacterial growth with several advantages over current methods. In particular, infection rates within a non-homogenous cell population are easily quantified. Finally, in spite of their small size, individual elementary bodies are detected by flow cytometers, allowing for direct enumeration of a bacterial preparation. In conclusion, GFP-expressing chlamydiae are suitable to monitor, in a quantitative manner, progression throughout the developmental cycle. This will facilitate the identification of the developmental steps targeted by anti-chlamydial drugs or host factors.

  2. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    Science.gov (United States)

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  3. [Construction and identification of eukaryotic plasmid pGC-silencer-U6/Neo/GFP/ABCG2].

    Science.gov (United States)

    Yu, Yanping; Zhang, Song; Kong, Weijia

    2010-09-01

    To construct three short hairpin RNA (shRNA) interference expression plasmid vectors of human ABCG2 gene, to assay the expression of ABCG2 in a human nasopharyngeal carcinoma (NPC) cell line, CEN-2 cell line, and to detect the RNAi effect of shRNA. Targeting ABCG2 gene sequence, three plasmid expression vectors coding for shRNA and a control vector containing random DNA fragment were constructed. The recombinant plasmids were amplified in Ecoli. DH5 and then identified by restriction digestion, PCR and sequencing. The recombinant plasmids were transfected into CEN-2 cells. ABCG2 expression was assayed by real-time quantitative PCR and Western blot. The construction of pGC-silencer-U6/Neo/GFP/ABCG2 was succeed. The shRNA plasmids significantly down-regulated the ABCG2 expression in CEN-2 cells, at both mRNA level and protein level. Recombinant plasmid 1 had the strongest effect compared with plasmids 2 and 3 (P < 0.05), with an inhibition ratio of 75% at the mRNA level and 68% at the protein level. pGC-silencer-U6/Neo/GFP/ABCG2 has been successfully constructed and it can down-regulate ABCG2 expression after transfected into CEN-2 cells, which could help further studies of ABCG2 functions CEN-2 cell line and contribute to the NPC gene therapy.

  4. Efficient transformation and expression of gfp gene in Valsa mali var. mali.

    Science.gov (United States)

    Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai

    2015-01-01

    Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species.

  5. Non-Target Effects of Green Fluorescent Protein (GFP-Derived Double-Stranded RNA (dsRNA-GFP Used in Honey Bee RNA Interference (RNAi Assays

    Directory of Open Access Journals (Sweden)

    Francis M. F. Nunes

    2013-01-01

    Full Text Available RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP-derived double-stranded RNA (dsRNA-GFP is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  6. Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded RNA (dsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays.

    Science.gov (United States)

    Nunes, Francis M F; Aleixo, Aline C; Barchuk, Angel R; Bomtorin, Ana D; Grozinger, Christina M; Simões, Zilá L P

    2013-01-04

    RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  7. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    Directory of Open Access Journals (Sweden)

    Semaan Sheila J

    2010-10-01

    Full Text Available Abstract Background Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Methods Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. Results HCT116BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Conclusion Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of

  8. A Bacterial Biosensor for Oxidative Stress Using the Constitutively Expressed Redox-Sensitive Protein roGFP2

    Directory of Open Access Journals (Sweden)

    Carlos R. Arias-Barreiro

    2010-06-01

    Full Text Available A highly specific, high throughput-amenable bacterial biosensor for chemically induced cellular oxidation was developed using constitutively expressed redox-sensitive green fluorescent protein roGFP2 in E. coli (E. coli-roGFP2. Disulfide formation between two key cysteine residues of roGFP2 was assessed using a double-wavelength ratiometric approach. This study demonstrates that only a few minutes were required to detect oxidation using E. coli-roGFP2, in contrast to conventional bacterial oxidative stress sensors. Cellular oxidation induced by hydrogen peroxide, menadione, sodium selenite, zinc pyrithione, triphenyltin and naphthalene became detectable after 10 seconds and reached the maxima between 80 to 210 seconds, contrary to Cd2+, Cu2+, Pb2+, Zn2+ and sodium arsenite, which induced the oxidation maximum immediately. The lowest observable effect concentrations (in ppm were determined as 1.0 x 10−7 (arsenite, 1.0 x 10−4 (naphthalene, 1.0 x 10−4 (Cu2+, 3.8 x 10−4 (H2O2, 1.0 x 10−3 (Cd2+, 1.0 x 10−3 (Zn2+, 1.0 x 10−2 (menadione, 1.0 (triphenyltin, 1.56 (zinc pyrithione, 3.1 (selenite and 6.3 (Pb2+, respectively. Heavy metal-induced oxidation showed unclear response patterns, whereas concentration-dependent sigmoid curves were observed for other compounds. In vivo GSH content and in vitro roGFP2 oxidation assays together with E. coli-roGFP2 results suggest that roGFP2 is sensitive to redox potential change and thiol modification induced by environmental stressors. Based on redox-sensitive technology, E. coli-roGFP2 provides a fast comprehensive detection system for toxicants that induce cellular oxidation.

  9. Interaction of PLP with GFP-MAL2 in the human oligodendroglial cell line HOG.

    Directory of Open Access Journals (Sweden)

    Raquel Bello-Morales

    Full Text Available The velocity of the nerve impulse conduction of vertebrates relies on the myelin sheath, an electrically insulating layer that surrounds axons in both the central and peripheral nervous systems, enabling saltatory conduction of the action potential. Oligodendrocytes are the myelin-producing glial cells in the central nervous system. A deeper understanding of the molecular basis of myelination and, specifically, of the transport of myelin proteins, will contribute to the search of the aetiology of many dysmyelinating and demyelinating diseases, including multiple sclerosis. Recent investigations suggest that proteolipid protein (PLP, the major myelin protein, could reach myelin sheath by an indirect transport pathway, that is, a transcytotic route via the plasma membrane of the cell body. If PLP transport relies on a transcytotic process, it is reasonable to consider that this myelin protein could be associated with MAL2, a raft protein essential for transcytosis. In this study, carried out with the human oligodendrocytic cell line HOG, we show that PLP colocalized with green fluorescent protein (GFP-MAL2 after internalization from the plasma membrane. In addition, both immunoprecipitation and immunofluorescence assays, indicated the existence of an interaction between GFP-MAL2 and PLP. Finally, ultrastructural studies demonstrated colocalization of GFP-MAL2 and PLP in vesicles and tubulovesicular structures. Taken together, these results prove for the first time the interaction of PLP and MAL2 in oligodendrocytic cells, supporting the transcytotic model of PLP transport previously suggested.

  10. Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP.

    Science.gov (United States)

    Irnaten, M; Neff, R A; Wang, J; Loewy, A D; Mettenleiter, T C; Mendelowitz, D

    2001-01-01

    A fluorescent transneuronal marker capable of labeling individual neurons in a central network while maintaining their normal physiology would permit functional studies of neurons within entire networks responsible for complex behaviors such as cardiorespiratory reflexes. The Bartha strain of pseudorabies virus (PRV), an attenuated swine alpha herpesvirus, can be used as a transsynaptic marker of neural circuits. Bartha PRV invades neuronal networks in the CNS through peripherally projecting axons, replicates in these parent neurons, and then travels transsynaptically to continue labeling the second- and higher-order neurons in a time-dependent manner. A Bartha PRV mutant that expresses green fluorescent protein (GFP) was used to visualize and record from neurons that determine the vagal motor outflow to the heart. Here we show that Bartha PRV-GFP-labeled neurons retain their normal electrophysiological properties and that the labeled baroreflex pathways that control heart rate are unaltered by the virus. This novel transynaptic virus permits in vitro studies of identified neurons within functionally defined neuronal systems including networks that mediate cardiovascular and respiratory function and interactions. We also demonstrate superior laryngeal motorneurons fire spontaneously and synapse on cardiac vagal neurons in the nucleus ambiguus. This cardiorespiratory pathway provides a neural basis of respiratory sinus arrhythmias.

  11. Identification of the MUC2 Promoter as a Strong Promoter for Intestinal Gene Expression through Generation of Transgenic Quail Expressing GFP in Gut Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Rachel M. Woodfint

    2017-01-01

    Full Text Available Identification of tissue- and stage-specific gene promoters is valuable for delineating the functional roles of specific genes in genetically engineered animals. Here, through the comparison of gene expression in different tissues by analysis of a microarray database, the intestinal specificity of mucin 2 (MUC2 expression was identified in mice and humans, and further confirmed in chickens by RT-PCR (reverse transcription-PCR analysis. An analysis of cis-acting elements in avian MUC2 gene promoters revealed conservation of binding sites, within a 2.9 kb proximal promoter region, for transcription factors such as caudal type homeobox 2 (CDX2, GATA binding protein 4 (GATA4, hepatocyte nuclear factor 4 α (HNF4A, and transcription factor 4 (TCF4 that are important for maintaining intestinal homeostasis and functional integrity. By generating transgenic quail, we demonstrated that the 2.9 kb chicken MUC2 promoter could drive green fluorescent protein (GFP reporter expression exclusively in the small intestine, large intestine, and ceca. Fluorescence image analysis further revealed GFP expression in intestine epithelial cells. The GFP expression was barely detectable in the embryonic intestine, but increased during post-hatch development. The spatiotemporal expression pattern of the reporter gene confirmed that the 2.9 kb MUC2 promoter could retain the regulatory element to drive expression of target genes in intestinal tissues after hatching. This new transgene expression system, using the MUC2 promoter, will provide a new method of overexpressing target genes to study gene function in the avian intestine.

  12. Establishment of IL-7 Expression Reporter Human Cell Lines, and Their Feasibility for High-Throughput Screening of IL-7-Upregulating Chemicals.

    Directory of Open Access Journals (Sweden)

    Yeon Sook Cho

    Full Text Available Interleukin-7 (IL-7 is a cytokine essential for T cell homeostasis, and is clinically important. However, the regulatory mechanism of IL-7 gene expression is not well known, and a systematic approach to screen chemicals that regulate IL-7 expression has not yet been developed. In this study, we attempted to develop human reporter cell lines using CRISPR/Cas9-mediated genome editing technology. For this purpose, we designed donor DNA that contains an enhanced green fluorescent protein (eGFP gene, drug selection cassette, and modified homologous arms which are considered to enhance the translation of the eGFP reporter transcript, and also a highly efficient single-guide RNA with a minimal off-target effect to target the IL-7 start codon region. By applying this system, we established IL-7 eGFP reporter cell lines that could report IL-7 gene transcription based on the eGFP protein signal. Furthermore, we utilized the cells to run a pilot screen campaign for IL-7-upregulating chemicals in a high-throughput format, and identified a chemical that can up-regulate IL-7 gene transcription. Collectively, these results suggest that our IL-7 reporter system can be utilized in large-scale chemical library screening to reveal novel IL-7 regulatory pathways and to identify potential drugs for development of new treatments in immunodeficiency disease.

  13. Characterization of cell lines stably transfected with rubella virus replicons

    International Nuclear Information System (INIS)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-01-01

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was ∼9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  14. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  15. [Genetic transformation of flax (Linum usitatissimum L.) with chimeric GFP-TUA6 gene for visualisation of microtubules].

    Science.gov (United States)

    Shisha, E N; Korkhovoĭ, V I; Baer, G Ia; Guzenko, E V; Lemesh, V A; Kartel', N A; Emets, A I; Blium, Ia B

    2013-01-01

    The data of Agrobacterium-mediated transformation of some Linum usitatissimum cultivars zoned on the territories of Belarus and Ukraine with the plasmid carrying chimeric GFP-TUA6 gene and nptII gene as selectable marker conferring resistance to kanamycin are presented in this study. Transformation was affected by a number of factors including optical density (OD600), time of inoculation of explants with Agrobacterium and co-culture conditions. Transgenic nature of obtained lines was confirmed by PCR analysis. Expression of GFP-TUA6 gene was detected with confocal laser scanning microscopy. The obtained transgenic lines can be used for further functional studies the role of microtubules in the processes of building the flax fibres and resistance to wind.

  16. The Impact of GFP Reporter Gene Transduction and Expression on Metabolomics of Placental Mesenchymal Stem Cells Determined by UHPLC-Q/TOF-MS

    Directory of Open Access Journals (Sweden)

    Jinfeng Yang

    2017-01-01

    Full Text Available Introduction. Green fluorescent protein (GFP is widely used as a reporter gene in regenerative medicine research to label and track stem cells. Here, we examined whether expressing GFP gene may impact the metabolism of human placental mesenchymal stem cells (hPMSCs. Methods. The GFP gene was transduced into hPMSCs using lentiviral-based infection to establish GFP+hPMSCs. A sensitive 13C/12C-dansyl labeling LC-MS method targeting the amine/phenol submetabolome was used for in-depth cell metabolome profiling. Results. A total of 1151 peak pairs or metabolites were detected from 12 LC-MS runs. Principal component analysis and partial least squares discriminant analysis showed poor separation, and the volcano plots demonstrated that most of the metabolites were not significantly changed when hPMSCs were tagged with GFP. Overall, 739 metabolites were positively or putatively identified. Only 11 metabolites showed significant changes. Metabolic pathway analyses indicated that three of the identified metabolites were involved in nine pathways. However, these metabolites are unlikely to have a large impact on the metabolic pathways due to their nonessential roles and limited hits in pathway analysis. Conclusion. This study indicated that the expression of ectopic GFP reporter gene did not significantly alter the metabolomics pathways covered by the amine/phenol submetabolome.

  17. Two-photon microscopy imaging of thy1GFP-M transgenic mice: a novel animal model to investigate brain dendritic cell subsets in vivo.

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    Full Text Available Transgenic mice expressing fluorescent proteins in specific cell populations are widely used for in vivo brain studies with two-photon fluorescence (TPF microscopy. Mice of the thy1GFP-M line have been engineered for selective expression of green fluorescent protein (GFP in neuronal populations. Here, we report that TPF microscopy reveals, at the brain surface of these mice, also motile non-neuronal GFP+ cells. We have analyzed the behavior of these cells in vivo and characterized in brain sections their immunophenotype.With TPF imaging, motile GFP+ cells were found in the meninges, subarachnoid space and upper cortical layers. The striking feature of these cells was their ability to move across the brain parenchyma, exhibiting evident shape changes during their scanning-like motion. In brain sections, GFP+ cells were immunonegative to antigens recognizing motile cells such as migratory neuroblasts, neuronal and glial precursors, mast cells, and fibroblasts. GFP+ non-neuronal cells exhibited instead the characteristic features and immunophenotype (CD11c and major histocompatibility complex molecule class II immunopositivity of dendritic cells (DCs, and were immunonegative to the microglial marker Iba-1. GFP+ cells were also identified in lymph nodes and blood of thy1GFP-M mice, supporting their identity as DCs. Thus, TPF microscopy has here allowed the visualization for the first time of the motile behavior of brain DCs in situ. The results indicate that the thy1GFP-M mouse line provides a novel animal model for the study of subsets of these professional antigen-presenting cells in the brain. Information on brain DCs is still very limited and imaging in thy1GFP-M mice has a great potential for analyses of DC-neuron interaction in normal and pathological conditions.

  18. Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

    Science.gov (United States)

    Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande

    2015-01-01

    Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

  19. Isolation, Culture, and Motility Measurements of Epidermal Melanocytes from GFP-Expressing Reporter Mice.

    Science.gov (United States)

    Dagnino, Lina; Crawford, Melissa

    2018-03-27

    In this article, we provide a method to isolate primary epidermal melanocytes from reporter mice, which also allow targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26 mT/mG reporter background, which results in GFP expression in the targeted melanocytic cell population. These cells are isolated and cultured to >95% purity. The cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as capacity for migration. Melanocytes are slow moving cells, and we also provide a method to measure motility using individual cell tracking and data analysis.

  20. Green fluorescent protein (GFP color reporter gene visualizes parvovirus B19 non-structural segment 1 (NS1 transfected endothelial modification.

    Directory of Open Access Journals (Sweden)

    Thomas Wurster

    Full Text Available BACKGROUND: Human Parvovirus B19 (PVB19 has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. METHODS AND FINDINGS: To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP color reporter gene in the non-structural segment 1 (NS1 of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304. The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1 and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147 were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber. NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean ± standard deviation: NS1-GFP vs. control-GFP: 85.3 ± 11.2 vs. 61.6 ± 8.1; P<0.05 and induces endothelial expression of EMMPRIN/CD147 (CD147: mean ± SEM: NS1-GFP vs. control-GFP: 114 ± 15.3 vs. 80 ± 0.91; P<0.05 compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05. The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR analysis. CONCLUSIONS: GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage.

  1. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Margarita Chumarina

    2017-03-01

    Full Text Available Mouse embryonic stem cell (mESC lines were derived by crossing heterozygous transgenic (tg mice expressing green fluorescent protein (GFP under the control of the rat tyrosine hydroxylase (TH promoter, with homozygous alpha-synuclein (aSYN mice expressing human mutant SNCAA53T under the control of the mouse Prion promoter (MoPrP, or wildtype (WT mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons.

  2. Isolation of progenitor cells from GFP-transgenic pigs and transplantation to the retina of allorecipients

    DEFF Research Database (Denmark)

    Klassen, Henry; Warfvinge, Karin; Schwartz, Philip H

    2008-01-01

    to survival as allografts and integrate into the host retinal architecture, we isolated donor cells from fetal green fluorescent protein (GFP)-transgenic pigs. Cultures were propagated from the brain, retina, and corneo-scleral limbus. GFP expression rapidly increased with time in culture, although lower...... in conjunction with photoreceptor markers and glial fibrillary acid protein (GFAP), thus suggesting downregulation of GFP during differentiation. Following transplantation, GFP expression allowed histological visualization of integrated cells and extension of fine processes to adjacent plexiform layers. GFP...

  3. Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreas-specific elastaseA gene promoter

    International Nuclear Information System (INIS)

    Wan Haiyan; Korzh, Svitlana; Li Zhen; Mudumana, Sudha Puttur; Korzh, Vladimir; Jiang Yunjin; Lin Shuo; Gong Zhiyuan

    2006-01-01

    In contrast to what we know on development of endocrine pancreas, the formation of exocrine pancreas remains poorly understood. To create an animal model that allows observation of exocrine cell differentiation, proliferation, and morphogenesis in living animals, we used the zebrafish elastaseA (elaA) regulatory sequence to develop transgenic zebrafish that display highly specific exocrine pancreas expression of GFP in both larvae and adult. By following GFP expression, we found that the pancreas in early development was a relatively compact organ and later extended posterior along the intestine. By transferring the elaA:gfp transgene into slow muscle omitted mutant that is deficient in receiving Hedgehog signals, we further showed that Hedgehog signaling is required for exocrine morphogenesis but not for cell differentiation. We also applied the morpholino knockdown and toxin-mediated cell ablation approaches to this transgenic line. We showed that the development of exocrine pancreas is Islet-1 dependent. Injection of the diphtheria toxin A (DTA) construct under the elastaseA promoter resulted in selective ablation of exocrine cells while the endocrine cells and other endodermal derivatives (liver and intestine) were not affected. Thus, our works demonstrated the new transgenic line provided a useful experimental tool in analyzing exocrine pancreas development

  4. Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells.

    Science.gov (United States)

    Ganini, Douglas; Leinisch, Fabian; Kumar, Ashutosh; Jiang, JinJie; Tokar, Erik J; Malone, Christine C; Petrovich, Robert M; Mason, Ronald P

    2017-08-01

    Fluorescent proteins are an important tool that has become omnipresent in life sciences research. They are frequently used for localization of proteins and monitoring of cells [1,2]. Green fluorescent protein (GFP) was the first and has been the most used fluorescent protein. Enhanced GFP (eGFP) was optimized from wild-type GFP for increased fluorescence yield and improved expression in mammalian systems [3]. Many GFP-like fluorescent proteins have been discovered, optimized or created, such as the red fluorescent protein TagRFP [4]. Fluorescent proteins are expressed colorless and immature and, for eGFP, the conversion to the fluorescent form, mature, is known to produce one equivalent of hydrogen peroxide (H 2 O 2 ) per molecule of chromophore [5,6]. Even though it has been proposed that this process is non-catalytic and generates nontoxic levels of H 2 O 2 [6], this study investigates the role of fluorescent proteins in generating free radicals and inducing oxidative stress in biological systems. Immature eGFP and TagRFP catalytically generate the free radical superoxide anion (O 2 •- ) and H 2 O 2 in the presence of NADH. Generation of the free radical O 2 •- and H 2 O 2 by eGFP in the presence of NADH affects the gene expression of cells. Many biological pathways are altered, such as a decrease in HIF1α stabilization and activity. The biological pathways altered by eGFP are known to be implicated in the pathophysiology of many diseases associated with oxidative stress; therefore, it is critical that such experiments using fluorescent proteins are validated with alternative methodologies and the results are carefully interpreted. Since cells inevitably experience oxidative stress when fluorescent proteins are expressed, the use of this tool for cell labeling and in vivo cell tracing also requires validation using alternative methodologies. Published by Elsevier B.V.

  5. Model system for plant cell biology: GFP imaging in living onion epidermal cells

    Science.gov (United States)

    Scott, A.; Wyatt, S.; Tsou, P. L.; Robertson, D.; Allen, N. S.

    1999-01-01

    The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted.

  6. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium

    NARCIS (Netherlands)

    Franz, Eelco; Visser, Anna A; Van Diepeningen, Anne D; Klerks, Michel M; Termorshuizen, Aad J; van Bruggen, Ariena H C

    The primary objective of this study was to determine the possibility of internalization of GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium (S. Typhimurium) strains MAE 110 (multi-cellular morphology) and 119 (wild type morphology) into lettuce seedlings (Lactuca

  7. New Wistar Kyoto and spontaneously hypertensive rat transgenic models with ubiquitous expression of green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Ana Isabel Garcia Diaz

    2016-04-01

    Full Text Available The Wistar Kyoto (WKY rat and the spontaneously hypertensive (SHR rat inbred strains are well-established models for human crescentic glomerulonephritis (CRGN and metabolic syndrome, respectively. Novel transgenic (Tg strains add research opportunities and increase scientific value to well-established rat models. We have created two novel Tg strains using Sleeping Beauty transposon germline transgenesis, ubiquitously expressing green fluorescent protein (GFP under the rat elongation factor 1 alpha (EF1a promoter on the WKY and SHR genetic backgrounds. The Sleeping Beauty system functioned with high transgenesis efficiency; 75% of new rats born after embryo microinjections were transgene positive. By ligation-mediated PCR, we located the genome integration sites, confirming no exonic disruption and defining a single or low copy number of the transgenes in the new WKY-GFP and SHR-GFP Tg lines. We report GFP-bright expression in embryos, tissues and organs in both lines and show preliminary in vitro and in vivo imaging data that demonstrate the utility of the new GFP-expressing lines for adoptive transfer, transplantation and fate mapping studies of CRGN, metabolic syndrome and other traits for which these strains have been extensively studied over the past four decades.

  8. Excited state proton transfer in strongly enhanced GFP (sGFP2).

    Science.gov (United States)

    van Oort, Bart; ter Veer, Mirelle J T; Groot, Marie Louise; van Stokkum, Ivo H M

    2012-07-07

    Proton transfer is an elementary process in biology. Green fluorescent protein (GFP) has served as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. We have used pump-dump-probe spectroscopy to study how proton transfer through the 'proton-wire' around the chromophore is affected by a combination of mutations in a modern GFP variety (sGFP2). The results indicate that in H(2)O, after absorption of a photon, a proton is transferred (A* → I*) in 5 ps, and back-transferred from a ground state intermediate (I → A) in 0.3 ns, similar to time constants found with GFPuv, although sGFP2 shows less heterogeneous proton transfer. This suggests that the mutations left the proton-transfer largely unchanged, indicating the robustness of the proton-wire. We used pump-dump-probe spectroscopy in combination with target analysis to probe suitability of the sGFP2 fluorophore for super-resolution microscopy.

  9. Potential utility of eGFP-expressing NOG mice (NOG-EGFP as a high purity cancer sampling system

    Directory of Open Access Journals (Sweden)

    Shima Kentaro

    2012-06-01

    Full Text Available Abstract Purpose It is still technically difficult to collect high purity cancer cells from tumor tissues, which contain noncancerous cells. We hypothesized that xenograft models of NOG mice expressing enhanced green fluorescent protein (eGFP, referred to as NOG-EGFP mice, may be useful for obtaining such high purity cancer cells for detailed molecular and cellular analyses. Methods Pancreato-biliary cancer cell lines were implanted subcutaneously to compare the tumorigenicity between NOG-EGFP mice and nonobese diabetic/severe combined immunodeficiency (NOD/SCID mice. To obtain high purity cancer cells, the subcutaneous tumors were harvested from the mice and enzymatically dissociated into single-cell suspensions. Then, the cells were sorted by fluorescence-activated cell sorting (FACS for separation of the host cells and the cancer cells. Thereafter, the contamination rate of host cells in collected cancer cells was quantified by using FACS analysis. The viability of cancer cells after FACS sorting was evaluated by cell culture and subsequent subcutaneous reimplantation in NOG-EGFP mice. Results The tumorigenicity of NOG-EGFP mice was significantly better than that of NOD/SCID mice in all of the analyzed cell lines (p  Conclusions This method provides a novel cancer sampling system for molecular and cellular analysis with high accuracy and should contribute to the development of personalized medicine.

  10. Immunogenicity and Efficacy of Live L. tarentolae Expressing KMP11-NTGP96-GFP Fusion as a Vaccine Candidate against Experimental Visceral Leishmaniasis Caused by L. infantum

    Directory of Open Access Journals (Sweden)

    Vahid NASIRI

    2016-10-01

    Full Text Available Background: The aim of present study was to evaluate the protective efficacy of live recombinant L. tarentolae expressing KMP11-NTGP96-GFP fusion as candidates for live engineered recombinant vaccine against visceral leishmaniasis in BALB/c mice.Methods: KMP-11 and NT-GP96 genes cloned into the pJET1.2/blunt cloning vector and then into pEGFP-N1 expression vector. The KMP-11, NT-GP96 and GFP fused in pEGFP-N1 and subcloned into Leishmanian pLEXSY-neo vector. Finally this construct was transferred to L. tarentolae by electroporation. Tranfection was confirmed by SDS-PAGE, WESTERN blot, flowcytometry and RT-PCR. Protective efficacy of this construct was evaluated as a vaccine candidate against visceral leishmaniasis. Parasite burden, humoral and cellular immune responses were assessed before and at 4 weeks after challenge.Results: KMP- NT-Gp96-GFP Fusion was cloned successfully into pLEXSY -neo vector and this construct successfully transferred to L. tarentolae. Finding indicated that immunization with L. tarentolae tarentolae-KMP11-NTGP96-GFP provides significant protection against visceral leishmaniasis and was able to induce an increased expression of IFN-γ and IgG2a. Following challenge, a reduced parasite load in the spleen of the KMP11-NTGP96-GFP immunized group was detected.Conclusion: The present study is the first to use a combination of a Leishmania antigen with an immunologic antigen in live recombinant L. tarentolae and results suggest that L. tarentolae-KMP11-NTGP96-GFP could be considered as a potential tool in vaccination against visceral leishmaniasis and this vaccination strategy could provide a potent rout for future vaccine development. 

  11. hNIS-IRES-eGFP Dual Reporter Gene Imaging

    Directory of Open Access Journals (Sweden)

    Jiantu Che

    2005-04-01

    Full Text Available The human and rodent sodium iodide symporters (NIS have recently been cloned and are being investigated as potential therapeutic and reporter genes. We have extended this effort by constructing an internal ribosomal entry site (IRES-linked human NIS (hNIS-enhanced green fluorescent protein (eGFP hybrid reporter gene for both nuclear and optical imaging. A self-inactivating retroviral vector, termed pQCNIG, containing hNIS-IRES-eGFP dual reporter gene, driven by a constitutive CMV promoter, was constructed and used to generate RG2-pQCNIG cells and RG2-pQCNIG tumors. 131I-iodide and 99mTcO4-pertechnetate accumulation studies plus fluorescence microscopy and intensity assays were performed in vitro, and gamma camera imaging studies in RG2-pQCNIG and RG2 tumor-bearing athymic rats were performed. RG2-pQCNIG cells expressed high levels of hNIS protein and showed high intensity of eGFP fluorescence compared with RG2 wild-type cells. RG2-pQCNIG cells accumulated Na131I and 99mTcO4– to a 50:1 and a 170:1 tissue/medium ratio at 10 min, compared with 0.8:1.2 tissue/medium ratio in wild-type RG2 cells. A significant correlation between radiotracer accumulation and eGFP fluorescence intensity was demonstrated. RG2-pQCNIG and RG2 tumors were readily differentiated by in vivo gamma camera imaging; radiotracer uptake increased in RG2-pQCNIG but declined in RG2 tumors over the 50-min imaging period. Stomach and thyroid were the major organs of radionuclide accumulation. The IRES-linked hNIS-eGFP dual reporter gene is functional and stable in transduced RG2-pQCNIG cells. Optical and nuclear imaging of tumors produced from these cell lines provides the opportunity to monitor tumor growth and response to therapy. These studies indicate the potential for a wider application of hNIS reporter imaging and translation into patient studies using radioisotopes that are currently available for human use for both SPECT and PET imaging.

  12. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression.

    Science.gov (United States)

    Nocarova, Eva; Fischer, Lukas

    2009-04-22

    Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with

  13. Cardiac-specific activation of Cre expression at late fetal development

    International Nuclear Information System (INIS)

    Opherk, Jan P.; Yampolsky, Peter; Hardt, Stefan E.; Schoels, Wolfgang; Katus, Hugo A.; Koenen, Michael; Zehelein, Joerg

    2007-01-01

    In a first step towards dissecting molecular mechanisms that contribute to the development of cardiac diseases, we have generated transgenic mice that express a Cre-GFP fusion protein under the transcriptional control of a 4.3 kb murine cardiac Troponin I gene (cTnI) promoter. Cre-GFP expression, similar in three transgenic lines, is described in one line. In mouse embryos, transgenic for the Cre-GFP and ROSA lacZ reporter allele, first Cre-mediated recombination appeared at 16.5 dpc selectively at the heart. Like the endogenous cTnI gene, transgenic Cre expression showed a slow rise through fetal development that increased neonatally. Bitransgenic hearts, stained at 30 days of age, showed intense signals in ventricular and atrial myocytes while no recombination occurred in other tissues. The delayed onset of Cre activity in cTnI-Cre mice could provide a useful genetic tool to evaluate the function of loxP targeted cardiac genes without interference of recombination during early heart development

  14. Transgenic Xenopus laevis Line for In Vivo Labeling of Nephrons within the Kidney

    Directory of Open Access Journals (Sweden)

    Mark E. Corkins

    2018-04-01

    Full Text Available Xenopus laevis embryos are an established model for studying kidney development. The nephron structure and genetic pathways that regulate nephrogenesis are conserved between Xenopus and humans, allowing for the study of human disease-causing genes. Xenopus embryos are also amenable to large-scale screening, but studies of kidney disease-related genes have been impeded because assessment of kidney development has largely been limited to examining fixed embryos. To overcome this problem, we have generated a transgenic line that labels the kidney. We characterize this cdh17:eGFP line, showing green fluorescent protein (GFP expression in the pronephric and mesonephric kidneys and colocalization with known kidney markers. We also demonstrate the feasibility of live imaging of embryonic kidney development and the use of cdh17:eGFP as a kidney marker for secretion assays. Additionally, we develop a new methodology to isolate and identify kidney cells for primary culture. We also use morpholino knockdown of essential kidney development genes to establish that GFP expression enables observation of phenotypes, previously only described in fixed embryos. Taken together, this transgenic line will enable primary kidney cell culture and live imaging of pronephric and mesonephric kidney development. It will also provide a simple means for high-throughput screening of putative human kidney disease-causing genes.

  15. Construction of recombinant ZNF230/GFP fused plasmids and their expression and cellular localization

    DEFF Research Database (Denmark)

    Xu, Wen-Ming; Zhang, Si-Zhong; Qiu, Wei-Min

    2004-01-01

    To use green fluorescent protein as a marker to study the localization of the fusion protein, the mutant full length cDNAs of human ZNF230 and mouse znf230 with their stop codon TGA changed to TGG were obtained by PCR amplification, and then cloned into pGEM-Teasy vector. After the double enzyme...... cutting, the mutated human and mouse ZNF230(znf230) were inserted into mammalian expression plasmid pEGFP-N1. Thus we constructed the plasmid with fusion gene of ZNF230 and green fluorescent protein(GFP). Then the Cos cell was transfected with the fused gene by liposome. Fluorescence microscopy showed...

  16. Stage-specific fluorescence intensity of GFP and mCherry during sporulation In Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Bailey Kirra

    2010-11-01

    Full Text Available Abstract Background Fluorescent proteins are powerful molecular biology tools that have been used to study the subcellular dynamics of proteins within live cells for well over a decade. Two fluorescent proteins commonly used to enable dual protein labelling are GFP (green and mCherry (red. Sporulation in the Gram positive bacterium Bacillus subtilis has been studied for many years as a paradigm for understanding the molecular basis for differential gene expression. As sporulation initiates, cells undergo an asymmetric division leading to differential gene expression in the small prespore and large mother cell compartments. Use of two fluorescent protein reporters permits time resolved examination of differential gene expression either in the same compartments or between compartments. Due to the spectral properties of GFP and mCherry, they are considered an ideal combination for co-localisation and co-expression experiments. They can also be used in combination with fluorescent DNA stains such as DAPI to correlate protein localisation patterns with the developmental stage of sporulation which can be linked to well characterised changes in DNA staining patterns. Findings While observing the recruitment of the transcription machinery into the forespore of sporulating Bacillus subtilis, we noticed the occurrence of stage-specific fluorescence intensity differences between GFP and mCherry. During vegetative growth and the initial stages of sporulation, fluorescence from both GFP and mCherry fusions behaved similarly. During stage II-III of sporulation we found that mCherry fluorescence was considerably diminished, whilst GFP signals remained clearly visible. This fluorescence pattern reversed during the final stage of sporulation with strong mCherry and low GFP fluorescence. These trends were observed in reciprocal tagging experiments indicating a direct effect of sporulation on fluorescent protein fluorophores. Conclusions Great care should be taken

  17. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle.

    Science.gov (United States)

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I

    2012-12-01

    Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells.

    Science.gov (United States)

    Porciuncula, Angelo; Kumar, Anujith; Rodriguez, Saray; Atari, Maher; Araña, Miriam; Martin, Franz; Soria, Bernat; Prosper, Felipe; Verfaillie, Catherine; Barajas, Miguel

    2016-12-01

    Efficient induction of defined lineages in pluripotent stem cells constitutes the determinant step for the generation of therapeutically relevant replacement cells to potentially treat a wide range of diseases, including diabetes. Pancreatic differentiation has remained an important challenge in large part because of the need to differentiate uncommitted pluripotent stem cells into highly specialized hormone-secreting cells, which has been shown to require a developmentally informed step-by-step induction procedure. Here, in the framework of using induced pluripotent stem cells (iPSCs) to generate pancreatic cells for pancreatic diseases, we have generated and characterized iPSCs from Pdx1-GFP transgenic mice. The use of a GFP reporter knocked into the endogenous Pdx1 promoter allowed us to monitor pancreatic induction based on the expression of Pdx1, a pancreatic master transcription factor, and to isolate a pure Pdx1-GFP + population for downstream applications. Differentiated cultures timely expressed markers specific to each stage and end-stage progenies acquired a rather immature beta-cell phenotype, characterized by polyhormonal expression even among cells highly expressing the Pdx1-GFP reporter. Our findings highlight the utility of employing a fluorescent protein reporter under the control of a master developmental gene in order to devise novel differentiation protocols for relevant cell types for degenerative diseases such as pancreatic beta cells for diabetes. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  19. TALEN/CRISPR-mediated eGFP knock-in add-on at the OCT4 locus does not impact differentiation of human embryonic stem cells towards endoderm.

    Directory of Open Access Journals (Sweden)

    Nicole A J Krentz

    Full Text Available Human embryonic stem cells (hESCs have great promise as a source of unlimited transplantable cells for regenerative medicine. However, current progress on producing the desired cell type for disease treatment has been limited due to an insufficient understanding of the developmental processes that govern their differentiation, as well as a paucity of tools to systematically study differentiation in the lab. In order to overcome these limitations, cell-type reporter hESC lines will be required. Here we outline two strategies using Transcription Activator Like Effector Nucleases (TALENs and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-CRISPR-Associated protein (Cas to create OCT4-eGFP knock-in add-on hESC lines. Thirty-one and forty-seven percent of clones were correctly modified using the TALEN and CRISPR-Cas9 systems, respectively. Further analysis of three correctly targeted clones demonstrated that the insertion of eGFP in-frame with OCT4 neither significantly impacted expression from the wild type allele nor did the fusion protein have a dramatically different biological stability. Importantly, the OCT4-eGFP fusion was easily detected using microscopy, flow cytometry and western blotting. The OCT4 reporter lines remained equally competent at producing CXCR4+ definitive endoderm that expressed a panel of endodermal genes. Moreover, the genomic modification did not impact the formation of NKX6.1+/SOX9+ pancreatic progenitor cells following directed differentiation. In conclusion, these findings demonstrate for the first time that CRISPR-Cas9 can be used to modify OCT4 and highlight the feasibility of creating cell-type specific reporter hESC lines utilizing genome-editing tools that facilitate homologous recombination.

  20. Excited state proton transfer in strongly enhanced GFP (sGFP2)

    NARCIS (Netherlands)

    van Oort, B.F.; ter Veer, M.J.T.; Groot, M.L.; van Stokkum, I.H.M.

    2012-01-01

    Proton transfer is an elementary process in biology. Green fluorescent protein (GFP) has served as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. We have used pump-dump-probe spectroscopy to study

  1. Expression levels of antimicrobial peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection.

    Science.gov (United States)

    Lipsky, Alexander; Joshi, Janak Raj; Carmi, Nir; Yedidia, Iris

    2016-11-20

    The genus Ornithogalum includes several ornamental species that suffer substantial losses from bacterial soft rot caused by Pectobacteria. The absence of effective control measures for use against soft rot bacteria led to the initiation of a project in which a small antimicrobial peptide from an Asian horseshoe crab, tachyplesin (tpnI), was introduced into two commercial cultivars: O. dubium and O. thyrsoides. Disease severity and bacterial colonization were examined in transgenic lines expressing this peptide. Disease resistance was evaluated in six lines of each species by measuring bacterial proliferation in the plant tissue. Three transgenic lines of each species were subjected to further analysis in which the expression level of the transgene was evaluated using RT-PCR and qRT-PCR. The development of disease symptoms and bacterial colonization of the plant tissue were also examined using GFP-expressing strain of P. carotovorum subsp. brasiliense Pcb3. Confocal-microscopy imaging revealed significantly reduced quantities of bacterial cells in the transgenic plant lines that had been challenged with the bacterium. The results clearly demonstrate that tpnI expression reduces bacterial proliferation, colonization and disease symptom (reduced by 95-100%) in the transgenic plant tissues. The quantity of tpnI transcripts, as measured by qRT-PCR, was negatively correlated with the protection afforded to the plants, as measured by the reduced severity of disease symptoms in the tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Generation of an ABCG2GFPn-puro transgenic line - A tool to study ABCG2 expression in mice

    International Nuclear Information System (INIS)

    Orford, Michael; Mean, Richard; Lapathitis, George; Genethliou, Nicholas; Panayiotou, Elena; Panayi, Helen; Malas, Stavros

    2009-01-01

    The ATP-binding cassette (ABC) transporter 2 (ABCG2) is expressed by stem cells in many organs and in stem cells of solid tumors. These cells are isolated based on the side population (SP) phenotype, a Hoechst 3342 dye efflux property believed to be conferred by ABCG2. Because of the limitations of this approach we generated transgenic mice that express Nuclear GFP (GFPn) coupled to the Puromycin-resistance gene, under the control of ABCG2 promoter/enhancer sequences. We show that ABCG2 is expressed in neural progenitors of the developing forebrain and spinal cord and in embryonic and adult endothelial cells of the brain. Using the neurosphere assay, we isolated tripotent ABCG2-expressing neural stem cells from embryonic mouse brain. This transgenic line is a powerful tool for studying the expression of ABCG2 in many tissues and for performing functional studies in different experimental settings.

  3. The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells.

    Science.gov (United States)

    Miao, Yansong; Li, Kwun Yee; Li, Hong-Ye; Yao, Xiaoqiang; Jiang, Liwen

    2008-12-01

    Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.

  4. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine

    Science.gov (United States)

    Oldiges, Daiane P.; Laughery, Jacob M.; Tagliari, Nelson Junior; Leite Filho, Ronaldo Viana; Davis, William C.; da Silva Vaz, Itabajara; Termignoni, Carlos; Knowles, Donald P.; Suarez, Carlos E.

    2016-01-01

    The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST). The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha) promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein–blasticidin deaminase), and HlGST fused to the MSA-1 (merozoite surface antigen 1) signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST) in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on HlGST-Cln-immunized calves

  5. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine.

    Directory of Open Access Journals (Sweden)

    Daiane P Oldiges

    2016-12-01

    Full Text Available The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST. The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein-blasticidin deaminase, and HlGST fused to the MSA-1 (merozoite surface antigen 1 signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on Hl

  6. Generation of an ABCG2{sup GFPn-puro} transgenic line - A tool to study ABCG2 expression in mice

    Energy Technology Data Exchange (ETDEWEB)

    Orford, Michael; Mean, Richard; Lapathitis, George; Genethliou, Nicholas; Panayiotou, Elena; Panayi, Helen [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios 2370, Nicosia (Cyprus); Malas, Stavros, E-mail: smalas@cing.ac.cy [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios 2370, Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2009-06-26

    The ATP-binding cassette (ABC) transporter 2 (ABCG2) is expressed by stem cells in many organs and in stem cells of solid tumors. These cells are isolated based on the side population (SP) phenotype, a Hoechst 3342 dye efflux property believed to be conferred by ABCG2. Because of the limitations of this approach we generated transgenic mice that express Nuclear GFP (GFPn) coupled to the Puromycin-resistance gene, under the control of ABCG2 promoter/enhancer sequences. We show that ABCG2 is expressed in neural progenitors of the developing forebrain and spinal cord and in embryonic and adult endothelial cells of the brain. Using the neurosphere assay, we isolated tripotent ABCG2-expressing neural stem cells from embryonic mouse brain. This transgenic line is a powerful tool for studying the expression of ABCG2 in many tissues and for performing functional studies in different experimental settings.

  7. Characterization and assembly of a GFP-tagged cylindriform silk into hexameric complexes.

    Science.gov (United States)

    Öster, Carl; Svensson Bonde, Johan; Bülow, Leif; Dicko, Cedric

    2014-04-01

    Spider silk has been studied extensively for its attractive mechanical properties and potential applications in medicine and industry. The production of spider silk, however, has been lagging behind for lack of suitable systems. Our approach focuses on solving the production of spider silk by designing, expressing, purifying and characterizing the silk from cylindriform glands. We show that the cylindriform silk protein, in contrast to the commonly used dragline silk protein, is fully folded and stable in solution. With the help of GFP as a fusion tag we enhanced the expression of the silk protein in Escherichia coli and could optimize the downstream processing. Secondary structures analysis by circular dichroism and FTIR shows that the GFP-silk fusion protein is predominantly α-helical, and that pH can trigger a α- to β-transition resulting in aggregation. Structural analysis by small angle X-ray scattering suggests that the GFP-Silk exists in the form of a hexamer in solution. Copyright © 2013 Wiley Periodicals, Inc.

  8. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.

    Science.gov (United States)

    Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki

    2013-08-01

    Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.

  9. Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating hormone.

    Science.gov (United States)

    Harel-Markowitz, Eliane; Gurevich, Michael; Shore, Laurence S; Katz, Adi; Stram, Yehuda; Shemesh, Mordechai

    2009-05-01

    Linearized p-eGFP (plasmid-enhanced green fluorescent protein) or p-hFSH (plasmid human FSH) sequences with the corresponding restriction enzyme were lipofected into sperm genomic DNA. Sperm transfected with p-eGFP were used for artificial insemination in hens, and in 17 out of 19 of the resultant chicks, the exogenous DNA was detected in their lymphocytes as determined by PCR and expressed in tissues as determined by (a) PCR, (b) specific emission of green fluorescence by the eGFP, and (c) Southern blot analysis. A complete homology was found between the Aequorea Victoria eGFP DNA and a 313-bp PCR product of extracted DNA from chick blood cells. Following insemination with sperm lipofected with p-hFSH, transgenic offspring were obtained for two generations as determined by detection of the transgene for human FSH (PCR) and expression of the gene (RT-PCR and quantitative real-time PCR) and the presence of the protein in blood (radioimmunoassay). Data demonstrate that lipofection of plasmid DNA with restriction enzyme is a highly efficient method for the production of transfected sperm to produce transgenic offspring by direct artificial insemination.

  10. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  11. Differential diagnosis of feline leukemia virus subgroups using pseudotype viruses expressing green fluorescent protein.

    Science.gov (United States)

    Nakamura, Megumi; Sato, Eiji; Miura, Tomoyuki; Baba, Kenji; Shimoda, Tetsuya; Miyazawa, Takayuki

    2010-06-01

    Feline leukemia virus (FeLV) is classified into three receptor interference subgroups, A, B and C. In this study, to differentiate FeLV subgroups, we developed a simple assay system using pseudotype viruses expressing green fluorescent protein (GFP). We prepared gfp pseudotype viruses, named gfp(FeLV-A), gfp(FeLV-B) and gfp(FeLV-C) harboring envelopes of FeLV-A, B and C, respectively. The gfp pseudotype viruses completely interfered with the same subgroups of FeLV reference strains on FEA cells (a feline embryonic fibroblast cell line). We also confirmed that the pseudotype viruses could differentiate FeLV subgroups in field isolates. The assay will be useful for differential diagnosis of FeLV subgroups in veterinary diagnostic laboratories in the future.

  12. Expression of cholera toxin B–proinsulin fusion protein in lettuce and tobacco chloroplasts – oral administration protects against development of insulitis in non-obese diabetic mice

    OpenAIRE

    Ruhlman, Tracey; Ahangari, Raheleh; Devine, Andrew; Samsam, Mohtahsem; Daniell, Henry

    2007-01-01

    Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit–human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf material expressing CTB-Pins or, as negative controls, CTB–green fluorescent protein (CTB-GFP) or interferon–GFP (IFN-GFP), or untransformed leaf, were administered orally, each week for 7 weeks, to ...

  13. YGFP: a spectral variant of GFP

    DEFF Research Database (Denmark)

    Hansen, Flemming G.; Atlung, Tove

    2011-01-01

    We describe YGFP, a slow bleaching green fluorescent protein (GFP) with unique spectral properties. YGFP is derived from an Escherichia coli codon-optimized synthetic gfp, mutant 2 derivative. In addition to the GFP-mut 2 changes, it also carries S202F and T203I substitutions. YGFP can be used...

  14. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    International Nuclear Information System (INIS)

    Fujimura, Juri; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-01-01

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  15. [Effect of Recombinant Adenovirus AdE-SH2-Caspase 8 on the Apoptosis of Imatinib-resistant K562/G01 Cell Line].

    Science.gov (United States)

    Wang, Lin; Fei, Chang; Huang, Zheng-Lan; Li, Hui; Liu, Zhang-Lin; Feng, Wen-Li

    2015-08-01

    To investigate the effect of SH2-Caspase 8 fusion protein expressed by recombinant adenovirus AdE-SH2-Caspase8-HA-GFP (SC) on the apoptosis of K562/G01 cell line, which is a BCR/ABL positive chronic myeloid leukemia cell line and resistant to imatinib. The K562/G01 cell line was infected with AdE-SH2-Caspase 8-HA-GFP adenovirus (SC), then the cells were divided into 3 groups: AdE-SH2m-Caspase 8-HA-GFP (SmC) group, AdE-GFP (CMV) group and PBS group as control. The infection efficiency was observed under fluorescent microscopy and by flow cytometry. The expression of fusion protein SH2-Caspase 8-HA was measured by Western blot. The morphology of the cells detected by Wright's staining. The apoptosis of the cells were detected by flow cytometry and DNA ladder. The expression of Caspase 3 and PARP were detected by Western blot. The infection efficiency of SC on K562/G01 cells was high which was confirmed by fluorescent microscopy and FCM. SH2-Caspase 8-HA fusion protein were expressed correctly in K562/G01 cells. After treatment with SC the apoptosis of K562/G01 cells could be observed by microscopy. The result of FCM showed that early apoptosis of K562/G01 cells increased significantly as compared with control groups (P SH2-Caspase 8 fusion protein can induces the apoptosis of K562/G01 cells.

  16. Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    François Brion

    Full Text Available The tg(cyp19a1b-GFP transgenic zebrafish expresses GFP (green fluorescent protein under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i it is only expressed in radial glial progenitors in the brain of fish and (ii it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture, including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective.

  17. The effect of MEP pathway and other inhibitors on the intracellular localization of a plasma membrane-targeted, isoprenylable GFP reporter protein in tobacco BY-2 cells

    Science.gov (United States)

    Bach, Thomas J

    2013-01-01

    We have established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, based on the expression of a dexamethasone-inducible GFP fused to the carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with known inhibitors like oxoclomazone and fosmidomycin, as well as inhibition of the protein geranylgeranyltransferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect the localization. During the present work, this test system has been used to examine the effect of newly designed inhibitors of the MEP pathway and inhibitors of sterol biosynthesis such as squalestatin, terbinafine and Ro48-8071. In addition, we also studied the impact of different post-prenylation inhibitors or those suspected to affect the transport of proteins to the plasma membrane on the localization of the geranylgeranylable fusion protein GFP-BD-CVIL. PMID:24555083

  18. Proton transfer events in GFP

    NARCIS (Netherlands)

    Di Donato, M.; van Wilderen, L.J.G.W.; van Stokkum, I.H.M.; Cohen Stuart, T.A.; Kennis, J.T.M.; Hellingwerf, K.J.; van Grondelle, R.; Groot, M.L.

    2011-01-01

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton

  19. Asparaginase II-GFP fusion as a tool for studying the secretion of the enzyme under nitrogen starvation Fusão asparaginase II-GFP como ferramenta para estudo da via secretora de enzima sobre depleção por nitrogênio

    Directory of Open Access Journals (Sweden)

    Adriana Sotero-Martins

    2003-12-01

    Full Text Available Production of asparaginase II of Saccharomyces cerevisiae is regulated by nitrogen and can be used as a model system for studying other secreted proteins in yeast. Green fluorescent protein (GFP from Aequorea victoria was fused to the carboxy-terminus of the enzyme by genomic integration to the locus ASP3 of S. cerevisiae. We determined asparaginase II activity, mRNA ASP3, mRNA ASP3-GFP and GFP fluorescence. Nitrogen starvation in cells carrying the chimera ASP3-GFP caused an increase in fluorescence and in the expression of ASP3. We have shown that cells producing the chimera Asp3-GFPp displayed the same response to nitrogen starvation as control cells. We demonstrated that Asp3-GFPp can be used for studying asparaginase II secretion under nitrogen starvation in vivo.A produção de asparaginase II de Saccharomyces cerevisiae é regulada por nitrogênio e pode ser utilizada como um sistema modelo para estudar outras proteínas secretadas, em leveduras. A proteína "green fluorescent protein" (GFP de Aequorea victoria foi fusionada à porção carboxi-terminal de Asp3p por integração genômica da sequência de GFP ao locus ASP3. Determinaram-se os níveis de atividade de asparaginase II, mRNA ASP3, mRNA ASP3-GFP e de fluorescência para GFP. A depleção para nitrogênio, em células portadoras do gene quimérico ASP3-GFP, fez aumentar a fluorescência, assim como a expressão de ASP3. Demonstramos que Asp3-GFPp pode ser utilizada para estudar a secreção de asparaginase II em células submetidas à privação de nitrogênio in vivo.

  20. Regional Differences in Striatal Neuronal Ensemble Excitability Following Cocaine and Extinction Memory Retrieval in Fos-GFP Mice.

    Science.gov (United States)

    Ziminski, Joseph J; Sieburg, Meike C; Margetts-Smith, Gabriella; Crombag, Hans S; Koya, Eisuke

    2018-03-01

    Learned associations between drugs of abuse and the drug administration environment have an important role in addiction. In rodents, exposure to a drug-associated environment elicits conditioned psychomotor activation, which may be weakened following extinction (EXT) learning. Although widespread drug-induced changes in neuronal excitability have been observed, little is known about specific changes within neuronal ensembles activated during the recall of drug-environment associations. Using a cocaine-conditioned locomotion (CL) procedure, the present study assessed the excitability of neuronal ensembles in the nucleus accumbens core and shell (NAc core and NAc shell ), and dorsal striatum (DS) following cocaine conditioning and EXT in Fos-GFP mice that express green fluorescent protein (GFP) in activated neurons (GFP+). During conditioning, mice received repeated cocaine injections (20 mg/kg) paired with a locomotor activity chamber (Paired) or home cage (Unpaired). Seven to 13 days later, both groups were re-exposed to the activity chamber under drug-free conditions and Paired, but not Unpaired, mice exhibited CL. In a separate group of mice, CL was extinguished by repeatedly exposing mice to the activity chamber under drug-free conditions. Following the expression and EXT of CL, GFP+ neurons in the NAc core (but not NAc shell and DS) displayed greater firing capacity compared to surrounding GFP- neurons. This difference in excitability was due to a generalized decrease in GFP- excitability following CL and a selective increase in GFP+ excitability following its EXT. These results suggest a role for both widespread and ensemble-specific changes in neuronal excitability following recall of drug-environment associations.

  1. Zebrafish transgenic line huORFZ is an effective living bioindicator for detecting environmental toxicants.

    Directory of Open Access Journals (Sweden)

    Hung-Chieh Lee

    Full Text Available Reliable animal models are invaluable for monitoring the extent of pollution in the aquatic environment. In this study, we demonstrated the potential of huORFZ, a novel transgenic zebrafish line that harbors a human upstream open reading frame of the chop gene fused with GFP reporter, as an animal model for monitoring environmental pollutants and stress-related cellular processes. When huORFZ embryos were kept under normal condition, no leaked GFP signal could be detected. When treated with hazardous chemicals, including heavy metals and endocrine-disrupting chemicals near their sublethal concentrations (LC50, huORFZ embryos exhibited different tissue-specific GFP expression patterns. For further analysis, copper (Cu2+, cadmium (Cd2+ and Chlorpyrifos were applied. Cu2+ triggered GFP responses in skin and muscle, whereas Cd2+ treatment triggered GFP responses in skin, olfactory epithelium and pronephric ducts. Moreover, fluorescence intensity, as exhibited by huORFZ embryos, was dose-dependent. After surviving treated embryos were returned to normal condition, survival rates, as well as TUNEL signals, returned to pretreatment levels with no significant morphological defects observed. Such results indicated the reversibility of treatment conditions used in this study, as long as embryos survived such conditions. Notably, GFP signals decreased along with recovery, suggesting that GFP signaling of huORFZ embryos likely reflected the overall physiological condition of the individual. To examine the performance of the huORFZ line under real-world conditions, we placed huORFZ embryos in different river water samples. We found that the huORFZ embryos correctly detected the presence of various kinds of pollutants. Based on these findings, we concluded that such uORFchop-based system can be integrated into a first-line water alarm system monitoring the discharge of hazardous pollutants.

  2. Zebrafish Transgenic Line huORFZ Is an Effective Living Bioindicator for Detecting Environmental Toxicants

    Science.gov (United States)

    Chu, Chien; Li, Hong-Ping; Tsai, Huai-Jen

    2014-01-01

    Reliable animal models are invaluable for monitoring the extent of pollution in the aquatic environment. In this study, we demonstrated the potential of huORFZ, a novel transgenic zebrafish line that harbors a human upstream open reading frame of the chop gene fused with GFP reporter, as an animal model for monitoring environmental pollutants and stress-related cellular processes. When huORFZ embryos were kept under normal condition, no leaked GFP signal could be detected. When treated with hazardous chemicals, including heavy metals and endocrine-disrupting chemicals near their sublethal concentrations (LC50), huORFZ embryos exhibited different tissue-specific GFP expression patterns. For further analysis, copper (Cu2+), cadmium (Cd2+) and Chlorpyrifos were applied. Cu2+ triggered GFP responses in skin and muscle, whereas Cd2+ treatment triggered GFP responses in skin, olfactory epithelium and pronephric ducts. Moreover, fluorescence intensity, as exhibited by huORFZ embryos, was dose-dependent. After surviving treated embryos were returned to normal condition, survival rates, as well as TUNEL signals, returned to pretreatment levels with no significant morphological defects observed. Such results indicated the reversibility of treatment conditions used in this study, as long as embryos survived such conditions. Notably, GFP signals decreased along with recovery, suggesting that GFP signaling of huORFZ embryos likely reflected the overall physiological condition of the individual. To examine the performance of the huORFZ line under real-world conditions, we placed huORFZ embryos in different river water samples. We found that the huORFZ embryos correctly detected the presence of various kinds of pollutants. Based on these findings, we concluded that such uORFchop-based system can be integrated into a first-line water alarm system monitoring the discharge of hazardous pollutants. PMID:24594581

  3. The membrane skeleton in Paramecium: Molecular characterization of a novel epiplasmin family and preliminary GFP expression results.

    Science.gov (United States)

    Pomel, Sébastien; Diogon, Marie; Bouchard, Philippe; Pradel, Lydie; Ravet, Viviane; Coffe, Gérard; Viguès, Bernard

    2006-02-01

    Previous attempts to identify the membrane skeleton of Paramecium cells have revealed a protein pattern that is both complex and specific. The most prominent structural elements, epiplasmic scales, are centered around ciliary units and are closely apposed to the cytoplasmic side of the inner alveolar membrane. We sought to characterize epiplasmic scale proteins (epiplasmins) at the molecular level. PCR approaches enabled the cloning and sequencing of two closely related genes by amplifications of sequences from a macronuclear genomic library. Using these two genes (EPI-1 and EPI-2), we have contributed to the annotation of the Paramecium tetraurelia macronuclear genome and identified 39 additional (paralogous) sequences. Two orthologous sequences were found in the Tetrahymena thermophila genome. Structural analysis of the 43 sequences indicates that the hallmark of this new multigenic family is a 79 aa domain flanked by two Q-, P- and V-rich stretches of sequence that are much more variable in amino-acid composition. Such features clearly distinguish members of the multigenic family from epiplasmic proteins previously sequenced in other ciliates. The expression of Green Fluorescent Protein (GFP)-tagged epiplasmin showed significant labeling of epiplasmic scales as well as oral structures. We expect that the GFP construct described herein will prove to be a useful tool for comparative subcellular localization of different putative epiplasmins in Paramecium.

  4. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap.

    Science.gov (United States)

    Conway, J E; Rhys, C M; Zolotukhin, I; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1999-06-01

    Recombinant adeno-associated virus type 2 (rAAV) vectors have recently been used to achieve long-term, high level transduction in vivo. Further development of rAAV vectors for clinical use requires significant technological improvements in large-scale vector production. In order to facilitate the production of rAAV vectors, a recombinant herpes simplex virus type I vector (rHSV-1) which does not produce ICP27, has been engineered to express the AAV-2 rep and cap genes. The optimal dose of this vector, d27.1-rc, for AAV production has been determined and results in a yield of 380 expression units (EU) of AAV-GFP produced from 293 cells following transfection with AAV-GFP plasmid DNA. In addition, d27.1-rc was also efficient at producing rAAV from cell lines that have an integrated AAV-GFP provirus. Up to 480 EU/cell of AAV-GFP could be produced from the cell line GFP-92, a proviral, 293 derived cell line. Effective amplification of rAAV vectors introduced into 293 cells by infection was also demonstrated. Passage of rAAV with d27. 1-rc results in up to 200-fold amplification of AAV-GFP with each passage after coinfection of the vectors. Efficient, large-scale production (>109 cells) of AAV-GFP from a proviral cell line was also achieved and these stocks were free of replication-competent AAV. The described rHSV-1 vector provides a novel, simple and flexible way to introduce the AAV-2 rep and cap genes and helper virus functions required to produce high-titer rAAV preparations from any rAAV proviral construct. The efficiency and potential for scalable delivery of d27.1-rc to producer cell cultures should facilitate the production of sufficient quantities of rAAV vectors for clinical application.

  5. Characterization of a Madin-Darby canine kidney cell line stably expressing TRPV5.

    NARCIS (Netherlands)

    Dekker, E. den; Schoeber, J.P.H.; Topala, C.N.; Graaf, S.F.J. van de; Hoenderop, J.G.J.; Bindels, R.J.M.

    2005-01-01

    To provide a cell model for studying specifically the regulation of Ca2+ entry by the epithelial calcium channel transient receptor potential-vanilloid-5 (TRPV5), green fluorescent protein (GFP)-tagged TRPV5 was expressed stably in Madin-Darby canine kidney type I (MDCK) cells. The localization of

  6. NKX6.1 induced pluripotent stem cell reporter lines for isolation and analysis of functionally relevant neuronal and pancreas populations

    Directory of Open Access Journals (Sweden)

    Shailesh Kumar Gupta

    2018-05-01

    Full Text Available Recent studies have reported significant advances in the differentiation of human pluripotent stem cells to clinically relevant cell types such as the insulin producing beta-like cells and motor neurons. However, many of the current differentiation protocols lead to heterogeneous cell cultures containing cell types other than the targeted cell fate. Genetically modified human pluripotent stem cells reporting the expression of specific genes are of great value for differentiation protocol optimization and for the purification of relevant cell populations from heterogeneous cell cultures. Here we present the generation of human induced pluripotent stem cell (iPSC lines with a GFP reporter inserted in the endogenous NKX6.1 locus. Characterization of the reporter lines demonstrated faithful GFP labelling of NKX6.1 expression during pancreas and motor neuron differentiation. Cell sorting and gene expression profiling by RNA sequencing revealed that NKX6.1-positive cells from pancreatic differentiations closely resemble human beta cells. Furthermore, functional characterization of the isolated cells demonstrated that glucose-stimulated insulin secretion is mainly confined to the NKX6.1-positive cells. We expect that the NKX6.1-GFP iPSC lines and the results presented here will contribute to the further refinement of differentiation protocols and characterization of hPSC-derived beta cells and motor neurons for disease modelling and cell replacement therapies. Keywords: Human induced pluripotent stem cells, NKX6.1, Reporter cell line, Directed differentiation, hiPSC-derived beta cells

  7. Evaluation of software sensors for on-line estimation of culture conditions in an Escherichia coli cultivation expressing a recombinant protein.

    Science.gov (United States)

    Warth, Benedikt; Rajkai, György; Mandenius, Carl-Fredrik

    2010-05-03

    Software sensors for monitoring and on-line estimation of critical bioprocess variables have mainly been used with standard bioreactor sensors, such as electrodes and gas analyzers, where algorithms in the software model have generated the desired state variables. In this article we propose that other on-line instruments, such as NIR probes and on-line HPLC, should be used to make more reliable and flexible software sensors. Five software sensor architectures were compared and evaluated: (1) biomass concentration from an on-line NIR probe, (2) biomass concentration from titrant addition, (3) specific growth rate from titrant addition, (4) specific growth rate from the NIR probe, and (5) specific substrate uptake rate and by-product rate from on-line HPLC and NIR probe signals. The software sensors were demonstrated on an Escherichia coli cultivation expressing a recombinant protein, green fluorescent protein (GFP), but the results could be extrapolated to other production organisms and product proteins. We conclude that well-maintained on-line instrumentation (hardware sensors) can increase the potential of software sensors. This would also strongly support the intentions with process analytical technology and quality-by-design concepts. 2010 Elsevier B.V. All rights reserved.

  8. A novel binary T-vector with the GFP reporter gene for promoter characterization.

    Directory of Open Access Journals (Sweden)

    Shu-Ye Jiang

    Full Text Available Several strategies have been developed to clone PCR fragments into desired vectors. However, most of commercially available T-vectors are not binary vectors and cannot be directly used for Agrobacterium-mediated plant genetic transformation. In this study, a novel binary T-vector was constructed by integrating two AhdI restriction sites into the backbone vector pCAMBIA 1300. The T-vector also contains a GFP reporter gene and thus, can be used to analyze promoter activity by monitoring the reporter gene. On the other hand, identification and characterization of various promoters not only benefit the functional annotation of their genes but also provide alternative candidates to be used to drive interesting genes for plant genetic improvement by transgenesis. More than 1,000 putative pollen-specific rice genes have been identified in a genome-wide level. Among them, 67 highly expressed genes were further characterized. One of the pollen-specific genes LOC_Os10g35930 was further surveyed in its expression patterns with more details by quantitative real-time reverse-transcription PCR (qRT-PCR analysis. Finally, its promoter activity was further investigated by analyzing transgenic rice plants carrying the promoter::GFP cassette, which was constructed from the newly developed T-vector. The reporter GFP gene expression in these transgenic plants showed that the promoter was active only in mature but not in germinated pollens.

  9. Rosa26-GFP direct repeat (RaDR-GFP mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo.

    Directory of Open Access Journals (Sweden)

    Michelle R Sukup-Jackson

    2014-06-01

    Full Text Available Homologous recombination (HR is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals.

  10. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils.

    Science.gov (United States)

    Gibbons, Garrett S; Banks, Rachel A; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N; Riddle, Dawn M; Li, Chi; Gathagan, Ronald J; Brown, Hannah J; Zhang, Bin; Trojanowski, John Q; Lee, Virginia M-Y

    2017-11-22

    Neurodegenerative proteinopathies characterized by intracellular aggregates of tau proteins, termed tauopathies, include Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau), and related disorders. Pathological tau proteins derived from human AD brains (AD-tau) act as proteopathic seeds that initiate the templated aggregation of soluble tau upon intracerebral injection into tau transgenic (Tg) and wild-type mice, thereby modeling human tau pathology. In this study, we found that aged Tg mice of both sexes expressing human tau proteins harboring a pathogenic P301L MAPT mutation labeled with green fluorescent protein (T40PL-GFP Tg mouse line) exhibited hyperphosphorylated tau mislocalized to the somatodentritic domain of neurons, but these mice did not develop de novo insoluble tau aggregates, which are characteristic of human AD and related tauopathies. However, intracerebral injections of either T40PL preformed fibrils (PFFs) or AD-tau seeds into T40PL-GFP mice induced abundant intraneuronal pathological inclusions of hyperphosphorylated T40PL-GFP. These injections of pathological tau resulted in the propagation of tau pathology from the injection site to neuroanatomically connected brain regions, and these tau inclusions consisted of both T40PL-GFP and WT endogenous mouse tau. Primary neurons cultured from the brains of neonatal T40PL-GFP mice provided an informative in vitro model for examining the uptake and localization of tau PFFs. These findings demonstrate the seeded aggregation of T40PL-GFP in vivo by synthetic PFFs and human AD-tau and the utility of this system to study the neuropathological spread of tau aggregates. SIGNIFICANCE STATEMENT The stereotypical spread of pathological tau protein aggregates have recently been attributed to the transmission of proteopathic seeds. Despite the extensive use of transgenic mouse models to investigate the propagation of tau pathology in vivo , details of the aggregation

  11. Development of an Immunoperoxidase Monolayer Assay for the Detection of Antibodies against Peste des Petits Ruminants Virus Based on BHK-21 Cell Line Stably Expressing the Goat Signaling Lymphocyte Activation Molecule.

    Directory of Open Access Journals (Sweden)

    Jialin Zhang

    Full Text Available From 2013 to 2015, peste des petits ruminants (PPR broke out in more than half of the provinces of China; thus, the application and development of diagnostic methods are very important for the control of PPR. Here, an immunoperoxidase monolayer assay (IPMA was developed to detect antibodies against PPR. However, during IPMA development, we found that Vero cells were not the appropriate choice because staining results were not easily observed. Therefore, we first established a baby hamster kidney-goat signaling lymphocyte activation molecule (BHK-SLAM cell line that could stably express goat SLAM for at least 20 generations. Compared with Vero cells, the PPR-mediated cytopathic effect occurred earlier in BHK-SLAM cells, and large syncytia appeared after virus infection. Based on this cell line and recombinant PPR virus expressing the green fluorescent protein (GFP (rPPRV-GFP, an IPMA for PPR diagnosis was developed. One hundred and ninety-eight PPR serum samples from goats or sheep were tested by the IPMA and virus neutralization test (VNT. Compared with the VNT, the sensitivity and specificity of the IPMA were 91% and 100%, respectively, and the coincidence rate of the two methods was 95.5%. The IPMA assay could be completed in 4 h, compared with more than 6 d for the VNT using rPPRV-GFP, and it is easily performed, as the staining results can be observed under a microscope. Additionally, unlike the VNT, the IPMA does not require antigen purification, which will reduce its cost. In conclusion, the established IPMA will be an alternative method that replaces the VNT for detecting antibodies against PPRV in the field.

  12. Multiple upstream modules regulate zebrafish myf5 expression

    Directory of Open Access Journals (Sweden)

    Weng Chih-Wei

    2007-01-01

    Full Text Available Abstract Background Myf5 is one member of the basic helix-loop-helix family of transcription factors, and it functions as a myogenic factor that is important for the specification and differentiation of muscle cells. The expression of myf5 is somite- and stage-dependent during embryogenesis through a delicate regulation. However, this complex regulatory mechanism of myf5 is not clearly understood. Results We isolated a 156-kb bacterial artificial chromosome clone that includes an upstream 80-kb region and a downstream 70-kb region of zebrafish myf5 and generated a transgenic line carrying this 156-kb segment fused to a green fluorescent protein (GFP reporter gene. We find strong GFP expression in the most rostral somite and in the presomitic mesoderm during segmentation stages, similar to endogenous myf5 expression. Later, the GFP signals persist in caudal somites near the tail bud but are down-regulated in the older, rostral somites. During the pharyngula period, we detect GFP signals in pectoral fin buds, dorsal rostral myotomes, hypaxial myotomes, and inferior oblique and superior oblique muscles, a pattern that also corresponds well with endogenous myf5 transcripts. To characterize the specific upstream cis-elements that regulate this complex and dynamic expression pattern, we also generated several transgenic lines that harbor various lengths within the upstream 80-kb segment. We find that (1 the -80 kb/-9977 segment contains a fin and cranial muscle element and a notochord repressor; (2 the -9977/-6213 segment contains a strong repressive element that does not include the notochord-specific repressor; (3 the -6212/-2938 segment contains tissue-specific elements for bone and spinal cord; (4 the -2937/-291 segment contains an eye enhancer, and the -2937/-2457 segment is required for notochord and myocyte expression; and (5 the -290/-1 segment is responsible for basal transcription in somites and the presomitic mesoderm. Conclusion We suggest

  13. The Zebrafish Anillin-eGFP Reporter Marks Late Dividing Retinal Precursors and Stem Cells Entering Neuronal Lineages.

    Directory of Open Access Journals (Sweden)

    Meret Cepero Malo

    Full Text Available Monitoring cycling behaviours of stem and somatic cells in the living animal is a powerful tool to better understand tissue development and homeostasis. The tg(anillin:anillin-eGFP transgenic line carries the full-length zebrafish F-actin binding protein Anillin fused to eGFP from a bacterial artificial chromosome (BAC containing Anillin cis-regulatory sequences. Here we report the suitability of the Anillin-eGFP reporter as a direct indicator of cycling cells in the late embryonic and post-embryonic retina. We show that combining the anillin:anillin-eGFP with other transgenes such as ptf1a:dsRed and atoh7:gap-RFP allows obtaining spatial and temporal resolution of the mitotic potentials of specific retinal cell populations. This is exemplified by the analysis of the origin of the previously reported apically and non-apically dividing late committed precursors of the photoreceptor and horizontal cell layers.

  14. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Science.gov (United States)

    Weber, Eva; Guth, Christina; Weiss, Ingrid M

    2012-01-01

    Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3) (-) as the first ionic interaction partner, but not necessarily for Ca(2+). The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  15. Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line

    Science.gov (United States)

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-01-01

    Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Results Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. Conclusion This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods. PMID:23799175

  16. Non-viral transfection methods optimized for gene delivery to a lung cancer cell line.

    Science.gov (United States)

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-04-01

    Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods.

  17. Characterising the developmental profile of human embryonic stem cell-derived medium spiny neuron progenitors and assessing mature neuron function using a CRISPR-generated human DARPP-32WT/eGFP-AMP reporter line.

    Science.gov (United States)

    Hunt, C P J; Pouton, C W; Haynes, J M

    2017-06-01

    In the developing ventral telencephalon, cells of the lateral ganglionic eminence (LGE) give rise to all medium spiny neurons (MSNs). This development occurs in response to a highly orchestrated series of morphogenetic stimuli that pattern the resultant neurons as they develop. Striatal MSNs are characterised by expression of dopamine receptors, dopamine-and cyclic AMP-regulated phosphoprotein (DARPP32) and the neurotransmitter GABA. In this study, we demonstrate that fine tuning Wnt and hedgehog (SHH) signaling early in human embryonic stem cell differentiation can induce a subpallial progenitor molecular profile. Stimulation of TGFβ signaling pathway by activin-A further supports patterning of progenitors to striatal precursors which adopt an LGE-specific gene signature. Moreover, we report that these MSNs also express markers associated with mature neuron function (cannabinoid, adenosine and dopamine receptors). To facilitate live-cell identification we generated a human embryonic stem cell line using CRISPR-mediated gene editing at the DARPP32 locus (DARPP32 WT/eGFP-AMP-LacZ ). The addition of dopamine to MSNs either increased, decreased or had no effect on intracellular calcium, indicating the presence of multiple dopamine receptor subtypes. In summary, we demonstrate greater control over early fate decisions using activin-A, Wnt and SHH to direct differentiation into MSNs. We also generate a DARPP32 reporter line that enables deeper pharmacological profiling and interrogation of complex receptor interactions in human MSNs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Directory of Open Access Journals (Sweden)

    Eva Weber

    Full Text Available Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3 (- as the first ionic interaction partner, but not necessarily for Ca(2+. The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  19. Synthesis and properties of the para-trimethylammonium analogues of green fluorescence protein (GFP) chromophore: The mimic of protonated GFP chromophore.

    Science.gov (United States)

    Fanjiang, Ming-Wei; Li, Ming-Ju; Sung, Robert; Sung, Kuangsen

    2018-04-01

    At low pH, protons from the external, bulk solution can protonate the phenoxide group of the p-HBDI chromophore in wild-type green fluorescent protein (wtGFP) and its mutants, and likely continue to tentatively protonate the phenol hydroxyl group of the same chromophores. Because the protonated GFP chromophore is a transient, we prepare the stable p-trimethylammonium analogues (2a and 2b) of the GFP chromophore to mimic it and explore their properties. What we found is that the p-trimethylammonium analogues of the GFP chromophore have the highly electrophilic amidine carbon, blue-shifted electronic absorption, smaller molar absorptivity, smaller fluorescent quantum yield, and faster E-Z thermoisomerization rate. The amidine carbon of the p-trimethylammonium analogue (2b) of the GFP chromophore is the only site that is attacked by very weak nucleophile of water, resulting in ring-opening of the imidazolinone moiety. The half-life of its decay rate in D 2 O is around 33 days. Actually, acid-catalyzed hydrolysis of p-HBDI also results in ring-opening of the imidazolinone moiety. The ratio of the acid-catalyzed hydrolysis rate constants [k obs (p-HBDI)/k obs (1b)] between p-HBDI and 1b (p-dimethylammonium analogue of the GFP chromophore) is dramatically increased from 0.30 at pH = 2 to 0.63 at pH = 0. This is the evidence that more and more phenol hydroxyl groups of p-HBDI are tentatively protonated in a low-pH aqueous solution and that accelerates hydrolysis of p-HBDI in the way similar to the quaternary ammonium derivatives 2a and 2b in water. With this view point, 2a and 2b still can partially mimic the cationic p-HBDI with the protonated phenol hydroxyl group. Implication of the experiment is that the amidine carbon of the chromophore in wtGFP and its mutants at very low pH should be highly electrophilic. Whether ring-opening of the imidazolinone moiety of the GFP chromophore would occur or not depends on if water molecules can reach the amidine carbon of

  20. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Kim Yeon-Gu

    2012-05-01

    Full Text Available Abstract Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES was introduced for using two green fluorescence protein (GFP fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.

  1. Generation and characterization of PDGFRα-GFPCreERT2 knock-In mouse line.

    Science.gov (United States)

    Miwa, Hiroyuki; Era, Takumi

    2015-05-01

    Platelet-derived growth factor (PDGF) and its receptor play an important role in embryogenesis. PDGF receptor α (PDGFRα) is expressed specifically in the embryonic day 7.5 (E7.5) mesoderm and in the E9.5 neural crest among other tissues. PDGFRα-expressing cells and their descendants are involved in the formation of various tissues. To trace PDGFRα-expressing cells in vivo, we generated a knock-in mouse line that expressed a fusion protein of green fluorescent protein (GFP), Cre recombinase (Cre), and mutated estrogen receptor ligand-binding domain (ERT2) under the control of the PDGFRα promoter. In these mice, Cre activity in PDGFRα-expressing cells could be induced by tamoxifen treatment. Taken together, our results suggest that the knock-in mouse line generated here could be useful for studying PDGFRα-expressing cells and their descendants in vivo at various stages of development. © 2015 Wiley Periodicals, Inc.

  2. Quantitative assessment of fibroblast growth factor receptor 1 expression in neurons and glia

    Directory of Open Access Journals (Sweden)

    Lisha Choubey

    2017-04-01

    Full Text Available Background Fibroblast growth factors (FGFs and their receptors (FGFRs have numerous functions in the developing and adult central nervous system (CNS. For example, the FGFR1 receptor is important for proliferation and fate specification of radial glial cells in the cortex and hippocampus, oligodendrocyte proliferation and regeneration, midline glia morphology and soma translocation, Bergmann glia morphology, and cerebellar morphogenesis. In addition, FGFR1 signaling in astrocytes is required for postnatal maturation of interneurons expressing parvalbumin (PV. FGFR1 is implicated in synapse formation in the hippocampus, and alterations in the expression of Fgfr1 and its ligand, Fgf2 accompany major depression. Understanding which cell types express Fgfr1 during development may elucidate its roles in normal development of the brain as well as illuminate possible causes of certain neuropsychiatric disorders. Methods Here, we used a BAC transgenic reporter line to trace Fgfr1 expression in the developing postnatal murine CNS. The specific transgenic line employed was created by the GENSAT project, tgFGFR1-EGFPGP338Gsat, and includes a gene encoding enhanced green fluorescent protein (EGFP under the regulation of the Fgfr1 promoter, to trace Fgfr1 expression in the developing CNS. Unbiased stereological counts were performed for several cell types in the cortex and hippocampus. Results This model reveals that Fgfr1 is primarily expressed in glial cells, in both astrocytes and oligodendrocytes, along with some neurons. Dual labeling experiments indicate that the proportion of GFP+ (Fgfr1+ cells that are also GFAP+ increases from postnatal day 7 (P7 to 1 month, illuminating dynamic changes in Fgfr1 expression during postnatal development of the cortex. In postnatal neurogenic areas, GFP expression was also observed in SOX2, doublecortin (DCX, and brain lipid-binding protein (BLBP expressing cells. Fgfr1 is also highly expressed in DCX positive cells of

  3. HT-29 and Caco-2 Reporter Cell Lines for Functional Studies of Nuclear Factor Kappa B Activation

    Directory of Open Access Journals (Sweden)

    Giuliana Mastropietro

    2015-01-01

    Full Text Available The NF-κB is a transcription factor which plays a key role in regulating biological processes. In response to signals, NF-κB activation occurs via phosphorylation of its inhibitor, which dissociates from the NF-κB dimer allowing the translocation to the nucleus, inducing gene expression. NF-κB activation has direct screening applications for drug discovery for several therapeutic indications. Thus, pathway-specific reporter cell systems appear as useful tools to screen and unravel the mode of action of probiotics and natural and synthetic compounds. Here, we describe the generation, characterization, and validation of human epithelial reporter cell lines for functional studies of NF-κB activation by different pro- and anti-inflammatory agents. Caco-2 and HT-29 cells were transfected with a pNF-κB-hrGFP plasmid which contains the GFP gene under the control of NF-κB binding elements. Three proinflammatory cytokines (TNF-α, IL-1β, and LPS were able to activate the reporter systems in a dose-response manner, which corresponds to the activation of the NF-κB signaling pathway. Finally, the reporter cell lines were validated using lactic acid bacteria and a natural compound. We have established robust Caco-2-NF-κB-hrGFP and HT-29-NF-κB-hrGFP reporter cell lines which represent a valuable tool for primary screening and identification of bacterial strains and compounds with a potential therapeutic interest.

  4. Evolving trends in biosciences: Multi-purpose proteins - GFP and GFP-like proteins

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.; Ingole, B.S.

    The sea is considered as holding a clue to many known and unknown biologically active compounds. A family of protein named Green Fluorescent Proteins (GFP)-like proteins, initially isolated from marine organisms, started a trend in biotechnological...

  5. A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent

    Directory of Open Access Journals (Sweden)

    Stefanie eKnappe

    2015-08-01

    Full Text Available Muscle regeneration in vertebrates occurs by the activation of quiescent progenitor cells that express pax7 and replace and repair damaged fibers. We have developed a mechanical injury paradigm in zebrafish to determine whether developmental stage and injury size affect the regeneration dynamics of damaged muscle. We found that both small, focal injuries and large injuries affecting the entire myotome lead to the expression of myf5 and myogenin. Their expression was prolonged in older larvae, indicating a slower process of regeneration. We characterized the endogenous behavior of a population of muscle-resident Pax7-expressing cells using a pax7a:eGFP transgenic line and found that GFP+ cell migration in the myotome dramatically declined between 5 and 7 days post fertilization (dpf. Following a small injury, we observed that GFP+ cells responded by extending processes, before migrating to the injured fibers. Furthermore, these cells responded more rapidly to injury in 4dpf larvae compared to 7dpf. Interestingly, we did not see GFP+ fibers after repair of small injuries, indicating that pax7a-expressing cells did not contribute to fiber formation in this injury context. On the contrary, numerous GFP+ fibers could be observed after a large single myotome injury. Both injury models were accompanied by an increased number of proliferating GFP+ cells, which was more pronounced in larvae injured at 4dpf than 7dpf, This indicates intriguing developmental differences, even at these relatively early ages. Our data also suggests an interesting disparity in the role that pax7a-expressing muscle progenitor cells play during muscle regeneration, which may reflect the extent of muscle damage.

  6. Energy profile of nanobody-GFP complex under force

    Science.gov (United States)

    Klamecka, Kamila; Severin, Philip M.; Milles, Lukas F.; Gaub, Hermann E.; Leonhardt, Heinrich

    2015-10-01

    Nanobodies (Nbs)—the smallest known fully functional and naturally occuring antigen-binding fragments—have attracted a lot of attention throughout the last two decades. Exploring their potential beyond the current use requires more detailed characterization of their binding forces as those cannot be directly derived from the binding affinities. Here we used atomic force microscope to measure rupture force of the Nb-green fluorescent protein (GFP) complex in various pulling geometries and derived the energy profile characterizing the interaction along the direction of the pulling force. We found that—despite identical epitopes—the Nb binds stronger (41-56 pN) to enhanced GFP than to wild-type GFP (28-45 pN). Measured forces make the Nb-GFP pair a potent reference for investigating molecular forces in living systems both in and ex vivo.

  7. Energy profile of nanobody-GFP complex under force.

    Science.gov (United States)

    Klamecka, Kamila; Severin, Philip M; Milles, Lukas F; Gaub, Hermann E; Leonhardt, Heinrich

    2015-09-10

    Nanobodies (Nbs)-the smallest known fully functional and naturally occuring antigen-binding fragments-have attracted a lot of attention throughout the last two decades. Exploring their potential beyond the current use requires more detailed characterization of their binding forces as those cannot be directly derived from the binding affinities. Here we used atomic force microscope to measure rupture force of the Nb-green fluorescent protein (GFP) complex in various pulling geometries and derived the energy profile characterizing the interaction along the direction of the pulling force. We found that-despite identical epitopes-the Nb binds stronger (41-56 pN) to enhanced GFP than to wild-type GFP (28-45 pN). Measured forces make the Nb-GFP pair a potent reference for investigating molecular forces in living systems both in and ex vivo.

  8. Deployment of a Prototype Plant GFP Imager at the Arthur Clarke Mars Greenhouse of the Haughton Mars Project

    Directory of Open Access Journals (Sweden)

    Robert J. Ferl

    2008-04-01

    Full Text Available The use of engineered plants as biosensors has made elegant strides in the past decades, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. However, most of the analytical procedures involve laboratory examination of the biosensor plants. With the advent of the green fluorescence protein (GFP as a biosensor molecule, it became at least theoretically possible for analyses of gene expression to occur telemetrically, with the gene expression information of the plant delivered to the investigator over large distances simply as properly processed fluorescence images. Spaceflight and other extraterrestrial environments provide unique challenges to plant life, challenges that often require changes at the gene expression level to accommodate adaptation and survival. Having previously deployed transgenic plant biosensors to evaluate responses to orbital spaceflight, we wished to develop the plants and especially the imaging devices required to conduct such experiments robotically, without operator intervention, within extraterrestrial environments. This requires the development of an autonomous and remotely operated plant GFP imaging system and concomitant development of the communications infrastructure to manage dataflow from the imaging device. Here we report the results of deploying a prototype GFP imaging system within the Arthur Clarke Mars Greenhouse (ACMG an autonomously operated greenhouse located within the Haughton Mars Project in the Canadian High Arctic. Results both demonstrate the applicability of the fundamental GFP biosensor technology and highlight the difficulties in collecting and managing telemetric data from challenging deployment environments.

  9. Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia.

    Science.gov (United States)

    Patschan, D; Michurina, T; Shi, H K; Dolff, S; Brodsky, S V; Vasilieva, T; Cohen-Gould, L; Winaver, J; Chander, P N; Enikolopov, G; Goligorsky, M S

    2007-04-01

    Nestin, a marker of multi-lineage stem and progenitor cells, is a member of intermediate filament family, which is expressed in neuroepithelial stem cells, several embryonic cell types, including mesonephric mesenchyme, endothelial cells of developing blood vessels, and in the adult kidney. We used Nestin-green fluorescent protein (GFP) transgenic mice to characterize its expression in normal and post-ischemic kidneys. Nestin-GFP-expressing cells were detected in large clusters within the papilla, along the vasa rectae, and, less prominently, in the glomeruli and juxta-glomerular arterioles. In mice subjected to 30 min bilateral renal ischemia, glomerular, endothelial, and perivascular cells showed increased Nestin expression. In the post-ischemic period, there was an increase in fluorescence intensity with no significant changes in the total number of Nestin-GFP-expressing cells. Time-lapse fluorescence microscopy performed before and after ischemia ruled out the possibility of engraftment by the circulating Nestin-expressing cells, at least within the first 3 h post-ischemia. Incubation of non-perfused kidney sections resulted in a medullary-to-cortical migration of Nestin-GFP-positive cells with the rate of expansion of their front averaging 40 microm/30 min during the first 3 h and was detectable already after 30 min of incubation. Explant matrigel cultures of the kidney and aorta exhibited sprouting angiogenesis with cells co-expressing Nestin and endothelial marker, Tie-2. In conclusion, several lines of circumstantial evidence identify a sub-population of Nestin-expressing cells with the mural cells, which are recruited in the post-ischemic period to migrate from the medulla toward the renal cortex. These migrating Nestin-positive cells may be involved in the process of post-ischemic tissue regeneration.

  10. Energy profile of nanobody–GFP complex under force

    International Nuclear Information System (INIS)

    Klamecka, Kamila; Severin, Philip M; Milles, Lukas F; Gaub, Hermann E; Leonhardt, Heinrich

    2015-01-01

    Nanobodies (Nbs)—the smallest known fully functional and naturally occuring antigen-binding fragments—have attracted a lot of attention throughout the last two decades. Exploring their potential beyond the current use requires more detailed characterization of their binding forces as those cannot be directly derived from the binding affinities. Here we used atomic force microscope to measure rupture force of the Nb–green fluorescent protein (GFP) complex in various pulling geometries and derived the energy profile characterizing the interaction along the direction of the pulling force. We found that—despite identical epitopes—the Nb binds stronger (41–56 pN) to enhanced GFP than to wild-type GFP (28–45 pN). Measured forces make the Nb–GFP pair a potent reference for investigating molecular forces in living systems both in and ex vivo. (paper)

  11. The effect of MEP pathway and other inhibitors on the intracellular localization of a plasma membrane-targeted, isoprenylable GFP reporter protein in tobacco BY-2 cells [v1; ref status: indexed, http://f1000r.es/yx

    Directory of Open Access Journals (Sweden)

    Michael Hartmann

    2013-08-01

    Full Text Available We have established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, based on the expression of a dexamethasone-inducible GFP fused to the carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL. By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP pathway with known inhibitors like oxoclomazone and fosmidomycin, as well as inhibition of the protein geranylgeranyltransferase type 1 (PGGT-1, shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA pathway with mevinolin did not affect the localization. During the present work, this test system has been used to examine the effect of newly designed inhibitors of the MEP pathway and inhibitors of sterol biosynthesis such as squalestatin, terbinafine and Ro48-8071. In addition, we also studied the impact of different post-prenylation inhibitors or those suspected to affect the transport of proteins to the plasma membrane on the localization of the geranylgeranylable fusion protein GFP-BD-CVIL.

  12. A new protein-protein interaction sensor based on tripartite split-GFP association.

    Science.gov (United States)

    Cabantous, Stéphanie; Nguyen, Hau B; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A; Favre, Gilles; Terwilliger, Thomas C; Waldo, Geoffrey S

    2013-10-04

    Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence.

  13. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    CERN Document Server

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  14. Gene expression in tumor cells and stroma in dsRed 4T1 tumors in eGFP-expressing mice with and without enhanced oxygenation

    International Nuclear Information System (INIS)

    Moen, Ingrid; Øyan, Anne M; Stuhr, Linda EB; Jevne, Charlotte; Wang, Jian; Kalland, Karl-Henning; Chekenya, Martha; Akslen, Lars A; Sleire, Linda; Enger, Per Ø; Reed, Rolf K

    2012-01-01

    The tumor microenvironment is pivotal in tumor progression. Thus, we aimed to develop a mammary tumor model to elucidate molecular characteristics in the stroma versus the tumor cell compartment by global gene expression. Secondly, since tumor hypoxia influences several aspects of tumor pathophysiology, we hypothesized that hyperoxia might have an inhibitory effect on tumor growth per se. Finally, we aimed to identify differences in gene expression and key molecular mechanisms, both in the native state and following treatment. 4T1 dsRed breast cancer cells were injected into eGFP expressing NOD/SCID mice. Group 1 was exposed to 3 intermittent HBO treatments (Day 1, 4 and 7), Group 2 to 7 daily HBO treatments (both 2.5bar, 100% O 2 , à 90 min), whereas the controls were exposed to a normal atmosphere. Tumor growth, histology, vascularisation, cell proliferation, cell death and metastasis were assessed. Fluorescence-activated cell sorting was used to separate tumor cells from stromal cells prior to gene expression analysis. The purity of sorted cells was verified by fluorescence microscopy. Gene expression profiling demonstrated that highly expressed genes in the untreated tumor stroma included constituents of the extracellular matrix and matrix metalloproteinases. Tumor growth was significantly inhibited by HBO, and the MAPK pathway was found to be significantly reduced. Immunohistochemistry indicated a significantly reduced microvessel density after intermittent HBO, whereas daily HBO did not show a similar effect. The anti-angiogenic response was reflected in the expression trends of angiogenic factors. The present in vivo mammary tumor model enabled us to separate tumor and stromal cells, and demonstrated that the two compartments are characterized by distinct gene expressions, both in the native state and following HBO treatments. Furthermore, hyperoxia induced a significant tumor growth-inhibitory effect, with significant down-regulation of the MAPK pathway

  15. CRISPR/Cas9 Mediated GFP Knock-in at the MAP1LC3B Locus in 293FT Cells Is Better for Bona Fide Monitoring Cellular Autophagy.

    Science.gov (United States)

    Wu, Zhiqiang; Zhao, Jinlin; Qiu, Minghan; Mi, Zeyun; Meng, Maobin; Guo, Yu; Wang, Hui; Yuan, Zhiyong

    2018-04-19

    Accurately identifying and quantifying cellular autophagy is very important as the significance of autophagy in physiological and pathological processes becomes increasingly evident. Ectopically expressed fluorescent-tagged microtubule-associated protein light chain 3B (MAP1LC3B, LC3) is the most widely used reporter for monitoring autophagy activity thus far. However, this approach ignores the influence of constitutively overexpressed LC3 on autophagy itself and autophagy-related processes and its accuracy in indicating autophagy is questionable. Here, we generated a knock-in GFP-LC3 reporter via the CRISPR/Cas9 system in 293FT cells to add GFP to the N-terminal of and in frame with endogenous LC3. We proved that this knock-in GFP-LC3 was expressed at biological level driven by the endogenous transcriptional regulatory elements as the wild type alleles. Compared with the ectopically expressed GFP-LC3, the endogenous knock-in reporter exhibited much higher sensitivity and signal-to-noise ratio of GFP-LC3 puncta upon the induction or inhibition of autophagy at certain step for monitoring autophagy activity. Thus, according to the previous reported concerning and the results presented here, we suggest that this knock-in GFP-LC3 reporter is better for bona fide monitoring cellular autophagy and should be employed for further study of autophagy in vitro and in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice - including relationship of sex differences

    International Nuclear Information System (INIS)

    Ogawa, Rei; Mizuno, Hiroshi; Watanabe, Atsushi; Migita, Makoto; Hyakusoku, Hiko; Shimada, Takashi

    2004-01-01

    We have previously demonstrated that adipose-derived stromal cells (ASCs) as well as bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. Both types are considered to include mesenchymal stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have also previously reported the plasticity of BSCs and ASCs. In this study, we focused on adipogenic differentiation in vitro by ASCs harvested from GFP transgenic mice. Moreover, preadipocytes and mature adipocytes were harvested at the same time, and the cells were cultured to compare them with ASCs. Inguinal fat pads from GFP transgenic mice were used for the isolation of ASCs, preadipocytes, and mature adipocytes. After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks. Adipogenic differentiation of ASCs was assessed by Oil Red O staining and the expression of the adipocyte specific peroxisome proliferative activated receptor γ2 (PPAR-γ2) gene. These ASCs stained positively, and expression of PPAR-γ2 was detected. Moreover, we also tried to characterize the influence of sex differences on the adipogenic differentiation of ASCs harvested from both male and female mice. This was assessed by the expression levels of the PPAR-γ2 gene using real-time PCR. The results showed that the expression levels of ASCs harvested from female mice were a maximum of 2.89 times greater than those harvested from male mice. This suggests that the adipogenic differentiation of ASCs is closely related to sex differences

  17. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy

    NARCIS (Netherlands)

    Vermeer, J.E.M.; van Munster, E.B.; Vischer, N.O.; Gadella, T.

    2004-01-01

    Multimode fluorescence resonance energy transfer (FRET) microscopy was applied to study the plasma membrane organization using different lipidated green fluorescent protein (GFP)-fusion proteins co-expressed in cowpea protoplasts. Cyan fluorescent protein (CFP) was fused to the hyper variable region

  18. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH fusion to gfp (green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Bat-Erdene Jugder

    2016-07-01

    Full Text Available Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2. Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni–Fe] uptake hydrogenase (SH produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.

  19. Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells

    Directory of Open Access Journals (Sweden)

    Avery S. Walker

    2010-01-01

    Full Text Available Embryonic neuroepithelia and adult subventricular zone (SVZ stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes.

  20. Proton transfer events in GFP.

    Science.gov (United States)

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  1. Cryopreservation of green fluorescent protein (GFP)-labeled primordial germ cells with GFP fused to the 3' untranslated region of the nanos gene by vitrification of Japanese eel (Anguilla japonica) somite stage embryos.

    Science.gov (United States)

    Kawakami, Y; Ishihara, M; Saito, T; Fujimoto, T; Adachi, S; Arai, K; Yamaha, E

    2012-12-01

    Primordial germ cells (PGC) are the only cell type in developing embryos with the potential to transmit genetic information to the next generation. In this study, PGC of Japanese eel (Anguilla japonica) were visualized by injection of mRNA synthesized from a construct carrying the green fluorescent protein (GFP) gene fused to the 3' untranslated region of the Japanese eel nanos gene. We investigated the feasibility of cryopreserving Japanese eel PGC by vitrification of dechorionated whole somite stage embryos. The GFP-labeled PGC were rapidly cooled using liquid nitrogen after exposure to a pretreatment solution containing 1.5 M cryoprotectant (methanol, dimethyl sulfoxide, and glycerol for 10 min and ethylene glycol for 10, 20, and 30 min) and a vitrification solution containing 3 M cryoprotectant and 0.5 M sucrose for 1, 5, and 10 min. Ethylene glycerol is an effective cryoprotectant for embryonic cells and shows no evidence of ice formation after thawing. Vitrified and thawed PGC were transplanted into blastula stage embryos from zebrafish (Danio rerio). The GFP-labeled PGC migrated toward the host gonadal ridge, suggesting maintenance of their normal migration motility. These techniques may assist in achieving inter- and intraspecies germ-line chimers using donor Japanese eel PGC.

  2. Quantitative analysis of lentiviral transgene expression in mice over seven generations.

    Science.gov (United States)

    Wang, Yong; Song, Yong-tao; Liu, Qin; Liu, Cang'e; Wang, Lu-lu; Liu, Yu; Zhou, Xiao-yang; Wu, Jun; Wei, Hong

    2010-10-01

    Lentiviral transgenesis is now recognized as an extremely efficient and cost-effective method to produce transgenic animals. Transgenes delivered by lentiviral vectors exhibited inheritable expression in many species including those which are refractory to genetic modification such as non-human primates. However, epigenetic modification was frequently observed in lentiviral integrants, and transgene expression found to be inversely correlated with methylation density. Recent data showed that about one-third lentiviral integrants exhibited hypermethylation and low expression, but did not demonstrate whether those integrants with high expression could remain constant expression and hypomethylated during long term germline transmission. In this study, using lentiviral eGFP transgenic mice as the experimental animals, lentiviral eGFP expression levels and its integrant numbers in genome were quantitatively analyzed by fluorescent quantitative polymerase-chain reaction (FQ-PCR), using the house-keeping gene ribosomal protein S18 (Rps18) and the single copy gene fatty acid binding protein of the intestine (Fabpi) as the internal controls respectively. The methylation densities of the integrants were quantitatively analyzed by bisulfite sequencing. We found that the lentiviral integrants with high expression exhibited a relative constant expression level per integrant over at least seven generations. Besides, the individuals containing these integrants exhibited eGFP expression levels which were positively and almost linearly correlated with the integrant numbers in their genomes, suggesting that no remarkable position effect on transgene expression of the integrants analyzed was observed. In addition, over seven generations the methylation density of these integrants did not increase, but rather decreased remarkably, indicating that these high expressing integrants were not subjected to de novo methylation during at least seven generations of germline transmission. Taken

  3. CD40 expression in Wehi-164 cell line.

    Science.gov (United States)

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-07-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body's defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.

  4. Stylophora pistillata in the Red Sea demonstrate higher GFP fluorescence under ocean acidification conditions

    Science.gov (United States)

    Grinblat, Mila; Fine, Maoz; Tikochinski, Yaron; Loya, Yossi

    2018-03-01

    Ocean acidification is thought to exert a major impact on calcifying organisms, including corals. While previous studies have reported changes in the physiological response of corals to environmental change, none have described changes in expression of the ubiquitous host pigments—fluorescent proteins (FPs)—to ocean acidification. The function of FPs in corals is controversial, with the most common consideration being that these primarily regulate the light environment in the coral tissue and protect the host from harmful UV radiation. Here, we provide for the first time experimental evidence that increased fluorescence of colonies of the coral Stylophora pistillata is independent of stress and can be regulated by a non-stressful decrease in pH. Stylophora pistillata is the most abundant and among the most resilient coral species in the northern Gulf of Eilat/Aqaba (GoE/A). Fragmented "sub-colonies" ( n = 72) incubated for 33 days under three pH treatments (ambient, 7.9, and 7.6), under ambient light, and running seawater showed no stress or adverse physiological performance, but did display significantly higher fluorescence, with lower pH. Neither the average number of planulae shed from the experimental sub-colonies nor planulae green fluorescent protein (GFP) expression changed significantly among pH treatments. Sub-colonies incubated under the lower-than-ambient pH conditions showed an increase in both total protein and GFP expression. Since extensive protein synthesis requires a high level of transcription, we suggest that GFP constitutes a UV protection mechanism against potential RNA as well as against DNA damage caused by UV exposure. Manipulating the regulation of FPs in adult corals and planulae, under controlled and combined effects of pH, light, and temperature, is crucial if we are to obtain a better understanding of the role played by this group of proteins in cnidarians.

  5. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  6. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    International Nuclear Information System (INIS)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon

    2007-01-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application

  7. Expression Pattern of the Alpha-Kafirin Promoter Coupled with a Signal Peptide from Sorghum bicolor L. Moench

    Directory of Open Access Journals (Sweden)

    Norazlina Ahmad

    2012-01-01

    Full Text Available Regulatory sequences with endosperm specificity are essential for foreign gene expression in the desired tissue for both grain quality improvement and molecular pharming. In this study, promoters of seed storage α-kafirin genes coupled with signal sequence (ss were isolated from Sorghum bicolor L. Moench genomic DNA by PCR. The α-kafirin promoter (α-kaf contains endosperm specificity-determining motifs, prolamin-box, the O2-box 1, CATC, and TATA boxes required for α-kafirin gene expression in sorghum seeds. The constructs pMB-Ubi-gfp and pMB-kaf-gfp were microprojectile bombarded into various sorghum and sweet corn explants. GFP expression was detected on all explants using the Ubi promoter but only in seeds for the α-kaf promoter. This shows that the α-kaf promoter isolated was functional and demonstrated seed-specific GFP expression. The constructs pMB-Ubi-ss-gfp and pMB-kaf-ss-gfp were also bombarded into the same explants. Detection of GFP expression showed that the signal peptide (SP::GFP fusion can assemble and fold properly, preserving the fluorescent properties of GFP.

  8. Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish.

    Directory of Open Access Journals (Sweden)

    Cristina Santoriello

    2010-12-01

    Full Text Available Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed.Using the combinatorial Gal4-UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2-4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1-3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period.This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens.

  9. Function and structure of GFP-like proteins in the protein data bank.

    Science.gov (United States)

    Ong, Wayne J-H; Alvarez, Samuel; Leroux, Ivan E; Shahid, Ramza S; Samma, Alex A; Peshkepija, Paola; Morgan, Alicia L; Mulcahy, Shawn; Zimmer, Marc

    2011-04-01

    The RCSB protein databank contains 266 crystal structures of green fluorescent proteins (GFP) and GFP-like proteins. This is the first systematic analysis of all the GFP-like structures in the pdb. We have used the pdb to examine the function of fluorescent proteins (FP) in nature, aspects of excited state proton transfer (ESPT) in FPs, deformation from planarity of the chromophore and chromophore maturation. The conclusions reached in this review are that (1) The lid residues are highly conserved, particularly those on the "top" of the β-barrel. They are important to the function of GFP-like proteins, perhaps in protecting the chromophore or in β-barrel formation. (2) The primary/ancestral function of GFP-like proteins may well be to aid in light induced electron transfer. (3) The structural prerequisites for light activated proton pumps exist in many structures and it's possible that like bioluminescence, proton pumps are secondary functions of GFP-like proteins. (4) In most GFP-like proteins the protein matrix exerts a significant strain on planar chromophores forcing most GFP-like proteins to adopt non-planar chromophores. These chromophoric deviations from planarity play an important role in determining the fluorescence quantum yield. (5) The chemospatial characteristics of the chromophore cavity determine the isomerization state of the chromophore. The cavities of highlighter proteins that can undergo cis/trans isomerization have chemospatial properties that are common to both cis and trans GFP-like proteins.

  10. Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy

    Directory of Open Access Journals (Sweden)

    Lara Marrone

    2018-02-01

    Full Text Available Summary: Perturbations in stress granule (SG dynamics may be at the core of amyotrophic lateral sclerosis (ALS. Since SGs are membraneless compartments, modeling their dynamics in human motor neurons has been challenging, thus hindering the identification of effective therapeutics. Here, we report the generation of isogenic induced pluripotent stem cells carrying wild-type and P525L FUS-eGFP. We demonstrate that FUS-eGFP is recruited into SGs and that P525L profoundly alters their dynamics. With a screening campaign, we demonstrate that PI3K/AKT/mTOR pathway inhibition increases autophagy and ameliorates SG phenotypes linked to P525L FUS by reducing FUS-eGFP recruitment into SGs. Using a Drosophila model of FUS-ALS, we corroborate that induction of autophagy significantly increases survival. Finally, by screening clinically approved drugs for their ability to ameliorate FUS SG phenotypes, we identify a number of brain-penetrant anti-depressants and anti-psychotics that also induce autophagy. These drugs could be repurposed as potential ALS treatments. : Sterneckert and colleagues generate isogenic FUS-eGFP reporter iPSCs that enable the identification of stress granule (SG phenotypes specifically induced by the ALS mutation FUS P525L. Compound screening shows that modulation of the PI3K/AKT/mTOR pathway regulating autophagy ameliorates SG phenotypes. A second screen identifies similarly acting brain-penetrant US FDA-approved drugs that could be repurposed to treat ALS. Keywords: amyotrophic lateral sclerosis, induced pluripotent stem cells, FUS, stress granules, autophagy, gene editing, CRISPR/Cas9n

  11. Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression.

    Science.gov (United States)

    Trinh, Alice T; Ball, Bret G; Weber, Erin; Gallaher, Timothy K; Gluzman-Poltorak, Zoya; Anderson, French; Basile, Lena A

    2009-12-30

    Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements

  12. Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression

    Science.gov (United States)

    2009-01-01

    Background Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. Methods A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Results Vectors that contained the ADA LCR were preferentially expressed in T

  13. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    Science.gov (United States)

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line. Copyright © 2015. Published by Elsevier Ltd.

  14. Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines

    International Nuclear Information System (INIS)

    Schröpfer, Andrea; Kammerer, Ulrike; Kapp, Michaela; Dietl, Johannes; Feix, Sonja; Anacker, Jelena

    2010-01-01

    Matrix metalloproteinases (MMPs) are involved in the degradation of protein components of the extracellular matrix and thus play an important role in tumor invasion and metastasis. Their expression is related to the progression of gynecological cancers (e.g. endometrial, cervical or ovarian carcinoma). In this study we investigated the expression pattern of the 23 MMPs, currently known in humans, in different gynecological cancer cell lines. In total, cell lines from three endometrium carcinomas (Ishikawa, HEC-1-A, AN3 CA), three cervical carcinomas (HeLa, Caski, SiHa), three chorioncarcinomas (JEG, JAR, BeWo), two ovarian cancers (BG-1, OAW-42) and one teratocarcinoma (PA-1) were examined. The expression of MMPs was analyzed by RT-PCR, Western blot and gelatin zymography. We demonstrated that the cell lines examined can constitutively express a wide variety of MMPs on mRNA and protein level. While MMP-2, -11, -14 and -24 were widely expressed, no expression was seen for MMP-12, -16, -20, -25, -26, -27 in any of the cell lines. A broad range of 16 MMPs could be found in the PA1 cells and thus this cell line could be used as a positive control for general MMP experiments. While the three cervical cancer cell lines expressed 10-14 different MMPs, the median expression in endometrial and choriocarcinoma cells was 7 different enzymes. The two investigated ovarian cancer cell lines showed a distinctive difference in the number of expressed MMPs (2 vs. 10). Ishikawa, Caski, OAW-42 and BeWo cell lines could be the best choice for all future experiments on MMP regulation and their role in endometrial, cervical, ovarian or choriocarcinoma development, whereas the teratocarcinoma cell line PA1 could be used as a positive control for general MMP experiments

  15. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Dong-Myung [Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoo, Tae Hyeon [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Yong-Sung, E-mail: kimys@ajou.ac.kr [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.

  16. Confocal quantification of cis-regulatory reporter gene expression in living sea urchin.

    Science.gov (United States)

    Damle, Sagar; Hanser, Bridget; Davidson, Eric H; Fraser, Scott E

    2006-11-15

    Quantification of GFP reporter gene expression at single cell level in living sea urchin embryos can now be accomplished by a new method of confocal laser scanning microscopy (CLSM). Eggs injected with a tissue-specific GFP reporter DNA construct were grown to gastrula stage and their fluorescence recorded as a series of contiguous Z-section slices that spanned the entire embryo. To measure the depth-dependent signal decay seen in the successive slices of an image stack, the eggs were coinjected with a freely diffusible internal fluorescent standard, rhodamine dextran. The measured rhodamine fluorescence was used to generate a computational correction for the depth-dependent loss of GFP fluorescence per slice. The intensity of GFP fluorescence was converted to the number of GFP molecules using a conversion constant derived from CLSM imaging of eggs injected with a measured quantity of GFP protein. The outcome is a validated method for accurately counting GFP molecules in given cells in reporter gene transfer experiments, as we demonstrate by use of an expression construct expressed exclusively in skeletogenic cells.

  17. A mammalianized synthetic nitroreductase gene for high-level expression

    International Nuclear Information System (INIS)

    Grohmann, Maik; Paulmann, Nils; Fleischhauer, Sebastian; Vowinckel, Jakob; Priller, Josef; Walther, Diego J

    2009-01-01

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  18. Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number.

    Directory of Open Access Journals (Sweden)

    Joseph Andrews

    2010-01-01

    Full Text Available We have previously identified genome-wide DNA methylation changes in a cell line model of breast cancer metastasis. These complex epigenetic changes that we observed, along with concurrent karyotype analyses, have led us to hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy are superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes observed in breast cancer metastasis.We undertook simultaneous high-resolution, whole-genome analyses of MDA-MB-468GFP and MDA-MB-468GFP-LN human breast cancer cell lines (an isogenic, paired lymphatic metastasis cell line model using Affymetrix gene expression (U133, promoter (1.0R, and SNP/CNV (SNP 6.0 microarray platforms to correlate data from gene expression, epigenetic (DNA methylation, and combination copy number variant/single nucleotide polymorphism microarrays. Using Partek Software and Ingenuity Pathway Analysis we integrated datasets from these three platforms and detected multiple hypomethylation and hypermethylation events. Many of these epigenetic alterations correlated with gene expression changes. In addition, gene dosage events correlated with the karyotypic differences observed between the cell lines and were reflected in specific promoter methylation patterns. Gene subsets were identified that correlated hyper (and hypo methylation with the loss (or gain of gene expression and in parallel, with gene dosage losses and gains, respectively. Individual gene targets from these subsets were also validated for their methylation, expression and copy number status, and susceptible gene pathways were identified that may indicate how selective advantage drives the processes of tumourigenesis and metastasis.Our approach allows more precisely profiling of functionally relevant epigenetic signatures that are associated with cancer progression and metastasis.

  19. Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system.

    Science.gov (United States)

    Kakimoto, Yuriko; Tashiro, Shinya; Kojima, Rieko; Morozumi, Yuki; Endo, Toshiya; Tamura, Yasushi

    2018-04-18

    Functional integrity of eukaryotic organelles relies on direct physical contacts between distinct organelles. However, the entity of organelle-tethering factors is not well understood due to lack of means to analyze inter-organelle interactions in living cells. Here we evaluate the split-GFP system for visualizing organelle contact sites in vivo and show its advantages and disadvantages. We observed punctate GFP signals from the split-GFP fragments targeted to any pairs of organelles among the ER, mitochondria, peroxisomes, vacuole and lipid droplets in yeast cells, which suggests that these organelles form contact sites with multiple organelles simultaneously although it is difficult to rule out the possibilities that these organelle contacts sites are artificially formed by the irreversible associations of the split-GFP probes. Importantly, split-GFP signals in the overlapped regions of the ER and mitochondria were mainly co-localized with ERMES, an authentic ER-mitochondria tethering structure, suggesting that split-GFP assembly depends on the preexisting inter-organelle contact sites. We also confirmed that the split-GFP system can be applied to detection of the ER-mitochondria contact sites in HeLa cells. We thus propose that the split-GFP system is a potential tool to observe and analyze inter-organelle contact sites in living yeast and mammalian cells.

  20. A novel thermal decomposition approach to synthesize hydroxyapatite-silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli.

    Science.gov (United States)

    Sahni, Geetika; Gopinath, P; Jeevanandam, P

    2013-03-01

    A novel thermal decomposition approach to synthesize hydroxyapatite-silver (Hap-Ag) nanocomposites has been reported. The nanocomposites were characterized by X-ray diffraction, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and diffuse reflectance spectroscopy techniques. Antibacterial activity studies for the nanocomposites were explored using a new rapid access method employing recombinant green fluorescent protein (GFP) expressing antibiotic resistant Escherichia coli (E. coli). The antibacterial activity was studied by visual turbidity analysis, optical density analysis, fluorescence spectroscopy and microscopy. The mechanism of bactericidal action of the nanocomposites on E. coli was investigated using atomic force microscopy, and TEM analysis. Excellent bactericidal activity at low concentration of the nanocomposites was observed which may allow their use in the production of microbial contamination free prosthetics. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The oligodendroglial precursor cell line Oli-neu represents a cell culture system to examine functional expression of the mouse gap junction gene connexin29 (Cx29

    Directory of Open Access Journals (Sweden)

    Goran Christoph Söhl

    2013-06-01

    Full Text Available The potential gap junction forming mouse connexin29 (Cx29 protein is concomitantly expressed with connexin32 (Cx32 in peripheral myelin forming Schwann cells and together with both Cx32 and connexin47 (Cx47 in oligodendrocytes of the CNS. To study the genomic structure and functional expression of Cx29, either primary cells or cell culture systems might be selected, from which the latter are easier to cultivate. Both structure and expression of Cx29 is still not fully understood. In the mouse sciatic nerve, brain and the oligodendroglial precursor cell line Oli-neu the Cx29 gene is processed in two transcript isoforms both harbouring a unique reading frame. In contrast to Cx32 and Cx47, only Cx29 protein is abundantly expressed in undifferentiated as well as differentiated Oli-neu cells but the absence of Etbr dye transfer after microinjection concealed the function of Cx29 mediated gap junction communication between those cells. Although HeLa cells stably transfected with Cx29 or Cx29-eGFP neither demonstrated any permeability for Lucifer yellow nor for neurobiotin, blocking of Etbr uptake from the media by gap junction blockers does suppose a role of Cx29 in hemi-channel function. Thus, we conclude that, due to its high abundance of Cx29 expression and its reproducible culture conditions, the oligodendroglial precursor cell line Oli-neu might constitute an appropriate cell culture system to study molecular mechanisms or putative extracellular stimuli to functionally open Cx29 channels or hemi-channels.

  2. Synthesis and Properties of the p-Sulfonamide Analogue of the Green Fluorescent Protein (GFP) Chromophore: The Mimic of GFP Chromophore with Very Strong N-H Photoacid Strength.

    Science.gov (United States)

    Chen, Yi-Hui; Sung, Robert; Sung, Kuangsen

    2018-04-06

    The para-sulfonamide analogue ( p-TsABDI) of a green fluorescent protein (GFP) chromophore was synthesized to mimic the GFP chromophore. Its S 1 excited-state p K a * value in dimethylsulfoxide (DMSO) is -1.5, which is strong enough to partially protonate dipolar aprotic solvents and causes excited-state proton transfer (ESPT), so it can partially mimic the GFP chromophore to further study the ESPT-related photophysics and the blinking phenomenon of GFP. In comparison with 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) (p K a = 7.4, p K a * = 1.3 in water), p-TsABDI (p K a = 6.7, p K a * = -1.5 in DMSO) is a better photoacid for pH-jump studies.

  3. Visualization of endothelial cell cycle dynamics in mouse using the Flt-1/eGFP-anillin system.

    Science.gov (United States)

    Herz, Katia; Becker, Alexandra; Shi, Chenyue; Ema, Masatsugo; Takahashi, Satoru; Potente, Michael; Hesse, Michael; Fleischmann, Bernd K; Wenzel, Daniela

    2018-05-01

    Endothelial cell proliferation is a key process during vascular growth but its kinetics could only be assessed in vitro or ex vivo so far. To enable the monitoring and quantification of cell cycle kinetics in vivo, we have generated transgenic mice expressing an eGFP-anillin construct under control of the endothelial-specific Flt-1 promoter. This construct labels the nuclei of endothelial cells in late G1, S and G2 phase and changes its localization during the different stages of M phase, thereby enabling the monitoring of EC proliferation and cytokinesis. In Flt-1/eGFP-anillin mice, we found eGFP + signals specifically in Ki67 + /PECAM + endothelial cells during vascular development. Quantification using this cell cycle reporter in embryos revealed a decline in endothelial cell proliferation between E9.5 to E12.5. By time-lapse microscopy, we determined the length of different cell cycle phases in embryonic endothelial cells in vivo and found a M phase duration of about 80 min with 2/3 covering karyokinesis and 1/3 cytokinesis. Thus, we have generated a versatile transgenic system for the accurate assessment of endothelial cell cycle dynamics in vitro and in vivo.

  4. CDH1 and IL1-beta expression dictates FAK and MAPKK-dependent cross-talk between cancer cells and human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Al-toub, Mashael; Vishnubalaji, Radhakrishnan; Hamam, Rimi

    2015-01-01

    in signaling pathways related to bone formation, FAK and MAPKK signaling. Co-culturing hMSCs with MCF7 cells increased their growth evidenced by increase in Ki67 and PCNA staining in tumor cells in direct contact with hMSCs niche. On the other hand, co-culturing hMSCs with FaDu, HT-29 or MDA-MB-231 cells led......INTRODUCTION: Tumor microenvironment conferred by stromal (mesenchymal) stem cells (MSCs) plays a key role in tumor development, progression, and response to therapy. Defining the role of MSCs in tumorigenesis is crucial for their safe utilization in regenerative medicine. Herein, we conducted...... comprehensive investigation of the cross-talk between human MSCs (hMSCs) and 12 cancer cell lines derived from breast, prostate, colon, head/neck and skin. METHODS: Human bone marrow-derived MSC line expressing green fluorescence protein (GFP) (hMSC-GFP) were co-cultured with the following cancer cell lines...

  5. Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT.

    Science.gov (United States)

    Tai, Joo Ho; Nguyen, Binh; Wells, R Glenn; Kovacs, Michael S; McGirr, Rebecca; Prato, Frank S; Morgan, Timothy G; Dhanvantari, Savita

    2008-01-01

    We are combining nuclear medicine with molecular biology to establish a sensitive, quantitative, and tomographic method with which to detect gene expression in pancreatic islet cells in vivo. Dual-isotope SPECT can be used to image multiple molecular events simultaneously, and coregistration of SPECT and CT images enables visualization of reporter gene expression in the correct anatomic context. We have engineered pancreatic islet cell lines for imaging with SPECT/CT after transplantation under the kidney capsule. INS-1 832/13 and alphaTC1-6 cells were stably transfected with a herpes simplex virus type 1-thymidine kinase-green fluorescent protein (HSV1-thymidine kinase-GFP) fusion construct (tkgfp). After clonal selection, radiolabel uptake was determined by incubation with 5-(131)I-iodo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)uracil ((131)I-FIAU) (alphaTC1-6 cells) or (123)I-FIAU (INS-1 832/13 cells). For the first set of in vivo experiments, SPECT was conducted after alphaTC1-6/tkgfp cells had been labeled with either (131)I-FIAU or (111)In-tropolone and transplanted under the left kidney capsule of CD1 mice. Reconstructed SPECT images were coregistered to CT. In a second study using simultaneous acquisition dual-isotope SPECT, INS-1 832/13 clone 9 cells were labeled with (111)In-tropolone before transplantation. Mice were then systemically administered (123)I-FIAU and data for both (131)I and (111)In were acquired simultaneously. alphaTC1-6/tkgfp cells showed a 15-fold greater uptake of (131)I-FIAU, and INS-1/tkgfp cells showed a 12-fold greater uptake of (123)I-FIAU, compared with that of wild-type cells. After transplantation under the kidney capsule, both reporter gene expression and location of cells could be visualized in vivo with dual-isotope SPECT. Immunohistochemistry confirmed the presence of glucagon- and insulin-positive cells at the site of transplantation. Dual-isotope SPECT is a promising method to detect gene expression in and location of

  6. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  7. Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds.

    Science.gov (United States)

    Wang, Yunfeng; Sun, Yu; Chang, Qing; Ahmad, Shoeb; Zhou, Binfei; Kim, Yeunjung; Li, Huawei; Lin, Xi

    2013-01-01

    Gene transfer into the inner ear is a promising approach for treating sensorineural hearing loss. The special electrochemical environment of the scala media raises a formidable challenge for effective gene delivery at the same time as keeping normal cochlear function intact. The present study aimed to define a suitable strategy for preserving hearing after viral inoculation directly into the scala media performed at various postnatal developmental stages. We assessed transgene expression of green fluorescent protein (GFP) mediated by various types of adeno-associated virus (AAV) and lentivirus (LV) in the mouse cochlea. Auditory brainstem responses were measured 30 days after inoculation to assess effects on hearing. Patterns of GFP expression confirmed extensive exogenous gene expression in various types of cells lining the endolymphatic space. The use of different viral vectors and promoters resulted in specific cellular GFP expression patterns. AAV2/1 with cytomegalovirus promoter apparently gave the best results for GFP expression in the supporting cells. Histological examination showed normal cochlear morphology and no hair cell loss after either AAV or LV injections. We found that hearing thresholds were not significantly changed when the injections were performed in mice younger than postnatal day 5, regardless of the type of virus tested. Viral inoculation and expression in the inner ear for the restoration of hearing must not damage cochlear function. Using normal hearing mice as a model, we have achieved this necessary step, which is required for the treatment of many types of congenital deafness that require early intervention. Copyright © 2013 John Wiley & Sons, Ltd.

  8. A recombinant E1-deleted porcine adenovirus-3 as an expression vector

    International Nuclear Information System (INIS)

    Zakhartchouk, Alexander; Zhou Yan; Tikoo, Suresh Kumar

    2003-01-01

    Replication-defective E1-deleted porcine adenoviruses (PAVs) are attractive vectors for vaccination. As a prerequisite for generating PAV-3 vectors containing complete deletion of E1, we transfected VIDO R1 cells (fetal porcine retina cells transformed with E1 region of human adenovirus 5) with a construct containing PAV-3 E1B large coding sequences under the control of HCMV promoter. A cell line named VR1BL could be isolated that expressed E1B large of PAV-3 and also complemented PAV214 (E1A+E1B small deleted). The VR1BL cells could be efficiently transfected with DNA and allowed the rescue and propagation of recombinant PAV507 containing a triple stop codon inserted in the E1B large coding sequence. In addition, recombinant PAV227 containing complete deletion of E1 (E1A+E1B small + E1B large ) could be successfully rescued using VR1BL cell line. Recombinant PAV227 replicated as efficiently as wild-type in VR1BL cells but not in VIDO R1 cells, suggesting that E1B large was essential for replication of PAV-3. Next, we constructed recombinant PAV219 by inserting green fluorescent (GFP) protein gene flanked by a promoter and a poly(A) in the E1 region of the PAV227 genome. We demonstrated that PAV219 was able to transduce and direct expression of GFP in some human cell lines

  9. Cytocidal activities of topoisomerase 1 inhibitors and 5-azacytidine against pheochromocytoma/paraganglioma cells in primary human tumor cultures and mouse cell lines.

    Directory of Open Access Journals (Sweden)

    James F Powers

    Full Text Available There is currently no effective treatment for metastatic pheochromocytomas and paragangliomas. A deficiency in current chemotherapy regimens is that the metastases usually grow very slowly. Drugs that target dividing tumor cells have therefore had limited success. To improve treatment, new strategies and valid experimental models are required for pre-clinical testing. However, development of models has itself been hampered by the absence of human pheochromocytoma/paraganglioma cell lines for cultures or xenografts. Topoisomerase 1 (TOP1 inhibitors are drugs that interfere with mechanisms that maintain DNA integrity during transcription in both quiescent and dividing cells. We used primary cultures of representative human tumors to establish the cytotoxicity of camptothecin, a prototypical TOP1 inhibitor, against non-dividing pheochromocytoma/paraganglioma cells, and then employed a mouse pheochromocytoma model (MPC to show that efficacy of low concentrations of camptothecin and other TOP1 inhibitors is increased by intermittent coadministration of sub-toxic concentrations of 5-azacytidine, a DNA methylation inhibitor that modulates transcription. We then tested the same drugs against a clonal MPC derivative that expresses CMV reporter-driven luciferase and GFP, intended for in vivo drug testing. Unexpectedly, luciferase expression, bioluminescence and GFP expression were paradoxically increased by both camptothecin and SN38, the active metabolite of irinotecan, thereby masking cell death. Expression of chromogranin A, a marker for neuroendocrine secretory granules, was not increased, indicating that the drug effects on levels of luciferase and GFP are specific to the GFP-luciferase construct rather than generalized cellular responses. Our findings provide proof of principle for use of TOP1 inhibitors against pheochromocytoma/paraganglioma and suggest novel strategies for enhancing efficacy and reducing toxicity by optimizing the combination and

  10. A potyvirus-based gene vector allows producing active human S-COMT and animal GFP, but not human sorcin, in vector-infected plants.

    Science.gov (United States)

    Kelloniemi, Jani; Mäkinen, Kristiina; Valkonen, Jari P T

    2006-05-01

    Potato virus A (PVA), a potyvirus with a (+)ssRNA genome translated to a large polyprotein, was engineered and used as a gene vector for expression of heterologous proteins in plants. Foreign genes including jellyfish GFP (Aequorea victoria) encoding the green fluorescent protein (GFP, 27 kDa) and the genes of human origin (Homo sapiens) encoding a soluble resistance-related calcium-binding protein (sorcin, 22 kDa) and the catechol-O-methyltransferase (S-COMT; 25 kDa) were cloned between the cistrons for the viral replicase and coat protein (CP). The inserts caused no adverse effects on viral infectivity and virulence, and the inserted sequences remained intact in progeny viruses in the systemically infected leaves. The heterologous proteins were released from the viral polyprotein following cleavage by the main viral proteinase, NIa, at engineered proteolytic processing sites flanking the insert. Active GFP, as indicated by green fluorescence, and S-COMT with high levels of enzymatic activity were produced. In contrast, no sorcin was detected despite the expected equimolar amounts of the foreign and viral proteins being expressed as a polyprotein. These data reveal inherent differences between heterologous proteins in their suitability for production in plants.

  11. Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide.

    Directory of Open Access Journals (Sweden)

    Beth A Rasala

    Full Text Available Microalgae have recently received attention as a potential low-cost host for the production of recombinant proteins and novel metabolites. However, a major obstacle to the development of algae as an industrial platform has been the poor expression of heterologous genes from the nuclear genome. Here we describe a nuclear expression strategy using the foot-and-mouth-disease-virus 2A self-cleavage peptide to transcriptionally fuse heterologous gene expression to antibiotic resistance in Chlamydomonas reinhardtii. We demonstrate that strains transformed with ble-2A-GFP are zeocin-resistant and accumulate high levels of GFP that is properly 'cleaved' at the FMDV 2A peptide resulting in monomeric, cytosolic GFP that is easily detectable by in-gel fluorescence analysis or fluorescent microscopy. Furthermore, we used our ble2A nuclear expression vector to engineer the heterologous expression of the industrial enzyme, xylanase. We demonstrate that linking xyn1 expression to ble2A expression on the same open reading frame led to a dramatic (~100-fold increase in xylanase activity in cells lysates compared to the unlinked construct. Finally, by inserting an endogenous secretion signal between the ble2A and xyn1 coding regions, we were able to target monomeric xylanase for secretion. The novel microalgae nuclear expression strategy described here enables the selection of transgenic lines that are efficiently expressing the heterologous gene-of-interest and should prove valuable for basic research as well as algal biotechnology.

  12. Properties of GluR3 receptors tagged with GFP at the amino or carboxyl terminus.

    Science.gov (United States)

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Eusebi, Fabrizio; Miledi, Ricardo

    2007-09-25

    Anatomical visualization of neurotransmitter receptor localization is facilitated by tagging receptors, but this process can alter their functional properties. We have evaluated the distribution and properties of WT glutamate receptor 3 (GluR3) alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (WT GluR3) and two receptors in which GFP was tagged to the amino terminus (GFP-GluR3) or to the carboxyl terminus (GluR3-GFP). Although the fluorescence in Xenopus oocytes was stronger in the vegetal hemisphere because of localization of internal structures (probable sites of production, storage or recycling of receptors), the insertion of receptors into the plasma membrane was polarized to the animal hemisphere. The fluorescence intensity of oocytes injected with GluR3-GFP RNA was approximately double that of oocytes injected with GFP-GluR3 RNA. Accordingly, GluR3-GFP oocytes generated larger kainate-induced currents than GFP-GluR3 oocytes, with similar EC(50) values. Currents elicited by glutamate, or AMPA coapplied with cyclothiazide, were also larger in GluR3-GFP oocytes. The glutamate- to kainate-current amplitude ratios differed, with GluR3-GFP being activated more efficiently by glutamate than the WT or GFP-GluR3 receptors. This pattern correlates with the slower decay of glutamate-induced currents generated by GluR3-GFP receptors. These changes were not observed when GFP was tagged to the amino terminus, and these receptors behaved like the WT. The antagonistic effects of 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were not altered in any of the tagged receptors. We conclude that GFP is a useful and convenient tag for visualizing these proteins. However, the effects of different sites of tag insertion on receptor characteristics must be taken into account in assessing the roles played by these receptor proteins.

  13. Mutagenesis Screen Identifies agtpbp1 and eps15L1 as Essential for T lymphocyte Development in Zebrafish.

    Science.gov (United States)

    Seiler, Christoph; Gebhart, Nichole; Zhang, Yong; Shinton, Susan A; Li, Yue-sheng; Ross, Nicola L; Liu, Xingjun; Li, Qin; Bilbee, Alison N; Varshney, Gaurav K; LaFave, Matthew C; Burgess, Shawn M; Balciuniene, Jorune; Balciunas, Darius; Hardy, Richard R; Kappes, Dietmar J; Wiest, David L; Rhodes, Jennifer

    2015-01-01

    Genetic screens are a powerful tool to discover genes that are important in immune cell development and function. The evolutionarily conserved development of lymphoid cells paired with the genetic tractability of zebrafish make this a powerful model system for this purpose. We used a Tol2-based gene-breaking transposon to induce mutations in the zebrafish (Danio rerio, AB strain) genome, which served the dual purpose of fluorescently tagging cells and tissues that express the disrupted gene and provided a means of identifying the disrupted gene. We identified 12 lines in which hematopoietic tissues expressed green fluorescent protein (GFP) during embryonic development, as detected by microscopy. Subsequent analysis of young adult fish, using a novel approach in which single cell suspensions of whole fish were analyzed by flow cytometry, revealed that 8 of these lines also exhibited GFP expression in young adult cells. An additional 15 lines that did not have embryonic GFP+ hematopoietic tissue by microscopy, nevertheless exhibited GFP+ cells in young adults. RT-PCR analysis of purified GFP+ populations for expression of T and B cell-specific markers identified 18 lines in which T and/or B cells were fluorescently tagged at 6 weeks of age. As transposon insertion is expected to cause gene disruption, these lines can be used to assess the requirement for the disrupted genes in immune cell development. Focusing on the lines with embryonic GFP+ hematopoietic tissue, we identified three lines in which homozygous mutants exhibited impaired T cell development at 6 days of age. In two of the lines we identified the disrupted genes, agtpbp1 and eps15L1. Morpholino-mediated knockdown of these genes mimicked the T cell defects in the corresponding mutant embryos, demonstrating the previously unrecognized, essential roles of agtpbp1 and eps15L1 in T cell development.

  14. Mutagenesis Screen Identifies agtpbp1 and eps15L1 as Essential for T lymphocyte Development in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Christoph Seiler

    Full Text Available Genetic screens are a powerful tool to discover genes that are important in immune cell development and function. The evolutionarily conserved development of lymphoid cells paired with the genetic tractability of zebrafish make this a powerful model system for this purpose. We used a Tol2-based gene-breaking transposon to induce mutations in the zebrafish (Danio rerio, AB strain genome, which served the dual purpose of fluorescently tagging cells and tissues that express the disrupted gene and provided a means of identifying the disrupted gene. We identified 12 lines in which hematopoietic tissues expressed green fluorescent protein (GFP during embryonic development, as detected by microscopy. Subsequent analysis of young adult fish, using a novel approach in which single cell suspensions of whole fish were analyzed by flow cytometry, revealed that 8 of these lines also exhibited GFP expression in young adult cells. An additional 15 lines that did not have embryonic GFP+ hematopoietic tissue by microscopy, nevertheless exhibited GFP+ cells in young adults. RT-PCR analysis of purified GFP+ populations for expression of T and B cell-specific markers identified 18 lines in which T and/or B cells were fluorescently tagged at 6 weeks of age. As transposon insertion is expected to cause gene disruption, these lines can be used to assess the requirement for the disrupted genes in immune cell development. Focusing on the lines with embryonic GFP+ hematopoietic tissue, we identified three lines in which homozygous mutants exhibited impaired T cell development at 6 days of age. In two of the lines we identified the disrupted genes, agtpbp1 and eps15L1. Morpholino-mediated knockdown of these genes mimicked the T cell defects in the corresponding mutant embryos, demonstrating the previously unrecognized, essential roles of agtpbp1 and eps15L1 in T cell development.

  15. Gene expression in the muscle and central nervous system following intramuscular inoculation of encapsidated or naked poliovirus replicons

    International Nuclear Information System (INIS)

    Jackson, Cheryl A.; Messinger, Jeff; Palmer, Matthew T.; Peduzzi, Jean D.; Morrow, Casey D.

    2003-01-01

    The spread of intramuscularly inoculated poliovirus to the central nervous system (CNS) has been documented in humans, monkeys, and mice transgenic for the human poliovirus receptor. Poliovirus spread is thought to be due to infection of the peripheral nerve and retrograde transport of poliovirus through the axon to the neuron cell body, where final virus uncoating occurs and translation/replication ensues. In previous studies, we have shown that polio-based vectors (replicons) can be used for gene delivery to motor neurons of the CNS. Using a replicon that encodes green fluorescent protein (GFP), we found that following intrathecal inoculation, GFP expression was confined to motorneurons of the spinal cord. To further characterize the gene expression of poliovirus in the periphery and CNS, we have intramuscularly inoculated transgenic mice with poliovirus replicons encoding GFP. Expression of GFP was demonstrated in the muscle, sciatic nerve, dorsal root ganglion, and the ventral horn motorneurons following intramuscular inoculation. There was no evidence of paralysis or behavioral abnormalities in the mice following intramuscular inoculation of the replicon encoding GFP. Injection of replicon RNA alone (naked RNA) into the muscle of transgenic mice or rats, which do not express the poliovirus receptor, also resulted in expression of GFP in the muscle, sciatic nerve, dorsal root ganglion, and ventral horn motorneurons, indicating that transport of the replicon RNA from the periphery to CNS had occurred. GFP expression was found in the muscles and sciatic nerve as early as 6 h after injection of replicons or replicon RNA, even after sciatic nerve section. Analysis at longer times postinjection revealed GFP expression similar to 6 h levels in the cut sciatic nerves and robust expression in the nerves of uncut animals. The infection and expression of GFP in the CNS following intramuscular inoculation of encapsidated replicons encoding GFP occurred in juvenile or

  16. Bacterially produced Pt-GFP as ratiometric dual-excitation sensor for in planta mapping of leaf apoplastic pH in intact Avena sativa and Vicia faba.

    Science.gov (United States)

    Geilfus, Christoph-Martin; Mühling, Karl H; Kaiser, Hartmut; Plieth, Christoph

    2014-01-01

    Ratiometric analysis with H(+)-sensitive fluorescent sensors is a suitable approach for monitoring apoplastic pH dynamics. For the acidic range, the acidotropic dual-excitation dye Oregon Green 488 is an excellent pH sensor. Long lasting (hours) recordings of apoplastic pH in the near neutral range, however, are more problematic because suitable pH indicators that combine a good pH responsiveness at a near neutral pH with a high photostability are lacking. The fluorescent pH reporter protein from Ptilosarcus gurneyi (Pt-GFP) comprises both properties. But, as a genetically encoded indicator and expressed by the plant itself, it can be used almost exclusively in readily transformed plants. In this study we present a novel approach and use purified recombinant indicators for measuring ion concentrations in the apoplast of crop plants such as Vicia faba L. and Avena sativa L. Pt-GFP was purified using a bacterial expression system and subsequently loaded through stomata into the leaf apoplast of intact plants. Imaging verified the apoplastic localization of Pt-GFP and excluded its presence in the symplast. The pH-dependent emission signal stood out clearly from the background. PtGFP is highly photostable, allowing ratiometric measurements over hours. By using this approach, a chloride-induced alkalinizations of the apoplast was demonstrated for the first in oat. Pt-GFP appears to be an excellent sensor for the quantification of leaf apoplastic pH in the neutral range. The presented approach encourages to also use other genetically encoded biosensors for spatiotemporal mapping of apoplastic ion dynamics.

  17. Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations.

    Science.gov (United States)

    Padilla, Stephanie L; Reef, Daniel; Zeltser, Lori M

    2012-03-01

    Melanocortin signaling plays a central role in the regulation of phenotypes related to body weight and energy homeostasis. To specifically target and study the function of proopiomelanocortin (POMC) neurons, Pomc promoter elements have been utilized to generate reporter and Cre recombinase transgenic reagents. Across gestation, we find that Pomc is dynamically expressed in many sites in the developing mouse forebrain, midbrain, hindbrain, spinal cord, and retina. Although Pomc expression in most embryonic brain regions is transient, it is sufficient to direct Cre-mediated recombination of floxed alleles. We visualize the populations affected by this transgene by crossing Pomc-Cre mice to ROSA reporter strains and identify 62 sites of recombination throughout the adult brain, including several nuclei implicated in energy homeostasis regulation. To compare the relationship between acute Pomc promoter activity and Pomc-Cre-mediated recombination at the single cell level, we crossed Pomc-enhanced green fluorescent protein (eGFP) and Pomc-Cre;ROSA-tdTomato lines. We detect the highest concentration of Pomc-eGFP+ cells in the arcuate nucleus of the hypothalamus and dentate gyrus but also observe smaller populations of labeled cells in the nucleus of the solitary tract, periventricular zone of the third ventricle, and cerebellum. Consistent with the dynamic nature of Pomc expression in the embryo, the vast majority of neurons marked with the tdTomato reporter do not express eGFP in the adult. Thus, recombination in off-target sites could contribute to physiological phenotypes using Pomc-Cre transgenics. For example, we find that approximately 83% of the cells in the arcuate nucleus of the hypothalamus immunoreactive for leptin-induced phosphorylated signal transducer and activator of transcription 3 are marked with Pomc-Cre;ROSA-tdTomato; only 13% of these are eGFP+ POMC neurons.

  18. The effect of HCV Core protein on the expression of miR-150

    Directory of Open Access Journals (Sweden)

    Sayad Khanizadeh

    2016-09-01

    Full Text Available Background : Hepatitis C virus (HCV is considered as one of the major pathogenic agents of chronic liver diseases. Previous studies have shown that HCV proteins can interaction with gene regulatory networks such as microRNAs. The aim of this study was to investigate the effect of HCV core protein on the expression of miR-150 in a cell culture model. Materials and Methods: Plasmids expressing full HCV core protein was transfected into Huh7 cell lines while a GFP expressing plasmid employed as negative control. Subsequently, total RNA extracted and Real-Time PCR performed to measure the expression level of miR-150 expression. Moreover, trypan blue exclusion assay was performed to investigate the effect of core protein on cell viability. Results: The gene expression analysis of miR-150 in Huh7 cells showed that endogenous HCV core protein could significantly down regulation of miR-150 when compared to GFP control plasmid and normal cells (P<0.01. Beside, core protein induced no significant proliferative or cytotoxic effects on hepatic cells as determined by trypan blue exclusion assay (P<0.05. Conclusion: Our study suggests that HCV core protein can led to down regulation of miR-150 expression. This data revealed that HCV protein interactions with cell regulatory machinery may contribute to pathogenesis of chronic liver diseases.

  19. Combined use of different Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa

    DEFF Research Database (Denmark)

    Boldt, T.S.; Sørensen, J.; Karlsson, U.

    2004-01-01

    Single-cell localization and activity of Pseudomonas,fluorescens F113, colonizing alfalfa roots, were monitored using fusions of the Escherichia coli rrnBP1 ribosomal promoter and gfp genes encoding green fluorescent protein (Gfp) of different stability. The monitoring systems permitted non...... of chlorinated biphenyl was constructed, using another gfp fusion with the meta-pathway Pin promoter from Pseudomonas putida (TOL plasmid). Expression of this promoter, which is strongly induced by the PCB-2 degradation product, 3-chlorobenzoate, was tested in vitro and subsequently monitored in vivo on alfalfa...... roots using the P. fluorescens F113rifpcb reporter. A small but distinct fraction of the introduced bacteria activated the Pm promoter and thus appeared to sense a PCB-2 degradation product in the alfalfa rhizosphere. The degrading cells, which by design were identical to the sensing cells, were located...

  20. Proliferating neuronal progenitors in the postnatal hippocampus transiently express the proneural gene Ngn2.

    Science.gov (United States)

    Ozen, Ilknur; Galichet, Christophe; Watts, Colin; Parras, Carlos; Guillemot, François; Raineteau, Olivier

    2007-05-01

    Little is known of the transcription factors expressed by adult neural progenitors produced in the hippocampal neurogenic niche. Here, we study the expression of the proneural basic helix-loop-helix (bHLH) transcription factor Neurogenin-2 (Ngn2) in the adult hippocampus. We have characterized the pattern of expression of Ngn2 in the adult hippocampus using immunostaining for Ngn2 protein and a Ngn2-green fluorescent protein (GFP) reporter mouse strain. A significant proportion of Ngn2-expressing cells were mitotically active. Ngn2-GFP expression was restricted to the subgranular zone and declined with age. Neuronal markers were used to determine the phenotype of Ngn2-expressing cells. The vast majority of Ngn2-GFP-positive cells expressed the immature neuronal markers, doublecortin (DCX) and polysialic acid-neural cell adhesion molecule (PSA-NCAM). Finally, the pattern of Ngn2 expression was studied following seizure induction. Our data show an increase in neurogenesis, detected in these animals by bromodeoxyuridine (BrdU) and DCX staining that was contemporaneous with a marked increase in Ngn2-GFP-expression. Taken together, our results show that Ngn2-GFP represents a specific marker for neurogenesis and its modulation in the adult hippocampus. Ngn2 transient expression in proliferating neuronal progenitors supports the idea that it plays a significant role in adult neurogenesis.

  1. Impact of High-Level Expression of Heterologous Protein on Lactococcus lactis Host.

    Science.gov (United States)

    Kim, Mina; Jin, Yerin; An, Hyun-Joo; Kim, Jaehan

    2017-07-28

    The impact of overproduction of a heterologous protein on the metabolic system of host Lactococcus lactis was investigated. The protein expression profiles of L. lactis IL1403 containing two near-identical plasmids that expressed high- and low-level of the green fluorescent protein (GFP) were examined via shotgun proteomics. Analysis of the two strains via high-throughput LC-MS/MS proteomics identified the expression of 294 proteins. The relative amount of each protein in the proteome of both strains was determined by label-free quantification using the spectral counting method. Although expression level of most proteins were similar, several significant alterations in metabolic network were identified in the high GFP-producing strain. These changes include alterations in the pyruvate fermentation pathway, oxidative pentose phosphate pathway, and de novo synthesis pathway for pyrimidine RNA. Expression of enzymes for the synthesis of dTDP-rhamnose and N -acetylglucosamine from glucose was suppressed in the high GFP strain. In addition, enzymes involved in the amino acid synthesis or interconversion pathway were downregulated. The most noticeable changes in the high GFP-producing strain were a 3.4-fold increase in the expression of stress response and chaperone proteins and increase of caseinolytic peptidase family proteins. Characterization of these host expression changes witnessed during overexpression of GFP was might suggested the metabolic requirements and networks that may limit protein expression, and will aid in the future development of lactococcal hosts to produce more heterologous protein.

  2. CNPase Expression in Olfactory Ensheathing Cells

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2011-01-01

    Full Text Available A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs into nerve or spinal cord injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP under the control of the 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase promoter were studied. CNPase is expressed in myelin-forming cells throughout their lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral nerve.

  3. FOXN1GFP/w Reporter hESCs Enable Identification of Integrin-β4, HLA-DR, and EpCAM as Markers of Human PSC-Derived FOXN1+ Thymic Epithelial Progenitors

    Directory of Open Access Journals (Sweden)

    Chew-Li Soh

    2014-06-01

    Full Text Available Thymic epithelial cells (TECs play a critical role in T cell maturation and tolerance induction. The generation of TECs from in vitro differentiation of human pluripotent stem cells (PSCs provides a platform on which to study the mechanisms of this interaction and has implications for immune reconstitution. To facilitate analysis of PSC-derived TECs, we generated hESC reporter lines in which sequences encoding GFP were targeted to FOXN1, a gene required for TEC development. Using this FOXN1GFP/w line as a readout, we developed a reproducible protocol for generating FOXN1-GFP+ thymic endoderm cells. Transcriptional profiling and flow cytometry identified integrin-β4 (ITGB4, CD104 and HLA-DR as markers that could be used in combination with EpCAM to selectively purify FOXN1+ TEC progenitors from differentiating cultures of unmanipulated PSCs. Human FOXN1+ TEC progenitors generated from PSCs facilitate the study of thymus biology and are a valuable resource for future applications in regenerative medicine.

  4. Monitoring the diffusion behavior of Na,K-ATPase by fluorescence correlation spectroscopy (FCS) upon fluorescence labelling with eGFP or Dreiklang

    Science.gov (United States)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2016-02-01

    Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time

  5. Combination therapy and evaluation of therapeutic effect in hepatocellular carcinoma cell using triple reporter genes; containing for NIS, HSV1-sr39tk and GFP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You La; Lee, Yong Jin; Ahn, Sohn Joo; Ahn, Byeong Cheol; Lee, Sang Woo; Yoo, Jeong Soo; Lee, Jae Tae [Kyungpook National University, Daegu (Korea, Republic of)

    2007-07-01

    To identify therapeutic effect after combine Sodium Iodine Symporter (NIS) and Mutant Herpes-simplex virus type 1 sr39tk (HSV1-sr39tk) expression in hepatocellular carcinoma cell, we transfected triple gene and investigated the properties of these gene ability in hepatocellular carcinoma cell line. After making vector with gene encoding a fusion protein comprised of HSV1-sr39tk and green florescence protein (GFP), to make triple reporter genes NIS gene was further fused to the vector using IRES vector. The vector expressing triple reporter gene was transfected to the Huh-7 cell line using liposome. Functions of hNIS and HSV1-sr39tk expression were confirmed by radio iodine uptake with and without perchlorate and [3H]-penciclovir (3-H PCV) uptake, respectively. To evaluate therapeutic effect in vitro, GCV and I-131 was treated in Huh-7/NTG cell and dual therapy performed. An animal imaging acquired using Optix and microPET in vivo. I-125 uptake was increased up to 100-fold compare to that of non-transfected cells. The transfected cell accumulated H-3 PCV up to 53 times higher at 2 hour than that of non-transfected cells. With fluorescence microscopy, green fluorescence was detected in the transfected cell. In cytotoxic studies, the cell viability of Huh-7/NTG cell was decreased to 41 % of control cell at 10ug/ml GCV concentrations. The survival rate of the Huh-7/NTG cell treated with I-131 decreased up to 16%. In I-131 and GCV dual therapy, Huh-7/NTG cell survival rate decreased up to 4%. In animal studies, Huh-7/NTG tumors showed higher uptake of 18F-FHBG and I-124 than Huh-7 tumors. GFP signal is also higher in Huh-7/NTG tumor than control. We successfully constructed a vector with delivery two therapeutic genes and one reporter gene and transfected the vector to a Huh-7 cell. The hepatocellular carcinoma cell transfected with the vector can be treated with GCV and I-131. The effect of dual gene therapy could be easily assessed by the optical reporter gene imaging.

  6. Heterologous expression of an algal hydrogenase in a heterocystous cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Thorsten Heidorn; Peter Lindblad [Dept. of Physiological Botany, Uppsala University, Villavogen 6, SE-752 36 Uppsala, (Sweden)

    2006-07-01

    For the expression of an active algal [FeFe] hydrogenase in the heterocystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyanobacteria cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  7. Heterologous expression of an algal hydrogenase in a heterocystous cyanobacterium

    International Nuclear Information System (INIS)

    Thorsten Heidorn; Peter Lindblad

    2006-01-01

    For the expression of an active algal [FeFe] hydrogenase in the heterocystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyanobacteria cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  8. HCV IRES-mediated core expression in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ye Zhao

    Full Text Available The lack of small animal models for hepatitis C virus has impeded the discovery and development of anti-HCV drugs. HCV-IRES plays an important role in HCV gene expression, and is an attractive target for antiviral therapy. In this study, we report a zebrafish model with a biscistron expression construct that can co-transcribe GFP and HCV-core genes by human hepatic lipase promoter and zebrafish liver fatty acid binding protein enhancer. HCV core translation was designed mediated by HCV-IRES sequence and gfp was by a canonical cap-dependent mechanism. Results of fluorescence image and in situ hybridization indicate that expression of HCV core and GFP is liver-specific; RT-PCR and Western blotting show that both core and gfp expression are elevated in a time-dependent manner for both transcription and translation. It means that the HCV-IRES exerted its role in this zebrafish model. Furthermore, the liver-pathological impact associated with HCV-infection was detected by examination of gene markers and some of them were elevated, such as adiponectin receptor, heparanase, TGF-β, PDGF-α, etc. The model was used to evaluate three clinical drugs, ribavirin, IFNα-2b and vitamin B12. The results show that vitamin B12 inhibited core expression in mRNA and protein levels in dose-dependent manner, but failed to impact gfp expression. Also VB12 down-regulated some gene transcriptions involved in fat liver, liver fibrosis and HCV-associated pathological process in the larvae. It reveals that HCV-IRES responds to vitamin B12 sensitively in the zebrafish model. Ribavirin did not disturb core expression, hinting that HCV-IRES is not a target site of ribavirin. IFNα-2b was not active, which maybe resulted from its degradation in vivo for the long time. These findings demonstrate the feasibility of the zebrafish model for screening of anti-HCV drugs targeting to HCV-IRES. The zebrafish system provides a novel evidence of using zebrafish as a HCV model organism.

  9. Migration and differentiation potential of stem cells in the cnidarian Hydractinia analysed in eGFP-transgenic animals and chimeras.

    Science.gov (United States)

    Künzel, Timo; Heiermann, Reinhard; Frank, Uri; Müller, Werner; Tilmann, Wido; Bause, Markus; Nonn, Anja; Helling, Matthias; Schwarz, Ryan S; Plickert, Günter

    2010-12-01

    To analyse cell migration and the differentiation potential of migratory stem cells in Hydractinia, we generated animals with an eGFP reporter gene stably expressed and transmitted via the germline. The transgene was placed under the control of two different actin promoters and the promoter of elongation factor-1α. One actin promoter (Act-II) and the EF-1α promoter enabled expression of the transgene in all cells, the other actin promoter (Act-I) in epithelial and gametogenic cells, but not in the pluripotent migratory stem cells. We produced chimeric animals consisting of histocompatible wild type and transgenic parts. When the transgene was under the control of the epithelial cell specific actin-I promoter, non-fluorescent transgenic stem cells immigrated into wild type tissue, stopped migration and differentiated into epithelial cells which then commenced eGFP-expression. Migratory stem cells are therefore pluripotent and can give rise not only to germ cells, nematocytes and nerve cells, but also to epithelial cells. While in somatic cells expression of the act-I promoter was restricted to epithelial cells it became also active in gametogenesis. The act-I gene is expressed in spermatogonia, oogonia and oocytes. In males the expression pattern showed that migratory stem cells are the precursors of both the spermatogonia and their somatic envelopes. Comparative expression studies using the promoters of the actin-II gene and the elongation factor-1α gene revealed the potential of transgenic techniques to trace the development of the nervous system. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE

    Science.gov (United States)

    Wang, Xin; Zhao, Yongjun; Wong, Kim; Ehlers, Peter; Kohara, Yuji; Jones, Steven J; Marra, Marco A; Holt, Robert A; Moerman, Donald G; Hansen, Dave

    2009-01-01

    Background Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm) or female (oocyte) fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. Results We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Conclusion Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution. PMID:19426519

  11. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE

    Directory of Open Access Journals (Sweden)

    Holt Robert A

    2009-05-01

    Full Text Available Abstract Background Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm or female (oocyte fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. Results We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Conclusion Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution.

  12. On-line defected fuel monitoring using GFP data

    International Nuclear Information System (INIS)

    Livingstone, S.; Lewis, B.J.

    2008-01-01

    This paper describes the initial development of an on-line defected fuel diagnostic tool. The tool is based on coolant activity, and uses a quantitative and qualitative approach from existing mechanistic fission product release models, and also empirical rules based on commercial and experimental experience. The model departs from the usual methodology of analyzing steady-state fission product coolant activities, and instead uses steady-state fission product release rates calculated from the transient coolant activity data. An example of real-time defected fuel analysis work is presented using a prototype of this tool with station data. The model is in an early developmental stage, and this paper demonstrates the promising potential of this technique. (author)

  13. Evaluation of the pH- and Thermal Stability of the Recombinant Green Fluorescent Protein (GFP) in the Presence of Sodium Chloride

    Science.gov (United States)

    Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia

    The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.

  14. Heterologous expression of an algal hydrogenase in a hetero-cystous cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Thorsten Heidorn; Peter Lindblad [Dept. of Physiological Botany, Uppsala University, V illavagen 6, SE-752 36 Uppsala, (Sweden)

    2006-07-01

    For the expression of an active algal [FeFe] hydrogenase in the hetero-cystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyano-bacterial cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  15. Heterologous expression of an algal hydrogenase in a hetero-cystous cyanobacterium

    International Nuclear Information System (INIS)

    Thorsten Heidorn; Peter Lindblad

    2006-01-01

    For the expression of an active algal [FeFe] hydrogenase in the hetero-cystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyano-bacterial cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  16. Use of the viral 2A peptide for bicistronic expression in transgenic mice

    Directory of Open Access Journals (Sweden)

    Trichas Georgios

    2008-09-01

    Full Text Available Abstract Background Transgenic animals are widely used in biomedical research and biotechnology. Multicistronic constructs, in which several proteins are encoded by a single messenger RNA, are commonly used in genetically engineered animals. This is currently done by using an internal ribosomal entry site to separate the different coding regions. 2A peptides result in the co-translational 'cleavage' of proteins and are an attractive alternative to the internal ribosomal entry site. They are more reliable than the internal ribosomal entry site and lead to expression of multiple cistrons at equimolar levels. They work in a wide variety of eukaryotic cells, but to date have not been demonstrated to function in transgenic mice in an inheritable manner. Results To test 2A function in transgenic mice and uncover any possible toxicity of widespread expression of the 2A peptide, we made a bicistronic reporter construct containing the coding sequence for a membrane localised red fluorescent protein (Myr-TdTomato and a nuclear localised green fluorescent protein (H2B-GFP, separated by a 2A sequence. When this reporter is transfected into HeLa cells, the two fluorescent proteins correctly localise to mutually exclusive cellular compartments, demonstrating that the bicistronic construct is a reliable readout of 2A function. The two fluorescent proteins also correctly localise when the reporter is electroporated into chick neural tube cells. We made two independent transgenic mouse lines that express the bicistronic reporter ubiquitously. For both lines, transgenic mice are born in Mendelian frequencies and are found to be healthy and fertile. Myr-TdTomato and H2B-GFP segregate to mutually exclusive cellular compartments in all tissues examined from a broad range of developmental stages, ranging from embryo to adult. One transgenic line shows X-linked inheritance of the transgene and mosaic expression in females but uniform expression in males, indicating

  17. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    Science.gov (United States)

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  18. CD40 expression in Wehi-164 cell line

    OpenAIRE

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-01-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein ex...

  19. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin

    Science.gov (United States)

    2013-01-01

    Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific

  20. Remote sensing of gene expression in Planta: transgenic plants as monitors of exogenous stress perception in extraterrestrial environments

    Science.gov (United States)

    Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.

    2002-01-01

    Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.

  1. Expression profiling of Plasmodium berghei HSP70 genes for generation of bright red fluorescent parasites.

    Directory of Open Access Journals (Sweden)

    Marion Hliscs

    Full Text Available Live cell imaging of recombinant malarial parasites encoding fluorescent probes provides critical insights into parasite-host interactions and life cycle progression. In this study, we generated a red fluorescent line of the murine malarial parasite Plasmodium berghei. To allow constitutive and abundant expression of the mCherry protein we profiled expression of all members of the P. berghei heat shock protein 70 (HSP70 family. We identified PbHSP70/1, an invariant ortholog of Plasmodium falciparum HSP70-1, as the protein with the highest expression levels during Plasmodium blood, mosquito, and liver infection. Stable allelic insertion of a mCherry expression cassette into the PbHsp70/1 locus created constitutive red fluorescent P. berghei lines, termed Pbred. We show that these parasites can be used for live imaging of infected host cells and organs, including hepatocytes, erythrocytes, and whole Anopheles mosquitoes. Quantification of the fluorescence intensity of several Pbred parasite stages revealed significantly enhanced signal intensities in comparison to GFP expressed under the control of the constitutive EF1alpha promoter. We propose that systematic transcript profiling permits generation of reporter parasites, such as the Pbred lines described herein.

  2. Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.

    Science.gov (United States)

    Miyazaki, Yuji; Abe, Hiroshi; Takase, Tomoyuki; Kobayashi, Masatomo; Kiyosue, Tomohiro

    2015-05-01

    The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.

  3. Agrobacterium-mediated transient MaFT expression in mulberry (Morus alba L.) leaves.

    Science.gov (United States)

    Wu, Su-Li; Yang, Xiao-Bing; Liu, Li-Qun; Jiang, Tao; Wu, Hai; Su, Chao; Qian, Yong-Hua; Jiao, Feng

    2015-01-01

    To optimize Agrobacterium-mediated transient transformation assay in mulberry (Morus alba L.), various infiltration methods, Agrobacterium tumefaciens (A. tumefaciens) strains, and bacterial concentrations were tested in mulberry seedlings. Compared with LBA4404, GV3101 harboring pBE2133 plasmids presented stronger GUS signals at 3 days post infiltration using syringe. Recombinant plasmids pBE2133:GFP and pBE2133:GFP:MaFT were successfully constructed. Transient expression of MaFT:GFP protein was found in leaves, petiole (cross section), and shoot apical meristem (SAM) of mulberry according to the GFP signal. Moreover, MaFT:GFP mRNA was also detected in leaves and SAM via RT-PCR and qRT-PCR. An efficient transient transformation system could be achieved in mulberry seedlings by syringe using A. tumefaciens GV3101 at the OD600 of 0.5. The movement of MaFT expression from leaves to SAM might trigger the precocious flowering of mulberry.

  4. Expression of myc family oncoproteins in small-cell lung-cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Vindeløv, L L; Spang-Thomsen, M

    1993-01-01

    A number of genes have altered activity in small-cell lung cancer (SCLC), but especially genes of the myc family (c-myc, L-myc and N-myc) are expressed at high levels in SCLC. Most studies have explored expression at the mRNA level, whereas studies of myc family oncoprotein expression are sparse....... WE examined the expression of myc proto-oncogenes at the mRNA and protein level in 23 cell lines or xenografts. In the cell lines, the doubling time and the cell-cycle distribution, as determined by flow-cytometric DNA analysis, were examined to establish whether the level of myc......-myc. In general, the level of expression of c-myc and N-myc was similar at the mRNA and the protein level. Expression of c-myc was positively correlated with the proliferative index (sum of S and G2+M phases) of cell lines, but not with the population doubling time. In general, L-myc-expressing cell lines had...

  5. Functional importance of GLP-1 receptor species and expression levels in cell lines.

    Science.gov (United States)

    Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan

    2012-04-10

    Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis.

    Science.gov (United States)

    Linares, Daniel M; Alvarez-Sieiro, Patricia; del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Martin, Ma Cruz; Fernandez, Maria; Alvarez, Miguel A

    2015-12-30

    Lactococcus lactis has been safely consumed in fermented foods for millennia. This Gram-positive bacterium has now become of industrial importance as an expression host for the overproduction of lipopolysaccharide-free recombinant proteins used as food ingredients, therapeutic proteins and biotechnological enzymes. This paper reports an agmatine-controlled expression (ACE) system for L. lactis, comprising the lactococcal agmatine-sensor/transcriptional activator AguR and its target promoter P(aguB). The usefulness and efficiency of this system was checked via the reporter gene gfp and by producing PEP (Myxococcus xanthus prolyl-endopeptidase), an enzyme of biomedical interest able to degrade the immunotoxic peptides produced during the gastrointestinal breakdown of gluten. The ACE system developed in this work was suitable for the efficient expression of the functional recombinant proteins GFP and PEP. The expression system was tightly regulated by the agmatine concentration and allowed high protein production without leakiness.

  7. Comprehensive analysis of gene expression patterns of hedgehog-related genes

    Directory of Open Access Journals (Sweden)

    Baillie David

    2006-10-01

    Full Text Available Abstract Background The Caenorhabditis elegans genome encodes ten proteins that share sequence similarity with the Hedgehog signaling molecule through their C-terminal autoprocessing Hint/Hog domain. These proteins contain novel N-terminal domains, and C. elegans encodes dozens of additional proteins containing only these N-terminal domains. These gene families are called warthog, groundhog, ground-like and quahog, collectively called hedgehog (hh-related genes. Previously, the expression pattern of seventeen genes was examined, which showed that they are primarily expressed in the ectoderm. Results With the completion of the C. elegans genome sequence in November 2002, we reexamined and identified 61 hh-related ORFs. Further, we identified 49 hh-related ORFs in C. briggsae. ORF analysis revealed that 30% of the genes still had errors in their predictions and we improved these predictions here. We performed a comprehensive expression analysis using GFP fusions of the putative intergenic regulatory sequence with one or two transgenic lines for most genes. The hh-related genes are expressed in one or a few of the following tissues: hypodermis, seam cells, excretory duct and pore cells, vulval epithelial cells, rectal epithelial cells, pharyngeal muscle or marginal cells, arcade cells, support cells of sensory organs, and neuronal cells. Using time-lapse recordings, we discovered that some hh-related genes are expressed in a cyclical fashion in phase with molting during larval development. We also generated several translational GFP fusions, but they did not show any subcellular localization. In addition, we also studied the expression patterns of two genes with similarity to Drosophila frizzled, T23D8.1 and F27E11.3A, and the ortholog of the Drosophila gene dally-like, gpn-1, which is a heparan sulfate proteoglycan. The two frizzled homologs are expressed in a few neurons in the head, and gpn-1 is expressed in the pharynx. Finally, we compare the

  8. Elaboration and quality control of the inoculum of the experimental vaccine Brucella S19-tn7-GFP for use in white animals and associated serological test for the detection of anti-GFP antibodies

    International Nuclear Information System (INIS)

    Salas Alfaro, Dariana

    2014-01-01

    The preparation of the inoculum of the experimental vaccine Brucella S19-Tn7-GFP is optimized for application in white animals. An associated serological test has allowed differentiating infected animals from those vaccinated with the experimental strain. The same bacteriological and biological properties of the B. abortus S19-Tn7-GFP strain have maintained in the parental vaccine strain S19 and is stable over time. A protocol for the inoculums of strain S19-Tn7-GFP is established for its preparation and use in white animals and quality control. The inoculum stability is evaluated through the simulation of conditions that can be presented in the transportation and application process in the field. An enzyme immunoassay ELISA is optimized for the detection of anti-GFP antibodies in cattle [es

  9. [A hydroponic cultivation system for rapid high-yield transient protein expression in Nicotiana plants under laboratory conditions].

    Science.gov (United States)

    Mo, Qianzhen; Mai, Rongjia; Yang, Zhixiao; Chen, Minfang; Yang, Tiezhao; Lai, Huafang; Yang, Peiliang; Chen, Qiang; Zhou, Xiaohong

    2012-06-01

    To develop a hydroponic Nicotiana cultivation system for rapid and high-yield transient expression of recombinant proteins under laboratory conditions. To establish the hydroponic cultivation system, several parameters were examined to define the optimal conditions for the expression of recombinant proteins in plants. We used the green fluorescent protein (GFP) and the geminiviral plant transient expression vector as the model protein/expression vector. We examined the impact of Nicotiana species, the density and time of Agrobacterium infiltration, and the post-infiltration growth period on the accumulation of GFP. The expression levels of GFP in Nicotiana leaves were then examined by Western blotting and ELISA. Our data indicated that a hydroponic Nicotiana cultivation system with a light intensity of 9000 LX/layer, a light cycle of 16 h day/8 h night, a temperature regime of 28 degrees celsius; day/21 degrees celsius; night, and a relative humidity of 80% could support the optimal plant growth and protein expression. After agroinfiltration with pBYGFPDsRed.R/LBA4404, high levels of GFP expression were observed in both N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants cultured with this hydroponic cultivation system. An optimal GFP expression was achieved in both Nicotiana species leaves 4 days after infiltration by Agrobacterium with an OD(600) of 0.8. At a given time point, the average biomass of N. tobaccum (cv. Yuyan No.5) was significantly higher than that of N. benthamiana. The leaves from 6-week-old N. benthamiana plants and 5-week-old N. tobaccum (cv. Yuyan No.5) plants could be the optimal material for agroinfiltration. We have established a hydroponic cultivation system that allows robust growth of N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants and the optimal GFP expression in the artificial climate box.

  10. Green Fluorescent Protein (GFP-Based Overexpression Screening and Characterization of AgrC, a Receptor Protein of Quorum Sensing in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Shengdi Fan

    2013-09-01

    Full Text Available Staphylococcus aureus AgrC is an important component of the agr quorum-sensing system. AgrC is a membrane-embedded histidine kinase that is thought to act as a sensor for the recognition of environmental signals and the transduction of signals into the cytoplasm. However, the difficulty of expressing and purifying functional membrane proteins has drastically hindered in-depth understanding of the molecular structures and physiological functions of these proteins. Here, we describe the high-yield expression and purification of AgrC, and analyze its kinase activity. A C-terminal green fluorescent protein (GFP fusion to AgrC served as a reporter for monitoring protein expression levels in real time. Protein expression levels were analyzed by the microscopic assessment of the whole-cell fluorescence. The expressed AgrC-GFP protein with a C-terminal His-tagged was purified using immobilized metal affinity chromatography (IMAC and size exclusion chromatography (SEC at yields of ≥10 mg/L, following optimization. We also assessed the effects of different detergents on membrane solubilization and AgrC kinase activity, and polyoxyethylene-(23-lauryl-ether (Brij-35 was identified as the most suitable detergent. Furthermore, the secondary structural stability of purified AgrC was analyzed using circular dichroism (CD spectroscopy. This study may serve as a general guide for improving the yields of other membrane protein preparations and selecting the appropriate detergent to stabilize membrane proteins for biophysical and biochemical analyses.

  11. Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line.

    Science.gov (United States)

    Carpenter, Adam J; Porter, Andrew C G

    2004-12-01

    DNA Topoisomerase IIalpha (topoIIalpha) is a DNA decatenating enzyme, abundant constituent of mammalian mitotic chromosomes, and target of numerous antitumor drugs, but its exact role in chromosome structure and dynamics is unclear. In a powerful new approach to this important problem, with significant advantages over the use of topoII inhibitors or RNA interference, we have generated and characterized a human cell line (HTETOP) in which >99.5% topoIIalpha expression can be silenced in all cells by the addition of tetracycline. TopoIIalpha-depleted HTETOP cells enter mitosis and undergo chromosome condensation, albeit with delayed kinetics, but normal anaphases and cytokineses are completely prevented, and all cells die, some becoming polyploid in the process. Cells can be rescued by expression of topoIIalpha fused to green fluorescent protein (GFP), even when certain phosphorylation sites have been mutated, but not when the catalytic residue Y805 is mutated. Thus, in addition to validating GFP-tagged topoIIalpha as an indicator for endogenous topoIIalpha dynamics, our analyses provide new evidence that topoIIalpha plays a largely redundant role in chromosome condensation, but an essential catalytic role in chromosome segregation that cannot be complemented by topoIIbeta and does not require phosphorylation at serine residues 1106, 1247, 1354, or 1393.

  12. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity.

    Science.gov (United States)

    Shagin, Dmitry A; Barsova, Ekaterina V; Yanushevich, Yurii G; Fradkov, Arkady F; Lukyanov, Konstantin A; Labas, Yulii A; Semenova, Tatiana N; Ugalde, Juan A; Meyers, Ann; Nunez, Jose M; Widder, Edith A; Lukyanov, Sergey A; Matz, Mikhail V

    2004-05-01

    Homologs of the green fluorescent protein (GFP), including the recently described GFP-like domains of certain extracellular matrix proteins in Bilaterian organisms, are remarkably similar at the protein structure level, yet they often perform totally unrelated functions, thereby warranting recognition as a superfamily. Here we describe diverse GFP-like proteins from previously undersampled and completely new sources, including hydromedusae and planktonic Copepoda. In hydromedusae, yellow and nonfluorescent purple proteins were found in addition to greens. Notably, the new yellow protein seems to follow exactly the same structural solution to achieving the yellow color of fluorescence as YFP, an engineered yellow-emitting mutant variant of GFP. The addition of these new sequences made it possible to resolve deep-level phylogenetic relationships within the superfamily. Fluorescence (most likely green) must have already existed in the common ancestor of Cnidaria and Bilateria, and therefore GFP-like proteins may be responsible for fluorescence and/or coloration in virtually any animal. At least 15 color diversification events can be inferred following the maximum parsimony principle in Cnidaria. Origination of red fluorescence and nonfluorescent purple-blue colors on several independent occasions provides a remarkable example of convergent evolution of complex features at the molecular level.

  13. Patterning protein complexes on DNA nanostructures using a GFP nanobody.

    Science.gov (United States)

    Sommese, R F; Hariadi, R F; Kim, K; Liu, M; Tyska, M J; Sivaramakrishnan, S

    2016-11-01

    DNA nanostructures have become an important and powerful tool for studying protein function over the last 5 years. One of the challenges, though, has been the development of universal methods for patterning protein complexes on DNA nanostructures. Herein, we present a new approach for labeling DNA nanostructures by functionalizing them with a GFP nanobody. We demonstrate the ability to precisely control protein attachment via our nanobody linker using two enzymatic model systems, namely adenylyl cyclase activity and myosin motility. Finally, we test the power of this attachment method by patterning unpurified, endogenously expressed Arp2/3 protein complex from cell lysate. By bridging DNA nanostructures with a fluorescent protein ubiquitous throughout cell and developmental biology and protein biochemistry, this approach significantly streamlines the application of DNA nanostructures as a programmable scaffold in biological studies. © 2016 The Protein Society.

  14. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences.

    Science.gov (United States)

    Seyhan, Attila A

    2016-01-01

    Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently

  15. Expression of G-protein inwardly rectifying potassium channels (GIRKs in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. Methods GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU assay. Results GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2 was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4 mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4 mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein

  16. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  17. Evaluation of the effects of ethinylestradiol on sexual differentiation in the olvas-GFP/STII-YI medaka (transgenic Oryzias latipes) strain as estimated by proliferative activity of germ cells

    International Nuclear Information System (INIS)

    Hano, Takeshi; Oshima, Yuji; Kinoshita, Masato; Tanaka, Minoru; Mishima, Noriko; Wakamatsu, Yuko; Ozato, Kenjiro; Shimasaki, Yohei; Honjo, Tsuneo

    2011-01-01

    We evaluated the effects of 17(-ethinylestradiol (EE 2 ) on sexual differentiation in transgenic olvas-GFP/STII-YI medaka (Oryzias latipes) in terms of the proliferative activity of germ cells. This strain contains the green fluorescent protein (GFP) gene fused to the regulatory region of the medaka vasa gene, and germ cell-specific expression of GFP can be visualized in living (transparent) individuals. From 0 days post-hatch (0 dph) onwards, juveniles were exposed to graded concentrations of EE 2 (25.2-1710 ng/L) for 35 days. The gonads of live specimens were monitored by measuring their size and calculating their GFP-fluorescence area. GFP-fluorescent area in control females was about 10 times that in control males at 10 days posthatch (dph) whereas the gonadal size of 10 dph males that had been exposed to 158 ng/L of EE 2 significantly increased up to twice the size of control males, indicating that abnormal sexual differentiation towards female might occur in these individuals. Histological examination and identification of the sex-linked marker SL1 indicated that male to female sex reversal occurred at EE 2 exposure ≥45.1 ng/L at 35 dph. These results suggest that observation of proliferative activity of germ cells in the olvas-GFP/STII-YI strain could be applied to facilitated screening fish model to detect adverse effects on sexual differentiation as early as 10 dph juveniles.

  18. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    International Nuclear Information System (INIS)

    Price, Karina J.; Tsykin, Anna; Giles, Keith M.; Sladic, Rosemary T.; Epis, Michael R.; Ganss, Ruth; Goodall, Gregory J.; Leedman, Peter J.

    2012-01-01

    Highlights: ► Matrigel alters cancer cell line miRNA expression relative to culture on plastic. ► Many identified Matrigel-regulated miRNAs are implicated in cancer. ► miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. ► miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence of Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a valuable approach to the in vitro study of miRNAs.

  19. Nuclear hormone receptor expression in mouse kidney and renal cell lines.

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    Full Text Available Nuclear hormone receptors (NHRs are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN, the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m, and cell lines of mesangial (MES13, podocyte (MPC, proximal tubular epithelial (mProx24 and collecting duct (mIMCD3 origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77, nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.

  20. 5-Fluorouracil-related enhancement of adenoviral infection is Coxsackievirus-adenovirus receptor independent and associated with morphological changes in lipid membranes

    Science.gov (United States)

    Cabrele, Chiara; Vogel, Mandy; Piso, Pompiliu; Rentsch, Markus; Schröder, Josef; Jauch, Karl W; Schlitt, Hans J; Beham, Alexander

    2006-01-01

    AIM: To evaluate the mechanism underlying the effects of 5-Fluorouracil (5-FU) on adenoviral infection. METHODS: Low and high Coxsackievirus-Adenovirus Receptor (CAR) expressing human colon carcinoma cell lines were treated with 5-FU and two E1-deleted adenoviral constructs, one transferring GFP (Ad/CMV-GFP) the other bax (Ad/CEA-bax). The number of infected cells were monitored by GFP expression. To evaluate the effects of 5-FU in a receptor free system, Ad/GFP were encapsulated in liposomes and treated with 5-FU. Ad/GFP release was estimated with PCR and infection of 293 cells with the supernatant. Electron microscopy of the Ad5-GFP-liposome complex was made to investigate morphological changes of the liposomes after 5-FU. RESULTS: Infection rates of all cell lines increased from 50% to 98% with emerging 5-FU concentrations. The enhanced viral uptake was independent of the CAR expression. Additionally, 5-FU treated liposomes released 2-2.5 times more adenoviruses. Furthermore, 5-FU-treated liposomes appeared irregular and porous-like. CONCLUSION: adenoviral uptake is enhanced in the presence of 5-FU irrespective of CAR and is associated with morphological changes in membranes making the combination of both a promising option in gene therapy. PMID:16937527

  1. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake.

    Science.gov (United States)

    Nikonova, Elena V; Gilliland, Jason DA; Tanis, Keith Q; Podtelezhnikov, Alexei A; Rigby, Alison M; Galante, Raymond J; Finney, Eva M; Stone, David J; Renger, John J; Pack, Allan I; Winrow, Christopher J

    2017-06-01

    To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. Analysis of the regulation of fatty acid binding protein 7 expression in human renal carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Sugiyama Takayuki

    2011-07-01

    Full Text Available Abstract Background Improving the treatment of renal cell carcinoma (RCC will depend on the development of better biomarkers for predicting disease progression and aiding the design of appropriate therapies. One such marker may be fatty acid binding protein 7 (FABP7, also known as B-FABP and BLBP, which is expressed normally in radial glial cells of the developing central nervous system and cells of the mammary gland. Melanomas, glioblastomas, and several types of carcinomas, including RCC, overexpress FABP7. The abundant expression of FABP7 in primary RCCs compared to certain RCC-derived cell lines may allow the definition of the molecular components of FABP7's regulatory system. Results We determined FABP7 mRNA levels in six RCC cell lines. Two were highly expressed, whereas the other and the embryonic kidney cell line (HEK293 were weakly expressed FABP7 transcripts. Western blot analysis of the cell lines detected strong FABP7 expression only in one RCC cell line. Promoter activity in the RCC cell lines was 3- to 21-fold higher than that of HEK293. Deletion analysis demonstrated that three FABP7 promoter regions contributed to upregulated expression in RCC cell lines, but not in the HEK293 cell. Competition analysis of gel shifts indicated that OCT1, OCT6, and nuclear factor I (NFI bound to the FABP7 promoter region. Supershift experiments indicated that BRN2 (POU3F2 and NFI bound to the FABP7 promoter region as well. There was an inverse correlation between FABP7 promoter activity and BRN2 mRNA expression. The FABP7-positive cell line's NFI-DNA complex migrated faster than in other cell lines. Levels of NFIA mRNA were higher in the HEK293 cell line than in any of the six RCC cell lines. In contrast, NFIC mRNA expression was lower in the HEK293 cell line than in the six RCC cell lines. Conclusions Three putative FABP7 promoter regions drive reporter gene expression in RCC cell lines, but not in the HEK293 cell line. BRN2 and NFI may be key

  3. Radiation induced expression of survivin in Ewing sarcoma cell-lines

    International Nuclear Information System (INIS)

    Sheikh-Mounessi, F.; Willich, N.; Greve, B.

    2009-01-01

    Full text: Introduction: Survivin belongs to the Inhibitor of Apoptosis Protein Family (IAP), is a protein of 16.5 kD and active as a homodimer. It is overexpressed in nearly all human tumors and has a vital function in cell division and apoptotic processes. Beside its role as a relevant prognostic and predictive factor it was described to be a molecular target to improve effectiveness of radiotherapy. We investigated the radiation induced survivin expression in Ewing sarcoma cell-lines. Methods: Ewing sarcoma cells were either irradiated with 10 Gy X-ray and harvested at different time points (0, 2, 4, 6, 10 and 24 h) or irradiated with different doses (0, 2, 5 and 10 Gy) and harvested 24 h later. Protein and mRNA expression was analysed by Westernblot or Real-Time PCR. Results: Directly after irradiation with 10 Gy X-ray survivin mRNA expression was increased in relation to the reference GAPDH. Protein expression was increased in a time dependent manner and reached a maximum after 24h. Three of four investigated cell-lines showed a significant dose dependent increase of survivin protein concentration 24h after irradiation. The same three cell-lines showed a LD50 of >30 Gy. The line with the lowest dose dependent survivin induction was investigated to be most radiosensitive (LD50 = 24 Gy). Discussion: Ewing sarcoma is a childhood tumor with relatively poor prognosis. This tumor often shows significant therapeutic resistance to chemo- and/or radiotherapy. It would be of high interest to find new therapeutic approaches for its treatment. We found a remarkable overexpression of survivin in untreated Ewing sarcoma and a time and dose dependent increase of survivin protein concentration after irradiation with X-ray. The cell-line with the lowest survivin induction showed the highest radiosensitivity. In conclusion, our results show that survivin is an inducible radioresistance factor in Ewing sarcoma. This may open new therapeutic options to treat this aggressive

  4. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts

    Czech Academy of Sciences Publication Activity Database

    Kolesová, H.; Čapek, Martin; Radochová, Barbora; Janáček, Jiří; Sedmera, David

    2016-01-01

    Roč. 146, č. 2 (2016), s. 142-152 ISSN 0948-6143 R&D Projects: GA ČR(CZ) GA13-12412S; GA MŠk(CZ) LH13028 Institutional support: RVO:67985823 Keywords : green fluorescent protein (GFP) * confocal microscopy * optical projection tomography * tissue transparency * heart * embryo Subject RIV: EA - Cell Biology Impact factor: 2.553, year: 2016

  5. A knock-in mouse line conditionally expressing the tumor suppressor WTX/AMER1.

    Science.gov (United States)

    Boutet, Agnès; Comai, Glenda; Charlet, Aurélie; Jian Motamedi, Fariba; Dhib, Haroun; Bandiera, Roberto; Schedl, Andreas

    2017-11-01

    WTX/AMER1 is an important developmental regulator, mutations in which have been identified in a proportion of patients suffering from the renal neoplasm Wilms' tumor and in the bone malformation syndrome Osteopathia Striata with Cranial Sclerosis (OSCS). Its cellular functions appear complex and the protein can be found at the membrane, within the cytoplasm and the nucleus. To understand its developmental and cellular function an allelic series for Wtx in the mouse is crucial. Whereas mice carrying a conditional knock out allele for Wtx have been previously reported, a gain-of-function mouse model that would allow studying the molecular, cellular and developmental role of Wtx is still missing. Here we describe the generation of a novel mouse strain that permits the conditional activation of WTX expression. Wtx fused to GFP was introduced downstream a stop cassette flanked by loxP sites into the Rosa26 locus by gene targeting. Ectopic WTX expression is reported after crosses with several Cre transgenic mice in different embryonic tissues. Further, functionality of the fusion protein was demonstrated in the context of a Wtx null allele. © 2017 Wiley Periodicals, Inc.

  6. Expression and function of β-adrenergic receptors in human hematopoietic cell lines

    International Nuclear Information System (INIS)

    Maeki, T.; Andersson, L.C.; Kontula, K.K.

    1992-01-01

    We investigated the expression and functional characteristics of β-adrenoceptors in a panel of 10 phenotypically different human hematopoietic cell lines. A binding assay with [ 125 I]iodocyanopindolol as the ligand revealed that cell lines of myelomonocytic or histiocytic derivation (HL-60, ML-2, RC-2A, U-937) expressed high numbers of β-adrenoceptors. An intermediate density of receptors was found in a non-T, non-B cell leukemia line (Nall-1), whereas T-cell (JM, CCRF-CEM), B-cell (Raji) or erythroleukemic cell lines (K-562, HEL) displayed minimala or undetectable binding of the radioligand. Isoprenaline-stimulated cAMP production by the cells correlated to their extent of β-adrenoceptor expression. Southern blot hybridization analysis of genomic DNA from the cell lines with a 32 P-labelled β 2 -adrenoceptor cDNA probe revealed no evidence for major rearrangement or amplification of the receptor gene. Incubation with isoprenaline in vitro suppressed the proliferation of the receptor-rich RC-2A cells but did not affect the growth rate of the receptor-deficient K-562 cells. Treatment with propranolol slightly enhanced the proliferation of the RC-2A cells but did not markedly alter the growth rate of two other cell lines, regardless of their β-adrenoceptor status. These findings indicate a regulatory influence by the sympathoadrenergic system on selected cells of the myelomonocytic lineage. (au)

  7. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system.

    Science.gov (United States)

    Limaye, Arati; Koya, Vijay; Samsam, Mohtashem; Daniell, Henry

    2006-05-01

    Oral delivery of biopharmaceutical proteins expressed in plant cells should reduce their cost of production, purification, processing, cold storage, transportation, and delivery. However, poor intestinal absorption of intact proteins is a major challenge. To overcome this limitation, we investigate here the concept of receptor-mediated oral delivery of chloroplast-expressed foreign proteins. Therefore, the transmucosal carrier cholera toxin B-subunit and green fluorescent protein (CTB-GFP), separated by a furin cleavage site, was expressed via the tobacco chloroplast genome. Polymerase chain reaction (PCR) and Southern blot analyses confirmed site-specific transgene integration and homoplasmy. Immunoblot analysis and ELISA confirmed expression of monomeric and pentameric forms of CTB-GFP, up to 21.3% of total soluble proteins. An in vitro furin cleavage assay confirmed integrity of the engineered furin cleavage site, and a GM1 binding assay confirmed the functionality of CTB-GFP pentamers. Following oral administration of CTB-GFP expressing leaf material to mice, GFP was observed in the mice intestinal mucosa, liver, and spleen in fluorescence and immunohistochemical studies, while CTB remained in the intestinal cell. This report of receptor-mediated oral delivery of a foreign protein into the circulatory system opens the door for low-cost production and delivery of human therapeutic proteins.

  8. Heterologous expression of mammalian Plk1 in Drosophila reveals divergence from Polo during late mitosis

    International Nuclear Information System (INIS)

    Pearson, John; Godinho, Susana A.; Tavares, Alvaro; Glover, David M.

    2006-01-01

    Drosophila Polo kinase is the founder member of a conserved kinase family required for multiple stages of mitosis. We assessed the ability of mouse Polo-like kinase 1 (Plk1) to perform the multiple mitotic functions of Polo kinase, by expressing a Plk1-GFP fusion in Drosophila. Consistent with the previously reported localization of Polo kinase, Plk1-GFP was strongly localized to centrosomes and recruited to the centromeric regions of condensing chromosomes during early mitosis. However, in contrast to a functional Polo-GFP fusion, Plk1-GFP failed to localize to the central spindle midzone in both syncytial embryo mitosis and the conventional mitoses of cellularized embryos and S2 cells. Moreover, unlike endogenous Polo kinase and Polo-GFP, Plk1-GFP failed to associate with the contractile ring. Expression of Plk1-GFP enhanced the lethality of hypomorphic polo mutants and disrupted the organization of the actinomyosin cytoskeleton in a dominant-negative manner. Taken together, our results suggest that endogenous Polo kinase has specific roles in regulating actinomyosin rearrangements during Drosophila mitoses that its mammalian counterpart, Plk1, cannot fulfill. Consistent with this hypothesis, we observed defects in the cortical recruitment of myosin and myosin regulatory light chain in Polo deficient cells

  9. Evidence of green fluorescent protein and growth hormone expression in red abalone (Haliotis rufescens larvae

    Directory of Open Access Journals (Sweden)

    Mancilla-Sánchez Edgar

    2017-02-01

    Full Text Available The red abalone Haliotis rufescens is a highly appreciated mollusk in the national and international markets. Due to its natural over-exploitation and low growth rate, several genetic improvements were made, however special efforts are needed to increase its production. This study presents transgenic abalone’s larvae expressing green fluorescent protein (GFP fused to Cobia (Rachycentron canadum Growth Hormone (GH using sperm media transgenesis technique (SMT, pAcGFP1-N vector under the control of cytomegalovirus (CMV promoter. Sperms were exposed to three voltages (0.5, 0.75 and 1.0 Kv using a micropulser electroporator (Bio-Rad®. The highest GFP-GH expression average (40% was obtained in abalone larvae at 0.75 v. GFP and GH transgenes were positively detected by PCR, western blot and confocal microscope, respectively.

  10. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    International Nuclear Information System (INIS)

    Notcovich, C.; Molinari, B.; Duran, H.; Delgado González, D.; Sánchez Crespo, R.

    2013-01-01

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  11. Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization.

    Science.gov (United States)

    Ozawa, Akihiko; Brunori, Gloria; Mercatelli, Daniela; Wu, Jinhua; Cippitelli, Andrea; Zou, Bende; Xie, Xinmin Simon; Williams, Melissa; Zaveri, Nurulain T; Low, Sarah; Scherrer, Grégory; Kieffer, Brigitte L; Toll, Lawrence

    2015-08-19

    The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [(35)S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with μ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native NOP receptor. These

  12. Redox-sensitive GFP fusions for monitoring the catalytic mechanism and inactivation of peroxiredoxins in living cells

    Directory of Open Access Journals (Sweden)

    Verena Staudacher

    2018-04-01

    Full Text Available Redox-sensitive green fluorescent protein 2 (roGFP2 is a valuable tool for redox measurements in living cells. Here, we demonstrate that roGFP2 can also be used to gain mechanistic insights into redox catalysis in vivo. In vitro enzyme properties such as the rate-limiting reduction of wild type and mutant forms of the model peroxiredoxin PfAOP are shown to correlate with the ratiometrically measured degree of oxidation of corresponding roGFP2 fusion proteins. Furthermore, stopped-flow kinetic measurements of the oxidative half-reaction of PfAOP support the interpretation that changes in the roGFP2 signal can be used to map hyperoxidation-based inactivation of the attached peroxidase. Potential future applications of our system include the improvement of redox sensors, the estimation of absolute intracellular peroxide concentrations and the in vivo assessment of protein structure-function relationships that cannot easily be addressed with recombinant enzymes, for example, the effect of post-translational protein modifications on enzyme catalysis. Keywords: Peroxiredoxin, Redox sensor, roGFP2, H2O2, Plasmodium falciparum

  13. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody.

    Science.gov (United States)

    Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Otaki, Joji M

    2013-03-25

    Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally

  14. Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae

    Science.gov (United States)

    Smith, E. G.; D'Angelo, C.; Salih, A.; Wiedenmann, J.

    2013-06-01

    Green fluorescent protein (GFP)-like pigments are responsible for the vivid colouration of many reef-building corals and have been proposed to act as photoprotectants. Their role remains controversial because the functional mechanism has not been elucidated. We provide direct evidence to support a photoprotective role of the non-fluorescent chromoproteins (CPs) that form a biochemically and photophysically distinct group of GFP-like proteins. Based on observations of Acropora nobilis from the Great Barrier Reef, we explored the photoprotective role of CPs by analysing five coral species under controlled conditions. In vitro and in hospite analyses of chlorophyll excitation demonstrate that screening by CPs leads to a reduction in chlorophyll excitation corresponding to the spectral properties of the specific CPs present in the coral tissues. Between 562 and 586 nm, the CPs maximal absorption range, there was an up to 50 % reduction of chlorophyll excitation. The screening was consistent for established and regenerating tissue and amongst symbiont clades A, C and D. Moreover, among two differently pigmented morphs of Acropora valida grown under identical light conditions and hosting subclade type C3 symbionts, high CP expression correlated with reduced photodamage under acute light stress.

  15. Expression pattern of Ccr2 and Cx3cr1 in inherited retinal degeneration.

    Science.gov (United States)

    Kohno, Hideo; Koso, Hideto; Okano, Kiichiro; Sundermeier, Thomas R; Saito, Saburo; Watanabe, Sumiko; Tsuneoka, Hiroshi; Sakai, Tsutomu

    2015-10-12

    Though accumulating evidence suggests that microglia, resident macrophages in the retina, and bone marrow-derived macrophages can cause retinal inflammation which accelerates photoreceptor cell death, the details of how these cells are activated during retinal degeneration (RD) remain uncertain. Therefore, it is important to clarify which cells play a dominant role in fueling retinal inflammation. However, distinguishing between microglia and macrophages is difficult using conventional techniques such as cell markers (e.g., Iba-1). Recently, two mouse models for visualizing chemokine receptors were established, Cx3cr1 (GFP/GFP) and Ccr2 (RFP/RFP) mice. As Cx3cr1 is expressed in microglia and Ccr2 is reportedly expressed in activated macrophages, these mice have the potential to distinguish microglia and macrophages, yielding novel information about the activation of these inflammatory cells and their individual roles in retinal inflammation. In this study, c-mer proto-oncogene tyrosine kinase (Mertk) (-/-) mice, which show photoreceptor cell death due to defective retinal pigment epithelium phagocytosis, were employed as an animal model of RD. Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice were established by breeding Mertk (-/-) , Cx3cr1 (GFP/GFP) , and Ccr2 (RFP/RFP) mice. The retinal morphology and pattern of inflammatory cell activation and invasion of Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice were evaluated using retina and retinal pigment epithelium (RPE) flat mounts, retinal sections, and flow cytometry. Four-week-old Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice showed Cx3cr1-GFP-positive microglia in the inner retina. Cx3cr1-GFP and Ccr2-RFP dual positive activated microglia were observed in the outer retina and subretinal space of 6- and 8-week-old animals. Ccr2-RFP single positive bone marrow-derived macrophages were observed to migrate into the retina of Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice. These invading cells were still observed in the

  16. Nicotinic Receptor Alpha7 Expression during Tooth Morphogenesis Reveals Functional Pleiotropy

    Science.gov (United States)

    Rogers, Scott W.; Gahring, Lorise C.

    2012-01-01

    The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ. PMID:22666322

  17. Laminin and collagen modulate expression of the small leucine-rich proteoglycan fibromodulin in rat anterior pituitary gland.

    Science.gov (United States)

    Syaidah, Rahimi; Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-11-01

    The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.

  18. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    Science.gov (United States)

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  19. Expression and clinical significance of PIWIL2 in hilar cholangiocarcinoma tissues and cell lines.

    Science.gov (United States)

    Chen, Y J; Xiong, X F; Wen, S Q; Tian, L; Cheng, W L; Qi, Y Q

    2015-06-26

    The objective of this study was to explore the relationship between PIWI-like protein 2 (PIWIL2) and clinicopathological charac-teristics and prognosis after radical resection. To accomplish this, we analyzed PIWIL2 expression in hilar cholangiocarcinoma tissues and cell lines. PIWIL2 expression was detected by immunohistochemistry in 41 hilar cholangiocarcinoma samples and 10 control tissues. Western blotting and immunocytofluorescence were used to investigate PIWIL2 expression in the cholangiocarcinoma cell line QBC939 and the bile duct epithelial cell line HIBEpic. Univariate and multivariate surviv-al analyses were performed using the Kaplan-Meier method for hilar cholangiocarcinoma patients who underwent radical resection. PIWIL2 expression was significantly higher in the hilar cholangiocarcinoma tissues and QBC939 cells than in control tissues and HIBEpic cells, respectively (P hilar cholangiocarcinoma (P hilar cholangiocarcinoma.

  20. Energy expressions in density-functional theory using line integrals.

    NARCIS (Netherlands)

    van Leeuwen, R.; Baerends, E.J.

    1995-01-01

    In this paper we will address the question of how to obtain energies from functionals when only the functional derivative is given. It is shown that one can obtain explicit expressions for the exchange-correlation energy from approximate exchange-correlation potentials using line integrals along

  1. ERC/mesothelin is expressed in human gastric cancer tissues and cell lines.

    Science.gov (United States)

    Ito, Tomoaki; Kajino, Kazunori; Abe, Masaaki; Sato, Koichi; Maekawa, Hiroshi; Sakurada, Mutsumi; Orita, Hajime; Wada, Ryo; Kajiyama, Yoshiaki; Hino, Okio

    2014-01-01

    ERC/mesothelin is expressed in mesothelioma and other malignancies. The ERC/mesothelin gene (MSLN) encodes a 71-kDa precursor protein, which is cleaved to yield 31-kDa N-terminal (N-ERC/mesothelin) and 40-kDa C-terminal (C-ERC/mesothelin) proteins. N-ERC/mesothelin is a soluble protein and has been reported to be a diagnostic serum marker of mesothelioma and ovarian cancer. Gastric cancer tissue also expresses C-ERC/mesothelin, but the significance of serum N-ERC levels for diagnosing gastric cancer has not yet been studied. We examined the latter issue in the present study as well as C-ERC/mesothelin expression in human gastric cancer tissues and cell lines. We immunohistochemically examined C-ERC/mesothelin expression in tissue samples from 50 cases of gastric cancer, and we also assessed the C-ERC/mesothelin expression in 6 gastric cancer cell lines (MKN-1, MKN-7, MKN-74, NUGC-3, NUGC-4 and TMK-1) using reverse transcription-polymerase chain reaction, flow cytometry, immunohistochemistry and immunoblotting. We also examined the N-ERC/mesothelin concentrations in the supernatants of cultured cells and in the sera of gastric cancer patients using an enzyme-linked immunosorbent assay (ELISA). N-ERC/mesothelin was detected in the supernatants of 3 gastric cancer cell lines (MKN-1, NUGC-4 and TMK-1) by ELISA, but its concentration in the sera of gastric cancer patients was almost same as that observed in the sera of the normal controls. In the gastric cancer tissues, C-ERC/mesothelin expression was associated with lymphatic invasion. N-ERC/mesothelin was secreted into the supernatants of gastric cancer cell lines, but does not appear to be a useful serum marker of gastric cancer.

  2. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Sternberg, Claus; Poulsen, Lars K.

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria ia is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been...... constructed by the addition of short peptide sequences to the C-terminal end of intact Gfp. This rendered the Gfp susceptible to the action of indigenous housekeeping proteases, resulting in protein variants with half-lives ranging from 40 min to a few hours when synthesized in Escherichia coli...

  3. Expression of cDNAs in human Natural Killer cell lines by retroviral transduction.

    Science.gov (United States)

    Miah, S M Shahjahan; Campbell, Kerry S

    2010-01-01

    Human NK-like cell lines are difficult to transfect using standard mammalian expression vectors and conventional transfection protocols, but they are susceptible to retroviral transduction as a means to introduce cDNAs. Our laboratory has exploited this technique to study a number of receptors in human NK cell lines. The method utilizes a bicistronic retroviral vector that co-expresses either drug resistance or enhanced green fluorescent protein (EGFP) in parallel with the gene of interest. After a single infection with recombinant retrovirus, transduced NK cells can be sorted for expression of EGFP or the transduced cell surface marker. Alternatively, cells expressing the transduced cDNAs can be selected for by treatment with neomycin, puromycin, or hygromycin. Using this method, the sorted/selected cells uniformly express the gene of interest and the expression is stable for many weeks of culture.

  4. TRH-receptor mobility and function in intact and cholesterol-depleted plasma membrane of HEK293 cells stably expressing TRH-R-eGFP

    Czech Academy of Sciences Publication Activity Database

    Brejchová, Jana; Sýkora, Jan; Ostašov, Pavel; Merta, Ladislav; Roubalová, Lenka; Janáček, Jiří; Hof, Martin; Svoboda, Petr

    2015-01-01

    Roč. 1848, č. 3 (2015), s. 781-796 ISSN 0005-2736 R&D Projects: GA ČR(CZ) GAP207/12/0919 Institutional support: RVO:67985823 ; RVO:61388955 Keywords : cholesterol * TRH-R-eGFP mobility * FRAP * RICS * DPH fluorescence * G protein coupling Subject RIV: CE - Biochemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 3.687, year: 2015

  5. Live Cell Imaging Confocal Microscopy Analysis of HBV Myr-PreS1 Peptide Binding and Uptake in NTCP-GFP Expressing HepG2 Cells.

    Science.gov (United States)

    König, Alexander; Glebe, Dieter

    2017-01-01

    To obtain basic knowledge about specific molecular mechanisms involved in the entry of pathogens into cells is the basis for establishing pharmacologic substances blocking initial viral binding, infection, and subsequent viral spread. Lack of information about key cellular factors involved in the initial steps of HBV infection has hampered the characterization of HBV binding and entry for decades. However, recently, the liver-specific sodium-dependent taurocholate cotransporting polypeptide (NTCP) has been discovered as a functional receptor for HBV and HDV, thus opening the field for new concepts of basic binding and entry of HBV and HDV. Here, we describe practical issues of a basic in vitro assay system to examine kinetics and mechanisms of receptor-dependent HBV binding, uptake, and intracellular trafficking by live-cell imaging confocal microscopy. The assay system is comprised of HepG2 cells expressing a NTCP-GFP fusion-protein and chemically synthesized, fluorophore-labeled part of HBV surface protein, spanning the first N-terminal 48 amino acids of preS1 of the large hepatitis B virus surface protein.

  6. Selectable high-yield recombinant protein production in human cells using a GFP/YFP nanobody affinity support.

    Science.gov (United States)

    Schellenberg, Matthew J; Petrovich, Robert M; Malone, Christine C; Williams, R Scott

    2018-03-25

    Recombinant protein expression systems that produce high yields of pure proteins and multi-protein complexes are essential to meet the needs of biologists, biochemists, and structural biologists using X-ray crystallography and cryo-electron microscopy. An ideal expression system for recombinant human proteins is cultured human cells where the correct translation and chaperone machinery are present. However, compared to bacterial expression systems, human cell cultures present several technical challenges to their use as an expression system. We developed a method that utilizes a YFP fusion-tag to generate recombinant proteins using suspension-cultured HEK293F cells. YFP is a dual-function tag that enables direct visualization and fluorescence-based selection of high expressing clones for and rapid purification using a high-stringency, high-affinity anti-GFP/YFP nanobody support. We demonstrate the utility of this system by expressing two large human proteins, TOP2α (340 KDa dimer) and a TOP2β catalytic core (260 KDa dimer). This robustly and reproducibly yields >10 mg/L liter of cell culture using transient expression or 2.5 mg/L using stable expression. Published 2018. This article is a US Government work and is in the public domain in the USA.

  7. Construction of a high-EGFR expression cell line and its biological ...

    African Journals Online (AJOL)

    Targeted screening of EGFR compounds has become one of the medical research focuses for tumor therapy. A431, which naturally expresses high levels of EGFR, was compared with the stably high expressing EGFR cell line HEK293. Flow cytometry was used to analyze cell growth and Western blot was used to ...

  8. [Isolation and purification of BMScs of GFP transgenic mouse using the method of adhering to cuture plastic in different time].

    Science.gov (United States)

    Li, Fu-Qiang; Zhou, Hong-Ying; Yang, Hui-Lun; Xiang, Tao; Mei, Yan; Hu, Huo-Zhen; Wang, Ting-Hua

    2006-03-01

    To adopt the method of adhering to culture plastic in different time for cultivating and purifying BMSCs of green fluorescent protein (GFP) transgenic mice. Bone marrow cells isolated from GFP transgenic mice are directly planted in culture flask and an exchange of the total volume medium is made at different time. Then the cells adhering to culture plastic are differently counted according to the cell types and are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54 in three days. Moreover, the cells after the exchange of the total volume medium in 4 hours, 8 hours and 24 hours are selected and successively subcultured down to the fifth passage. Then the result of amplification is calculated and the cells are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54. With the extending of the time for the first exchange of medium, the density of cells adhering to culture plastic increased accordingly, but the BMSCs proportion decreased. The cells after first exchange of medium in 4 hours had high BMSCs proportion but low BMSCs density, and the cells in 24 hours had high BMSCs density and low BMSCs proportion. However, the cells in 8-10 hours had high BMSCs density and also high BMSCs proportion. The subcultured BMSCs could stably express GFP. The method of adhering to culture plastic in different time for cultivating and purifying BMSCs of GFP transgenic mice is effective. It is suitable to make the first exchange of total volume medium in 8-10 hours. The subcultured cell has the capacity for amplification and will probably be a seed cell for the research of tissue engineering and gene therapy.

  9. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    Directory of Open Access Journals (Sweden)

    Susanne C. Hammer

    2016-09-01

    Full Text Available Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.

  10. Using PCR to Target Misconceptions about Gene Expression

    Directory of Open Access Journals (Sweden)

    Leslie K. Wright

    2013-02-01

    Full Text Available We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA and gene expression (mRNA/protein and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression.

  11. [Adenovirus-mediated delivery of nm23-H1 gene inhibits growth of colorectal carcinoma cell line Lovo].

    Science.gov (United States)

    Wang, Qi; He, Xueling; Liu, Yan; Yin, Hailin

    2010-12-01

    This experimental study sought to find out the inhibitory effects of Ad-GFP-nm23-H1 on proliferation and metastasis of human colorectal carcinoma cell line Lovo, and, further, to gain an insight into some theoretical and methodical basis for instituting nm23-H1 gene therapy of cancers. MTT assay and Transwell chamber were used to detect the rates of proliferation and invasion as well as the adhesion of Lovo cells in vitro. The results demonstrated that the proliferation inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 84.9% +/- 1.51%, 48.5% +/- 7.23% and 22.5% +/- 5.47%, that the adherence inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 70.3% +/- 2.40%, 60.1% +/- 5.68% and 18.5% +/- 3.61%, and that the invasiveness inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 83.2% +/- 5.71%, 52.2% +/- 6.94% and 28.1% +/- 8.21%. These data suggested that Ad-GFP-nm23-H1 exerted significant inhibitory effects on the proliferation and metastasis of human colorectal carcinoma cell line Lovo in a dose-dependent way.

  12. [Expression of mutation type GJA8 gene and wild type GJA8 gene of a congenital inherited nuclear cataract family in eukaryotic cells].

    Science.gov (United States)

    Zheng, Jian-qiu; Liu, Ping; Wang, Jian-wen; Liu, Jian-ju

    2010-04-20

    To clone the sequence of mutation type GJA8 gene (mGJA8) and wild type GJA8 gene (wGJA8) of a congenital inherited nuclear cataract family and study their expression in eukaryotic cell lines in vitro. The mGJA8 and wGJA8 were amplified from this family's DNA and healthy people's DNA by PCR respectively. The mGJA8 and wGJA8 were recombined with plasmid pEGFP-N1 respectively. The accuracy of pEGFP-N1-GJA8 was confirmed by restriction enzyme digestion and DNA sequencing. Finally pEGFP-N1- mGJA8 and pEGFP-N1- wGJA8 and GFP protein were transfected into COS7 cells by lipofectin. The expression of pEGFP-N1-GJA8 and GFP fusion protein were to observe under fluorescence microscope, and to detect by Western-blotting and immunohistochemical staining. The mGJA8 and wGJA8 were cloned successfully. With restricting enzyme digestion analysis and DNA sequencing, recombinant plasmid pEGFP-N1-mGJA8 and pEGFP-N1-wGJA8 were constructed correctly and their GFP fusions were expressed in transfected COS7 cells. The expression of pEGFP-N1-mGJA8 and pEGFP-N1-wGJA8 fusion protein were observed under fluorescence microscope, and detected by Western-blotting and immunohistochemical staining successfully. The mGJA8 gene and wGJA8 gene are cloned successfully, and pEGFP-N1-mGJA8 and pEGFP-N1-mGJA8 fusion protein can be expressed in COS7 cells, which establish the foundation for further studying the mechanism of this congenital inherited nuclear cataract family.

  13. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    International Nuclear Information System (INIS)

    Sundstrom, Magnus; Chatterji, Udayan; Schaffer, Lana; Rozieres, Sohela de; Elder, John H.

    2008-01-01

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication

  14. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum lines

    Directory of Open Access Journals (Sweden)

    Qi Bao

    2012-01-01

    Full Text Available Abstract Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA and Aegilops tauschii (2n = 2x = 14; genome DD, which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD. Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO

  15. RNA-ID, a highly sensitive and robust method to identify cis-regulatory sequences using superfolder GFP and a fluorescence-based assay.

    Science.gov (United States)

    Dean, Kimberly M; Grayhack, Elizabeth J

    2012-12-01

    We have developed a robust and sensitive method, called RNA-ID, to screen for cis-regulatory sequences in RNA using fluorescence-activated cell sorting (FACS) of yeast cells bearing a reporter in which expression of both superfolder green fluorescent protein (GFP) and yeast codon-optimized mCherry red fluorescent protein (RFP) is driven by the bidirectional GAL1,10 promoter. This method recapitulates previously reported progressive inhibition of translation mediated by increasing numbers of CGA codon pairs, and restoration of expression by introduction of a tRNA with an anticodon that base pairs exactly with the CGA codon. This method also reproduces effects of paromomycin and context on stop codon read-through. Five key features of this method contribute to its effectiveness as a selection for regulatory sequences: The system exhibits greater than a 250-fold dynamic range, a quantitative and dose-dependent response to known inhibitory sequences, exquisite resolution that allows nearly complete physical separation of distinct populations, and a reproducible signal between different cells transformed with the identical reporter, all of which are coupled with simple methods involving ligation-independent cloning, to create large libraries. Moreover, we provide evidence that there are sequences within a 9-nt library that cause reduced GFP fluorescence, suggesting that there are novel cis-regulatory sequences to be found even in this short sequence space. This method is widely applicable to the study of both RNA-mediated and codon-mediated effects on expression.

  16. Identification of a functional nuclear export signal in the green fluorescent protein asFP499

    International Nuclear Information System (INIS)

    Mustafa, Huseyin; Strasser, Bernd; Rauth, Sabine; Irving, Robert A.; Wark, Kim L.

    2006-01-01

    The green fluorescent protein (GFP) asFP499 from Anemonia sulcata is a distant homologue of the GFP from Aequorea victoria. We cloned the asFP499 gene into a mammalian expression vector and showed that this protein was expressed in the human lymphoblast cell line Ramos RA1 and in the embryonic kidney 293T cell line (HEK 293T). In HEK 293T cells, asFP499 was localized mainly in the cytoplasm, suggesting that the protein was excluded from the nucleus. We identified 194 LRMEKLNI 201 as a candidate nuclear export signal in asFP499 and mutated the isoleucine at position 201 to an alanine. Unlike the wildtype form, the mutant protein was distributed throughout the cytoplasm and nucleus. This is First report of a GFP that contains a functional NES

  17. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Xu, Ling; Hausmann, Martin; Dietmaier, Wolfgang; Kellermeier, Silvia; Pesch, Theresa; Stieber-Gunckel, Manuela; Lippert, Elisabeth; Klebl, Frank; Rogler, Gerhard

    2010-01-01

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  18. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia

    2010-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.

  19. Details from dignity to decay: facial expression lines in visual arts.

    Science.gov (United States)

    Heckmann, Marc

    2003-10-01

    A number of dermatologic procedures are intended to reduce facial wrinkles. This article is about wrinkles as a statement of art. This article explores how frown lines and other facial wrinkles are used in visual art to feature personal peculiarities and accentuate specific feelings or moods. Facial lines as an artistic element emerged with advanced painting techniques evolving during the Renaissance and following periods. The skill to paint fine details, the use of light and shadow, and the understanding of space that allowed for a three-dimensional presentation of the human face were essential prerequisites. Painters used facial lines to emphasize respected values such as dignity, determination, diligence, and experience. Facial lines, however, were often accentuated to portrait negative features such as anger, fear, aggression, sadness, exhaustion, and decay. This has reinforced a cultural stigma of facial wrinkles expressing not only age but also misfortune, dismay, or even tragedy. Removing wrinkles by dermatologic procedures may not only aim to make people look younger but also to liberate them from unwelcome negative connotations. On the other hand, consideration and care must be taken-especially when interfering with facial muscles-to preserve a natural balance of emotional facial expressions.

  20. Effects of irradiation on the expression of the adhesion molecules (NCAM, ICAM-1) by glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Ryuya; Tanaka, Ryuichi; Yoshida, Seiichi [Niigata Univ. (Japan). Brain Research Inst.

    1993-11-01

    The expression of the intercellular adhesion molecule-1 (ICAM-1) and neural cell adhesion molecule (NCAM) by glioma cell lines was investigated. The effects of interferon (IFN)-[gamma] or irradiation on the expression was also assessed. Two glioma cell lines showed more than 75% NCAM-positive cells. After treatment with IFN-[gamma] or irradiation, another three cell lines were induced to show more than 50% positive cells. Three glioma cell lines showed more than 50% ICAM-1-positive cells. After treatment with IFN-[gamma], another two cell lines were induced to show more than 50% positive cells. After treatment with irradiation, one more cell line was induced to show more than 50% positive cells. ICAM-1 and NCAM expression by glioma cell lines is susceptible to modulation by IFN-[gamma] or irradiation. (author).

  1. Comparative analysis of gene expression in normal and cancer human prostate cell lines

    Directory of Open Access Journals (Sweden)

    E. E. Rosenberg

    2014-04-01

    Full Text Available Prostate cancer is one of the main causes of mortality in men with malignant tumors. The urgent problem was a search for biomarkers of prostate cancer, which would allow distinguishing between aggressive metastatic and latent tumors. The aim of this work was to search for differentially expressed genes in normal epithelial cells PNT2 and prostate cancer cell lines LNCaP, DU145 and PC3, produced from tumors with different aggressiveness and metas­tatic ability. Such genes might be used to create a panel of prognostic markers for aggressiveness and metastasis. Relative gene expression of 65 cancer-related genes was determined by the quantitative polymerase chain reaction (Q-PCR. Expression of 29 genes was changed in LNCaP cells, 20 genes in DU145 and 16 genes in PC3 cell lines, compared with normal line PNT2. The obtained data make it possible to conclude that the epithelial-mesenchymal cell transition took place, which involved the loss of epithelial markers, reduced cell adhesion and increased migration. We have also found few differentially expressed genes among 3 prostate cancer cell lines. We have found that genes, involved in cell adhesion (CDH1, invasiveness and metastasis (IL8, CXCL2 and cell cycle control (P16, CCNE1 underwent most changes. These genes might be used for diagnosis and prognosis of invasive metastatic prostate tumors.

  2. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression.

    Science.gov (United States)

    Carlin, Sean; Pugachev, Andrei; Sun, Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C Clifton; Humm, John L

    2009-10-01

    To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer (18)F-fluoromisonidazole ((18)F-FMISO). Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe (124)I-2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-iodouracil ((124)I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between (124)I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe (18)F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with (124)I-FIAU (3 h before sacrifice) and (18)F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between (18)F-FMISO and (124)I-FIAU on a pixel-by-pixel basis was performed. Correlation coefficients between (124)I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between (18)F-FMISO and (124)I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of this model for the

  3. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression

    International Nuclear Information System (INIS)

    Carlin, Sean; Pugachev, Andrei; Sun Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C. Clifton; Humm, John L.

    2009-01-01

    Purpose: To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer 18 F-fluoromisonidazole ( 18 F-FMISO). Methods: Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe 124 I-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil ( 124 I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between 124 I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe 18 F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with 124 I-FIAU (3 h before sacrifice) and 18 F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between 18 F-FMISO and 124 I-FIAU on a pixel-by-pixel basis was performed. Results: Correlation coefficients between 124 I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between 18 F-FMISO and 124 I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. Conclusions: We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of

  4. No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFPKit GFP Knockin Mice.

    Directory of Open Access Journals (Sweden)

    Annika van Hummel

    Full Text Available Several mouse lines with knockout of the tau-encoding MAPT gene have been reported in the past; they received recent attention due to reports that tau reduction prevented Aβ-induced deficits in mouse models of Alzheimer's disease. However, the effects of long-term depletion of tau in vivo remained controversial. Here, we used the tau-deficient GFP knockin line Mapttm1(EGFPkit on a pure C57Bl/6 background and subjected a large cohort of males and females to a range of motor, memory and behavior tests and imaging analysis, at the advanced age of over 16 months. Neither heterozygous nor homozygous Mapttm1(EGFPkit mice presented with deficits or abnormalities compared to wild-type littermates. Differences to reports using other tau knockout models may be due to different genetic backgrounds, respective gene targeting strategies or other confounding factors, such as nutrition. To this end, we report no functional or morphological deficits upon tau reduction or depletion in aged mice.

  5. Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts--oral administration protects against development of insulitis in non-obese diabetic mice.

    Science.gov (United States)

    Ruhlman, Tracey; Ahangari, Raheleh; Devine, Andrew; Samsam, Mohtahsem; Daniell, Henry

    2007-07-01

    Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit-human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf material expressing CTB-Pins or, as negative controls, CTB-green fluorescent protein (CTB-GFP) or interferon-GFP (IFN-GFP), or untransformed leaf, were administered orally, each week for 7 weeks, to 5-week-old female non-obese diabetic (NOD) mice. The pancreas of CTB-Pins-treated mice showed decreased infiltration of cells characteristic of lymphocytes (insulitis); insulin-producing beta-cells in the pancreatic islets of CTB-Pins-treated mice were significantly preserved, with lower blood or urine glucose levels, by contrast with the few beta-cells remaining in the pancreatic islets of the negative controls. Increased expression of immunosuppressive cytokines, such as interleukin-4 and interleukin-10 (IL-4 and IL-10), was observed in the pancreas of CTB-Pins-treated NOD mice. Serum levels of immunoglobulin G1 (IgG1), but not IgG2a, were elevated in CTB-Pins-treated mice. Taken together, T-helper 2 (Th2) lymphocyte-mediated oral tolerance is a likely mechanism for the prevention of pancreatic insulitis and the preservation of insulin-producing beta-cells. This is the first report of expression of a therapeutic protein in transgenic chloroplasts of an edible crop. Transplastomic lettuce plants expressing CTB-Pins grew normally and transgenes were maternally inherited in T(1) progeny. This opens up the possibility for the low-cost production and delivery of human therapeutic proteins, and a strategy for the treatment of various other autoimmune diseases.

  6. A vector carrying the GFP gene (Green fluorescent protein as a yeast marker for fermentation processes Um vetor com o gene da GFP (Green fluorescent protein para a marcação de leveduras em processos fermentativos

    Directory of Open Access Journals (Sweden)

    Luiz Humberto Gomes

    2000-12-01

    Full Text Available Contaminant yeasts spoil pure culture fermentations and cause great losses in quality and product yields. They can be detected by a variety of methods although none being so efficient for early detection of contaminant yeast cells that appear at low frequency. Pure cultures bearing genetic markers can ease the direct identification of cells and colonies among contaminants. Fast and easy detection are desired and morphological markers would even help the direct visualization of marked pure cultures among contaminants. The GFP gene for green fluorescent protein of Aquorea victoria, proved to be a very efficient marker to visualize transformed cells in mixed populations and tissues. To test this marker in the study of contaminated yeast fermentations, the GFP gene was used to construct a vector under the control of the ADH2 promoter (pYGFP3. Since ADH2 is repressed by glucose the expression of the protein would not interfere in the course of fermentation. The transformed yeasts with the vector pYGFP3 showed high stability and high bioluminescence to permit identification of marked cells among a mixed population of cells. The vector opens the possibility to conduct further studies aiming to develop an efficient method for early detection of spoilage yeasts in industrial fermentative processes.Leveduras contaminantes podem causar grandes perdas em processos fermentativos quando infectam culturas puras e degradam a qualidade do produto final. Estas leveduras podem ser detectadas por diversos métodos mas nenhum deles oferece resultados com a exatidão e precisão necessárias, quando os contaminantes estão em baixa freqüência. Culturas puras contendo um gene marcador podem ser utilizadas para a direta identificação de células e colônias contaminantes. Detecção rápida e fácil é desejada e marcadores morfológicos podem auxiliar na visualização da cultura marcada. O gene da GFP (green fluorescent protein extraído da Aequorea victoria

  7. Rapid-response flood mapping during Hurricanes Harvey, Irma and Maria by the Global Flood Partnership (GFP)

    Science.gov (United States)

    Cohen, S.; Alfieri, L.; Brakenridge, G. R.; Coughlan, E.; Galantowicz, J. F.; Hong, Y.; Kettner, A.; Nghiem, S. V.; Prados, A. I.; Rudari, R.; Salamon, P.; Trigg, M.; Weerts, A.

    2017-12-01

    The Global Flood Partnership (GFP; https://gfp.jrc.ec.europa.eu) is a multi-disciplinary group of scientists, operational agencies and flood risk managers focused on developing efficient and effective global flood management tools. Launched in 2014, its aim is to establish a partnership for global flood forecasting, monitoring and impact assessment to strengthen preparedness and response and to reduce global disaster losses. International organizations, the private sector, national authorities, universities and research agencies contribute to the GFP on a voluntary basis and benefit from a global network focused on flood risk reduction. At the onset of Hurricane Harvey, GFP was `activated' using email requests via its mailing service. Soon after, flood inundation maps, based on remote sensing analysis and modeling, were shared by different agencies, institutions, and individuals. These products were disseminated, to varying degrees of effectiveness, to federal, state and local agencies via emails and data-sharing services. This generated a broad data-sharing network which was utilized at the early stages of Hurricane Irma's impact, just two weeks after Harvey. In this presentation, we will describe the extent and chronology of the GFP response to both Hurricanes Harvey, Irma and Maria. We will assess the potential usefulness of this effort for event managers in various types of organizations and discuss future improvements to be implemented.

  8. Conditional inactivation of p53 in mouse ovarian surface epithelium does not alter MIS driven Smad2-dominant negative epithelium-lined inclusion cysts or teratomas.

    Directory of Open Access Journals (Sweden)

    Suzanne M Quartuccio

    Full Text Available Epithelial ovarian cancer is the most lethal gynecological malignancy among US women. The etiology of this disease, although poorly understood, may involve the ovarian surface epithelium or the epithelium of the fallopian tube fimbriae as the progenitor cell. Disruptions in the transforming growth factor beta (TGFβ pathway and p53 are frequently found in chemotherapy-resistant serous ovarian tumors. Transgenic mice expressing a dominant negative form of Smad2 (Smad2DN, a downstream transcription factor of the TGFβ signaling pathway, targeted to tissues of the reproductive tract were created on a FVB background. These mice developed epithelium-lined inclusion cysts, a potential precursor lesion to ovarian cancer, which morphologically resembled oviductal epithelium but exhibited protein expression more closely resembling the ovarian surface epithelium. An additional genetic "hit" of p53 deletion was predicted to result in ovarian tumors. Tissue specific deletion of p53 in the ovaries and oviducts alone was attempted through intrabursal or intraoviductal injection of Cre-recombinase expressing adenovirus (AdCreGFP into p53 (flox/flox mice. Ovarian bursal cysts were detected in some mice 6 months after intrabursal injection. No pathological abnormalities were detected in mice with intraoviductal injections, which may be related to decreased infectivity of the oviductal epithelium with adenovirus as compared to the ovarian surface epithelium. Bitransgenic mice, expressing both the Smad2DN transgene and p53 (flox/flox, were then exposed to AdCreGFP in the bursa and oviductal lumen. These mice did not develop any additional phenotypes. Exposure to AdCreGFP is not an effective methodology for conditional deletion of floxed genes in oviductal epithelium and tissue specific promoters should be employed in future mouse models of the disease. In addition, a novel phenotype was observed in mice with high expression of the Smad2DN transgene as validated

  9. Dual regulation of P-glycoprotein expression by Trichostatin A in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Balaguer Trinidad

    2012-07-01

    Full Text Available Abstract Background It has been reported that the histone deacetylase inhibitor (iHDAc trichostatin A (TSA induces an increase in MDR1 gene transcription (ABCB1. This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp. It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry has been used in this study. Results The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a translational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5′ end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5′ end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we demonstrate that TSA in fact, regulates

  10. Spatio Temporal Expression Pattern of an Insecticidal Gene (cry2A in Transgenic Cotton Lines

    Directory of Open Access Journals (Sweden)

    Allah BAKHSH

    2012-11-01

    Full Text Available The production of transgenic plants with stable, high-level transgene expression is important for the success of crop improvement programs based on genetic engineering. The present study was conducted to evaluate genomic integration and spatio temporal expression of an insecticidal gene (cry2A in pre-existing transgenic lines of cotton. Genomic integration of cry2A was evaluated using various molecular approaches. The expression levels of cry2A were determined at vegetative and reproductive stages of cotton at regular intervals. These lines showed a stable integration of insecticidal gene in advance lines of transgenic cotton whereas gene expression was found variable with at various growth stages as well as in different plant parts throughout the season. The leaves of transgenic cotton were found to have maximum expression of cry2A gene followed by squares, bolls, anthers and petals. The protein level in fruiting part was less as compared to other parts showing inconsistency in gene expression. It was concluded that for culturing of transgenic crops, strategies should be developed to ensure the foreign genes expression efficient, consistent and in a predictable manner.

  11. Cloning and Expression of Luteinizing Hormone Subunits in Chinese Hamster Ovary Cell Line

    Directory of Open Access Journals (Sweden)

    Zeinab Soleimanifar

    2016-10-01

    Full Text Available Background: Luteinizing hormone (LH was secreted by the stimulating cells of the testes and ovaries in the anterior pituitary gland. The application of this hormone is in the treatment of men and women with infertility and amenorrhea respectively.Materials and Methods: In the present study the alpha and beta subunits of human LH gene were cloned into the pEGFP-N1 expression vector and produced the recombinant LH hormone in Chinese hamster ovary (CHO eukaryotic system.Results: Alpha and beta subunits of LH hormone were cloned between NheI and BamHI cut sites of pEGFP_N1 expression plasmid and confirmed by PCR.  Hormone expression was evaluated in CHO cell line by Western blotting using the specific antibody.Conclusion: Alpha and beta subunits of LH hormone were expressed in CHO cell line perfectly.

  12. Specialized mouse embryonic stem cells for studying vascular development.

    Science.gov (United States)

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  13. Differential local tissue permissiveness influences the final fate of GPR17-expressing oligodendrocyte precursors in two distinct models of demyelination.

    Science.gov (United States)

    Coppolino, Giusy T; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide; Abbracchio, Maria P

    2018-05-01

    Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreER T2 xCAG-eGFP mice) allowing to follow the final fate of GPR17 + cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP + cells at damaged areas. However, only in the cuprizone model reacting GFP + cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP + cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor-1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti-inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. © 2018 The Authors GLIA Published by Wiley Periodicals, Inc.

  14. Expression of cholera toxin B–proinsulin fusion protein in lettuce and tobacco chloroplasts – oral administration protects against development of insulitis in non-obese diabetic mice

    Science.gov (United States)

    Ruhlman, Tracey; Ahangari, Raheleh; Devine, Andrew; Samsam, Mohtahsem; Daniell, Henry

    2008-01-01

    Summary Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit–human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf material expressing CTB-Pins or, as negative controls, CTB–green fluorescent protein (CTB-GFP) or interferon–GFP (IFN-GFP), or untransformed leaf, were administered orally, each week for 7 weeks, to 5-week-old female non-obese diabetic (NOD) mice. The pancreas of CTB-Pins-treated mice showed decreased infiltration of cells characteristic of lymphocytes (insulitis); insulin-producing β-cells in the pancreatic islets of CTB-Pins-treated mice were significantly preserved, with lower blood or urine glucose levels, by contrast with the few β-cells remaining in the pancreatic islets of the negative controls. Increased expression of immunosuppressive cytokines, such as interleukin-4 and interleukin-10 (IL-4 and IL-10), was observed in the pancreas of CTB-Pins-treated NOD mice. Serum levels of immunoglobulin G1 (IgG1), but not IgG2a, were elevated in CTB-Pins-treated mice. Taken together, T-helper 2 (Th2) lymphocyte-mediated oral tolerance is a likely mechanism for the prevention of pancreatic insulitis and the preservation of insulin-producing β-cells. This is the first report of expression of a therapeutic protein in transgenic chloroplasts of an edible crop. Transplastomic lettuce plants expressing CTB-Pins grew normally and transgenes were maternally inherited in T1 progeny. This opens up the possibility for the low-cost production and delivery of human therapeutic proteins, and a strategy for the treatment of various other autoimmune diseases. PMID:17490448

  15. Flexible tools for gene expression and silencing in tomato.

    Science.gov (United States)

    Fernandez, Ana I; Viron, Nicolas; Alhagdow, Moftah; Karimi, Mansour; Jones, Matthew; Amsellem, Ziva; Sicard, Adrien; Czerednik, Anna; Angenent, Gerco; Grierson, Donald; May, Sean; Seymour, Graham; Eshed, Yuval; Lemaire-Chamley, Martine; Rothan, Christophe; Hilson, Pierre

    2009-12-01

    As a genetic platform, tomato (Solanum lycopersicum) benefits from rich germplasm collections and ease of cultivation and transformation that enable the analysis of biological processes impossible to investigate in other model species. To facilitate the assembly of an open genetic toolbox designed to study Solanaceae, we initiated a joint collection of publicly available gene manipulation tools. We focused on the characterization of promoters expressed at defined time windows during fruit development, for the regulated expression or silencing of genes of interest. Five promoter sequences were captured as entry clones compatible with the versatile MultiSite Gateway format: PPC2, PG, TPRP, and IMA from tomato and CRC from Arabidopsis (Arabidopsis thaliana). Corresponding transcriptional fusions were made with the GUS gene, a nuclear-localized GUS-GFP reporter, and the chimeric LhG4 transcription factor. The activity of the promoters during fruit development and in fruit tissues was confirmed in transgenic tomato lines. Novel Gateway destination vectors were generated for the transcription of artificial microRNA (amiRNA) precursors and hairpin RNAs under the control of these promoters, with schemes only involving Gateway BP and LR Clonase reactions. Efficient silencing of the endogenous phytoene desaturase gene was demonstrated in transgenic tomato lines producing a matching amiRNA under the cauliflower mosaic virus 35S or PPC2 promoter. Lastly, taking advantage of the pOP/LhG4 two-component system, we found that well-characterized flower-specific Arabidopsis promoters drive the expression of reporters in patterns generally compatible with heterologous expression. Tomato lines and plasmids will be distributed through a new Nottingham Arabidopsis Stock Centre service unit dedicated to Solanaceae resources.

  16. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Fujiwara, Hironori [Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yokosuka, Akihito; Mimaki, Yoshihiro [Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392 (Japan); Ohizumi, Yasushi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Laboratory of Kampo Medicines, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066 (Japan); Degawa, Masakuni [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  17. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    International Nuclear Information System (INIS)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.; Cooper, Laurie P.; White, John H.; Dryden, David T.F.

    2010-01-01

    Research highlights: → Successful fusion of GFP to M.EcoKI DNA methyltransferase. → GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. → FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.

  18. Fed-batch bioreactor performance and cell line stability evaluation of the artificial chromosome expression technology expressing an IgG1 in Chinese hamster ovary cells.

    Science.gov (United States)

    Combs, Rodney G; Yu, Erwin; Roe, Susanna; Piatchek, Michele Bailey; Jones, Heather L; Mott, John; Kennard, Malcolm L; Goosney, Danika L; Monteith, Diane

    2011-01-01

    The artificial chromosome expression (ACE) technology system uses an engineered artificial chromosome containing multiple site-specific recombination acceptor sites for the rapid and efficient construction of stable cell lines. The construction of Chinese hamster ovary(CHO) cell lines expressing an IgG1 monoclonal antibody (MAb) using the ACE system has been previously described (Kennard et al., Biotechnol Bioeng. 2009;104:540-553). To further demonstrate the manufacturing feasibility of the ACE system, four CHO cell lines expressing the human IgG1 MAb 4A1 were evaluated in batch and fed-batch shake flasks and in a 2-L fed-batch bioreactor. The batch shake flasks achieved titers between 0.7 and 1.1 g/L, whereas the fed-batch shake flask process improved titers to 2.5–3.0 g/L. The lead 4A1 ACE cell line achieved titers of 4.0 g/L with an average specific productivity of 40 pg/(cell day) when cultured in a non optimized 2-L fed-batch bioreactor using a completely chemically defined process. Generational stability characterization of the lead 4A1-expressing cell line demonstrated that the cell line was stable for up to 75 days in culture. Product quality attributes of the 4A1 MAb produced by the ACE system during the stability evaluation period were unchanged and also comparable to existing expression technologies such as the CHO-dhfr system. The results of this evaluation demonstrate that a clonal, stable MAb-expressing CHO cell line can be produced using ACE technology that performs competitively using a chemically defined fed-batch bioreactor process with comparable product quality attributes to cell lines generated by existing technologies.

  19. Comparison of Two Mouse Ameloblast-like Cell Lines for Enamel-specific Gene Expression

    Directory of Open Access Journals (Sweden)

    Juni eSarkar

    2014-07-01

    Full Text Available Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells. Quantitative PCR analysis indicates that, relative to each other, LS8 cells express greater mRNA levels for genes that define secretory-stage activities (Amelx, Ambn, Enam and Mmp20, while ALC express greater mRNA levels for genes that define maturation-stage activities (Odam and Klk4. Western blot analyses show that Amelx, Ambn and Odam proteins are detectable in ALC, but not LS8 cells. Unstimulated ALC cells form calcified nodules, while LS8 cells do not. These data provide greater insight as to the suitability of both cell lines to contribute to biological studies on enamel formation and biomineralization, and highlight some of the strengths and weaknesses when relying on enamel epithelial organ-derived cell lines to study molecular activities of amelogenesis.

  20. Generation and Characterization of an Immortalized Human Esophageal Myofibroblast Line.

    Directory of Open Access Journals (Sweden)

    Chao Niu

    Full Text Available Stromal cells with a myofibroblast phenotype present in the normal human esophagus are increased in individuals with gastro-esophageal reflux disease (GERD. We have previously demonstrated that myofibroblasts stimulated with acid and TLR4 agonists increase IL-6 and IL-8 secretion using primary cultures of myofibroblasts established from normal human esophagus. While primary cultures have the advantage of reflecting the in vivo environment, a short life span and unavoidable heterogeneity limits the usefulness of this model in larger scale in vitro cellular signaling studies. The major aim of this paper therefore was to generate a human esophageal myofibroblast line with an extended lifespan. In the work presented here we have generated and characterized an immortalized human esophageal myofibroblast line by transfection with a commercially available GFP-hTERT lentivirus. Immortalized human esophageal myofibroblasts demonstrate phenotypic, genotypic and functional similarity to primary cultures of esophageal myofibroblasts we have previously described. We found that immortalized esophageal myofibroblasts retain myofibroblast spindle-shaped morphology at low and high confluence beyond passage 80, and express α-SMA, vimentin, and CD90 myofibroblast markers. Immortalized human esophageal myofibroblasts also express the putative acid receptor TRPV1 and TLR4 and retain the functional capacity to respond to stimuli encountered in GERD with secretion of IL-6. Finally, immortalized human esophageal myofibroblasts also support the stratified growth of squamous esophageal epithelial cells in 3D organotypic cultures. This newly characterized immortalized human esophageal myofibroblast cell line can be used in future cellular signaling and co-culture studies.

  1. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sustarsic, Elahu G. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Junnila, Riia K. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Kopchick, John J., E-mail: kopchick@ohio.edu [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH (United States)

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  2. Gene ontology of differentially expressed genes in the Necrotic enteritis induced chicken lines

    Science.gov (United States)

    Necrotic enteritis caused by Clostridium perfringens has become prevalent in the broiler industry due to the withdrawal of antibiotics in poultry feed. The expression level of intestinal mRNA from two chicken lines (line 6.3: MD-resistant and 7.2: MD-susceptible) was significantly different followi...

  3. Comparative pharmacology of a new recombinant FSH expressed by a human cell line

    DEFF Research Database (Denmark)

    Koechling, Wolfgang; Plaksin, Daniel; Croston, Glenn E.

    2017-01-01

    Recombinant FSH proteins are important therapeutic agents for the treatment of infertility, including follitropin alfa expressed in Chinese Hamster Ovary (CHO) cells and, more recently, follitropin delta expressed in the human cell line PER.C6. These recombinant FSH proteins have distinct glycosy...

  4. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli.

    Science.gov (United States)

    Matai, Ishita; Sachdev, Abhay; Dubey, Poornima; Kumar, S Uday; Bhushan, Bharat; Gopinath, P

    2014-03-01

    Emergence of multi-resistant organisms (MROs) leads to ineffective treatment with the currently available medications which pose a great threat to public health and food technology sectors. In this regard, there is an urgent need to strengthen the present therapies or to look over for other potential alternatives like use of "metal nanocomposites". Thus, the present study focuses on synthesis of silver-zinc oxide (Ag-ZnO) nanocomposites which will have a broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria. Ag-ZnO nanocomposites of varied molar ratios were synthesized by simple microwave assisted reactions in the absence of surfactants. The crystalline behavior, composition and morphological analysis of the prepared powders were evaluated by X-ray diffraction, infrared spectroscopy, field emission scanning electron microscopy (FE-SEM) and atomic absorption spectrophotometry (AAS). Particle size measurements were carried out by transmission electron microscopy (TEM). Staphylococcus aureus and recombinant green fluorescent protein (GFP) expressing antibiotic resistant Escherichia coli were selected as Gram-positive and Gram-negative model systems respectively and the bactericidal activity of Ag-ZnO nanocomposite was studied. The minimum inhibitory concentration (MIC) and minimum killing concentration (MKC) of the nanocomposite against the model systems were determined by visual turbidity analysis and optical density analysis. Qualitative and quantitative assessments of its antibacterial effects were performed by fluorescent microscopy, fluorescent spectroscopy and Gram staining measurements. Changes in cellular morphology were examined by atomic force microscopy (AFM), FE-SEM and TEM. Finally, on the basis of the present investigation and previously published reports, a plausible antibacterial mechanism of Ag-ZnO nanocomposites was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Thermal stability of chemically denatured green fluorescent protein (GFP) A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Attila; Malnasi-Csizmadia, Andras; Somogyi, Bela; Lorinczy, Denes

    2004-02-09

    Green fluorescent protein (GFP) is a light emitter in the bioluminescence reaction of the jellyfish Aequorea victoria. The protein consist of 238 amino acids and produces green fluorescent light ({lambda}{sub max}=508 nm), when irradiated with near ultraviolet light. The fluorescence is due to the presence of chromophore consisting of an imidazolone ring, formed by a post-translational modification of the tripeptide -Ser{sup 65}-Tyr{sup 66}-Gly{sup 67}-, which buried into {beta}-barrel. GFP is extremely compact and heat stable molecule. In this work, we present data for the effect of chemical denaturing agent on the thermal stability of GFP. When denaturing agent is applied, global thermal stability and the melting point of the molecule is decreases, that can be monitored with differential scanning calorimetry. The results indicate, that in 1-6 M range of GuHCl the melting temperature is decreasing continuously from 83 to 38 deg. C. Interesting finding, that the calculated calorimetric enthalpy decreases with GuHCl concentration up to 3 M (5.6-0.2 kJ mol{sup -1}), but at 4 M it jumps to 8.4 and at greater concentration it is falling down to 1.1 kJ mol{sup -1}. First phenomena, i.e. the decrease of melting point with increasing GuHCl concentration can be easily explained by the effect of the extended chemical denaturation, when less and less amount of heat required to diminish the remaining hydrogen bonds in {beta}-barrel. The surprising increase of calorimetric enthalpy at 4 M concentration of GuHCl could be the consequence of a dimerization or a formation of stable complex between GFP and denaturing agent as well as a precipitation at an extreme GuHCl concentration. We are planning further experiments to elucidate fluorescent consequence of these processes.

  6. ­Glial and stem cell expression of murine Fibroblast Growth Factor Receptor 1 in the embryonic and perinatal nervous system

    Directory of Open Access Journals (Sweden)

    Jantzen C. Collette

    2017-06-01

    Full Text Available Background Fibroblast growth factors (FGFs and their receptors (FGFRs are involved in the development and function of multiple organs and organ systems, including the central nervous system (CNS. FGF signaling via FGFR1, one of the three FGFRs expressed in the CNS, stimulates proliferation of stem cells during prenatal and postnatal neurogenesis and participates in regulating cell-type ratios in many developing regions of the brain. Anomalies in FGFR1 signaling have been implicated in certain neuropsychiatric disorders. Fgfr1 expression has been shown, via in situ hybridization, to vary spatially and temporally throughout embryonic and postnatal development of the brain. However, in situ hybridization lacks sufficient resolution to identify which cell-types directly participate in FGF signaling. Furthermore, because antibodies raised against FGFR1 commonly cross-react with other members of the FGFR family, immunocytochemistry is not alone sufficient to accurately document Fgfr1 expression. Here, we elucidate the identity of Fgfr1 expressing cells in both the embryonic and perinatal mouse brain. Methods To do this, we utilized a tgFGFR1-EGFPGP338Gsat BAC line (tgFgfr1-EGFP+ obtained from the GENSAT project. The tgFgfr1-EGFP+ line expresses EGFP under the control of a Fgfr1 promoter, thereby causing cells endogenously expressing Fgfr1 to also present a positive GFP signal. Through simple immunostaining using GFP antibodies and cell-type specific antibodies, we were able to accurately determine the cell-type of Fgfr1 expressing cells. Results This technique revealed Fgfr1 expression in proliferative zones containing BLBP+ radial glial stem cells, such as the cortical and hippocampal ventricular zones, and cerebellar anlage of E14.5 mice, in addition to DCX+ neuroblasts. Furthermore, our data reveal Fgfr1 expression in proliferative zones containing BLBP+ cells of the anterior midline, hippocampus, cortex, hypothalamus, and cerebellum of P0.5 mice

  7. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death

    DEFF Research Database (Denmark)

    Nørholm, Morten Helge Hauberg; Nour-Eldin, Hussam H; Brodersen, Peter

    2006-01-01

    GFP expression only in the vascular tissue in emerging petals under non-stressed conditions. Quantitative PCR and the pSTP13-GFP plants show induction of STP13 in programmed cell death (PCD) obtained by treatments with the fungal toxin fumonisin B1 and the pathogen Pseudomonas syringae. A role for STP...

  8. Establishment of Lactobacillus plantarum strain in honey bee digestive tract monitored using gfp fluorescence.

    Science.gov (United States)

    Javorský, P; Fecskeová, L Kolesár; Hrehová, L; Sabo, R; Legáth, J; Pristas, P

    2017-04-26

    Lactic acid bacteria are symbiotic bacteria that naturally reside in the gastrointestinal tract of honey bees. They serve a multitude of functions and are considered beneficial and completely harmless. In our experiments Lactobacillus plantarum strain B35, isolated from honey bee digestive tract, was modified using pAD43-25 plasmid carrying a functional GFP gene sequence (gfpmut3a) and used as a model for monitoring and optimisation of the mode of application. The establishment of this strain in honey bee digestive tract was monitored using GFP fluorescence. Three different modes of oral application of this strain were tested: water suspension of lyophilised bacteria, aerosol application of these bacteria and consumption of sugar honey paste containing the lyophilised lactobacilli. Two days after administration the L. plantarum B35-gfp was present throughout the honey bee digestive tract with 10 4 -10 5 cfu/bee with highest count observed for aerosol application.

  9. Expression of MIF and CD74 in leukemic cell lines: correlation to DR expression destiny.

    Science.gov (United States)

    Georgouli, Mirella; Papadimitriou, Lina; Glymenaki, Maria; Patsaki, Valia; Athanassakis, Irene

    2016-06-01

    Invariant chain (Ii) or CD74 is a non-polymorphic glycoprotein, which apart from its role as a chaperone dedicated to MHCII molecules, is known to be a high-affinity receptor for macrophage migration inhibitory factor (MIF). The present study aimed to define the roles of CD74 and MIF in the immune surveillance escape process. Towards this direction, the cell lines HL-60, Raji, K562 and primary pre-B leukemic cells were examined for expression and secretion of MIF. Flow cytometry analysis detected high levels of MIF and intracellular/membrane CD74 expression in all leukemic cells tested, while MIF secretion was shown to be inversely proportional to intracellular HLA-DR (DR) expression. In the MHCII-negative cells, IFN-γ increased MIF expression and induced its secretion in HL-60 and K562 cells, respectively. In K562 cells, CD74 (Iip33Iip35) was shown to co-precipitate with HLA-DOβ (DOβ), inhibiting thus MIF or DR binding. Induced expression of DOα in K562 (DOα-DOβ+) cells in different transfection combinations decreased MIF expression and secretion, while increasing surface DR expression. Thus, MIF could indeed be part of the antigen presentation process.

  10. Mechanisms of MRP over-expression in four human lung-cancer cell lines and analysis of the MRP amplicon

    NARCIS (Netherlands)

    Eijdems, E. W.; de Haas, M.; Coco-Martin, J. M.; Ottenheim, C. P.; Zaman, G. J.; Dauwerse, H. G.; Breuning, M. H.; Twentyman, P. R.; Borst, P.; Baas, F.

    1995-01-01

    Some multidrug resistant cell lines over-express the gene encoding the multidrug-resistance-associated protein (MRP). In all cell lines reported thus far, over-expression is associated with gene amplification. We have studied the predominant mechanisms of MRP over-expression in 4 human lung-cancer

  11. MECHANISMS OF MRP OVER-EXPRESSION IN 4 HUMAN LUNG-CANCER CELL-LINES AND ANALYSIS OF THE MRP AMPLICON

    NARCIS (Netherlands)

    EIJDEMS, EWHM; DEHAAS, M; COCOMARTIN, JM; OTTENHEIM, CPE; ZAMAN, GJR; DAUWERSE, HG; BREUNING, MH; TWENTYMAN, PR; BORST, P; BAAS, F

    1995-01-01

    Some multidrug resistant cell lines over-express the gene encoding the multidrug-resistance-associated protein (MRP). In all cell lines reported thus far, over-expression is associated with gene amplification. We have studied the predominant mechanisms of MRP over-expression in 4 human lung-cancer

  12. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  13. Reduction of adenovirus E1A mRNA by RNAi results in enhanced recombinant protein expression in transiently transfected HEK293 cells.

    Science.gov (United States)

    Hacker, David L; Bertschinger, Martin; Baldi, Lucia; Wurm, Florian M

    2004-10-27

    Human embryonic kidney 293 (HEK293) cells, a widely used host for large-scale transient expression of recombinant proteins, are transformed with the adenovirus E1A and E1B genes. Because the E1A proteins function as transcriptional activators or repressors, they may have a positive or negative effect on transient transgene expression in this cell line. Suspension cultures of HEK293 EBNA (HEK293E) cells were co-transfected with a reporter plasmid expressing the GFP gene and a plasmid expressing a short hairpin RNA (shRNA) targeting the E1A mRNAs for degradation by RNA interference (RNAi). The presence of the shRNA in HEK293E cells reduced the steady state level of E1A mRNA up to 75% and increased transient GFP expression from either the elongation factor-1alpha (EF-1alpha) promoter or the human cytomegalovirus (HCMV) immediate early promoter up to twofold. E1A mRNA depletion also resulted in a twofold increase in transient expression of a recombinant IgG in both small- and large-scale suspension cultures when the IgG light and heavy chain genes were controlled by the EF-1alpha promoter. Finally, transient IgG expression was enhanced 2.5-fold when the anti-E1A shRNA was expressed from the same vector as the IgG light chain gene. These results demonstrated that E1A has a negative effect on transient gene expression in HEK293E cells, and they established that RNAi can be used to enhance recombinant protein expression in mammalian cells.

  14. A Sensitive Sensor Cell Line for the Detection of Oxidative Stress Responses in Cultured Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Ute Hofmann

    2014-06-01

    Full Text Available In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells expressing green fluorescent protein (GFP under the control of the stress-inducible HSP70B’ promoter were constructed. Exposure of HaCaT sensor cells to 25 µM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ~300-fold induction of transcript level of the gene coding for heat shock protein HSP70B’. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B’ gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B’ promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 µM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (µTAS that may be utilized in dermatology, toxicology, pharmacology and drug screenings.

  15. Effective scheme of photolysis of GFP in live cell as revealed with confocal fluorescence microscopy

    Science.gov (United States)

    Glazachev, Yu I.; Orlova, D. Y.; Řezníčková, P.; Bártová, E.

    2018-05-01

    We proposed an effective kinetics scheme of photolysis of green fluorescent protein (GFP) observed in live cells with a commercial confocal fluorescence microscope. We investigated the photolysis of GFP-tagged heterochromatin protein, HP1β-GFP, in live nucleus with the pulse position modulation approach, which has several advantages over the classical pump-and-probe method. At the basis of the proposed scheme lies a process of photoswitching from the native fluorescence state to the intermediate fluorescence state, which has a lower fluorescence yield and recovers back to native state in the dark. This kinetics scheme includes four effective parameters (photoswitching, reverse switching, photodegradation rate constants, and relative brightness of the intermediate state) and covers the time scale from dozens of milliseconds to minutes of the experimental fluorescence kinetics. Additionally, the applicability of the scheme was demonstrated in the cases of continuous irradiation and the classical pump-and-probe approach using numerical calculations and analytical solutions. An interesting finding of experimental data analysis was that the overall photodegradation of GFP proceeds dominantly from the intermediate state, and demonstrated approximately the second-order reaction versus irradiation power. As a practical example, the proposed scheme elucidates the artifacts of fluorescence recovery after the photobleaching method, and allows us to propose some suggestions on how to diminish them.

  16. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...... and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II m......RNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF...

  17. Expression of the Pokemon proto-oncogene in nasopharyngeal carcinoma cell lines and tissues.

    Science.gov (United States)

    Jiao, Wei; Liu, Fei; Tang, Feng-Zhu; Lan, Jiao; Xiao, Rui-Ping; Chen, Xing-Zhou; Ye, Hui-Lan; Cai, Yong-Lin

    2013-01-01

    To study the differentiated expression of the proto-oncogene Pokemon in nasopharyngeal carcinoma (NPC) cell lines and tissues, mRNA and protein expression levels of CNE1, CNE2, CNE3 and C666-1 were detected separately by reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and Western-blotting. The immortalized nasopharyngeal epithelial cell line NP69 was used as a control. The Pokemon protein expression level in biopsy specimens from chronic rhinitis patients and undifferentiated non keratinizing NPC patients was determined by Western-blotting and arranged from high to low: C666-1>CNE1>CNE2> CNE3>NP69. The Pokemon mRNA expression level was also arranged from high to low: CNE1>CNE2>NP69>C666-1>CNE3. Pokemon expression of NP69 and C666-1 obviously varied from mRNA to protein. The Pokemon protein level of NPC biopsy specimens was obviously higher than in chronic rhinitis. The data suggest that high Pokemon protein expression is closely associated with undifferentiated non-keratinizing NPC and may provide useful information for NPC molecular target therapy.

  18. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O.

    2010-01-01

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties

  19. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus.

    Science.gov (United States)

    Flannery, J G; Zolotukhin, S; Vaquero, M I; LaVail, M M; Muzyczka, N; Hauswirth, W W

    1997-06-24

    We describe a general approach for achieving efficient and cell type-specific expression of exogenous genes in photoreceptor cells of the mammalian retina. Recombinant adeno-associated virus (rAAV) vectors were used to transfer the bacterial lacZ gene or a synthetic green fluorescent protein gene (gfp) to mouse or rat retinas after injection into the subretinal space. Using a proximal murine rod opsin promoter (+86 to -385) to drive expression, reporter gene product was found exclusively in photoreceptors, not in any other retinal cell type or in the adjacent retinal pigment epithelium. GFP-expressing photoreceptors typically encompassed 10-20% of the total retinal area after a single 2-microl injection. Photoreceptors were transduced with nearly 100% efficiency in the region directly surrounding the injection site. We estimate approximately 2.5 million photoreceptors were transduced as a result of the single subretinal inoculation. This level of gene transfer and expression suggests the feasibility of genetic therapy for retinal disease. The gfp-containing rAAV stock was substantially free of both adenovirus and wild-type AAV, as judged by plaque assay and infectious center assay, respectively. Thus, highly purified, helper virus-free rAAV vectors can achieve high-frequency tissue-specific transduction of terminally differentiated, postmitotic photoreceptor cells.

  20. Cannabidiol changes P-gp and BCRP expression in trophoblast cell lines

    Directory of Open Access Journals (Sweden)

    Valeria Feinshtein

    2013-09-01

    Full Text Available Objectives. Marijuana is the most commonly used illicit drug during pregnancy. Due to high lipophilicity, cannabinoids can easily penetrate physiological barriers like the human placenta and jeopardize the developing fetus. We evaluated the impact of cannabidiol (CBD, a major non-psychoactive cannabinoid, on P-glycoprotein (P-gp and Breast Cancer Resistance Protein (BCRP expression, and P-gp function in a placental model, BeWo and Jar choriocarcinoma cell lines (using P-gp induced MCF7 cells (MCF7/P-gp for comparison. Study design. Following the establishment of the basal expression of these transporters in the membrane fraction of all three cell lines, P-gp and BCRP protein and mRNA levels were determined following chronic (24–72 h exposure to CBD, by Western Blot and qPCR. CBD impact on P-gp efflux function was examined by uptake of specific P-gp fluorescent substrates (calcein-AM, DiOC2(3 and rhodamine123(rh123. Cyclosporine A (CsA served as a positive control. Results. Chronic exposure to CBD resulted in significant changes in the protein and mRNA levels of both transporters. While P-gp was down-regulated, BCRP levels were up-regulated in the choriocarcinoma cell lines. CBD had a remarkably different influence on P-gp and BCRP expression in MCF7/P-gp cells, demonstrating that these are cell type specific effects. P-gp dependent efflux (of calcein, DiOC2(3 and rh123 was inhibited upon short-term exposure to CBD. Conclusions. Our study shows that CBD might alter P-gp and BCRP expression in the human placenta, and inhibit P-gp efflux function. We conclude that marijuana use during pregnancy may reduce placental protective functions and change its morphological and physiological characteristics.

  1. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis.

    Science.gov (United States)

    Guan, Chengran; Cui, Wenjing; Cheng, Jintao; Zhou, Li; Guo, Junling; Hu, Xu; Xiao, Guoping; Zhou, Zhemin

    2015-09-21

    Bacillus subtilis is an all-important Gram-positive bacterium of valuable biotechnological utility that has been widely used to over-produce industrially and pharmaceutically relevant proteins. There are a variety of expression systems in terms of types of transcriptional patterns, among which the auto-inducible and growth-phase-dependent promoters are gaining increasing favor due to their inducer-independent feature, allowing for the potential to industrially scale-up. To expand the applicability of the auto-inducible expression system, a novel auto-regulatory expression system coupled with cell density was constructed and developed in B. subtilis using the quorum-sensing related promoter srfA (PsrfA). The promoter of the srf operon was used to construct an expression plasmid with the green fluorescent protein (GFP) downstream of PsrfA. The expression displayed a cell-density-dependent pattern in that GFP had a fairly low expression level at the early exponential stage and was highly expressed at the late exponential as well as the stationary stages. Moreover, the recombinant system had a similar expression pattern in wild-type B. subtilis 168, WB600, and WB800, as well as in B. subtilis 168 derivative strain 1681, with the complete deletion of PsrfA, indicating the excellent compatibility of this system. Noticeably, the expression strength of PsrfA was enhanced by optimizing the -10 and -35 core sequence by substituting both sequences with consensus sequences. Importantly, the expression pattern was successfully developed in an auto-regulatory cell-density coupling system by the simple addition of glucose in which GFP could not be strongly expressed until glucose was depleted, resulting in a greater amount of the GFP product and increased cell density. The expression system was eventually tested by the successful over-production of aminopeptidase to a desired level. The auto-regulatory cell density coupling system that is mediated by PsrfA is a novel expression

  2. [Construction of BAD Lentivirus Vector and Its Effect on Proliferation in A549 Cell Lines].

    Science.gov (United States)

    Huang, Na; He, Yan-qi; Zhu, Jing; Li, Wei-min

    2015-05-01

    To construct the recombinant lentivirus expressing vector BAD (Bcl-2-associated death protein) gene and to study its effect on A549 cell proliferation. The BAD gene was amplified from plasmid pAV-MCMV-BAD-GFP by PCR. The purified BAD gene fragment was inserted into a lentivirus vector (pLVX-IRES-ZsGreen 1), and the insertion was identified by PCR, restriction endonuclease analysis and DNA sequencing. A549 cells were then transfected with the packaged recombinant lentivirus, and resistant cell clones were selected with flow cytometry. The expression of BAD in A549 cell lines stably transduction with a lentivirus was examined using Western blot. The effect of BAD overexpression on proliferation of A549 cells was evaluated by using CCK-8 kit. Restriction enzyme digestion and DNA sequencing showed that the full-length BAD gene (507 bp) had been successfully subcloned into the lentiviral vector to result in the recombinant vector pLVX-IRES-ZsGreen 1. Monoclonal cell lines BAD-A549 was produced after transfection with the recombinant lentivirus and selected with flow cytometry. Stable expression of BAD protein was verified by Western blot. In vitro, the OD value in BAD group was significantly lower than that of control groups from 120-144 h (PBAD gene had been successfully generated. In vitro, BAD overexpression significantly inhibited A549 cells proliferation.

  3. The impact of intragenic CpG content on gene expression.

    Science.gov (United States)

    Bauer, Asli Petra; Leikam, Doris; Krinner, Simone; Notka, Frank; Ludwig, Christine; Längst, Gernot; Wagner, Ralf

    2010-07-01

    The development of vaccine components or recombinant therapeutics critically depends on sustained expression of the corresponding transgene. This study aimed to determine the contribution of intragenic CpG content to expression efficiency in transiently and stably transfected mammalian cells. Based upon a humanized version of green fluorescent protein (GFP) containing 60 CpGs within its coding sequence, a CpG-depleted variant of the GFP reporter was established by carefully modulating the codon usage. Interestingly, GFP reporter activity and detectable protein amounts in stably transfected CHO and 293 cells were significantly decreased upon CpG depletion and independent from promoter usage (CMV, EF1 alpha). The reduction in protein expression associated with CpG depletion was likewise observed for other unrelated reporter genes and was clearly reflected by a decline in mRNA copy numbers rather than translational efficiency. Moreover, decreased mRNA levels were neither due to nuclear export restrictions nor alternative splicing or mRNA instability. Rather, the intragenic CpG content influenced de novo transcriptional activity thus implying a common transcription-based mechanism of gene regulation via CpGs. Increased high CpG transcription correlated with changed nucleosomal positions in vitro albeit histone density at the two genes did not change in vivo as monitored by ChIP.

  4. A Color-coded Imageable Syngeneic Mouse Model of Stromal-cell Recruitment by Metastatic Lymphoma.

    Science.gov (United States)

    Matsumoto, Takuro; Suetsugu, Atsushi; Shibata, Yuhei; Nakamura, Nobuhiko; Aoki, Hitomi; Kunisada, Takahiro; Tsurumi, Hisashi; Shimizu, Masahito; Hoffman, Robert M

    2015-09-01

    A syngeneic color-coded imageable lymphoma model has been developed to visualize recruitment of host stromal cells by malignant lymphoma during metastasis. The EL4 cell line was previously derived from a lymphoma induced in a C57/BL6 mouse by 9,10-dimethyl-1,2-benzanthracene. EL4 lymphoma cells expressing red fluorescent protein (EL4-RFP) were initially established. EL4-RFP cells were subsequently injected into the tail vein of C57/BL6-GFP transgenic mice. EL4-RFP metastasis was observed in the lymph nodes of the upper mediastinum and in the liver 28 days after cell injection. Large EL4-RFP liver metastases in C57/BL6-GFP mice contained GFP-expressing stromal cells derived from the host. In addition, EL4-RFP lymphoma metastasis was formed in peri-gastric lymph nodes, which were also enriched in host GFP-expressing cells. Furthermore, EL4-RFP lymphoma cells were also observed in the peripheral blood and bone marrow of C57/BL6-GFP transgenic mice, where they were associated with GFP-expressing host cells. Lymph node, liver and bone marrow metastases were found approximately 4 weeks after transplantation and all RFP-expressing metastases were highly enriched in GFP-expressing host stromal cells. This model of malignant lymphoma can be used to study early tumor development, metastasis, and the role of the stroma, as well as for discovery and evaluation of novel therapeutics for this treatment-resistant disease. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Pathological analysis, detection of antigens, FasL expression analysis and leucocytes survival analysis in tilapia (Oreochromis niloticus) after infection with green fluorescent protein labeled Streptococcus agalactiae.

    Science.gov (United States)

    Wang, Jingyuan; Wu, Jinying; Yi, Liyuan; Hou, Zengxin; Li, Wensheng

    2017-03-01

    The pathogenesis of Streptococcus agalactiae infection in tilapia has not been fully described. To understand this, we investigated the clinic-pathological features of acute experimental septicemia in tilapia (Oreochromis niloticus) after receiving an intra-peritoneal injection with S. agalactiae THN-1901GFP. Immunohistochemistry and sections of pathological tissues were used to estimate the level of damage in the head-kidney, liver, spleen and trunk-kidney. The expression of FasL was analyzed by western blotting in these samples based on their damage levels. Leucocytes were isolated from the head-kidney and incubated with S. agalactiae THN-1901GFP. Then, phagocytosis, programmed cell death and the expression of FasL were analyzed. The infected tissues showed varying degrees of necrosis and histolysis. The serous membrane of the intestine was dissolved by S. agalactiae THN-1901GFP. Antigens of S. agalactiae THN-1901GFP accumulated in different parts of the infected organs. In the head-kidney and spleen, the expression of FasL was up-regulated in parallel with increased tissue damage. After being incubated with S. agalactiae THN-1901GFP, the phagocytic capacity and ability were both very high and the expression of FasL remained high in leucocytes. S. agalactiae THN-1901GFP was able to survive for a long period of time after being engulfed by phagocytic cells. These findings offer insight into the pathogenesis of S. agalactiae infection in tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines.

    Science.gov (United States)

    Challier, C; Uphoff, C C; Janssen, J W; Drexler, H G

    1996-05-01

    The ufo protein (also termed axl) is a member of a new family of receptor tyrosine kinases and is encoded by a transforming gene that was initially isolated from primary human myeloid leukemia cells by DNA-mediated transformation of NIH/3T3 cells. The ligand, Gas6, a protein S-related molecule lacking any known function yet, has recently been identified. We report the expression pattern of ufo mRNA in a panel of 76 human continuous leukemia-lymphoma cell lines. The gene was not expressed in cell lines derived from lymphoid malignancies (n=28), but transcription was seen in 3/11 myeloid, 0/6 monocytic, 9/13 erythroid and 11/18 megakaryocytic cell lines. Several cell lines were treated with phorbol ester leading to significant upregulation of the ufo message in constitutively positive cells. An apparent ufo mRNA overexpression was not found in any of the positive leukemia cell lines, but was identified in the drug-resistant subclones of the cervix carcinoma cell line HeLa. Southern blot analysis of restriction enzyme-digested genomic DNA did not provide evidence for gene amplification, but the HeLa subclones showed banding patterns suggestive of gene rearrangement. Two main ufo mRNA bands of 3.2 and 5.0 kb were identified; no differences in the half-lives (t1/2 = 2.5 h) of these two mRNA species could be identified. In summary, ufo, representing a novel type of receptor tyrosine kinase, is expressed solely in myeloid and erythro-megakaryocytic leukemias but not in lymphoid malignancies. These and previous data suggest an involvement of the ufo receptor tyrosine kinase in normal and malignant myelopoiesis; however, its exact role, if any, and mode of operation in leukemogenesis remains to be determined.

  7. Translational up-regulation and high-level protein expression from plasmid vectors by mTOR activation via different pathways in PC3 and 293T cells.

    Directory of Open Access Journals (Sweden)

    Prashanthi Karyala

    Full Text Available BACKGROUND: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B, β-galactosidase (β-gal and green fluorescent protein (GFP from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational up-regulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. CONCLUSIONS/SIGNIFICANCE: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to

  8. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2016-06-01

    Full Text Available Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA. The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062 and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total

  9. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    International Nuclear Information System (INIS)

    Trzaska, Dominika; Zembek, Patrycja; Olszewski, Maciej; Adamczewska, Violetta; Ulleras, Erik; Dastych, JarosIaw

    2005-01-01

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals

  10. Circadian Activators Are Expressed Days before They Initiate Clock Function in Late Pacemaker Neurons from Drosophila.

    Science.gov (United States)

    Liu, Tianxin; Mahesh, Guruswamy; Houl, Jerry H; Hardin, Paul E

    2015-06-03

    Circadian pacemaker neurons in the Drosophila brain control daily rhythms in locomotor activity. These pacemaker neurons can be subdivided into early or late groups depending on whether rhythms in period (per) and timeless (tim) expression are initiated at the first instar (L1) larval stage or during metamorphosis, respectively. Because CLOCK-CYCLE (CLK-CYC) heterodimers initiate circadian oscillator function by activating per and tim transcription, a Clk-GFP transgene was used to mark when late pacemaker neurons begin to develop. We were surprised to see that CLK-GFP was already expressed in four of five clusters of late pacemaker neurons during the third instar (L3) larval stage. CLK-GFP is only detected in postmitotic neurons from L3 larvae, suggesting that these four late pacemaker neuron clusters are formed before the L3 larval stage. A GFP-cyc transgene was used to show that CYC, like CLK, is also expressed exclusively in pacemaker neurons from L3 larval brains, demonstrating that CLK-CYC is not sufficient to activate per and tim in late pacemaker neurons at the L3 larval stage. These results suggest that most late pacemaker neurons develop days before novel factors activate circadian oscillator function during metamorphosis. Copyright © 2015 the authors 0270-6474/15/358662-10$15.00/0.

  11. Homozygous deletion and expression of PTEN and DMBT1 in human primary neuroblastoma and cell lines.

    Science.gov (United States)

    Muñoz, Jorge; Lázcoz, Paula; Inda, María Mar; Nistal, Manuel; Pestaña, Angel; Encío, Ignacio J; Castresana, Javier S

    2004-05-01

    Neuroblastoma is the most common pediatric solid tumor. Although many allelic imbalances have been described, a bona fide tumor suppressor gene for this disease has not been found yet. In our study, we analyzed 2 genes, PTEN and DMBT1, mapping 10q23.31 and 10q25.3-26.1, respectively, which have been found frequently altered in other kinds of neoplasms. We screened both genes for homozygous deletions in 45 primary neuroblastic tumors and 12 neuroblastoma cell lines. Expression of these genes in cell lines was assessed by RT-PCR analysis. We could detect 2 of 41 (5%) primary tumors harboring PTEN homozygous deletions. Three of 41 (7%) primary tumors and 2 of 12 cell lines presented homozygous losses at the g14 STS on the DMBT1 locus. All cell lines analyzed expressed PTEN, but lack of DMBT1 mRNA expression was detected in 2 of them. We tried to see whether epigenetic mechanisms, such as aberrant promoter hypermethylation, had any role in DMBT1 silencing. The 2 cell lines lacking DMBT1 expression were treated with 5-aza-2'-deoxycytidine; DMBT1 expression was restored in only one of them (MC-IXC). From our work, we can conclude that PTEN and DMBT1 seem to contribute to the development of a small fraction of neuroblastomas, and that promoter hypermethylation might have a role in DMBT1 gene silencing. Copyright 2004 Wiley-Liss, Inc.

  12. The fluorescence lifetime of BRI1-GFP as probe for the noninvasive determination of the membrane potential in living cells

    Science.gov (United States)

    Elgass, K.; Caesar, K.; Schleifenbaum, F.; Meixner, A. J.; Harter, K.

    2010-02-01

    As the excited state lifetime of a fluorescent molecule depends on its environment, it is possible to use it as a probe for physico-chemical parameters of the surrounding medium. Whereas this is well known for many solid guest/host systems, only few reports of quantitative, temporal resolved in vivo studies to monitor the nano-environment for a protein-coupled chromophore such as GFP are known from literature. Here we present a novel approach to determine the membrane potential of living (plant) cells based on the fluorescence lifetime (FLT) analysis of membrane-located GFP. By using confocal sample scanning microscopy (CSSM) combined with fluorescence lifetime imaging microscopy, we recently showed that the phytohormone brassinolide (BL) induces cell wall expansion and a decrease in the FLT of the BRI1-GFP in living cells of Arabidopsis thaliana seedlings. BRI1 is the dominant functional receptor for BL in Arabidopsis and locates to the plasma membrane. Although the dependence of the FLT of GFP on its physico-chemical environment such as pH-value, refractive index and pressure has been reported, the observed FLT decrease of BRI1-GFP in response to BL application could not be explained by these parameters. However, our in vivo FLT and CSSM analyses indicate that the BLinduced change in the FLT of BRI1-GFP is caused by hyperpolarisation of the plasma membrane (Em). Thus, our results indicate that BRI1-GFP serves as sensitive and non-invasive probe for recording the Em of the plasma membrane in living plant cells with high spatio-temporal resolution.

  13. A comparative analysis of constitutive promoters located in adeno-associated viral vectors.

    Directory of Open Access Journals (Sweden)

    Lkhagvasuren Damdindorj

    Full Text Available The properties of constitutive promoters within adeno-associated viral (AAV vectors have not yet been fully characterized. In this study, AAV vectors, in which enhanced GFP expression was directed by one of the six constitutive promoters (human β-actin, human elongation factor-1α, chicken β-actin combined with cytomegalovirus early enhancer, cytomegalovirus (CMV, simian virus 40, and herpes simplex virus thymidine kinase, were constructed and introduced into the HCT116, DLD-1, HT-1080, and MCF-10A cell lines. Quantification of GFP signals in infected cells demonstrated that the CMV promoter produced the highest GFP expression in the six promoters and maintained relatively high GFP expression for up to eight weeks after infection of HCT116, DLD-1, and HT-1080. Exogenous human CDKN2A gene expression was also introduced into DLD-1 and MCF-10A in a similar pattern by using AAV vectors bearing the human β-actin and the CMV promoters. The six constitutive promoters were subsequently placed upstream of the neomycin resistance gene within AAV vectors, and HCT116, DLD-1, and HT-1080 were infected with the resulting vectors. Of the six promoters, the CMV promoter produced the largest number of G418-resistant colonies in all three cell lines. Because AAV vectors have been frequently used as a platform to construct targeting vectors that permit gene editing in human cell lines, we lastly infected the three cell lines with AAV-based targeting vectors against the human PIGA gene in which one of the six promoters regulate the neomycin resistance gene. This assay revealed that the CMV promoter led to the lowest PIGA gene targeting efficiency in the investigated promoters. These results provide a clue to the identification of constitutive promoters suitable to express exogenous genes with AAV vectors, as well as those helpful to conduct efficient gene targeting using AAV-based targeting vectors in human cell lines.

  14. Expression image data of Drosophila GAL4 enhancer trap lines - GETDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us GETDB Expression image data of Drosophila GAL4 enhancer trap lines Data detail Data name Exp...ta contents 3,075 expression image data by developmental stages of Drosophila Images are classified into the...escription Download License Update History of This Database Site Policy | Contact Us Expression image data of Drosophila GAL4 enhancer trap lines - GETDB | LSDB Archive ... ...ression image data of Drosophila GAL4 enhancer trap lines DOI 10.18908/lsdba.nbdc00236-004 Description of da

  15. Radiostatine and radioiodine uptake characterization in sodium iodine symporter-expressing cell lines

    International Nuclear Information System (INIS)

    Petrich, T.; Helmeke, H.J.; Meyer, G.J.; Knapp, W.H.; Poetter, E.

    2002-01-01

    Full text: The sodium iodide symporter (NIS) has been recognized as an attractive target for cancer gene therapy. Here we investigated NIS-mediated transport of the high LET α-emitter astatine, 211 At, in comparison to radioiodine. A constitutive expression vector harbouring the human NIS cDNA was used in combination with reporter gene vectors for transient transfection of 13 different human cancer cell lines. Radioiodine uptake was measured as well as transfection efficiencies. Six stable NIS-expressing cell lines (3 derived from thyroid carcinomas, 2 colon carcinoma, 1 glioblastoma) were generated by antibiotic selection. NIS expression was monitored by immunohistochemistry and RT-PCR. Subsequently the radioastatine and radioiodine uptake characteristics of genetically modified cells were studied in comparison to the respective control cells. After xenotransplantation in nude mice in vivo tumor imaging by scintigraphy and biodistribution studies following organ removal were performed. Transient transfection of NIS cDNA led to high specific sodium perchlorate-sensitive radioiodine uptake in NIS-expressing cells that roughly correlates to transfection efficiencies. Similarly, stable NIS-expressing cell lines were able to concentrate high levels of radioiodine and in addition showed comparable transport capacity for radioastatine. Accumulation of 211 At was inhibited by sodium perchlorate like iodide uptake and displayed dependency an extracellular Na + - and I - -ions as well. Compared to wash-out experiments in cell culture the effective half life of radioiodine and radioastatine in vivo was significantly prolonged. Preliminary dose calculations by MIRD concepts indicated higher tumor radiation doses for 211 At compared to 131 I. Tumor cells of different origins transfected with the NIS-expression vector specifically and significantly take-up radioiodine and radioastatine in vitro and in vivo. The data provide direct evidence that the NIS efficiently transports

  16. Low-Cost Synthesis of Smart Biocompatible Graphene Oxide Reduced Species by Means of GFP.

    Science.gov (United States)

    Masullo, Tiziana; Armata, Nerina; Pendolino, Flavio; Colombo, Paolo; Lo Celso, Fabrizio; Mazzola, Salvatore; Cuttitta, Angela

    2016-02-01

    The aim of this work is focused on the engineering of biocompatible complex systems composed of an inorganic and bio part. Graphene oxide (GO) and/or graphite oxide (GtO) were taken into account as potential substrates to the linkage of the protein such as Anemonia sulcata recombinant green fluorescent protein (rAsGFP). The complex system is obtained through a reduction process between GO/GtO and rAsGFP archiving an environmentally friendly biosynthesis. Spectroscopic measurements support the formation of reduced species. In particular, photoluminescence shows a change in the activity of the protein when a bond is formed, highlighted by a loss of the maximum emission signal of rAsGFP and a redshift of the maximum absorption peak of the GO/GtO species. Moreover, the hemolysis assay reveals a lower value in the presence of less oxidized graphene species providing evidence for a biocompatible material. This singular aspect can be approached as a promising method for circulating pharmaceutical preparations via intravenous administration in the field of drug delivery.

  17. Effect-directed analysis for estrogenic compounds in a fluvial sediment sample using transgenic cyp19a1b-GFP zebrafish embryos.

    Science.gov (United States)

    Fetter, Eva; Krauss, Martin; Brion, François; Kah, Olivier; Scholz, Stefan; Brack, Werner

    2014-09-01

    Xenoestrogens may persist in the environment by binding to sediments or suspended particulate matter serving as long-term reservoir and source of exposure, particularly for organisms living in or in contact with sediments. In this study, we present for the first time an effect-directed analysis (EDA) for identifying estrogenic compounds in a sediment sample using embryos of a transgenic reporter fish strain. In the tg(cyp19a1b-GFP) transgenic zebrafish strain, the expression of GFP (green fluorescent protein) in the brain is driven by an oestrogen responsive element in the promoter of the cyp19a1b (aromatase) gene. The selected sediment sample of the Czech river Bilina had already been analysed in a previous EDA using the yeast oestrogen screening assay and had revealed fractions containing estrogenic compounds. When normal phase HPLC (high performance liquid chromatography) fractionation was used for the separation of the sediment sample, the biotest with transgenic fish embryos revealed two estrogenic fractions. Chemical analysis of candidate compounds in these sediment fractions suggested alkylphenols and estrone as candidate compounds responsible for the observed estrogenic effect. Alkylphenol concentrations could partially explain the estrogenicity of the fractions. However, xenoestrogens below the analytical detection limit or non-targeted estrogenic compounds have probably also contributed to the sample's estrogenic potency. The results indicated the suitability of the tg(cyp19a1b-GFP) fish embryo for an integrated chemical-biological analysis of estrogenic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Immunogenicity of oncolytic vaccinia viruses JX-GFP and TG6002 in a human melanoma in vitro model: studying immunogenic cell death, dendritic cell maturation and interaction with cytotoxic T lymphocytes

    Directory of Open Access Journals (Sweden)

    Heinrich B

    2017-05-01

    Full Text Available B Heinrich,1 J Klein,1 M Delic,1 K Goepfert,1 V Engel,1 L Geberzahn,1 M Lusky,2 P Erbs,2 X Preville,3 M Moehler1 1First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany; 2Transgene SA, Illkirch-Graffenstaden, 3Amoneta Diagnostics, Huningue, France Abstract: Oncolytic virotherapy is an emerging immunotherapeutic modality for cancer treatment. Oncolytic viruses with genetic modifications can further enhance the oncolytic effects on tumor cells and stimulate antitumor immunity. The oncolytic vaccinia viruses JX-594-GFP+/hGM-CSF (JX-GFP and TG6002 are genetically modified by secreting granulocyte-macrophage colony-stimulating factor (GM-CSF or transforming 5-fluorocytosine (5-FC into 5-fluorouracil (5-FU. We compared their properties to kill tumor cells and induce an immunogenic type of cell death in a human melanoma cell model using SK29-MEL melanoma cells. Their influence on human immune cells, specifically regarding the activation of dendritic cells (DCs and the interaction with the autologous cytotoxic T lymphocyte (CTL clone, was investigated. Melanoma cells were infected with either JX-GFP or TG6002 alone or in combination with 5-FC and 5-FU. The influence of viral infection on cell viability followed a time- and multiplicity of infection dependent manner. Combination of virus treatment with 5-FU resulted in stronger reduction of cell viability. TG6002 in combination with 5-FC did not significantly strengthen the reduction of cell viability in this setting. Expression of calreticulin and high mobility group 1 protein (HMGB1, markers of immunogenic cell death (ICD, could be detected after viral infection. Accordingly, DC maturation was noted after viral oncolysis. DCs presented stronger expression of activation and maturation markers. The autologous CTL clone IVSB expressed the activation marker CD69, but viral treatment failed to enhance cytotoxicity marker. In summary, vaccinia viruses JX-GFP and TG6002 lyse

  19. Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats

    NARCIS (Netherlands)

    Fitzgerald, A.; Kan, van J.A.L.; Plummer, K.M.

    2004-01-01

    RNA-mediated gene silencing has been demonstrated in plants, animals, and more recently in filamentous fungi. Here, we report high frequency, RNA-mediated gene silencing in the apple scab fungus, Venturia inaequalis. The green fluorescent protein (GFP) transgene was silenced in a GFP-expressing

  20. Imaging Herpes Simplex Virus Type 1 Amplicon Vector–Mediated Gene Expression in Human Glioma Spheroids

    Directory of Open Access Journals (Sweden)

    Christine Kaestle

    2011-05-01

    Full Text Available Vectors derived from herpes simplex virus type 1 (HSV-1 have great potential for transducing therapeutic genes into the central nervous system; however, inefficient distribution of vector particles in vivo may limit their therapeutic potential in patients with gliomas. This study was performed to investigate the extent of HSV-1 amplicon vector–mediated gene expression in a three-dimensional glioma model of multicellular spheroids by imaging highly infectious HSV-1 virions expressing green fluorescent protein (HSV-GFP. After infection or microscopy-guided vector injection of glioma spheroids at various spheroid sizes, injection pressures and injection times, the extent of HSV-1 vector–mediated gene expression was investigated via laser scanning microscopy. Infection of spheroids with HSV-GFP demonstrated a maximal depth of vector-mediated GFP expression at 70 to 80 μm. A > 80% transduction efficiency was reached only in small spheroids with a diameter of 90%. The results demonstrated that vector-mediated gene expression in glioma spheroids was strongly dependent on the mode of vector application—injection pressure and injection time being the most important parameters. The assessment of these vector application parameters in tissue models will contribute to the development of safe and efficient gene therapy protocols for clinical application.

  1. Absence of annexin I expression in B-cell non-Hodgkin's lymphomas and cell lines

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Velliyur K

    2004-03-01

    Full Text Available Abstract Background Annexin I, one of the 20 members of the annexin family of calcium and phospholipid-binding proteins, has been implicated in diverse biological processes including signal transduction, mediation of apoptosis and immunosuppression. Previous studies have shown increased annexin I expression in pancreatic and breast cancers, while it is absent in prostate and esophageal cancers. Results Data presented here show that annexin I mRNA and protein are undetectable in 10 out of 12 B-cell lymphoma cell lines examined. Southern blot analysis indicates that the annexin I gene is intact in B-cell lymphoma cell lines. Aberrant methylation was examined as a cause for lack of annexin I expression by treating cells 5-Aza-2-deoxycytidine. Reexpression of annexin I was observed after prolonged treatment with the demethylating agent indicating methylation may be one of the mechanisms of annexin I silencing. Treatment of Raji and OMA-BL-1 cells with lipopolysaccharide, an inflammation inducer, and with hydrogen peroxide, a promoter of oxidative stress, also failed to induce annexin I expression. Annexin I expression was examined in primary lymphoma tissues by immunohistochemistry and presence of annexin I in a subset of normal B-cells and absence of annexin I expression in the lymphoma tissues were observed. These results show that annexin I is expressed in normal B-cells, and its expression is lost in all primary B-cell lymphomas and 10 of 12 B-cell lymphoma cell lines. Conclusions Our results suggest that, similar to prostate and esophageal cancers, annexin I may be an endogenous suppressor of cancer development, and loss of annexin I may contribute to B-cell lymphoma development.

  2. Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2

    Directory of Open Access Journals (Sweden)

    Quadros Edward V

    2009-05-01

    Full Text Available Abstract Background Recent evidence suggests that several human cancers are capable of uncoupling of mitochondrial ATP generation in the presence of intact tricarboxylic acid (TCA enzymes. The goal of the current study was to test the hypothesis that ketone bodies can inhibit cell growth in aggressive cancers and that expression of uncoupling protein 2 is a contributing factor. The proposed mechanism involves inhibition of glycolytic ATP production via a Randle-like cycle while increased uncoupling renders cancers unable to produce compensatory ATP from respiration. Methods Seven aggressive human cancer cell lines, and three control fibroblast lines were grown in vitro in either 10 mM glucose medium (GM, or in glucose plus 10 mM acetoacetate [G+AcA]. The cells were assayed for cell growth, ATP production and expression of UCP2. Results There was a high correlation of cell growth with ATP concentration (r = 0.948 in a continuum across all cell lines. Controls demonstrated normal cell growth and ATP with the lowest density of mitochondrial UCP2 staining while all cancer lines demonstrated proportionally inhibited growth and ATP, and over-expression of UCP2 (p Conclusion Seven human cancer cell lines grown in glucose plus acetoacetate medium showed tightly coupled reduction of growth and ATP concentration. The findings were not observed in control fibroblasts. The observed over-expression of UCP2 in cancer lines, but not in controls, provides a plausible molecular mechanism by which acetoacetate spares normal cells but suppresses growth in cancer lines. The results bear on the hypothesized potential for ketogenic diets as therapeutic strategies.

  3. Expression of Ku correlates with radiation sensitivities in the head and neck cancer cell lines

    International Nuclear Information System (INIS)

    Lee, Sang Wook; Yu, Eun Sil; Yi, So Lyoung; Son, Se Hee; Kim, Jong Hoon; Ahn, Seung Do; Shin, Seong Soo; Choi, Eun Kyung

    2004-01-01

    DNA-dependent protein kinase (DNA-PK) is a serine/threonine kinase consisting of a 470 kDa catalytic subunit (DNA-PKcs) and a heterodimeric regulatory complex, called Ku, which is composed of 70 kDa (Ku 70) and 86 kDa (Ku 80) proteins. The DNA-PK has been shown to play a pivotal role in rejoining DNA double-strand-breaks (dsb) in mammalian cells. The purpose of this study is to examine the relationship between the level of Ku expression and radiation sensitivity. Nine head and neck, cancer cell lines showed various intrinsic radiation sensitivities. Among the nine, AMC-HN-3 cell was the most sensitive for X-ray irradiation and AMC-HN-9 cell was the most resistance. The most sensitive and resistant cell lines were selected and the test sensitivity of radiation and expression of Ku were measured. Radiation sensitivity was obtained by colony forming assay and Ku protein expression using Western blot analysis. Ku80 increased expression by radiation, wheras Ku70 did not. Overexpression of Ku80 protein increased radiation resistance in AMC-HN9 cell line. There was a correlation between Ku80 expression and radiation resistance. Ku80 was shown to play an important role in radiation damage response. Induction of Ku80 expression had an important role in DNA damage repair by radiation. Ku80 expression may be an effective predictive assay of radiosensitivity on head and neck cancer

  4. Investigation of hTERT gene expression levels in two cell lines infected by high-risk human papilloma virus

    Directory of Open Access Journals (Sweden)

    Maryam Akhtari

    2016-07-01

    Full Text Available Background: Human papilloma virus (HPV is one of the most important factors in cervical cancer. Viral sequences are integrated into the host cell genome. In mild cases the virus causes skin damages, in severe cases it leads to cancer. Like many other cancers, telomerase gene expression was increased in cervical cancer. This enzyme is a reverse transcriptase that contains two common subunits: i catalytic protein called human telomerase reverse transcriptase (hTERT and, ii RNA sequence called hTR. hTERT expression is hardly found in any somatic tissues. Detection of high telomerase activity in human cells, lead to tumor genesis. So hTERT can be used as a diagnostic tool in cancer detection. Methods: This experimental study was carried out from May 2013 to April 2014 in Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences in Tehran, Iran. Caski and Hela cancer cell lines were used which contain HPV16 and HPV18 respectively. Cell lines were cultured and total RNA was extracted. Following normalization agent glyceraldehyde-3-phosphate dehydrogenase (GADPH, hTERT expression level was determining by real-time PCR method. For each sample, the expression level of hTERT and GAPDH were quantified as copy numbers (per reaction using the standard curve. Finally, hTERT levels in Hela and Caski cell lines were compared quantitatively by t-test using GraphPad statistic software version 5 (San Diego, CA, USA. Results: According to the charts real-time PCR, hTERT gene expression in Hela and Caski cancer cell lines is significantly different (t=0.0319. Conclusion: All results confirm that hTERT expression levels in Hela and Caski cell lines are significantly different and the level of hTERT expression in the Caski cell line was slightly higher than that of Hela cell line. The significant difference between hTERT mRNA expression levels reported here could be used as a tumor marker for HPV16 and HPV18 in cervical cancer.

  5. Expression and function of scleraxis in the developing auditory system.

    Directory of Open Access Journals (Sweden)

    Zoe F Mann

    Full Text Available A study of genes expressed in the developing inner ear identified the bHLH transcription factor Scleraxis (Scx in the developing cochlea. Previous work has demonstrated an essential role for Scx in the differentiation and development of tendons, ligaments and cells of chondrogenic lineage. Expression in the cochlea has been shown previously, however the functional role for Scx in the cochlea is unknown. Using a Scx-GFP reporter mouse line we examined the spatial and temporal patterns of Scx expression in the developing cochlea between embryonic day 13.5 and postnatal day 25. Embryonically, Scx is expressed broadly throughout the cochlear duct and surrounding mesenchyme and at postnatal ages becomes restricted to the inner hair cells and the interdental cells of the spiral limbus. Deletion of Scx results in hearing impairment indicated by elevated auditory brainstem response (ABR thresholds and diminished distortion product otoacoustic emission (DPOAE amplitudes, across a range of frequencies. No changes in either gross cochlear morphology or expression of the Scx target genes Col2A, Bmp4 or Sox9 were observed in Scx(-/- mutants, suggesting that the auditory defects observed in these animals may be a result of unidentified Scx-dependent processes within the cochlea.

  6. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity.

    Science.gov (United States)

    Wendel, Sofie; Fischer, Emil C; Martínez, Virginia; Seppälä, Susanna; Nørholm, Morten H H

    2016-05-03

    Bacterial surface display is an attractive technique for the production of cell-anchored, functional proteins and engineering of whole-cell catalysts. Although various outer membrane proteins have been used for surface display, an easy and versatile high-throughput-compatible assay for evaluating and developing surface display systems is missing. Using a single domain antibody (also called nanobody) with high affinity for green fluorescent protein (GFP), we constructed a system that allows for fast, fluorescence-based detection of displayed proteins. The outer membrane hybrid protein LppOmpA and the autotransporter C-IgAP exposed the nanobody on the surface of Escherichia coli with very different efficiency. Both anchors were capable of functionally displaying the enzyme Chitinase A as a fusion with the nanobody, and this considerably increased expression levels compared to displaying the nanobody alone. We used flow cytometry to analyse display capability on single-cell versus population level and found that the signal peptide of the anchor has great effect on display efficiency. We have developed an inexpensive and easy read-out assay for surface display using nanobody:GFP interactions. The assay is compatible with the most common fluorescence detection methods, including multi-well plate whole-cell fluorescence detection, SDS-PAGE in-gel fluorescence, microscopy and flow cytometry. We anticipate that the platform will facilitate future in-depth studies on the mechanism of protein transport to the surface of living cells, as well as the optimisation of applications in industrial biotech.

  7. Neutralization of Bacterial YoeBSpn Toxicity and Enhanced Plant Growth in Arabidopsis thaliana via Co-Expression of the Toxin-Antitoxin Genes

    Science.gov (United States)

    Abu Bakar, Fauziah; Yeo, Chew Chieng; Harikrishna, Jennifer Ann

    2016-01-01

    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells. PMID:27104531

  8. Neutralization of Bacterial YoeBSpn Toxicity and Enhanced Plant Growth in Arabidopsis thaliana via Co-Expression of the Toxin-Antitoxin Genes

    Directory of Open Access Journals (Sweden)

    Fauziah Abu Bakar

    2016-04-01

    Full Text Available Bacterial toxin-antitoxin (TA systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.

  9. Prolonged peritoneal gene expression using a helper-dependent adenovirus.

    Science.gov (United States)

    Liu, Limin; Shi, Chang-Xin; Ghayur, Ayesha; Zhang, Claire; Su, Je Yen; Hoff, Catherine M; Margetts, Peter J

    2009-01-01

    Encapsulating peritoneal sclerosis (EPS) is a rare complication of peritoneal dialysis. The causes of EPS are not well defined and are likely multifactorial. A suitable animal model would facilitate research into the pathophysiology and treatment of EPS. We developed a helper-dependent adenovirus that expresses both green fluorescent protein (GFP) and active transforming growth factor-beta (TGF-beta1; HDAdTGF-beta1). Mice were administered HDAdTGF-beta1 via intraperitoneal injection and the response was compared with mice administered either first-generation adenovirus expressing TGF-beta1 (AdTGF-beta1) or control adenovirus (AdGFP). HDAdTGF-beta1-treated mice continued to express the GFP reporter transgene to day 74, the end of the observation period. Transgene expression lasted less than 28 days in the animals treated with first-generation adenoviruses. Animals treated with first-generation AdTGF-beta1 demonstrated submesothelial thickening and angiogenesis at day 7, with almost complete resolution by day 28. The HDAdTGF-beta1-treated mice demonstrated progressive peritoneal fibrosis with adhesion formation and encapsulation of bowels. Weight gain was significantly reduced in animals treated with HDAdTGF-beta1 compared to both the control-treated animals and the AdTGF-beta1-treated animals. Inflammation was not a major component of the fibroproliferative response. Peritoneal administration of a first-generation AdTGF-beta1 leads to transient gene expression, resulting in a resolving fibrotic response and histology similar to that seen in simple peritoneal sclerosis. Prolonged TGF-beta1 expression induced by the helper-dependent HDAdTGF-beta1 led to changes in peritoneal morphology resembling EPS. This suggests that TGF-beta1 may be a contributing factor in both simple peritoneal sclerosis and EPS. This model will be useful for elucidation of the mechanism of EPS and evaluation of potential treatment.

  10. Germline recombination in a novel Cre transgenic line, Prl3b1-Cre mouse.

    Science.gov (United States)

    Al-Soudy, Al-Sayed; Nakanishi, Tsuyoshi; Mizuno, Seiya; Hasegawa, Yoshikazu; Shawki, Hossam H; Katoh, Megumi C; Basha, Walaa A; Ibrahim, Abdelaziz E; El-Shemy, Hany A; Iseki, Hiroyoshi; Yoshiki, Atsushi; Hiromori, Youhei; Nagase, Hisamitsu; Takahashi, Satoru; Oishi, Hisashi; Sugiyama, Fumihiro

    2016-07-01

    Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells differentiate into spermatozoa. To better understand the molecular mechanisms of the process, the Cre/loxP system has been widely utilized for conditional gene knockout in mice. In this study, we generated a transgenic mouse line that expresses Cre recombinase under the control of the 2.5 kbp of the Prolactin family 3, subfamily b, member 1 (Prl3b1) gene promoter (Prl3b1-cre). Prl3b1 was initially reported to code for placental lactogen 2 (PL-2) protein in placenta along with increased expression toward the end of pregnancy. PL-2 was found to be expressed in germ cells in the testis, especially in spermatocytes. To analyze the specificity and efficiency of Cre recombinase activity in Prl3b1-cre mice, the mice were mated with reporter R26GRR mice, which express GFP ubiquitously before and tdsRed exclusively after Cre recombination. The systemic examination of Prl3b1-cre;R26GRR mice revealed that tdsRed-positive cells were detected only in the testis and epididymis. Fluorescence imaging of Prl3b1-cre;R26GRR testes suggested that Cre-mediated recombination took place in the germ cells with approximately 74% efficiency determined by in vitro fertilization. In conclusion, our results suggest that the Prl3b1-cre mice line provides a unique resource to understand testicular germ-cell development. genesis 54:389-397, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were......Tumour cell adhesion, detachment and aggregation seem to play an important part in tumour invasion and metastasis, and numerous cell adhesion molecules are expressed by tumour cells. Several families of cell-cell adhesion molecules have been described, of which two groups are particularly well...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  12. Human pathogenic Mycoplasma species induced cytokine gene expression in Epstein-Barr virus (EBV)-positive lymphoblastoid cell lines.

    Science.gov (United States)

    Schäffner, E; Opitz, O; Pietsch, K; Bauer, G; Ehlers, S; Jacobs, E

    1998-04-01

    We addressed the question whether the in vitro interaction of two Epstein-Barr virus (EBV)-genome-positive B cell lines (EB-3 and HilB-gamma) with either Mycoplasma pneumoniae or M. hominis, with the mycoplasma species (M. fermentans, M. fermentans subsp. incognitus, M. penetrans, M. genitalium) or with mycoplasma species known to be mere commensals of the respiratory tract (M. orale and M. salivarium) would result in expression of mRNAs for IL-2, IL-2R, IL-4 and IL-6 as determined by reverse transcriptase (RT)-PCR after 4 and 24 h of cocultivation. The pattern of cytokine gene expression observed depended on (i) the origin of the transformed cell line, (ii) the pathogenicity of the Mycoplasma species, and (iii) the length of cocultivation. The EBV-immortalized lymphoblastoid cell line HilB-gamma showed mRNA expression for IL-2, IL-2-receptor, IL-4 and IL-6 peaking 24 h after stimulation with M. pneumoniae and all AIDS-related mycoplasma species tested. The Burkitt lymphoma cell line EB-3 showed a distinct and isolated strong II-2/IL-2 R-mRNA expression within 4 h after contact with the pathogenic and all of the AIDS related mycoplasma species. In neither EBV-containing cell line cytokine was gene expression detectable after stimulation with the commensal mycoplasma species, M. orale and M. salivarium, indicating species differences in the ability of mycoplasmas to interact with and stimulate B-cell lines. Our data suggest that some mcyoplasma species may act as immunomodulatory cofactors by eliciting inappropriate cytokine gene expression in B cells latently infected with EBV. Therefore, this cultivation model may prove useful in evaluating the pathogenetic potential of novel isolated mycoplasma species. Copyright 1998 Academic Press Limited.

  13. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    International Nuclear Information System (INIS)

    Medina, D.; Oborn, C.J.; Li, M.L.; Bissell, M.J.

    1987-01-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of β-casein mRNA in the presence or absence of prolactin. The inducibility of β-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types

  14. Recognition of facial expressions by cortical multi-scale line and edge coding

    OpenAIRE

    Sousa, R.; Rodrigues, J. M. F.; du Buf, J. M. H.

    2010-01-01

    Face-to-face communications between humans involve emotions, which often are unconsciously conveyed by facial expressions and body gestures. Intelligent human-machine interfaces, for example in cognitive robotics, need to recognize emotions. This paper addresses facial expressions and their neural correlates on the basis of a model of the visual cortex: the multi-scale line and edge coding. The recognition model links the cortical representation with Paul Ekman's Action Units which are relate...

  15. Rhesus monkey rhadinovirus (RRV): construction of a RRV-GFP recombinant virus and development of assays to assess viral replication

    International Nuclear Information System (INIS)

    DeWire, Scott M.; Money, Eric S.; Krall, Stuart P.; Damania, Blossom

    2003-01-01

    Rhesus monkey rhadinovirus (RRV) is a γ-2-herpesvirus that is closely related to Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8). Lack of an efficient culture system to grow high titers of virus, and the lack of an in vivo animal model system, has hampered the study of KSHV replication and pathogenesis. RRV is capable of replicating to high titers on fibroblasts, thus facilitating the construction of recombinant rhadinoviruses. In addition, the ability to experimentally infect naieve rhesus macaques with RRV makes it an excellent model system to study γ-herpesvirus replication. Our study describes, for the first time, the construction of a GFP-expressing RRV recombinant virus using a traditional homologous recombination strategy. We have also developed two new methods for determining viral titers of RRV including a traditional viral plaque assay and a quantitative real-time PCR assay. We have compared the replication of wild-type RRV with that of the RRV-GFP recombinant virus in one-step growth curves. We have also measured the sensitivity of RRV to a small panel of antiviral drugs. The development of both the recombination strategy and the viral quantitation assays for RRV will lay the foundation for future studies to evaluate the contribution of individual genes to viral replication both in vitro and in vivo

  16. Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines

    Directory of Open Access Journals (Sweden)

    Kaski Samuel

    2007-03-01

    Full Text Available Abstract Background Asbestos has been shown to cause chromosomal damage and DNA aberrations. Exposure to asbestos causes many lung diseases e.g. asbestosis, malignant mesothelioma, and lung cancer, but the disease-related processes are still largely unknown. We exposed the human cell lines A549, Beas-2B and Met5A to crocidolite asbestos and determined time-dependent gene expression profiles by using Affymetrix arrays. The hybridization data was analyzed by using an algorithm specifically designed for clustering of short time series expression data. A canonical correlation analysis was applied to identify correlations between the cell lines, and a Gene Ontology analysis method for the identification of enriched, differentially expressed biological processes. Results We recognized a large number of previously known as well as new potential asbestos-associated genes and biological processes, and identified chromosomal regions enriched with genes potentially contributing to common responses to asbestos in these cell lines. These include genes such as the thioredoxin domain containing gene (TXNDC and the potential tumor suppressor, BCL2/adenovirus E1B 19kD-interacting protein gene (BNIP3L, GO-terms such as "positive regulation of I-kappaB kinase/NF-kappaB cascade" and "positive regulation of transcription, DNA-dependent", and chromosomal regions such as 2p22, 9p13, and 14q21. We present the complete data sets as Additional files. Conclusion This study identifies several interesting targets for further investigation in relation to asbestos-associated diseases.

  17. [Construction and expression of recombinant lentiviral vectors of AKT2,PDK1 and BAD].

    Science.gov (United States)

    Zhu, Jing; Chen, Bo-Jiang; Huang, Na; Li, Wei-Min

    2014-03-01

    To construct human protein kinase B (ATK2), phosphoinositide-dependent kinase 1 (PDK1) and bcl-2-associated death protein (BAD) lentiviral expression vector, and to determine their expressions in 293T cells. Total RNA was extracted from lung cancer tissues. The full-length coding regions of human ATK2, BAD and PDK1 cDNA were amplified via RT-PCR using specific primers, subcloned into PGEM-Teasy and then sequenced for confirmation. The full-length coding sequence was cut out with a specific restriction enzyme digest and subclone into pCDF1-MCS2-EF1-copGFP. The plasmids were transfected into 293T cells using the calcium phosphate method. The over expression of AKT2, BAD and PDK1 were detected by Western blot. AKT2, PDK1 and BAD were subcloned into pCDF1-MCS2-EF1-copGFP, with an efficiency of transfection of 100%, 95%, and 90% respectively. The virus titers were 6.7 x 10(6) PFU/mL in the supernatant. After infection, the proteins of AKT2, PDK1 and BAD were detected by Western blot. The lentivial vector pCDF1-MCS2-EF1-copGFP containing AKT2, BAD and PDK1 were successfully constructed and expressed in 293T cells.

  18. Evaluating hepatocellular carcinoma cell lines for tumour samples using within-sample relative expression orderings of genes.

    Science.gov (United States)

    Ao, Lu; Guo, You; Song, Xuekun; Guan, Qingzhou; Zheng, Weicheng; Zhang, Jiahui; Huang, Haiyan; Zou, Yi; Guo, Zheng; Wang, Xianlong

    2017-11-01

    Concerns are raised about the representativeness of cell lines for tumours due to the culture environment and misidentification. Liver is a major metastatic destination of many cancers, which might further confuse the origin of hepatocellular carcinoma cell lines. Therefore, it is of crucial importance to understand how well they can represent hepatocellular carcinoma. The HCC-specific gene pairs with highly stable relative expression orderings in more than 99% of hepatocellular carcinoma but with reversed relative expression orderings in at least 99% of one of the six types of cancer, colorectal carcinoma, breast carcinoma, non-small-cell lung cancer, gastric carcinoma, pancreatic carcinoma and ovarian carcinoma, were identified. With the simple majority rule, the HCC-specific relative expression orderings from comparisons with colorectal carcinoma and breast carcinoma could exactly discriminate primary hepatocellular carcinoma samples from both primary colorectal carcinoma and breast carcinoma samples. Especially, they correctly classified more than 90% of liver metastatic samples from colorectal carcinoma and breast carcinoma to their original tumours. Finally, using these HCC-specific relative expression orderings from comparisons with six cancer types, we identified eight of 24 hepatocellular carcinoma cell lines in the Cancer Cell Line Encyclopedia (Huh-7, Huh-1, HepG2, Hep3B, JHH-5, JHH-7, C3A and Alexander cells) that are highly representative of hepatocellular carcinoma. Evaluated with a REOs-based prognostic signature for hepatocellular carcinoma, all these eight cell lines showed the same metastatic properties of the high-risk metastatic hepatocellular carcinoma tissues. Caution should be taken for using hepatocellular carcinoma cell lines. Our results should be helpful to select proper hepatocellular carcinoma cell lines for biological experiments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Effect of culture at low oxygen tension on the expression of heat shock proteins in a panel of melanoma cell lines.

    Directory of Open Access Journals (Sweden)

    Christopher Shipp

    Full Text Available Tumours are commonly hypoxic and this can be associated with aggressive tumour type, metastasis and resistance to therapy. Heat shock proteins (hsps are induced in response to hypoxia, provide cancer cells with protection against tumour-associated stressors and chaperone oncoproteins that drive tumour proliferation. This study examined the effect of different oxygen concentrations on the expression of hsps in melanoma cell lines.Melanoma cell lines were cultured in 2% and 20% O(2. Expression of Hsp90, Hsp70, Hsp60, Hsp40 and Hsp32 proteins were determined by flow cytometry.Growth rates and viability were reduced in the majority of cell lines by culture in 2% O(2. Hsp expression was different in 2% compared to 20% O(2 and changes in Hsp90 expression correlated with cell line generation time (P<0.005 and viability (P<0.01. Greater total hsp expression correlated with improved viability in 2% but not 20% O(2 (P<0.05. Relative expression of the different hsps was consistent across cell lines and each correlated with the others (P = 0.0001 but not with Hsp32. Hsp expression was inversely correlated with cell line adhesion to laminin as well as collagen type IV and Breslow depth of the original primary tumour tissue (P<0.05, but not with Clark level or patient survival. All five hsps were identified on the cell surface.Culture in 2% O(2 variably altered hsp expression in a panel of melanoma cell lines. Hsp expression was associated with certain cell line characteristics and clinical parameters of the originating tumour.

  20. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    DEFF Research Database (Denmark)

    Jakobsen, Jannik E; Li, Juan; Moldt, Brian

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon...

  1. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hao; Suslov, Nikolai B.; Li, Nan-Sheng; Shelke, Sandip A.; Evans, Molly E.; Koldobskaya, Yelena; Rice, Phoebe A.; Piccirilli, Joseph A. [UC

    2014-08-21

    Spinach is an in vitro–selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence. Spinach is thus an RNA analog of GFP and has potentially widespread applications for in vivo labeling and imaging. We used antibody-assisted crystallography to determine the structures of Spinach both with and without bound fluorophore at 2.2-Å and 2.4-Å resolution, respectively. Spinach RNA has an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif of unusual topology. The G-quadruplex motif and adjacent nucleotides comprise a partially preformed binding site for the fluorophore. The fluorophore binds in a planar conformation and makes extensive aromatic stacking and hydrogen bond interactions with the RNA. Our findings provide a foundation for structure-based engineering of new fluorophore-binding RNA aptamers.

  2. The equine herpesvirus-1 IR3 gene that lies antisense to the sole immediate-early (IE) gene is trans-activated by the IE protein, and is poorly expressed to a protein

    International Nuclear Information System (INIS)

    Ahn, Byung Chul; Breitenbach, Jonathan E.; Kim, Seong K.; O'Callaghan, Dennis J.

    2007-01-01

    The unique IR3 gene of equine herpesvirus 1 (EHV-1) is expressed as a late 1.0-kb transcript. Previous studies confirmed the IR3 transcription initiation site and tentatively identified other cis-acting elements specific to IR3 such as a TATA box, a 443 base pair 5'untranslated region (UTR), a 285 base pair open reading frame (ORF), and a poly adenylation (A) signal [Holden, V.R., Harty, R.N., Yalamanchili, R.R., O'Callaghan, D.J., 1992. The IR3 gene of equine herpesvirus type 1: a unique gene regulated by sequences within the intron of the immediate-early gene. DNA Seq. 3, 143-152]. Transient transfection assays revealed that the IR3 promoter is strongly trans-activated by the IE protein (IEP) and that coexpression of the IEP with the early EICP0 and IR4 regulatory proteins results in maximal trans-activation of the IR3 promoter. Gel shift assays revealed that the IEP directly binds to the IR3 promoter region. Western blot analysis showed that the IR3 protein produced in E. coli was detected by antibodies to IR3 synthetic peptides; however, the IR3 protein was not detected in EHV-1 infected cell extracts by these same anti-IR3 antibodies, even though the IR3 transcript was detected by northern blot. These findings suggest that the IR3 may not be expressed to a protein. Expression of an IR3/GFP fusion gene was not observed, but expression of a GFP/IR3 fusion gene was detected by fluorescent microscopy. In further attempts to detect the IR3/GFP fusion protein using anti-GFP antibody, western blot analysis showed that the IR3/GFP fusion protein was not detected in vivo. Interestingly, a truncated form of the GFP/IR3 protein was synthesized from the GFP/IR3 fusion gene. However, GFP/IR3 and IR3/GFP fusion proteins of the predicted sizes were synthesized by in vitro coupled transcription and translation of the fusion genes, suggesting poor expression of the IR3 protein in vivo. The possible role of the IR3 transcript in EHV-1 infection is discussed

  3. A rank-based algorithm of differential expression analysis for small cell line data with statistical control.

    Science.gov (United States)

    Li, Xiangyu; Cai, Hao; Wang, Xianlong; Ao, Lu; Guo, You; He, Jun; Gu, Yunyan; Qi, Lishuang; Guan, Qingzhou; Lin, Xu; Guo, Zheng

    2017-10-13

    To detect differentially expressed genes (DEGs) in small-scale cell line experiments, usually with only two or three technical replicates for each state, the commonly used statistical methods such as significance analysis of microarrays (SAM), limma and RankProd (RP) lack statistical power, while the fold change method lacks any statistical control. In this study, we demonstrated that the within-sample relative expression orderings (REOs) of gene pairs were highly stable among technical replicates of a cell line but often widely disrupted after certain treatments such like gene knockdown, gene transfection and drug treatment. Based on this finding, we customized the RankComp algorithm, previously designed for individualized differential expression analysis through REO comparison, to identify DEGs with certain statistical control for small-scale cell line data. In both simulated and real data, the new algorithm, named CellComp, exhibited high precision with much higher sensitivity than the original RankComp, SAM, limma and RP methods. Therefore, CellComp provides an efficient tool for analyzing small-scale cell line data. © The Author 2017. Published by Oxford University Press.

  4. Emotional Expression in Simple Line Drawings of a Robot's Face Leads to Higher Offers in the Ultimatum Game.

    Science.gov (United States)

    Terada, Kazunori; Takeuchi, Chikara

    2017-01-01

    In the present study, we investigated whether expressing emotional states using a simple line drawing to represent a robot's face can serve to elicit altruistic behavior from humans. An experimental investigation was conducted in which human participants interacted with a humanoid robot whose facial expression was shown on an LCD monitor that was mounted as its head (Study 1). Participants were asked to play the ultimatum game, which is usually used to measure human altruistic behavior. All participants were assigned to be the proposer and were instructed to decide their offer within 1 min by controlling a slider bar. The corners of the robot's mouth, as indicated by the line drawing, simply moved upward, or downward depending on the position of the slider bar. The results suggest that the change in the facial expression depicted by a simple line drawing of a face significantly affected the participant's final offer in the ultimatum game. The offers were increased by 13% when subjects were shown contingent changes of facial expression. The results were compared with an experiment in a teleoperation setting in which participants interacted with another person through a computer display showing the same line drawings used in Study 1 (Study 2). The results showed that offers were 15% higher if participants were shown a contingent facial expression change. Together, Studies 1 and 2 indicate that emotional expression in simple line drawings of a robot's face elicits the same higher offer from humans as a human telepresence does.

  5. High hRFI expression correlates with resistance to Fluoro pyrimidines in human colon cancer cell lines and in xenografts

    International Nuclear Information System (INIS)

    Sasaki, S.; Tokyo Univ., Tokyo; Watanabe, T.; Konishi, T.; Kitayama, J.; Nagawa, H.; Kobunai, T.

    2005-01-01

    We previously reported that the over-expression of hRFI, a protein preferentially expressed in the digestive tract regions of several cancers, exhibited a tendency to inhibit TNF-α induced apoptosis. In this study, we sought to determine the potential effect of hRFI expression on the sensitivity to 5-fluorouracil (5-FU) and/or other fluoro pyrimidines. For the whole lysates of 8 colon cancer cell lines, we performed Western blotting with anti-hRFI antibody and analyzed the correlations between the expression level of hRFI and the cell lines' sensitivity to 5-FU induced apoptosis. Furthermore, for a tissue micro array consisting of 32 xenograft derived human cancer cell lines, we examined the expression levels of hRFI and survivin by immunohistochemical staining, and analyzed the correlations between the expression of each protein and the sensitivity to several chemotherapeutic agents in the xenografts examined. Both in colon cancer cell lines and in xenografts, the expression level of hRFI was correlated with resistance to 5-FU and its derivatives. This evidence suggests that hRFI may be a marker predicting the response to fluorouracil derived chemotherapeutic agents and that the reduction of the expression level of hRFI might improve the outcome of chemotherapy

  6. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ito, Keisuke; Sugawara, Taishi; Shiroishi, Mitsunori; Tokuda, Natsuko; Kurokawa, Azusa; Misaka, Takumi; Makyio, Hisayoshi; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So

    2008-01-01

    Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination

  7. Plasmid stability in dried cells of the desert cyanobacterium Chroococcidiopsis and its potential for GFP imaging of survivors on Earth and in space.

    Science.gov (United States)

    Billi, Daniela

    2012-06-01

    Two GFP-based plasmids, namely pTTQ18-GFP-pDU1(mini) and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1(mini)-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecA(Syn) distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecA(Syn) structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods.

  8. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.

    Science.gov (United States)

    Tran, Dinh Thi Minh; Phan, Trang Thi Phuong; Huynh, Thanh Kieu; Dang, Ngan Thi Kim; Huynh, Phuong Thi Kim; Nguyen, Tri Minh; Truong, Tuom Thi Tinh; Tran, Thuoc Linh; Schumann, Wolfgang; Nguyen, Hoang Duc

    2017-07-25

    the inducible vector using the same promoter. Finally, we used gfp as a reporter gene in combination with the two promoters Pgrac01 and Pgrac100 to test the new vector types. The GFP expression levels could be repressed at least 1.5 times for the Pgrac01-gfp+ inducer-free construct in E. coli. The inducer-free constructs Pgrac01-gfp+ and Pgrac100-gfp+ allowed GFP expression at high levels from 23 × 10 4 to 32 × 10 4 RFU units and 9-13% of total intracellular proteins. We could reconfirm the two major advantages of the new inducer-free expression plasmids: (1) Strong repression of the target gene expression in the E. coli cloning strain, and (2) production of the target protein at high levels in B. subtilis in the absence of the inducer. We propose a general strategy to generate inducer-free expression vector by using IPTG-inducible vectors, and more specifically we developed inducer-free expression plasmids using IPTG-inducible promoters in the absence of the LacI repressor. These plasmids could be an excellent choice for high-level production of recombinant proteins in B. subtilis without the addition of inducer and at the same time maintaining a low basal level of the recombinant proteins in E. coli. The repression of the recombinant gene expression would facilitate cloning of genes that potentially inhibit the growth of E. coli cloning strains. The inducer-free expression plasmids will be extended versions of the current available IPTG-inducible expression vectors for B. subtilis, in which all these vectors use the same cognate promoters. These inducer-free and previously developed IPTG-inducible expression plasmids will be a useful cassette to study gene expression at a small scale up to a larger scale up for the production of recombinant proteins.

  9. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  10. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot...... analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...

  11. Expression of the chondroitin sulphate proteoglycan molecular complex in six human melanoma xenograft lines studied by flow cytometry and immunohistochemistry.

    Science.gov (United States)

    Nagelhus, T A; Rofstad, E K

    1993-06-01

    The expression of the chondroitin sulphate proteoglycan (CSP) molecular complex in six human melanoma xenograft lines (BEX-t, COX-t, HUX-t, ROX-t, SAX-t, WIX-t) was studied by flow cytometry and immunohistochemistry using the monoclonal antibodies 9.2.27, ME31.3, G7A5, and NKI.M6. The two methods and the four antibodies gave consistent results. The six melanoma lines could be divided into three distinct groups of two lines each; expression was high in the HUX-t and ROX-t lines and intermediate in the BEX-t and SAX-t lines, whereas the COX-t and WIX-t lines were negative. The mean number of epitopes per cell for 9.2.27 was approximately twice as high as for ME31.3, G7A5, and NKI.M6 and was estimated to range from 0.8 +/- 0.1 x 10(5) to 1.9 +/- 0.2 x 10(5) in the positive xenograft lines. The expression of the CSP complex was heterogeneous. The immunofluorescence histograms measured by flow cytometry were therefore broad for all tumour lines. A significant fraction of the HUX-t cells was negative or weakly stained. These cells appeared as clear negative patches in the immunohistochemical preparations. Moreover, most morphologically intact tumour cells adjacent to necrotic areas did not show significant expression of the CSP complex, irrespective of tumour line. These cells were probably hypoxic and thus resistant to radiation therapy. The expression of the CSP complex in the xenograft lines was similar to that reported for melanoma in man.

  12. Selection of antigenic markers on a GFP-Cκ fusion scaffold with high sensitivity by eukaryotic ribosome display

    International Nuclear Information System (INIS)

    Yang Yongmin; Barankiewicz, Teresa J.; He Mingyue; Taussig, Michael J.; Chen, Swey-Shen

    2007-01-01

    Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (Cκ) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes on either GFP (5') or Cκ (3') were selected by anti-GFP or anti-Cκ antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10 fg of the 1 kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins

  13. Alterations in gene expression profiles between radioresistant and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Zhou Fuxiang; Zhou Yunfeng; Xie Conghua; Dai Jing; Cao Zhen; Yu Haijun; Liao Zhengkai; Luo Zhiguo

    2007-01-01

    Objective: To study the-difference of gene expressions by the contrastive model including the cells with same pathological origin and genetic background, but definitely different radioresponse, and to find the main molecular targets related to radiosensitivity. Methods: Human larynx squamous carcinoma cell, Hep -2 was irradiated with dose of 637 cGy repeatedly to establish a radioresistant daughter cell line. The radiobiology characteristics were obtained using clone forming assay. The difference of gene expression between parent and daughter cells was detected by cDNA microarray using two different arrays including 14000 genes respectively. Results: A radioresistant cell strain Hep-2R was isolated from its parental strain Hep-2 cell. The SF 2 , D 0 , α, β for Hep-2R cell line were 0.6798, 3.24, 0.2951 and 0.0363, respectively, while 0.4148, 2.06, 0.1074 and 0.0405 for Hep-2, respectively (for SF 2 , χ 2 =63.957, P<0.001). Compared with Hep-2 cells, the expressions of 41 genes were significantly altered in the radioresistant Hep-2R cells, including 22 genes up-regulated and 19 genes down-regulated, which were involved in DNA repair, regulation of the cell cycle, cell proliferation, cytoskeleton, protein synthesis, cellular metabolism and especially apoptosis which is responsible for the different radiosensitivity between these two larynx cancer cells. The telomere protection protein gene, POT1, was the mostly up-regulated by 3.348 times. Conclusions: There is difference of gene expression between the radioresistant contrastive models. POT1 gene may be the target of radiosensitization. (authors)

  14. Human MiR-544a Modulates SELK Expression in Hepatocarcinoma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Nicoletta Potenza

    Full Text Available Hepatocellular carcinoma (HCC is a multi-factorial cancer with a very poor prognosis; therefore, there are several investigations aimed at the comprehension of the molecular mechanisms leading to development and progression of HCC and at the definition of new therapeutic strategies. We have recently evaluated the expression of selenoproteins in HCC cell lines in comparison with normal hepatocytes. Recent results have shown that some of them are down- and others up-regulated, including the selenoprotein K (SELK, whose expression was also induced by sodium selenite treatment on cells. However, so far very few studies have been dedicated to a possible effect of microRNAs on the expression of selenoproteins and their implication in HCC. In this study, the analysis of SELK 3'UTR by bioinformatics tools led to the identification of eight sites potentially targeted by human microRNAs. They were then subjected to a validation test based on luciferase reporter constructs transfected in HCC cell lines. In this functional screening, miR-544a was able to interact with SELK 3'UTR suppressing the reporter activity. Transfection of a miR-544a mimic or inhibitor was then shown to decrease or increase, respectively, the translation of the endogenous SELK mRNA. Intriguingly, miR-544a expression was found to be modulated by selenium treatment, suggesting a possible role in SELK induction by selenium.

  15. Expression of kenaf mitochondrial chimeric genes HM184 causes male sterility in transgenic tobacco plants.

    Science.gov (United States)

    Zhao, Yanhong; Liao, Xiaofang; Huang, Zhipeng; Chen, Peng; Zhou, Bujin; Liu, Dongmei; Kong, Xiangjun; Zhou, Ruiyang

    2015-08-01

    Chimeric genes resulting from the rearrangement of a mitochondrial genome were generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). In the study, earlier we reported that identifying a 47 bp deletion at 3'- flanking of atp9 that was linked to male sterile cytoplasm in kenaf. The truncated fragment was fused with atp9, a mitochondrial transit signal (MTS) and/or GFP, comprised two chimeric genes MTS-HM184-GFP and MTS-HM184. The plant expression vector pBI121 containing chimeric genes were then introduced to tobacco plants by Agrobacterium-mediated T-DNA transformation. The result showed that certain transgenic plants were male sterility or semi-sterility, while some were not. The expression analysis further demonstrated that higher level of expression were showed in the sterility plants, while no expression or less expression in fertility plants, the levels of expression of semi-sterility were in between. And the sterile plant (containing MTS-HM184-GFP) had abnormal anther produced malformed/shriveled pollen grains stained negative that failed to germinate (0%), the corresponding fruits was shrunken, the semi-sterile plants having normal anther shape produced about 10-50% normal pollen grains, the corresponding fruits were not full, and the germination rate was 58%. Meanwhile these transgenic plants which altered on fertility were further analyzed in phenotype. As a result, the metamorphosis leaves were observed in the seedling stage, the plant height of transgenic plants was shorter than wild type. The growth duration of transgenic tobacco was delayed 30-45 days compared to the wild type. The copy numbers of target genes of transgenic tobacco were analyzed using the real-time quantitative method. The results showed that these transgenic plants targeting-expression in mitochondrial containing MTS-HM184-GFP had 1 copy and 2 copies, the other two plants containing MTS-HM184 both had 3 copies, but 0 copy in wild type. In

  16. Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1993-01-01

    A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor beta receptors (TGF beta-r) and the expression of TGF beta mRNAs. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. scatchard analysis......(r) = 65,000 and 90,000 and the betaglycan (type III) with M(r) = 280,000. Northern blotting showed expression of TGF beta 1 mRNA in ten, TGF beta 2 mRNA in two and TGF beta 3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell...... lines express TGF beta-receptors and also produce TGF beta mRNAs....

  17. Increased expression of heparin binding EGF (HB-EGF), amphiregulin, TGF alpha and epiregulin in androgen-independent prostate cancer cell lines.

    DEFF Research Database (Denmark)

    Tørring, Niels; Sørensen, Boe Sandahl; Nexø, Ebba

    2000-01-01

    BACKGROUND: The proliferation of androgen-independent prostate cancer cell lines has previously been shown to be influenced by an autocrine loop of the epidermal growth factor (EGF) system. This observation has alerted us to study the expression of ligands and receptors from the EGF......-system in prostate cell lines. METHODS: The expression of the EGF system was determined by quantitative RT-PCR and ELISA in the normal prostate epithelial cell line (PNT1A), in the androgen sensitive-(LNCaP), and the androgen-independent (DU145 and PC3) prostate cancer cell lines. RESULTS: The expression of m...... which exhibit low expression of HER1. Similar results were obtained by ELISA. CONCLUSIONS: The data indicates a selective up-regulation of a subclass of ligands of the EGF-system in androgen-independent prostate cancer cell lines. We suggest this could be a mechanism to escape androgen dependence...

  18. Comparison of Oct4, Sox2 and Nanog Expression in Pancreatic Cancer Cell Lines and Human Pancreatic Tumor

    Directory of Open Access Journals (Sweden)

    Vahideh Assadollahi

    2015-12-01

    Full Text Available Background: Genes are involved in the control of stem cell self-renewal as a new class of molecular markers of cancer. Objectives: In this study, the expression of Oct4, Nanog and Sox2 in cell lines MIA Paca-2, PA-TU-8902 and AsPC-1 and pancreatic cancer tissue were examined. Materials and Methods: In this experimental study, cell lines, MIA Paca-2, PA-TU-8902 and AsPC-1, were cultured in DMEM (Dulbecco’s Modified Eagles Medium and RPMI-1640 (Roswell Park Memorial Institute containing FBS 10% (fetal bovine serum in a 37°C incubator containing Co2 5% and humidity 90%. Samples of tumor and non-cancer pancreatic tumor were purchased Iran tumor bank. Extraction of RNA and synthesis of cDNA was performed. Expression levels of Oct4, Nanog and Sox2 were determined using Real-time PCR. The protein expression levels of target genes in the cell lines were studied by flow cytometry and immunocytochemistry. Results: The expression rate of Oct4, Nanog and Sox2 is more in the cancer cell lines than those in the control (normal tissue samples. The protein expression levels of target genes in the cell lines were confirmed by flow cytometry and immunocytochemistry. Conclusions: The genes are involved in stem cell self-renewal as a new class of molecular markers of cancer that detected in the pancreatic cell lines. Maybe, these genes play important role in the uncontrolled proliferation of cancer cells.

  19. Emotional Expression in Simple Line Drawings of a Robot's Face Leads to Higher Offers in the Ultimatum Game

    Directory of Open Access Journals (Sweden)

    Kazunori Terada

    2017-05-01

    Full Text Available In the present study, we investigated whether expressing emotional states using a simple line drawing to represent a robot's face can serve to elicit altruistic behavior from humans. An experimental investigation was conducted in which human participants interacted with a humanoid robot whose facial expression was shown on an LCD monitor that was mounted as its head (Study 1. Participants were asked to play the ultimatum game, which is usually used to measure human altruistic behavior. All participants were assigned to be the proposer and were instructed to decide their offer within 1 min by controlling a slider bar. The corners of the robot's mouth, as indicated by the line drawing, simply moved upward, or downward depending on the position of the slider bar. The results suggest that the change in the facial expression depicted by a simple line drawing of a face significantly affected the participant's final offer in the ultimatum game. The offers were increased by 13% when subjects were shown contingent changes of facial expression. The results were compared with an experiment in a teleoperation setting in which participants interacted with another person through a computer display showing the same line drawings used in Study 1 (Study 2. The results showed that offers were 15% higher if participants were shown a contingent facial expression change. Together, Studies 1 and 2 indicate that emotional expression in simple line drawings of a robot's face elicits the same higher offer from humans as a human telepresence does.

  20. Plasmodium falciparum parasites expressing pregnancy-specific variant surface antigens adhere strongly to the choriocarcinoma cell line BeWo

    DEFF Research Database (Denmark)

    Haase, Rikke N; Megnekou, Rosette; Lundquist, Maja

    2006-01-01

    Placenta-sequestering Plasmodium falciparum parasites causing pregnancy-associated malaria express pregnancy-specific variant surface antigens (VSA(PAM)). We report here that VSA(PAM)-expressing patient isolates adhere strongly to the choriocarcinoma cell line BeWo and that the BeWo line can...... be used to efficiently select for VSA(PAM) expression in vitro....

  1. Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils.

    Science.gov (United States)

    Anbalagan, Charumathi; Lafayette, Ivan; Antoniou-Kourounioti, Melissa; Gutierrez, Carmen; Martin, Jose Rodriguez; Chowdhuri, Debapratim K; De Pomerai, David I

    2013-01-01

    As a free-living nematode, C. elegans is exposed to various pesticides used in agriculture, as well as to persistent organic residues which may contaminate the soil for long periods. Following on from our previous study of metal effects on 24 GFP-reporter strains representing four different stress-response pathways in C. elegans (Anbalagan et al. Ecotoxicology 21:439-455, 2012), we now present parallel data on the responses of these same strains to several commonly used pesticides. Some of these, like dichlorvos, induced multiple stress genes in a concentration-dependent manner. Unusually, endosulfan induced only one gene (cyp-34A9) to very high levels (8-10-fold) even at the lowest test concentration, with a clear plateau at higher doses. Other pesticides, like diuron, did not alter reporter gene expression detectably even at the highest test concentration attainable, while others (such as glyphosate) did so only at very high concentrations. We have also used five responsive GFP reporters to investigate the toxicity of soil pore water from two agricultural sites in south-east Spain, designated P74 (used for cauliflower production, but significantly metal contaminated) and P73 (used for growing lettuce, but with only background levels of metals). Both soil pore water samples induced all five test genes to varying extents, yet artificial mixtures containing all major metals present had essentially no effect on these same transgenes. Soluble organic contaminants present in the pore water were extracted with acetone and dichloromethane, then after evaporation of the solvents, the organic residues were redissolved in ultrapure water to reconstitute the soluble organic components of the original soil pore water. These organic extracts induced transgene expression at similar or higher levels than the original pore water. Addition of the corresponding metal mixtures had either no effect, or reduced transgene expression towards the levels seen with soil pore water only. We

  2. Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines.

    Science.gov (United States)

    Bennett, Nigel C; Hooper, John D; Johnson, David W; Gobe, Glenda C

    2014-05-01

    In prostate cancer (PCa) patients, the protein target for androgen deprivation and blockade therapies is androgen receptor (AR). AR interacts with many proteins that function to either co-activate or co-repress its activity. Caveolin-1 (Cav-1) is not found in normal prostatic epithelium, but is found in PCa, and may be an AR co-regulator protein. We investigated cell line-specific signatures and associations of endogenous AR and Cav-1 in six PCa cell lines of known androgen sensitivity: LNCaP (androgen sensitive); 22Rv1 (androgen responsive); PC3, DU145, and ALVA41 (androgen non-reliant); and RWPE1 (non-malignant). Protein and mRNA expression profiles were compared and electron microscopy used to identify cells with caveolar structures. For cell lines expressing both AR and Cav-1, knockdown techniques using small interfering RNA against AR or Cav-1 were used to test whether diminished expression of one affected the other. Co-sedimentation of AR and Cav-1 was used to test their association. A reporter assay for AR genomic activity was utilized following Cav-1 knockdown. AR-expressing LNCaP and 22Rv1 cells had low endogenous Cav-1 mRNA and protein. Cell lines that expressed little or no AR (DU145, PC3, ALVA41, and RWPE1) expressed high endogenous levels of Cav-1. AR knockdown in LNCaP cells had little effect on Cav-1, but Cav-1 knockdown inhibited AR expression and genomic activity. These data show endogenous AR and Cav-1 mRNA and protein expression is inversely related in PCa cells, with Cav-1 acting on the androgen/AR signaling axis possibly as an AR co-activator, demonstrated by diminished AR genomic activity following Cav-1 knockdown. © 2013 Wiley Periodicals, Inc.

  3. Differential local tissue permissiveness influences the final fate of GPR17‐expressing oligodendrocyte precursors in two distinct models of demyelination

    Science.gov (United States)

    Coppolino, Giusy T.; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide

    2018-01-01

    Abstract Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17‐iCreERT2xCAG‐eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen‐induced GFP‐labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor‐1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti‐inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. PMID:29424466

  4. Development of expression vectors for Escherichia coli based on the pCR2 replicon

    Directory of Open Access Journals (Sweden)

    Deb J K

    2007-05-01

    Full Text Available Abstract Background Recent developments in metabolic engineering and the need for expanded compatibility required for co-expression studies, underscore the importance of developing new plasmid vectors with properties such as stability and compatibility. Results We utilized the pCR2 replicon of Corynebacterium renale, which harbours multiple plasmids, for constructing a range of expression vectors. Different antibiotic-resistance markers were introduced and the vectors were found to be 100% stable over a large number of generations in the absence of selection pressure. Compatibility of this plasmid was studied with different Escherichia coli plasmid replicons viz. pMB1 and p15A. It was observed that pCR2 was able to coexist with these E.coli plasmids for 60 generations in the absence of selection pressure. Soluble intracellular production was checked by expressing GFP under the lac promoter in an expression plasmid pCR2GFP. Also high level production of human IFNγ was obtained by cloning the h-IFNγ under a T7 promoter in the expression plasmid pCR2-IFNγ and using a dual plasmid heat shock system for expression. Repeated sub-culturing in the absence of selection pressure for six days did not lead to any fall in the production levels post induction, for both GFP and h-IFNγ, demonstrating that pCR2 is a useful plasmid in terms of stability and compatibility. Conclusion We have constructed a series of expression vectors based on the pCR2 replicon and demonstrated its high stability and sustained expression capacity, in the absence of selection pressure which will make it an efficient tool for metabolic engineering and co-expression studies, as well as for scale up of expression.

  5. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Peddie, Christopher J.; Blight, Ken; Wilson, Emma [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Melia, Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Department of Molecular Cell Biology, Leiden University Medical Centre, 2300 RC Leiden (Netherlands); Marrison, Jo [Department of Biology, The University of York, Heslington, York (United Kingdom); Carzaniga, Raffaella [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Domart, Marie-Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); O' Toole, Peter [Department of Biology, The University of York, Heslington, York (United Kingdom); Larijani, Banafshe [Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, Unidad de Biofísica (CSIC-UPV/EHU),Sarriena s/n, 48940 Leioa (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Collinson, Lucy M. [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom)

    2014-08-01

    Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure. - Highlights: • GFP and mCherry fluorescence are preserved in heavy-metal stained mammalian cells embedded in resin • Fluorophores are stable and intensity is sufficient for detection in ultrathin sections • Overlay of separate LM and EM images from the same ultrathin section improves CLEM protein localisation precision • GFP is stable and active in the vacuum of an integrated light and scanning EM • Integrated light and electron microscopy shows new subcellular locations of the lipid diacylglycerol.

  6. The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity.

    Science.gov (United States)

    Zwanziger, Denise; Schmidt, Mathias; Fischer, Jana; Kleinau, Gunnar; Braun, Doreen; Schweizer, Ulrich; Moeller, Lars Christian; Biebermann, Heike; Fuehrer, Dagmar

    2016-10-15

    Monocarboxylate transporter 8 (MCT8) equilibrates thyroid hormones between the extra- and the intracellular sides. MCT8 exists either with a short or a long N-terminus, but potential functional differences between both variants are yet not known. We, therefore, generated MCT8 constructs which are different in N-terminal length: MCT8(1-613), MCT8(25-613), MCT8(49-613) and MCT8(75-613). The M75G substitution prevents translation of MCT8(75-613) and ensures expression of full-length MCT8 protein. The K56G substitution was made to prevent ubiquitinylation. Cell-surface expression, localization and proteasomal degradation were investigated using C-terminally GFP-tagged MCT8 constructs (HEK293 and MDCK1 cells) and oligomerization capacity was determined using N-terminally HA- and C-terminally FLAG-tagged MCT8 constructs (COS7 cells). MCT8(1-613)-GFP showed a lower protein expression than the shorter MCT8(75-613)-GFP protein. The proteasome inhibitor lactacystin increased MCT8(1-613)-GFP protein amount, suggesting proteasomal degradation of MCT8 with the long N-terminus. Ubiquitin conjugation of MCT8(1-613)-GFP was found by immuno-precipitation. A diminished ubiquitin conjugation caused by K56G substitution resulted in increased MCT8(1-613)-GFP protein expression. Sandwich ELISA was performed to investigate if the bands at higher molecular weight observed in Western blot analysis are due to MCT8 oligomerization, which was indeed shown. Our data imply a role of the long N-terminus of MCT8 as target of ubiquitin-dependent proteasomal degradation affecting MCT8 amount and subsequently oligomerization capacity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Identification of choriogenin cis-regulatory elements and production of estrogen-inducible, liver-specific transgenic Medaka.

    Science.gov (United States)

    Ueno, Tetsuro; Yasumasu, Shigeki; Hayashi, Shinji; Iuchi, Ichiro

    2004-07-01

    Choriogenins (chg-H, chg-L) are precursor proteins of egg envelope of medaka and synthesized in the spawning female liver in response to estrogen. We linked a gene construct chg-L1.5 kb/GFP (a 1.5 kb 5'-upstream region of the chg-L gene fused with a green fluorescence protein (GFP) gene) to another construct emgb/RFP (a cis-regulatory region of embryonic globin gene fused with an RFP gene), injected the double fusion gene construct into 1- or 2-cell-stage embryos, and selected embryos expressing the RFP in erythroid cells. From the embryos, we established two lines of chg-L1.5 kb/GFP-emgb/RFP-transgenic medaka. The 3-month-old spawning females and estradiol-17beta (E2)-exposed males displayed the liver-specific GFP expression. The E2-dependent GFP expression was detected in the differentiating liver of the stage 37-38 embryos. In addition, RT-PCR and whole-mount in situ hybridization showed that the E2-dependent chg expression was found in the liver of the stage 34 embryos of wild medaka, suggesting that such E2-dependency is achieved shortly after differentiation of the liver. Analysis using serial deletion mutants fused with GFP showed that the region -426 to -284 of the chg-L gene or the region -364 to -265 of the chg-H gene had the ability to promote the E2-dependent liver-specific GFP expression of its downstream gene. Further analyses suggested that an estrogen response element (ERE) at -309, an ERE half-site at -330 and a binding site for C/EBP at -363 of the chg-L gene played important roles in its downstream chg-L gene expression. In addition, this transgenic medaka may be useful as one of the test animals for detecting environmental estrogenic steroids.

  8. Functional and neurochemical characterization of angiotensin type 1A receptor-expressing neurons in the nucleus of the solitary tract of the mouse.

    Science.gov (United States)

    Carter, D A; Choong, Y-T; Connelly, A A; Bassi, J K; Hunter, N O; Thongsepee, N; Llewellyn-Smith, I J; Fong, A Y; McDougall, S J; Allen, A M

    2017-10-01

    Angiotensin II acts via two main receptors within the central nervous system, with the type 1A receptor (AT 1A R) most widely expressed in adult neurons. Activation of the AT 1 R in the nucleus of the solitary tract (NTS), the principal nucleus receiving central synapses of viscerosensory afferents, modulates cardiovascular reflexes. Expression of the AT 1 R occurs in high density within the NTS of most mammals, including humans, but the fundamental electrophysiological and neurochemical characteristics of the AT 1A R-expressing NTS neurons are not known. To address this, we have used a transgenic mouse, in which the AT 1A R promoter drives expression of green fluorescent protein (GFP). Approximately one-third of AT 1A R-expressing neurons express the catecholamine-synthetic enzyme tyrosine hydroxylase (TH), and a subpopulation of these stained for the transcription factor paired-like homeobox 2b (Phox2b). A third group, comprising approximately two-thirds of the AT 1A R-expressing NTS neurons, showed Phox2b immunoreactivity alone. A fourth group in the ventral subnucleus expressed neither TH nor Phox2b. In whole cell recordings from slices in vitro, AT 1A R-GFP neurons exhibited voltage-activated potassium currents, including the transient outward current and the M-type potassium current. In two different mouse strains, both AT 1A R-GFP neurons and TH-GFP neurons showed similar AT 1A R-mediated depolarizing responses to superfusion with angiotensin II. These data provide a comprehensive description of AT 1A R-expressing neurons in the NTS and increase our understanding of the complex actions of this neuropeptide in the modulation of viscerosensory processing. Copyright © 2017 the American Physiological Society.

  9. Adenoviral vectors expressing fusogenic membrane glycoproteins activated via matrix metalloproteinase cleavable linkers have significant antitumor potential in the gene therapy of gliomas.

    Science.gov (United States)

    Allen, Cory; McDonald, Cari; Giannini, Caterina; Peng, Kah Whye; Rosales, Gabriela; Russell, Stephen J; Galanis, Evanthia

    2004-11-01

    Fusogenic membrane glycoproteins (FMG) such as the gibbon ape leukemia virus envelope (GALV) glycoprotein are potent therapeutic transgenes with potential utility in the gene therapy of gliomas. Transfection of glioma cell lines with FMG expression constructs results in fusion with massive syncytia formation followed by cytotoxic cell death. Nevertheless, ubiquitous expression of the GALV receptor, Pit-1, makes targeting desirable in order to increase the specificity of the observed cytopathic effect. Here we report on use of matrix metalloproteinase (MMP)-cleavable linkers to target the cytotoxicity of FMG-expressing adenoviral vectors against gliomas. Replication-defective adenoviruses (Ad) were constructed expressing the hyperfusogenic version of the GALV glycoprotein linked to a blocking ligand (C-terminal extracellular domain of CD40 ligand) through either an MMP-cleavable linker (AdM40) or a non-cleavable linker (AdN40). Both viruses also co-expressed the green fluorescent protein (GFP) via an internal ribosomal entry site. The glioma cell lines U87, U118, and U251 characterized by zymography and MMP-2 activity assay as high, medium and low MMP expressors, respectively, the MMP-poor cell lines TE671 and normal human astrocytes were infected with AdM40 and AdN40 at different multiplicities of infection (MOIs) from 1-30. Fusion was quantitated by counting both number and size of syncytia. Infection of these cell lines with AdN40 did not result in fusion or cytotoxic cell death, despite the presence of infection, as demonstrated by GFP positivity, therefore indicating that the displayed CD40 ligand blocked GALV-induced fusion. Fusion was restored after infection of glioma cells with AdM40 at an MOI as low as 1 to an extent dependent on MMP expression and coxsackie adenovirus receptor (CAR) expression in the specific cell line. Western immunoblotting demonstrated the presence of the cleaved CD40 ligand in the supernatant of fused glioma cells. Use of the MMP

  10. Hedgehog-PKA signaling and gnrh3 regulate the development of zebrafish gnrh3 neurons.

    Directory of Open Access Journals (Sweden)

    Ming-Wei Kuo

    Full Text Available GnRH neurons secrete GnRH that controls the development of the reproduction system. Despite many studies, the signals controlling the development of GnRH neurons from its progenitors have not been fully established. To understand the development of GnRH neurons, we examined the development of gnrh3-expressing cells using a transgenic zebrafish line that expresses green fluorescent protein (GFP and LacZ driven by the gnrh3 promoter. GFP and LacZ expression recapitulated that of gnrh3 in the olfactory region, olfactory bulb and telencephalon. Depletion of gnrh3 by morpholinos led to a reduction of GFP- and gnrh3-expressing cells, while over-expression of gnrh3 mRNA increased the number of these cells. This result indicates a positive feed-forward regulation of gnrh3 cells by gnrh3. The gnrh3 cells were absent in embryos that lack Hedgehog signaling, but their numbers were increased in embryos overexpressing shhb. We manipulated the amounts of kinase that antagonizes the Hedgehog signaling pathway, protein kinase A (PKA, by treating embryos with PKA activator forskolin or by injecting mRNAs encoding its constitutively active catalytic subunit (PKA* and dominant negative regulatory subunit (PKI into zebrafish embryos. PKA* misexpression or forskolin treatment decreased GFP cell numbers, while PKI misexpression led to ectopic production of GFP cells. Our data indicate that the Hedgehog-PKA pathway participates in the development of gnrh3-expressing neurons during embryogenesis.

  11. The Optimization of Passengers’ Travel Time under Express-Slow Mode Based on Suburban Line

    Directory of Open Access Journals (Sweden)

    Xiaobing Ding

    2016-01-01

    Full Text Available The suburban line connects the suburbs and the city centre; it is of huge advantage to attempt the express-slow mode. The passengers’ average travel time is the key factor to reflect the level of rail transport services, especially under the express-slow mode. So it is important to study the passengers’ average travel time under express-slow, which can get benefit on the optimization of operation scheme. First analyze the main factor that affects passengers’ travel time and then mine the dynamic interactive relationship among the factors. Second, a new passengers’ travel time evolution algorithm is proposed after studying the stop schedule and the proportion of express/slow train, and then membrane computing theory algorithm is introduced to solve the model. Finally, Shanghai Metro Line 22 is set as an example to apply the optimization model to calculate the total passengers’ travel time; the result shows that the total average travel time under the express-slow mode can save 1 minute and 38 seconds; the social influence and value of it are very huge. The proposed calculation model is of great help for the decision of stop schedule and provides theoretical and methodological support to determine the proportion of express/slow trains, improves the service level, and enriches and complements the rail transit operation scheme optimization theory system.

  12. High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter

    Directory of Open Access Journals (Sweden)

    D’Urzo Nunzia

    2013-02-01

    Full Text Available Abstract Background In past years research has focused on the development of alternative Gram positive bacterial expression systems to produce industrially relevant proteins. Brevibacillus choshinensis is an easy to handle non-sporulating bacterium, lacking extracellular proteases, that has been already shown to provide a high level of recombinant protein expression. One major drawback, limiting the applicability of the Brevibacillus expression system, is the absence of expression vectors based on inducible promoters. Here we used the PxylA inducible promoter, commonly employed in other Bacillae expression systems, in Brevibacillus. Results Using GFP, α-amylase and TcdA-GT as model proteins, high level of intracellular protein expression (up to 250 mg/L for the GFP was achieved in Brevibacillus, using the pHis1522 vector carrying the B. megaterium xylose-inducible promoter (PxylA. The GFP expression yields were more than 25 fold higher than those reported for B. megaterium carrying the same vector. All the tested proteins show significant increment in their expression levels (2-10 folds than those obtained using the available plasmids based on the P2 constitutive promoter. Conclusion Combining the components of two different commercially available Gram positive expression systems, such as Brevibacillus (from Takara Bio and B. megaterium (from Mobitec, we demonstrate that vectors based on the B. megaterium PxylA xylose inducible promoter can be successfully used to induce high level of intracellular expression of heterologous proteins in Brevibacillus.

  13. Carotenoid accumulation and carotenogenic gene expression during fruit development in novel interspecific inbred squash lines and their parents.

    Science.gov (United States)

    Nakkanong, Korakot; Yang, Jing Hua; Zhang, Ming Fang

    2012-06-13

    Carotenoid levels and composition during squash fruit development were compared in Cucurbita moschata , Cucurbita maxima , and two lines of their interspecific inbred lines, namely, Maxchata1 and Maxchata2. Eight genes associated with carotenoid biosynthesis were analyzed by quantitative RT-PCR. The two squash species and their interspecific inbred lines exhibited different qualitative and quantitative carotenoid profiles and regulatory mechanisms. C. moschata had the lowest total carotenoid content and mainly accumulated α-carotene and β-carotene, as expected in a fruit with pale-orange flesh. Low carotenoid content in this species was probably due to the comparatively low expression of all genes investigated, especially PSY1 gene, compared to the other squashes. The predominant carotenoids in C. maxima were violaxanthin and lutein, which produced a corresponding yellow flesh color in mature fruit. The relationship between the expression of the CHYB and ZEP genes may result in almost equal concentrations of violaxanthin and lutein in C. maxima at fruit ripening. In contrast, their interspecific inbred lines principally accumulated lutein and β-carotene, leading to orange flesh color. The PSY1 gene exhibited higher expression levels at earlier stages of fruit development in the Maxchata lines, potentially triggering the increased carotenoid accumulation seen in these fruits. Likewise, the higher transcription level of CHYB gene observed in the two interspecific inbred lines might be correlated with high lutein in these hybrids. However, this study could not explain the observed β-carotene accumulation on the basis of gene expression.

  14. Replication-competent human adenovirus 11p vectors can propagate in Vero cells

    International Nuclear Information System (INIS)

    Gokumakulapalle, Madhuri; Mei, Ya-Fang

    2016-01-01

    The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were as capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields. - Highlights: • Africa green monkey cell lines were monitored for human adenovirus 11p GFP vector infection. • Human CD46 molecules were detectable in these monkey cell lines. • Adenovirus 11p GFP vector can be propagated in Vero cells increases the safety of Ad11p-based vectors for clinical trials. • To use Vero cells for preparation of Ad11p vector avoids the potential inclusion of oncogenes from tumor cells.

  15. Replication-competent human adenovirus 11p vectors can propagate in Vero cells

    Energy Technology Data Exchange (ETDEWEB)

    Gokumakulapalle, Madhuri; Mei, Ya-Fang, E-mail: ya-fang.mei@umu.se

    2016-08-15

    The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were as capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields. - Highlights: • Africa green monkey cell lines were monitored for human adenovirus 11p GFP vector infection. • Human CD46 molecules were detectable in these monkey cell lines. • Adenovirus 11p GFP vector can be propagated in Vero cells increases the safety of Ad11p-based vectors for clinical trials. • To use Vero cells for preparation of Ad11p vector avoids the potential inclusion of oncogenes from tumor cells.

  16. Electrophysiological Characteristics of Embryonic Stem Cell-Derived Cardiomyocytes are Cell Line-Dependent

    Directory of Open Access Journals (Sweden)

    Tobias Hannes

    2015-01-01

    Full Text Available Background: Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs of different murine ESC lines. Methods: Two wild-type (D3 and R1 and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7 were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC promoter. Action potentials (APs were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Results: Spontaneous AP frequency and AP duration (APD as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Conclusion: Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully.

  17. Selection of antigenic markers on a GFP-C{kappa} fusion scaffold with high sensitivity by eukaryotic ribosome display

    Energy Technology Data Exchange (ETDEWEB)

    Yongmin, Yang [Institute of Genetics, San Diego, CA 92121-2233 (United States); IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States); Barankiewicz, Teresa J [Institute of Genetics, San Diego, CA 92121-2233 (United States); IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States); Mingyue, He [Babraham Institute, Cambridge CB2 4AT (United Kingdom); Taussig, Michael J [Babraham Institute, Cambridge CB2 4AT (United Kingdom); Chen, Swey-Shen [Institute of Genetics, San Diego, CA 92121-2233 (United States) and IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States)

    2007-07-27

    Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (C{kappa}) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes on either GFP (5') or C{kappa} (3') were selected by anti-GFP or anti-C{kappa} antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10 fg of the 1 kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins.

  18. Low or undetectable TPO receptor expression in malignant tissue and cell lines derived from breast, lung, and ovarian tumors

    Directory of Open Access Journals (Sweden)

    Erickson-Miller Connie L

    2012-09-01

    Full Text Available Abstract Background Numerous efficacious chemotherapy regimens may cause thrombocytopenia. Thrombopoietin receptor (TPO-R agonists, such as eltrombopag, represent a novel approach for the treatment of chemotherapy-induced thrombocytopenia. The TPO-R MPL is expressed on megakaryocytes and megakaryocyte precursors, although little is known about its expression on other tissues. Methods Breast, lung, and ovarian tumor samples were analyzed for MPL expression by microarray and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR, and for TPO-R protein expression by immunohistochemistry (IHC. Cell line proliferation assays were used to analyze the in vitro effect of eltrombopag on breast, lung, and ovarian tumor cell proliferation. The lung carcinoma cell lines were also analyzed for TPO-R protein expression by Western blot. Results MPL mRNA was not detectable in 118 breast tumors and was detectable at only very low levels in 48% of 29 lung tumors studied by microarray analysis. By qRT-PCR, low but detectable levels of MPL mRNA were detectable in some normal (14-43% and malignant (3-17% breast, lung, and ovarian tissues. A comparison of MPL to EPOR, ERBB2, and IGF1R mRNA demonstrates that MPL mRNA levels were far lower than those of EPOR and ERBB2 mRNA in the same tissues. IHC analysis showed negligible TPO-R protein expression in tumor tissues, confirming mRNA analysis. Culture of breast, lung, and ovarian carcinoma cell lines showed no increase, and in fact, showed a decrease in proliferation following incubation with eltrombopag. Western blot analyses revealed no detectable TPO-R protein expression in the lung carcinoma cell lines. Conclusions Multiple analyses of breast, lung, and ovarian tumor samples and/or cell lines show no evidence of MPL mRNA or TPO-R protein expression. Eltrombopag does not stimulate growth of breast, lung, or ovarian tumor cell lines at doses likely to exert their actions on megakaryocytes and

  19. Expression of a LINE-1 endonuclease variant in gastric cancer: its association with clinicopathological parameters

    International Nuclear Information System (INIS)

    Wang, Gangshi; Wu, Benyan; Wang, Mengwei; Gao, Jie; Huang, Haili; Tian, Yu; Xue, Liyan; Wang, Weihua; You, Weidi; Lian, Hongwei; Duan, Xiaojian

    2013-01-01

    Long interspersed nuclear element-1 (LINE-1 or L1), the most abundant and only autonomously active family of non-LTR retrotransposons in the human genome, expressed not only in the germ lines but also in somatic tissues. It contributes to genetic instability, aging, and age-related diseases, such as cancer. Our previous study identified in human gastric adenocarcinoma an upregulated transcript GCRG213, which shared 88% homology with human L1 sequence and contained a putative conserved apurinic/apyrimidinic endonucleas1 domain. Immunohistochemistry was carried out by using a monoclonal mouse anti-human GCRG213 protein (GCRG213p) antibody produced in our laboratory, on tissue microarray constructed with specimens from 175 gastric adenocarcinoma patients. The correlation between GCRG213p expression and patient clinicopathological parameters was evaluated. GCRG213p expression in gastric cancer cell lines were studied using Western blotting analysis. L1 promoter methylation status of gastric cancer cells was tested using methylation-specific PCR. BLASTP was used at the NCBI Blast server to identify GCRG213p sequence to any alignments in the Protein Data Bank databases. Most primary gastric cancer, lymph node metastases and gastric intestinal metaplasia glands showed positive GCRG213p immunoreactivity. High GCRG213p immunostaining score in the primary gastric cancer was positively correlated with tumor differentiation (well differentiated, p = 0.001), Lauren’s classification (intestinal type, p < 0.05) and a late age onset of gastric adenocarcinoma (≥65 yrs; p < 0.05). GCRG213p expression has no association with other clinicopathological parameters, including survival. Western blotting analysis of GCRG213p expression in gastric cancer cells indicated that GCRG213p level was higher in gastric cancer cell lines than in human normal gastric epithelium immortalized cell line GES-1. Partial methylation of L1 in gastric cancer cells was confirmed by methylation

  20. A novel cytochrome P450 gene from Catharanthus roseus cell line C20hi: cloning and characterization of expression

    Directory of Open Access Journals (Sweden)

    Lihong He

    2012-06-01

    Full Text Available An expressed sequence tag (EST obtained from a subtractive-suppression hybridization cDNA library constructed using Catharanthus roseus cell line C20hi and its parental cell line C20D was used to clone a full-length cytochrome P450 cDNA of cyp71d1. The encoded polypeptide contained 507 amino acids with 39–56% identity to other CYP71D subfamily members at the amino acid level. Expression characteristics of cyp71d1 were determined using semi-quantitative RT-PCR. The cyp71d1 transcript was expressed in all three cell lines with the highest level in the cell line C20hi. In the mature C. roseus plant, the cyp71d1 cDNA was highly expressed in petals, roots and stems, but very weakly expressed in young leaves. Its transcription level increased with the development of flowers. 2,4-D could down-regulate the transcription of cyp71d1, as did KT, but only to a minor degree. Neither light nor yeast elicitor could induce the transcription of cyp71d1.

  1. Development and Characterisation of a Novel NF-κB Reporter Cell Line for Investigation of Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Marie-Theres Zeuner

    2017-01-01

    Full Text Available Aberrant activation of the transcription factor NF-κB, as well as uncontrolled inflammation, has been linked to autoimmune diseases, development and progression of cancer, and neurological disorders like Alzheimer’s disease. Reporter cell lines are a valuable state-of-the art tool for comparative analysis of in vitro drug screening. However, a reporter cell line for the investigation of NF-κB-driven neuroinflammation has not been available. Thus, we developed a stable neural NF-κB-reporter cell line to assess the potency of proinflammatory molecules and peptides, as well as anti-inflammatory pharmaceuticals. We used lentivirus to transduce the glioma cell line U251-MG with a tandem NF-κB reporter construct containing GFP and firefly luciferase allowing an assessment of NF-κB activity via fluorescence microscopy, flow cytometry, and luminometry. We observed a robust activation of NF-κB after exposure of the reporter cell line to tumour necrosis factor alpha (TNFα and amyloid-β peptide [1-42] as well as to LPS derived from Salmonella minnesota and Escherichia coli. Finally, we demonstrate that the U251-NF-κB-GFP-Luc reporter cells can be used for assessing the anti-inflammatory potential of pharmaceutical compounds using Bay11-7082 and IMD0354. In summary, our newly generated cell line is a robust and cost-efficient tool to study pro- and anti-inflammatory potential of drugs and biologics in neural cells.

  2. The Expression and Biological Significance of PD-L1 on Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Cheng CHEN

    2009-08-01

    Full Text Available Background and objective Tumor-associated PD-L1 expression was recently shown to promote T-cell apoptosis and proposed as a potential mechanism of immune evasion by tumors. On the basis of the ability of tumor-associated PD-L1 to mediate activated T-cell death, it is likely that manipulation of the PD-L1 pathway at defined time points during the development of the T-cell antitumor immune response can enhance the efficacy of T-cell-based immunotherapy. Here, the levels of expression of PD-L1 on lung cancer cell lines and its role in interaction of CTL and target cells was investigated. Methods Human PBMC derived DCs were loaded with apoptotic tumor cells and stimulated by CD40 mAb (5C11. Tumor specific CTL was generated in vitro by autologous T cells co-cultured with mature DCs. Expression of PD-L1 on lung cancer cell lines H1299 and A549 were analyzed by FCM. JAM assay was used to detect the cytolytic activity of CTL with or without blocking PD-L1 by PD-L1 mAb respectively. The concentrations of IFN-γ in supernatants from distinct groups were analyzed by ELISA. Results Tumor cells-loaded mature DCs could induce the generation of the tumor specific CTL. Expression of PD-L1 was low on A549 cell, but high on H1299 cell. Blockade of PD-L1 on A549 could not improve cytolytic effect of CTL on target cells and IFN-γ production, but fragmentation of H1299 cells and IFN-γ production were significantly enhanced by the combination of PD-L1 mAb and CTL. Conclusion Expression of PD-L1 on lung cancer cell line can decrease the cytolytic effect of CTL on target cells.

  3. [The Influence of New Medium with RGD on Cell Growth,Cell Fusion and Expression of Exogenous Gene].

    Science.gov (United States)

    Wang, Pei-Pei; Wei, Da-Peng; Zhu, Tong-Bo

    2018-03-01

    To investigate the influence of a new culture medium added with RGD on cell growth,cell fusion and expression of exogenous gene. A new medium was prepared by adding different concentrations of RGD to ordinary culture medium. The optimum concentration of RGD was determined by observation of the growth of human pancreatic epithelial cell line HPDE6-C7. After determining the optimum concentration of RGD,different concentrations of cells HPDE6-C7 (5×10 4 ,10 5 ,5×10 5 mL -1 ) were inoculated in the two mediums. The morphology,adherence,growth and density of the cells were observed by inverted microscope; The ratio of clone formation and the positive rate of cloning were compared between the two cultures after fusion; The fluorescence intensity after the transfection of plasmid with green fluorescent protein ( GFP ) and the protein expression after transfection of plasmid with KRAS were observed to campare the expression of exogenous genes between the new medium with ordinary medium. Firstly,the optimal concentration of RGD was 10 ng/mL. Compared with the normal medium,the cultured cells with RGD had better morphology,adhesion and faster proliferation. In addition,both of the number and positive rate of clones formed in the new medium were significantly higher than that in the ordinary medium ( P exogenous gene GFP in the new medium was significantly higher than that in normal medium ( P exogenous gene KRAS of the new medium was also significantly higher than that in normal medium. The new culture medium has highlighted advantages in cell growth,cell fusion and expression of exogenous genes. RGD peptide has widely prospect and potential value in the cell culture. Copyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).

  4. Gene expression changes as markers of early lapatinib response in a panel of breast cancer cell lines

    LENUS (Irish Health Repository)

    O’Neill, Fiona

    2012-06-18

    AbstractBackgroundLapatinib, a tyrosine kinase inhibitor of HER2 and EGFR and is approved, in combination with capecitabine, for the treatment of trastuzumab-refractory metastatic breast cancer. In order to establish a possible gene expression response to lapatinib, a panel of breast cancer cell lines with varying sensitivity to lapatinib were analysed using a combination of microarray and qPCR profiling.MethodsCo-inertia analysis (CIA), a data integration technique, was used to identify transcription factors associated with the lapatinib response on a previously published dataset of 96 microarrays. RNA was extracted from BT474, SKBR3, EFM192A, HCC1954, MDAMB453 and MDAMB231 breast cancer cell lines displaying a range of lapatinib sensitivities and HER2 expression treated with 1 μM of lapatinib for 12 hours and quantified using Taqman RT-PCR. A fold change ≥ ± 2 was considered significant.ResultsA list of 421 differentially-expressed genes and 8 transcription factors (TFs) whose potential regulatory impact was inferred in silico, were identified as associated with lapatinib response. From this group, a panel of 27 genes (including the 8 TFs) were selected for qPCR validation. 5 genes were determined to be significantly differentially expressed following the 12 hr treatment of 1 μM lapatinib across all six cell lines. Furthermore, the expression of 4 of these genes (RB1CC1, FOXO3A, NR3C1 and ERBB3) was directly correlated with the degree of sensitivity of the cell line to lapatinib and their expression was observed to “switch” from up-regulated to down-regulated when the cell lines were arranged in a lapatinib-sensitive to insensitive order. These included the novel lapatinib response-associated genes RB1CC1 and NR3C1. Additionally, Cyclin D1 (CCND1), a common regulator of the other four proteins, was also demonstrated to observe a proportional response to lapatinib exposure.ConclusionsA panel of 5 genes were determined to be differentially

  5. Aberrant over-expression of a forkhead family member, FOXO1A, in a brain tumor cell line

    International Nuclear Information System (INIS)

    Dallas, Peter B; Egli, Simone; Terry, Philippa A; Kees, Ursula R

    2007-01-01

    The mammalian FOXO (forkhead box, O subclass) proteins are a family of pleiotropic transcription factors involved in the regulation of a broad range of cellular processes critical for survival. Despite the essential and diverse roles of the FOXO family members in human cells and their involvement in tumor pathogenesis, the regulation of FOXO expression remains poorly understood. We have addressed the mechanisms underlying the high level of expression of the FOXO1A gene in a cell line, PER-453, derived from a primitive neuroectodermal tumor of the central nervous system (CNS-PNET). The status of the FOXO1A locus in the PER-453 CNS-PNET cell line was investigated by Southern blotting and DNA sequence analysis of the proximal promoter, 5'-UTR, open reading frame and 3'-UTR. FOXO1A expression was assessed by conventional and quantitative RT-PCR, Northern and Western blotting. Quantitative real-time RT-PCR (qRT-PCR) data indicated that after normalization to ACTB mRNA levels, canonical FOXO1A mRNA expression in the PER-453 cell line was 124-fold higher than the average level of five other CNS-PNET cell lines tested, 24-fold higher than the level in whole fetal brain, and 3.5-fold higher than the level in fetal brain germinal matrix cells. No mutations within the FOXO1A open reading frame or gross rearrangements of the FOXO1A locus were detected. However, a single nucleotide change within the proximal promoter and several nucleotide changes within the 3'-UTR were identified. In addition, two novel FOXO1A transcripts were isolated that differ from the canonical transcript by alternative splicing within the 3'-UTR. The CNS-PNET cell line, PER-453, expresses FOXO1A at very high levels relative to most normal and cancer cells from a broad range of tissues. The FOXO1A open reading frame is wild type in the PER-453 cell line and the abnormally high FOXO1A mRNA expression is not due to mutations affecting the 5'-UTR or proximal promoter. Over expression

  6. R/L, a double reporter mouse line that expresses luciferase gene upon Cre-mediated excision, followed by inactivation of mRFP expression.

    Science.gov (United States)

    Jia, Junshuang; Lin, Xiaolin; Lin, Xia; Lin, Taoyan; Chen, Bangzhu; Hao, Weichao; Cheng, Yushuang; Liu, Yu; Dian, Meijuan; Yao, Kaitai; Xiao, Dong; Gu, Weiwang

    2016-10-01

    The Cre/loxP system has become an important tool for the conditional gene knockout and conditional gene expression in genetically engineered mice. The applications of this system depend on transgenic reporter mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. To develop a sensitive assay for monitoring Cre-mediated DNA excisions in mice, we generated Cre-mediated excision reporter mice, designated R/L mice (R/L: mRFP(monomeric red fluorescent protein)/luciferase), express mRFP throughout embryonic development and adult stages, while Cre-mediated excision deletes a loxP-flanked mRFP reporter gene and STOP sequence, thereby activating the expression of the second reporter gene luciferase, as assayed by in vivo and ex vivo bioluminescence imaging. After germ line deletion of the floxed mRFP and STOP sequence in R/L mice by EIIa-Cre mice, the resulting luciferase transgenic mice in which the loxP-mRFP-STOP-loxP cassette is excised from all cells express luciferase in all tissues and organs examined. The expression of luciferase transgene was activated in liver of RL/Alb-Cre double transgenic mice and in brain of RL/Nestin-Cre double transgenic mice when R/L reporter mice were mated with Alb-Cre mice and Nestin-Cre mice, respectively. Our findings reveal that the double reporter R/L mouse line is able to indicate the occurrence of Cre-mediated excision from early embryonic to adult lineages. Taken together, these findings demonstrate that the R/L mice serve as a sensitive reporter for Cre-mediated DNA excision both in living animals and in organs, tissues, and cells following necropsy.

  7. Expression and migratory analysis of 5 human uveal melanoma cell lines for CXCL12, CXCL8, CXCL1, and HGF

    Directory of Open Access Journals (Sweden)

    Di Cesare Sebastian

    2007-01-01

    Full Text Available Abstract Background The aim of this study was to characterize the presence and roles of CXCL12, CXCL8, CXCL1, and HGF in five human uveal melanoma cell lines, using different methods, in order to ascertain their significance in this disease. Methods Five human uveal melanoma cell lines (92.1, SP6.5, MKT-BR, OCM-1, and UW-1 of known proliferative, invasive, and metastatic potential were used in this experiment. A migration assay was used in order to assess the responsiveness of each cell line towards the four chosen chemotactic factors. Immunohistochemistry was then performed for all five cell lines (cytospins using antibodies directed toward CXCL1, CXCL8 and their receptors CXCR2 and CXCR1 respectively. Quantitative real-time PCR was then performed on all five cell lines in order to establish the presence of these four chemotactic factors. Results All five human uveal melanoma cell lines migrated towards the four chosen chemotactic factors at a level greater than that of the negative control. Chemokines CXCL1 and CXCL8 resulted in the greatest number of migrating cells in all five of our cell lines. Immunohistochemistry confirmed the expression of CXCL1, CXCL8, and their receptors CXCR2 and CXCR1 in all five of the cell lines. Quantitative real-time PCR results established expression of CXCL8, CXCL1, and HGF in all 5 cell lines tested. CXCL1 and CXCL8 are highly expressed in SP6.5 and UW-1. None of the five cell lines expressed any detectable levels of CXCL12. Conclusion The migratory ability of the 5 human uveal melanoma cell lines was positively influenced by the four chemotactic factors tested, namely CXCL12, CXCL8, CXCL1, and HGF. Self-expression of chemotactic factors CXCL8, CXCL1, and HGF may indicate an autocrine system, which perhaps contributes to the cells' metastatic ability in vivo.

  8. Combination of the Endogenous lhcsr1 Promoter and Codon Usage Optimization Boosts Protein Expression in the Moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Manuel Hiss

    2017-10-01

    Full Text Available The moss Physcomitrella patens is used both as an evo-devo model and biotechnological production system for metabolites and pharmaceuticals. Strong in vivo expression of genes of interest is important for production of recombinant proteins, e.g., selectable markers, fluorescent proteins, or enzymes. In this regard, the choice of the promoter sequence as well as codon usage optimization are two important inside factors to consider in order to obtain optimum protein accumulation level. To reliably quantify fluorescence, we transfected protoplasts with promoter:GFP fusion constructs and measured fluorescence intensity of living protoplasts in a plate reader system. We used the red fluorescent protein mCherry under 2x 35S promoter control as second reporter to normalize for different transfection efficiencies. We derived a novel endogenous promoter and compared deletion variants with exogenous promoters. We used different codon-adapted green fluorescent protein (GFP genes to evaluate the influence of promoter choice and codon optimization on protein accumulation in P. patens, and show that the promoter of the gene of P. patens chlorophyll a/b binding protein lhcsr1 drives expression of GFP in protoplasts significantly (more than twofold better than the commonly used 2x 35S promoter or the rice actin1 promoter. We identified a shortened 677 bp version of the lhcsr1 promoter that retains full activity in protoplasts. The codon optimized GFP yields significantly (more than twofold stronger fluorescence signals and thus demonstrates that adjusting codon usage in P. patens can increase expression strength. In combination, new promotor and codon optimized GFP conveyed sixfold increased fluorescence signal.

  9. Immunophenotyping of Waldenstroms macroglobulinemia cell lines reveals distinct patterns of surface antigen expression: potential biological and therapeutic implications.

    Directory of Open Access Journals (Sweden)

    Aneel Paulus

    Full Text Available Waldenströms macroglobulinemia (WM is a subtype of Non-Hodgkin's lymphoma in which the tumor cell population is markedly heterogeneous, consisting of immunoglobulin-M secreting B-lymphocytes, plasmacytoid lymphocytes and plasma cells. Due to rarity of disease and scarcity of reliable preclinical models, many facets of WM molecular and phenotypic architecture remain incompletely understood. Currently, there are 3 human WM cell lines that are routinely used in experimental studies, namely, BCWM.1, MWCL-1 and RPCI-WM1. During establishment of RPCI-WM1, we observed loss of the CD19 and CD20 antigens, which are typically present on WM cells. Intrigued by this observation and in an effort to better define the immunophenotypic makeup of this cell line, we conducted a more comprehensive analysis for the presence or absence of other cell surface antigens that are present on the RPCI-WM1 model, as well as those on the two other WM cell lines, BCWM.1 and MWCL-1. We examined expression of 65 extracellular and 4 intracellular antigens, comprising B-cell, plasma cell, T-cell, NK-cell, myeloid and hematopoietic stem cell surface markers by flow cytometry analysis. RPCI-WM1 cells demonstrated decreased expression of CD19, CD20, and CD23 with enhanced expression of CD28, CD38 and CD184, antigens that were differentially expressed on BCWM.1 and MWCL-1 cells. Due to increased expression of CD184/CXCR4 and CD38, RPCI-WM1 represents a valuable model in which to study the effects anti-CXCR4 or anti-CD38 targeted therapies that are actively being developed for treatment of hematologic cancers. Overall, differences in surface antigen expression across the 3 cell lines may reflect the tumor clone population predominant in the index patients, from whom the cell lines were developed. Our analysis defines the utility of the most commonly employed WM cell lines as based on their immunophenotype profiles, highlighting unique differences that can be further studied for

  10. Biologic effect of exogenous wild p53 combined with irradiation on human melanoma cell lines with different p53 status

    International Nuclear Information System (INIS)

    Min Fengling; Zhang Hong; Li Wenjian; Liu Bing; Zhou Qingming; Duan Xin; Gao Qingxiang

    2007-01-01

    Objective: To investigate the effect of low dose irradiation on gene transfer efficiency and the effect of adenoviral-mediated exogenous P53 overexpression on apoptosis and radiosensitivity of radioresistant human melanoma cell lines A375(wild type p53)and WM983a(mutant type p53). Methods: Control vector, a replication deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein (AdCMV-GFP), was used to transfect A375 cells and WM983a cells preirradiated with or without 1 Gy X-ray. The transduction efficiency of GFP gene was determined with fluorescence microscope directly. These two types of cells irradiated by 1 Gy X-ray were transfected with a replication deficient recombinant adenoviral vector carrying human wild p53 (AdCMV-p53), and mRNA level was detected by RT-PCR. The cell cycle delay and the expression of exogenous P53 were detected using flow cytometry (FCM) at different times after transfection. Tunel technique was used to detect cell apoptosis. The radiosensivity of A375 and WM983a cells after p53 transduction was analyzed by colony formation. Results: It is found that 1 Gy irradiation increased the gene transfection efficiency of A375 and WM983a cells. The expression of exogenous P53 was found to range from 60% to 80% among transfected cells during the first three days after transduction and then declined continuously down to the control level on day 10. G 1 cell cycle arrest was also observed after p53 gene transduction. WM983a cells transfected with p53 showed higher sensitivity to X-ray-induced cell killing than A375 cells. Conclusions: It is indicated that low dose of ionizing radiation can improve gene transfection efficiency of A375 and WM983a cells mediated by adenovirus vector. Althrough the overexpresion of exogenous p53 may not inhibit cell growth and induce apoptosis of melanoma cell line A375 and WM983a irt vitro, the two cell lines are much more sensitive to cell death induced by irradiation. It is

  11. Early events associated with infection of Epstein-Barr virus infection of primary B-cells.

    Directory of Open Access Journals (Sweden)

    Sabyasachi Halder

    2009-09-01

    Full Text Available Epstein Barr virus (EBV is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology was used to introduce an expression cassette of green fluorescent protein (GFP by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6-7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6-12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection.

  12. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system.

    Directory of Open Access Journals (Sweden)

    Krishna Das

    Full Text Available In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY, were transfected with an expression plasmid encoding a β2m-specific single guide (sgRNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO clones did not give rise to tumors in syngeneic mice (C57BL/6N, unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor.

  13. Manipulation of gene expression by infrared laser heat shock and its application to the study of tracheal development in Drosophila.

    Science.gov (United States)

    Miao, Guangxia; Hayashi, Shigeo

    2015-03-01

    Induction of gene expression in a specific cell and a defined time window is desirable to investigate gene function at the cellular level during morphogenesis. To achieve this, we attempted to introduce the infrared laser-evoked gene operator system (IR-LEGO, Kamei et al., 2009) in the Drosophila embryo. In this technique, infrared laser light illumination induces genes to be expressed under the control of heat shock promoters at the single cell level. We applied IR-LEGO to a transgenic fly stock, HS-eGFP, in which the enhanced green fluorescent protein (eGFP) gene is placed under the control of heat shock protein 70 promoter, and showed that eGFP expression can be induced in single cells within 1-2 hr after IR illumination. Furthermore, induction of HS-Branchless transgene encoding the Drosophila fibroblast growth factor (FGF) effectively altered the migration and branching patterns of the tracheal system. Our results indicated that IR-LEGO is a promising choice for the timely control of gene expression in a small group of cells in the Drosophila embryo. By using IR-LEGO, we further demonstrated that the tracheal terminal branching program is sensitive to localized expression of exogenous FGF. © 2014 Wiley Periodicals, Inc.

  14. Sequence and expression pattern of the germ line marker vasa in honey bees and stingless bees

    Science.gov (United States)

    2009-01-01

    Queens and workers of social insects differ in the rates of egg laying. Using genomic information we determined the sequence of vasa, a highly conserved gene specific to the germ line of metazoans, for the honey bee and four stingless bees. The vasa sequence of social bees differed from that of other insects in two motifs. By RT-PCR we confirmed the germ line specificity of Amvasa expression in honey bees. In situ hybridization on ovarioles showed that Amvasa is expressed throughout the germarium, except for the transition zone beneath the terminal filament. A diffuse vasa signal was also seen in terminal filaments suggesting the presence of germ line cells. Oocytes showed elevated levels of Amvasa transcripts in the lower germarium and after follicles became segregated. In previtellogenic follicles, Amvasa transcription was detected in the trophocytes, which appear to supply its mRNA to the growing oocyte. A similar picture was obtained for ovarioles of the stingless bee Melipona quadrifasciata, except that Amvasa expression was higher in the oocytes of previtellogenic follicles. The social bees differ in this respect from Drosophila, the model system for insect oogenesis, suggesting that changes in the sequence and expression pattern of vasa may have occurred during social evolution. PMID:21637523

  15. Sequence and expression pattern of the germ line marker vasa in honey bees and stingless bees

    Directory of Open Access Journals (Sweden)

    Érica Donato Tanaka

    2009-01-01

    Full Text Available Queens and workers of social insects differ in the rates of egg laying. Using genomic information we determined the sequence of vasa, a highly conserved gene specific to the germ line of metazoans, for the honey bee and four stingless bees. The vasa sequence of social bees differed from that of other insects in two motifs. By RT-PCR we confirmed the germ line specificity of Amvasa expression in honey bees. In situ hybridization on ovarioles showed that Amvasa is expressed throughout the germarium, except for the transition zone beneath the terminal filament. A diffuse vasa signal was also seen in terminal filaments suggesting the presence of germ line cells. Oocytes showed elevated levels of Amvasa transcripts in the lower germarium and after follicles became segregated. In previtellogenic follicles, Amvasa transcription was detected in the trophocytes, which appear to supply its mRNA to the growing oocyte. A similar picture was obtained for ovarioles of the stingless bee Melipona quadrifasciata, except that Amvasa expression was higher in the oocytes of previtellogenic follicles. The social bees differ in this respect from Drosophila, the model system for insect oogenesis, suggesting that changes in the sequence and expression pattern of vasa may have occurred during social evolution.

  16. Drug transporter gene expression in human colorectal tissue and cell lines: modulation with antiretrovirals for microbicide optimization.

    Science.gov (United States)

    Mukhopadhya, Indrani; Murray, Graeme I; Berry, Susan; Thomson, John; Frank, Bruce; Gwozdz, Garry; Ekeruche-Makinde, Julia; Shattock, Robin; Kelly, Charles; Iannelli, Francesco; Pozzi, Gianni; El-Omar, Emad M; Hold, Georgina L; Hijazi, Karolin

    2016-02-01

    The objectives of this study were to comprehensively assess mRNA expression of 84 drug transporters in human colorectal biopsies and six representative cell lines, and to investigate the alteration of drug transporter gene expression after exposure to three candidate microbicidal antiretroviral (ARV) drugs (tenofovir, darunavir and dapivirine) in the colorectal epithelium. The outcome of the objectives informs development of optimal ARV-based microbicidal formulations for prevention of HIV-1 infection. Drug transporter mRNA expression was quantified from colorectal biopsies and cell lines by quantitative real-time PCR. Relative mRNA expression was quantified in Caco-2 cells and colorectal explants after induction with ARVs. Data were analysed using Pearson's product moment correlation (r), hierarchical clustering and principal component analysis (PCA). Expression of 58 of the 84 transporters was documented in colorectal biopsies, with genes for CNT2, P-glycoprotein (P-gp) and MRP3 showing the highest expression. No difference was noted between individual subjects when analysed by age, gender or anatomical site (rectum or recto-sigmoid) (r = 0.95-0.99). High expression of P-gp and CNT2 proteins was confirmed by immunohistochemical staining. Similarity between colorectal tissue and cell-line drug transporter gene expression was variable (r = 0.64-0.84). PCA showed distinct clustering of human colorectal biopsy samples, with the Caco-2 cells defined as the best surrogate system. Induction of Caco-2 cell lines with ARV drugs suggests that darunavir-based microbicides incorporating tenofovir may result in drug-drug interactions likely to affect distribution of individual drugs to sub-epithelial target cells. These findings will help optimize complex formulations of rectal microbicides to realize their full potential as an effective approach for pre-exposure prophylaxis against HIV-1 infection. © The Author 2015. Published by Oxford University Press on behalf of the

  17. A comparative study on pathological features of transgenic rat lines expressing either three or four repeat misfolded tau.

    Science.gov (United States)

    Valachova, Bernadeta; Brezovakova, Veronika; Bugos, Ondrej; Jadhav, Santosh; Smolek, Tomas; Novak, Petr; Zilka, Norbert

    2018-08-01

    Human tauopathies represent a heterogeneous group of neurodegenerative disorders characterized by distinct clinical features, typical histopathological structures, and defined ratio(s) of three-repeat and four-repeat tau isoforms within pathological aggregates. How the optional microtubule-binding repeat of tau influences this differentiation of pathologies is understudied. We have previously generated and characterized transgenic rodent models expressing human truncated tau aa151-391 with either three (SHR24) or four microtubule-binding repeats (SHR72). Here, we compare the behavioral and neuropathological hallmarks of these two transgenic lines using a battery of tests for sensorimotor, cognitive, and neurological functions over the age range of 3.5-15 months. Progression of sensorimotor and neurological deficits was similar in both transgenic lines; however, the lifespan of transgenic line SHR72 expressing truncated four-repeat tau was markedly shorter than SHR24. Moreover, the expression of three or four-repeat tau induced distinct neurofibrillary pathology in these lines. Transgenic lines displayed different distribution of tau pathology and different type of neurofibrillary tangles. Our results suggest that three- and four-repeat isoforms of tau may display different modes of action in the diseased brain. © 2018 Wiley Periodicals, Inc.

  18. Cell line with endogenous EGFRvIII expression is a suitable model for research and drug development purposes.

    Science.gov (United States)

    Stec, Wojciech J; Rosiak, Kamila; Siejka, Paulina; Peciak, Joanna; Popeda, Marta; Banaszczyk, Mateusz; Pawlowska, Roza; Treda, Cezary; Hulas-Bigoszewska, Krystyna; Piaskowski, Sylwester; Stoczynska-Fidelus, Ewelina; Rieske, Piotr

    2016-05-31

    Glioblastoma is the most common and malignant brain tumor, characterized by high cellular heterogeneity. About 50% of glioblastomas are positive for EGFR amplification, half of which express accompanying EGFR mutation, encoding truncated and constitutively active receptor termed EGFRvIII. Currently, no cell models suitable for development of EGFRvIII-targeting drugs exist, while the available ones lack the intratumoral heterogeneity or extrachromosomal nature of EGFRvIII.The reports regarding the biology of EGFRvIII expressed in the stable cell lines are often contradictory in observations and conclusions. In the present study, we use DK-MG cell line carrying endogenous non-modified EGFRvIII amplicons and derive a sub-line that is near depleted of amplicons, whilst remaining identical on the chromosomal level. By direct comparison of the two lines, we demonstrate positive effects of EGFRvIII on cell invasiveness and populational growth as a result of elevated cell survival but not proliferation rate. Investigation of the PI3K/Akt indicated no differences between the lines, whilst NFκB pathway was over-active in the line strongly expressing EGFRvIII, finding further supported by the effects of NFκB pathway specific inhibitors. Taken together, these results confirm the important role of EGFRvIII in intrinsic and extrinsic regulation of tumor behavior. Moreover, the proposed models are stable, making them suitable for research purposes as well as drug development process utilizing high throughput approach.

  19. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis.

    Science.gov (United States)

    Wójcikowska, Barbara; Gaj, Małgorzata D

    2017-06-01

    Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.

  20. Pax6- and Six3-mediated induction of lens cell fate in mouse and human ES cells.

    Directory of Open Access Journals (Sweden)

    Raymond M Anchan

    Full Text Available Embryonic stem (ES cells provide a potentially useful in vitro model for the study of in vivo tissue differentiation. We used mouse and human ES cells to investigate whether the lens regulatory genes Pax6 and Six3 could induce lens cell fate in vitro. To help assess the onset of lens differentiation, we derived a new mES cell line (Pax6-GFP mES that expresses a GFP reporter under the control of the Pax6 P0 promoter and lens ectoderm enhancer. Pax6 or Six3 expression vectors were introduced into mES or hES cells by transfection or lentiviral infection and the differentiating ES cells analyzed for lens marker expression. Transfection of mES cells with Pax6 or Six3 but not with other genes induced the expression of lens cell markers and up-regulated GFP reporter expression in Pax6-GFP mES cells by 3 days post-transfection. By 7 days post-transfection, mES cell cultures exhibited a>10-fold increase over controls in the number of colonies expressing γA-crystallin, a lens fiber cell differentiation marker. RT-PCR and immunostaining revealed induction of additional lens epithelial or fiber cell differentiation markers including Foxe3, Prox1, α- and β-crystallins, and Tdrd7. Moreover, γA-crystallin- or Prox1-expressing lentoid bodies formed by 30 days in culture. In hES cells, Pax6 or Six3 lentiviral vectors also induced lens marker expression. mES cells that express lens markers reside close to but are distinct from the Pax6 or Six3 transduced cells, suggesting that the latter induce nearby undifferentiated ES cells to adopt a lens fate by non-cell autonomous mechanisms. In sum, we describe a novel mES cell GFP reporter line that is useful for monitoring induction of lens fate, and demonstrate that Pax6 or Six3 is sufficient to induce ES cells to adopt a lens fate, potentially via non-cell autonomous mechanisms. These findings should facilitate investigations of lens development.

  1. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  2. Zingiber officinale, Piper retrofractum and Combination Induced Apoptosis and p53 Expression in Myeloma and WiDr Cell Lines

    Directory of Open Access Journals (Sweden)

    HENY EKOWATI

    2012-09-01

    Full Text Available In previous studies, Zingiber officinale, Piper retrofractum, and the combination showed cytotoxic activity, induced apoptosis, and p53 expression of HeLa, T47D, and MCF-7 cell lines. This study was conducted to investigate the cytotoxic and apoptotic activity of Zingiber officinale (ZO, Piper retrofractum (PR, and the combination as well as their effect to p53 expression on Myeloma and WiDr cells. The powder of ZO, PR, and ZO + PR combination (1:1 were macerated with 96% ethanol for 3 x 24 hours. MTT cytotoxic assay was performed on Myeloma and WiDr cell lines. Apoptotic cells were stained with ethidium bromide and acridine orange. Imunohistochemical expression of p53 was examined on Myeloma and WiDr cell lines. Doxorubicin was used as positive control in all assays. Results showed that ZO, PR, and ZO + PR combination had cytotoxic activity on Myeloma cells with IC50 of 28, 36, and 55 mg/ml respectively and WiDr cell lines with IC50 of 74, 158, and 64 mg/ml respectively, induced apoptotic activity, and increased p53 expression on Myeloma and WiDr cells. These results suggest that ZO, PR, and their combination induced Myeloma and WiDr cells in apoptosis through p53 expression.

  3. Comparison of expression vectors in Lactobacillus reuteri strains.

    Science.gov (United States)

    Lizier, Michela; Sarra, Pier G; Cauda, Roberto; Lucchini, Franco

    2010-07-01

    The synthesis of heterologous proteins in lactobacilli is strongly influenced by the promoter selected for the expression. In addition, the activity of the promoters themselves may vary among different bacterial hosts. Three different promoters were investigated for their capability to drive enhanced green fluorescent protein (EGFP) expression in Lactococcus lactis spp. cremoris MG1363, in Lactobacillus reuteri DSM 20016(T) and in five L. reuteri strains isolated from chicken crops. The promoters of the Lactobacillus acidophilus surface layer protein gene (slp), L. acidophilus lactate dehydrogenase gene (ldhL) and enterococcal rRNA adenine N-6-methyltransferase gene (ermB) were fused to the coding sequence of EGFP and inserted into the backbone of the pTRKH3 shuttle vector (pTRKH3-slpGFP, pTRKH3-ldhGFP, pTRKH3-ermGFP). Besides conventional analytical methods, a new quick fluorimetric approach was set up to quantify the EGFP fluorescence in transformed clones using the Qubit() fluorometer. ermB proved to be the most effective promoter in L. reuteri isolates, producing 3.90 x 10(-7) g of fluorescent EGFP (mL OD(stationary culture))(-1). Under the same conditions, the ldhL promoter produced 2.66 x 10(-7) g of fluorescent EGFP (mL OD(stationary culture))(-1). Even though the slp promoter was efficient in L. lactis spp. cremoris MG1363, it was nearly inactive both in L. reuteri DSM 20016(T) and in L. reuteri isolates.

  4. Dissecting the salt dependence of the Tus-Ter protein-DNA complexes by high-throughput differential scanning fluorimetry of a GFP-tagged Tus.

    Science.gov (United States)

    Moreau, Morgane J J; Schaeffer, Patrick M

    2013-12-01

    The analysis of the salt dependence of protein-DNA complexes provides useful information about the non-specific electrostatic and sequence-specific parameters driving complex formation and stability. The differential scanning fluorimetry of GFP-tagged protein (DSF-GTP) assay has been geared with an automatic Tm peak recognition system and was applied for the high-throughput (HT) determination of salt-induced effects on the GFP-tagged DNA replication protein Tus in complex with various Ter and Ter-lock sequences. The system was designed to generate two-dimensional heat map profiles of Tus-GFP protein stability allowing for a comparative study of the effect of eight increasing salt concentrations on ten different Ter DNA species at once. The data obtained with the new HT DSF-GTP allowed precise dissection of the non-specific electrostatic and sequence-specific parameters driving Tus-Ter and Tus-Ter-lock complex formation and stability. The major factor increasing the thermal resistance of Tus-Ter-lock complexes in high-salt is the formation of the TT-lock, e.g. a 10-fold higher Kspe was obtained for Tus-GFP:Ter-lockB than for Tus-GFP:TerB. It is anticipated that the system can be easily adapted for the study of other protein-DNA complexes.

  5. Development of a transient expression assay for detecting environmental oestrogens in zebrafish and medaka embryos

    Directory of Open Access Journals (Sweden)

    Lee Okhyun

    2012-06-01

    Full Text Available Abstract Background Oestrogenic contaminants are widespread in the aquatic environment and have been shown to induce adverse effects in both wildlife (most notably in fish and humans, raising international concern. Available detecting and testing systems are limited in their capacity to elucidate oestrogen signalling pathways and physiological impacts. Here we developed a transient expression assay to investigate the effects of oestrogenic chemicals in fish early life stages and to identify target organs for oestrogenic effects. To enhance the response sensitivity to oestrogen, we adopted the use of multiple tandem oestrogen responsive elements (EREc38 in a Tol2 transposon mediated Gal4ff-UAS system. The plasmid constructed (pTol2_ERE-TATA-Gal4ff, contains three copies of oestrogen response elements (3ERE that on exposure to oestrogen induces expression of Gal4ff which this in turn binds Gal4-responsive Upstream Activated Sequence (UAS elements, driving the expression of a second reporter gene, EGFP (Enhanced Green Fluorescent Protein. Results The response of our construct to oestrogen exposure in zebrafish embryos was examined using a transient expression assay. The two plasmids were injected into 1–2 cell staged zebrafish embryos, and the embryos were exposed to various oestrogens including the natural steroid oestrogen 17ß-oestradiol (E2, the synthetic oestrogen 17α- ethinyloestradiol (EE2, and the relatively weak environmental oestrogen nonylphenol (NP, and GFP expression was examined in the subsequent embryos using fluorescent microscopy. There was no GFP expression detected in unexposed embryos, but specific and mosaic expression of GFP was detected in the liver, heart, somite muscle and some other tissue cells for exposures to steroid oestrogen treatments (EE2; 10 ng/L, E2; 100 ng/L, after 72 h exposures. For the NP exposures, GFP expression was observed at 10 μg NP/L after 72 h (100 μg NP/L was toxic to the fish. We

  6. An α-smooth muscle actin (acta2/αsma zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Thomas R Whitesell

    Full Text Available Mural cells of the vascular system include vascular smooth muscle cells (SMCs and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma, which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.

  7. The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Paraic A.; Lee, Genee Y.; Myers, Connie A.; Neve, RichardM.; Semeiks, Jeremy R.; Spellman, Paul T.; Lorenz, Katrin; Lee, Eva H.; Barcellos-Hoff, Mary Helen; Petersen, Ole W.; Gray, Joe W.; Bissell, MinaJ.

    2007-01-31

    3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.

  8. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  9. Differential Structural Development of Adult-Born Septal Hippocampal Granule Cells in the Thy1-GFP Mouse, Nuclear Size as a New Index of Maturation.

    Directory of Open Access Journals (Sweden)

    Tijana Radic

    Full Text Available Adult neurogenesis is frequently studied in the mouse hippocampus. We examined the morphological development of adult-born, immature granule cells in the suprapyramidal blade of the septal dentate gyrus over the period of 7-77 days after mitosis with BrdU-labeling in 6-weeks-old male Thy1-GFP mice. As Thy1-GFP expression was restricted to maturated granule cells, it was combined with doublecortin-immunolabeling of immature granule cells. We developed a novel classification system that is easily applicable and enables objective and direct categorization of newborn granule cells based on the degree of dendritic development in relation to the layer specificity of the dentate gyrus. The structural development of adult-generated granule cells was correlated with age, albeit with notable differences in the time course of development between individual cells. In addition, the size of the nucleus, immunolabeled with the granule cell specific marker Prospero-related homeobox 1 gene, was a stable indicator of the degree of a cell's structural maturation and could be used as a straightforward parameter of granule cell development. Therefore, further studies could employ our doublecortin-staging system and nuclear size measurement to perform investigations of morphological development in combination with functional studies of adult-born granule cells. Furthermore, the Thy1-GFP transgenic mouse model can be used as an additional investigation tool because the reporter gene labels granule cells that are 4 weeks or older, while very young cells could be visualized through the immature marker doublecortin. This will enable comparison studies regarding the structure and function between young immature and older matured granule cells.

  10. Transgenic nude mouse with green fluorescent protein expression-based human glioblastoma multiforme animal model with EGFR expression and invasiveness.

    Science.gov (United States)

    Tan, Guo-Wei; Lan, Fo-Lin; Gao, Jian-Guo; Jiang, Cai-Mou; Zhang, Yi; Huang, Xiao-Hong; Ma, Yue-Hong; Shao, He-Dui; He, Xue-Yang; Chen, Jin-Long; Long, Jian-Wu; Xiao, Hui-Sheng; Guo, Zhi-Tong; Diao, Yi

    2012-08-01

    Previously, we developed an orthotopic xenograft model of human glioblastoma multiforme (GBM) with high EGFR expression and invasiveness in Balb/c nu/nu nude mice. Now we also developed the same orthotopic xenograft model in transgenic nude mice with green fluorescent protein (GFP) expression. The present orthotopic xenografts labeled by phycoerythrin fluorescing red showed high EGFR expression profile, and invasive behavior under a bright green-red dual-color fluorescence background. A striking advantage in the present human GBM model is that the change of tumor growth can be observed visually instead of sacrificing animals in our further antitumor therapy studies.

  11. A Sclerostin super-producer cell line derived from the human cell line SaOS-2: a new tool for the study of the molecular mechanisms driving Sclerostin expression.

    Science.gov (United States)

    Pérez-Campo, Flor M; Sañudo, Carolina; Delgado-Calle, Jesús; Arozamena, Jana; Zarrabeitia, María T; Riancho, José A

    2014-08-01

    Sclerostin, the product of the SOST gene, is a key regulator of bone homeostasis. Sclerostin interferes with the Wnt signalling pathway and, therefore, has a negative effect on bone formation. Although the importance of sclerostin in bone homeostasis is well established, many aspects of its biology are still unknown. Due to its restricted pattern of expression, in vitro studies of SOST gene regulation are technically challenging. Furthermore, a more profound investigation of the molecular mechanism controlling sclerostin expression has been hampered by the lack of a good human in vitro model. Here, we describe two cell lines derived from the human osteosarcoma cell line SaOS-2 that produce elevated levels of sclerostin. Analysis of the super-producer cell lines showed that sclerostin levels were still reduced in response to parathyroid hormone treatment or in response to mechanical loading, indicating that these regulatory mechanisms were not affected in the presented cell lines. In addition, we did not find differences between the promoter or ECR5 sequences of our clones and the SaOS-2 parental line. However, the methylation of the proximal CpG island located at the SOST promoter was lower in the super-producer clones, in agreement with a higher level of SOST transcription. Although the underlying biological causes of the elevated levels of sclerostin production in this cell line are not yet clear, we believe that it could be an extremely useful tool to study the molecular mechanisms driving sclerostin expression in humans.

  12. Cytokines Expression and Nitric Oxide Production under Induced Infection to Typhimurium in Chicken Lines Divergently Selected for Cutaneous Hypersensitivity

    Directory of Open Access Journals (Sweden)

    Rani Singh

    2012-07-01

    Full Text Available In the present study, the impact of Salmonella Typhimurium on cell-mediated immunity (CMI was investigated in 5 week-old immuno divergent broiler lines selected for the high and low response to phytohemagglutinin-P. The immune response was assessed in peripheral-blood mononuclear cells (PBMCs induced with Salmonella Typhimurium at different time intervals (0 h, 0.5 h, 2 h, 4 h, 6 h, 12 h and 24 h. The differential mRNA expression patterns of IFN-γ, IL-2 and iNOS were evaluated by quantitative real time PCR. In-vitro production of nitric oxide (NO was also estimated in the culture supernatant and correlated with iNOS mRNA expression. Present study showed higher production of NO in the high cell-mediated line (HCMI as compared to the low cell-mediated line (LCMI upon stimulation with Salmonella Typhimurium. Correspondingly, higher mRNA expression of iNOS and IFN-γ were observed in high response birds (HCMI; but IL-2 was down regulated in this line compared to the low response birds (LCMI. Significantly (p<0.05 higher expression of iNOS, IFN-γ and higher production of NO in high line indicated that the selection for PHA-P response might be employed for increasing the immune competence against Salmonella Typhimurium in chicken flocks.

  13. Beating the odds: The poisson distribution of all input cells during limiting dilution grossly underestimates whether a cell line is clonally-derived or not.

    Science.gov (United States)

    Zhou, Yizhou; Shaw, David; Lam, Cynthia; Tsukuda, Joni; Yim, Mandy; Tang, Danming; Louie, Salina; Laird, Michael W; Snedecor, Brad; Misaghi, Shahram

    2017-09-23

    Establishing that a cell line was derived from a single cell progenitor and defined as clonally-derived for the production of clinical and commercial therapeutic protein drugs has been the subject of increased emphasis in cell line development (CLD). Several regulatory agencies have expressed that the prospective probability of clonality for CHO cell lines is assumed to follow the Poisson distribution based on the input cell count. The probability of obtaining monoclonal progenitors based on the Poisson distribution of all cells suggests that one round of limiting dilution may not be sufficient to assure the resulting cell lines are clonally-derived. We experimentally analyzed clonal derivatives originating from single cell cloning (SCC) via one round of limiting dilution, following our standard legacy cell line development practice. Two cell populations with stably integrated DNA spacers were mixed and subjected to SCC via limiting dilution. Cells were cultured in the presence of selection agent, screened, and ranked based on product titer. Post-SCC, the growing cell lines were screened by PCR analysis for the presence of identifying spacers. We observed that the percentage of nonclonal populations was below 9%, which is considerably lower than the determined probability based on the Poisson distribution of all cells. These results were further confirmed using fluorescence imaging of clonal derivatives originating from SCC via limiting dilution of mixed cell populations expressing GFP or RFP. Our results demonstrate that in the presence of selection agent, the Poisson distribution of all cells clearly underestimates the probability of obtaining clonally-derived cell lines. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017. © 2017 American Institute of Chemical Engineers.

  14. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    International Nuclear Information System (INIS)

    Chromik, Ansgar M; Weyhe, Dirk; Mittelkötter, Ulrich; Uhl, Waldemar; Hahn, Stephan A; Daigeler, Adrien; Flier, Annegret; Bulut, Daniel; May, Christina; Harati, Kamran; Roschinsky, Jan; Sülberg, Dominique

    2010-01-01

    The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis

  15. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Li Xiaoming; Song Tianbao

    1999-01-01

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  16. High yield expression and purification of equilibrative nucleoside transporter 7 (ENT7) from Arabidopsis thaliana.

    Science.gov (United States)

    Girke, Christopher; Arutyunova, Elena; Syed, Maria; Traub, Michaela; Möhlmann, Torsten; Lemieux, M Joanne

    2015-09-01

    Equilibrative nucleoside transporters (ENTs) facilitate the import of nucleosides and their analogs into cells in a bidirectional, non-concentrative manner. However, in contrast to their name, most characterized plant ENTs act in a concentrative manner. A direct characterization of any ENT protein has been hindered due to difficulties in overexpression and obtaining pure recombinant protein. The equilibrative nucleoside transporter 7 from Arabidopsis thaliana (AtENT7) was expressed in Xenopus laevis oocytes to assess mechanism of substrate uptake. Recombinant protein fused to enhanced green fluorescent protein (eGFP) was expressed in Pichia pastoris to characterize its oligomeric state by gel filtration and substrate binding by microscale thermophoresis (MST). AtENT7 expressed in X. laevis oocytes works as a classic equilibrative transporter. The expression of AtENT7-eGFP in the P. pastoris system yielded milligram amounts of pure protein that exists as stable homodimers. The concentration dependent binding of purine and pyrimidine nucleosides to the purified recombinant protein, assessed by MST, confirmed that AtENT7-eGFP is properly folded. For the first time the binding of nucleobases was observed for AtENT7. The availability of pure recombinant AtENT7 will permit detailed kinetic and structural studies of this unique member of the ENT family and, given the functional similarity to mammalian ENTs, will serve as a good model for understanding the structural basis of translocation mechanism for the family. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Expression of N-WASP is regulated by HiF1α through the hypoxia response element in the N-WASP promoter

    Directory of Open Access Journals (Sweden)

    Amrita Salvi

    2017-03-01

    Full Text Available Cancer cell migration and invasion involves temporal and spatial regulation of actin cytoskeleton reorganization, which is regulated by the WASP family of proteins such as N-WASP (Neural- Wiskott Aldrich Syndrome Protein. We have previously shown that expression of N-WASP was increased under hypoxic conditions. In order to characterize the regulation of N-WASP expression, we constructed an N-WASP promoter driven GFP reporter construct, N-WASPpro-GFP. Transfection of N-WASPpro-GFP construct and plasmid expressing HiF1α (Hypoxia Inducible factor 1α enhanced the expression of GFP suggesting that increased expression of N-WASP under hypoxic conditions is mediated by HiF1α. Sequence analysis of the N-WASP promoter revealed the presence of two hypoxia response elements (HREs characterized by the consensus sequence 5′-GCGTG-3′ at -132 bp(HRE1 and at -662 bp(HRE2 relative to transcription start site (TSS. Site-directed mutagenesis of HRE1(-132 but not HRE2(-662 abolished the HiF1α induced activation of N-WASP promoter. Similarly ChIP assay demonstrated that HiF1α bound to HRE1(-132 but not HRE2(-662 under hypoxic condition. MDA-MB-231 cells but not MDA-MB-231KD cells treated with hypoxia mimicking agent, DMOG showed enhanced gelatin degradation. Similarly MDA-MB-231KD(N-WASPpro-N-WASPR cells expressing N-WASPR under the transcriptional regulation of WT N-WASPpro but not MDA-MB-231KD(N-WASPproHRE1-N-WASPR cells expressing N-WASPR under the transcriptional regulation of N-WASPproHRE1 showed enhanced gelatin degradation when treated with DMOG. Thus indicating the importance of N-WASP in hypoxia induced invadopodia formation. Thus, our data demonstrates that hypoxia-induced activation of N-WASP expression is mediated by interaction of HiF1α with the HRE1(-132 and explains the role of N-WASP in hypoxia induced invadopodia formation.

  18. The UNC-4 homeobox protein represses mab-9 expression in DA motor neurons in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Jafari, Gholamali; Appleford, Peter J; Seago, Julian

    2011-01-01

    , an RNAi screen designed to identify upstream transcriptional regulators of mab-9 showed that silencing of unc-4 (encoding a paired-class homeodomain protein) increases mab-9::gfp expression in the nervous system, specifically in posterior DA motor neurons. Over-expression of unc-4 from a heat...

  19. Expression of P-gp, MRP, LRP, GST-π and TopoIIα and intrinsic resistance in human lung cancer cell lines.

    Science.gov (United States)

    Wang, Jiarui; Zhang, Jinhui; Zhang, Lichuan; Zhao, Long; Fan, Sufang; Yang, Zhonghai; Gao, Fei; Kong, Ying; Xiao, Gary Guishan; Wang, Qi

    2011-11-01

    This study aimed to determine the relationship between the endogenous levels of P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP), lung resistance-related protein (LRP), glutathione-s-transferase-π (GST‑π) and topoisomerase IIα (TopoIIα) and intrinsic drug resistance in four human lung cancer cell lines, SK-MES-1, SPCA-1, NCI-H-460 and NCI-H-446, of different histological types. The expression of P-gp, MRP, LRP, GST-π and TopoIIα was measured by immunofluorescence, Western blotting and RT-PCR. Drug resistance to cisplatin, doxorubicin and VP-16 was determined using MTT assays. The correlation between expression of the resistance-related proteins and their roles in the resistance to drugs in these cancer cell lines was analyzed. We found that the endogenous levels of P-gp, MRP, LRP, GST-π and TopoIIα in the four cell lines varied. The level of GST-π in the SK-MES-1 cells was the highest, whereas the level of P-gp in the SPCA-1 cells was the lowest. The chemoresistance to cisplatin, doxorubicin and VP-16 in the four cell lines was different. The SPCA-1 cell line was most resistance to cisplatin; SK-MES-1 was most resistance to VP-16; whereas SK-MES-1 was most sensitive to doxorubicin. There was a positive correlation between GST-π expression and resistance to cisplatin, between TopoIIα expression and resistance to VP-16; and a negative correlation was noted between TopoIIα expression and resistance to doxorubicin. In summary, the endogenous expression of P-gp, MRP, LRP, GST-π and TopoIIα was different in the four human lung cancer cell lines of different histological types, and this variance may be associated with the variation in chemosensitivity to cisplatin, doxorubicin and VP-16. Among the related proteins, GST-π may be useful for the prediction of the intrinsic resistance to cisplatin, whereas TopoIIα may be useful to predict resistance to doxorubicin and VP-16 in human lung cancer cell lines.

  20. Green fluorescent protein (GFP) leakage from microbial biosensors provides useful information for the evaluation of the scale-down effect

    DEFF Research Database (Denmark)

    Delvigne, Frank; Brognaux, Alison; Francis, Frédéric

    2011-01-01

    Mixing deficiencies can be potentially detected by the use of a dedicated whole cell microbial biosensor. In this work, a csiE promoter induced under carbon-limited conditions was involved in the elaboration of such biosensor. The cisE biosensor exhibited interesting response after up and down......-shift of the dilution rate in chemostat mode. Glucose limitation was accompanied by green fluorescent protein (GFP) leakage to the extracellular medium. In order to test the responsiveness of microbial biosensors to substrate fluctuations in large-scale, a scale-down reactor (SDR) experiment was performed. The glucose...... fluctuations were characterized at the single cell level and tend to decrease the induction of GFP. Simulations run on the basis of a stochastic hydrodynamic model have shown the variability and the frequencies at which biosensors are exposed to glucose gradient in the SDR. GFP leakage was observed to a great...

  1. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    Science.gov (United States)

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  2. Urotensin-II receptor is over-expressed in colon cancer cell lines and in colon carcinoma in humans.

    Science.gov (United States)

    Federico, Alessandro; Zappavigna, Silvia; Romano, Marco; Grieco, Paolo; Luce, Amalia; Marra, Monica; Gravina, Antonietta Gerarda; Stiuso, Paola; D'Armiento, Francesco Paolo; Vitale, Giovanni; Tuccillo, Concetta; Novellino, Ettore; Loguercio, Carmela; Caraglia, Michele

    2014-01-01

    Urotensin (U)-II receptor (UTR) has been previously reported to be over-expressed in a number of tumours. Whether UTR-related pathway plays a role in colon carcinogenesis is unknown. We evaluated UTR protein and mRNA expression in human epithelial colon cancer cell lines and in normal colon tissue, adenomatous polyps and colon cancer. U-II protein expression was assessed in cancer cell lines. Moreover, we evaluated the effects of U-II(4-11) (an UTR agonist), antagonists and knockdown of UTR protein expression through a specific shRNA, on proliferation, invasion and motility of human colon cancer cells. Cancer cell lines expressed U-II protein and UTR protein and mRNA. By immunohistochemistry, UTR was expressed in 5-30% of epithelial cells in 45 normal controls, in 30-48% in 21 adenomatous polyps and in 65-90% in 48 colon adenocarcinomas. UTR mRNA expression was increased by threefold in adenomatous polyps and eightfold in colon cancer, compared with normal colon. U-II(4-11) induced a 20-40% increase in cell growth while the blockade of the receptor with specific antagonists caused growth inhibition of 20-40%. Moreover, the knock down of UTR with a shRNA or the inhibition of UTR with the antagonist urantide induced an approximately 50% inhibition of both motility and invasion. UTR appears to be involved in the regulation of colon cancer cell invasion and motility. These data suggest that UTR-related pathway may play a role in colon carcinogenesis and that UTR may function as a target for therapeutic intervention in colon cancer. © 2013 Stichting European Society for Clinical Investigation Journal Foundation.

  3. Construction of a CD147 Lentiviral Expression Vector and Establishment of Its Stably Transfected A549 Cell Line

    Directory of Open Access Journals (Sweden)

    Shaoxing YANG

    2012-12-01

    Full Text Available Background and objective CD147, a type of transmembrane glycoprotein embedded on the surface of tumor cells, can promote tumor invasion and metastasis. This aim of this study is to construct a CD147 lentiviral expression vector, establish its stably transfected A549 cell line, and observe the effect of CD147 on MMP-9 proliferation as well as on the invasive ability of human lung adenocarcinoma cells. Methods Full-length CD147 gene was amplified by real-time polymerase chain reaction (RT-PCR, inserted into a pEGFP vector to construct pEGFP-CD147 and pEGFP vectors, and then transfected into 293FT cells to precede the lentivirus equipment package. Subsequently, we collected the lentivirus venom to infect the A549 cells and establish a stable, overexpressed cell line named A549-CD147. The mRNA expression of MMP-9 was examined by RT-PCR. The proliferation and invasive ability of the human lung cancer cells before and after transfection were examined by the CCK-8 and Transwell methods. Results A CD147 lentiviral expression vector (pEGFP-CD147 was successfully constructed by restrictive enzyme digestion and plasmid sequencing. RT-PCR and Western blot analyses revealed increased mRNA and protein expression of CD147 gene in cells transfected with pEGFP-CD147 compared with the control groups. Therefore, the A549-CD147 cell line was successfully established through the experiment. The mRNA expression of MMP-9 also significantly increased after the upregulation of CD147 expression. Meanwhile, CCK-8 and Transwell assays indicated that the proliferation and invasive ability significantly increased in the A549-CD147 cells. Conclusion A lentiviral CD147 expression vector and its A549 cell line (A549-CD14 were successfully constructed. CD147 overexpression upregulated the protein expression of MMP-9, and strengthened the proliferation and invasive ability of human lung adenocarcinoma cells.

  4. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.

    Science.gov (United States)

    O'Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O'Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard

    2017-11-07

    To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid

  5. Novel Detection Strategy To Rapidly Evaluate the Efficacy of Antichlamydial Agents.

    Science.gov (United States)

    Zhang, Yan; Xian, Yuqi; Gao, Leiqiong; Elaasar, Hiba; Wang, Yao; Tauhid, Lamiya; Hua, Ziyu; Shen, Li

    2017-02-01

    Chlamydia trachomatis infections present a major heath burden worldwide. The conventional method used to detect C. trachomatis is laborious. In the present study, a novel strategy was utilized to evaluate the impact of antimicrobial agents on the growth of C. trachomatis and its expression of ompA promoter-driven green fluorescence protein (GFP). We demonstrate that this GFP reporter system gives a robust fluorescent display of C. trachomatis growth in human cervical epithelial cells and, further, that GFP production directly correlates to changes in ompA expression following sufficient exposure to antimicrobials. Validation with azithromycin, the first-line macrolide drug used for the treatment of C. trachomatis infection, highlights the advantages of this method over the traditional method because of its simplicity and versatility. The results indicate both that ompA is highly responsive to antimicrobials targeting the transcription and translation of C. trachomatis and that there is a correlation between changing GFP levels and C. trachomatis growth. This proof-of-concept study also reveals that the ompA-GFP system can be easily adapted to rapidly assess antimicrobial effectiveness in a high-throughput format. Copyright © 2017 American Society for Microbiology.

  6. Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development.

    Science.gov (United States)

    Alkobtawi, Mansour; Ray, Heather; Barriga, Elias H; Moreno, Mauricio; Kerney, Ryan; Monsoro-Burq, Anne-Helene; Saint-Jeannet, Jean-Pierre; Mayor, Roberto

    2018-03-06

    The neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies. Unfortunately, no such transgenic animals currently exist for the amphibians Xenopus laevis and tropicalis, key model systems for studying neural crest development. Here we describe the generation and characterization of two transgenic Xenopus laevis lines, Pax3-GFP and Sox10-GFP, in which GFP is expressed in the pre-migratory and migratory neural crest, respectively. We show that Pax3-GFP could be a powerful tool to study neural crest induction, whereas Sox10-GFP could be used in the study of neural crest migration in living embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Induction of expression of two phenotypic markers of pulmonary type II cells in a cultured cell line

    International Nuclear Information System (INIS)

    Henderson, R.F.; Waide, J.J.; Scott, G.G.

    1994-01-01

    The functions of pulmonary type II cells, such as synthesis of pulmonary surfactant and metabolism of inhaled xenobiotics, can be studied in primary isolates of lung cells. However, isolated type II cells, when cultured, quickly lose the phenotypic expressions characteristics of type II cells, including surfactant lipid and protein synthesis and alkaline phosphatase (AP) activity. A cultured cell line that maintained expression of type II cell markers of differentiation would be advantageous for the study of such functions as surfactant synthesis and secretion. Such a cell line would allow generation of a large number of homogeneous cells for study. The purpose of the current study was to induce markers of differentiated type II cells in a cultured cell line to facilitate studies of factors that control surfactant synthesis and secretion

  8. α-smooth muscle actin is not a marker of fibrogenic cell activity in skeletal muscle fibrosis.

    Directory of Open Access Journals (Sweden)

    Wanming Zhao

    Full Text Available α-Smooth muscle actin (α-SMA is used as a marker for a subset of activated fibrogenic cells, myofibroblasts, which are regarded as important effector cells of tissue fibrogenesis. We address whether α-SMA-expressing myofibroblasts are detectable in fibrotic muscles of mdx5cv mice, a mouse model for Duchenne muscular dystrophy (DMD, and whether the α-SMA expression correlates with the fibrogenic function of intramuscular fibrogenic cells. α-SMA immunostaining signal was not detected in collagen I (GFP-expressing cells in fibrotic muscles of ColI-GFP/mdx5cv mice, but it was readily detected in smooth muscle cells lining intramuscular blood vessel walls. α-SMA expression was detected by quantitative RT-PCR and Western blot in fibrogenic cells sorted from diaphragm and quadriceps muscles of the ColI-GFP/mdx5cv mice. Consistent with the more severe fibrosis in the ColI-GFP/mdx5cv diaphragm, the fibrogenic cells in the diaphragm exerted a stronger fibrogenic function than the fibrogenic cells in the quadriceps as gauged by their extracellular matrix gene expression. However, both gene and protein expression of α-SMA was lower in the diaphragm fibrogenic cells than in the quadriceps fibrogenic cells in the ColI-GFP/mdx5cv mice. We conclude that myofibroblasts are present in fibrotic skeletal muscles, but their expression of α-SMA is not detectable by immunostaining. The level of α-SMA expression by intramuscular fibrogenic cells does not correlate positively with the level of collagen gene expression or the severity of skeletal muscle fibrosis in the mdx5cv mice. α-SMA is not a functional marker of fibrogenic cells in skeletal muscle fibrosis associated with muscular dystrophy.

  9. Time-Qualified Patterns of Variation of PPARγ, DNMT1, and DNMT3B Expression in Pancreatic Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Valerio Pazienza

    2012-01-01

    Full Text Available Carcinogenesis is related to the loss of homeostatic control of cellular processes regulated by transcriptional circuits and epigenetic mechanisms. Among these, the activities of peroxisome proliferator-activated receptors (PPARs and DNA methyltransferases (DNMTs are crucial and intertwined. PPARγ is a key regulator of cell fate, linking nutrient sensing to transcription processes, and its expression oscillates with circadian rhythmicity. Aim of our study was to assess the periodicity of PPARγ and DNMTs in pancreatic cancer (PC. We investigated the time-related patterns of PPARG, DNMT1, and DNMT3B expression monitoring their mRNA levels by qRT-PCR at different time points over a 28-hour span in BxPC-3, CFPAC-1, PANC-1, and MIAPaCa-2 PC cells after synchronization with serum shock. PPARG and DNMT1 expression in PANC-1 cells and PPARG expression in MIAPaCa-2 cells were characterized by a 24 h period oscillation, and a borderline significant rhythm was observed for the PPARG, DNMT1, and DNMT3B expression profiles in the other cell lines. The time-qualified profiles of gene expression showed different shapes and phase relationships in the PC cell lines examined. In conclusion, PPARG and DNMTs expression is characterized by different time-qualified patterns in cell lines derived from human PC, and this heterogeneity could influence cell phenotype and human disease behaviour.

  10. Expression of the transcription factor Evi-1 in human erythroleukemia cell lines and in leukemias.

    Science.gov (United States)

    Fontenay-Roupie, M; Bouscary, D; Melle, J; Viguié, F; Picard, F; Guesnu, M; Dreyfus, F

    1997-02-01

    The Evi-1 proto-oncogene is a zinc finger DNA binding protein. Although activation of the Evi-1 gene has been associated with chromosomal rearrangements of the 3q25-q28 region, ectopic expression of Evi-1 could also be observed in acute myelogenous leukemias and myelodysplastic syndromes without cytogenetic abnormalities of the 3q26 locus. In this study, human erythroleukemic cell lines were screened for the expression of Evi-1 mRNA by northern blotting. Evi-1 was expressed in all the erythroid cell lines, whether undifferentiated (K 562, HEL, LAMA 84) or exhibiting spontaneous terminal erythroid differentiation (KU 812, JK-1). Evi-1 mRNA levels were constant or elevated in hemoglobin-synthesizing KU 812 or K 562 cells in response to erythropoietin or hemin treatment, respectively. In human acute myeloblastic leukemias (AML), 11/30 expressed Evi-1 by RT-PCR. Among these cases, 4/6 erythroleukemias without abnormalities of the 3q25-q28 region were found positive. The presence of acidophilic erythroblasts (15-47% of bone marrow cells) accounted for the existence of a terminal erythroid differentiation in all Evi-1-positive AML M6, whereas one negative case was poorly differentiated and referred to as AML M6 variant. These results suggest that Evi-1 mRNA expression can coexist with erythroid differentiation.

  11. Exon expression in lymphoblastoid cell lines from subjects with schizophrenia before and after glucose deprivation

    Directory of Open Access Journals (Sweden)

    Martin Maureen V

    2009-09-01

    Full Text Available Abstract Background The purpose of this study was to examine the effects of glucose reduction stress on lymphoblastic cell line (LCL gene expression in subjects with schizophrenia compared to non-psychotic relatives. Methods LCLs were grown under two glucose conditions to measure the effects of glucose reduction stress on exon expression in subjects with schizophrenia compared to unaffected family member controls. A second aim of this project was to identify cis-regulated transcripts associated with diagnosis. Results There were a total of 122 transcripts with significant diagnosis by probeset interaction effects and 328 transcripts with glucose deprivation by probeset interaction probeset effects after corrections for multiple comparisons. There were 8 transcripts with expression significantly affected by the interaction between diagnosis and glucose deprivation and probeset after correction for multiple comparisons. The overall validation rate by qPCR of 13 diagnosis effect genes identified through microarray was 62%, and all genes tested by qPCR showed concordant up- or down-regulation by qPCR and microarray. We assessed brain gene expression of five genes found to be altered by diagnosis and glucose deprivation in LCLs and found a significant decrease in expression of one gene, glutaminase, in the dorsolateral prefrontal cortex (DLPFC. One SNP with previously identified regulation by a 3' UTR SNP was found to influence IRF5 expression in both brain and lymphocytes. The relationship between the 3' UTR rs10954213 genotype and IRF5 expression was significant in LCLs (p = 0.0001, DLPFC (p = 0.007, and anterior cingulate cortex (p = 0.002. Conclusion Experimental manipulation of cells lines from subjects with schizophrenia may be a useful approach to explore stress related gene expression alterations in schizophrenia and to identify SNP variants associated with gene expression.

  12. Knocking out Ornithine Decarboxylase Antizyme 1 (OAZ1 Improves Recombinant Protein Expression in the HEK293 Cell Line

    Directory of Open Access Journals (Sweden)

    Laura Abaandou

    2018-06-01

    Full Text Available Creating efficient cell lines is a priority for the biopharmaceutical industry, which produces biologicals for various uses. A recent approach to achieving this goal is the use of non-coding RNAs, microRNA (miRNA and small interfering RNA (siRNA, to identify key genes that can potentially improve production or growth. The ornithine decarboxylase antizyme 1 (OAZ1 gene, a negative regulator of polyamine biosynthesis, was identified in a genome-wide siRNA screen as a potential engineering target, because its knock down by siRNA increased recombinant protein expression from human embryonic kidney 293 (HEK293 cells by two-fold. To investigate this further, the OAZ1 gene in HEK293 cells was knocked out using CRISPR genome editing. The OAZ1 knockout cell lines displayed up to four-fold higher expression of both stably and transiently expressed proteins, with comparable growth and metabolic activity to the parental cell line; and an approximately three-fold increase in intracellular polyamine content. The results indicate that genetic inactivation of OAZ1 in HEK293 cells is an effective strategy to improve recombinant protein expression in HEK293 cells.

  13. A High-Throughput Oxidative Stress Biosensor Based on Escherichia coli roGFP2 Cells Immobilized in a k-Carrageenan Matrix

    Directory of Open Access Journals (Sweden)

    Lia Ooi

    2015-01-01

    Full Text Available Biosensors fabricated with whole-cell bacteria appear to be suitable for detecting bioavailability and toxicity effects of the chemical(s of concern, but they are usually reported to have drawbacks like long response times (ranging from hours to days, narrow dynamic range and instability during long term storage. Our aim is to fabricate a sensitive whole-cell oxidative stress biosensor which has improved properties that address the mentioned weaknesses. In this paper, we report a novel high-throughput whole-cell biosensor fabricated by immobilizing roGFP2 expressing Escherichia coli cells in a k-carrageenan matrix, for the detection of oxidative stress challenged by metalloid compounds. The E. coli roGFP2 oxidative stress biosensor shows high sensitivity towards arsenite and selenite, with wide linear range and low detection limit (arsenite: 1.0 × 10−3–1.0 × 101 mg·L−1, LOD: 2.0 × 10−4 mg·L−1; selenite: 1.0 × 10−5–1.0 × 102 mg·L−1, LOD: 5.8 × 10−6 mg·L−1, short response times (0–9 min, high stability and reproducibility. This research is expected to provide a new direction in performing high-throughput environmental toxicity screening with living bacterial cells which is capable of measuring the bioavailability and toxicity of environmental stressors in a friction of a second.

  14. The stealth episome: suppression of gene expression on the excised genomic island PPHGI-1 from Pseudomonas syringae pv. phaseolicola.

    Directory of Open Access Journals (Sweden)

    Scott A C Godfrey

    2011-03-01

    Full Text Available Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in the common bean, Phaseolus vulgaris. P. syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene avrPphB (syn. hopAR1, which resides on PPHGI-1, a 106 kb genomic island. Loss of PPHGI-1 from P. syringae pv. phaseolicola 1302A following exposure to the hypersensitive resistance response (HR leads to the evolution of strains with altered virulence. Here we have used fluorescent protein reporter systems to gain insight into the mobility of PPHGI-1. Confocal imaging of dual-labelled P. syringae pv. phaseolicola 1302A strain, F532 (dsRFP in chromosome and eGFP in PPHGI-1, revealed loss of PPHGI-1::eGFP encoded fluorescence during plant infection and when grown in vitro on extracted leaf apoplastic fluids. Fluorescence-activated cell sorting (FACS of fluorescent and non-fluorescent PPHGI-1::eGFP F532 populations showed that cells lost fluorescence not only when the GI was deleted, but also when it had excised and was present as a circular episome. In addition to reduced expression of eGFP, quantitative PCR on sub-populations separated by FACS showed that transcription of other genes on PPHGI-1 (avrPphB and xerC was also greatly reduced in F532 cells harbouring the excised PPHGI-1::eGFP episome. Our results show how virulence determinants located on mobile pathogenicity islands may be hidden from detection by host surveillance systems through the suppression of gene expression in the episomal state.

  15. SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron

    International Nuclear Information System (INIS)

    Li, K.; Cai, R.; Dai, B.B.; Zhang, X.Q.; Wang, H.J.; Ge, S.F.; Xu, W.R.; Lu, J.

    2007-01-01

    Special AT-rich binding protein 1 (SATB1), a cell type-specific nuclear matrix attachment region (MAR) DNA-binding protein, tethers to a specific DNA sequence and regulates gene expression through chromatin remodeling and HDAC (histone deacetylase complex) recruitment. In this study, a SATB1 eukaryotic expression plasmid was transfected into the human erythroleukemia K562 cell line and individual clones that stably over-expressed the SATB1 protein were isolated. Microarray analysis revealed that hundreds of genes were either up- or down-regulated in the SATB1 over-expressing K562 cell lines. One of these was the extra-cellular matrix glycoprotein, SPARC (human secreted protein acidic and rich in cysteine). siRNA knock-down of SATB1 also reduced SPARC expression, which was consistent with elevated SPARC levels in the SATB1 over-expressing cell line. Bioinformatics software Mat-inspector showed that a 17 bp DNA sequence in the third intron of SPARC possessed a high potential for SATB1 binding; a finding confirmed by Chromatin immunoprecipitation (ChIP) with anti-SATB1 antibody. Our results show for the first time that forced-expression of SATB1 in K562 cells triggers SPARC up-regulation by binding to a 17 bp DNA sequence in the third intron

  16. Rare codons effect on expression of recombinant gene cassette in Escherichia coli BL21(DE3

    Directory of Open Access Journals (Sweden)

    Aghil Esmaeili-Bandboni

    2017-11-01

    Full Text Available Objective: To demonstrate the sensitivity of expression of fusion genes to existence of a large number of rare codons in recombinant gene sequenced. Methods: Primers for amplification of cholera toxin B, Shiga toxin B and gfp genes were designed by Primer3 software and synthesized. All of these 3 genes were cloned. Then the genes were fused together by restriction sites and enzymatic method. Two linkers were used as a flexible bridge in connection of these genes. Results: Cloning and fusion of cholera toxin B, Shiga toxin B and gfp genes were done correctly. After that, expression of the recombinant gene construction was surveyed. Conclusions: According to what was seen, because of the accumulation of 12 rare codons of Shiga toxin B and 19 rare codons of cholera toxin B in this gene cassette, the expression of the recombinant gene cassette, in Escherichia coli BL21, failed.

  17. Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability

    Energy Technology Data Exchange (ETDEWEB)

    Huimin, Zhou [Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian 116027 (China); Li, Jia [Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian 116027 (China); Shujing, Wang [Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian 116027 (China); Hongmei, Wang [Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian 116027 (China); Department of Medical Microbiology and Parasitology, School of Medicine, Liaodong College, Dandong 118000 (China); Haiying, Chu [Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian 116027 (China); Yichuan, Hu [Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian 116027 (China); Jun, Cao [Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian 116027 (China); Jianing, Zhang [Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian 116027 (China)

    2006-06-23

    Caveolin-1 is the major component protein of caveolae and associated with a lot of cellular events such as endocytosis, cholesterol homeostasis, signal transduction, and tumorigenesis. The majority of results suggest that caveolin-1 might not only act as a tumor suppressor gene but also a promoting metastasis gene. In this study, the divergent expression and roles of caveolin-1 were investigated in mouse hepatocarcinoma cell lines Hca-F, Hca-P, and Hepa1-6, which have high, low, and no metastatic potential in the lymph nodes, as compared with normal mouse liver cell line IAR-20. The results showed that expression of caveolin-1 mRNA and protein along with the amount of caveolae number in Hca-F cells was higher than that in Hca-P cells, but was not detectable in Hepa1-6 cells. When caveolin-1 expression in Hca-F cells was down-regulated by RNAi approach, Hca-F cells proliferation rate in vitro declined and the expression of lymphangiogenic factor VEGFA in Hca-F decreased as well. Furthermore, in vivo implantation assay indicated that reduction of caveolin-1 expression in Hca-F prevented the lymphatic metastasis tumor burden of Hca-F cells in 615 mice. These results suggest that caveolin-1 facilities the lymphatic metastasis ability of mouse hepatocarcinoma cells via regulation tumor cell growth and VEGFA expression.

  18. Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability

    International Nuclear Information System (INIS)

    Zhou Huimin; Jia Li; Wang Shujing; Wang Hongmei; Chu Haiying; Hu Yichuan; Cao Jun; Zhang Jianing

    2006-01-01

    Caveolin-1 is the major component protein of caveolae and associated with a lot of cellular events such as endocytosis, cholesterol homeostasis, signal transduction, and tumorigenesis. The majority of results suggest that caveolin-1 might not only act as a tumor suppressor gene but also a promoting metastasis gene. In this study, the divergent expression and roles of caveolin-1 were investigated in mouse hepatocarcinoma cell lines Hca-F, Hca-P, and Hepa1-6, which have high, low, and no metastatic potential in the lymph nodes, as compared with normal mouse liver cell line IAR-20. The results showed that expression of caveolin-1 mRNA and protein along with the amount of caveolae number in Hca-F cells was higher than that in Hca-P cells, but was not detectable in Hepa1-6 cells. When caveolin-1 expression in Hca-F cells was down-regulated by RNAi approach, Hca-F cells proliferation rate in vitro declined and the expression of lymphangiogenic factor VEGFA in Hca-F decreased as well. Furthermore, in vivo implantation assay indicated that reduction of caveolin-1 expression in Hca-F prevented the lymphatic metastasis tumor burden of Hca-F cells in 615 mice. These results suggest that caveolin-1 facilities the lymphatic metastasis ability of mouse hepatocarcinoma cells via regulation tumor cell growth and VEGFA expression

  19. Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays

    Directory of Open Access Journals (Sweden)

    Crabb Brendan S

    2010-06-01

    Full Text Available Abstract Background Plasmodium falciparum in vitro growth inhibition assays are widely used to evaluate and quantify the functional activity of acquired and vaccine-induced antibodies and the anti-malarial activity of known drugs and novel compounds. However, several constraints have limited the use of these assays in large-scale population studies, vaccine trials and compound screening for drug discovery and development. Methods The D10 P. falciparum line was transfected to express green fluorescent protein (GFP. In vitro growth inhibition assays were performed over one or two cycles of P. falciparum asexual replication using inhibitory polyclonal antibodies raised in rabbits, an inhibitory monoclonal antibody, human serum samples, and anti-malarials. Parasitaemia was evaluated by microscopy and flow cytometry. Results Transfected parasites expressed GFP throughout all asexual stages and were clearly detectable by flow cytometry and fluorescence microscopy. Measurement of parasite growth inhibition was the same when determined by detection of GFP fluorescence or staining with ethidium bromide. There was no difference in the inhibitory activity of samples when tested against the transfected parasites compared to the parental line. The level of fluorescence of GFP-expressing parasites increased throughout the course of asexual development. Among ring-stages, GFP-fluorescent parasites were readily separated from uninfected erythrocytes by flow cytometry, whereas this was less clear using ethidium bromide staining. Inhibition by serum and antibody samples was consistently higher when tested over two cycles of growth compared to one, and when using a 1 in 10 sample dilution compared to 1 in 20, but there was no difference detected when using a different starting parasitaemia to set-up growth assays. Flow cytometry based measurements of parasitaemia proved more reproducible than microscopy counts. Conclusions Flow cytometry based assays using GFP

  20. Profile of differentially expressed genes mediated by the type III epidermal growth factor receptor mutation expressed in a small-cell lung cancer cell line

    DEFF Research Database (Denmark)

    Pedersen, M.W.; Andersen, Thomas Thykjær; Ørntoft, Torben Falck

    2001-01-01

    Previous studies have shown a correlation between expression of the EGF receptor type III mutation (EGFRvIII) and a more malignant phenotype of various cancers including: non-small-cell lung cancer, glioblastoma multiforme, prostate cancer and breast cancer. Thus, a detailed molecular genetic...... understanding of how the EGFRvIII contributes to the malignant phenotype is of major importance for future therapy. The GeneChip Hu6800Set developed by Affymetrix was used to identify changes in gene expression caused by the expression of EGFRvIII. The cell line selected for the study was an EGF receptor...... negative small-cell-lung cancer cell line, GLC3, stably transfected with the EGFRvIII gene in a Tet-On system. By comparison of mRNA levels in EGFRvIII-GLC3 with those of Tet-On-GLC3, it was found that the levels of mRNAs encoding several transcription factors (ATF-3, JunD, and c-Myb), cell adhesion...

  1. The commonly used eye-specific sev-GAL4 and GMR-GAL4 drivers ...

    Indian Academy of Sciences (India)

    Further, two different GMR-GAL4 lines also show some specific differences in their expression domains outside the eye .... cells in the brain and ventral ganglia (central nervous system, ... GFP; + female and w1118; Ddc-GAL4; + male flies. The.

  2. Adiponectin and Its Receptors Are Differentially Expressed in Human Tissues and Cell Lines of Distinct Origin

    Directory of Open Access Journals (Sweden)

    Simon Jasinski-Bergner

    2017-12-01

    Full Text Available Background: Adiponectin is secreted by adipose tissue and exerts high abundance and an anti-inflammatory potential. However, only little information exists about the expression profiles of adiponectin and its recently identified receptor CDH13 in non-tumorous human tissues and their association to clinical parameters. Methods: The expression levels of adiponectin and CDH13 were analyzed in heart, liver, kidney, spleen, skin, blood vessels, peripheral nerve and bone marrow of 21 human body donors, in 12 human cell lines, and in purified immune effector cell populations of healthy blood donors by immunohistochemistry, Western-blot, and semi-quantitative PCR. The obtained results were then correlated to clinical parameters, including age, sex and known diseases like cardiovascular and renal diseases. Results: Adiponectin expression in renal corpuscles was significantly higher in humans with known renal diseases. A coordinated expression of adiponectin and CDH13 was observed in the myocard. High levels of adiponectin could be detected in the bone marrow, in certain lymphoid tumor cell lines and in purified immune effector cell populations of healthy donors, in particular in cytotoxic T cells. Conclusion: For the first time, the expression profiles of adiponectin and CDH13 are analyzed in many human tissues in correlation to each other and to clinical parameters.

  3. Behavioral Evaluation of hMSC-GFP+ Transplantation in an Hemiparkinson Experimental Model in Wistar Rat

    Directory of Open Access Journals (Sweden)

    Jéssica Paola Alcázar Arzuza

    2017-05-01

    Full Text Available The effect of hMSCs-GFP+ transplantation was evaluated in an experimental model of Parkinson's disease (PD in 27 Wistar rats, or in three experimental groups: control (CON  n=7, injured (LES n=10 and transplanted (LES+T n=10. In order to evaluate the influence of the transplantation on the motor behavior, one month after the injury, rotation behavior induced by apomorphine, neurological test, transversal bar and SNpc cells positive to TH were developed. Using the Anova test, there was a decrease in the number of turns in transplanted animals (p=0.005 as well as in the neurological test (p=0.0004 and in the transverse bar that lead to this group in an intermediate position regarding LES and CON groups. There is a possible recovery of the transplantation-mediated nigroestriatal pathway of hMSC-GFP +.

  4. Expression of Slug in S100β-protein-positive cells of postnatal developing rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Yako, Hideji; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2016-02-01

    Among heterogeneous S100β-protein-positive (S100β-positive) cells, star-like cells with extended cytoplasmic processes, the so-called folliculo-stellate cells, envelop hormone-producing cells or interconnect homophilically in the anterior pituitary. S100β-positive cells are known, from immunohistochemistry, to emerge from postnatal day (P) 10 and to proliferate and migrate in the parenchyma of the anterior pituitary with growth. Recent establishment of S100β-GFP transgenic rats expressing specifically green fluorescent protein (GFP) under the control of the S100β-promoter has allowed us to observe living S100β-positive cells. In the present study, we first confirmed that living S100β-positive cells in tissue cultures of S100β-GFP rat pituitary at P5 were present prior to P10 by means of confocal laser microscopy and that they proliferated and extended their cytoplasmic processes. Second, we examined the expression of the Snail-family zinc-finger transcription factors, Snail and Slug, to investigate the mechanism behind the morphological changes and the proliferation of S100β-positive cells. Interestingly, we detected Slug expression in S100β-positive cells and its increase together with development in the anterior pituitary. To analyze downstream of SLUG in S100β-positive cells, we utilized specific small interfering RNA for Slug mRNAs and observed that the expression of matrix metalloprotease (Mmp) 9, Mmp14 and chemokine Cxcl12 was down-regulated and that morphological changes and proliferation were decreased. Thus, our findings suggest that S100β-positive cells express Slug and that its expression is important for subsequent migration and proliferation.

  5. Expression of cyclin A in A549 cell line after treatment with arsenic trioxide

    Directory of Open Access Journals (Sweden)

    Agnieszka Żuryń

    2015-12-01

    Full Text Available Background: Arsenic trioxide (ATO is an effective drug used in acute promyelocytic leukemia (AML. Many reports suggest that ATO can also be applied as an anticancer agent for solid tumors in the future. The influence of arsenic trioxide on the expression of different cell cycle regulators is poorly recognized. The purpose of the current study is to investigate how arsenic trioxide affects cyclin A expression and localization in the A549 cell line.Materials and methods: Morphological and ultrastructural changes in A549 cells were observed using light and transmission electron microscopes. Cyclin A localization was determined by immunofluorescence. Image-based cytometry was applied to evaluate the effect of arsenic trioxide on apoptosis and the cell cycle. Expression of cyclin A mRNA was quantified by real-time PCR.Results: After treatment with arsenic trioxide, increased numbers of cells with cytoplasmic localization of cyclin A were observed. The doses of 10 and 15 μM ATO slightly reduced expression of cyclin A mRNA. The apoptotic phenotype of cells was poorly represented, and the Tali imagebased cytometry analysis showed low percentages of apoptotic cells. The A549 population displayed an enriched fraction of cells in G0/G1 phase in the presence of 5μM ATO, whereas starting from the higher concentrations of the drug, i.e. 10 and 15 μM ATO, the G2/M fraction was on the increase.Discussion: Low expression of cyclin A in the A549 cell line may constitute a potential factor determining arsenic trioxide resistance. It could be hypothesized that the observed alterations in cyclin A expression/distribution may correlate well with changes in cell cycle regulation in our model, which in turn determines the outcome of the treatment.

  6. Fas ligand expression in human and mouse cancer cell lines; a caveat on over-reliance on mRNA data

    Directory of Open Access Journals (Sweden)

    Ryan Aideen E

    2006-02-01

    Full Text Available Abstract Background During carcinogenesis, tumors develop multiple mechanisms for evading the immune response, including upregulation of Fas ligand (FasL/CD95L expression. Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of anti-tumor immune effector cells. Recently this idea has been challenged by studies reporting that tumor cells of varying origin do not express FasL. In the present study, we aimed to comprehensively characterize FasL expression in tumors of both murine and human origin over a 72 hour time period. Methods RNA and protein was extracted from six human (SW620, HT29, SW480, KM12SM, HCT116, Jurkat and three mouse (CMT93, CT26, B16F10 cancer cell lines at regular time intervals over a 72 hour time period. FasL expression was detected at the mRNA level by RT-PCR, using intron spanning primers, and at the protein level by Western Blotting and immunofluorescence, using a polyclonal FasL- specific antibody. Results Expression of FasL mRNA and protein was observed in all cell lines analysed. However, expression of FasL mRNA varied dramatically over time, with cells negative for FasL mRNA at many time points. In contrast, 8 of the 9 cell lines constitutively expressed FasL protein. Thus, cells can abundantly express FasL protein at times when FasL mRNA is absent. Conclusion These findings demonstrate the importance of complete analysis of FasL expression by tumor cells in order to fully characterize its biological function and may help to resolve the discrepancies present in the literature regarding FasL expression and tumor immune privilege.

  7. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis.

    Directory of Open Access Journals (Sweden)

    Ling Li

    Full Text Available The effects of endocrine disrupting chemicals (EDCs on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio transgenic lines expressing the green fluorescent protein (GFP in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA, as well as the three drugs diclofenac, trichostatin A (TSA and valproic acid (VPA induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo.

  8. Novel localization of OCTN1, an organic cation/carnitine transporter, to mammalian mitochondria

    International Nuclear Information System (INIS)

    Lamhonwah, Anne-Marie; Tein, Ingrid

    2006-01-01

    Carnitine is a zwitterion essential for the β-oxidation of fatty acids. We report novel localization of the organic cation/carnitine transporter, OCTN1, to mitochondria. We made GFP- and RFP-human OCTN1 cDNA constructs and showed expression of hOCTN1 in several transfected mammalian cell lines. Immunostaining of GFP-hOCTN1 transfected cells with different intracellular markers and confocal fluorescent microscopy demonstrated mitochondrial expression of OCTN1. There was striking co-localization of an RFP-hOCTN1 fusion protein and a mitochondrial-GFP marker construct in transfected MEF-3T3 and no co-localization of GFP-hOCTN1 in transfected human skin fibroblasts with other intracellular markers. L-[ 3 H]Carnitine uptake in freshly isolated mitochondria of GFP-hOCTN1 transfected HepG2 demonstrated a K m of 422 μM and Western blot with an anti-GFP antibody identified the expected GFP-hOCTN1 fusion protein (90 kDa). We showed endogenous expression of native OCTN1 in HepG2 mitochondria with anti-GST-hOCTN1 antibody. Further, we definitively confirmed intact L-[ 3 H]carnitine uptake (K m 1324 μM), solely attributable to OCTN1, in isolated mitochondria of mutant human skin fibroblasts having <1% of carnitine acylcarnitine translocase activity (alternate mitochondrial carnitine transporter). This mitochondrial localization was confirmed by TEM of murine heart incubated with highly specific rabbit anti-GST-hOCTN1 antibody and immunogold labeled goat anti-rabbit antibody. This suggests an important yet different role for OCTN1 from other OCTN family members in intracellular carnitine homeostasis

  9. DNA microarrays of baculovirus genomes: differential expression of viral genes in two susceptible insect cell lines.

    Science.gov (United States)

    Yamagishi, J; Isobe, R; Takebuchi, T; Bando, H

    2003-03-01

    We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the best-studied members of the family Baculoviridae, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV). In this study, a viral DNA chip (Ac-BmNPV chip) was fabricated and used to characterize the viral gene expression profile for AcMNPV in different cell types. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of PCR-amplified viral DNA fragments on glass for ORFs in the NPV genome. Viral gene expression was monitored by hybridization to the DNA fragment microarrays with fluorescently labeled cDNAs prepared from infected Spodoptera frugiperda, Sf9 cells and Trichoplusia ni, TnHigh-Five cells, the latter a major producer of baculovirus and recombinant proteins. A comparison of expression profiles of known ORFs in AcMNPV elucidated six genes (ORF150, p10, pk2, and three late gene expression factor genes lef-3, p35 and lef- 6) the expression of each of which was regulated differently in the two cell lines. Most of these genes are known to be closely involved in the viral life cycle such as in DNA replication, late gene expression and the release of polyhedra from infected cells. These results imply that the differential expression of these viral genes accounts for the differences in viral replication between these two cell lines. Thus, these fabricated microarrays of NPV DNA which allow a rapid analysis of gene expression at the viral genome level should greatly speed the functional analysis of large genomes of NPV.

  10. Conformational co-dependence between Plasmodium berghei LCCL proteins promotes complex formation and stability.

    Science.gov (United States)

    Saeed, Sadia; Tremp, Annie Z; Dessens, Johannes T

    2012-10-01

    Malaria parasites express a conserved family of LCCL-lectin adhesive-like domain proteins (LAPs) that have essential functions in sporozoite transmission. In Plasmodium falciparum all six family members are expressed in gametocytes and form a multi-protein complex. Intriguingly, knockout of P. falciparum LCCL proteins adversely affects expression of other family members at protein, but not at mRNA level, a phenomenon termed co-dependent expression. Here, we investigate this in Plasmodium berghei by crossing a PbLAP1 null mutant parasite with a parasite line expressing GFP-tagged PbLAP3 that displays strong fluorescence in gametocytes. Selected and validated double mutants show normal synthesis and subcellular localization of PbLAP3::GFP. However, GFP-based fluorescence is dramatically reduced without PbLAP1 present, indicating that PbLAP1 and PbLAP3 interact. Moreover, absence of PbLAP1 markedly reduces the half-life of PbLAP3, consistent with a scenario of misfolding. These findings unveil a potential mechanism of conformational interdependence that facilitates assembly and stability of the functional LCCL protein complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Modulation of integrin-linked kinase (ILK expression in human oesophageal squamous cell carcinoma cell lines by the EGF and TGFβ1 growth factors

    Directory of Open Access Journals (Sweden)

    Veale Robin B

    2006-04-01

    Full Text Available Abstract Background Integrin-linked kinase (ILK is a ubiquitously expressed protein kinase that has emerged as one of the points of convergence between integrin- and growth factor-signalling pathways. Results In this study we identify the ILK isoform expressed in five human oesophageal squamous cell carcinoma cell lines of South African origin as ILK1, and demonstrate its cellular distribution. ILK expression, although similar in the majority of the cell lines, did show variation. Furthermore, the ILK expressed was shown to be catalytically functional. The effect of growth factors on ILK expression was examined. An increase in ILK expression, following EGF and TGFβ1 exposure, was a trend across all the five oesophageal carcinoma cell lines tested. Conclusion These results suggest that growth factor modulation of ILK expression relies on the internalisation/recycling of growth factor receptors and stimulation of the PI3K pathway, which may have implications with regards to cell adhesion and tumourigenesis.

  12. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression.

    Directory of Open Access Journals (Sweden)

    Byungwoo Ryu

    2007-07-01

    Full Text Available Gene expression profiling has revolutionized our ability to molecularly classify primary human tumors and significantly enhanced the development of novel tumor markers and therapies; however, progress in the diagnosis and treatment of melanoma over the past 3 decades has been limited, and there is currently no approved therapy that significantly extends lifespan in patients with advanced disease. Profiling studies of melanoma to date have been inconsistent due to the heterogeneous nature of this malignancy and the limited availability of informative tissue specimens from early stages of disease.In order to gain an improved understanding of the molecular basis of melanoma progression, we have compared gene expression profiles from a series of melanoma cell lines representing discrete stages of malignant progression that recapitulate critical characteristics of the primary lesions from which they were derived. Here we describe the unsupervised hierarchical clustering of profiling data from melanoma cell lines and melanocytes. This clustering identifies two distinctive molecular subclasses of melanoma segregating aggressive metastatic tumor cell lines from less-aggressive primary tumor cell lines. Further analysis of expression signatures associated with melanoma progression using functional annotations categorized these transcripts into three classes of genes: 1 Upregulation of activators of cell cycle progression, DNA replication and repair (CDCA2, NCAPH, NCAPG, NCAPG2, PBK, NUSAP1, BIRC5, ESCO2, HELLS, MELK, GINS1, GINS4, RAD54L, TYMS, and DHFR, 2 Loss of genes associated with cellular adhesion and melanocyte differentiation (CDH3, CDH1, c-KIT, PAX3, CITED1/MSG-1, TYR, MELANA, MC1R, and OCA2, 3 Upregulation of genes associated with resistance to apoptosis (BIRC5/survivin. While these broad classes of transcripts have previously been implicated in the progression of melanoma and other malignancies, the specific genes identified within each class

  13. Expression of blood group I and i active carbohydrate sequences on cultured human and animal cell lines assessed by radioimmunoassays with monoclonal cold agglutinins

    International Nuclear Information System (INIS)

    Childs, R.A.; Kapadia, A.; Feizi, T.

    1980-01-01

    Human monoclonal anti-I and anti-i, reactive with known carbohydrate sequences, have been used as reagents to quantitate (by radioimmunoassay) and visualize (by immunofluorescence) the expression of the various blood group I and i antigenic determinants in a variety of cultured cell lines commonly used in laboratory investigations. It has been shown that the antigens they recognize are widely distributed on the surface of human and animal cell lines, expressed in varying amounts in different cell lines and on individual cells within a given cell line. In two cell lines, a transformation-associated increase in the expression of I antigen was observed. Because of their precise specificity for defined carbohydrate chain domains, these autoantibodies have become valuable reagents in biological chemistry. (orig.) [de

  14. Effects of Smac gene over-expression on radiotherapeutic sensitivity of cervical cancer cell line HeLa

    International Nuclear Information System (INIS)

    Zheng Liduan; Wang Liang; Tong Qiangsong; Fei Shihong; Xiong Yufang; Wu Gang

    2005-01-01

    Objective: To study the effects of extrinsic Smac gene transfection and its over-expression on radiotherapeutic sensitivity of cervical cancer cells, in order to explore a novel strategy for ameliorating radiotherapy of cervical cancer. Methods: After Smac gene was transferred into cells of cervical cancer cell line HeLa, the subclone cells were obtained by persistent G 418 selection. Cellular Smac gene expression was determined by RT-PCR and Western blot. After treatment with X-ray irradiation, cellular growth activity in vitro was investigated by MTT colorimetry. Cellular apoptosis and its rate were determined by electron microscopy, Annexin V-FITC and propidium iodide staining flow cytometry. Cellular Caspase-3 protein expression and its activity were assayed by Western blot and colorimetry. Results: RT-PCR and Western blot demonstrated that Smac mRNA and protein levels of HeLa/Smac cells, the selected subclone cells of cervical cancer cell line, were significantly higher than those of HeLa cells (P<0.01). After treated with 8 Gy X-ray irradiation, growth activity of HeLa/Smac cells reduced by 10.19%(P<0.01), as compared with that of HeLa cells. Partial HeLa/Smac cancer cells presented characteristic morphological changes of apoptosis under electron microscope, with an apoptosis rate of 16.4%, which was significantly higher than that of HeLa cells(6.2%, P<0.01). Compared with HeLa cells, Caspase-3 expression level in HeLa/Smac was improved significantly (P<0.01), while its activity was 3.42 times as much as that of HeLa cells (P<0.01). Conclusion: Stable transfection of extrinsic Smac gene and its over-expression in cervical cancer cell line could significantly enhance cellular caspase-3 expression and activity, ameliorate apoptosis-inducing effects of radiation on cancer cells, which would be a novel strategy to improve radiotherapeutic effects for cervical cancer. (authors)

  15. Expression of inwardly rectifying potassium channels (GIRKs) and beta-adrenergic regulation of breast cancer cell lines

    International Nuclear Information System (INIS)

    Plummer, Howard K III; Yu, Qiang; Cakir, Yavuz; Schuller, Hildegard M

    2004-01-01

    Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. We wished to determine if this regulation exists in breast adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying potassium channel (GIRK1) has been shown in tissue samples from approximately 40% of primary human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic signaling. Breast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene expression were determined by both relative competitive and real time PCR. Potassium flux was determined by flow cytometry and cell signaling was determined by western blotting. Breast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed mRNA for the GIRK1 channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (1 μM) increased the GIRK1 mRNA levels and decreased beta 2 -adrenergic mRNA levels, while treatment for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol hemifumarate, led to increases in K + flux into MDA-MB-453 cells, and this increase was inhibited by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a high affinity agonist for beta-adrenergic receptors stimulated activation of Erk 1/2 in MDA-MB-453 cells. Our data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer

  16. PML expression in soft tissue sarcoma: prognostic and predictive value in alkylating agents/antracycline-based first line therapy.

    Science.gov (United States)

    Vincenzi, Bruno; Santini, Daniele; Schiavon, Gaia; Frezza, Anna Maria; Silletta, Marianna; Crucitti, Pierfilippo; Casali, Paolo; Dei Tos, Angelo P; Rossi, Sabrina; Rizzo, Sergio; Badalamenti, Giuseppe; Tomasino, Rosa Maria; Russo, Antonio; Butrynski, James E; Tonini, Giuseppe

    2012-04-01

    Soft tissue sarcomas are aggressive tumors representing alkylating agents/antracycline-based first line therapy. One hundred eleven patients affected by locally advanced and metastatic soft tissue sarcoma were selected. PML expression was evaluated by immunohistochemical analysis in pathological samples and in the corresponding normal tissue from each case. PML immunohistochemical results were correlated with prognosis and with radiological response to alkylating agents/antracycline-based first line therapy. PML expression was significantly reduced in synovial sarcomas (P < 0.0001), in myofibroblastic sarcomas (P < 0.0001), angiosarcomas (P < 0.0001), in leiomyosarcomas (P = 0.003), in mixoid liposarcomas (P < 0.0001), and in dedifferentiated liposarcomas (P < 0.0001). No significant difference was found for pleomorphic sarcoma [31.8 (95% CI: 16.7-41.0); P = 0.21]. and pleomorphic liposarcomas (P = 0.51). Loss of PML expression was found to be statistically correlated with TTP (P < 0.0001), median duration of response (P = 0.007), and OS (P = 0.02). No correlation was observed between PML expression and treatment efficacy. PML IHC expression is down-regulated in synovial sarcomas, myofibroblastic sarcomas, angiosarcomas, liposarcoma, and leiomyosarcomas and its expression correlated with prognosis. Copyright © 2011 Wiley Periodicals, Inc.

  17. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    Science.gov (United States)

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K

    1994-01-01

    was observed in two cell lines expressing only type III receptor and in TGF-beta-r negative cell lines. In two cell lines expressing all three receptor types, growth suppression was accompanied by morphological changes. To evaluate the possible involvement of the retinoblastoma protein (pRb) in mediating...

  19. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  20. Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media

    NARCIS (Netherlands)

    Veening, J. -W.; Smits, W. K.; Hamoen, L. W.; Kuipers, O. P.

    Aim: Understanding the basis for the heterogeneous (or bistable) expression patterns of competence development and sporulation in Bacillus subtilis. Methods and Results: Using flow cytometric analyses of various promoter-GFP fusions, we have determined the single-cell gene expression patterns of

  1. Basal HIF-1a expression levels are not predictive for radiosensitivity of human cancer cell lines

    International Nuclear Information System (INIS)

    Schilling, D.; Multhoff, G.; Helmholtz Center Munich, CCG - Innate Immunity in Tumor Biology, Munich; Bayer, C.; Emmerich, K.; Molls, M.; Vaupel, P.; Huber, R.M.

    2012-01-01

    High levels of hypoxia inducible factor (HIF)-1a in tumors are reported to be associated with tumor progression and resistance to therapy. To examine the impact of HIF-1a on radioresistance under normoxia, the sensitivity towards irradiation was measured in human tumor cell lines that differ significantly in their basal HIF-1a levels. HIF-1a levels were quantified in lysates of H1339, EPLC-272H, A549, SAS, XF354, FaDu, BHY, and CX- tumor cell lines by ELISA. Protein levels of HIF-1a, HIF-2a, carbonic anhydrase IX (CA IX), and GAPDH were assessed by Western blot analysis. Knock-down experiments were performed using HIF-1a siRNA. Clonogenic survival after irradiation was determined by the colony forming assay. According to their basal HIF-1a status, the tumor cell lines were divided into low (SAS, XF354, FaDu, A549, CX-), intermediate (EPLC-272H, BHY), and high (H1339) HIF-1a expressors. The functionality of the high basal HIF-1a expression in H1339 cells was proven by reduced CA IX expression after knocking-down HIF-1a. Linear regression analysis revealed no correlation between basal HIF-1a levels and the survival fraction at either 2 or 4 Gy in all tumor cell lines investigated. Our data suggest that basal HIF-1a levels in human tumor cell lines do not predict their radiosensitivity under normoxia. (orig.)

  2. A part toolbox to tune genetic expression in Bacillus subtilis

    Science.gov (United States)

    Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome

    2016-01-01

    Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis. We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159

  3. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  4. Green Fluorescent Protein (GFP) as a reporter gene for the plant pathogenic oomycete Phytophthora ramorum

    Science.gov (United States)

    Marko Riedel; Gautier Calmin; Lassaad Belbahri; Francois Lefort; Monika Gotz; Stefan Wagner; Sabine. Werres

    2009-01-01

    Transgenic Phytophthora ramorum strains that produce green fluorescent protein (GFP) constitutively were obtained after stable DNA integration using a polyethylene glycol and CaCl2-based transformation protocol. Green fluorescent protein production was studied in developing colonies and in different propagules of the pathogen...

  5. Different Expression and Localization of Phosphoinositide Specific Phospholipases C in Human Osteoblasts, Osteosarcoma Cell Lines, Ewing Sarcoma and Synovial Sarcoma

    Directory of Open Access Journals (Sweden)

    V.Vasco

    2017-06-01

    Full Text Available Background: Bone hardness and strength depends on mineralization, which involves a complex process in which calcium phosphate, produced by bone-forming cells, was shed around the fibrous matrix. This process is strictly regulated, and a number of signal transduction systems were interested in calcium metabolism, such as the phosphoinositide (PI pathway and related phospholipase C (PLC enzymes. Objectives: Our aim was to search for common patterns of expression in osteoblasts, as well as in ES and SS. Methods: We analysed the PLC enzymes in human osteoblasts and osteosarcoma cell lines MG-63 and SaOS-2. We compared the obtained results to the expression of PLCs in samples of patients affected with Ewing sarcoma (ES and synovial sarcoma (SS. Results: In osteoblasts, MG-63 cells and SaOS-2 significant differences were identified in the expression of PLC δ4 and PLC η subfamily isoforms. Differences were also identified regarding the expression of PLCs in ES and SS. Most ES and SS did not express PLCB1, which was expressed in most osteoblasts, MG-63 and SaOS-2 cells. Conversely, PLCB2, unexpressed in the cell lines, was expressed in some ES and SS. However, PLCH1 was expressed in SaOS-2 and inconstantly expressed in osteoblasts, while it was expressed in ES and unexpressed in SS. The most relevant difference observed in ES compared to SS regarded PLC ε and PLC η isoforms. Conclusion: MG-63 and SaOS-2 osteosarcoma cell lines might represent an inappropriate experimental model for studies about the analysis of signal transduction in osteoblasts

  6. Translation of the prion protein mRNA is robust in astrocytes but does not amplify during reactive astrocytosis in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Walker S Jackson

    Full Text Available Prion diseases induce neurodegeneration in specific brain areas for undetermined reasons. A thorough understanding of the localization of the disease-causing molecule, the prion protein (PrP, could inform on this issue but previous studies have generated conflicting conclusions. One of the more intriguing disagreements is whether PrP is synthesized by astrocytes. We developed a knock-in reporter mouse line in which the coding sequence of the PrP expressing gene (Prnp, was replaced with that for green fluorescent protein (GFP. Native GFP fluorescence intensity varied between and within brain regions. GFP was present in astrocytes but did not increase during reactive gliosis induced by scrapie prion infection. Therefore, reactive gliosis associated with prion diseases does not cause an acceleration of local PrP production. In addition to aiding in Prnp gene activity studies, this reporter mouse line will likely prove useful for analysis of chimeric animals produced by stem cell and tissue transplantation experiments.

  7. Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon.

    Science.gov (United States)

    Rhee, Sun-Ju; Seo, Minseok; Jang, Yoon-Jeong; Cho, Seoae; Lee, Gung Pyo

    2015-11-09

    Male sterility is an important mechanism for the production of hybrid seeds in watermelon. Although fruit development has been studied extensively in watermelon, there are no reports on gene expression in floral organs. In this study, RNA-sequencing (RNA-seq) was performed in two near-isogenic watermelon lines (genic male sterile [GMS] line, DAH3615-MS and male fertile line, DAH3615) to identify the differentially expressed genes (DEGs) related to male sterility. DEG analysis showed that 1259 genes were significantly associated with male sterility at a FDR P-value of watermelon. This analysis revealed essential genes responsible for stamen development, including pollen development and pollen tube elongation, and allowed their functional classification. These results provided new information on global mechanisms related to male sterility in watermelon.

  8. mRNA expression profile in DLD-1 and MOLT-4 cancer cell lines cultured under Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — DLD-1 and MOLT-4 cell lines were cultured in a Rotating cell culture system to simulate microgravity and mRNA expression profile was observed in comparison to Static...

  9. TRANSGENIC STRATEGY FOR IDENTIFYING SYNAPTIC CONNECTIONS IN MICE BY FLUORESCENCE COMPLEMENTATION (GRASP

    Directory of Open Access Journals (Sweden)

    Masahito eYamagata

    2012-02-01

    Full Text Available In the "GFP reconstitution across synaptic partners" (GRASP method, non-fluorescent fragments of GFP are expressed in two different neurons; the fragments self-assemble at synapses between the two to form a fluorophore. GRASP has proven useful for light microscopic identification of synapses in two invertebrate species, Caenorhabditis elegans and Drosophila melanogaster, but has not yet been applied to vertebrates. Here, we describe GRASP constructs that function in mammalian cells and implement a transgenic strategy in which a Cre-dependent gene switch leads to expression of the two fragments in mutually exclusive neuronal subsets in mice. Using a transgenic line that expresses Cre selectively in rod photoreceptors, we demonstrate labeling of synapses in the outer plexiform layer of the retina. Labeling is specific, in that synapses made by rods remain labeled for at least 6 months whereas nearby synapses made by intercalated cone photoreceptors on many of the same interneurons remain unlabeled. We also generated antisera that label reconstituted GFP but neither fragment in order to amplify the GRASP signal and thereby increase the sensitivity of the method.

  10. Recovery of human metapneumovirus from cDNA: optimization of growth in vitro and expression of additional genes

    International Nuclear Information System (INIS)

    Biacchesi, Stephane; Skiadopoulos, Mario H.; Tran, Kim C.; Murphy, Brian R.; Collins, Peter L.; Buchholz, Ursula J.

    2004-01-01

    Human metapneumovirus (HMPV) is a recently recognized causative agent of respiratory tract disease in individuals of all ages and especially young infants. HMPV remains poorly characterized and has been reported to replicate inefficiently in vitro. Complete consensus sequences were recently determined for two isolates representing the two proposed HMPV genetic subgroups (Biacchesi et al., Virology 315 (1) (2003) 1). We have developed a reverse genetic system to produce one of these isolates, CAN97-83, entirely from cDNA. We also recovered a version, rHMPV-GFP, in which the enhanced green fluorescent protein (GFP) was expressed from a transcription cassette inserted as the first gene, leaving the 41-nt leader region and first 16 nt of the N gene undisturbed. The ability to monitor GFP expression in living cells greatly facilitated the initial recovery of this slow-growing virus. In addition, the ability to express a foreign gene from an engineered transcription cassette confirmed the identification of the HMPV transcription signals and identified the F gene-end signal as being highly efficient for transcription termination. The ability to recover virus containing a foreign insert in this position indicated that the viral promoter is contained within the 3'-terminal 57 nt of the genome. Recombinant HMPV replicated in vitro as efficiently as biologically derived HMPV, whereas the kinetics and final yield of rHMPV-GFP were reduced several-fold. Conditions for trypsin treatment were investigated, providing for improved virus yields. Another version of HMPV, rHMPV+G1F23, was recovered that contained a second copy of the G gene and two extra copies of F in promoter-proximal positions in the order G1-F2-F3. Thus, this recombinant genome would encode 11 mRNAs rather than eight and would be 17.3 kb long, 30% longer than that of the natural virus. Nonetheless, the rHMPV+G1F23 virus replicated in vitro with an efficiency that was only modestly reduced compared to rHMPV and was

  11. Green fluorescent protein expression from recombinant lettuce infectious yellows virus-defective RNAs originating from RNA 2.

    Science.gov (United States)

    Yeh, H H; Tian, T; Medina, V; Falk, B W

    2001-10-10

    Lettuce infectious yellows virus (LIYV) RNA 2 defective RNAs (D RNAs) were compared in protoplasts for their ability to replicate and to express the green fluorescent protein (GFP) from recombinant D RNA constructs. Initially four LIYV D RNAs of different genetic composition were compared, but only two (LIYV D RNA M5 and M18) replicated to high levels. Both of these contained at least two complete ORFs, one being the 3'-terminal ORF encoding P26. Northern hybridization analysis using probes corresponding to 3' regions of LIYV RNA 2 detected the P26 subgenomic RNA from protoplasts infected with LIYV RNAs 1 and 2 or protoplasts inoculated only with RNA 1 plus either the LIYV D RNA M5 or M18, suggesting that these LIYV D RNAs served as templates to generate the P26 subgenomic RNA. The GFP coding region was inserted as an in-frame insertion into the P26 coding region of the LIYV M5 and M18 D RNAs, yielding M5gfp and M18gfp. When transcripts of M5gfp and M18gfp were used to inoculate protoplasts, bright fluorescence was seen only when they were co-inoculated with LIYV RNA 1. The percentage of fluorescent protoplasts ranged from experiment to experiment, but was as high as 5.8%. Time course analyses showed that fluorescence was not detected before 48 h pi, and this correlated with the timing of LIYV RNA 2 and RNA 2 D RNA accumulation, but not with that of LIYV RNA 1. Copyright 2001 Academic Press.

  12. Generation of SNCA Cell Models Using Zinc Finger Nuclease (ZFN) Technology for Efficient High-Throughput Drug Screening.

    Science.gov (United States)

    Dansithong, Warunee; Paul, Sharan; Scoles, Daniel R; Pulst, Stefan M; Huynh, Duong P

    2015-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by loss of dopaminergic neurons of the substantia nigra. The hallmark of PD is the appearance of neuronal protein aggregations known as Lewy bodies and Lewy neurites, of which α-synuclein forms a major component. Familial PD is rare and is associated with missense mutations of the SNCA gene or increases in gene copy number resulting in SNCA overexpression. This suggests that lowering SNCA expression could be therapeutic for PD. Supporting this hypothesis, SNCA reduction was neuroprotective in cell line and rodent PD models. We developed novel cell lines expressing SNCA fused to the reporter genes luciferase (luc) or GFP with the objective to enable high-throughput compound screening (HTS) for small molecules that can lower SNCA expression. Because SNCA expression is likely regulated by far-upstream elements (including the NACP-REP1 located at 8852 bp upstream of the transcription site), we employed zinc finger nuclease (ZFN) genome editing to insert reporter genes in-frame downstream of the SNCA gene in order to retain native SNCA expression control. This ensured full retention of known and unknown up- and downstream genetic elements controlling SNCA expression. Treatment of cells with the histone deacetylase inhibitor valproic acid (VPA) resulted in significantly increased SNCA-luc and SNCA-GFP expression supporting the use of our cell lines for identifying small molecules altering complex modes of expression control. Cells expressing SNCA-luc treated with a luciferase inhibitor or SNCA siRNA resulted in Z'-scores ≥ 0.75, suggesting the suitability of these cell lines for use in HTS. This study presents a novel use of genome editing for the creation of cell lines expressing α-synuclein fusion constructs entirely under native expression control. These cell lines are well suited for HTS for compounds that lower SNCA expression directly or by acting at long-range sites to the SNCA

  13. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Directory of Open Access Journals (Sweden)

    Erica L Cain

    2011-04-01

    Full Text Available Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized.To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis.Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  14. A novel cell line derived from pleomorphic adenoma expresses MMP2, MMP9, TIMP1, TIMP2, and shows numeric chromosomal anomalies.

    Directory of Open Access Journals (Sweden)

    Aline Semblano Carreira Falcão

    Full Text Available Pleomorphic adenoma is the most common salivary gland neoplasm, and it can be locally invasive, despite its slow growth. This study aimed to establish a novel cell line (AP-1 derived from a human pleomorphic adenoma sample to better understand local invasiveness of this tumor. AP-1 cell line was characterized by cell growth analysis, expression of epithelial and myoepithelial markers by immunofluorescence, electron microscopy, 3D cell culture assays, cytogenetic features and transcriptomic study. Expression of matrix metalloproteinases (MMPs and their tissue inhibitors (TIMPs was also analyzed by immunofluorescence and zymography. Furthermore, epithelial and myoepithelial markers, MMPs and TIMPs were studied in the tumor that originated the cell line. AP-1 cells showed neoplastic epithelial and myoepithelial markers, such as cytokeratins, vimentin, S100 protein and smooth-muscle actin. These molecules were also found in vivo, in the tumor that originated the cell line. MMPs and TIMPs were observed in vivo and in AP-1 cells. Growth curve showed that AP-1 exhibited a doubling time of 3.342 days. AP-1 cells grown inside Matrigel recapitulated tumor architecture. Different numerical and structural chromosomal anomalies were visualized in cytogenetic analysis. Transcriptomic analysis addressed expression of 7 target genes (VIM, TIMP2, MMP2, MMP9, TIMP1, ACTA2 e PLAG1. Results were compared to transcriptomic profile of non-neoplastic salivary gland cells (HSG. Only MMP9 was not expressed in both libraries, and VIM was expressed solely in AP-1 library. The major difference regarding gene expression level between AP-1 and HSG samples occurred for MMP2. This gene was 184 times more expressed in AP-1 cells. Our findings suggest that AP-1 cell line could be a useful model for further studies on pleomorphic adenoma biology.

  15. Feasibility of dual reporter gene in rat myoblast cell line using human sodium iodide symporter (hNIS) and enhanced green fluorescent protein (EGFP) gene

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Jin; Lee, You La; Ahn, Sohn Joo; Choi, Chang Ik; Lee, Sang Woo; Ahn, Byeong Cheol; Lee, Jae Tae [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)

    2007-07-01

    To develop a non-invasive combined imaging method of gamma camera and optical imaging to assess rat myoblast cell line, H9c2, we constructed retrovirus containing hNIS and EGFP gene, and transfected to rat myoblast cell and monitored hNIS and EGFP expression. Rat myoblast cell line, H9C2, was transfected with hNIS and EGFP gene using retrovirus (H9C2-NG). The expression of hNIS and EGFP gene was determined by RT-PCR and fluorescence microscopy, respectively. The uptake and efflux of I-125 were measured in the transfected and wild type cell lines. Each cell line was injected to 4 flank sites (H9c2: 1X107 or 2X107, H9C2-NG: 1X107 or 2X107) in nude mouse. Scintigraphic image was performed at 3h, 1 day after H9C2 and H9C2-NG cell inoculation. We performed gamma camera and animal PET imaging to evaluate NIS expression. Also, GFP image obtained using optical imaging system. The expression of hNIS and EGFP gene was confirmed by RT-PCR. In iodide uptake, H9C2-NG cells accumulated 274.52.2 pmol/ mg protein at 30 min. But wild type cell line did not uptake iodide. In fluorescent microscopy, H9C2-NG cells were highly fluorescent than that of H9C2 cells. In iodide efflux study, 50% of radioactivity flowed out during the first 10min. Scintigraphy showed increased uptake of Tc-99m in H9c2-NG than in H9C2 for 1 day. Also, H9C2-NG cells showed high signal-to-background fluorescent spots in animal body. In this study, NIS and EGFP reporter gene were successfully transfected by a retrovirus in myoblast cell line, and the transfected cell can be easily visualized in vivo. These results suggest that NIS and EGFP gene has an excellent feasibility as a reporter gene, and it can be used to monitor cell trafficking for monitoring.

  16. Putting Yourself on the Line: Self-Esteem and Expressing Affection in Romantic Relationships.

    Science.gov (United States)

    Luerssen, Anna; Jhita, Gugan Jote; Ayduk, Ozlem

    2017-07-01

    Although expressing affection is an important way to connect to a romantic partner, it also involves putting yourself on the line-revealing dependence on your partner. Extending the risk-regulation model, we hypothesized that individuals with lower self-esteem (SE), who are concerned about vulnerability in relationships, experience less rewarding reactions to expressing affection, and believe that their partners respond less positively to receiving affection. We assessed these predictions across two studies that measured retrospective reports, reactions to an in vivo exchange and responses in daily life. We found that participants with lower SE expressed less affection and experienced less positive emotional, cognitive, and physiological reactions when doing so. Participants with lower SE believed that their partners derived fewer benefits from their affection despite that their partners experienced normative boosts in positive emotion and relationship satisfaction during these exchanges. The consequences of these findings for relationship functioning and SE are discussed.

  17. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines.

    Science.gov (United States)

    Kiseleva, Antonina A; Potokina, Elena K; Salina, Elena A

    2017-11-14

    Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, "Ppd-m" and "Ppd-w" with Ppd-B1a introgressed from Sonora, we investigated the putative factors that influence Ppd-B1a expression. By analyzing the Ppd-B1a three distinct copies, we identified an indel and the two SNPs, which distinguished the investigated allele from other alleles with a copy number variation. We studied the expression of the Ppd-A1, Ppd-B1a, and Ppd-D1 genes along with genes that are involved in light perception (PhyA, PhyB, PhyC) and the flowering initiation (Vrn-1, TaFT1) and discussed their interactions. Expression of Ppd-B1a in the "Ppd-m" line, which flowered four days earlier than "Ppd-w", was significantly higher. We found PhyC to be up-regulated in lines with Ppd-B1a alleles. Expression of PhyC was higher in "Ppd-m". Microsatellite genotyping demonstrated that in the line "Ppd-m", there is an introgression in the pericentromeric region of chromosome 5B from the early flowering parental Sonora, while the "Ppd-w" does not have this introgression. FHY3/FAR1 is known to be located in this region. Expression of the transcription factor FHY3/FAR1 was higher in the "Ppd-m" line than in "Ppd-w", suggesting that FHY3/FAR1 is important for the wheat flowering time and may cause earlier flowering of "Ppd-m" as compared to "Ppd-w". We propose that there is a positive bidirectional regulation of Ppd-B1a and PhyC with an FHY3/FAR1 contribution. The bidirectional regulation can be proposed for Ppd-A1a and Ppd-D1a. Using in silico analysis, we demonstrated that the specificity of the Ppd-B1 regulation compared to that of homoeologous genes involves not only a

  18. Gene expression changes associated with Barrett's esophagus and Barrett's-associated adenocarcinoma cell lines after acid or bile salt exposure

    Directory of Open Access Journals (Sweden)

    Sahbaie Peyman

    2007-06-01

    Full Text Available Abstract Background Esophageal reflux and Barrett's esophagus represent two major risk factors for the development of esophageal adenocarcinoma. Previous studies have shown that brief exposure of the Barrett's-associated adenocarcinoma cell line, SEG-1, or primary cultures of Barrett's esophageal tissues to acid or bile results in changes consistent with cell proliferation. In this study, we determined whether similar exposure to acid or bile salts results in gene expression changes that provide insights into malignant transformation. Methods Using previously published methods, Barrett's-associated esophageal adenocarcinoma cell lines and primary cultures of Barrett's esophageal tissue were exposed to short pulses of acid or bile salts followed by incubation in culture media at pH 7.4. A genome-wide assessment of gene expression was then determined for the samples using cDNA microarrays. Subsequent analysis evaluated for statistical differences in gene expression with and without treatment. Results The SEG-1 cell line showed changes in gene expression that was dependent on the length of exposure to pH 3.5. Further analysis using the Gene Ontology, however, showed that representation by genes associated with cell proliferation is not enhanced by acid exposure. The changes in gene expression also did not involve genes known to be differentially expressed in esophageal adenocarcinoma. Similar experiments using short-term primary cultures of Barrett's esophagus also did not result in detectable changes in gene expression with either acid or bile salt exposure. Conclusion Short-term exposure of esophageal adenocarcinoma SEG-1 cells or primary cultures of Barrett's esophagus does not result in gene expression changes that are consistent with enhanced cell proliferation. Thus other model systems are needed that may reflect the impact of acid and bile salt exposure on the esophagus in vivo.

  19. Temporal regulation of HTLV-2 expression in infected cell lines and patients: evidence for distinct expression kinetics with nuclear accumulation of APH-2 mRNA

    Directory of Open Access Journals (Sweden)

    Bender Cecilia

    2012-09-01

    Full Text Available Abstract Background Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2 are delta retroviruses with similar genetic organization. Although both viruses immortalize T-cells in vitro, they exhibit distinct pathogenic potential in vivo. To search for possible differences in its expression strategy with respect to HTLV-1, we investigated the pattern of HTLV-2 expression in infected cell lines and peripheral blood mononuclear cells (PBMCs from infected patients using splice site-specific quantitative RT-PCR. Findings A novel alternative splice acceptor site for exon 2 was identified; its usage in env transcripts was found to be subtype-specific. Time-course analysis revealed a two-phase expression kinetics in an infected cell line and in PBMCs of two of the three patients examined; this pattern was reminiscent of HTLV-1. In addition, the minus-strand APH2 transcript was mainly detected in the nucleus, a feature that was similar to its HTLV-1 orthologue HBZ. In contrast to HTLV-1, expression of the mRNA encoding the main regulatory proteins Tax and Rex and that of the mRNAs encoding the p28 and truncated Rex inhibitors is skewed towards p28/truncated Rex inhibitors in HTLV-2. Conclusion Our data suggest a general converging pattern of expression of HTLV-2 and HTLV-1 and highlight peculiar differences in the expression of regulatory proteins that might influence the pathobiology of these viruses.

  20. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    Science.gov (United States)

    Chen, Ying; Dai, Hongzheng; Chen, Sidi; Zhang, Luoying; Long, Manyuan

    2011-04-26

    Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  1. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2011-04-01

    Full Text Available Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta. Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  2. Expression of Separate Proteins in the Same Plant Leaves and Cells Using Two Independent Virus-Based Gene Vectors

    Directory of Open Access Journals (Sweden)

    Maria R. Mendoza

    2017-11-01

    Full Text Available Plant viral vectors enable the expression of proteins at high levels in a relatively short time. For many purposes (e.g., cell biological interaction studies it may be desirable to express more than one protein in a single cell but that is often not feasible when using a single virus vector. Such a co-expression strategy requires the simultaneous delivery by two compatible and non-competitive viruses that can co-exist to each express a separate protein. Here, we report on the use of two agro-launchable coat-protein gene substitution GFP-expressing virus vector systems based on Tomato bushy stunt virus (TBSV referred to as TG, and Tobacco mosaic virus (TMV annotated as TRBO-G. TG expressed GFP in Nicotiana benthamiana, tomato, lettuce and cowpea, whereas expression from TRBO-G was detected only in the first two species. Upon co-infiltration of the two vectors co-expression was monitored by: molecular detection of the two slightly differently sized GFPs, suppressor-complementation assays, and using TG in combination with TRBO-RFP. All the results revealed that in N. benthamiana and tomato the TBSV and TMV vectors accumulated and expressed proteins in the same plants, the same leaves, and in the same cells. Therefore, co-expression by these two vectors provides a platform for fast and high level expression of proteins to study their cell biology or other properties.

  3. Expression of bcl-2 in the Epithelial Lining of Odontogenic Keratocysts

    Directory of Open Access Journals (Sweden)

    Gh. Jahanshahi

    2006-03-01

    Full Text Available Statement of Problem: The aggressive nature and high recurrence rate of Odontogenic Keratocysts (OKCs may be due to unknown factors inherent in the epithelium or because of enzymatic activity in the fibrous wall. Bcl-2 protein is characterized by its ability to inhibit apoptosis.Purpose: The aim of the present study was to analyze the expression of bcl-2 protein in OKCs and to compare it with the more common radicular and dentigerous cysts. The possible relationship between inflammation and bcl-2 expression was also investigated.Materials and Methods: Formalin fixed paraffin-embedded tissue sections of 20 OKCs, 20 radicular and 20 dentigerous cysts were immunohistochemically analyzed for immunoreactivity of the bcl-2 protein.Results: Bcl-2 expression was observed in 19 OKCs (95%, one radicular cyst (5%and one dentigerous cyst (5%. There was no statistically significant relationship between inflammation and the number of bcl-2 positive cells. Immunoreactivity was mainly noted in the basal or basal/supra basal layers.Conclusion: Considering the fact that bcl-2 over expression may lead to increased survival of epithelial cells, present study may demonstrate a possible relationship between the aggressive nature of OKC and the intrinsic growth potential of its lining epithelium. Furthermore a basal/supra basal distribution of bcl-2 positive cells was seen in some odontogenic keratocysts which may have a significant impact on the behavior of this cyst.

  4. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies.

    Science.gov (United States)

    Vinck, Arman; de Bekker, Charissa; Ossin, Adam; Ohm, Robin A; de Vries, Ronald P; Wösten, Han A B

    2011-01-01

    Colonization of a substrate by fungi starts with the invasion of exploring hyphae. These hyphae secrete enzymes that degrade the organic material into small molecules that can be taken up by the fungus to serve as nutrients. We previously showed that only part of the exploring hyphae of Aspergillus niger highly express the glucoamylase gene glaA. This was an unexpected finding since all exploring hyphae are exposed to the same environmental conditions. Using GFP as a reporter, we here demonstrate that the acid amylase gene aamA, the α-glucuronidase gene aguA, and the feruloyl esterase gene faeA of A. niger are also subject to heterogenic expression within the exploring mycelium. Coexpression studies using GFP and dTomato as reporters showed that hyphae that highly express one of these genes also highly express the other genes encoding secreted proteins. Moreover, these hyphae also highly express the amylolytic regulatory gene amyR, and the glyceraldehyde-3-phosphate dehydrogenase gene gpdA. In situ hybridization demonstrated that the high expressers are characterized by a high 18S rRNA content. Taken together, it is concluded that two subpopulations of hyphae can be distinguished within the exploring mycelium of A. niger. The experimental data indicate that these subpopulations differ in their transcriptional and translational activity. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Novel prediction of anticancer drug chemosensitivity in cancer cell lines: evidence of moderation by microRNA expressions.

    Science.gov (United States)

    Yang, Daniel S

    2014-01-01

    The objectives of this study are (1) to develop a novel "moderation" model of drug chemosensitivity and (2) to investigate if miRNA expression moderates the relationship between gene expression and drug chemosensitivity, specifically for HSP90 inhibitors applied to human cancer cell lines. A moderation model integrating the interaction between miRNA and gene expressions was developed to examine if miRNA expression affects the strength of the relationship between gene expression and chemosensitivity. Comprehensive datasets on miRNA expressions, gene expressions, and drug chemosensitivities were obtained from National Cancer Institute's NCI-60 cell lines including nine different cancer types. A workflow including steps of selecting genes, miRNAs, and compounds, correlating gene expression with chemosensitivity, and performing multivariate analysis was utilized to test the proposed model. The proposed moderation model identified 12 significantly-moderating miRNAs: miR-15b*, miR-16-2*, miR-9, miR-126*, miR-129*, miR-138, miR-519e*, miR-624*, miR-26b, miR-30e*, miR-32, and miR-196a, as well as two genes ERCC2 and SF3B1 which affect chemosensitivities of Tanespimycin and Alvespimycin - both HSP90 inhibitors. A bootstrap resampling of 2,500 times validates the significance of all 12 identified miRNAs. The results confirm that certain miRNA and gene expressions interact to produce an effect on drug response. The lack of correlation between miRNA and gene expression themselves suggests that miRNA transmits its effect through translation inhibition/control rather than mRNA degradation. The results suggest that miRNAs could serve not only as prognostic biomarkers for cancer treatment outcome but also as interventional agents to modulate desired chemosensitivity.

  6. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging.

    Science.gov (United States)

    Li, Tengfei; Bourgeois, Jean-Pierre; Celli, Susanna; Glacial, Fabienne; Le Sourd, Anne-Marie; Mecheri, Salah; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Rougeon, François; Lafaye, Pierre

    2012-10-01

    Antibodies normally do not cross the blood-brain barrier (BBB) and cannot bind an intracellular cerebral antigen. We demonstrate here for the first time that a new class of antibodies can cross the BBB without treatment. Camelids produce native homodimeric heavy-chain antibodies, the paratope being composed of a single-variable domain called VHH. Here, we used recombinant VHH directed against human glial fibrillary acidic protein (GFAP), a specific marker of astrocytes. Only basic VHHs (e.g., pI=9.4) were able to cross the BBB in vitro (7.8 vs. 0% for VHH with pI=7.7). By intracarotid and intravenous injections into live mice, we showed that these basic VHHs are able to cross the BBB in vivo, diffuse into the brain tissue, penetrate into astrocytes, and specifically label GFAP. To analyze their ability to be used as a specific transporter, we then expressed a recombinant fusion protein VHH-green fluorescent protein (GFP). These "fluobodies" specifically labeled GFAP on murine brain sections, and a basic variant (pI=9.3) of the fusion protein VHH-GFP was able to cross the BBB and to label astrocytes in vivo. The potential of VHHs as diagnostic or therapeutic agents in the central nervous system now deserves attention.

  7. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells

    International Nuclear Information System (INIS)

    Sato, Yoshiko; Yoshioka, Kenichi; Suzuki, Chie; Awashima, Satoshi; Hosaka, Yasuhiro; Yewdell, Jonathan; Kuroda, Kazumichi

    2003-01-01

    We studied influenza virus M1 protein by generating HeLa and MDCK cell lines that express M1 genetically fused to green fluorescent protein (GFP). GFP-M1 was incorporated into virions produced by influenza virus infected MDCK cells expressing the fusion protein indicating that the fusion protein is at least partially functional. Following infection of either HeLa or MDCK cells with influenza A virus (but not influenza B virus), GFP-M1 redistributes from its cytosolic/nuclear location and accumulates in nuclear dots. Immunofluorescence revealed that the nuclear dots represent nuclear dot 10 (ND10) structures. The colocalization of authentic M1, as well as NS1 and NS2 protein, with ND10 was confirmed by immunofluorescence following in situ isolation of ND10. These findings demonstrate a previously unappreciated involvement of influenza virus with ND10, a structure involved in cellular responses to immune cytokines as well as the replication of a rapidly increasing list of viruses

  8. Identification of differentially expressed proteins between human esophageal immortalized and carcinomatous cell lines by two-dimensional electrophoresis and MALDI-TOF-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Xing-Dong Xiong; Li-Yan Xu; Zhong-Ying Shen; Wei-Jia Cai; Jian-Min Luo; Ya-Li Han; En-Min Li

    2002-01-01

    AIM: To identify the differentially expressed proteins between the human immortalized esophageal epithelial cell line (SHEE) and the malignant transformed esophageal carcinoma cell line (SHEEC), and to explore new ways for studying esophageal carcinoma associated genes. METHODS: SHEE and SHEEC cell lines were used to separate differentially expressed proteins by two-dimensional electrophoresis/The silver-stained 2-D gels was scanned with EDAS290 digital camera system and analyzed with the PDQuest 6.2 Software. Six spots in which the differentially expressed protein was more obvious were selected and analyzed with matrix-assisted laser desorption/ionization time of flying mass spectrometry (MALDI-TOF-MS).RESULTS: There were 107±4.58 and 115±9.91 protein spots observed in SHEE and SHEEC respectively, and the majority of these spots between the two cell lines matched each other (r=-0.772), only a few were expressed differentially. After analyzed by MALDI-TOF-MS and database search for the six differentially expressed proteins, One new protein as well as other five sequence-known proteins including RNPEP-like protein, human rRNA gene upstream sequence binding transcription factor, uracil DNA glycosylase,Annexin A2 and p300/CBP-associated factor were preliminarily identified.CONCLUSION: These differentially expressed proteins might play an importance role during malignant transformation of SHEEC from SHEE. The identification of these proteins may serve as a new way for studying esophageal carcinoma associated genes.

  9. Diversity and overlap of Parvalbumin and Somatostatin expressing interneurons in mouse presubiculum

    Directory of Open Access Journals (Sweden)

    Mérie eNassar

    2015-05-01

    Full Text Available The presubiculum, located between hippocampus and entorhinal cortex, plays a fundamental role in representing spatial information, notably head direction. Little is known about GABAergic interneurons of this region. Here, we used three transgenic mouse lines, Pvalb-Cre, Sst-Cre and X98, to examine distinct interneurons labeled with tdTomato or green fluorescent protein. The distribution of interneurons in presubicular lamina for each animal line was compared to that in the GAD67-GFP knock-in animal line. Labelling was specific in the Pvalb-Cre line with 87% of labeled interneurons immunopositive for (PV. Immunostaining for somatostatin (SOM revealed good specificity in the X98 line with 89% of fluorescent cells, but a lesser specificity in Sst-Cre animals where only 71% of labeled cells were immunopositive. A minority of ~ 6% of interneurons co-expressed PV and SOM in the presubiculum of Sst-Cre animals. The electrophysiological and morphological properties of fluorescent interneurons from Pvalb-Cre, Sst-Cre and X98 mice differed. Distinct physiological groups of presubicular interneurons were resolved by unsupervised cluster analysis of parameters describing passive properties, firing patterns and AP shapes. One group consisted of SOM-positive, Martinotti type neurons with a low firing threshold (cluster 1. Fast spiking basket cells, mainly from the Pvalb-Cre line, formed a distinct group (cluster 3. Another group (cluster 2 contained interneurons of intermediate electrical properties and basket-cell like morphologies. These labeled neurons were recorded from both Sst-Cre and Pvalb-Cre animals. Thus, our results reveal a wide variation in anatomical and physiological properties for these interneurons, a real overlap of interneurons immuno-positive for both PV and SOM as well as an off-target recombination in the Sst-Cre line, possibly linked to maternal cre inheritance.

  10. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection

    Science.gov (United States)

    Chang, Ming-Fong; Hsieh, Jung-Hsien; Chiang, Hao; Kan, Hung-Wei; Huang, Cho-Min; Chellis, Luke; Lin, Bo-Shiou; Miaw, Shi-Chuen; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang

    2016-01-01

    Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. PMID:27748450

  11. Production and characterization of active recombinant interleukin-12/eGFP fusion protein in stably-transfected DF1 chicken cells.

    Science.gov (United States)

    Wu, Hsing Chieh; Chen, Yu San; Shen, Pin Chun; Shien, Jui Hung; Lee, Long Huw; Chiu, Hua Hsien

    2015-01-01

    The adjuvant activity of chicken interleukin-12 (chIL-12) protein has been described as similar to that of mammalian IL-12. Recombinant chIL-12 can be produced using several methods, but chIL-12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL-12 which stably expressed a fusion protein, chIL-12 and enhanced green fluorescent protein (eGFP) connected by a (G4 S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 10(6) DF1/chIL-12 cells were inoculated in a T-175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL(-1) and 2,207 ± 3.28 ng mL(-1) , respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN-γ, which was measured using an enzyme-linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL-12 cells with DMSO or producing chIL-12 in a fusion protein form does not have adverse effects on the bioactivity of chIL-12. © 2015 American Institute of Chemical Engineers.

  12. Changes in gravitational force affect gene expression in developing organ systems at different developmental times

    Directory of Open Access Journals (Sweden)

    Moorman Stephen J

    2005-05-01

    Full Text Available Abstract Background Little is known about the affect of microgravity on gene expression, particularly in vivo during embryonic development. Using transgenic zebrafish that express the gfp gene under the influence of a β-actin promoter, we examined the affect of simulated-microgravity on GFP expression in the heart, notochord, eye, somites, and rohon beard neurons. We exposed transgenic zebrafish to simulated-microgravity for different durations at a variety of developmental times in an attempt to determine periods of susceptibility for the different developing organ systems. Results The developing heart had a period of maximum susceptibility between 32 and 56 hours after fertilization when there was an approximately 30% increase in gene expression. The notochord, eye, somites, and rohon beard neurons all showed periods of susceptibility occurring between 24 and 72 hours after fertilization. In addition, the notochord showed a second period of susceptibility between 8 and 32 hours after fertilization. Interestingly, all organs appeared to be recovering by 80 hours after fertilization despite continued exposure to simulated-microgravity. Conclusion These results support the idea that exposure to microgravity can cause changes in gene expression in a variety of developing organ systems in live embryos and that there are periods of maximum susceptibility to the effects.

  13. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation

    Directory of Open Access Journals (Sweden)

    Alexander Schütz

    2015-04-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1 was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549 were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6. In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.

  14. Cry1Ac Protein expression in tissues of potato (solanumtuberosum spp. andigena) transgenic lines var. Diacol Capiro

    International Nuclear Information System (INIS)

    Vanegas Araujo, Pablo Andres; Blanco Martinez, Jennifer Teresa; Chaparro Giraldo, Alejandro

    2010-01-01

    The potato plant is the fourth most important crop in the world. In Colombia around 2.8 million tons are produced annually economically supporting 90000 families. In the country, the major economic impact in the crop is caused by Tecia solanivora that originates loses up to 100% in the tuber production. The genetic plant breeding related to the introduction of Cry genes which codify insecticidal crystal proteins is an alternative for reducing the insect attack in commercial crops. In this work, the insertion, transcription and expression of Cry1Ac gen was characterized in different tissues and three development stages of two transgenic lines of Solanum tuberosum variety Diacol Capiro that were previously transformed by Agrobacterium tumefaciens method. The characterization was realized by PCR, RT-PCR and ELISA techniques. The gen insertion and transcription was confirmed using primers for Cry1Ac gen that amplified a specific band of 766 bp. The protein expression levels were higher than 45 µg/g and were not significantly different between the analyzed lines or the three development stages. Furthermore, taking into account some relevant phenotypic features, no significant differences were found between transgenic lines and controls. The results suggest that monitoring and biosecurity assays are necessary with this vegetal material because their high level expression inside all the tissues analyzed that could affect non-targeted insects.

  15. Differentiation of primordial germ cells from induced pluripotent stem cells of primary ovarian insufficiency.

    Science.gov (United States)

    Leng, Lizhi; Tan, Yueqiu; Gong, Fei; Hu, Liang; Ouyang, Qi; Zhao, Yan; Lu, Guangxiu; Lin, Ge

    2015-03-01

    Can the induced pluripotent stem cells (iPSCs) derived from women with primary ovarian insufficiency (POI) differentiate into germ cells for potential disease modeling in vitro? The iPSC lines derived from POI patients with 46, X, del(X)(q26) or 46, X, del(X)(q26)9qh+ could differentiate into germ cells and expressed lower levels of genes in the deletion region of the X chromosome. iPSC technology has been envisioned as an approach for generating patient-specific stem cells for disease modeling and for developing novel therapies. It has also been confirmed that iPSCs differentiate into germ cells. We compared the differentiation ability of germ cells and the gene expression level of germ cell-related genes in the X chromosome deletion region of iPSC lines derived from POI patients (n = 2) with an iPSC line derived from normal fibroblasts (n = 1). We established three iPSC lines from two patients with partial Xq deletion-induced POI and normal fibroblasts by overexpressing four factors: octamer-binding transcription factor 4 (OCT4), sex-determining region Y-box 2 (SOX2), Nanog homeobox (NANOG), and lin-28 homolog (LIN28), using lentiviral vectors. We then generated stable-transfected fluorescent reporter cell lines under the control of the Asp-Glu-Ala-Asp box polypeptide 4 (DDX4, also called VASA) promoter, and selected clonal derived sublines. We induced subline differentiation into germ cells by adding Wnt3a (30 ng/ml) and bone morphogenetic protein 4 (100 ng/ml). After 12 days of differentiation, green fluorescent protein (GFP)-positive and GFP-negative cells were isolated via fluorescence-activated cell sorting and analyzed for endogenous VASA protein (immunostaining) and for germ cell markers and genes expressed in the deleted region of the X chromosome (quantitative RT-PCR). The POI- and normal fibroblast-derived iPSCs had typical self-renewal and pluripotency characteristics. After stable transfection with the VASA-GFP construct, the sublines POI1-iPS-V.1

  16. Production of cloned pigs with targeted attenuation of gene expression.

    Directory of Open Access Journals (Sweden)

    Vilceu Bordignon

    Full Text Available The objective of this study was to demonstrate that RNA interference (RNAi and somatic cell nuclear transfer (SCNT technologies can be used to attenuate the expression of specific genes in tissues of swine, a large animal species. Apolipoprotein E (apoE, a secreted glycoprotein known for its major role in lipid and lipoprotein metabolism and transport, was selected as the target gene for this study. Three synthetic small interfering RNAs (siRNA targeting the porcine apoE mRNA were tested in porcine granulosa cells in primary culture and reduced apoE mRNA abundance ranging from 45-82% compared to control cells. The most effective sequence was selected for cloning into a short hairpin RNA (shRNA expression vector under the control of RNA polymerase III (U6 promoter. Stably transfected fetal porcine fibroblast cells were generated and used to produce embryos with in vitro matured porcine oocytes, which were then transferred into the uterus of surrogate gilts. Seven live and one stillborn piglet were born from three gilts that became pregnant. Integration of the shRNA expression vector into the genome of clone piglets was confirmed by PCR and expression of the GFP transgene linked to the expression vector. Analysis showed that apoE protein levels in the liver and plasma of the clone pigs bearing the shRNA expression vector targeting the apoE mRNA was significantly reduced compared to control pigs cloned from non-transfected fibroblasts of the same cell line. These results demonstrate the feasibility of applying RNAi and SCNT technologies for introducing stable genetic modifications in somatic cells for eventual attenuation of gene expression in vivo in large animal species.

  17. Construction and Development of a Cardiac Tissue-Specific and Hypoxia-Inducible Expression Vector

    Directory of Open Access Journals (Sweden)

    Shahrooz Ghaderi

    2018-03-01

    Full Text Available Purpose: Cardiovascular gene therapy is a sophisticated approach, thanks to the safety of vectors, stable transgene expression, delivery method, and different layers of the heart. To date, numerous expression vectors have been introduced in biotechnology and biopharmacy industries in relation to genetic manipulation. Despite the rapid growth of these modalities, they must be intelligently designed, addressing the cardiac-specific transgene expression and less side effects. Herein, we conducted a pilot project aiming to design a cardiac-specific hypoxia-inducible expression cassette. Methods: We explored a new approach to design an expression cassette containing cardiac specific enhancer, hypoxia response elements (HRE, cardiac specific promoter, internal ribosome entry site (IRES, and beta globin poly A sequence to elicit specific and inducible expression of the gene of interest. Enhanced green fluorescent protein (eGFP was sub-cloned by BglII and NotI into the cassette. The specificity and inducible expression of the cassette was determined in both mouse myoblast C2C12 and mammary glandular tumor 4T1 as ‘twin’ cells. eGFP expression was evaluated by immunofluorescence microscope and flow cytometry at 520 nm emission peak. Results: Our data revealed that the designed expression cassette provided tissue specific and hypoxia inducible (O2<1% transgene expression. Conclusion: It is suggested that cardiac-specific enhancer combined with cardiac-specific promoter are efficient for myoblast specific gene expression. As well, this is for the first time that HRE are derived from three well known hypoxia-regulated promoters. Therefore, there is no longer need to overlap PCR process for one repeated sequence just in one promoter.

  18. Development of a confocal ultrasound device using an inertial cavitation control for transfection in-vitro

    Science.gov (United States)

    Mestas, J. L.; Chettab, K.; Roux, S.; Prieur, F.; Lafond, M.; Dumontet, C.; Lafon, C.

    2015-12-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. We developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (peGFP- C1) in adherent and non-adherent cell lines. The frequency spectrum of the signal receive by a hydrophone is used to compute a cavitation index (CI) representative of the inertial cavitation activity. The influence of the CI on transfection efficiency, as well as reproducibility were determined. A real-time feedback loop control on CI was integrated in the process to regulate the cavitation level during sonoporation. In both adherent and non-adherent cell lines, the sonoporation device produced a highly efficient transfection of peGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. Moreover, the sonoporation of non-adherent cell lines Jurkat and K562 was found to be equivalent to nucleofection in terms of efficiency and toxicity while these two cell lines were resistant to transfection with lipofection.

  19. Evaluation of the amyloid beta-GFP fusion protein as a model of amyloid beta peptides-mediated aggregation: A study of DNAJB6 chaperone

    Directory of Open Access Journals (Sweden)

    Rasha Mohamed Hussein

    2015-07-01

    Full Text Available Alzheimer’s disease is a progressive neurodegenerative disease characterized by the accumulation and aggregation of extracellular amyloid β (Aβ peptides and intracellular aggregation of hyper-phosphorylated tau protein. Recent evidence indicates that accumulation and aggregation of intracellular amyloid β peptides may also play a role in disease pathogenesis. This would suggest that intracellular Heat Shock Proteins (HSP that maintain cellular protein homeostasis might be candidates for disease amelioration. We recently found that DNAJB6, a member of DNAJ family of heat shock proteins, effectively prevented the aggregation of short aggregation-prone peptides containing large poly glutamines (associated with CAG repeat diseases both in vitro and in cells. Moreover, recent in vitro data showed that DNAJB6 can delay the aggregation of Aβ42 peptides. In this study, we investigated the ability of DNAJB6 to prevent the aggregation of extracellular and intracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP fusion construct and performing western blotting and immunofluorescence techniques. We found that DNAJB6 indeed suppresses Aβ-GFP aggregation, but not seeded aggregation initiated by extracellular Aβ peptides. Unexpectedly and unlike what we found for peptide-mediated aggregation, DNAJB6 required interaction with HSP70 to prevent the aggregation of the Aβ-GFP fusion protein and its J-domain was crucial for its anti-aggregation effect. In addition, other DNAJ proteins as well as HSPA1a overexpression also suppressed Aβ-GFP aggregation efficiently. Our findings suggest that Aβ aggregation differs from poly Q peptide induced aggregation in terms of chaperone handling and sheds doubt on the usage of Aβ-GFP fusion construct for studying Aβ peptide aggregation in cells.

  20. Gene expression profiling in wild-type and metallothionein mutant fibroblast cell lines

    Directory of Open Access Journals (Sweden)

    ÁNGELA D ARMENDÁRIZ

    2006-01-01

    Full Text Available The role of metallothioneins (MT in copper homeostasis is of great interest, as it appears to be partially responsible for the regulation of intracellular copper levels during adaptation to extracellular excess of the metal. To further investigate a possible role of MTs in copper metabolism, a genomics approach was utilized to evaluate the role of MT on gene expression. Microarray analysis was used to examine the effects of copper overload in fibroblast cells from normal and MT I and II double knock-out mice (MT-/-. As a first step, we compared genes that were significantly upregulated in wild-type and MT-/- cells exposed to copper. Even though wild-type and mutant cells are undistinguishable in terms of their morphological features and rates of growth, our results show that MT-/- cells do not respond with induction of typical markers of cellular stress under copper excess conditions, as observed in the wild-type cell line, suggesting that the transcription initiation rate or the mRNA stability of stress genes is affected when there is an alteration in the copper store capacity. The functional classification of other up-regulated genes in both cell lines indicates that a large proportion (>80% belong to two major categories: 1 metabolism; and 2 cellular physiological processes, suggesting that at the transcriptional level copper overload induces the expression of genes associated with diverse molecular functions. These results open the possibility to understand how copper homeostasis is being coordinated with other metabolic pathways.