WorldWideScience

Sample records for linac based positron

  1. Investigation of positron moderator materials for electron-linac-based slow positron beamlines

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki; Uedono, Akira

    1998-01-01

    Positron re-emission properties were studied on moderator materials in order to improve the positron moderation system of electron-linac-based intense slow positron beamlines. The re-emitted positron fraction was measured on tungsten, SiC, GaN, SrTiO 3 , and hydrogen-terminated Si with a variable-energy pulsed positron beam. The results suggested that tungsten is the best material for the primary moderator of the positron beamlines while epitaxially grown n-type 6H-SiC is the best material for the secondary moderator. Defect characterization by monoenergetic positron beams and surface characterization by Auger electron spectroscopy were carried out to clarify the mechanism of tungsten moderator degradation induced by high-energy electron irradiation. The characterization experiments revealed that the degradation is due to both radiation-induced vacancy clusters and surface carbon impurities. For the restoration of degraded tungsten moderators, oxygen treatment at ∼900degC is effective. Furthermore, it was found that oxygen at the tungsten surface inhibits positronium formation; as a result, it can increase the positron re-emission fraction. (author)

  2. Generation and application of slow positrons based on a electron LINAC

    International Nuclear Information System (INIS)

    Kurihara, Toshikazu

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses 58 Co, 64 Cu, 11 C, 13 N, 15 O and 18 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihilation excitation and positron reemission microscope are developed. (S.Y.)

  3. Generation and application of slow positrons based on a electron LINAC

    CERN Document Server

    Kurihara, T

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses sup 5 sup 8 Co, sup 6 sup 4 Cu, sup 1 sup 1 C, sup 1 sup 3 N, sup 1 sup 5 O and sup 1 sup 8 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihil...

  4. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Science.gov (United States)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  5. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    International Nuclear Information System (INIS)

    Muranaka, T; Debu, P; Dupre, P; Liszkay, L; Mansoulie, B; Perez, P; Rey, J M; Ruiz, N; Sacquin, Y; Crivelli, P; Gendotti, U; Rubbia, A

    2010-01-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·10 11 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  6. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, T; Debu, P; Dupre, P; Liszkay, L; Mansoulie, B; Perez, P; Rey, J M; Ruiz, N; Sacquin, Y [Irfu, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Crivelli, P; Gendotti, U; Rubbia, A, E-mail: tomoko.muranaka@cea.f [Institut fuer TelichenPhysik, ETHZ, CH-8093 Zuerich (Switzerland)

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5{center_dot}10{sup 11} per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  7. Present status of the low energy linac-based slow positron beam and positronium spectrometer in Saclay

    Science.gov (United States)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Reymond, J.-M.; Ruiz, N.; Sacquin, Y.; Vallage, B.

    2014-04-01

    A new slow positron beamline featuring a large acceptance positronium lifetime spectrometer has been constructed and tested at the linac-based slow positron source at IRFU CEA Saclay, France. The new instrument will be used in the development of a dense positronium target cloud for the GBAR experiment. The GBAR project aims at precise measurement of the gravitational acceleration of antihydrogen in the gravitational field of the Earth. Beyond application in fundamental science, the positron spectrometer will be used in materials research, for testing thin porous films and layers by means of positronium annihilation. The slow positron beamline is being used as a test bench to develop further instrumentation for positron annihilation spectroscopy (Ps time-of-flight, pulsed positron beam). The positron source is built on a low energy linear electron accelerator (linac). The 4.3 MeV electron energy used is well below the photoneutron threshold, making the source a genuine on-off device, without remaining radioactivity. The spectrometer features large BGO (Bismuth Germanate) scintillator detectors, with sufficiently large acceptance to detect all ortho-positronium annihilation lifetime components (annihilation in vacuum and in nanopores).

  8. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  9. Production and application of pulsed slow-positron beam using an electron LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Tetsuo; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Kobayashi, Yoshinori

    1997-03-01

    Slow-positron beam is quite useful for non-destructive material research. At the Electrotechnical Laboratory (ETL), an intense slow positron beam line by exploiting an electron linac has been constructed in order to carry out various experiments on material analysis. The beam line can generates pulsed positron beams of variable energy and of variable pulse period. Many experiments have been carried out so far with the beam line. In this paper, various capability of the intense pulsed positron beam is presented, based on the experience at the ETL, and the prospect for the future is discussed. (author)

  10. Construction and use of an intense positron source at new linac facilities in Germany. Conceptual report

    International Nuclear Information System (INIS)

    Brauer, G.

    2000-07-01

    In this conceptual report the idea to establish an European positron source for applied research (''EPOS'') based on new LINAC facilities in Germany (ELBE/Rossendorf or TTF-DESY/Hamburg) is considered. The report contains not only the outline of obvious applications in atomic physics, materials science and surface physics, but also several new methodical developments which are only possible with an intense positron beam. This opportunity will also allow the use and further development of imaging techniques being of special interest for industrial applications. (orig.)

  11. Beam transport of PF (Positron Factory) 2.5-GeV linac

    International Nuclear Information System (INIS)

    Shiraga, Takahiro; Asami, Akira; Suwada, Tsuyoshi; Kobayashi, Hitoshi.

    1993-01-01

    The beam transport is one of the most important problems in the linac to be used as the injector for the B-FACTORY accelerators. A basic problem of the beam transport is how to correct transport parameters immediately when a klystron becomes off. This is studied with the PF (Positron Factory) 2.5-GeV linac. (author)

  12. The CLIC Positron Capture and Acceleration in the Injector Linac.

    CERN Document Server

    Vivoli, Alessandro; Chehab, Robert; Dadoun, Olivier; Lepercq, Pierre; Poirier, Freddy; Rinolfi, Louis; Strakhovenko, Vladimir; Variola, Alessandro

    2010-01-01

    The baseline of the CLIC study considers non-polarized e+ for the 3 TeV centre of mass energy. The e+ source is based on the hybrid targets scheme, where a crystal-radiator target is followed by an amorphous-converter target. Simulations have been performed from the exit of the amorphous target up to the entrance of the Pre-Damping Ring. Downstream the amorphous target, there is an Adiabatic Matching Device (AMD) followed by a Pre-Injector Linac accelerating the e+ beam up to around 200 MeV. Then a common Injector Linac (for both e+ and e-) accelerates the beams up to 2.86 GeV before being injected into the Pre-Damping Ring. In this note, the characteristics of the AMD and the other sections are described and the beam parameters at the entrance of the Pre-Damping Ring are given.

  13. Production of slow positron beam with small diameter using electron linac in Osaka University

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Yoshihide; Sawada, Junichi; Yamada, Masaki; Maekawa, Masaki; Okuda, Shuichi; Yoshida, Yoichi; Isoyama, Goro; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Yamamoto, Takayoshi

    1997-03-01

    A slow positron facility using an electron linac was designed and constructed. The specifications were mainly decided by numerical calculations. The slow positrons are transported along magnetic field line. The cross sectional size of slow positron beam is 1-2cm and the maximum conversion rate from electron to positron is about 1.5 x 10{sup -6}. This value is about 1/4 of ideal case in our system. Extraction of slow positron beam from magnetic field region was made and preliminary brightness enhancement experiment was also performed. (author)

  14. Development of a stripline-type position monitor for the KEK electron/positron linac

    International Nuclear Information System (INIS)

    Suwada, T.; Urano, T.; Lazos, A.; Kobayashi, H.

    1994-01-01

    A stripline-type beam-position monitor (BPM) is under development at the KEK electron/positron linac. This monitor will be installed in order to easily handle the orbit of a high-current electron beam (∼10 nC/pulse) generating a positron beam in the B-factory. The prototype BPM was tested at a test bench and then in the linac using a single-bunch electron beam. In this report some basic characteristics and the experimental results of the BPM are presented

  15. Positron Options for the Linac-Ring LHeC

    CERN Document Server

    Zimmermann, F; Papaphilippou, Y; Schulte, D; Sievers, P; Rinolfi, L; Variola, A; Zomer, F; Braun, H H; Yakimenko, V; Bulyak, E V; Klein, M

    2012-01-01

    The full physics program of a future Large Hadron electron Collider (LHeC) [1] requires both pe+ and pe− collisions. For a pulsed 140-GeV or an ERL-based 60-GeV Linac-Ring LHeC this implies a challenging rate of, respectively, about 1.8 × 1015 or 4.4 × 1016 e+/s at the collision point, which is about 300 or 7000 times the rate previously obtained, at the SLAC Linear Collider (SLC). We consider providing this e+ rate through a combination of measures: (1) Reducing the required production rate from the e+ target through colliding e+ (and the LHC protons) several times before deceleration, by reusing the e+ over several acceleration/deceleration cycles, and by cooling them, e.g., with a compact tri-ring scheme or a conventional damping ring in the SPS tunnel. (2) Using an advanced target, e.g., W-granules, rotating wheel, slicedrod converter, or liquid metal jet, for converting gamma rays to e+. (3) Selecting the most powerful of several proposed gamma sources, namely Compton ERL, Compton storage ring, coher...

  16. A test beam upgrade based on the BEPC-LINAC

    International Nuclear Information System (INIS)

    Li Jiacai; Wu Yuanming; Cui Xiangzong; Zhang Liangsheng; Zhou Baoqing; Liu Zhengquan; Zhang Shaoping; Sun Changchun; Zhang Zhuxiang; Zhang Caidi; Zheng Linsheng; Liu Shixing; Shen Ji; Yin Zejie; Zhang Yongming; Chen Ziyu

    2004-01-01

    A total of three beam lines, E1, E2 and E3 have based on the LINAC of BEPC. The E1 beam is to be used for intense slow-positron facility. The E2 is a primary positron or electron beam with an energy of 1.3-1.5 GeV. The E3 is a secondary electron or pion test beam with a momentum can be adjustable continuously. The position accuracy of a detected particle is 0.2-0.4 mm with an event rate of 3 - 4 Hz. This beam has been successfully used for some detectors beam test. (author)

  17. Travelling wave accelerating structure design for TESLA positron injector linac

    CERN Document Server

    Jin, K; Zhou, F; Flöttmann, K

    2000-01-01

    A modified cup-like TW accelerating structure for TESLA Positron Pre-Accelerator (PPA) is designed by optimizing the structure geometry and by changing the iris thickness cell by cell in a section . This structure has high shunt-impedance and a large iris radius to meet with the requirements of high gradient and large transverse acceptance. The beam dynamics in the structure with the optimum solenoid focus field are studied. A satisfactory positron beam transmission and the beam performance at the PPA output have been obtained. In this paper the accelerating structure design is described in detail and the results are presented.

  18. Dynamics of positron beam from a convertor target while beam additional accelerating in a travelling wave electron linac

    International Nuclear Information System (INIS)

    Dzhilavyan, L.Z.; Karev, A.I.

    1981-01-01

    The results of experimental and theoretical investigations of the dynamics of a positron beam produced in a tantalum converter of the 6 mm thickness in the process of beam reacceleration in an electron linac (ELA) are presented. The mean finite positron currents and their dependences on the accelerating electric field are measured. The energy spectra of accelerated positrons are given. A good agreement between the calculated and experimental data is shown. As a result of investigations some peculiarities of positron production on the ELA intersection targets, which are defined by both the initial positron beam parameters from the converter and the dynamics of positron reacceleration in the ELA [ru

  19. Linac based radiosurgery and stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2008-01-01

    The following topics were discussed: Definition of stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT); Stereo market; Indications for SRS/SRT; History of linac-based SRS/SRT; Variety of systems; QA for SRS; Localization; and Imaging. (P.A.)

  20. Proton linac for hospital-based fast neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab

  1. Magnetron based high energy S-band linac system

    International Nuclear Information System (INIS)

    Tiwari, T.; Krishnan, R.; Phatangare, Manoj

    2012-01-01

    This paper deals with the study of magnetron based high energy S-band linear accelerator (linac) system operating at spot frequency 2.998 GHz. The energy and dose are two important parameters of linac system which depend on input power of microwave source and length of linac tube. Here the author has studied how these parameters can be improved for side coupled standing wave S-band linac system

  2. Positron Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Sohei; Sunaga, Hiromi; Kaneko, Hirohisa; Kawasuso, Atsuo; Masuno, Shin-ichi; Takizawa, Haruki; Yotsumoto, Keiichi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    We have started drafting a construction program for the Positron Factory, in which linac-based intense monoenergetic positron beams are planned to be applied for materials science, biotechnology and basic physics and chemistry. A technical survey study confirmed the feasibility of manufacturing a dedicated electron linac of 100 kW class with a beam energy of 100 MeV, which will produce a world-highest monoenergetic positron beam of more than 10{sup 10}/sec in intensity. A self-driven rotating converter (electrons to positrons and photons) suitable for the high power electron beam was devised and successfully tested. The practicability of simultaneous extraction of multi-channel monoenergetic positron beams with multiple moderator assemblies, which had been originated on the basis of a Monte Carlo simulation, was demonstrated by an experiment using an electron linac. An efficient moderator structure, which is composed of honeycomb-like assembled moderator foils and reflectors, is also proposed. (author)

  3. Calibration of an advanced photon source linac beam position monitor used for positron position measurement of a beam containing both positrons and electrons

    International Nuclear Information System (INIS)

    Sereno, Nicholas S.

    1998-01-01

    The Advanced Photon Source (APS) linac beam position monitors can be used to monitor the position of a beam containing both positrons and electrons. To accomplish this task, both the signal at the bunching frequency of 2856 MHz and the signal at 2x2856 MHz are acquired and processed for each stripline. The positron beam position is obtained by forming a linear combination of both 2856 and 5712 MHz signals for each stripline and then performing the standard difference over sum computation. The required linear combination of the 2856 and 5712 MHz signals depends on the electrical calibration of each stripline/cable combination. In this paper, the calibration constants for both 2856 MHz and 5712 MHz signals for each stripline are determined using a pure beam of electrons. The calibration constants are obtained by measuring the 2856 and 5712 MHz stripline signals at various electron beam currents and positions. Finally, the calibration constants measured using electrons are used to determine positron beam position for the mixed beam case

  4. Design and construction of an injector for an electron/positron Linac optimized for positron yield and minimal particle loss

    International Nuclear Information System (INIS)

    Liebig, Clemens

    2014-11-01

    The Linac II is the first part of the accelerator chain supplying PETRA III. Since the start of PETRA III operation, highest reliability is demanded and several updates are required. Part of these is the new injection system. Beam loss at high energies and the associated activation have to be avoided. At energies above 80 MeV particle loss of 20% occurred. Additionally, an alternative to the old gun, operating in an oil bath and for which cathode preparation is not available, is required. The new system will be commissioned while the old bombarder gun injector is kept for redundancy. In order to obtain the space for joining the beam lines of both electron sources, one accelerator section must be removed. Electron pulses of 6 A beam current and 2 to 30 ns length are provided by the new injection system. The gun uses a thermionic cathode, 100 kV voltage for acceleration and is built as a triode. Longitudinal focusing is performed by a prebuncher and a hybrid buncher structure, both operating at 3 GHz. The buncher is a traveling wave structure to which a short cell has been added, operated in π mode with a standing wave. That way, better electron capture is achieved. A magnetic chicane serves for energy filtering. The design of the injection system, as well as the old injector, have been optimized in simulations and transmission in the linac has been compared. Possible reasons for beam loss are beam loading and misaligned components. For the bombarder gun particle tracking, a loss of 1% at high energies was observed due to beam loading. The additional beam optics and steering options in the beam line allow for compensation of the misalignment of preceding and succeeding components. The complete new injection system has been operated in a test stand and has undergone extensive tests. After successive enhancement of technically critical components, reliable operation was possible. Investigations of the electron capture and bunching procedure have been carried out by

  5. Bremsstrahlung Based Positron Annihilation Spectroscopy for Material Defect Analysis

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, F.; Kwofie, J.; Lancaster, G.; Jones, J.L.

    2003-01-01

    The Idaho Accelerator Center (IAC) has developed new techniques for Positron Annihilation Spectroscopy (PAS) using highly penetrating γ-rays to create positrons inside the material via pair production. γ-Ray induced positron annihilation spectroscopy can provide highly penetrating probes for material characterization and defect analysis. Bremsstrahlung beams from small, pulsed electron Linacs (6 MeV) have been used to bombard the materials to generate positrons, which annihilate with the material electrons emitting 511 keV radiation. We have also synchronized bremsstrahlung pulses with laser irradiation pulses to study dynamic structural changes in material. In addition, we have developed another method using (p,γ) reactions from a 2 MeV proton beam, which induce coincident γ-rays to perform positron life-time spectroscopy. We have showed the feasibility of extending PAS into thick samples and a wide variety of materials and industrial applications

  6. An inexpensive PC-based ion linac control system

    International Nuclear Information System (INIS)

    Hamm, M.E.; Potter, J.M.

    1991-01-01

    A turn-key PC-based control system has been developed for the AccSys line of compact ion linear accelerators and rf power amplifiers. The control interface is based on the DZERO Rack Monitor Module, developed at Fermi National Accelerator Laboratory, communicating with a Ballard Technology MIL-STD-1553B controller board in a 286 or 386 personal computer. This cost effective and easy to operate control system features real-time control and monitoring of the linac/rf amplifier and can be customized for automatic start-up and unattended operation

  7. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  8. Beam-based alignment technique for the SLC [Stanford Linear Collider] linac

    International Nuclear Information System (INIS)

    Adolphsen, C.E.; Lavine, T.L.; Atwood, W.B.

    1989-03-01

    Misalignment of quadrupole magnets and beam position monitors (BPMs) in the linac of the SLAC Linear Collider (SLC) cause the electron and positron beams to be steered off-center in the disk-loaded waveguide accelerator structures. Off-center beams produce wakefields which limit the SLC performance at high beam intensities by causing emittance growth. Here, we present a general method for simultaneously determining quadrupole magnet and BPM offsets using beam trajectory measurements. Results from the application of the method to the SLC linac are described. The alignment precision achieved is approximately 100 μm, which is significantly better than that obtained using optical surveying techniques. 2 refs., 4 figs

  9. Positron and positronium annihilation in silica-based thin films studied by a pulsed positron beam

    International Nuclear Information System (INIS)

    Suzuki, R.; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Shioya, Y.; Ishimaru, T.

    2003-01-01

    Positron and positronium annihilation in silica-based thin films has been investigated by means of measurement techniques with a monoenergetic pulsed positron beam. The age-momentum correlation study revealed that positron annihilation in thermally grown SiO 2 is basically the same as that in bulk amorphous SiO 2 while o-Ps in the PECVD grown SiCOH film predominantly annihilate with electrons of C and H at the microvoid surfaces. We also discuss time-dependent three-gamma annihilation in porous low-k films by two-dimensional positron annihilation lifetime spectroscopy

  10. Study of tungsten based positron moderators

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México DF (Mexico); DuBois, R.D. [Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-07-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies.

  11. Study of tungsten based positron moderators

    International Nuclear Information System (INIS)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C.; DuBois, R.D.

    2015-01-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies

  12. Tutorial on beam-based feedback systems for linacs

    International Nuclear Information System (INIS)

    Hendrickson, L.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Ross, M.; Sass, R.; Shoaee, H.

    1994-08-01

    A generalized fast feedback system stabilizes beams in the SLC. It performs measurements and modifies actuator settings to control beam states such as position, angle, energy and intensity on a pulse to pulse basis. An adaptive cascade feature allows communication between a series of linac loops, avoiding overcorrection problems. The system is based on the state space formalism of digital control theory. Due to the database-driven design, new loops are added without requiring software modifications. Recent enhancements support the monitoring and control of nonlinear states such as beam phase using excitation techniques. In over three years of operation, the feedback system has grown from its original eight loops to more than fifty loops, and it has been invaluable in stabilizing the machine

  13. Positron annihilation induced Auger electron spectroscopy and its implementation at accelerator based low energy positron factories

    International Nuclear Information System (INIS)

    Weiss, A.; Koeymen, A.R.; Mehl, D.; Lee, K.H.; Yang Gimo; Jensen, K.

    1991-01-01

    Positron annihilation induced auger electron spectroscopy (PAES) makes use of a beam of low energy positrons to excite Auger transitions by annihilating core electrons. The large secondary electron background usually present in Auger spectra can be eliminated by setting the positron beam energy well below the Auger electron energy. This allows true Auger lineshapes to be obtained. Further, because the positron is localized just outside the surface before it annihilates, PAES is extremely sensitive to the topmost atomic layer. Recent PAES results obtained at the University of Texas at Arlington will be presented. In addition, the use of high resolution energy analyzers with multichannel particle detection schemes to prevent problems due to the high data rates associated with accelerator based positron beams will be discussed. (orig.)

  14. A linac-based stereotactic irradiation technique of uveal melanoma

    International Nuclear Information System (INIS)

    Dieckmann, Karin; Bogner, Joachim; Georg, Dietmar; Zehetmayer, Martin; Kren, Gerhard; Poetter, Richard

    2001-01-01

    Purpose: To describe a stereotactic irradiation technique for uveal melanomas performed at a linac, based on a non-invasive eye fixation and eye monitoring system. Methods: For eye immobilization a light source system is integrated in a standard stereotactic mask system in front of the healthy eye: During treatment preparation (computed tomography/magnetic resonance imaging) as well as for treatment delivery, patients are instructed to gaze at the fixation light source. A mini-video camera monitors the pupil center position of the diseased eye. For treatment planning and beam delivery standard stereotactic radiotherapy equipment is used. If the pupil center deviation from a predefined 'zero-position' exceeds 1 mm (for more than 2 s), treatment delivery is interrupted. Between 1996 and 1999 60 patients with uveal melanomas, where (i) tumor height exceeded 7 mm, or (ii) tumor height was more than 3 mm, and the central tumor distance to the optic disc and/or the macula was less than 3 mm, have been treated. A total dose of 60 or 70 Gy has been given in 5 fractions within 10 days. Results: The repositioning accuracy in the mask system is 0.47±0.36 mm in rostral-occipital direction, 0.75±0.52 mm laterally, and 1.12±0.96 mm in vertical direction. An eye movement analysis performed for 23 patients shows a pupil center deviation from the 'zero' position<1 mm in 91% of all cases investigated. In a theoretical analysis, pupil center deviations are correlated with GTV 'movements'. For a pupil center deviation of 1 mm (rotation of the globe of 5 degree sign ) the GTV is still encompassed by the 80% isodose in 94%. Conclusion: For treatments of uveal melanomas, linac-based stereotactic radiotherapy combined with a non-invasive eye immobilization and monitoring system represents a feasible, accurate and reproducible method. Besides considerable technical requirements, the complexity of the treatment technique demands an interdisciplinary team continuously dedicated to this

  15. On the e-linac-based neutron yield

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.B.

    2010-01-01

    We treat neutron generating in high atomic number materials due to the photonuclear reactions induced by the Bremsstrahlung of an electron beam produced by linear electron accelerator (e-linac). The dependence of neutron yield on the electron energy and the irradiated sample size is considered for various sample materials. The calculations are performed without resort to the so-called 'numerical Monte Carlo simulation'. The acquired neutron yields are well correlated with the data asserted in investigations performed at a number of the e-linac-driven neutron sources

  16. High-brightness electron guns for linac-based light sources

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    Most proposed linac-based light sources, such as single-pass free-electron lasers and energy-recovery-linacs, require very high-brightness electron beams in order to achieve their design performance. These beam requirements must be achieved not on an occasional basis, but rather must be met by every bunch produced by the source over extended periods of time. It is widely assumed that the beam source will be a photocathode electron gun; the selection of accelerator technique (e.g., dc or rf) for the gun is more dependent on the application.The current state of the art of electron beam production is adequate but not ideal for the first generation of linac-based light sources, such as the Linac Coherent Light Source (LCLS) x-ray free-electron laser (X-FEL). For the next generation of linac-based light sources, an order of magnitude reduction in the transverse electron beam emittance is required to significantly reduce the cost of the facility. This is beyond the present state of the art, given the other beam properties that must be maintained. The requirements for current and future linac-based light source beam sources are presented here, along with a review of the present state of the art. A discussion of potential paths towards meeting future needs is presented at the conclusion.

  17. Linac based photofission inspection system employing novel detection concepts

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, John, E-mail: jstevenson@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Gozani, Tsahi, E-mail: tgozani@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Elsalim, Mashal; Condron, Cathie; Brown, Craig [Rapiscan Laboratories, Inc., 520 Almanor Avenue, Sunnyvale, CA 94085 (United States)

    2011-10-01

    Rapiscan Systems is developing a LINAC based cargo inspection system for detection of special nuclear material (SNM) in cargo containers. The system, called Photofission Based Alarm Resolution (PBAR) is being developed under a DHD/DNDO Advanced Technology Demonstration (ATD) program. The PBAR system is based on the Rapiscan Eagle P9000 X-ray system, which is a portal system with a commercial 9 MeV LINAC X-ray source. For the purposes of the DNDO ATD program, a conveyor system was installed in the portal to allow scanning and precise positioning of 20 ft ISO cargo containers. The system uses a two step inspection process. In the first step, the basic scan, the container is quickly and completely inspected using two independent radiography arrays: the conventional primary array with high spatial resolution and a lower resolution spectroscopic array employing the novel Z-Spec method. The primary array uses cadmium tungstate (CdWO{sub 4}) detectors with conventional current mode readouts using photodiodes. The Z-Spec array uses small plastic scintillators capable of performing very fast (up to 10{sup 8} cps) gamma-ray spectroscopy. The two radiography arrays are used to locate high-Z objects in the image such as lead, tungsten, uranium, which could be potential shielding materials as well as SNM itself. In the current system, the Z-Spec works by measuring the energy spectrum of transmitted X-rays. For high-Z materials the higher end of the energy spectrum is more attenuated than for low-Z materials and thus has a lower mean energy and a narrower width than low- and medium-Z materials. The second step in the inspection process is the direct scan or alarm clearing scan. In this step, areas of the container image, which were identified as high Z, are re-inspected. This is done by precisely repositioning the container to the location of the high-Z object and performing a stationary irradiation of the area with X-ray beam. Since there are a large number of photons in the 9

  18. Linac based photofission inspection system employing novel detection concepts

    International Nuclear Information System (INIS)

    Stevenson, John; Gozani, Tsahi; Elsalim, Mashal; Condron, Cathie; Brown, Craig

    2011-01-01

    Rapiscan Systems is developing a LINAC based cargo inspection system for detection of special nuclear material (SNM) in cargo containers. The system, called Photofission Based Alarm Resolution (PBAR) is being developed under a DHD/DNDO Advanced Technology Demonstration (ATD) program. The PBAR system is based on the Rapiscan Eagle P9000 X-ray system, which is a portal system with a commercial 9 MeV LINAC X-ray source. For the purposes of the DNDO ATD program, a conveyor system was installed in the portal to allow scanning and precise positioning of 20 ft ISO cargo containers. The system uses a two step inspection process. In the first step, the basic scan, the container is quickly and completely inspected using two independent radiography arrays: the conventional primary array with high spatial resolution and a lower resolution spectroscopic array employing the novel Z-Spec method. The primary array uses cadmium tungstate (CdWO 4 ) detectors with conventional current mode readouts using photodiodes. The Z-Spec array uses small plastic scintillators capable of performing very fast (up to 10 8 cps) gamma-ray spectroscopy. The two radiography arrays are used to locate high-Z objects in the image such as lead, tungsten, uranium, which could be potential shielding materials as well as SNM itself. In the current system, the Z-Spec works by measuring the energy spectrum of transmitted X-rays. For high-Z materials the higher end of the energy spectrum is more attenuated than for low-Z materials and thus has a lower mean energy and a narrower width than low- and medium-Z materials. The second step in the inspection process is the direct scan or alarm clearing scan. In this step, areas of the container image, which were identified as high Z, are re-inspected. This is done by precisely repositioning the container to the location of the high-Z object and performing a stationary irradiation of the area with X-ray beam. Since there are a large number of photons in the 9 MV

  19. Installation of the Gbar LINAC

    CERN Multimedia

    Maximilien, Brice

    2017-01-01

    Installation of the GBAR linac in its shielding bunker. The electrons accelerated to 10 MeV toward a target will produce the positrons that are necessary to form anti hydrogen with the antiprotons coming from the ELENA decelerator.

  20. Present status of positron factory project

    International Nuclear Information System (INIS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Tachibana, H.; Yotsumoto, K.; Okamoto, J.

    1992-01-01

    The Japan Atomic Energy Research Institute, JAERI, has been promoting design studies for the 'Positron Factory', in which linac-based intense monoenergetic positron beams are planned to be applied to advanced materials characterization and new fields of basic research. A tentative goal of the beam intensity is 10 10 s -1 , which is assumed to be realized with an electron linac of 100 kW class with a beam energy around 100 to 150 MeV. We performed a technical survey on the dedicated linac. It confirmed technical feasibility of manufacturing the state-of-the-art machine. We have been carrying out a design study of the target. A new concept of the target design is proposed, which is expected to supply intense slow positron beams simultaneously for multiple beam channels, on the basis of Monte Carlo simulations. (author)

  1. IRLED-based patient localization for linac radiosurgery

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Bova, Francis J.; Friedman, William A.; Buatti, John M.; Moore, Russell D.; Mendenhall, William M.

    1998-01-01

    Purpose: Currently, precise stereotactic radiosurgery delivery is possible with the Gamma Knife or floor-stand linear accelerator (linac) systems. Couch-mounted linac radiosurgery systems, while less expensive and more flexible than other radiosurgery delivery systems, have not demonstrated a comparable level of precision. This article reports on the development and testing of an optically guided positioning system designed to improve the precision of patient localization in couch-mounted linac radiosurgery systems. Methods and Materials: The optically guided positioning system relies on detection of infrared light-emitting diodes (IRLEDs) attached to a standard target positioner. The IRLEDs are monitored by a commercially available camera system that is interfaced to a personal computer. An IRLED reference is established at the center of stereotactic space, and the computer reports the current position of the IRLEDs relative to this reference position. Using this readout from the computer, the correct stereotactic coordinate can be set directly. Results: Bench testing was performed to compare the accuracy of the optically guided system with that of a floor-stand system, that can be considered an absolute reference. This testing showed that coordinate localization using the IRLED system to track translations agreed with the absolute to within 0.1 ± 0.1 mm. As rotations for noncoplanar couch angles were included, the inaccuracy was increased to 0.2 ± 0.1 mm. Conclusions: IRLED technology improves the accuracy of patient localization relative to the linac isocenter in comparison with conventional couch-mounted systems. Further, the patient's position can be monitored in real time as the couch is rotated for all treatment angles. Thus, any errors introduced by couch inaccuracies can be detected and corrected

  2. Planned Positron Factory project

    International Nuclear Information System (INIS)

    Okada, Sohei

    1990-01-01

    The Japan Atomic Energy Research Institute, JAERI, has started, drafting a construction plan for the 'Positron Factory', in which intense energy-controllable monoenergetic positron beams are produced from pair-production reactions caused by high-energy electrons from a linac. The JAERI organized a planning committee to provide a basic picture for the Positron Factory. This article presents an overview of the interactions of positrons, intense positron sources and the research program and facilities planned for the project. The interactions of positrons and intense positron sources are discussed focusing on major characteristics of positrons in different energy ranges. The research program for the Positron Factory is then outlined, focusing on advanced positron annihilation techniques, positron spectroscopy (diffraction, scattering, channeling, microscopy), basic positron physics (exotic particle science), and positron beam technology. Discussion is also made of facilities required for the Positron Factory. (N.K.)

  3. Status and performance of PF injector linac

    International Nuclear Information System (INIS)

    Sato, Isamu

    1994-01-01

    PF injector linac has been improved on a buncher section for accelerating of intense electron beam, and reinforced a focusing system of the positron generator linac for the expansion of phase space. In this presentation, I shall report present status and performance of PF injector linac, and discuss its upgrade program for B-factory project. (author)

  4. Undulator-based production of polarized positrons

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G. [Tel-Aviv Univ. (Israel); Barley, J. [Cornell Univ., Ithaca, NY (United States); Batygin, Y. [SLAC, Menlo Park, CA (US)] (and others)

    2009-05-15

    Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9 MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a one-meter-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6 GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5 MeV. In addition, the electron polarization has been determined at 6.7MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of GEANT4 that includes the dominant polarization-dependent interactions of electrons, positrons, and photons with matter. The measurements agree with calculations, corresponding to 80% polarization for positrons near 6 MeV and 90% for electrons near 7 MeV. (orig.)

  5. Development of positron diffraction and holography at LLNL

    International Nuclear Information System (INIS)

    Hamza, A.; Asoka-Kumar, P.; Stoeffl, W.; Howell, R.; Miller, D.; Denison, A.

    2003-01-01

    A low-energy positron diffraction and holography spectrometer is currently being constructed at the Lawrence Livermore National Laboratory (LLNL) to study surfaces and adsorbed structures. This instrument will operate in conjunction with the LLNL intense positron beam produced by the 100 MeV LINAC allowing data to be acquired in minutes rather than days. Positron diffraction possesses certain advantages over electron diffraction which are discussed. Details of the instrument based on that of low-energy electron diffraction are described

  6. Electron Linacs for High Energy Physics

    International Nuclear Information System (INIS)

    Wilson, Perry B.

    2011-01-01

    The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

  7. Evaluation of radiosurgery techniques–Cone-based linac radiosurgery vs tomotherapy-based radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Ho Yin, E-mail: hoyinyip@yahoo.com.hk [Department of Radiotherapy, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong (China); Mui, Wing Lun A.; Lee, Joseph W.Y.; Fung, Winky Wing Ki; Chan, Jocelyn M.T.; Chiu, G. [Department of Radiotherapy, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong (China); Law, Maria Y.Y. [Medical Physics and Research Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong (China)

    2013-07-01

    Performances of radiosurgery of intracranial lesions between cone-based Linac system and Tomotherapy-based system were compared in terms of dosimetry and time. Twelve patients with single intracranial lesion treated with cone-based Linac radiosurgery system from 2005 to 2009 were replanned for Tomotherapy-based radiosurgery treatment. The conformity index, homogeneity index (HI), and gradient score index (GSI) of each case was calculated. The Wilcoxon matched-pair test was used to compare the 3 indices between both systems. The cases with regular target (n = 6) and those with irregular target (n = 6) were further analyzed separately. The estimated treatment time between both systems was also compared. Significant differences were found in HI (p = 0.05) and in GSI (p = 0.03) for the whole group. Cone-based radiosurgery was better in GSI whereas Tomotherapy-based radiosurgery was better in HI. Cone-based radiosurgery was better in conformity index (p = 0.03) and GSI (p = 0.03) for regular targets, whereas Tomotherapy-based radiosurgery system performed significantly better in HI (p = 0.03) for irregular targets. The estimated total treatment time for Tomotherapy-based radiosurgery ranged from 24 minutes to 35 minutes, including 15 minutes of pretreatment megavoltage computed tomography (MVCT) and image registration, whereas that for cone-based radiosurgery ranged from 15 minutes for 1 isocenter to 75 minutes for 5 isocenters. As a rule of thumb, Tomotherapy-based radiosurgery system should be the first-line treatment for irregular lesions because of better dose homogeneity and shorter treatment time. Cone-based Linac radiosurgery system should be the treatment of choice for regular targets because of the better dose conformity, rapid dose fall-off, and reasonable treatment time.

  8. Evaluation of radiosurgery techniques–Cone-based linac radiosurgery vs tomotherapy-based radiosurgery

    International Nuclear Information System (INIS)

    Yip, Ho Yin; Mui, Wing Lun A.; Lee, Joseph W.Y.; Fung, Winky Wing Ki; Chan, Jocelyn M.T.; Chiu, G.; Law, Maria Y.Y.

    2013-01-01

    Performances of radiosurgery of intracranial lesions between cone-based Linac system and Tomotherapy-based system were compared in terms of dosimetry and time. Twelve patients with single intracranial lesion treated with cone-based Linac radiosurgery system from 2005 to 2009 were replanned for Tomotherapy-based radiosurgery treatment. The conformity index, homogeneity index (HI), and gradient score index (GSI) of each case was calculated. The Wilcoxon matched-pair test was used to compare the 3 indices between both systems. The cases with regular target (n = 6) and those with irregular target (n = 6) were further analyzed separately. The estimated treatment time between both systems was also compared. Significant differences were found in HI (p = 0.05) and in GSI (p = 0.03) for the whole group. Cone-based radiosurgery was better in GSI whereas Tomotherapy-based radiosurgery was better in HI. Cone-based radiosurgery was better in conformity index (p = 0.03) and GSI (p = 0.03) for regular targets, whereas Tomotherapy-based radiosurgery system performed significantly better in HI (p = 0.03) for irregular targets. The estimated total treatment time for Tomotherapy-based radiosurgery ranged from 24 minutes to 35 minutes, including 15 minutes of pretreatment megavoltage computed tomography (MVCT) and image registration, whereas that for cone-based radiosurgery ranged from 15 minutes for 1 isocenter to 75 minutes for 5 isocenters. As a rule of thumb, Tomotherapy-based radiosurgery system should be the first-line treatment for irregular lesions because of better dose homogeneity and shorter treatment time. Cone-based Linac radiosurgery system should be the treatment of choice for regular targets because of the better dose conformity, rapid dose fall-off, and reasonable treatment time

  9. Positron annihilation study on ZnO-based scintillating glasses

    Science.gov (United States)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  10. 7-MeV electron LINAC based pulse radiolysis facility at RPCD, BARC

    International Nuclear Information System (INIS)

    Naik, C.B.; Nadkarni, S.A.; Toley, M.A.; Shinde, S.J.; Naik, P.D.

    2017-01-01

    7-MeV electron LINAC based pulse radiolysis facility is operational in Chemistry Group of BARC since 1986. The Accelerator is housed in B-132 room in basement of Modular Labs. BARC Accelerator was procured from Radiation Dynamics Inc. UK and its detection system was indigenously developed

  11. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V. V.; Oepts, D.; van der Wiel, M. J.

    1997-01-01

    A possible way to carry out two-color IR+VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  12. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V.V.; Oepts, W.; Wiel, van der M.J.

    1997-01-01

    A possible way to carry out two-color IR + VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  13. Linacs for medical isotope production

    International Nuclear Information System (INIS)

    Pramudita, A.

    2012-01-01

    This paper reviews efforts on using high energy (25-30 MeV) and high power (10-20 kW) electron linacs and lower energy (7 MeV) proton linacs for medical radioisotope production. Using high energy x-rays from the electron linacs, PET (Positron Emission Tomography) radioisotopes are produced through photonuclear reactions such as 19 F(γ,n) 18 F, which also allow production of other PET radionuclides 11 C, 13 N, and 15 O. Other mostly used medical radionuclides 99m Tc can also be obtained by using the electron linacs, through photofission or photonuclear reactions. Proton linacs for PET have also been recently developed and the product has been available in the market since 2005. The linacs have been tested for 18 F production. As a proton accelerator, the target systems and nuclear reactions are similar to the ones used in PET cyclotrons. (author)

  14. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    International Nuclear Information System (INIS)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Parmigiani, F.; Placidi, M.; Pirkl, W.; Rimmer, R. A.; Wang, S.

    2003-01-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility

  15. Positron energy distributions from a hybrid positron source based on channeling radiation

    International Nuclear Information System (INIS)

    Azadegan, B.; Mahdipour, A.; Dabagov, S.B.; Wagner, W.

    2013-01-01

    A hybrid positron source which is based on the generation of channeling radiation by relativistic electrons channeled along different crystallographic planes and axes of a tungsten single crystal and subsequent conversion of radiation into e + e − -pairs in an amorphous tungsten target is described. The photon spectra of channeling radiation are calculated using the Doyle–Turner approximation for the continuum potentials and classical equations of motion for channeled particles to obtain their trajectories, velocities and accelerations. The spectral-angular distributions of channeling radiation are found applying classical electrodynamics. Finally, the conversion of radiation into e + e − -pairs and the energy distributions of positrons are simulated using the GEANT4 package

  16. Production And Characterization Of Tungsten-Based Positron Moderators

    International Nuclear Information System (INIS)

    Lucio, O. G. de; Morales, J. G.; Cruz-Manjarrez, H.

    2011-01-01

    Experiments of interest in Atomic Physics require production of well-defined low-energy positron beams through a moderation process of high-energy positrons, which can be produced by either the use of a radioactive source or by accelerator based pair production process. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency, high work function and relatively low cost. In this work we present different methods to produce tungsten-based candidate moderators in a variety of shapes. We also present results from characterizing these candidate moderators by ion beam analysis and microscopy techniques.

  17. Present and next steps of the JAERI superconducting rf linac based FEL program

    International Nuclear Information System (INIS)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  18. Design and simulation of an optimized e-linac based neutron source for BNCT research

    International Nuclear Information System (INIS)

    Durisi, E.; Alikaniotis, K.; Borla, O.; Bragato, F.; Costa, M.; Giannini, G.; Monti, V.; Visca, L.; Vivaldo, G.; Zanini, A.

    2015-01-01

    The paper is focused on the study of a novel photo-neutron source for BNCT preclinical research based on medical electron Linacs. Previous studies by the authors already demonstrated the possibility to obtain a mixed thermal and epithermal neutron flux of the order of 10"7 cm"−"2 s"−"1. This paper investigates possible Linac’s modifications and a new photo-converter design to rise the neutron flux above 5 10"7 cm"−"2 s"−"1, also reducing the gamma contamination. - Highlights: • Proposal of a mixed thermal and epithermal (named hyperthermal) neutron source based on medical high energy electron Linac. • Photo-neutron production via Giant Dipole Resonance on high Z materials. • MCNP4B-GN simulations to design the photo-converter geometry maximizing the hyperthermal neutron flux and minimizing the fast neutron and gamma contaminations. Hyperthermal neutron field suitable for BNCT preclinical research.

  19. TOP LINAC design; Progetto del TOP LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L; Ronsivalle, C; Vignati, A [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita`, ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given.

  20. Present status and future directions of the JAERI superconducting RF linac-based FEL

    International Nuclear Information System (INIS)

    Minehara, EJ.; Yamauchi, T.; Sugimori, M.; Sawamura, M.; Hajima, R.; Nagai, R.; Kikuzawa, N.; Nishimori, N.; Shizuma, T.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 2.34kW FEL light and l00kW electron beam output in quasi continuous wave operation in February 2000. Twice larger output than the present program goal of 1kW was achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 2 years program goal is the 100kW class FEL light and a few MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual and engineering design options needed for such a very high power operation will be discussed to improve and to upgrade the existing facility. Finally, several applications, table-top superconducting rf linac based FELs, and an X-ray FEL R and D will be discussed as a next-five years program at JAERI-FEL laboratory. (author)

  1. A photocathode rf gun design for a mm-wave linac-based FEL

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  2. A photocathode rf gun design for a mm-wave linac-based FEL

    International Nuclear Information System (INIS)

    Nassiri, A.; Berenc, T.; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-01-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths (∼300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell π-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure

  3. Positron annihilation study on ZnO-based scintillating glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nie Jiaxiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Yu Runsheng; Wang Baoyi [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Ou Yuwen [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Zhong Yurong [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Xia Fang [School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Chen Guorong, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China)

    2009-04-15

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO{sub 2}-45ZnO-xBaF{sub 2} (x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components {tau}{sub 1}, {tau}{sub 2}, and {tau}{sub 3} are {approx}0.23 ns, {approx}0.45 ns, and {approx}1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF{sub 2} concentration from 5 mol% to 10 mol%, then decreases as BaF{sub 2} further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF{sub 2} contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  4. Diagnostic expert system in the PF LINAC

    International Nuclear Information System (INIS)

    Abe, Isamu; Nakahara, Kazuo; Kitamura, Masaharu.

    1992-01-01

    A prototype diagnostic expert system (ES) was developed for the Photon Factory 2.5-GeV electron/positron LINAC injector system. The ES has been on-lined with the conventional linac computer network for receiving real data. This project was undertaken in an attempt to reduce the linac operator's mental workload, diagnosis duties, and to explore Artificial Intelligence (AI) technologies. The outlook for ES and its problems, and what has been achieved are outlined in this presentation. (author)

  5. Present status of the ETL LINAC facility

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki

    1993-01-01

    The ETL LINAC has been operated for the beam injection to the storage rings NIJI-II, III, IV, and TERAS, and for the generation of an intense slow positron beam. The status of the ETL LINAC on the operations, the maintenances, and the improvements is described. (author)

  6. Beam-based Feedback Simulations for the NLC Linac

    International Nuclear Information System (INIS)

    Hendrickson, Linda

    2000-01-01

    Extensive beam-based feedback systems are planned as an integral part of the Next Linear Collider (NLC) control system. Wakefield effects are a significant influence on the feedback design, imposing both architectural and algorithmic constraints. Studies are in progress to assure the optimal selection of devices and to refine and confirm the algorithms for the system design. The authors show the results of initial simulations, along with evaluations of system response for various conditions of ground motion and other operational disturbances

  7. KEK-IMSS Slow Positron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, T; Wada, K; Yagishita, A; Kosuge, T; Saito, Y; Kurihara, T; Kikuchi, T; Shirakawa, A; Sanami, T; Ikeda, M; Ohsawa, S; Kakihara, K; Shidara, T, E-mail: toshio.hyodo@kek.jp [High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps{sup -}). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a {sup 22}Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  8. Model-based expert systems for linac computer controls

    International Nuclear Information System (INIS)

    Lee, M.J.

    1988-09-01

    The use of machine modeling and beam simulation programs for the control of accelerator operation has become standard practice. The success of a model-based control operation depends on how the parameter to be controlled is measured, how the measured data is analyzed, how the result of the analysis is interpreted, and how a solution is implemented. There is considerable interest in applying expert systems technology that can automate all of these processes. The design of an expert system to control the beam trajectory in linear accelerators will be discussed as an illustration of this approach. 4 figs., 1 tab

  9. BEPC II positron source

    International Nuclear Information System (INIS)

    Pei Guoxi; Sun Yaolin; Liu Jintong; Chi Yunlong; Liu Yucheng; Liu Nianzong

    2006-01-01

    BEPC II-an upgrade project of the Beijing Electron Positron Collider (BEPC) is a factory type of e + e - collider. The fundamental requirements for its injector linac are the beam energy of 1.89 GeV for on-energy injection and a 40 mA positron beam current at the linac end with a low beam emittance of 1.6 μm and a low energy spread of ±0.5% so as to guarantee a higher injection rate (≥50 mA/min) to the storage ring. Since the positron flux is proportional to the primary electron beam power on the target, the authors will increase the electron gun current from 4A to 10A by using a new electron gun system and increase the primary electron energy from 120 MeV to 240 MeV. The positron source itself is an extremely important system for producing more positrons, including a positron converter target chamber, a 12kA flux modulator, the 7m focusing module with DC power supplies and the support. The new positron production linac from the electron gun to the positron source has been installed into the tunnel. In what follows, the authors will emphasize the positron source design, manufacture and tests. (authors)

  10. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  11. Induction-linac based free-electron laser amplifiers for plasma heating

    International Nuclear Information System (INIS)

    Jong, R.A.

    1988-01-01

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab

  12. Microprocessor-based control for independently-phased RF linac cavities

    International Nuclear Information System (INIS)

    Dawson, J.W.

    1979-01-01

    A microprocessor based system has been built to control the RF amplifiers associated with independently phased linac cavities. The system has an 8080A at each amplifier station, together with associated ROM, RAM, I/O, etc. At a central NOVA 3 computer an additional 8080A system is incorporated in the interface to the NOVA I/O bus. The NOVA interface is connected by a bus of eighteen twisted pairs to each amplifier station, providing bilateral transmission between each station and the NOVA. The system architecture, bus protocol, and operating characteristics are described

  13. TOP LINAC design

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita', ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given

  14. Positron source based on the 48V isotope dedicated to positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Dryzek, Jerzy

    2009-01-01

    In the paper we consider application of the 48 V isotope as a source in the positron lifetime spectroscopy. The isotope was produced in the 48 Ti(p,n) 48 V reaction using 15 MeV proton beam. As a target the natural titanium thin plate was used. The measurements using the typical positron lifetime spectrometer have shown the usefulness of the source obtained for this application. Due to its properties, the source may be used for measurements of positron annihilation characteristics in high temperature or aggressive environments. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. The Baseline Positron Production and Capture Scheme for CLIC

    CERN Document Server

    Dadoun, Olivier; Lepercq, Pierre; Poirier, Freddy; Variola, Alessandro; Chehab, Robert; Rinolfi, Louis; Vivoli, Alessandro; Strakhovenko, Vladimir; Xu, Chengai

    2010-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for unpolarised positron production. The hybrid source uses a few GeV electron beam impinging on a tungsten crystal target. With the crystal oriented on its axis it results an intense relatively low energy photon beam. The later is then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. Downstream the amorphous target, a capture section based on an adiabatic matching device followed by a 2 GHz Pre- Injector Linac focuses and accelerates the positron beam up to around 200 MeV

  16. Electron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G A; Schriber, S O [ed.

    1976-11-01

    A study was made of the present status of the thousand or so electron linacs in the world, and future trends in the field. These machines were classified according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for x-ray and electron therapy, and those which may in the future be used for negative pion therapy. Industrial machines discussed include linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a c-w, 1 GeV, 100..mu..A electron linac is raised, and various options using recirculation and stretchers are examined. In this connection, the status of rf superconductivity is summarized. A review is given of linacs for injectors into synchrotrons and e/sup +-/ storage rings, and recent work done to upgrade the only multi-GeV linac, namely SLAC, is described.

  17. Electron linacs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1976-01-01

    To study the present status of the thousand or so electron linacs in the world, and future trends in the field, we have classified these machines according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for X-ray and electron therapy, and those which may in the future be used for negative pion therapy. The section on industrial machines includes linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a C.W., 1 GeV, 100 μA electron linac is raised and various options using recirculation and stretchers are examined. In this connection, the status of RF superconductivity is summarized. Following, there is a review of linacs for injectors into synchrotrons and e +- storage rings. The paper ends with a description of recent work done to upgrade the only multi-GeV linac, namely SLAC. (author)

  18. Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes

    International Nuclear Information System (INIS)

    Howell, R.H.; Cowan, T.E.; Hartley, J.; Sterne, P.; Brown, B.

    1996-05-01

    We are developing a defect analysis capability based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is operational and positron lifetime analysis is performed with a 3 MeV positron beam on thick samples. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for insitu measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopies is under development at the LLNL high current positron source. This beam will enable defect specific, 3-D maps of defect concentration with sub-micron location resolution and when coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification

  19. Design Study of Control System for Radiation Therapy System Based on 6 MeV X-band LINAC

    International Nuclear Information System (INIS)

    Kim, Sehee; Kim, Jaehyun; Chae, Moonsik; Lee, Byeongno; Oh, Kyeongmin; Lee, Soomin; Ju, Jinsik; Park, Sangjoon; Kim, Hansoo; Jeong, Kyeongmin

    2017-01-01

    Linear accelerator(LINAC) is used in various fields such as industrial, defense, medical, etc because it is easy to control radiation energy or flow rate. KAERI developed a robot-based radiation therapy system that can efficiently irradiate radiation in a short period of time. Unlike the old type which uses a single robot arm, two robot arms are used and the smart bed is linked to track the respiration. This paper discusses the development of system of integrated X-band LINAC modules installed in smart robot therapy machines. In this study, total control program for integrating and controlling the medical LINAC modules was developed and verified. Future research will continue to reduce delays between transmissions and receptions and minimize interference between the modules.

  20. Ice and Atoms: experiments with laboratory-based positron beams

    International Nuclear Information System (INIS)

    Coleman, P G

    2011-01-01

    This short review presents results of new positron and positronium (Ps) experiments in condensed matter and atomic physics, as an illustration of the satisfying variety of scientific endeavours involving positron beams which can be pursued with relatively simple apparatus in a university laboratory environment. The first of these two studies - on ice films - is an example of how positrons and Ps can provide new insights into an important system which has been widely interrogated by other techniques. The second is an example of how simple positron beam systems can still provide interesting information - here on a current interesting fundamental problem in positron atomic physics.

  1. SU-E-T-11: A Cloud Based CT and LINAC QA Data Management System

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, R; Grelewicz, Z; Belcher, A; Liu, X [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: The current status quo of QA data management consists of a mixture of paper-based forms and spreadsheets for recording the results of daily, monthly, and yearly QA tests for both CT scanners and LINACs. Unfortunately, such systems suffer from a host of problems as, (1) records can be easily lost or destroyed, (2) data is difficult to access — one must physically hunt down records, (3) poor or no means of historical data analysis, and (4) no remote monitoring of machine performance off-site. To address these issues, a cloud based QA data management system was developed and implemented. Methods: A responsive tablet interface that optimizes clinic workflow with an easy-to-navigate interface accessible from any web browser was implemented in HTML/javascript/CSS to allow user mobility when entering QA data. Automated image QA was performed using a phantom QA kit developed in Python that is applicable to any phantom and is currently being used with the Gammex ACR, Las Vegas, Leeds, and Catphan phantoms for performing automated CT, MV, kV, and CBCT QAs, respectively. A Python based resource management system was used to distribute and manage intensive CPU tasks such as QA phantom image analysis or LaTeX-to-PDF QA report generation to independent process threads or different servers such that website performance is not affected. Results: To date the cloud QA system has performed approximately 185 QA procedures. Approximately 200 QA parameters are being actively tracked by the system on a monthly basis. Electronic access to historical QA parameter information was successful in proactively identifying a Linac CBCT scanner’s performance degradation. Conclusion: A fully comprehensive cloud based QA data management system was successfully implemented for the first time. Potential machine performance issues were proactively identified that would have been otherwise missed by a paper or spreadsheet based QA system.

  2. SU-E-T-11: A Cloud Based CT and LINAC QA Data Management System

    International Nuclear Information System (INIS)

    Wiersma, R; Grelewicz, Z; Belcher, A; Liu, X

    2015-01-01

    Purpose: The current status quo of QA data management consists of a mixture of paper-based forms and spreadsheets for recording the results of daily, monthly, and yearly QA tests for both CT scanners and LINACs. Unfortunately, such systems suffer from a host of problems as, (1) records can be easily lost or destroyed, (2) data is difficult to access — one must physically hunt down records, (3) poor or no means of historical data analysis, and (4) no remote monitoring of machine performance off-site. To address these issues, a cloud based QA data management system was developed and implemented. Methods: A responsive tablet interface that optimizes clinic workflow with an easy-to-navigate interface accessible from any web browser was implemented in HTML/javascript/CSS to allow user mobility when entering QA data. Automated image QA was performed using a phantom QA kit developed in Python that is applicable to any phantom and is currently being used with the Gammex ACR, Las Vegas, Leeds, and Catphan phantoms for performing automated CT, MV, kV, and CBCT QAs, respectively. A Python based resource management system was used to distribute and manage intensive CPU tasks such as QA phantom image analysis or LaTeX-to-PDF QA report generation to independent process threads or different servers such that website performance is not affected. Results: To date the cloud QA system has performed approximately 185 QA procedures. Approximately 200 QA parameters are being actively tracked by the system on a monthly basis. Electronic access to historical QA parameter information was successful in proactively identifying a Linac CBCT scanner’s performance degradation. Conclusion: A fully comprehensive cloud based QA data management system was successfully implemented for the first time. Potential machine performance issues were proactively identified that would have been otherwise missed by a paper or spreadsheet based QA system

  3. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  4. New Techniques for Optimal Treatment Planning for LINAC-based Sterotactic Radiosurgery

    International Nuclear Information System (INIS)

    Suh, Tae Suk

    1992-01-01

    Since LINAC-based stereotactic radiosurgery uses multiple noncoplanar arcs, three-dimensional dose evaluation and many beam parameters, a lengthy computation time is required to optimize even the simplest case by a trial and error. The basic approach presented in this paper is to show promising methods using an experimental optimization and an analytic optimization. The purpose of this paper is not to describe the detailed methods, but introduce briefly, proceeding research done currently or in near future. A more detailed description will be shown in ongoing published papers. Experimental optimization is based on two approaches. One is shaping the target volumes through the use of multiple isocenters determined from dose experience and testing. The other method is conformal therapy using a beam eye view technique and field shaping. The analytic approach is to adapt computer-aided design optimization in finding optimum irradiation parameters automatically

  5. TH-C-BRC-03: Emerging Linac Based SRS/SBRT Technologies with Modulated Arc Delivery

    International Nuclear Information System (INIS)

    Ren, L.

    2016-01-01

    The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioning capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to

  6. TH-C-BRC-03: Emerging Linac Based SRS/SBRT Technologies with Modulated Arc Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ren, L. [Duke University Medical Center (United States)

    2016-06-15

    The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioning capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to

  7. LINAC based stereotactic radiotherapy of uveal melanoma: 4 years clinical experience

    International Nuclear Information System (INIS)

    Dieckmann, Karin; Georg, Dietmar; Zehetmayer, Martin; Bogner, Joachim; Georgopoulos, Michael; Poetter, Richard

    2003-01-01

    Purpose: To study local tumor control and radiogenic side effects after fractionated LINAC based stereotactic radiotherapy for selected uveal melanoma. Patients and methods: Between June 1997 and March 2001, 90 patients suffering from uveal melanoma were treated at a LINAC with 6 MV. The head was immobilized with a modified stereotactic frame system (BrainLAB). For stabilization of the eye position a light source was integrated into the mask system in front of the healthy or the diseased eye. A mini-video camera was used for on-line eye movement control. Tumors included in the study were either located unfavorably with respect to macula and optical disc ( 7 mm. Median tumor volume was 305±234 mm 3 (range 70-1430 mm 3 ), and mean tumor height was 5.4±2.3 mm (range 2.7-15.9 mm). Total doses of 70 (single dose 14 Gy at 80% isodose) or 60 Gy (single dose 12 Gy at 80% isodose) were applied in five fractions within 10 days. The first fractionation results in total dose (TD) (2 Gy) of 175 Gy for tumor and 238 Gy for normal tissue, corresponding values for the second fractionation schedule are 135 and 180 Gy, respectively. Results: After a median follow-up of 20 months (range 1-48 months) local control was achieved in 98% (n=88). The mean relative tumor reductions were 24, 27, and 37% after 12, 24 and 36 months. Three patients (3.3%) developed metastases. Secondary enucleation was performed in seven patients (7.7%). Long term side effects were retinopathy (25.5%), cataract (18.9%), optic neuropathy (20%), and secondary neovascular glaucoma (8.8%). Conclusion: Fractionated LINAC based stereotactic photon beam therapy in conjunction with a dedicated eye movement control system is a highly effective method to treat unfavorably located uveal melanoma. Total doses of 60 Gy (single dose 12 Gy) are considered to be sufficient to achieve good local tumor control

  8. Single-fraction vs. fractionated linac-based stereotactic radiosurgery for vestibular schwannoma: a single-institution study

    NARCIS (Netherlands)

    Meijer, O. W. M.; Vandertop, W. P.; Baayen, J. C.; Slotman, B. J.

    2003-01-01

    PURPOSE: In this single-institution trial, we investigated whether fractionated stereotactic radiation therapy is superior to single-fraction linac-based radiosurgery with respect to treatment-related toxicity and local control in patients with vestibular schwannoma. METHODS AND MATERIALS: All 129

  9. IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, M., E-mail: Massimo.Ferrario@lnf.infn.it [INFN-LNF (Italy); Alesini, D. [INFN-LNF (Italy); Alessandroni, M. [RMP Srl (Italy); Anania, M.P. [INFN-LNF (Italy); Andreas, S. [DESY, Hamburg (Germany); Angelone, M. [ENEA, Frascati (Italy); Arcovito, A. [Univ. Cattolica del Sacro Cuore - Roma (Italy); Arnesano, F. [Univ. di Bari (Italy); Artioli, M. [ENEA, Frascati (Italy); Avaldi, L. [CNR, Area Ric. di Roma 1 (Italy); Babusci, D. [INFN-LNF (Italy); Bacci, A. [INFN and Univ. di Milano (Italy); Balerna, A.; Bartalucci, S.; Bedogni, R.; Bellaveglia, M. [INFN-LNF (Italy); Bencivenga, F. [Sincrotrone Trieste (Italy); Benfatto, M. [INFN-LNF (Italy); Biedron, S. [Colorado Univ. (United States); Bocci, V. [INFN and Univ. di Roma, La Sapienza (Italy); and others

    2014-03-11

    This paper describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity “particles factory”, based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.

  10. Knowledge-based automated radiopharmaceutical manufacturing for Positron Emission Tomography

    International Nuclear Information System (INIS)

    Alexoff, D.L.

    1991-01-01

    This article describes the application of basic knowledge engineering principles to the design of automated synthesis equipment for radiopharmaceuticals used in Positron Emission Tomography (PET). Before discussing knowledge programming, an overview of the development of automated radiopharmaceutical synthesis systems for PET will be presented. Since knowledge systems will rely on information obtained from machine transducers, a discussion of the uses of sensory feedback in today's automated systems follows. Next, the operation of these automated systems is contrasted to radiotracer production carried out by chemists, and the rationale for and basic concepts of knowledge-based programming are explained. Finally, a prototype knowledge-based system supporting automated radiopharmaceutical manufacturing of 18FDG at Brookhaven National Laboratory (BNL) is described using 1stClass, a commercially available PC-based expert system shell

  11. Embedded design based virtual instrument program for positron beam automation

    International Nuclear Information System (INIS)

    Jayapandian, J.; Gururaj, K.; Abhaya, S.; Parimala, J.; Amarendra, G.

    2008-01-01

    Automation of positron beam experiment with a single chip embedded design using a programmable system on chip (PSoC) which provides easy interfacing of the high-voltage DC power supply is reported. Virtual Instrument (VI) control program written in Visual Basic 6.0 ensures the following functions (i) adjusting of sample high voltage by interacting with the programmed PSoC hardware, (ii) control of personal computer (PC) based multi channel analyzer (MCA) card for energy spectroscopy, (iii) analysis of the obtained spectrum to extract the relevant line shape parameters, (iv) plotting of relevant parameters and (v) saving the file in the appropriate format. The present study highlights the hardware features of the PSoC hardware module as well as the control of MCA and other units through programming in Visual Basic

  12. NPL superconducting Linac control system

    International Nuclear Information System (INIS)

    Swanson, H.E.; Howe, M.A.; Jackson, L.W.; LaCroix, J.M.; Readdy, H.P.; Storm, D.W.; Van Houten, L.P.

    1985-01-01

    The control system for the NPL Linac is based on a Microvax II host computer connected in a star network with 9 satellite computers. These satellites use single board varsions of DEC's PDP 11 processor. The operator's console uses high performance graphics and touch screen technology to display the current linac status and as the means for interactively controlling the operation of the accelerator

  13. Kinematic analysis and experimental verification of a eccentric wheel based precision alignment mechanism for LINAC

    International Nuclear Information System (INIS)

    Mundra, G.; Jain, V.; Singh, K.K.; Saxena, P.; Khare, R.K.; Bagre, M.

    2011-01-01

    Eccentric wheel based precision alignment system was designed for the remote motorized alignment of proposed proton injector LINAC (SFDTL). As a part of the further development for the alignment and monitoring scheme, a menu driven alignment system is being developed. The paper describes a general kinematic equation (with base line tilt correction) based on the various parameters of the mechanism like eccentricity, wheel diameter, distance between the wheels and the diameter of the cylindrical accelerator component. Based on this equation the extent of the alignment range for the 4 degree of freedom is evaluated and analysis on some of the parameters variation and the theoretical accuracy/resolution is computed. For the same a computer program is written which can compute the various points for the each discrete position of the two motor combinations. The paper also describes the experimentally evaluated values of these positions (for the full extent of area) and the matching/comparison of the two data. These data now can be used for the movement computation required for alignment of the four motors (two front and two rear motors of the support structure). (author)

  14. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1994-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal field - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders. Some new ideas associated with these sources are also presented. (orig.)

  15. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1989-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal fields - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders

  16. High current pulsed positron microprobe

    International Nuclear Information System (INIS)

    Howell, R.H.; Stoeffl, W.; Kumar, A.; Sterne, P.A.; Cowan, T.E.; Hartley, J.

    1997-01-01

    We are developing a low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopy to provide a new defect analysis capability at the 10 10 e + s -l beam at the Lawrence Livermore National Laboratory electron linac. When completed, the pulsed positron microprobe will enable defect specific, 3-dimensional maps of defect concentrations with sub-micron resolution of defect location. By coupling these data with first principles calculations of defect specific positron lifetimes and positron implantation profiles we will both map the identity and concentration of defect distributions

  17. Dosimetry of Gamma Knife and linac-based radiosurgery using radiochromic and diode detectors

    International Nuclear Information System (INIS)

    Somigliana, A.; Borelli, S.; Zonca, G.; Pignoli, E.; Loi, G.; Marchesini, R.; Cattaneo, G.M.; Fiorino, C.; Vecchio, A. del; Calandrino, R.

    1999-01-01

    In stereotactic radiosurgery the choice of appropriate detectors, whether for absolute or relative dosimetry, is very important due to the steep dose gradient and the incomplete lateral electronic equilibrium. For both linac-based and Leksell Gamma Knife radiosurgery units, we tested the use of calibrated radiochromic film to measure absolute doses and relative dose distributions. In addition a small diode was used to estimate the relative output factors. The data obtained using radiochromic and diode detectors were compared with measurements performed with other conventional methods of dosimetry, with calculated values by treatment planning systems and with data prestored in the treatment planning system supplied by the Leksell Gamma Knife (LGK) vendor. Two stereotactic radiosurgery techniques were considered: Leksell Gamma Knife (using γ-rays from 60 Co) and linac-based radiosurgery (LR) (6 MV x-rays). Different detectors were used for both relative and absolute dosimetry: relative output factors (OFs) were estimated by using radiochromic and radiographic films and a small diode; relative dose distributions in the axial and coronal planes of a spherical polystyrene phantom were measured using radiochromic film and calculated by two different treatment planning systems (TPSs). The absolute dose at the sphere centre was measured by radiochromic film and a small ionization chamber. An accurate selection of radiochromic film was made: samples of unexposed film showing a percentage standard deviation of less than 3% were used for relative dose profiles, and for absolute dose and OF evaluations this value was reduced to 1.5%. Moreover a proper calibration curve was made for each set of measurements. With regard to absolute doses, the results obtained with the ionization chamber are in good correlation with radiochromic film-generated data, for both LGK and LR, showing a dose difference of less than 1%. The output factor evaluations, performed using different methods

  18. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schmerge, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fazio, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fisher, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Frisch, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guehr, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hettel, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hoffmann, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hogan, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kirchmann, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Limborg, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lindenberg, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Maxwell, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Raubenheimer, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Reis, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ross, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Z. -X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stupakov, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tian, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Xiang, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yakimenko, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  19. Cloud-based design of high average power traveling wave linacs

    Science.gov (United States)

    Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.

    2017-12-01

    The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.

  20. Electron energy device for LINAC based Pulse Radiolysis Facility of RPCD

    International Nuclear Information System (INIS)

    Toley, M.A.; Shinde, S.J.; Chaudhari, B.B.; Sarkar, S.K.

    2015-07-01

    The pulse radiolysis facility is the experimental centerpiece of the radiation chemistry activities of the Radiation and Photochemistry Division (RPCD) of Bhabha Atomic Research Centre. This facility was created in 1986 which is based on a 7 MeV Linear Electron Accelerator (LINAC) procured from M/s Radiation Dynamics Ltd., UK. The electron energy is one of the principal parameters that influence the dose distribution within the sample irradiated with a beam of energetic electrons. An easy-to-use and robust device has been developed that can reliably detect day-today small variations in the beam energy. It consists of two identical aluminum plates except for their thickness, which are electrically insulated from each other. The thickness of each plate is carefully selected depending on the electron beam energy. The charge (or current) collected by each plate, under irradiation is measured. The ratio of the charge (or current) signal from the front plate to the sum of the signals from the front and rear plates is very sensitive to the beam energy. The high sensitivity and robustness make this device quite suitable for Electron energy measurement for Pulse radiolysis Facility at RPCD. (author)

  1. A Trajectory Correction based on Multi-Step Lining-up for the CLIC Main Linac

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory method described in this Note retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction depends mai...

  2. Clinical results of LINAC-based stereotactic radiosurgery for pituitary adenoma

    International Nuclear Information System (INIS)

    Muramatsu, Julia; Yoshida, Masanori; Shioura, Hiroki; Kawamura, Yasutaka; Ito, Harumi; Takeuchi, Hiroaki; Kubota, Toshihiko; Maruyama, Ichiro

    2003-01-01

    We retrospectively evaluated our clinical results of stereotactic radiosurgery (SRS) for pituitary adenoma. Between 1995 and 2000, 13 patients were treated with SRS for pituitary adenoma. In all cases, the tumors had already been surgically resected. The adenomas were functional in 5 and non-functional in 8 patients. The median follow-up period was 30 months. SRS was performed with the use of a dedicated stereotactic 10-MV linear accelerator (LINAC). The median dose to the tumor margin was 15 Gy. The dose to the optic apparatus was limited to less than 8 Gy. MR images of 12 patients revealed tumor complete response (CR) in one case and partial response (PR) in 9 cases; in the remaining two patients, tumor size decreased by less than 50%. There was no recognizable regrowth of any of the tumors. In two of four GH-secreting adenomas, hormonal overproduction normalized, while the other two showed reduced hormonal production. One PRL-secreting adenoma did not respond. Reduction of visual acuity and field was seen in one patient. This patient also had a brain infarction. None of the patients developed brain radionecrosis or radiation-induced hypopituitarism. Although further studies based on greater numbers of cases and longer follow-up periods are needed, our results suggest that SRS seems to be a safe, effective treatment for pituitary adenoma. (author)

  3. An EPID-based method for comprehensive verification of gantry, EPID and the MLC carriage positional accuracy in Varian linacs during arc treatments

    International Nuclear Information System (INIS)

    Rowshanfarzad, Pejman; McGarry, Conor K; Barnes, Michael P; Sabet, Mahsheed; Ebert, Martin A

    2014-01-01

    In modern radiotherapy, it is crucial to monitor the performance of all linac components including gantry, collimation system and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method has been introduced in conjunction with an algorithm to investigate the stability of these systems during arc treatments with the aim of ensuring the accuracy of linac mechanical performance. The Varian EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt, and the sag in MLC carriages as a result of linac rotation were separately investigated by acquisition of EPID images of a simple phantom comprised of 5 ball-bearings during arc delivery. A fast and robust software package was developed for automated analysis of image data. Twelve Varian linacs of different models were investigated. The average EPID sag was within 1 mm for all tested linacs. All machines showed less than 1 mm gantry sag. Changes in SDD values were within 1.7 mm except for three linacs of one centre which were within 9 mm. Values of EPID skewness and tilt were negligible in all tested linacs. The maximum sag in MLC leaf bank assemblies was around 1 mm. The EPID sag showed a considerable improvement in TrueBeam linacs. The methodology and software developed in this study provide a simple tool for effective investigation of the behaviour of linac components with gantry rotation. It is reproducible and accurate and can be easily performed as a routine test in clinics

  4. Positron emission tomography, physical bases and comparaison with other techniques

    International Nuclear Information System (INIS)

    Guermazi, Fadhel; Hamza, F; Amouri, W.; Charfeddine, S.; Kallel, S.; Jardak, I.

    2013-01-01

    Positron emission tomography (PET) is a medical imaging technique that measures the three-dimensional distribution of molecules marked by a positron-emitting particle. PET has grown significantly in clinical fields, particularly in oncology for diagnosis and therapeutic follow purposes. The technical evolutions of this technique are fast. Among the technical improvements, is the coupling of the PET scan with computed tomography (CT). PET is obtained by intravenous injection of a radioactive tracer. The marker is usually fluorine ( 18 F) embedded in a glucose molecule forming the 18-fluorodeoxyglucose (FDG-18). This tracer, similar to glucose, binds to tissues that consume large quantities of the sugar such cancerous tissue, cardiac muscle or brain. Detection using scintillation crystals (BGO, LSO, LYSO) suitable for high energy (511keV) recognizes the lines of the gamma photons originating from the annihilation of a positron with an electron. The electronics of detection or coincidence circuit is based on two criteria: a time window, of about 6 to 15 ns, and an energy window. This system measures the true coincidences that correspond to the detection of two photons of 511 kV from the same annihilation. Most PET devices are constituted by a series of elementary detectors distributed annularly around the patient. Each detector comprises a scintillation crystal matrix coupled to a finite number (4 or 6) of photomultipliers. The electronic circuit, or the coincidence circuit, determines the projection point of annihilation by means of two elementary detectors. The processing of such information must be extremely fast, considering the count rates encountered in practice. The information measured by the coincidence circuit is then positioned in a matrix or sinogram, which contains a set of elements of a projection section of the object. Images are obtained by tomographic reconstruction by powerful computer stations equipped with a software tools allowing the analysis and

  5. Beam-based analysis of day-night performance variations at the SLC linac

    International Nuclear Information System (INIS)

    Decker, F.J.; Akre, R.; Assmann, R.; Bane, K.L.F.; Minty, M.G.; Phinney, N.; Spence, W.L.

    1998-07-01

    Diurnal temperature variations in the linac gallery of the Stanford Linear Collider (SLC) can affect the amplitude and phase of the rf used to accelerate the beam. The SLC employs many techniques for stabilization and compensation of these effects, but residual uncorrected changes still affect the quality of the delivered beam. This paper presents methods developed to monitor and investigate these errors through the beam response. Variations resulting from errors in the rf amplitude or phase can be distinguished by studying six different beam observables: betatron phase advance, oscillation amplitude growth, rms jitter along the linac, measurements of the beam phase with respect to the rf, changes in the required injection phase, and the global energy correction factor. By quantifying the beam response, an uncorrected variation of 14 degree (S-band) during 28 F temperature swings was found in the main rf drive line system between the front and end of the linac

  6. A hospital-based proton linac for neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1988-10-01

    Fermilab's Alvarez proton linac has been used routinely for neutron therapy since 1976. The Neutron Therapy Facility (NTF) operates in a mode parasitic to the laboratory's high energy physics program, which uses the linac as an injector for a synchrotron. Parasitic operation is possible because the linac delivers /approximately/1.2 /times/ 10 13 protons per pulse at a 15 Hz rate, while the high energy physics program requires beam at a rate not greater than 0.5 Hz. Protons not needed for physics experiments strike a beryllium target to produce neutrons for neutron therapy. Encouraging clinical results from NTF have led to a study of the issues involved in providing hospitals with a neutron beam of the type available at Fermilab. This paper describes the issues addressed by that study. 12 refs., 1 fig., 1 tab

  7. A Compact 5 MeV S-Band Electron Linac Based X-Ray Source for Industrial Radiography

    CERN Document Server

    Auditore, Lucrezia; De Pasquale, Domenico; Emanuele, Umberto; Italiano, Antonio; Trifirò, Antonio; Trimarchi, Marina

    2005-01-01

    A compact and reliable X-ray source, based on a 5 MeV, 1 kW, S-band electron linac, has been set up at the Dipartimento di Fisica, Universit\\'a di Messina. This source, coupled with a GOS scintillator screen and a CCD camera, represents an innovative transportable system for industrial radiography and X-ray tomography. Optimization of the parameters influencing the e-gamma conversion and the X-ray beam characteristics have been studied by means of the MCNP-4C2 code. The converter choice is the result of the study of the e-gamma conversion performances for different materials and materials thicknesses. Also the converter position with respect to the linac exit window was studied. The chosen converter consists in a Ta-Cu target inserted close to the linac window. The Cu layer acts as a filter both on the electrons from the source and on the low energy X-rays. The X-ray beam angular profile was studied by means of GafChromic films with and without collimation. In the final source project, a collimation system pr...

  8. Development of accelerator-based γ-ray-induced positron annihilation spectroscopy technique

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, J. F.; Williams, J.

    2005-01-01

    Accelerator-based γ-ray-induced positron annihilation spectroscopy performs positron annihilation spectroscopy by utilizing MeV bremsstrahlung radiation generated from an accelerator (We have named the technique 'accelerator-based γ-ray-induced PAS', even though 'bremsstrahlung' is more correct here than 'γ rays'. The reason for that is to make the name of the technique more general, since PAS may be performed by utilizing MeV γ rays emitted from nuclei through the use of accelerators as described later in this article and as in the case of positron lifetime spectroscopy [F.A. Selim, D.P. Wells, and J.F. Harmon, Rev. Sci. Instrum. 76, 033905 (2005)].) instead of using positrons from radioactive sources or positron beams. MeV γ rays create positrons inside the materials by pair production. The induced positrons annihilate with the material electrons emitting a 511-keV annihilation radiation. Doppler broadening spectroscopy of the 511-keV radiation provides information about open-volume defects and plastic deformation in solids. The high penetration of MeV γ rays allows probing of defects at high depths in thick materials up to several centimeters, which is not possible with most of the current nondestructive techniques. In this article, a detailed description of the technique will be presented, including its benefits and limitations relative to the other nondestructive methods. Its application on the investigation of plastic deformation in thick steel alloys will be shown

  9. Design studies for the Positron Factory

    International Nuclear Information System (INIS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Masuno, S.; Kawasuso, A.; Sakai, T.; Takizawa, H.; Yotsumoto, K.; Honda, Y.; Tagawa, S.

    1996-01-01

    In the design study for the Positron Factory, a feasibility of simultaneous extraction of multi-channel monoenergetic positron beams, which had been proposed at the previous conference (Linac 94), was demonstrated by an experiment using an electron linac. On the basis of the experimental result, an efficient moderator structure, which is composed of honeycomb-like assembled moderator foils and reflectors, is proposed. (author)

  10. Performance of the advanced photon source (APS) linac beam position monitors (BPMs) with logarithmic amplifier electronics

    International Nuclear Information System (INIS)

    Fuja, R.E.; White, M.

    1995-01-01

    This paper discusses the performance of the logarithmic amplifier electronics system used with stripline BPMs to measure electron and positron beam positions at the APS linac. The 2856-MHz, S-band linac accelerates 30-nsec pulses of 1.7 A of electrons to 200 MeV, and focuses them onto a positron conversion target. The resulting 8 mA of positrons are further accelerated to 450 MeV by the positron linac. Beam position resolutions of 50 μm are easily obtainable in both the electron and positron linacs. The resolution of the 12-bit A/D converters limits the ultimate beam positron resolution to between 20 and 30 μm at this time

  11. Two-pulse acceleration for BEPCII injector linac

    International Nuclear Information System (INIS)

    Pei Shilun; Wang Shuhong; Lu Weibin

    2007-01-01

    In order to double the injection rate of positron beam from the linac to the storage ring of BEPC II, a two-pulse generation and acceleration scheme has been proposed. The two-pulse simulation by programs including LIAR, PARMELA, EGUN and TRANSPORT is described first and the method is applied in the beam dynamics studies of BEPC II linac. The experiment of two-pulse acceleration was performed in BEPC II linac and some preliminary results are obtained, which provides a good reference for further upgrading of BEPC II injector linac. (authors)

  12. Multiple single-board-computer system for the KEK positron generator control

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Abe, Isamu; Enomoto, Atsushi; Otake, Yuji; Urano, Takao

    1986-01-01

    The KEK positron generator is controlled by means of a distributed microprocessor network. The control system is composed of three kinds of equipment: device controllers for the linac equipment, operation management stations and a communication network. Individual linac equipment has its own microprocessor-based controller. A multiple single board computer (SBC) system is used for communication control and for equipment surveillance; it has a database containing communication and linac equipment status information. The linac operation management that should be the most soft part in the control system, is separated from the multiple SBC system and is carried out by work-stations. The principle that every processor executes only one task is maintained throughout the control system. This made the software architecture very simple. (orig.)

  13. Image quality and dose distributions of three linac-based imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Dzierma, Yvonne; Ames, Evemarie; Nuesken, Frank; Palm, Jan; Licht, Norbert; Ruebe, Christian [Universitaetsklinikum des Saarlandes, Klinik fuer Strahlentherapie und Radioonkologie, Homburg/Saar (Germany)

    2015-04-01

    Linac-based patient imaging is possible with a variety of techniques using different photon energies. The purpose of this work is to compare three imaging systems operating at 6 MV, flattening free filter (FFF) 1 MV, and 121 kV. The dose distributions of all pretreatment set-up images (over 1,000) were retrospectively calculated on the planning computed tomography (CT) images for all patients with prostate and head-and-neck cancer treated at our institution in 2013. We analyzed the dose distribution and the dose to organs at risk. For head-and-neck cancer patients, the imaging dose from 6-MV cone beam CT (CBCT) reached maximum values at around 8 cGy. The 1-MV CBCT dose was about 63-79 % of the 6-MV CBCT dose for all organs at risk. Planar imaging reduced the imaging dose from CBCT to 30-40 % for both megavoltage modalities. The dose from the kilovoltage CBCT was 4-10 % of the 6-MV CBCT dose. For prostate cancer patients, the maximum dose from 6-MV CBCT reached 13-15 cGy, and was reduced to 66-73 % for 1 MV. Planar imaging reduces the MV CBCT dose to 10-20 %. The kV CBCT dose is 15-20 % of the 6-MV CBCT dose, slightly higher than the dose from MV axes. The dose distributions differ markedly in response to the different beam profiles and dose-depth characteristics. (orig.) [German] Linac-basierte Bildgebung zur Patientenlagerung ist mit einer Vielzahl von Techniken unterschiedlicher Photonenenergien moeglich. Ziel dieser Arbeit ist der Vergleich dreier Bildgebungssysteme mit 6 MV (Megavolt), FFF 1 MV, und 121 kV (Kilovolt). Fuer alle im Jahr 2013 an unserer Klinik behandelten Prostata- und HNO-Patienten wurden retrospektiv die Dosisverteilungen aller Verifikationsaufnahmen (ueber 1000 insgesamt) auf der Planungs-Computertomographie (CT) berechnet. Wir analysierten die Dosisverteilung und die Dosis an den Risikoorganen. Bei HNO-Patienten erreichte die Dosis von 6 MV ''Cone-beam''-CT (CBCT)Maximalwerte um 8 cGy. Mit 1 MV wird die Dosis auf 63

  14. Low-charge-state linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    A design is being developed for a low-charge-state linac suitable for injecting ATLAS with a low-charge-state, radioactive beam. Initial work indicates that the existing ATLAS interdigital superconducting accelerating structures, together with the superconducting quadrupole transverse focussing element discussed above, provides a basis for a high-performance low-charge-state linac. The initial 2 or 3 MV of such a linac could be based on a normally-conducting, low-frequency RFQ, possibly combined with 24-MHz superconducting interdigital structures. Beam dynamics studies of the whole low-charge-state post-accelerator section were carried out in early FY 1995.

  15. SU-E-J-239: IMRT Planning of Prostate Cancer for a MRI-Linac Based On MRI Only

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X; Prior, P; Paulson, E; Lawton, C; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-01

    Purpose: : To investigate dosimetric differences between MRI- and CT-based IMRT planning for prostate cancer, the impact of a magnetic field in a MRI-Linac, and to explore the feasibility of IMRT planning based on MRI alone. Methods: IMRT plans were generated based on CT and MRI images acquired on two representative prostate-cancer patients using clinical dose volume constraints. A research planning system (Monaco, Elekta), which employs a Monte Carlo dose engine and includes a perpendicular magnetic field of 1.5T from an MRI-Linac, was used. Bulk electron density assignments based on organ-specific values from ICRU 46 were used to convert MRI (T2) to pseudo CT. With the same beam configuration as in the original CT plan, 5 additional plans were generated based on CT or MRI, with or without optimization (i.e., just recalculation) and with or without the magnetic field. The plan quality in terms of commonly used dose volume (DV) parameters for all plans was compared. The statistical uncertainty on dose was < 1%. Results: For plans with the same contour set but without re-optimization, the DV parameters were different from those for the original CT plan, mostly less than 5% with a few exceptions. These differences were reduced to mostly less than 3% when the plans were re-optimized. For plans with contours from MRI, the differences in the DV parameters varied depending on the difference in the contours as compared to CT. For the optimized plans with contours from MR, the differences for PTV were less than 3%. Conclusion: The prostate IMRT plans based on MRI-only for a MR-Linac were practically similar as compared to the CT plan under the same beam and optimization configuration if the difference on the structure delineation is excluded, indicating the feasibility of using MRI-only for prostate IMRT.

  16. Home made FPGA based instrumentation development for linac automation at IUAC

    International Nuclear Information System (INIS)

    Antony, J.; Mathuria, D.S.; Sacharias, J.

    2011-01-01

    In order to make the Inter-University Accelerator Centre (IUAC) linac operation with less human intervention and with minimum effort, different mechanisms of automation are being thought of and are being implemented. Among the various projects in the automation, the first one is the development of a 16-channel digital linearizer unit for RF power read-backs and control. In another development, 8 channel programmable pulse generators (PPG) were designed, developed and used at the time of RF pulse conditioning of the SC resonators. As a third project of linac automation, a computer controlled drive probe controller was developed to control the movement of 8 drive couplers of the resonator along with position sensor read back mechanisms. (author)

  17. Operational experience with model-based steering in the SLC linac

    International Nuclear Information System (INIS)

    Thompson, K.A.; Himel, T.; Moore, S.; Sanchez-Chopitea, L.; Shoaee, H.

    1989-03-01

    Operational experience with model-driven steering in the linac of the Stanford Linear Collider is discussed. Important issues include two-beam steering, sensitivity of algorithms to faulty components, sources of disagreement with the model, and the effects of the finite resolution of beam position monitors. Methods developed to make the steering algorithms more robust in the presence of such complications are also presented. 5 refs., 1 fig

  18. Improvements on monitor system in the KEK 2.5-GeV linac

    International Nuclear Information System (INIS)

    Shidara, T.; Oogoe, T.; Ogawa, Y.

    1989-01-01

    Improvements to the monitor system of the KEK 2.5-GeV linac have been undertaken. Energy analyzing stations were added to both the positron generator linac and the 2.5-GeV electron linac in order to realize easier checking of beam energy. Wall current monitors and profile monitors were added in the beam transport line between the positron generator linac and the 2.5-GeV electron linac in order to realize easier positron-beam transfer. As a result of the installation of an automatic beam-current-surveillance system and with other existing surveillance systems, more reliable and easier operation of the linac is expected. (author)

  19. Polarized positron sources for the future linear colliders

    International Nuclear Information System (INIS)

    Chaikovska, I.

    2012-01-01

    This thesis introduces the polarized positron source as one of the key element of the future Linear Collider (LC). In this context, the different schemes of the polarized positron source are described highlighting the main issues in this technology. In particular, the main focus is on the Compton based positron source adopted by the CLIC as a preferred option for the future positron source upgrade. In this case, the circularly polarized high energy gamma rays resulting from Compton scattering are directed to a production target where an electromagnetic cascade gives rise to the production of positrons by e + -e - pair conversion. To increase the efficiency of the gamma ray production stage, a multiple collision point line integrated in energy recovery linac is proposed. The simulations of the positron production, capture and primary acceleration allow to estimate the positron production efficiency and provide a simple parametrization of the Compton based polarized positron source in the view of the future LC requirements. The storage ring based Compton source option, so-called Compton ring, is also described. The main constraint of this scheme is given by the beam dynamics resulting in the large energy spread and increased bunch length affecting the gamma ray production rate. An original theoretical contribution is shown to calculate the energy spread induced by Compton scattering. Moreover, an experiment to test the gamma ray production by Compton scattering using a state-of-art laser system developed at LAL has been conducted in the framework of the 'Mighty Laser' project at the ATF, KEK. The experimental layout as well as the main results obtained are discussed in details. The studies carried out in this thesis show that the polarized positron source based on Compton scattering is a promising candidate for the future LC polarized positron source. (author)

  20. Neural stem cell sparing by linac based intensity modulated stereotactic radiotherapy in intracranial tumors

    International Nuclear Information System (INIS)

    Oehler, Julia; Brachwitz, Tim; Wendt, Thomas G; Banz, Nico; Walther, Mario; Wiezorek, Tilo

    2013-01-01

    most from IMSRT (p < 0.001). The feasibility of neural stem cell niches sparing with sophisticated linac based inverse IMSRT with 7 beamlets in an unselected cohort of intracranial tumors in relation to topographic situation has been demonstrated. Clinical relevance testing neurotoxicity remains to be demonstrated

  1. SU-E-T-536: LINAC-Based Single Isocenter Frameless SRT for Brain Metastases

    International Nuclear Information System (INIS)

    Liu, B; Zhang, L; Rigor, N; Kim, J

    2015-01-01

    Purpose: Single-isocenter Stereotactic Radiotherapy of multiple brain metastases with Varian 21 IX LINAC, using Aktina Pinpoint system for patient setup. Methods: In 2014, five single-isocenter RapidArc SRT plans were delivered to five patients with 2 to 8 brain metastases using Varian 21 IX. Aktina Pinpoint system was used for setup and 2mm PTV margin were used. CBCT was acquired before and after the beam delivery. The prescription is 2100 cGy in 3 fractions. Eclipse planning system was used for treatment planning. Depending on the number of metastases and their locations, 1 to 5 coplanar or non coplanar arcs were used. Typically, 2 or 3 arcs are used. IMRT QAs were performed by comparing an A1SL ion chamber point dose measurement in solid water phantom to point dose of the plan; also, based on EPID measurement, 3D spatial dose was calculated using DosimetryCheck software package from MathResolutions Inc. The EPID system has an active area of 40cm by 30cm with 1024 by 768 photodiodes, which corresponds to a resolution of 0.4mm by 0.4mm pixel dimension. Results: for all the plans, at least 95% PTV coverage was achieved for full prescription dose, with plan normalization > 75%. RTOG conformity indices are less than 1.1 and Paddick gradient indices are less than 4.5. The distance from prescription IDL to 50% IDL increases as the number of metastases increases, and it ranges from 0.6mm to 0.8mm. Treatment time varies from 10mins to 30mins, depending on the number of arcs and if the arcs are coplanar. IMRT QA shows that the ion chamber measurement agree with the eclipse calculation within 3%, and 95% of the points passed Gamma, using 3% dose difference and 3mm DTA Conclusion: High quality single isocenter RapidArc SRT plan can be optimized and accurately delivered using Eclipse and Varian 21IX

  2. Generation of an intense pulsed positron beam and its applications

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki; Chiwaki, Mitsukuni; Yamazaki, Tetsuo; Kobayashi, Yoshinori.

    1994-01-01

    A positron pulsing system for an intense positron beam generated by an electron linac has been developed at the Electrotechnical Laboratory. The pulsing system generates an intense pulsed positron beam of variable energy and variable pulse period. The pulsed positron beam is used as a non destructive probe for various materials researches. In this paper, we report the present status of the pulsed positron beam and its applications. (author)

  3. Measurements of nuclear data and possibility to construct the nuclear data production facility based on electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Won; Ko, In Soo; Cho, Moo Hyun; Kim, Gui Nyun; Lee, Young Seok; Kang, Heung Sik [Pohang University of Science and Technology, Pohang(Korea)

    2001-04-01

    In order to construct an infrastructure to produce nuclear data, we studied three main items; (1) Study on the possibility to construct a facility for nuclear data production, (2) Production of nuclear data for nuclear power plant, and (3) Pulsed neutron source based on a 100-MeV electron linac at Pohang Accelerator Laboratory (PAL). We confirmed the possibility to build a nuclear data production facility utilizing a 100-MeV electron linac at PAL and manpower who wanted to participate the nuclear data production experiments. In order to measure the nuclear data for nuclear power plant, we used several nuclear data production facilities in abroad. We measured total cross sections and neutron caprure cross sections for {sup nat}Dy and {sup nat}Hf using the pulsed neutron facility in the Research Reactor Institute, Kyoto University (KURRI). The neutron capture cross sections for {sup 161,162,163,164}Dy were measured at KURRI in the neutron energy region between 0.001 eV and several tens keV, and at the fast neutron facility in Tokyo Institute of Technology in the neutron energy region between 10 keV and 100 keV. We also measured the neutron capture cross sections and gamma multiplicity of {sup 232}Th at the IBR30 in Dubna, Russia. We have construct a pulsed neutron source using a 100-MeV electron linac at PAL. We measured neutron time-of-flight (TOF) spectra in order to check the characteristics of the pulsed neutron source. We also measured a neutron total cross sections of W and Cu. The pulsed neutron facility can be utilized in the education facility for nuclear data production and the test facility for the R and D purpose of the nuclear data production facility. 29 refs., 57 figs., 22 tabs. (Author)

  4. Piezoelectric actuator based phase locking system to improve the dynamics of the control scheme for a heavy ion superconducting linac

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, B.K., E-mail: bhuban@iuac.res.in [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India); Ahuja, R.; Kumar, Rajesh; Suman, S.K.; Mathuria, D.S.; Rai, A.; Patra, P.; Pandey, A.; Karmakar, J.; Chowdhury, G.K.; Dutt, R.N. [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India); Joshi, G. [Electronics Division, Bhabha Atomic Research Centre, Mumbai – 400 085 (India); Ghosh, S.; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India)

    2015-03-21

    The superconducting heavy ion linear accelerator at Inter-University Accelerator Centre Delhi has been in operation since 2007. Initially, the superconducting niobium Quarter Wave Resonators (QWRs) in the linac were phase locked using a combination of electronic and mechanical controls which operated in fast (~10 μsec) and slow (~sec) time scales respectively. In this scheme, fast control was achieved through dynamic phase control whereas slow control of the frequency was done through the niobium tuner bellows installed at the drift tube end of the resonator and flexed using helium gas to change the resonance frequency. In order to improve the dynamics of this control system, an alternate scheme using piezoelectric actuator, instead of helium gas, to flex the same niobium bellows, has been implemented in the QWRs of the second and third accelerating modules of the linac. The piezoelectric actuator is used in closed loop along with the fast dynamic phase control scheme. The feedback loop of the piezoelectric control includes a dual control scheme - an integral control loop to arrest the slow drift, and the positive position feedback (PPF) based control loop to damp the microphonics. This control scheme has been found to arrest slow drifts in the resonator frequency more tightly along with damping of low frequency microphonics (~few tens of Hz) picked up by the resonator from its surrounding environment. This has substantially eased the load from the fast electronic control, resulting in the reduction of the radio frequency (RF) power requirement during operation. In addition, it has improved the stability of phase and amplitude of the QWRs. The details of the new scheme along with results obtained during the online run of the linac for beam acceleration are presented.

  5. Measurement of the positron polarization at an helical undulator based positron source for the international linear collider ILC. The E-166 experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Laihem

    2008-06-05

    A helical undulator based polarized positron source is forseen at a future International Linear Collider (ILC). The E-166 experiment has tested this scheme using a one meter long, short-period, pulsed helical undulator installed in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 46.6 GeV electron beam passing through this undulator generated circularly polarized photons with energies up to about 8 MeV. The generated photons of several MeV with circular polarization are then converted in a relatively thin target to generate longitudinally polarized positrons. Measurements of the positron polarization have been performed at 5 different energies of the positrons. In addition electron polarization has been determined for one energy point. For a comparison of the measured asymmetries with the expectations detailed simulations were necessary. This required upgrading GEANT4 to include the dominant polarization dependent interactions of electrons, positrons and photons in matter. The measured polarization of the positrons agrees with the expectations and is for the energy point with the highest polarization at 6MeV about 80%. (orig.)

  6. Generation of monoenergetic positrons

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Dale, J.M.; Miller, P.D. Jr.; Moak, C.D.; Pendyala, S.; Triftshaeuser, W.; Howell, R.H.; Alvarez, R.A.

    1983-01-01

    Many experiments have been performed in the generation and application of monoenergetic positron beams using annealed tungsten moderators and fast sources of 58 Co, 22 Na, 11 C, and LINAC bremstrahlung. This paper will compare the degrees of success from our various approaches. Moderators made from both single crystal and polycrystal tungsten have been tried. Efforts to grow thin films of tungsten to be used as transmission moderators and brightness enhancement devices are in progress

  7. Radioisotope production linac

    International Nuclear Information System (INIS)

    Stovall, J.E.; Hansborough, L.D.; O'Brien, H.A.

    1981-01-01

    A 70-MeV proton beam would open a new family of medical radioisotopes (including the important 123 I) to wide application. A 70-MeV, 500-μA linac is described, based on recent innovations in accelerator technology. It would be 27.3 m long, cost approx. $6 million, and the cost of power deposited in the radioisotope-production target is comparable to existing cyclotrons. By operating the rf-power system to its full capability, the same accelerator is capable of producing a 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons. The technology to build such a linac is in a mature stage of developmnt, ready for use by industry

  8. A symmetry based study of positron annihilation spectra

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.; Inst. of Physics and Nuclear Engineering, Bucharest

    1995-01-01

    The authors describe a method for off-line analysis of spectra measured by two-dimensional angular correlation of annihilation radiation (2D-ACAR) positron spectroscopy. The method takes into account, at all its stages, two salient data features: the piecewise constant discretization of the 2D physical momentum distribution into square pixels, performed by the setup, and the occurrence of a characteristic 2D projected symmetry of the positron-electron pair momentum distribution. Several validating criteria are derived which secure significantly increased reliability of the output. The method is tested on 2D-ACAR spectra measured on (R)Ba 2 Cu 3 O 7-δ (R123; R = Y, Dy) single crystals. It resolves ridge Fermi surfaces (FS) up to 3rd Umklapp components on both kinds of R123 spectra. Moreover, on a c-axis-projected Y123 spectrum, measured at 300 K, it resolves a small but clear signature of the pillbox FS at the S point of the first Brillouin zone as well

  9. WE-A-304-01: Strategies and Technologies for Cranial Radiosurgery Planning: MLC-Based Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G. [University of California, San Diego (United States)

    2015-06-15

    The high fractional doses, stringent requirements for accuracy and precision, and surgical perspective characteristic of intracranial radiosurgery create considerations for treatment planning which are distinct from most other radiotherapy procedures. This session will introduce treatment planning techniques specific to two popular intracranial SRS modalities: Gamma Knife and MLC-based Linac. The basic treatment delivery characteristics of each device will be reviewed with a focus on how those characteristics determine the paradigm used for treatment planning. Basic techniques for treatment planning will be discussed, including considerations such as isodose selection, target and organ-at-risk definition, quality indices, and protection of critical structures. Future directions for SRS treatment planning will also be discussed. Learning Objectives: Introduce the basic physical principles of intracranial radiosurgery and how they are realized in the treatment planning paradigms for Gamma Knife and Linac radiosurgery. Demonstrate basic treatment planning techniques. Discuss metrics for evaluating SRS treatment plan quality. Discuss recent and future advances in SRS treatment planning. D. Schlesinger receives research support from Elekta, AB.

  10. WE-A-304-01: Strategies and Technologies for Cranial Radiosurgery Planning: MLC-Based Linac

    International Nuclear Information System (INIS)

    Kim, G.

    2015-01-01

    The high fractional doses, stringent requirements for accuracy and precision, and surgical perspective characteristic of intracranial radiosurgery create considerations for treatment planning which are distinct from most other radiotherapy procedures. This session will introduce treatment planning techniques specific to two popular intracranial SRS modalities: Gamma Knife and MLC-based Linac. The basic treatment delivery characteristics of each device will be reviewed with a focus on how those characteristics determine the paradigm used for treatment planning. Basic techniques for treatment planning will be discussed, including considerations such as isodose selection, target and organ-at-risk definition, quality indices, and protection of critical structures. Future directions for SRS treatment planning will also be discussed. Learning Objectives: Introduce the basic physical principles of intracranial radiosurgery and how they are realized in the treatment planning paradigms for Gamma Knife and Linac radiosurgery. Demonstrate basic treatment planning techniques. Discuss metrics for evaluating SRS treatment plan quality. Discuss recent and future advances in SRS treatment planning. D. Schlesinger receives research support from Elekta, AB

  11. Estimation of dislocation concentration in plastically deformed Al-Li based alloy by positron annihilation

    International Nuclear Information System (INIS)

    Abdelrahman, M.

    1997-01-01

    Measurements of positron annihilation mean lifetime τ have been performed on eight different specimens of Al-Li based alloy plastically deformed at room temperature up to 40% thickness reduction. This measurement shows clearly positron trapping by dislocations. The positron lifetime τ exhibits a saturation for deformations larger than (15%) thickness reduction. The fitted lifetime varies from (183±2 ps) for annealed sample to (205±2 ps) for the dislocation saturated value. Using a trapping model, the data yield the values of μ=3.83x10 -8 cm 3 s -1 for the specific trapping rate and σ=3.58x10 -15 cm 2 for the trapping cross section, some what lower than those for plastically deformed Al single crystals. The value obtained for Δτ, the increase in lifetime of positrons trapped at dislocations in plastically deformed Al-Li based alloy sample over annihilation in the annealed sample, is 22 ps. This is about 40% of the lifetime increase for the case of positrons trapped at dislocations in plastically deformed Al single crystals. Dislocation densities at different thickness reduction have been estimated. (author)

  12. APS linac klystron and accelerating structure gain measurements and klystron PFN voltage regulation requirements

    International Nuclear Information System (INIS)

    Sereno, N.S.

    1997-01-01

    This note details measurements of the APS positron linac klystron and accelerating structure gain and presents an analysis of the data using fits to simple mathematical models. The models are used to investigate the sensitivity of the energy dependence of the output positron beam to klystron parameters. The gain measurements are separated into two parts: first, the energy gains of the accelerating structures of the positron linac are measured as a function of output power of the klystron; second, the klystron output power is measured as a function of input drive power and pulse forming network (PFN) voltage. This note concentrates on the positron linac rf and its performance as it directly affects the energy stability of the positron beam injected into the positron accumulator ring (PAR). Ultimately it is important to be able to minimize beam energy variations to maximize the PAR accumulation efficiency

  13. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B. S., E-mail: ben.cooper.13@ucl.ac.uk; Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  14. Retrospective analysis of linac-based radiosurgery for arteriovenous malformations and testing of the Flickinger formula in predicting radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Cetin, I.A. [Universitair Ziekenhuis Brussel (Belgium). Dept. of Radiation Oncology; Marmara Univ., Ustkaynarca/Pendik (Turkey). Dept. of Radiation Oncology; Ates, R.; Dhaens, J.; Storme, G. [Universitair Ziekenhuis Brussel (Belgium). Dept. of Radiation Oncology

    2012-12-15

    Background and purpose: The aim of the study was to validate the use of linac-based radiosurgery in arteriovenous malformation (AVM) patients and to predict complications using an integrated logistic formula (ILF) in comparison with clinical outcomes. Patients and methods: The results of radiosurgery in 92 AVM patients were examined. All patients were treated with linac-based radiosurgery. Of these, 70 patients were followed for 12-45 months (median, 24 months) and were analyzed. The treated volume varied from 0.09 to 26.95 cm{sup 3} (median, 2.3 cm{sup 3}) and the median marginal dose was 20 Gy (range, 10.4-22). The median 12-Gy volume was 9.94 cm{sup 3} (range, 0.74-60.09 cm{sup 3}). Patients and lesion characteristics potentially affecting nidus obliteration and excellent outcome were evaluated by performing a log-rank test and univariate and multivariate analyses. The risk for radiation injury (RRI) was calculated with an integrated logistic formula. The predictive power of the RRI was assessed by calculating the area under the receiver operating characteristic (ROC) curve. Results: Follow-up magnetic resonance (MR) angiography revealed complete AVM obliteration in 56 of 70 patients. The MR angiography confirmed an obliteration rate of 80%. The annual hemorrhage rate was 1.4% for the first 2 years after radiosurgery and 0% thereafter. The number of patients with an excellent outcome was 48 (68%). Factors associated with better obliteration were higher radiation dose to the lesion margins [12-Gy volume (V12) > 10 cm{sup 3}], small volume, and a Pollock-Flickinger score less than 1.49; those predicting excellent outcomes were V12 < 10 cm{sup 3}, small volume, and Pollock-Flickinger score less than 1.49, as determined by multivariate analyses. Factors associated with radiation injury were V12 > 10 cm{sup 3} (p=0.03) and volume greater than 2 cm{sup 3} (p=0.001), as determined by a univariate analysis. The analyses showed an ROC of 0.66. Conclusion: These data

  15. Retrospective analysis of linac-based radiosurgery for arteriovenous malformations and testing of the Flickinger formula in predicting radiation injury

    International Nuclear Information System (INIS)

    Cetin, I.A.; Marmara Univ., Ustkaynarca/Pendik; Ates, R.; Dhaens, J.; Storme, G.

    2012-01-01

    Background and purpose: The aim of the study was to validate the use of linac-based radiosurgery in arteriovenous malformation (AVM) patients and to predict complications using an integrated logistic formula (ILF) in comparison with clinical outcomes. Patients and methods: The results of radiosurgery in 92 AVM patients were examined. All patients were treated with linac-based radiosurgery. Of these, 70 patients were followed for 12-45 months (median, 24 months) and were analyzed. The treated volume varied from 0.09 to 26.95 cm 3 (median, 2.3 cm 3 ) and the median marginal dose was 20 Gy (range, 10.4-22). The median 12-Gy volume was 9.94 cm 3 (range, 0.74-60.09 cm 3 ). Patients and lesion characteristics potentially affecting nidus obliteration and excellent outcome were evaluated by performing a log-rank test and univariate and multivariate analyses. The risk for radiation injury (RRI) was calculated with an integrated logistic formula. The predictive power of the RRI was assessed by calculating the area under the receiver operating characteristic (ROC) curve. Results: Follow-up magnetic resonance (MR) angiography revealed complete AVM obliteration in 56 of 70 patients. The MR angiography confirmed an obliteration rate of 80%. The annual hemorrhage rate was 1.4% for the first 2 years after radiosurgery and 0% thereafter. The number of patients with an excellent outcome was 48 (68%). Factors associated with better obliteration were higher radiation dose to the lesion margins [12-Gy volume (V12) > 10 cm 3 ], small volume, and a Pollock-Flickinger score less than 1.49; those predicting excellent outcomes were V12 3 , small volume, and Pollock-Flickinger score less than 1.49, as determined by multivariate analyses. Factors associated with radiation injury were V12 > 10 cm 3 (p=0.03) and volume greater than 2 cm 3 (p=0.001), as determined by a univariate analysis. The analyses showed an ROC of 0.66. Conclusion: These data suggest that linac-based radiosurgery is

  16. The JAERI superconducting RF linac-based FELS and THEIR cryogenics

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2003-01-01

    In the 21st century, we need a powerful and efficient free-electron laser (FEL) for academic and industrial uses in almost all fields. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, the JAERI FEL group and I have developed an industrial FEL driven by a compact, stand-alone and zero-boil off super-conducting rf linac with an energy-recovery geometry. Our discussions on the JAERI FEL and cryogenics will cover market-requirements for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil off cryostat concept and operational experiences over these 9 years, our discovery of the new, highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry. (author)

  17. A python based interface for the tandem-linac control system

    International Nuclear Information System (INIS)

    Ajith Kumar, B.P.

    2011-01-01

    The control system for the Tandem-LINAC accelerator system at IUAC is a client-server design running on a network of PCs under the GNU/Linux operating system. The computers connected to the devices in the accelerator run a server program. The computers providing the user interface runs different kinds of client programs that communicates to the servers over a TCT/IP network to control/monitor the accelerator parameters. Both the programs were written in C language and some programming expertise was required to write the client programs. The addition of a Python language interface has enabled the users to write programs for specific tasks like data logging and partial automation of the operation with minimal effort. (author)

  18. Physical models and primary design of reactor based slow positron source at CMRR

    Science.gov (United States)

    Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin

    2018-07-01

    Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109

  19. Evidence for charge transfer in Bi-based superconductors studied by positron annihilation

    International Nuclear Information System (INIS)

    Tang, Z.; Wang, S.J.; Gao, X.H.; Ce, G.C.; Zhao, Z.X.

    1993-01-01

    We have measured Doppler-broadening annihilation radiation (DBAR) spectra and positron lifetimes in normal and superconducting states for three kinds of Bi-based superconductors: Bi2212, Pb-doped Bi2223, Pb- and F-doped Bi2223. The difference spectra after deconvolution between two states show a sharpening effect with increasing temperature; the F-doped sample has the greatest amplitude in difference spectra but nearly the same positron lifetimes as the Pb-doped sample. The results are interpreted in terms of charge transfer between the Cu-O and Bi-O planes. The role of oxygen defects in charge transfer is discussed. (orig.)

  20. Activity-based costing evaluation of a [F-18]-fludeoxyglucose positron emission tomography study

    NARCIS (Netherlands)

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Vander Borght, Thierry

    2009-01-01

    Objective: The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes.

  1. SU-F-T-611: Critical Analysis and Efficacy of Linac Based (Beam Modulator) and Cyberknife Treatment Plans for Acoustic Neuroma/schwannoma

    International Nuclear Information System (INIS)

    KP, Karrthick; Kataria, T; Thiyagarajan, R; Selvan, T; Abhishek, A

    2016-01-01

    Purpose: To study the critical analysis and efficacy of Linac and Cyberknife (CK) treatment plans for acoustic neuroma/schwannoma. Methods: Twelve of acoustic neuroma/schwannoma patients were taken for these study that. Treatment plans were generated in Multiplan treatment planning system (TPS) for CK using 5,7.5 and 10mm diameter collimators. Target volumes were in the range of 0.280 cc to 9.256 cc. Prescription dose (Rx) ranges from 1150cGy to 1950cGy delivered over 1 to 3 Fractions. For same patients stereotactic Volumetric modulated arc plans were generated using Elekta Linac with MLC thickness of 4mm in Monaco TPS. Appropriate calculation algorithms and grid size were used with same Rx and organ at risk (OAR) constrains for both Linac and CK plans. Treatment plans were developed to achieve at least 95% of the target volume to receive the Rx. The dosimetric indices such as conformity index (CI), coverage, OAR dose and volume receiving 50% of Rx (V50%) were used to evaluate the plans. Results: Target volumes ranges from 0.280 cc to 3.5cc shows the CI of 1.16±0.109 and 1.53±0.360 for cyberknife and Linac plans respectively. For small volume targets, the OARs were well spared in CK plans. There are no significant differences in CI and OAR doses were observed between CK and Linac plans that have the target volume >3.5 cc. Perhaps the V50% were lesser in CK plans, and found to be 12.8± 8.4 and 22.8 ± 15.0 for CK and Linac respectively. Conclusion: The analysis shows the importance of collimator size for small volume targets. The target volumes >3.5 cc can be treated in Linac as comparable with CK. For targets <3.5cc CK plans showed superior plan quality with better CI and OAR sparing than the Linac based plans. Further studies may require evaluating the clinical advantage of CK robotic system.

  2. Single Fraction Versus Fractionated Linac-Based Stereotactic Radiotherapy for Vestibular Schwannoma: A Single-Institution Experience

    Energy Technology Data Exchange (ETDEWEB)

    Collen, Christine, E-mail: ccollen@uzbrussel.be [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Ampe, Ben [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Gevaert, Thierry [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Moens, Maarten [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Linthout, Nadine; De Ridder, Mark; Verellen, Dirk [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); D' Haens, Jean [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Storme, Guy [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium)

    2011-11-15

    Purpose: To evaluate and compare outcomes for patients with vestibular schwannoma (VS) treated in a single institution with linac-based stereotactic radiosurgery (SRS) or by fractionated stereotactic radiotherapy (SRT). Methods and Materials: One hundred and nineteen patients (SRS = 78, SRT = 41) were treated. For both SRS and SRT, beam shaping is performed by a mini-multileaf collimator. For SRS, a median single dose of 12.5 Gy (range, 11-14 Gy), prescribed to the 80% isodose line encompassing the target, was applied. Of the 42 SRT treatments, 32 treatments consisted of 10 fractions of 3-4 Gy, and 10 patients received 25 sessions of 2 Gy, prescribed to the 100% with the 95% isodose line encompassing the planning target volume. Mean largest tumor diameter was 16.6 mm in the SRS and 24.6 mm in the SRT group. Local tumor control, cranial nerve toxicity, and preservation of useful hearing were recorded. Any new treatment-induced cranial nerve neuropathy was scored as a complication. Results: Median follow-up was 62 months (range, 6-136 months), 5 patients progressed, resulting in an overall 5-year local tumor control of 95%. The overall 5-year facial nerve preservation probability was 88% and facial nerve neuropathy was statistically significantly higher after SRS, after prior surgery, for larger tumors, and in Koos Grade {>=}3. The overall 5-year trigeminal nerve preservation probability was 96%, not significantly influenced by any of the risk factors. The overall 4-year probability of preservation of useful hearing (Gardner-Robertson score 1 or 2) was 68%, not significantly different between SRS or SRT (59% vs. 82%, p = 0.089, log rank). Conclusion: Linac-based RT results in good local control and acceptable clinical outcome in small to medium-sized vestibular schwannomas (VSs). Radiosurgery for large VSs (Koos Grade {>=}3) remains a challenge because of increased facial nerve neuropathy.

  3. On the average luminosity of electron positron collider and positron-producing energy

    International Nuclear Information System (INIS)

    Xie Jialin

    1985-01-01

    In this paper, the average luminosity of linac injected electron positron collider is investigated from the positron-producing energy point of view. When the energy of the linac injector is fixed to be less than the operating energy of the storage ring, it has been found that there exists a positron-producing energy to give optimum average luminosity. Two cases have been studied, one for an ideal storage ring with no single-beam instability and the other for practical storage ring with fast head-tail instability. The result indicates that there is a positron-producing energy corresponding to the minimum injection time, but this does not correspond to the optimum average luminosity for the practical storage rings. For Beijing Electron Positron Collider (BEPC), the positron-producing energy corresponding to the optimum average luminosity is about one tenth of the total injector energy

  4. Simulation of a Positron Source for CEBAF

    International Nuclear Information System (INIS)

    S. Golge; A. Freyberger; C. Hyde-Wright

    2007-01-01

    A positron source for the 6 GeV (or the proposed 12 GeV upgrade) recirculating linacs at Jefferson Lab is presented. The proposed 100nA CW positron source has several unique characteristics; high incident beam power (100kW), 10 MeV incident electron beam energy, CW incident beam and CW production. Positron production with 10 MeV electrons has several advantages; the energy is below neutron threshold so the production target will not become activated during use and the absolute energy spread is bounded by the low incident energy. These advantages are offset by the large angular distribution of the outgoing positrons. Results of simulations of the positron production, capture, acceleration and injection into the recirculating linac are presented. Energy flow and thermal management of the production target present a challenge and are included in the simulations

  5. Compact LINAC for deuterons

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; O'Hara, J.F.; Rybarcyk, L.J.

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  6. Acceleration of high charge density electron beams in the SLAC linac

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Clendenin, J.E.; Jobe, R.K.; Lueth, V.G.; Millich, A.; Ross, M.C.; Seeman, J.T.; Stiening, R.F.

    1984-01-01

    The SLAC Linear Collider (SLC) will require both electron and positron beams of very high charge density and low emittance to be accelerated to about 50 GeV in the SLAC 3-km linac. The linac is in the process of being improved to meet this requirement. The program to accelerate an electron beam of high charge density through the first third of the SLC linac is described and the experimental results are discussed. 7 references, 5 figures

  7. Hearthfire design base for the high current low velocity rf linac

    International Nuclear Information System (INIS)

    Burke, R.J.; Khoe, T.K.; Kustom, R.L.; Martin, R.L.; Moretti, A.

    1977-01-01

    The particle beam parameters needed for inertial fusion can be achieved with conventional accelerator technology if heavy ion machines attain the level of performance of the most intense high energy proton machines. Many of the problems posed by this goal pertain to the low energy portions of the accelerator system. In particular, the implied particle current in the rf linac is 10 3 --10 4 times the values achieved with existing heavy ion machines. Much of this discrepancy is simply attributable to the great differences between the design considerations relevant to accelerators for fusion and those which have determined the performance of the existing machines. The basic concept chosen at Argonne National Laboratory is cavities containing single drift tubes mounted on lambda/4 supports. Such structures pose the least problem for the beam transport system, and one cavity is placed between adjacent quadrupole magnets. The average voltage gain of the first cells of the low velocity section is moderate; and, although probably acceptable and improved by the end of the 10 MV section, the low initial gain adds to the motivation provided by the transport problem to increase the preinjector voltage substantially above 750 kV

  8. Application of positron annihilation to polymer and development of a radioisotopes-based pulsed slow positron beam apparatus

    International Nuclear Information System (INIS)

    Suzuki, Takenori

    2004-01-01

    Positrons injected into polymer behave as nanometer probes, which can detect the size and amount of intermolecular spaces among polymer structures. Although positrons can probe the characteristics of polymer, they induce a radiation effect on polymer samples. At low temperature, the radiation effect induces free electrons, which can be trapped in a shallow potential created among intermolecular structures after freezing molecular motions. These trapped electrons can be released after the disappearance of the shallow potential due to the reappearance of molecular motion above the relaxation temperature. Thus, positrons can be used as a probe for relaxation studies. Coincidence of Doppler broadening spectroscopy (CDBS) can improve the S/N ratio to 10 7 , which makes it possible to detect trace elements, since CDBS can separate the high-momentum component of core electrons. A pulsed slow positron beam apparatus is necessary for measuring holes in the polymer film and allows the measurement of the characteristics of thin film coated on semiconductors used widely in electronics industries. (author)

  9. High current induction linacs

    International Nuclear Information System (INIS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge

  10. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy

  11. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.H.; Stoeffl, W.

    1998-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectra

  12. Dynamics on the positron capture and accelerating sections of CLIC

    CERN Document Server

    Poirier, Freddy; Vivoli, Alessandro; Dadoun, Olivier; Lepercq, Pierre; Variola, Alessandro

    2011-01-01

    The CLIC Pre-Injector Linac for the e+ beam is composed of an Adiabatic Matching Device (AMD) followed by 4 (or 5) accelerating RF structures embedded in a solenoidal magnetic field. The accelerating sections are based on 2 GHz long travelling wave structures. In this note, the positrons capture strategy downstream the AMD is reviewed. The first RF structure can be phased either for full acceleration or for deceleration. In the latter case, the simulations results show that the number of e+ capture at the end of the 200 MeV Pre-Injector Linac is increased. Then the impact of the space charge is presented. Additional techniques are also studied to explore the potentiality of increasing the number of e+ namely an extra RF field at the beginning of the capture section and a higher solenoidal field.

  13. Time resolution in scintillator based detectors for positron emission tomography

    International Nuclear Information System (INIS)

    Gundacker, S.

    2014-01-01

    In the domain of medical photon detectors L(Y)SO scintillators are used for positron emission tomography (PET). The interest for time of flight (TOF) in PET is increasing since measurements have shown that new crystals like L(Y)SO coupled to state of the art photodetectors, e.g. silicon photomultipliers (SiPM), can reach coincidence time resolutions (CTRs) of far below 500ps FWHM. To achieve these goals it is important to study the processe in the whole detection chain, i.e. the high energy particle or gamma interaction in the crystal, the scintillation process itself, the light propagation in the crystal with the light transfer to the photodetector, and the electronic readout. In this thesis time resolution measurements for a PET like system are performed in a coincidence setup utilizing the ultra fast amplifier discriminator NINO. We found that the time-over-threshold energy information provided by NINO shows a degradation in energy resolution for higher SiPM bias voltages. This is a consequence of the increasing dark count rate (DCR) of the SiPM with higher bias voltages together with the exponential decay of the signal. To overcome this problem and to operate the SiPM at its optimum voltage in terms of timing we developed a new electronic board that employs NINO only as a low noise leading edge discriminator together with an analog amplifier which delivers the energy information. With this new electronic board we indeed improved the measured CTR by about 15%. To study the limits of time resolution in more depth we measured the CTR with 2x2x3mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially available SiPMs (Hamamatsu S10931-50P MPPC) and achieved a CTR of 108±5ps FWHM at an energy of 511keV. We determined the influence of the data acquisition system and the electronics on the CTR to be 27±2ps FWHM and thus negligible. To quantitatively understand the measured values, we developed a Monte Carlo simulation tool in MATLAB that incorporates the timing

  14. Precision measurement of positron polarization in 68Ga decay based on the use of a new positron polarimeter

    International Nuclear Information System (INIS)

    Gerber, G.; Newman, D.; Rich, A.; Sweetman, E.

    1977-01-01

    We report a new measurement of positron polarization (P) in 68 Ga decay. Using a new polarimeter the asymmetry (A) in the decay of positronium in a magnetic field was measured to 5%. When combined with a calculation of the positron depolarization on stopping in MgO powder the overall uncertainty in P is 11%. The most precise prior determination of P was to 12% accuracy. An eventual precision of 1% in A and 0.1% in comparisons of asymmetries from different sources is anticipated. In addition to the 68 Ga work we point out the possible use of the polarimeter in a number of new measurements including a determination of e + polarization in μ + and nuclear decay and in a g - 2 experiment

  15. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  16. Initial clinical results of linac-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas

    International Nuclear Information System (INIS)

    Mitsumori, Michihide; Shrieve, Dennis C.; Alexander, Eben; Kaiser, Ursula B.; Richardson, Gary E.; Black, Peter McL.; Loeffler, Jay S.

    1998-01-01

    Purpose: To retrospectively evaluate the initial clinical results of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (SRT) for pituitary adenomas with regard to tumor and hormonal control and adverse effects of the treatment. Subjects and Methods: Forty-eight patients with pituitary adenoma who underwent SRS or SRT between September 1989 and September 1995 were analyzed. Of these, 18 received SRS and 30 received SRT. The median tumor volumes were 1.9 cm 3 for SRS and 5.7 cm 3 for SRT. Eleven of the SRS and 18 of the SRT patients were hormonally active at the time of the initial diagnosis. Four of the SRS and none of the SRT patients had a history of prior radiation therapy. Both SRS and SRT were performed using a dedicated stereotactic 6-MV linear accelerator (LINAC). The dose and normalization used for the SRS varied from 1000 cGy at 85% of the isodose line to 1500 cGy at 65% of the isodose line. For SRT patients, a total dose of 4500 cGy at 90% or 95% of the isodose line was delivered in 25 fractions of 180 cGy daily doses. Results: Disease control--The three year tumor control rate was 91.1% (100% for SRS and 85.3% for SRT). Normalization of the hormonal abnormality was achieved in 47% of the 48 patients (33% for SRS and 54% for SRT). The average time required for normalization was 8.5 months for SRS and 18 months for SRT. Adverse effects--The 3-year rate of freedom from central nervous system adverse effects was 89.7% (72.2% for SRS and 100% for SRT). Three patients who received SRS for a tumor in the cavernous sinus developed a ring enhancement in the temporal lobe as shown by follow-up magnetic resonance imaging. Two of these cases were irreversible and were considered to be radiation necrosis. None of the 48 patients developed new neurocognitive or visual disorders attributable to the irradiation. The incidence of endocrinological adverse effects were similar in the two groups, resulting in 3-year rates of freedom from newly

  17. Linac 1, inner structure

    CERN Multimedia

    1968-01-01

    This photo shows the inner structure of Linac 1. As injector to the PS, and later to the Booster, Linac 1 accelerated protons to 50 MeV, but it has also accelerated heavier ions. Fitted with a 520 keV RFQ pre-injector (instead of the original Cockcroft-Walton generator), it delivered protons and heavy ions to LEAR, from 1982 to 1992. After 33 years of faithful service, Linac 1 was dismantled in 1992 to make room for Linac 3 (Pb ions).

  18. Construction of SPring-8 LINAC

    International Nuclear Information System (INIS)

    Yokomizo, Hideaki; Yoshikawa, Hiroshi; Suzuki, Shinsuke; Yanagida, Ken-ichi; Mizuno, Akihiko; Hori, Toshihiko; Tamezane, Kenji; Kodera, Masahiko; Sakaki, Hironao; Mashiko, Katsuo

    1993-01-01

    Construction of the linac building has been started in February 1993. The components of the linac are under manufacturing. The preinjector of linac was already constructed and temporarily installed in Tokai Establishment in order to test the beam quality. (author)

  19. Performance of a Novel Repositioning Head Frame for Gamma Knife Perfexion and Image-Guided Linac-Based Intracranial Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Ruschin, Mark; Nayebi, Nazanin; Carlsson, Per; Brown, Kevin

    2010-01-01

    Purpose: To evaluate the geometric positioning and immobilization performance of a vacuum bite-block repositioning head frame (RHF) system for Perfexion (PFX-SRT) and linac-based intracranial image-guided stereotactic radiotherapy (SRT). Methods and Materials: Patients with intracranial tumors received linac-based image-guided SRT using the RHF for setup and immobilization. Three hundred thirty-three fractions of radiation were delivered in 12 patients. The accuracy of the RHF was estimated for linac-based SRT with online cone-beam CT (CBCT) and for PFX-SRT with a repositioning check tool (RCT) and offline CBCT. The RCT's ability to act as a surrogate for anatomic position was estimated through comparison to CBCT image matching. Immobilization performance was evaluated daily with pre- and postdose delivery CBCT scans and RCT measurements. Results: The correlation coefficient between RCT- and CBCT-reported displacements was 0.59, 0.75, 0.79 (Right, Superior, and Anterior, respectively). For image-guided linac-based SRT, the mean three-dimensional (3D) setup error was 0.8 mm with interpatient (Σ) and interfraction (σ) variations of 0.1 and 0.4 mm, respectively. For PFX-SRT, the initial, uncorrected mean 3D positioning displacement in stereotactic coordinates was 2.0 mm, with Σ = 1.1 mm and σ = 0.8 mm. Considering only RCT setups o in pitch. The mean 3D intrafraction motion was 0.4 ± 0.3 mm. Conclusion: The RHF provides excellent immobilization for intracranial SRT and PFX-SRT. Some small systematic uncertainties in stereotactic positioning exist and must be considered when generating PFX-SRT treatment plans. The RCT provides reasonable surrogacy for internal anatomic displacement.

  20. Laser based stripping system for measurement of the transverse emittance of H-beams at the CERN Linac4

    CERN Document Server

    Hofmann, T; Raich, U; Roncarolo, F; Cheymol, B

    2013-01-01

    The new LINAC4 at CERN will accelerate H- particles to 160 MeV and allow high brightness proton beam transfers to the Proton Synchrotron Booster, via a charge-exchange injection scheme. This paper describes the conceptual design of a laser system proposed for transverse profile and emittance measurements based on photon detachment of electrons from the H- ions. The binding energy of the outer electron is only 0.75 eV and can easily be stripped with a laser beam. Measuring the electron signal as function of the laser position allows the transverse beam profile to be reconstructed. A downstream dipole can also be used to separate the laser neutralized H0 atoms from the main H- beam. By imaging these H0 atoms as a function of laser position the transverse emittance can be reconstructed in the same way as in traditional slit-and-grid systems. By properly dimensioning the laser power and spot size, this method results in negligible beam losses and is therefore non-destructive. In addition, the absence of material ...

  1. Quality assurance system to correct for errors arising from couch rotation in linac-based stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Brezovich, Ivan A.; Pareek, Prem N.; Plott, W. Eugene; Jennelle, Richard L. S.

    1997-01-01

    Purpose: The purpose of this project was the development of a quality assurance (QA) system that would provide geographically accurate targeting for linac-based stereotactic radiosurgery (LBSR). Methods and Materials: The key component of our QA system is a novel device (Alignment Tool) for expedient measurement of gantry and treatment table excursions (wobble) during rotation. The Alignment Tool replaces the familiar pencil-shaped pointers with a ball pointer that is used with the field light of the accelerator to indicate alignment of beam and target. Wobble is measured prior to each patient treatment and analyzed together with the BRW coordinates of the target by a spreadsheet. The corrections required to compensate for any imprecision are identified, and a printout generated indicating the floor stand coordinates for each couch angle used to place the target at isocenter. Results: The Alignment Tool has an inherent accuracy of measurement better than 0.1 mm. The overall targeting error of our QA method, found by evaluating 177 target simulator films of 55 foci in 40 randomly selected patients, was 0.47 ± 0.23 mm. The Alignment Tool was also valuable during installation of the floor stand and a supplemental collimator for the accelerator. Conclusions: The QA procedure described allows accurate targeting in LBSR, even when couch rotation is imprecise. The Alignment Tool can facilitate the installation of any stereotactic irradiation system, and can be useful for annual QA checks as well as in the installation and commissioning of new accelerators

  2. Comparison of IMRT Treatment Plans Between Linac and Helical Tomotherapy Based on Integral Dose and Inhomogeneity Index

    International Nuclear Information System (INIS)

    Shi Chengyu; Penagaricano, Jose; Papanikolaou, Niko

    2008-01-01

    Intensity modulated radiotherapy (IMRT) is an advanced treatment technology for radiation therapy. There are several treatment planning systems (TPS) that can generate IMRT plans. These plans may show different inhomogeneity indices to the planning target volume (PTV) and integral dose to organs at risk (OAR). In this study, we compared clinical cases covering different anatomical treatment sites, including head and neck, brain, lung, prostate, pelvis, and cranio-spinal axis. Two treatment plans were developed for each case using Pinnacle 3 and helical tomotherapy (HT) TPS. The inhomogeneity index of the PTV and the non-tumor integral dose (NTID) were calculated and compared for each case. Despite the difference in the number of effective beams, in several cases, NTID did not increase from HT as compared to the step-and-shoot delivery method. Six helical tomotherapy treatment plans for different treatment sites have been analyzed and compared against corresponding step-and-shoot plans generated with the Pinnacle 3 planning system. Results show that HT may produce plans with smaller integral doses to healthy organs, and fairly homogeneous doses to the target as compared to linac-based step-and-shoot IMRT planning in special treatment site such as cranio-spinal

  3. Wire alignment system for ATF LINAC

    International Nuclear Information System (INIS)

    Hayano, H.; Takeda, S.; Matsumoto, H.; Matsui, T.

    1994-01-01

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  4. The superconducting linac booster at the ANU

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1995-02-01

    This report outlines the progress of the installation of the superconducting Linac booster at the Australian National University. The Linac is based upon four modules, three of which contain three split-loop resonators. The fourth cryostat was intended to be a superbuncher and so houses only one resonator. The first stage of Linac operation will employ only three modules with 2 MV/m from each resonator. It is expected that the implementation of all nine modules, in subsequent stages, would boost beams by 18 MV/q. The project has fostered productive international collaboration between UK and Australian scientists. 1 tab., 6 figs

  5. Workshop: Linac90

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyck, Olin

    1990-12-15

    In 1960 the first linear accelerator (linac) conference was organized at Brookhaven by John Blewett. In the few years following, linear accelerator energies jumped from 50 MeV (at Brookhaven and CERN) to 2 GeV at Stanford. With the realization that, at least for electrons, circular accelerators have reached their practical limits, linacs are once more in the spotlight.

  6. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-01-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results of past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs are presented

  7. Linac pre-injector

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  8. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-06-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results will be presented about past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs

  9. Workshop: Linac90

    International Nuclear Information System (INIS)

    Van Dyck, Olin

    1990-01-01

    In 1960 the first linear accelerator (linac) conference was organized at Brookhaven by John Blewett. In the few years following, linear accelerator energies jumped from 50 MeV (at Brookhaven and CERN) to 2 GeV at Stanford. With the realization that, at least for electrons, circular accelerators have reached their practical limits, linacs are once more in the spotlight

  10. Positron-molecule interactions and corresponding positron attachment to molecules. As a basis for positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Tachikawa, Masanori; Kimura, Mineo; Pichl, Lukas

    2007-01-01

    Through positron and electron interactions, they annihilate emitting primarily two gamma rays with 180-degree opposite directions. Positron spectroscopy using the characteristics of these gamma rays has been employed for analyzing various properties of material as well as for positron emission tomography (PET). However, its fundamental physics of positron-electron interactions and resulting features of emitting gamma rays are not well understood. By obtaining better understanding of positron interactions, it should become possible to provide the firm bases for positron spectroscopy in finer accuracy and quality. Here, we propose a significant mechanism for positron annihilation through positron attachment process, which may help increase the quality of positron spectroscopy. (author)

  11. BNCT with linac, feasibility study

    International Nuclear Information System (INIS)

    Alfuraih, A.; Ma, A.; Spyrou, N.M.; Awotwi-Pratt, Joseph

    2006-01-01

    High energy photon beams from Medical Linear Accelerators (linacs) which are used in radiotherapy produce undesirable neutrons, beside the clinically useful electron and photon beams. Neutrons are produced from the photonuclear reaction (γ,n) of high energy photons with high Z-materials which compose the accelerator head. In this paper the possible use of these undesirable neutrons for BNCT is investigated, making use of high energy linacs already installed in hospitals, primarily for high energy electron and photon therapy and applying them in the context of BNCT. The photoneutron components emitted by the accelerator is the source for Monte Carlo simulations of the interactions that take place within the head of a voxel-based phantom. The neutron flux across the phantom head is calculated using different moderator arrangements and different techniques in the aim of increasing the thermal neutron flux at the targeted site. Also, we shall test different configurations of the linac head to maximize the exposure of high-Z materials to the photon beam, including the removal of the flattening filter, so as to boost the photoneutron production in the linac head. Experimental work will be conducted in hospitals to validate the Monte Carlo simulations. To make use of linacs for BNCT will be advantageous in the sense that the setting in a hospital department is much more acceptable by the public than a reactor installation. This will mean less complications regarding patient positioning and movement with respect to the beams, additional patient transportation and management will be more cost effective. (author)

  12. TU-H-BRA-08: The Design and Characteristics of a Novel Compact Linac-Based MRI Guided Radiation Therapy (MR-IGRT) System

    International Nuclear Information System (INIS)

    Mutic, S; Low, D; Chmielewski, T; Fought, G; Hernandez, M; Kawrakow, I; Sharma, A; Shvartsman, S; Dempsey, J

    2016-01-01

    Purpose: To describe the design and characteristics of a novel linac-based MRI guided radiation therapy system that addresses RF and magnetic field interference and that can be housed in conventional radiotherapy vaults. Methods: The MR-IGRT system will provide simultaneous MR imaging combined with both simple (3D) and complex (IMRT, SBRT, SRS) techniques. The system is a combination of a) double-donut split solenoidal superconducting 0.345T MRI; and b) a 90 cm isocenter ring-gantry mounted 6MV, flattening filter-free linac coupled with a stacked doubly-focused multileaf collimator with 4 mm resolution. A novel RF shielding and absorption technology was developed to isolate the beam generating RF emissions from the MR, while a novel magnetic shielding sleeve system was developed to place the magnetic field-sensitive components in low-magnetic field regions. The system design produces high spatial resolution radiation beams with state-of-the art radiation dose characteristics and simultaneous MR imaging. Results: Prototype testing with a spectrum analyzer has demonstrated complete elimination of linac RF inside the treatment room. The magnetic field inside of the magnetic shielding was well below the specification, allowing the linear accelerator to operate normally. A novel on-gantry shimming system maintained < 25 ppm magnetic field homogeneity over a 45 cm spherical field of view for all gantry angles. Conclusion: The system design demonstrates the feasibility coupling a state-of-the art linac system with a 0.345T MRI, enabling highly conformal radiation therapy with simultaneous MR image guidance. S. Mutic’s employer (Washington University) has grant with ViewRay; D. Low is former ViewRay scientific advisory board member (ended October 2015); T. Chmielewski, G. Fought, M. Hernandez, I. Kawrakow, A. Sharma, S. Shvartsman, J. Dempsey are employees of ViewRay with stock options (Dempsey has leadership role and Dempsey/Kawrakow have stock).

  13. TU-H-BRA-08: The Design and Characteristics of a Novel Compact Linac-Based MRI Guided Radiation Therapy (MR-IGRT) System

    Energy Technology Data Exchange (ETDEWEB)

    Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Low, D [UCLA, Los Angeles, CA (United States); Chmielewski, T; Fought, G; Hernandez, M; Kawrakow, I; Sharma, A; Shvartsman, S; Dempsey, J [ViewRay, Inc., Oakwood Village, OH (United States)

    2016-06-15

    Purpose: To describe the design and characteristics of a novel linac-based MRI guided radiation therapy system that addresses RF and magnetic field interference and that can be housed in conventional radiotherapy vaults. Methods: The MR-IGRT system will provide simultaneous MR imaging combined with both simple (3D) and complex (IMRT, SBRT, SRS) techniques. The system is a combination of a) double-donut split solenoidal superconducting 0.345T MRI; and b) a 90 cm isocenter ring-gantry mounted 6MV, flattening filter-free linac coupled with a stacked doubly-focused multileaf collimator with 4 mm resolution. A novel RF shielding and absorption technology was developed to isolate the beam generating RF emissions from the MR, while a novel magnetic shielding sleeve system was developed to place the magnetic field-sensitive components in low-magnetic field regions. The system design produces high spatial resolution radiation beams with state-of-the art radiation dose characteristics and simultaneous MR imaging. Results: Prototype testing with a spectrum analyzer has demonstrated complete elimination of linac RF inside the treatment room. The magnetic field inside of the magnetic shielding was well below the specification, allowing the linear accelerator to operate normally. A novel on-gantry shimming system maintained < 25 ppm magnetic field homogeneity over a 45 cm spherical field of view for all gantry angles. Conclusion: The system design demonstrates the feasibility coupling a state-of-the art linac system with a 0.345T MRI, enabling highly conformal radiation therapy with simultaneous MR image guidance. S. Mutic’s employer (Washington University) has grant with ViewRay; D. Low is former ViewRay scientific advisory board member (ended October 2015); T. Chmielewski, G. Fought, M. Hernandez, I. Kawrakow, A. Sharma, S. Shvartsman, J. Dempsey are employees of ViewRay with stock options (Dempsey has leadership role and Dempsey/Kawrakow have stock).

  14. Application of the extreme value theory to beam loss estimates in the SPIRAL2 linac based on large scale Monte Carlo computations

    Directory of Open Access Journals (Sweden)

    R. Duperrier

    2006-04-01

    Full Text Available The influence of random perturbations of high intensity accelerator elements on the beam losses is considered. This paper presents the error sensitivity study which has been performed for the SPIRAL2 linac in order to define the tolerances for the construction. The proposed driver aims to accelerate a 5 mA deuteron beam up to 20   A MeV and a 1 mA ion beam for q/A=1/3 up to 14.5 A MeV. It is a continuous wave regime linac, designed for a maximum efficiency in the transmission of intense beams and a tunable energy. It consists in an injector (two   ECRs   sources+LEBTs with the possibility to inject from several sources+radio frequency quadrupole followed by a superconducting section based on an array of independently phased cavities where the transverse focalization is performed with warm quadrupoles. The correction scheme and the expected losses are described. The extreme value theory is used to estimate the expected beam losses. The described method couples large scale computations to obtain probability distribution functions. The bootstrap technique is used to provide confidence intervals associated to the beam loss predictions. With such a method, it is possible to measure the risk to loose a few watts in this high power linac (up to 200 kW.

  15. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    Directory of Open Access Journals (Sweden)

    Yulu Huang

    2016-08-01

    Full Text Available An ultrafast kicker system is being developed for the energy recovery linac (ERL based electron circulator cooler ring (CCR in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC. In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10−1/30 (150  mA-50  mA of the cooling beam current (up to 1.5 A. Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetition rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. Off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.

  16. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.

    Science.gov (United States)

    Kinahan, Paul E; Hasegawa, Bruce H; Beyer, Thomas

    2003-07-01

    A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended. Copyright 2003 Elsevier Inc. All rights reserved.

  17. New linac technology - for SSC, and beyond

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1983-01-01

    With recent agreement on the high priority of seeking funding for a Superconducting Super Collider (SSC), it is appropriate to consider the injector linac requirements for such a machine. In so doing, the status of established technique and advantages of near-term R and D with relatively clear payoff are established, giving a base line for some speculation about linac possibilities even further in the future

  18. Compendium of Scientific Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, James E

    2003-05-16

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in the present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.

  19. Variable-energy positron annihilation study of subnanopores in SiOCH-based PECVD films

    International Nuclear Information System (INIS)

    Ito, Kenji; Oka, Toshitaka; Kobayashi, Yoshinori; Suzuki, Ryoichi; Ohdaira, Toshiyuki

    2007-01-01

    Subnanoporosity was introduced into SiOCH-based thin films by mixing tetraethyl orthosilicate with hexamethyldisiloxane (HMDSO) in the plasma enhanced chemical vapor deposition process, and was evaluated by the variable-energy positron annihilation lifetime technique. It was found that with increasing the HMDSO fraction both porosity and pore size were enhanced, as evidenced by the decreased refractive index and increased ortho-positronium lifetime. The lifetimes from 2.0 to 6.8 ns suggested the tunable pore volumes within a range of 0.1-0.7 nm 3

  20. A High-Performance VME-Based Acquisition System for Positron Emission Mammography

    International Nuclear Information System (INIS)

    Abbott, D.J.; Weisenberger, A.; Majewski, S.; Kieper, D.; Kross, B.; Popov, V.; Wojcik, R.; Raylman, R.R.

    2001-01-01

    A prototype for a practical and economical breast imaging system for cancer detection is currently under development at Jefferson Lab. The latest advances in bright, fast, crystal scintillators, compact position-sensitive photomultipliers (PSPMT), and high-performance digitizing and readout electronics are being used to develop a compact imager based on Positron Emission Tomography (PET). To facilitate the performance demands of the detector as well as the high number of readout channels, the data acquisition system is built around an intelligent, self-contained, VME form-factor

  1. Review of superconducting linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for acceleration of ions with velocity β ∼ 1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions. (Author) 5 tabs., 6 figs., 29 refs

  2. Review of induction LINACS

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1981-10-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  3. Review of induction linacs

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1982-01-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of several kiloamps of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  4. Gamma camera based Positron Emission Tomography: a study of the viability on quantification

    International Nuclear Information System (INIS)

    Pozzo, Lorena

    2005-01-01

    Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, random, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 2D, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be delt with carefully in clinical quantification. Finally, the choice of the region

  5. SU-E-J-48: Imaging Origin-Radiation Isocenter Coincidence for Linac-Based SRS with Novalis Tx

    International Nuclear Information System (INIS)

    Geraghty, C; Workie, D; Hasson, B

    2015-01-01

    Purpose To implement and evaluate an image-based Winston-Lutz (WL) test to measure the displacement between ExacTrac imaging origin and radiation isocenter on a Novalis Tx system using RIT V6.2 software analysis tools. Displacement between imaging and radiation isocenters was tracked over time. The method was applied for cone-based and MLC-based WL tests. Methods The Brainlab Winston-Lutz phantom was aligned to room lasers. The ExacTrac imaging system was then used to detect the Winston- Lutz phantom and obtain the displacement between the center of the phantom and the imaging origin. EPID images of the phantom were obtained at various gantry and couch angles and analyzed with RIT calculating the phantom center to radiation isocenter displacement. The RIT and Exactrac displacements were combined to calculate the displacement between imaging origin and radiation isocenter. Results were tracked over time. Results Mean displacements between ExacTrac origin and radiation isocenter were: VRT: −0.1mm ± 0.3mm, LNG: 0.5mm ± 0.2mm, LAT: 0.2mm ± 0.2mm (vector magnitude of 0.7 ± 0.2mm). Radiation isocenter was characterized by the mean of the standard deviations of the WL phantom displacements: σVRT: 0.2mm, σLNG: 0.4mm, σLAT: 0.6mm. The linac couch base was serviced to reduce couch walkout. This reduced σLAT to 0.2mm. These measurements established a new baseline of radiation isocenter-imaging origin coincidence. Conclusion The image-based WL test has ensured submillimeter localization accuracy using the ExacTrac imaging system. Standard deviations of ExacTrac-radiation isocenter displacements indicate that average agreement within 0.3mm is possible in each axis. This WL test is a departure from the tradiational WL in that imaging origin/radiation isocenter agreement is the end goal not lasers/radiation isocenter

  6. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  7. Brookhaven Linac Isotope Producer

    Data.gov (United States)

    Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...

  8. Electron linac injector developments

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1986-01-01

    There is a continuing demand for improved injectors for electron linacs. Free-electron laser (FEL) oscillators require pulse trains of high brightness and, in some applications, high average power at the same time. Wakefield-accelerator and laser-acceleration experiments require isolated bunches of high peak brightness. Experiments with alkali-halide photoemissive and thermionic electron sources in rf cavities for injector applications are described. For isolated pulses, metal photocathodes (illuminated by intense laser pulses) are being employed. Reduced emittance growth in high-peak-current electron injectors may be achieved by linearizing the cavity electric field's radial component and by using high field strengths at the expense of lower shunt impedance. Harmonically excited cavities have been proposed for enlarging the phase acceptance of linac cavities and thereby reducing the energy spread produced in the acceleration process. Operation of injector linacs at a subharmonic of the main linac frequency is also proposed for enlarging the phase acceptance

  9. LUX - A design study for a linac/laser-based ultrafast X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Penn, G.; Ratti, A.; Reinsch, M.; Schoenlein, R.; Staples, J.; Stover, G.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Wurtele, J.; Zholents, A.

    2004-08-06

    A warm, relativistic fluid theory of a nonequilibrium, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave phase velocities. The maximum amplitude is shown to increase in the presence of a laser field. These results set a limit to the achievable gradient in plasma-based accelerators.

  10. Machine interlock and protection system based on PLC for the SSRF linac

    International Nuclear Information System (INIS)

    Chou Wenjun; Zhou Dayong; Chen Jianfeng; Shen Liren; Liu Yajuan

    2008-01-01

    This paper describes a machine interlock and protection system used for accelerators based on EPICS (Experimental physics and industrial control system). The system is composed of a front-end computer and an FM-3R logic controller PLC. The alarm signal is passed by the hardware directly, and would be deal with PLC. The reporting, recording and analyst of the event are accomplished by EPICS control software. And PLC is linked to the EPICS by Internet. (authors)

  11. LUX - A design study for a linac/laser-based ultrafast X-ray source

    International Nuclear Information System (INIS)

    Corlett, J.N.; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Penn, G.; Ratti, A.; Reinsch, M.; Schoenlein, R.; Staples, J.; Stover, G.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Wurtele, J.; Zholents, A.

    2004-01-01

    A warm, relativistic fluid theory of a nonequilibrium, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave phase velocities. The maximum amplitude is shown to increase in the presence of a laser field. These results set a limit to the achievable gradient in plasma-based accelerators

  12. LFSC - Linac Feedback Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (<Linac Feedback Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  13. Study of a positron generation

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Enomoto, A.; Ikeda, M.; Ohsawa, S.; Kamitani, T.; Hosoyama, K.; Takei, H.; Emoto, T.; Tani, S.

    1998-03-01

    In the Power Reactor and Nuclear Fuel Development Corporation (PNC), the following are examined as part of an application technology using a high power electron linac: monochromatic gamma ray sources, free electron lasers, and intense positron sources. This report presents the study of an intense positron source, which has been developed jointly by High Energy Accelerator Research Organization (KEK) and PNC. In this report, we describe following items for an adaptive estimate of a superconducting magnet in order to efficiently converge a positron beam. (1) The cryostat which included the superconducting magnet is manufactured. (2) An excitement test of the superconducting magnet is carried out with a magnetic substance such as the electromagnet yoke. (author)

  14. Conformity of LINAC-Based Stereotactic Radiosurgery Using Dynamic Conformal Arcs and Micro-Multileaf Collimator

    International Nuclear Information System (INIS)

    Hazard, Lisa J.; Wang, Brian; Skidmore, Thomas B.; Chern, Shyh-Shi; Salter, Bill J.; Jensen, Randy L.; Shrieve, Dennis C.

    2009-01-01

    Purpose: To assess the conformity of dynamic conformal arc linear accelerator-based stereotactic radiosurgery and to describe a standardized method of isodose surface (IDS) selection. Methods and Materials: In 174 targets, the conformity index (CI) at the prescription IDS used for treatment was calculated as CI = (PIV/PVTV)/(PVTV/TV), where TV is the target volume, PIV (prescription isodose volume) is the total volume encompassed by the prescription IDS, and PVTV is the TV encompassed by the IDS. In addition, a 'standardized' prescription IDS (sIDS) was chosen according to the following criteria: 95% of the TV was encompassed by the PIV and 99% of TV was covered by 95% of the prescription dose. The CIs at the sIDS were also calculated. Results: The median CI at the prescription IDS and sIDS was 1.63 and 1.47, respectively (p < 0.001). In 132 of 174 cases, the volume of normal tissue in the PIV was reduced by the prescription to the sIDS compared with the prescription IDS, in 20 cases it remained unchanged, and in 22 cases it was increased. Conclusion: The CIs obtained with linear accelerator-based stereotactic radiosurgery are comparable to those previously reported for gamma knife stereotactic radiosurgery. Using a uniform method to select the sIDS, adequate target coverage was usually achievable with prescription to an IDS greater than that chosen by the treating physician (prescription IDS), providing sparing of normal tissue. Thus, the sIDS might aid physicians in identifying a prescription IDS that balances coverage and conformity

  15. SU-E-T-54: A New Method for Optimizing Radiation Isocenter for Linac-Based SRS

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, S [Southeast Missouri Hospital, Cape Girardeau, MO (United States); Hyer, D; Nixon, E [University Of Iowa, Iowa City, IA (United States)

    2015-06-15

    Purpose: To develop a new method to minimize deviation of linac x-ray beams from the centroid of the volumetric radiation isocenter for all combinations of gantry and table angle. Methods: A set of ball-bearing (Winston-Lutz) images was used to determine the gantry radiation isocenter as the midrange of deviation values. Deviations in the cross-plane direction were minimized by calibration of MLC leaf position offset, and by adjusting beam position steering for each energy. Special attention was also paid to matching the absolute position of isocenter across all energies by adjusting position steering in the gun-target axis. Displacement of table axis from the gantry isocenter, and recommended table axis adjustment for contemporary Elekta linacs, was also determined. Eight images were used to characterize the volumetric isocenter for the full range of gantry and table rotations available. Tabulation of deviation for each beam was used to test compliance with isocenter tolerance. Results: Four contemporary Elekta linacs were evaluated and the radius in the gun-target axis of the radiation isocenter was 0.5 to 0.7 mm. After beam steering adjustment, the radius in the cross-plane direction was typically 0.2 to 0.4 mm. Position matching between energies can be reduced to 0.28 mm. Maximum total deviation was 0.68 to 1.07 mm, depending primarily on the effect of systematic table axis wobble with rotation. Conclusion: This new method effectively facilitates minimization of deviation between beam center and target position. The test, which requires a few minutes to perform, can be easily incorporated into a routine machine QA program. A tighter radiation isocenter for contemporary Elekta linacs would require reducing the effect of gantry arm flex and/or table axis wobble that are the two main components of deviation from the designated isocenter point.

  16. The positron accumulator ring for the APS

    International Nuclear Information System (INIS)

    Crosbie, E.A.

    1989-01-01

    The Positron Accumulator Ring (PAR) is designed to accumulate and damp positrons from the 450-MeV linac during the 0.5-s cycle time of the injector synchrotron for the APS 7-GeV storage ring. During 0.4 s of each synchrotron cycle, up to 24 linac pulses are injected into the horizontal phase space of the PAR at a 60-Hz rate. Each injected pulse occupies about 1.3 of the circumference of the accumulator ring. After 0.1 s for longitudinal damping, the single accumulated bunch is transferred to one of the 353-MHz buckets of the injector synchrotron RF system. The bunch is accelerated to 7 GeV and transferred to the storage ring, while the PAR accumulates the next bunch of positrons. 2 refs., 3 figs., 2 tabs

  17. The positron accumulator ring for the APS

    International Nuclear Information System (INIS)

    Crosbie, E.A.

    1989-01-01

    The Positron Accumulator Ring (PAR) is designed to accumulate and damp positrons from the 450-MeV linac during the 0.5-s cycle time of the injector synchrotron for the APS 7-GeV storage ring. During 0.4 s of each synchrotron cycle, up to 24 linac pulses are injected into the horizontal phase space of the PAR at a 60-Hz rate. Each injected pulse occupies about 1/3 of the circumference of the accumulator ring. After 0.1 s for longitudinal damping, the single accumulated bunch is transferred to one of the 353-MHz buckets of the injector synchrotron RF system. The bunch is accelerated to 7 GeV and transferred to the storage ring, while the PAR accumulates the next bunch of positrons. 2 refs., 3 figs., 2 tabs

  18. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  19. Study of CT-based positron range correction in high resolution 3D PET imaging

    International Nuclear Information System (INIS)

    Cal-Gonzalez, J.; Herraiz, J.L.; Espana, S.; Vicente, E.; Herranz, E.; Desco, M.; Vaquero, J.J.; Udias, J.M.

    2011-01-01

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  20. SU-G-TeP2-01: Can EPID Based Measurement Replace Traditional Daily Output QA On Megavoltage Linac?

    International Nuclear Information System (INIS)

    Saleh, Z; Tang, X; Song, Y; Obcemea, C; Beeban, N; Chan, M; Li, X; Tang, G; Lim, S; Lovelock, D; LoSasso, T; Mechalakos, J; Both, S

    2016-01-01

    Purpose: To investigate the long term stability and viability of using EPID-based daily output QA via in-house and vendor driven protocol, to replace conventional QA tools and improve QA efficiency. Methods: Two Varian TrueBeam machines (TB1&TB2) equipped with electronic portal imaging devices (EPID) were employed in this study. Both machines were calibrated per TG-51 and used clinically since Oct 2014. Daily output measurement for 6/15 MV beams were obtained using SunNuclear DailyQA3 device as part of morning QA. In addition, in-house protocol was implemented for EPID output measurement (10×10 cm fields, 100 MU, 100cm SID, output defined over an ROI of 2×2 cm around central axis). Moreover, the Varian Machine Performance Check (MPC) was used on both machines to measure machine output. The EPID and DailyQA3 based measurements of the relative machine output were compared and cross-correlated with monthly machine output as measured by an A12 Exradin 0.65cc Ion Chamber (IC) serving as ground truth. The results were correlated using Pearson test. Results: The correlations among DailyQA3, in-house EPID and Varian MPC output measurements, with the IC for 6/15 MV were similar for TB1 (0.83–0.95) and TB2 (0.55–0.67). The machine output for the 6/15MV beams on both machines showed a similar trend, namely an increase over time as indicated by all measurements, requiring a machine recalibration after 6 months. This drift is due to a known issue with pressurized monitor chamber which tends to leak over time. MPC failed occasionally but passed when repeated. Conclusion: The results indicate that the use of EPID for daily output measurements has the potential to become a viable and efficient tool for daily routine LINAC QA, thus eliminating weather (T,P) and human setup variability and increasing efficiency of the QA process.

  1. SU-G-TeP2-01: Can EPID Based Measurement Replace Traditional Daily Output QA On Megavoltage Linac?

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Z; Tang, X; Song, Y; Obcemea, C; Beeban, N; Chan, M; Li, X; Tang, G; Lim, S; Lovelock, D; LoSasso, T; Mechalakos, J; Both, S [Memorial Sloan-Kettering Cancer Center, NY (United States)

    2016-06-15

    Purpose: To investigate the long term stability and viability of using EPID-based daily output QA via in-house and vendor driven protocol, to replace conventional QA tools and improve QA efficiency. Methods: Two Varian TrueBeam machines (TB1&TB2) equipped with electronic portal imaging devices (EPID) were employed in this study. Both machines were calibrated per TG-51 and used clinically since Oct 2014. Daily output measurement for 6/15 MV beams were obtained using SunNuclear DailyQA3 device as part of morning QA. In addition, in-house protocol was implemented for EPID output measurement (10×10 cm fields, 100 MU, 100cm SID, output defined over an ROI of 2×2 cm around central axis). Moreover, the Varian Machine Performance Check (MPC) was used on both machines to measure machine output. The EPID and DailyQA3 based measurements of the relative machine output were compared and cross-correlated with monthly machine output as measured by an A12 Exradin 0.65cc Ion Chamber (IC) serving as ground truth. The results were correlated using Pearson test. Results: The correlations among DailyQA3, in-house EPID and Varian MPC output measurements, with the IC for 6/15 MV were similar for TB1 (0.83–0.95) and TB2 (0.55–0.67). The machine output for the 6/15MV beams on both machines showed a similar trend, namely an increase over time as indicated by all measurements, requiring a machine recalibration after 6 months. This drift is due to a known issue with pressurized monitor chamber which tends to leak over time. MPC failed occasionally but passed when repeated. Conclusion: The results indicate that the use of EPID for daily output measurements has the potential to become a viable and efficient tool for daily routine LINAC QA, thus eliminating weather (T,P) and human setup variability and increasing efficiency of the QA process.

  2. Feasibility study for a recirculating linac-based facility for femtosecond dynamics

    International Nuclear Information System (INIS)

    Corlett, J.N.; Barry, W.; Barletta, W.A.; Byrd, J.M.; DeSantis, S.; Doolittle, L.; Fawley, W.; Green, M.A.; Hartman, N.; Heimann, P.; Kairan, D.; Kujawski, E.; Li, D.; Lidia, S.; Luft, P.; McClure, R.; Parmigiani, F.; Petroff, Y.; Pirkl, W.; Placidi, M.; Reavill, D.; Reichel, I.; Rimmer, R.A.; Ratti, A.; Robinson, K.E.; Sannibale, F.; Schoenlein, R.; Staples, J.; Tanabe, J.; Truchlikova, D.; Wan, W.; Wang, S.; Wells, R.; Wolski, A.; Zholents, A.

    2002-01-01

    LBNL is pursuing design studies and the scientific program for a facility dedicated to the production of x-ray pulses with ultra-short time duration, for application in dynamical studies of processes in physics, biology, and chemistry. The proposed x-ray facility has the short x-ray pulse length (∼60 fs FWHM) necessary to study very fast dynamics, high flux (up to approximately 10E11 photons/sec/0.1 percentBW) to study weakly scattering systems, and tuneability over 1-12 keV photon energy. The hard x-ray photon production section of the machine accommodates seven 2-m long undulators. Design studies for longer wavelength sources, using high-gain harmonic generation, are in progress. The x-ray pulse repetition rate of 10 kHz is matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typically have a long recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or flow of the sample. The technique for producing ultra-short x-ray pulses uses relatively long electron bunches to minimize high-peak-current collective effects, and the ultimate x-ray duration is achieved by a combination of bunch manipulation and optical compression. Synchronization of x-ray pulses to sample excitation signals is expected to be of order 50 - 100 fs. Techniques for making use of the recirculating geometry to provide beam-based signals from early passes through the machine are being studied

  3. Feasibility study for a recirculating linac-based facility for femtosecond dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Barry, W.; Barletta, W.A.; Byrd, J.M.; DeSantis, S.; Doolittle, L.; Fawley, W.; Green, M.A.; Hartman, N.; Heimann, P.; Kairan, D.; Kujawski, E.; Li, D.; Lidia, S.; Luft, P.; McClure, R.; Parmigiani, F.; Petroff, Y.; Pirkl, W.; Placidi, M.; Reavill, D.; Reichel, I.; Rimmer, R.A.; Ratti, A.; Robinson, K.E.; Sannibale, F.; Schoenlein, R.; Staples, J.; Tanabe, J.; Truchlikova, D.; Wan, W.; Wang, S.; Wells, R.; Wolski, A.; Zholents, A.

    2002-12-21

    LBNL is pursuing design studies and the scientific program for a facility dedicated to the production of x-ray pulses with ultra-short time duration, for application in dynamical studies of processes in physics, biology, and chemistry. The proposed x-ray facility has the short x-ray pulse length ({approx}60 fs FWHM) necessary to study very fast dynamics, high flux (up to approximately 10E11 photons/sec/0.1 percentBW) to study weakly scattering systems, and tuneability over 1-12 keV photon energy. The hard x-ray photon production section of the machine accommodates seven 2-m long undulators. Design studies for longer wavelength sources, using high-gain harmonic generation, are in progress. The x-ray pulse repetition rate of 10 kHz is matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typically have a long recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or flow of the sample. The technique for producing ultra-short x-ray pulses uses relatively long electron bunches to minimize high-peak-current collective effects, and the ultimate x-ray duration is achieved by a combination of bunch manipulation and optical compression. Synchronization of x-ray pulses to sample excitation signals is expected to be of order 50 - 100 fs. Techniques for making use of the recirculating geometry to provide beam-based signals from early passes through the machine are being studied.

  4. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Rohlev, A; Garoby, R

    2003-01-01

    A new VME based system has been developed and built at CERN for the servo loops regulating the field in the linac accelerating structure. It makes use of high speed digital In-phase/Quadrature (IQ) detection, digital processing, and digital IQ modulation. The digital processing and IQ modulation is done in a single PLD. The system incorporates continually variable set points, iterative learning, feed forward as well as extensive diagnostics and other features well suited for digital implementations. Built on a single VME card, it will be first used in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3) and later for upgrading the present proton linac (linac 2). This system serves also as a prototype for the future Superconducting Proton Linac (SPL). The design principle and the experimental results are described.

  5. Wakefields in SLAC linac collimators

    Directory of Open Access Journals (Sweden)

    A. Novokhatski

    2014-12-01

    Full Text Available When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.

  6. Upgrade of the controls for the Brookhaven linac

    International Nuclear Information System (INIS)

    Buxton, W.E.

    1995-01-01

    The control of the magnets, rf system, and other components at the Brookhaven Linac uses a system that was developed at Brookhaven in the late 1960's. This system will be retired in the summer of 1995. The Linac controls are being upgraded using modem VME-based hardware compatible with RHIC generation controls, and an existing serial field bus. The timing for the Linac will also be upgraded and will use components developed for RHIC. The controls in general, the timing for the Linac, and the modules developed will be described

  7. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Broere, J; Garoby, R; Rohlev, A; Serrano, J

    2004-01-01

    A VME based control system has been developed and built at CERN for the servo loops regulating the field in linac accelerating structures. It is an all-digital system built on a single VME card, providing digital detection, processing, and modulation. It is foreseen to be used, in different versions, for the needs of both present and future CERN hadron linacs. The first application will be in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3). Design principle and the experimental results are described.

  8. EPOS-An intense positron beam project at the ELBE radiation source in Rossendorf

    International Nuclear Information System (INIS)

    Krause-Rehberg, R.; Sachert, S.; Brauer, G.; Rogov, A.; Noack, K.

    2006-01-01

    EPOS, the acronym of ELBE Positron Source, describes a running project to build an intense pulsed beam of mono-energetic positrons (0.2-40 keV) for materials research. Positrons will be created via pair production at a tungsten target using the pulsed 40 MeV electron beam of the superconducting linac electron linac with high brilliance and low emittance (ELBE) at Forschungszentrum Rossendorf (near Dresden, Germany). The chosen design of the system under construction is described and results of calculations simulating the interaction of the electron beam with the target are presented, and positron beam formation and transportation is also discussed

  9. Observations of accelerated high current low emittance beams in the SLC Linac

    International Nuclear Information System (INIS)

    Seeman, J.T.; Ross, M.C.; Sheppard, J.C.; Stiening, R.F.

    1985-05-01

    The Linac of the SLAC Linear Collider (SLC) is required to accelerate several intense single electron and positron bunches to high energy while not enlarging their small transverse emittances. The improvements needed by the SLAC Linac to meet these goals have very stringent design criteria. As partial systems have become available, beam tests have been performed to confirm the designs. The results of those beam tests are discussed. Future plans of the improvement program are described. 13 refs., 9 figs

  10. Influence of 18F-fluorodeoxyglucose-positron emission tomography on computed tomography-based radiation treatment planning for oesophageal cancer

    International Nuclear Information System (INIS)

    Everitt, C.; Leong, T.

    2006-01-01

    The addition of positron emission tomography (PET) information to CT-based radiotherapy treatment planning has the potential to improve target volume definition through more accurate localization of the primary tumour and involved regional lymph nodes. This case report describes the first patient enrolled to a prospective study evaluating the effects of coregistered positron emission tomography/CT images on radiotherapy treatment planning for oesophageal cancer. The results show that if combined positron emission tomography/CT is used for radiotherapy treatment planning, there may be alterations to the delineation of tumour volumes when compared to CT alone. For this patient, a geographic miss of tumour would have occurred if CT data alone were used for radiotherapy planning Copyright (2006) Blackwell Publishing Asia Pty Ltd

  11. Configuring the SLC linac for injection into PEP

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1989-01-01

    From time to time the normal SLC physics program is to be interrupted so that beam can be delivered to PEP. In order that the switch to PEP injection (and the switch back again) can be accomplished quickly and easily, the gun, the damping rings, the linac phase ramp, the energy profile of the linac klystrons for the scavenger bunch, and the entire positron production system are to be kept the same as in the SLC configuration. What mainly remains to be changed is the linac klystron profile for the leading two bunches - those going to PEP. The new klystron profile must be such that it leaves these two beams (1) with final energies that match that of the storage ring and (2) with final energy spectra that fit within the energy aperture of the PEP transfer line. The conditions that need to be met in order to achieve these two goals are discussed in this note. 1 ref., 2 figs

  12. The Australian government's review of positron emission tomography: evidence-based policy-making in action.

    Science.gov (United States)

    Ware, Robert E; Francis, Hilton W; Read, Kenneth E

    2004-06-21

    The Commonwealth Government constituted the Medicare Services Advisory Committee (MSAC) to implement its commitment to entrench the principles of evidence-based medicine in Australian clinical practice. With its recent review of positron emission tomography (PETReview), the Commonwealth intervened in an established MSAC process, and sanctioned the stated objective to restrict expenditure on the technology. In our opinion: The evaluation of evidence by PETReview was fundamentally compromised by a failure to meet the terms of reference, poor science, poor process and unique decision-making benchmarks. By accepting the recommendations of PETReview, the Commonwealth is propagating information which is not of the highest quality. The use of inferior-quality information for decision-making by doctors, patients and policy-makers is likely to harm rather than enhance healthcare outcomes.

  13. Design of injector section for SPring-8 linac

    International Nuclear Information System (INIS)

    Yoshikawa, Hiroshi; Nakamura, Naoki; Mizuno, Akihiko; Suzuki, Shinsuke; Hori, Toshihiko; Yanagida, Kenichi; Mashiko, Katsuo; Yokomizo, Hideaki

    1993-07-01

    In the SPring-8, we are planning to use positrons in order to increase the beam life time in the storage-ring. For the injector linac, though high current beam production to yield positrons is alternative with accurate low current beam production for commissioning, we designed the injector section to achieve both of the high current mode and the low current mode. In this paper, overview of some simulation codes for the design of electron accelerators are described and the calculation results by TRACE for the injector section of the linac are shown. That is useful not only for the design of machines but for the selection of sensitive parameters to establish the good beam quality. Now the injector section, which is settled at Tokai Establishment, is arranged for the case of the performance check of the electron gun. And we present that the layout of this section is needed to be rearranged for the high current mode operation. (author)

  14. High field electron linacs

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-12-01

    High field electron linacs are considered as potential candidates to provide very high energies beyond LEP. Since almost twenty years not much improvement has been made on linac technologies as they have been mostly kept at low and medium energies to be used as injectors for storage rings. Today, both their efficiency and their performances are being reconsidered, and for instance the pulse compression sheme developed at SLAC and introduced to upgrade the energy of that linac is a first step towards a new generation of linear accelerators. However this is not enough in terms of power consumption and more development is needed to improve both the efficiency of accelerating structures and the performances of RF power sources

  15. Feasibility studies of a polarized positron source based on the Bremsstrahlung of polarized electrons

    International Nuclear Information System (INIS)

    Dumas, J.

    2011-09-01

    The nuclear and high-energy physics communities have shown a growing interest in the availability of high current, highly-polarized positron beams. A sufficiently energetic polarized photon or lepton incident on a target may generate, via Bremsstrahlung and pair creation within a solid target foil, electron-positron pairs that should carry some fraction of the initial polarization. Recent advances in high current (> 1 mA) spin polarized electron sources at Jefferson Lab offer the perspective of creating polarized positrons from a low energy electron beam. This thesis discusses polarization transfer from electrons to positrons in the perspective of the design optimization of a polarized positron source. The PEPPo experiment, aiming at a measurement of the positron polarization from a low energy (< 10 MeV) highly spin polarized electron beam is discussed. A successful demonstration of this technique would provide an alternative scheme for the production of low energy polarized positrons and useful information for the optimization of the design of polarized positron sources in the sub-GeV energy range. (author)

  16. Decision logic for retreatment of asymptomatic lung cancer recurrence based on positron emission tomography findings

    International Nuclear Information System (INIS)

    Frank, Albert; Lefkowitz, David; Jaeger, Stanley; Gobar, Lisa; Sunderland, John; Gupta, Naresh; Scott, Walter; Mailliard, James; Lynch, Henry; Bishop, John; Thorpe, Patricia; Dewan, Naresh

    1995-01-01

    Purpose: The purpose of the study was to determine if Positron emission tomography (PET) 2-[F-18] fluoro-2-deoxy-D-glucose (FDG) imaging could detect subclinical local lung cancer recurrence and whether retreatment of such recurrence was feasible and beneficial. Methods and Materials: Twenty patients with biopsy proven lung cancer were studied with Positron emission tomography for the purpose of detecting subclinical lung cancer recurrence over a period of 4.25 years. All patients were treated with external radiation as part or all of their therapy. Twenty patients had baseline PET and computed tomography (CT) studies for comparison with later studies. Surviving patients had a total of 40 sequential PET scans and 35 CT scans. The follow-up interval ranged from 5 to 40 months posttreatment. The differential uptake ratio (DUR) was determined for regions of interest of increased FDG uptake. Results: The median DUR value of the 20 baseline PET studies was 5.59. The DUR value of greater than 3 was empirically selected as being positive for tumor detection. On baseline studies, PET had a 100% correlation with the CT findings in regard to detection of the site of primary tumor involvement. Four of 20 patients showed areas of discordance in the mediastinal and hilar areas on initial PET and CT studies. Seven of 17 patients showed discordant posttreatment PET-CT findings. Two false positive PET studies were due to radiation pneumonitis and one to macrophage glycolysis in tumor necrosis. For detection of asymptomatic tumor recurrence, analysis of sequential PET and CT studies, biopsy results, and the patient's clinical course suggested that PET had a sensitivity of 100%, specificity of 89.3%, and accuracy of 92.5%. Computerized Tomography was found to have a sensitivity of 67%, specificity of 85%, and accuracy of 82% for detection of such early-stage recurrence. Five patients went on to have retreatment with external irradiation based upon the PET evidence. Four retreated

  17. Intra-operative nuclear imaging based on positron-emitting radiotracers

    International Nuclear Information System (INIS)

    Shakir, Dzhoshkun Ismail

    2014-01-01

    Positron-emitting radiotracers are an important part of nuclear medical imaging processes. Besides the very famous glucose analog [ 18 F]FDG, many not so well known ones exist, among them the particularly interesting amino acid-based tracers like [ 18 F]FET. Although peri-operative imaging with positron-emitting radiotracers has become state-of- the-art in cases of many types of cancer, their capability is not fully exploited in the operating room yet. In this thesis we explore two intra-operative nuclear imaging modalities exploiting different aspects of positron radiation towards quality assurance in challenging surgical treatment scenarios. The first modality freehand PET provides a tomographic image of a volume of interest and aims at minimizing invasiveness by assisting the surgeon in pinpointing target structures marked with a radiotracer. The second imaging modality epiphanography generates an image of the radiotracer distribution on a surface of interest and aims at providing a means for improving the control of tumor resection margins. The word epiphanography is a compound of the Greek words επιφανεια (epiphaneia) for surface and ζωγραφια (ographia) for image, and hence means the image of the surface similar to the compound τομοζ (tomos) for slice/volume and ζωγραφια (ographia) for image, meaning the image of the volume, i.e. tomography. To our knowledge this is the first use of the word epiphanography in the context of nuclear medical imaging. In this thesis we present our approach to modeling, developing and calibrating these two novel imaging modalities. In addition, we present our work towards their clinical integration. In the case of freehand PET, we have already acquired the first intra-operative datasets of a patient. We present this first experience in the operating room together with our phantom studies. In the case of epiphanography, we present our phantom studies with neurosurgeons towards the integration of this

  18. 25 years of Pelletron Linac facility

    International Nuclear Information System (INIS)

    Shrivastava, A.; Palit, R.

    2014-01-01

    The DAE-BRNS International Symposium on Nuclear Physics was held in BARC during 2nd to 6th December 2013. A summary of the highlights of this symposium has recently appeared in Physics News. As a part of the symposium, a special session was held to commemorate 25 years of operation of the Mumbai Pelletron Linac Facility (PLF). PLF, being operated jointly by Bhabha Atomic Research Centre and Tata Institute of Fundamental Research, has been a major centre for heavy-ion accelerator based research in India. The Pelletron accelerator was formally inaugurated on 30th December 1988, and marked an important milestone in nuclear physics research in India. The facility was augmented with the indigenously developed superconducting LINAC booster to enhance the energy of the accelerated beams. The LINAC booster was commissioned in a phased manner and the entire facility was dedicated to the users on the 28th November 2007. The LINAC booster consists of seven liquid helium cryostat modules, each housing four lead coated (2 μm) copper quarter wave resonators (QWR). The cavities are designed to operate at 150 MHz with an optimum acceptance at a velocity corresponding to β=0.1. The performance of the QWRs is found to be excellent with an average energy gain of 0.4 MV/q per cavity corresponding to 80% of the design value. Beam transmission from the entry to the exit of the LINAC was found to be 80% and the beam timing (FWHM) of 600 ps was measured at the target position. Development of the superconducting LINAC is a major milestone in the accelerator technology in our country. Most of the critical components of the LINAC booster, the first superconducting heavy-ion accelerator in India, have been designed, developed and fabricated indigenously

  19. CERN Linac4. The space charge challenge

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Lutz Matthias

    2013-08-06

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting H-ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the Low Energy Beam Transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to reconstruct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam is transported along a 180 m long transfer line to the Proton Synchrotron Booster (PS-Booster). The transfer line optics was studied, optimised and sections were completely re-designed. The new transfer line optics is characterised by an improved preservation of the beam emittance, higher stability of the optical solution with respect to alignment errors and field jitters of the transfer line magnets and it is matched to each of the PS-Booster injection schemes. In a concluding ''Start-To-End'' simulation based on the measured beam characteristics at the LEBT exit the beam dynamics of the downstream Linac, including the transfer line, was calculated. To minimise particle losses within acceptable emittance preservation the beam optics of the Medium Energy Beam Transport (MEBT) was adapted to the measured beam parameters. This ''Start-To-End'' simulation was performed to identify critical sections of the Linac4 beam dynamics and

  20. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  1. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    Science.gov (United States)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  2. Fermilab: Linac upgrade

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab linear accelerator (Linac) was conceived 20 years ago, produced its first 200 MeV proton beam on 30 November 1970 and has run without major interruption ever since. Demands have steadily increased through the added complexity of the downstream chain of accelerators and by the increased patient load of the Neutron Therapy Facility

  3. Minicyclotron-based technology for the production of positron-emitting labelled radiopharmaceuticals

    International Nuclear Information System (INIS)

    Barrio, J.R.; Bida, G.; Satyamurthy, N.; Padgett, H.C.; MacDonald, N.S.; Phelps, M.E.

    1983-01-01

    The use of short-lived positron emitters such as carbon 11, fluorine 18, nitrogen 13, and oxygen 15, together with positron-emission tomography (PET) for probing the dynamics of physiological and biochemical processes in the normal and diseased states in man is presently an active area of research. One of the pivotal elements for the continued growth and success of PET is the routine delivery of the desired positron emitting labelled compounds. To date, the cyclotron remains the accelerator of choice for production of medically useful radionuclides. The development of the technology to bring the use of cyclotrons to a clinical setting is discussed

  4. Minicyclotron-based technology for the production of positron-emitting labelled radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, J.R.; Bida, G.; Satyamurthy, N.; Padgett, H.C.; MacDonald, N.S.; Phelps, M.E.

    1983-01-01

    The use of short-lived positron emitters such as carbon 11, fluorine 18, nitrogen 13, and oxygen 15, together with positron-emission tomography (PET) for probing the dynamics of physiological and biochemical processes in the normal and diseased states in man is presently an active area of research. One of the pivotal elements for the continued growth and success of PET is the routine delivery of the desired positron emitting labelled compounds. To date, the cyclotron remains the accelerator of choice for production of medically useful radionuclides. The development of the technology to bring the use of cyclotrons to a clinical setting is discussed. (ACR)

  5. Drift tubes of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  6. TH-EF-BRB-10: Dosimetric Validation of a Trajectory Based Cranial SRS Treatment Technique On a Varian TrueBeam Linac

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B [University of British Columbia, Vancouver, BC (Canada); Vancouver Cancer Centre, Vancouver, BC (Canada); Gete, E [Vancouver Cancer Centre, Vancouver, BC (Canada)

    2016-06-15

    Purpose: This work investigates the dosimetric accuracy of a trajectory based delivery technique in which an optimized radiation beam is delivered along a Couch-Gantry trajectory that is formed by simultaneous rotation of the linac gantry and the treatment couch. Methods: Nine trajectory based cranial SRS treatment plans were created using in-house optimization software. The plans were calculated for delivery on the TrueBeam STx linac with 6MV photon beam. Dose optimization was performed along a user-defined trajectory using MLC modulation, dose rate modulation and jaw tracking. The pre-defined trajectory chosen for this study is formed by a couch rotation through its full range of 180 degrees while the gantry makes four partial arc sweeps which are 170 degrees each. For final dose calculation, the trajectory based plans were exported to the Varian Eclipse Treatment Planning System. The plans were calculated on a homogeneous cube phantom measuring 18.2×18.2×18.2 cm3 with the analytical anisotropic algorithm (AAA) using a 1mm3 calculation voxel. The plans were delivered on the TrueBeam linac via the developer’s mode. Point dose measurements were performed on 9 patients with the IBA CC01 mini-chamber with a sensitive volume of 0.01 cc. Gafchromic film measurements along the sagittal and coronal planes were performed on three of the 9 treatment plans. Point dose values were compared with ion chamber measurements. Gamma analysis comparing film measurement and AAA calculations was performed using FilmQA Pro. Results: The AAA calculations and measurements were in good agreement. The point dose difference between AAA and ion chamber measurements were within 2.2%. Gamma analysis test pass rates (2%, 2mm passing criteria) for the Gafchromic film measurements were >95%. Conclusion: We have successfully tested TrueBeam’s ability to deliver accurate trajectory based treatments involving simultaneous gantry and couch rotation with MLC and dose rate modulation along the

  7. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    2011-01-01

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test the digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.

  8. BARC-TIFR Pelletron Linac facility

    International Nuclear Information System (INIS)

    Gore, J.A.; Gupta, A.K.; Saxena, A.

    2017-01-01

    The Pelletron Accelerator, set up as a collaborative project between the Bhabha Atomic Research Centre and the Tata Institute of Fundamental Research, has been serving as the workhorse for the heavy ion accelerator based research in India since its commissioning in December 30, 1988. The facility was augmented with an indigenously developed superconducting Linac booster to enhance the energy of the Pelletron accelerated beams and was fully commissioned on November 28, 2007. The augmented facility is renamed as Pelletron Linac facility (PLF). While the PLF is predominantly utilized by the experimental users from BARC and TIFR, the users include researchers from other research institutions and universities within India and abroad

  9. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Krishnendu [Ohio Medical Physics Consulting, Dublin, Ohio 43017 (United States); Straus, Kenneth J.; Glick, Stephen J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Chen, Yu. [Department of Radiation Oncology, Columbia University, New York, New York 10032 (United States)

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  10. Electron-Positron Accumulator (EPA)

    CERN Multimedia

    Photographic Service

    1986-01-01

    After acceleration in the low-current linac LIL-W, the electrons and positrons are accumulated in EPA to obtain a sufficient intensity and a suitable time-structure, before being passed on to the PS for further acceleration to 3.5 GeV. Electrons circulate from right to left, positrons in the other direction. Dipole bending magnets are red, focusing quadrupoles blue, sextupoles for chromaticity-control orange. The vertical tube at the left of the picture belongs to an optical transport system carrying the synchrotron radiation to detectors for beam size measurement. Construction of EPA was completed in spring 1986. LIL-W and EPA were conceived for an energy of 600 MeV, but operation was limited to 500 MeV.

  11. LFSC - Linac Feedback Simulation Code

    International Nuclear Information System (INIS)

    Ivanov, Valentin; Fermilab

    2008-01-01

    The computer program LFSC ( ) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output

  12. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  13. Microphonic measurements on superconducting linac structures

    International Nuclear Information System (INIS)

    Marzali, A.; Schwettman, H.A.

    1992-01-01

    Microphonics in multi-cell linac structures lead to energy and pointing modulation of the electron beam despite RF stabilization. Evaluation of the microphonic behaviour of a 500 MHz two cell structure is planned in collaboration with Lawrence Berkeley Laboratory and Brookhaven National Laboratory. In this paper we describe a method of evaluation based on accelerometer measurements. (Author) fig., 2 tabs., 5 refs

  14. Status of the Novosibirsk energy recovery linac

    International Nuclear Information System (INIS)

    Bolotin, V.P.; Vinokurov, N.A.; Gavrilov, N.G.; Kayran, D.A.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Serednyakov, S.S.; Skrinsky, A.N.; Shevchenko, O.A.; Scheglov, M.A.; Tcheskidov, V.G.

    2006-01-01

    The Novosibirsk terahertz free electron laser is based on the energy recovery linac (ERL) with room-temperature radiofrequency system. Some features of the ERL are discussed. The results of emittance measurements and electron optics tests are presented. The second stage of the ERL, which has four orbits, is described briefly

  15. An MLC-based linac QA procedure for the characterization of radiation isocenter and room lasers' position

    International Nuclear Information System (INIS)

    Rosca, Florin; Lorenz, Friedlieb; Hacker, Fred L.; Chin, Lee M.; Ramakrishna, Naren; Zygmanski, Piotr

    2006-01-01

    We have designed and implemented a new stereotactic linac QA test with stereotactic precision. The test is used to characterize gantry sag, couch wobble, cone placement, MLC offsets, and room lasers' positions relative to the radiation isocenter. Two MLC star patterns, a cone pattern, and the laser line patterns are recorded on the same imaging medium. Phosphor plates are used as imaging medium due to their sensitivity to red light. The red light of room lasers erases some of the irradiation information stored on the phosphor plates enabling accurate and direct measurements for the position of room lasers and radiation isocenter. Using film instead of the phosphor plate as imaging medium is possible, however, it is less practical. The QA method consists of irradiating four phosphor plates that record the gantry sag between the 0 deg.and 180 deg.gantry angles, the position and stability of couch rotational axis, the sag between the 90 deg.and 270 deg.gantry angles, the accuracy of cone placement on the collimator, the MLC offsets from the collimator rotational axis, and the position of laser lines relative to the radiation isocenter. The estimated accuracy of the method is ±0.2 mm. The observed reproducibility of the method is about ±0.1 mm. The total irradiation/illumination time is about 10 min per image. Data analysis, including the phosphor plate scanning, takes less than 5 min for each image. The method characterizes the radiation isocenter geometry with the high accuracy required for the stereotactic radiosurgery. In this respect, it is similar to the standard ball test for stereotactic machines. However, due to the usage of the MLC instead of the cross-hair/ball, it does not depend on the cross-hair/ball placement errors with respect to the lasers and it provides more information on the mechanical integrity of the linac/couch/laser system. Alternatively, it can be used as a highly accurate QA procedure for the nonstereotactic machines. Noteworthy is its

  16. Conceptual design of a slow positron source based on a magnetic trap

    CERN Document Server

    Volosov, V I; Mezentsev, N A

    2001-01-01

    A unique 10.3 T superconducting wiggler was designed and manufactured at BINP SB RAS. The installation of this wiggler in the SPring-8 storage ring provides a possibility to generate a high-intensity beam of photons (SR) with energy above 1 MeV (Ando et al., J. Synchrotron Radiat. 5 (1998) 360). Conversion of photons to positrons on high-Z material (tungsten) targets creates an integrated positron flux more than 10 sup 1 sup 3 particles per second. The energy spectrum of the positrons has a maximum at 0.5 MeV and the half-width about 1 MeV (Plokhoi et al., Jpn. J. Appl. Phys. 38 (1999) 604). The traditional methods of positron moderation have the efficiency epsilon=N sub s /N sub f of 10 sup - sup 4 (metallic moderators) to 10 sup - sup 2 (solid rare gas moderators) (Mills and Gullikson, Appl. Phys. Lett. 49 (1986) 1121). The high flux of primary positrons restricts the choice to a tungsten moderator that has epsilon approx 10 sup - sup 4 only (Schultz, Nuc. Instr. and Meth. B 30 (1988) 94). The aim of our pr...

  17. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography

    OpenAIRE

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A large...

  18. Injector linac of SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Hori, T.; Suzuki, S.; Yanagida, K.; Itoh, Y.; Mizuno, A.; Taniuchi, T.; Sakaki, H.; Kuba, A.; Fukushima, S.; Kobayashi, T.; Asaka, T.; Yokomizo, H.

    1996-01-01

    The linac that is SPring-8 injector was completed and started operation from August 1. A beam was able to be transported to the final beam dumping at a tail end on August 8. From now on this linac carries out beam adjustment and be scheduled to do a beam injection to a synchrotron in October. The construction and fundamental performance of the linac are described. (author)

  19. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Kouhei, E-mail: nakanishi.kouhei@c.mbox.nagoya-u.ac.jp; Yamamoto, Seiichi

    2016-11-21

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  20. Intense positron beam and its application to surface science

    International Nuclear Information System (INIS)

    Ito, Y.; Hirose, M.; Kanazawa, I.; Sueoka, O.; Takamura, S.; Okada, S.

    1992-01-01

    Intense pulsed slow positron beam has been produced using the 100 MeV electron LINAC of JAERI · Tokai. In order to use the beam for surface studies such as positron diffraction and positron microscopy, it was transferred from the solenoid magnetic field to field free region and then was brightness-enhanced. The beam size was reduced from 10 mmφ (in the magnetic field) to 0.5 mmφ after two stages of re-moderation. Using the intense brightness-enhanced positron beam we have observed for the first time RHEPD (Reflection High-Energy Positron Diffraction) patterns. A design of re-emission positron microscopy is also described. (author)

  1. Options for a next generation neutron source for neutron scattering based on the projected linac facility at JAERI

    International Nuclear Information System (INIS)

    Mezei, F.; Watanabe, Noboru; Niimura, Nobuo; Morii, Yukio; Aizawa, Kazuya; Suzuki, Jun-ichi.

    1997-03-01

    Japan Atomic Energy Research Institute (JAERI) has a project to construct a high intensity proton accelerator to promote wide basic science using neutrons and nuclear power technologies such as radioactive nuclide transmutation. One of the most important field for utilization of neutron beam is neutron scattering. The energy and the averaged current obtained by the proton accelerator are 1.5 GeV and 4-5.3 mA, respectively and these provide 6-8 MW power. The repetition frequency is 50-60 Hz. Evaluation of options for the use of accelerators for neutron production for neutron scattering research and investigation of the neutron research opportunities offered by sharing the superconducting linac planned at JAERI were discussed. There are two ways of the utilization of proton beams for neutron scattering experiment. One is for long pulse spallation source (LPSS) and the other is for short pulse spallation source (SPSS). Quantitative evaluation of instrument performance with LPSS and SPSS was examined in the intensive discussion, calculations, workshop on this topics with Prof. F. Mezei who stayed at JAERI from October 24 to November 6, 1996. A report of the collaborative workshop will be also published separately. (author)

  2. Superconducting heavy-ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1977-01-01

    A summary is given of plans developed by four different groups for the construction of small superconducting linacs to boost the energy of heavy ions from existing tandem electrostatic accelerators. The projects considered are the linac under construction at Argonne and the design efforts at Karlsruhe, at Stanford, and by a Cal Tech-Stony Brook collaboration. The intended uses of the accelerator systems are stated. Beam dynamics of linacs formed of short independently-phased resonators are reviewed, and the implications for performance are discussed. The main parameters of the four linacs are compared, and a brief analysis of accelerating structures is given

  3. High-beta linac structures

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1979-01-01

    Accelerating structures for high-beta linacs that have been and are in use are reviewed in terms of their performance. Particular emphasis is given to room-temperature structures and the disk-and-washer structure. The disk-and-washer structure has many attractive features that are discussed for pulsed high-gradient linacs, for 100% duty-cycle medium-gradient linacs and for high-current linacs requiring maximal amounts of stored energy in the electric fields available to the beam

  4. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    Science.gov (United States)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  5. Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films

    Science.gov (United States)

    Eijt, S. W. H.; Kind, R.; Singh, S.; Schut, H.; Legerstee, W. J.; Hendrikx, R. W. A.; Svetchnikov, V. L.; Westerwaal, R. J.; Dam, B.

    2009-02-01

    We report positron depth-profiling studies on the hydrogen sorption behavior and phase evolution of Mg-based thin films. We show that the main changes in the depth profiles resulting from the hydrogenation to the respective metal hydrides are related to a clear broadening in the observed electron momentum densities in both Mg and Mg2Ni films. This shows that positron annihilation methods are capable of monitoring these metal-to-insulator transitions, which form the basis for important applications of these types of films in switchable mirror devices and hydrogen sensors in a depth-sensitive manner. Besides, some of the positrons trap at the boundaries of columnar grains in the otherwise nearly vacancy-free Mg films. The combination of positron annihilation and x-ray diffraction further shows that hydrogen loading at elevated temperatures, in the range of 480-600 K, leads to a clear Pd-Mg alloy formation of the Pd catalyst cap layer. At the highest temperatures, the hydrogenation induces a partial delamination of the ˜5 nm thin capping layer, as sensitively monitored by positron depth profiling of the fraction of ortho-positronium formed at interface with the cap layer. The delamination effectively blocks the hydrogen cycling. In Mg-Si bilayers, we investigated the reactivity upon hydrogen loading and heat treatments near 480 K, which shows that Mg2Si formation is fast relative to MgH2. The combination of positron depth profiling and transmission electron microscopy shows that hydrogenation promotes a complete conversion to Mg2Si for this destabilized metal hydride system, while a partially unreacted, Mg-rich amorphous prelayer remains on top of Mg2Si after a single heat treatment in an inert gas environment. Thin film studies indicate that the difficulty of rehydrogenation of Mg2Si is not primarily the result from slow hydrogen dissociation at surfaces, but is likely hindered by the presence of a barrier for removal of Mg from the readily formed Mg2Si.

  6. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world close-quote s highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy. copyright 1999 American Institute of Physics

  7. Concepts for a slow-positron target at the advanced photon source

    International Nuclear Information System (INIS)

    Lessner, E.; White, M.

    1997-01-01

    The Advanced Photon Source (APS) linear accelerator beam could be used to produce slow positrons during the hours between the storage ring injection cycles. Initial concepts for the design of a target that is optimized for slow-positron production are discussed, and simulation results are presented. Some possible ways to increase the nominal linac beam power for improved slow-positron production are also discussed

  8. Activity-based costing evaluation of a [(18)F]-fludeoxyglucose positron emission tomography study.

    Science.gov (United States)

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Borght, Thierry Vander

    2009-10-01

    The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes. The cost data were obtained from the hospital administration, personnel and vendor interviews as well as from structured questionnaires. A process map separates the process in 16 patient- and non-patient-related activities, to which the detailed cost data are related. One-way sensitivity analyses shows to which degree of uncertainty the different parameters affect the individual cost and evaluate the impact of possible resource or practice changes like the acquisition of a hybrid PET/CT device, the patient throughput or the sales price of a 370MBq (18)F-FDG patient dose. The PET centre spends 73% of time in clinical activities and the resting time after injection of the tracer (42%) is the single largest departmental cost element. The tracer cost and the operational time have the most influence on cost per procedure. The analysis shows a total cost per FDG-PET ranging from 859 Euro for a BGO PET camera to 1142 Euro for a 16 slices PET-CT system, with a distribution of the resource costs in decreasing order: materials (44%), equipment (24%), wage (16%), space (6%) and hospital overhead (10%). The cost of FDG-PET is mainly influenced by the cost of the radiopharmaceutical. Therefore, the latter rather than the operational time should be reduced in order to improve its cost-effectiveness.

  9. Fluorodeoxyglucose-based positron emission tomography imaging to monitor drug responses in hematological tumors

    NARCIS (Netherlands)

    Newbold, Andrea; Martin, Ben P.; Cullinane, Carleen; Bots, Michael

    2014-01-01

    Positron emission tomography (PET) can be used to monitor the uptake of the labeled glucose analog fluorodeoxyglucose (¹⁸F-FDG), a process that is generally believed to reflect viable tumor cell mass. The use of ¹⁸F-FDG PET can be helpful in documenting over time the reduction in tumor mass volume

  10. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    Aourag, H.; Guittom, A.

    2009-01-01

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Slow positron applications at slow positron facility of institute of materials structure science, KEK

    Science.gov (United States)

    Hyodo, Toshio; Mochizuki, Izumi; Wada, Ken; Toge, Nobukazu; Shidara, Tetsuo

    2018-05-01

    Slow Positron Facility at High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy-tunable (0.1 - 35 keV) slow positron beam created by a dedicated ˜ 50 MeV linac. It operates in a short pulse (width 1-12 ns, variable, 5×106 e+/s) and a long pulse (width 1.2 µs, 5×107 e+/s) modes of 50 Hz. High energy positrons from pair creation are moderated by reemission after thermalization in W foils. The reemitted positrons are then electrostatically accelerated to a desired energy up to 35 keV and magnetically transported. A pulse-stretching section (pulse stretcher) is installed in the middle of the beamline. It stretches the slow positron pulse for the experiments where too many positrons annihilating in the sample at the same time has to be avoided. Four experiment stations for TRHEPD (total-reflection high-energy positron diffraction), LEPD (low-energy positron diffraction), Ps- (positronium negative ion), and Ps-TOF (positronium time-of-flight) experiments are connected to the beamline branches, SPF-A3, SPF-A4, SPF-B1 and SPF-B2, respectively. Recent results of these stations are briefly described.

  12. CONFERENCE: Linacs at Seeheim

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-07-15

    The 12th Linear Accelerator Conference, organized by GSI Darmstadt, was held from 8-11 May at the Lufthansa Schulungszentrum in Seeheim, West Germany. It was the first of this series of Linac Accelerator Conferences - started in 1961 with 20 participants and 17 contributions at Brookhaven - held outside North America. In Seeheim, 32 invited talks, 11 oral and 98 poster papers were presented to more than 250 participants from the USA, Canada, Europe, Japan, the USSR and China, representing 39 research institutions and 12 industrial laboratories.

  13. CONFERENCE: Linacs at Seeheim

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The 12th Linear Accelerator Conference, organized by GSI Darmstadt, was held from 8-11 May at the Lufthansa Schulungszentrum in Seeheim, West Germany. It was the first of this series of Linac Accelerator Conferences - started in 1961 with 20 participants and 17 contributions at Brookhaven - held outside North America. In Seeheim, 32 invited talks, 11 oral and 98 poster papers were presented to more than 250 participants from the USA, Canada, Europe, Japan, the USSR and China, representing 39 research institutions and 12 industrial laboratories

  14. Preliminary considerations of an intense slow positron facility based on a 78Kr loop in the high flux isotopes reactor

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Donohue, D.L.; Peretz, F.J.; Montgomery, B.H.; Hayter, J.B.

    1990-01-01

    Suggestions have been made to the National Steering Committee for the Advanced Neutron Source (ANS) by Mills that provisions be made to install a high intensity slow positron facility, based on a 78 Kr loop, that would be available to the general community of scientists interested in this field. The flux of thermal neutrons calculated for the ANS is E + 15 sec -1 m -2 , which Mills has estimated will produce 5 mm beam of slow positrons having a current of about 1 E + 12 sec -1 . The intensity of such a beam will be a least 3 orders of magnitude greater than those presently available. The construction of the ANS is not anticipated to be complete until the year 2000. In order to properly plan the design of the ANS, strong considerations are being given to a proof-of-principle experiment, using the presently available High Flux Isotopes Reactor, to test the 78 Kr loop technique. The positron current from the HFIR facility is expected to be about 1 E + 10 sec -1 , which is 2 orders of magnitude greater than any other available. If the experiment succeeds, a very valuable facility will be established, and important formation will be generated on how the ANS should be designed. 3 refs., 1 fig

  15. The Linac4 DTL Prototype: Low and High Power Measurements

    CERN Document Server

    De Michele, G; Marques-Balula, J; Ramberger, S

    2012-01-01

    The prototype of the Linac4 Drift Tube Linac (DTL) has undergone low power measurements in order to verify the RF coupling and to adjust the post-coupler lengths based on bead-pull and spectrum measurements. Following the installation at the test stand, the cavity has been subjected to high power operation at Linac4 and SPL duty cycles. Saturation effects and multipacting have been observed and linked to X-ray emission. Voltage holding is reported in the presence of magnetic fields from permanent magnet quadrupoles (PMQ) installed in the first drift tubes.

  16. High-Performance Beam Simulator for the LANSCE Linac

    International Nuclear Information System (INIS)

    Pang, Xiaoying; Rybarcyk, Lawrence J.; Baily, Scott A.

    2012-01-01

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  17. New positron annihilation spectroscopy techniques for thick materials

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, J.F.; Kwofie, J.; Erikson, G.; Roney, T.

    2003-01-01

    The Idaho Accelerator Center (IAC) has developed new techniques for positron annihilation spectroscopy (PAS) by using highly penetrating γ-rays to create positrons inside the material via pair production. Two sources of γ-rays have been employed. Bremsstrahlung beams from small-electron linacs (6 MeV) were used to generate positrons inside the material to perform Doppler-broadening spectroscopy. A 2 MeV proton beam was used to obtain coincident γ-rays from 27 Al target and enable lifetime and Doppler-broadening spectroscopy. This technique successfully measured stress/strain in thick samples, and showed promise to extend PAS into a variety of applications

  18. Linac4 Technical Design Report

    CERN Document Server

    Arnaudon, L; Baylac, M; Bellodi, G; Body, Y; Borburgh, J; Bourquin, P; Broere, J; Brunner, O; Bruno, L; Carli, C; Caspers, Friedhelm; Cousineau, S M; Cuvet, Y; De Almeida Martins, C; Dobers, T; Fowler, T; Garoby, R; Gerigk, F; Goddard, B; Hanke, K; Hori, M; Jones, M; Kahle, K; Kalbreier, Willi; Kroyer, T; Küchler, D; Lombardi, A M; López-Hernandez, L A; Magistris, M; Martini, M; Maury, S; Page, E; Paoluzzi, M; Pasini, M; Raich, U; Rossi, C; Royer, J P; Sargsyan, E; Serrano, J; Scrivens, R; Silari, M; Timmins, M; Venturini-Delsolaro, W; Vretenar, M; Wegner, R; Weterings, W; Zickler, T

    2006-01-01

    Linac4 is an H- linear accelerator, intended to replace Linac2 as injector to the PS Booster (PSB). By delivering to the PSB a beam at 160 MeV energy, Linac4 will provide the conditions to double the brightness and intensity of the beam from the PSB, thus removing the first bottleneck towards higher brightness for the LHC and simplifying operation. Moreover, this new linac constitutes an essential component of any of the envisaged LHC upgrade scenarios and could open the way to future extensions of the CERN accelerator complex towards higher performance. This Technical Design Report presents a detailed technical overview of the Linac4 design as it stands at end 2006.

  19. OS03.4 Gammaknife versus Linac based (EDGE) radiosurgery (SRS) for patients with limited brain metastases (BMS) from different solid tumor: a phase III randomized trial.

    Science.gov (United States)

    Scorsetti, M.; Navarria, P.; Ascolese, A.; Clerici, E.; Mancosu, P.; Picozzi, P.; Pecchioli, G.; Franzese, C.; Reggiori, G.; Tomatis, S.

    2017-01-01

    Abstract Introduction: Radiosurgery is an emerging terapeutich approach for the treatment of brain metastases (BMs), considering the effective local control obtained without neurological impairment. Different technological modalities have been used: Gammaknife, Cybernife, or Linac with comparable results and different incidence of symptomatic radionecrosis. To date no comparative randomized studies have been published on this matter. We draw this randomized phase III trial with the aim to evaluate incidence of symptomatic radionecrosis using gamma knife radiosurgery versus linac based (EDGE) radiosurgery. Local control (LC) rate and patients overall survival (OS) were assessed as well. Materials: Patients with limited BMs (up to 4) from different solid tumors, except SCLC or hematologic malignancies, were enrolled. Inclusion criteria were a histopatological diagnosis of malignant primary tumor, a KPS ≥70, RPA class I-II, and BMs with maximum diameter ≤3 cm and/or with a total tumor volume <30 cm3. The total dose prescribed was 24 Gy for BMs ≤ 20 mm or 4.2 cm3, and 20 Gy for BMs 21–30 mm or volume <14.1 cm3 as suggested by RTOG guidelines. Clinical outcome was evaluated by neurological examination and MRI at 2 months after SRS and then every 3 months. The radionecrosis was considered the presence of central hypodensity and peripheral enhancement on T1-weighted post-contrast imaging, with edema on T2-weighted sequences and a clear lack of perfusion without any nodular highly vascularized area within the contrast enhanced lesion on perfusion MRI. Local progression was defined as radiographic increase of the enhancing abnormality in the irradiated volume on serial MR imaging, and distant failure by the presence of new brain metastases or leptomeningeal enhancement outside the irradiated volume. Results: From October 2014 to December 2015, 101 consecutives patients of the expected 250, for 167 BMs treated, were evaluated. The most common primary

  20. Positron annihilation study of structural subnanovoids and irradiation damages in silica-based glasses

    International Nuclear Information System (INIS)

    Inoue, K.

    2004-01-01

    Structural subnanovoids in glass solidified with radioactive waste disposal were studied by positron annihilation 2-dimensional angular correlation and positron life time measurements. Positroniums in crystalline SiO 2 were in a delocalized state, but in glass SiO 2 were in a localized state. Pick-off annihilation (pair annihilation between an ortho-positroniums and a spin antiparallel electron) rate was shortened with decreasing molarity of glass network formers and consequently radii of structural subnanovoids were reduced. The sizes of structural subnanovoids determined from the pick-off annihilation were good agreement with those measured by momentum distribution of para-positroniums. In waste disposal model glass, no presence of positronims indicated that radioactive substances occupied almost all subnanovoids, and therefore voids with large size enough to localize positroniums (above 0.1 nm radius) could not be present. (Y. Kazumata)

  1. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility

    International Nuclear Information System (INIS)

    Golge, S.; Vlahovic, B.; Wojtsekhowski, B.

    2014-01-01

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10 10  e + /s. Reaching this intensity in our design relies on the transport of positrons (T + below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e + beam from the converter to the moderator, extraction of the e + beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e + from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  2. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B. [North Carolina Central University, Durham, North Carolina 27707 (United States); Wojtsekhowski, B. [Jefferson Laboratory, 12000 Jefferson Ave., Newport News, Virginia 23606 (United States)

    2014-06-21

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10 }e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +} beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  3. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    Energy Technology Data Exchange (ETDEWEB)

    Krsjak, Vladimir, E-mail: vladimir.krsjak@psi.ch; Dai, Yong

    2015-10-15

    This paper presents the use of an internal {sup 44}Ti/{sup 44}Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of {sup 44}Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton–neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain {sup 44}Ti → {sup 44}Sc → {sup 44}Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of {sup 44}Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  4. Design of an intense positron source for linear colliders

    International Nuclear Information System (INIS)

    Ida, H.; Yamada, K.; Funahashi, Y.

    1994-01-01

    The Japan Linear Collider (JLC) requires an intense positron source of 8x10 11 particles per rf-pulse. A computer simulation reveals the possibility of such an intense positron source using 'conventional' technology. In order to relax the limitation of the incident electron energy density due to thermal stress in the converter target, the incident beam radius is enlarged within the range so as not to reduce the positron capture efficiency. A pre-damping ring and beam transport system to the pre-damping ring, which have a large transverse acceptance, play important roles for a high capture efficiency. A prototype positron source has been designed and installed at downstream of 1.54 GeV S-band linac in Accelerator Test Facility (ATF) in order to carry out experiments to develop the essential technology for JLC. The simulated results will be tested in experiments with the prototype positron source. (author)

  5. Review of superconducting ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for the acceleration of ions with velocity β=1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions

  6. Beam dynamics verification in linacs of linear colliders

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1989-01-01

    The SLAC two-mile linac has been upgraded to accelerate high current, low emittance electron and positron beams to be used in the SLAC Linear Collider (SLC). After the upgrade was completed, extensive beam studies were made to verify that the design criteria have been met. These tests involved the measurement of emittance, beam phase space orientation, energy dispersion, trajectory oscillations, bunch length, energy spectrum and wakefields. The methods, the systems and the data cross checks are compared for the various measurements. Implications for the next linear collider are discussed. 12 refs., 13 figs., 2 tabs

  7. Making electron beams for the SLC linac

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Ecklund, S.D.; James, M.B.; Miller, R.H.; Sheppard, J.C.; Sodja, J.; Truher, J.B.; Minten, A.

    1984-01-01

    A source of high-intensity, single-bunch electron beams has been developed at SLAC for the SLC. The properties of these beams have been studied extensively utilizing the first 100-m of the SLAC linac and the computer-based control system being developed for the SLC. The source is described and the properties of the beams are summarized. 9 references, 2 figures, 1 table

  8. Physics design of APT linac with normal conducting rf cavities

    International Nuclear Information System (INIS)

    Nath, S.; Billen, J.H.; Stovall, J.E.; Takeda, Harunori; Young, L.M.

    1996-01-01

    The accelerator based production of tritium calls for a high-power, cw proton linac. Previous designs for such a linac use a radiofrequency quadrupole (RFQ), followed by a drift-tube linac (DTL) to an intermediate energy and a coupled-cavity linc (CCL) to the final energy. The Los Alamos design uses a high-energy (6.7 MeV) RFQ followed by the newly developed coupled-cavity drift-tube linac (CCDTL) and a CCL. This design accommodates external electromagnetic quadrupole lenses which provide a strong uniform focusing lattice from the end of the RFQ to the end of the CCL. The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells symmetric in both the CCDTL and CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. At higher energies, there are some advantages of using superconducting rf cavities. Currently, such schemes are under vigorous study. This paper describes the linac design based on normal conducting cavities and presents simulation results

  9. Drift tubes of Linac 2

    CERN Multimedia

    Photographic Service

    1977-01-01

    Being redied for installation, those at the right are for tank 1, those on the left for tank 2. Contrary to Linac 1, which had drift-tubes supported on stems, here the tubes are suspended, for better mechanical stability.

  10. Commissioning plans for SSC linac

    International Nuclear Information System (INIS)

    Hurd, J.W.; Aprile, R.L.; Chang, C.R.; Crist, C.E.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Leifeste, G.T.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Swenson, D.A.; Tooker, J.; Yao, C.G.

    1992-01-01

    Presented are the general description of the SSC linac and the plans for commissioning. Sections of the linac are installed, tested, and beam commissioned in a serial approach. A specialized set of diagnostics is used to characterize the beam through each section. In addition to the standard diagnostic set, plans call for the use of a bunch shape monitor and x-ray spectrometer. Streak camera and digital imaging diagnostics will be developed. The commissioning plan is folded into the general linac project schedule to show the relation between delivery, staging, installation, conditioning, and actual commissioning with beam. These plans form the basis for coordination between the various organizations responsible for different elements of the linac including the technical components, infrastructure, and temporary staging and operation facilities. (Author) 2 figs., 17 refs

  11. Superconducting linacs used with tandems

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1984-01-01

    The main features of superconducting linacs used as post-accelerators of tandems are reviewed. Various aspects of resonators, cryogenics and electronics are discussed, and recent advances in the field are presented. (orig.)

  12. Design and evaluation of a SiPM-based large-area detector module for positron emission imaging

    Science.gov (United States)

    Alva-Sánchez, H.; Murrieta-Rodríguez, T.; Calva-Coraza, E.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.

    2018-03-01

    The design and evaluation of a large-area detector module for positron emission imaging applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state detector (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The detector module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean energy resolution for 511 keV annihilation photons was determined. The performance of the detector using our own readout board was compared to that using two different commercially readout boards using the same detector module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent energy resolution and detector uniformity and thus, can be used for positron emission imaging applications.

  13. SLAC Linac Preparations for FACET

    International Nuclear Information System (INIS)

    Erickson, Roger

    2011-01-01

    The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.

  14. Comparison of LINAC-4 Designs

    CERN Document Server

    Crandall, K; Sargsyan, E; Lallement, J-B; CERN. Geneva. BE Department

    2009-01-01

    We have studied the expected performance of two drift tube linac (DTL) designs proposed for LINAC-4. The two designs use the same cell geometries but are characterized by different phase (φs) and accelerating field (E0) distributions. In addition we have investigated the expected performance of 3 different quadrupole focusing schemes in each design. The expected performance of these 6 variants is compared with respect to their stability and risk of beam loss with alignment errors.

  15. The source development lab linac at BNL

    International Nuclear Information System (INIS)

    Graves, W.S.; Johnson, E.D.

    1996-12-01

    A 210 MeV SLAC-type electron linac is currently under construction at BNL as part of the Source Development Laboratory. A 1.6 cell RF photoinjector is employed as the high brightness electron source which is excited by a frequency tripled Titanium:Sapphire laser. This linac will be used for several source development projects including a short bunch storage ring, and a series of FEL experiments based on the 10 m long NISUS undulator. The FEL will be operated as either a SASE or seeded beam device using the Ti:Sapp laser. For the seeded beam experiments; direct amplification, harmonic generation, and chirped pulse amplification modes will be studied, spanning an output wavelength range from 900 nm down to 100 nm. This paper presents the project's design parameters and results of recent modeling using the PARMELA and MAD simulation codes

  16. Electron linac design for pion radiotherapy

    International Nuclear Information System (INIS)

    Loew, G.A.; Brown, K.L.; Miller, R.H.; Walz, D.R.

    1977-03-01

    The electron linac provides a straightforward, state-of-the-art method of producing the primary beam required for a hospital-based multiport pion radiotherapy facility for cancer treatment. The accelerator and associated beam transport system described are capable of generating an electron beam of about 250 kW and delivering it alternately to one of several pion generators and treatment areas. Each pion generator, a prototype of which now exists at the Stanford W. W. Hansen Laboratory, would contain a target for the electron beam and sixty separate superconducting magnet channels which focus the pions in the patient. The considerations which enter the design of a practical linac are presented together with a possible layout of a flexible beam transport system

  17. Low-energy linac structure for PIGMI

    International Nuclear Information System (INIS)

    Swenson, D.A.; Stovall, J.E.

    1977-01-01

    The higher radio frequency (450 MHz) and lower injection energy (250 keV) of the PIGMI (Pion Generator for Medical Irradiations) linac design seriously compound the problem of beam containment in the first few meters of the structure. The conventional quadrupole-focused, drift-tube linac represents the best solution for beam energies above 8 MeV, but because of the small space available for quadrupoles in the PIGMI designs, cannot provide the required focusing at lower energies. A satisfactory solution to this focusing problem has been found based on pure alternating phase focusing for the first few MeV, followed by a smooth transition to a pure permanent magnet quadrupole-focused structure at 8 MeV. The structure and its calculated performance are described

  18. Research on backward traveling wave electron linac

    International Nuclear Information System (INIS)

    Chen Huaibi; Zheng Shuxin; Ding Xiaodong; Lin Yuzheng

    1999-01-01

    Future electron linacs require high gradient acceleration. The studies on the high shunt impedance backward traveling wave electron linac accelerating structure (BTW) are presented. At first, the characteristics of BTW are researched. The option of mode and optimal design methods of accelerating cavity for BTW are studied. A physical design method for BTW accelerators, including longitudinal and transversal particle dynamics, is given. Based on above studies, a 9 MeV BTW accelerating tube at 3π/4 mode with frequency 2856 MHz for inspecting large container as radiation source at customs is designed, and a comparison with disk-loaded waveguide accelerating tube is made. The result of research leads to the conclusion that backward traveling wave accelerating structure is preferable. Because BTW has higher effective shunt impedance, shorter filling time and more stable operation

  19. Calibration of PADC-based neutron area dosemeters in the neutron field produced in the treatment room of a medical LINAC

    International Nuclear Information System (INIS)

    Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; García-Fusté, M.J.; San-Pedro, M. de; Tana, L.; D’Errico, F.; Ciolini, R.; Di Fulvio, A.

    2013-01-01

    PADC-based nuclear track detectors have been widely used as convenient ambient dosemeters in many working places. However, due to the large energy dependence of their response in terms of ambient dose equivalent (H ∗ (10)) and to the diversity of workplace fields in terms of energy distribution, the appropriate calibration of these dosemeters is a delicate task. These are among the reasons why ISO has introduced the 12789 Series of Standards, where the simulated workplace neutron fields are introduced and their use to calibrate neutron dosemeters is recommended. This approach was applied in the present work to the UAB PADC-based nuclear track detectors. As a suitable workplace, the treatment room of a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa), was chosen. Here the neutron spectra in two points of tests (1.5 m and 2 m from the isocenter) were determined with the INFN-LNF Bonner Sphere Spectrometer equipped with Dysprosium activation foils (Dy-BSS), and the values of H ∗ (10) were derived on this basis. The PADC dosemeters were exposed in these points. Their workplace specific H*(10) responses were determined and compared with those previously obtained in different simulated workplace or reference (ISO 8529) neutron fields. - Highlights: ► The neutron field of a medical LINAC was used to calibrate PADC neutron dosemeters. ► The neutron spectra were derived with a Dy-foil based Bonner Sphere Spectrometer. ► Workplace specific calibration factor were derived for the PADC dosemeters. ► These factors were compared with those obtained in reference neutron fields

  20. Inner structure of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows the inner structure of Linac 2, with drift-tubes hanging on stems under a rigid support structure, soon to be mounted inside tank 1 (750 keV to 10 MeV, the lowest-energy one of 3). Frank Malthouse is standing in the background.

  1. Testing begins on Linac4

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    On 3 August 2012, the Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152. The site will be the module’s home for almost a year, as the linear accelerator enters the assembly and testing stage.   Final module assembly is carried out before installation in Building 152.  Over the next Long Shutdown (LS2), Linac4 will replace the current Linac2 linear accelerator as the first link in CERN’s accelerator chain. It will deliver particles at 160 MeV to the PS Booster, more than triple the energy currently delivered by Linac2. But before the accelerator team can pop the champagne, the various elements of Linac4 will be tested and re-tested in facilities across CERN. “The first Linac4 tests are currently underway, starting with the CERN-built RFQ,” says Carlo Rossi, a physicist in the RF Group of the Beams (BE) Department and the RFQ project coordinator. “It’s an extremely impre...

  2. Poster - 44: Development and implementation of a comprehensive end-to-end testing methodology for linac-based frameless SRS QA using a modified commercial stereotactic anthropomorphic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Derek; Mutanga, Theodore [University of Toronto, Carlo Fidani Peel Regional Cancer Center (Canada)

    2016-08-15

    Purpose: An end-to-end testing methodology was designed to evaluate the overall SRS treatment fidelity, incorporating all steps in the linac-based frameless radiosurgery treatment delivery process. The study details our commissioning experience of the Steev (CIRS, Norfolk, VA) stereotactic anthropomorphic head phantom including modification, test design, and baseline measurements. Methods: Repeated MR and CT scans were performed with interchanging inserts. MR-CT fusion accuracy was evaluated and the insert spatial coincidence was verified on CT. Five non-coplanar arcs delivered a prescription dose to a 15 mm spherical CTV with 2 mm PTV margin. Following setup, CBCT-based shifts were applied as per protocol. Sequential measurements were performed by interchanging inserts without disturbing the setup. Spatial and dosimetric accuracy was assessed by a combination of CBCT hidden target, radiochromic film, and ion chamber measurements. To facilitate film registration, the film insert was modified in-house by etching marks. Results: MR fusion error and insert spatial coincidences were within 0.3 mm. Both CBCT and film measurements showed spatial displacements of 1.0 mm in similar directions. Both coronal and sagittal films reported 2.3 % higher target dose relative to the treatment plan. The corrected ion chamber measurement was similarly greater by 1.0 %. The 3 %/2 mm gamma pass rate was 99% for both films Conclusions: A comprehensive end-to-end testing methodology was implemented for our SRS QA program. The Steev phantom enabled realistic evaluation of the entire treatment process. Overall spatial and dosimetric accuracy of the delivery were 1 mm and 3 % respectively.

  3. SU-F-T-647: Linac-Based Stereotactic Radiosurgery (SRS) in the Treatment of Trigeminal Neuralgia: Detailed Description of SRS Procedural Technique and Reported Clinical Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, D; Sood, S; Badkul, R; Jiang, H; Stepp, T; Camarata, P; Wang, F [University of Kansas Hospital, Kansas City, KS (United States)

    2016-06-15

    Purpose: SRS is an effective non-invasive alternative treatment modality with minimal-toxicity used to treat patients with medically/surgically refractory trigeminal neuralgia root(TNR) or those who may not tolerate surgical intervention. We present our linac-based SRS procedure for TNR treatment and simultaneously report our clinical outcomes. Methods: Twenty-eight TNR-patients treated with frame-based SRS at our institution (2009–2015) with a single-fraction point-dose of 60-80Gy to TNR were included in this IRB-approved study. Experienced neurosurgeon and radiation oncologist delineated the TNR on 1.0mm thin 3D-FIESTA-MRI that was co-registered with 0.7mm thin planning-CT. Treatment plans were generated in iPlan (BrainLAB) with a 4-mm diameter cone using 79 arcs with differential-weighting for Novalis-TX 6MV-SRS(1000MU/min) beam and optimized to minimize brainstem dose. Winston-Lutz test was performed before each treatment delivery with sub-millimeter isocenter accuracy. Quality assurance of frame placement was maintained by helmet-bobble-measurement before simulation-CT and before patient setup at treatment couch. OBI-CBCT scan was performed for patient setup verification without applying shifts. On clinical follow up, treatment response was assessed using Barrow Neurological Institute Pain Intensity Score(BNI-score:I–V). Results: 26/28 TNR-patients (16-males/10-females) who were treated with following single-fraction point-dose to isocenter: 80Gy(n=22),75Gy(n=1),70Gy(n=2) and 60Gy(n=1, re-treatment) were followed up. Median follow-up interval was 8.5-months (ranged:1–48.5months). Median age was 70-yr (ranged:43–93-yr). Right/left TNR ratio was 15/11. Delivered total # of average MUs was 19034±1204. Average beam-on-time: 19.0±1.3min. Brainstem max-dose and dose to 0.5cc were 13.3±2.4Gy (ranged:8.1–16.5Gy) and 3.6±0.4Gy (ranged:3.0–4.9Gy). On average, max-dose to optic-apparatus was ≤1.2Gy. Mean value of max-dose to eyes/lens was 0.26Gy/0.11Gy

  4. A novel electron gun for inline MRI-linac configurations

    International Nuclear Information System (INIS)

    Constantin, Dragoş E.; Fahrig, Rebecca; Holloway, Lois; Keall, Paul J.

    2014-01-01

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T

  5. SNS superconducting linac

    International Nuclear Information System (INIS)

    Sundelin, Ronald M.

    2001-01-01

    The Spallation Neutron Source (SNS) decided in early 2000 to use superconducting RF (SRF) in the linac at energies above 185 MeV. Since the SNS duty cycle is 6%, the SRF and normal conducting approaches have capital costs which are about the same, but operating costs and future upgradability are improved by using SRF. The current status of cavity and cryomodule development and procurement, including the basis for decisions made, is discussed. The current plan includes use of 805 MHz, 6-cell cavities with geometrical betas of 0.61 and 0.81. There are 33 medium beta and 60 high beta cavities in 11 and 15 cryomodules, respectively. Each cavity (except the 93rd) is powered by a 550 kW pulsed klystron. Issues addressed include choice of peak surface gradient, optimization of cavity shape, selection of a scaled KEK input power coupler, selection of scaled TESLA higher mode couplers, and control of the effects of higher order modes on the beam. (author)

  6. H- ion sources for CERN's Linac4

    Science.gov (United States)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on

  7. The cryogenic source of slow monochromatic positrons

    International Nuclear Information System (INIS)

    Meshkov, I.N.; Pavlov, V.N.; Sidorin, A.O.; Yakovenko, S.L.

    2008-01-01

    The cryogenic source of slow monochromatic positrons based on the 22 Na isotope has been designed and constructed at JINR. Positrons emitted from radioactive source 22 Na have a very broad energy spectrum up to 0.5 MeV. To generate monochromatic beam of slow positrons the solid neon is used as a moderator. The solid neon allows forming slow positron beam of the energy of 1.2 eV at the spectrum width of 1 eV. The efficiency of moderation is 1 % of total positron flux

  8. Dose gradient analyses in linac-based intracranial stereotactic radiosurgery using paddick's gradient index. Consideration of the optimal method for plan evaluation

    International Nuclear Information System (INIS)

    Ohtakara, Kazuhiro; Hayashi, Shinya; Hoshi, Hiroaki

    2011-01-01

    The objective of our study was to describe the dose gradient characteristics of Linac-based stereotactic radiosurgery using Paddick's gradient index (GI) and to elucidate the factors influencing the GI value. Seventy-three plans for brain metastases using the dynamic conformal arcs were reviewed. The GI values were calculated at the 80% and 90% isodose surfaces (IDSs) and at the different target coverage IDSs (D99, D95, D90, and D85). The GI values significantly decreased as the target coverage of the reference IDS increased (the percentage of the IDS decreased). There was a significant inverse correlation between the GI values and target volume. The plans generated with the addition of a 1-mm leaf margin had worse GI values both at the D99 and D95 relative to those without leaf margin. The number and arrangement of arcs also affected the GI value. The GI values are highly sensitive to the IDS selection variability for dose prescription or evaluation, the target volume, and the planning method. To objectively compare the quality of dose gradient between rival plans, it would be preferable to employ the GI defined at the reference IDS indicating the specific target coverage (exempli gratia (e.g.), D95), irrespective of the intended marginal dose. The modified GI (mGI), defined in this study, substituting the denominator of the original GI with the target volume, would be useful to compensate for the false superior GI value in cases of target over-coverage with the reference IDS and to objectively evaluate the dose gradient outside the target boundary. (author)

  9. Positron depth profiling

    International Nuclear Information System (INIS)

    Coleman, P.

    2001-01-01

    Wide-ranging studies of defects below the surface of semiconductor structures have been performed at the University of Bath, in collaboration with the University of Surrey Centre for Ion Beam Applications and with members of research teams at a number of UK universities. Positron implantation has been used in conjunction with other spectroscopies such as RBS-channeling and SIMS, and electrical characterisation methods. Research has ranged from the development of a positron-based technique to monitor the in situ annealing of near-surface open-volume defects to the provision of information on defects to comprehensive diagnostic investigations of specific device structures. We have studied Si primarily but not exclusively; e.g., we have investigated ion-implanted SiC and SiO 2 /GaAs structures. Of particular interest are the applications of positron annihilation spectroscopy to ion-implanted semiconductors, where by linking ion dose to vacancy-type defect concentration one can obtain information on ion dose and uniformity with a sensitivity not achievable by standard techniques. A compact, user-friendly positron beam system is currently being developed at Bath, in collaboration with SCRIBA, with the intention of application in an industrial environment. (orig.)

  10. Discussion of superconducting and room-temperature high-intensity ion linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1996-01-01

    The point of view taken in this discussion is that the basic technology base exists in all essential respects for both superconducting or room-temperature rf linac accelerators and associated power and control systems, and thus a project can make a choice between these technologies on overall system considerations. These include performance, cost, availability, flexibility, and upgradability. Large high-intensity neutron source proposals involving light-ion rf linacs in three categories are reviewed in this context. The categories arc cw linacs to high (∼1 GeV) and low (∼40 MeV) output energy, and pulsed linacs to energy ∼1 GeV

  11. 6 MeV RF Linac for cargo scanning and industrial radiography

    International Nuclear Information System (INIS)

    2017-01-01

    RF Linac-based X-ray sources are very widely used for cargo-scanning and industrial X-ray radiography applications. A 6 MeV on-axis coupled-cavity S-band RF linac has been designed, developed and tested successfully at Electron Beam Centre, Navi Mumbai. This facility falls under the purview of BARC Safety Council, which has conducted safety reviews and awarded regulatory clearances for the operation of the linac system. This paper outlines the salient features of the 6 MeV linac, its safety aspects and test results. A brief history of regulatory aspects is also presented

  12. Deconvolution based attenuation correction for time-of-flight positron emission tomography

    Science.gov (United States)

    Lee, Nam-Yong

    2017-10-01

    For an accurate quantitative reconstruction of the radioactive tracer distribution in positron emission tomography (PET), we need to take into account the attenuation of the photons by the tissues. For this purpose, we propose an attenuation correction method for the case when a direct measurement of the attenuation distribution in the tissues is not available. The proposed method can determine the attenuation factor up to a constant multiple by exploiting the consistency condition that the exact deconvolution of noise-free time-of-flight (TOF) sinogram must satisfy. Simulation studies shows that the proposed method corrects attenuation artifacts quite accurately for TOF sinograms of a wide range of temporal resolutions and noise levels, and improves the image reconstruction for TOF sinograms of higher temporal resolutions by providing more accurate attenuation correction.

  13. Fundamentals of positron emission tomography

    International Nuclear Information System (INIS)

    Ostertag, H.

    1989-01-01

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The methods is based on: (1) Radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. (orig.) [de

  14. A new slow positron beam facility using a compact cyclotron

    International Nuclear Information System (INIS)

    Hirose, Masafumi

    1998-01-01

    In 1993, Sumitomo Heavy Industries became the first in the world to successfully produce a slow positron beam using a compact cyclotron. Slow positron beam production using an accelerator had mainly consisted of using an electron linear accelerator (LINAC). However, the newly developed system that uses a compact cyclotron enabled cost reduction, downsizing of equipment, production of a DC slow positron beam, a polarized slow positron beam, and other benefits. After that, a genuine slow positron beam facility was developed with the construction of compact cyclotron No.2, and beam production in the new facility has already been started. The features of this new slow positron beam facility are explained below. 1) It is the world's first compact slow positron beam facility using a compact cyclotron. 2) It is the only genuine slow positron beam facility in the world which incorporates the production and use of a slow positron beam in the design stage of the cyclotron. To use a slow positron beam for non-destructive detection of lattice defects in semiconductor material, it is necessary to convert the beam into ultra-short pulses of several hundreds of pico-seconds. Sumitomo Heavy Industries has devised a new short-pulsing method (i.e. an induction bunching method) that enables the conversion of a slow positron beam into short pulses with an optimum pulsing electric field change, and succeeded in converting a slow positron beam into short pulses using this method for the first time in the world. Non-destructive detection of lattice defects in semiconductor material using this equipment has already been started, and some information about the depth distribution, size, density, etc. of lattice defects has already been obtained. (J.P.N.)

  15. Superconducting LINAC booster for the Mumbai pelletron

    Indian Academy of Sciences (India)

    LINAC), to boost the energy of heavy ion beams from the 14UD Pelletron accelerator, at Tata Institute of Fundamental Research, Mumbai. The accelerating structures in the LINAC are quarter wave resonators (QWR) coated with lead which is ...

  16. Beam determination of quadrupole misalignments and beam position monitor biases in the SLC linac

    International Nuclear Information System (INIS)

    Lavine, T.L.; Seeman, J.T.; Atwood, W.B.; Himel, T.M.; Petersen, A.; Adolphsen, C.E.

    1988-09-01

    Misalignments of magnetic quadrupoles and biases in beam position monitors (BPMs) in the Stanford Linear Collider (SLC) linac can lead to a situation in which the beam is off-center in the disk-loaded waveguide accelerator structure. The off-center beam produces wakefields which can limit SLC performance by causing unacceptably large emittance growth. We present a general method for determining quadrupole misalignments and BPM biases in the SLC linac by using beam trajectory measurements. The method utilizes both electron and positron beams on opposite rf cycles in the same linac lattice to determine simultaneously magnetic quadrupole misalignments and BPM biases. The two-beam trajectory data may be acquired without interrupting SLC colliding beam operations. 2 refs., 5 figs

  17. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    Science.gov (United States)

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  18. Wakefield Band Partitioning in LINAC Structures

    International Nuclear Information System (INIS)

    Jones, Roger M

    2003-01-01

    In the NLC project multiple bunches of electrons and positrons will be accelerated initially to a centre of mass of 500 GeV and later to 1 TeV or more. In the process of accelerating 192 bunches within a pulse train, wakefields are excited which kick the trailing bunches off axis and can cause luminosity dilution and BBU (Beam Break Up). Several structures to damp the wakefield have been designed and tested at SLAC and KEK and these have been found to successfully damp the wakefield [1]. However, these 2π/3 structures suffered from electrical breakdown and this has prompted us to explore lower group velocity structures operating at higher fundamental mode phase advances. The wakefield partitioning amongst the bands has been found to change markedly with increased phase advance. Here we report on general trends in the kick factor and associated wakefield band partitioning in dipole bands as a function of phase advance of the synchronous mode in linacs. These results are applicable to both TW (travelling wave) and SW (standing wave) structures

  19. Positron annihilation spectroscopy using high-energy photons

    International Nuclear Information System (INIS)

    Butterling, Maik; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Anwand, Wolfgang; Brauer, Gerhard; Cowan, Thomas E.; Hartmann, Andreas; Kosev, Krasimir; Schwengner, Ronald; Wagner, Andreas

    2010-01-01

    The superconducting electron accelerator ELBE (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (Germany) serves as a high-intensity bremsstrahlung photon-source delivering a pulsed beam (26 MHz) with very short bunches (<5 ps). The photons are being converted into positrons by means of pair production inside the target material thus forming an intense positron source. The accelerator machine pulse is used as time reference allowing positron lifetime spectroscopy. We performed positron annihilation spectroscopy by pair production in different sample materials and used coincidence techniques to reduce the background due to scattered photons significantly in order resulting in spectra of extraordinary high quality. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Beam Collimation Studies for the ILC Positron Source

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.; /Fermilab; Nosochkov, Y.; Zhou, F.; /SLAC

    2008-06-26

    Results of the collimation studies for the ILC positron source beam line are presented. The calculations of primary positron beam loss are done using the ELEGANT code. The secondary positron and electron beam loss, the synchrotron radiation along the beam line and the bremsstrahlung radiation in the collimators are simulated using the STRUCT code. The first part of the collimation system, located right after the positron source target (0.125 GeV), is used for protection of the RF Linac sections from heating and radiation. The second part of the system is used for final collimation before the beam injection into the Damping Ring at 5 GeV. The calculated power loss in the collimation region is within 100 W/m, with the loss in the collimators of 0.2-5 kW. The beam transfer efficiency from the target to the Damping Ring is 13.5%.

  1. Upgrading the Fermilab Linac local control system

    International Nuclear Information System (INIS)

    McCrory, E.S.; Goodwin, R.W.; Shea, M.F.

    1991-02-01

    A new control system for the Fermilab Linac is being designed, built and implemented. First, the nine-year-old linac control system is being replaced. Second, a control system for the new 805 MHz part of the linac is being built. The two systems are essentially identical, so that when the installations are complete, we will still have a single Linac Control System. 8 refs., 5 figs

  2. Probing Positron Gravitation at HERA

    International Nuclear Information System (INIS)

    Gharibyan, Vahagn

    2015-07-01

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  3. Probing Positron Gravitation at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Vahagn

    2015-07-15

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  4. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    NARCIS (Netherlands)

    Schinagl, D.A.X.; Vogel, W.V.; Hoffmann, A.L.; Dalen, J.A. van; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2007-01-01

    PURPOSE: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may

  5. Optimal beam margins in linac-based VMAT stereotactic ablative body radiotherapy: a Pareto front analysis for liver metastases.

    Science.gov (United States)

    Cilla, Savino; Ianiro, Anna; Deodato, Francesco; Macchia, Gabriella; Digesù, Cinzia; Valentini, Vincenzo; Morganti, Alessio G

    2017-11-27

    We explored the Pareto fronts mathematical strategy to determine the optimal block margin and prescription isodose for stereotactic body radiotherapy (SBRT) treatments of liver metastases using the volumetric-modulated arc therapy (VMAT) technique. Three targets (planning target volumes [PTVs] = 20, 55, and 101 cc) were selected. A single fraction dose of 26 Gy was prescribed (prescription dose [PD]). VMAT plans were generated for 3 different beam energies. Pareto fronts based on (1) different multileaf collimator (MLC) block margin around PTV and (2) different prescription isodose lines (IDL) were produced. For each block margin, the greatest IDL fulfilling the criteria (95% of PTV reached 100%) was considered as providing the optimal clinical plan for PTV coverage. Liver D mean , V7Gy, and V12Gy were used against the PTV coverage to generate the fronts. Gradient indexes (GI and mGI), homogeneity index (HI), and healthy liver irradiation in terms of D mean , V7Gy, and V12Gy were calculated to compare different plans. In addition, each target was also optimized with a full-inverse planning engine to obtain a direct comparison with anatomy-based treatment planning system (TPS) results. About 900 plans were calculated to generate the fronts. GI and mGI show a U-shaped behavior as a function of beam margin with minimal values obtained with a +1 mm MLC margin. For these plans, the IDL ranges from 74% to 86%. GI and mGI show also a V-shaped behavior with respect to HI index, with minimum values at 1 mm for all metrics, independent of tumor dimensions and beam energy. Full-inversed optimized plans reported worse results with respect to Pareto plans. In conclusion, Pareto fronts provide a rigorous strategy to choose clinical optimal plans in SBRT treatments. We show that a 1-mm MLC block margin provides the best results with regard to healthy liver tissue irradiation and steepness of dose fallout. Copyright © 2017 American Association of Medical Dosimetrists

  6. Radiotechnical Institute activity in the linac field

    International Nuclear Information System (INIS)

    Murin, B.P.

    1976-01-01

    For many years, the Radiotechnical Institute has been involved in a number of projects aimed at constructing linear accelerators for protons or electrons. This report summarizes the experience gained and covers 1) some problems of developing linacs to serve as meson or neutron generators, 2) results of study of a linac with asymmetric alternating phase focusing, and 3) electron linac projects. (author)

  7. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    STOVALL, J.; NATH, S.

    2000-01-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance

  8. IMPACT simulation and the SNS linac beam

    International Nuclear Information System (INIS)

    Zhang, Y.; Qiang, J.

    2008-01-01

    Multi-particle tracking simulations for the SNS linac beam dynamics studies are performed with the IMPACT code. Beam measurement results are compared with the computer simulations, including beam longitudinal halo and beam losses in the superconducting linac, transverse beam Courant-Snyder parameters and the longitudinal beam emittance in the linac. In most cases, the simulations show good agreement with the measured results

  9. Development of an LYSO based gamma camera for positron and scinti-mammography

    Science.gov (United States)

    Liang, H.-C.; Jan, M.-L.; Lin, W.-C.; Yu, S.-F.; Su, J.-L.; Shen, L.-H.

    2009-08-01

    In this research, characteristics of combination of PSPMTs (position sensitive photo-multiplier tube) to form a larger detection area is studied. A home-made linear divider circuit was built for merging signals and readout. Borosilicate glasses were chosen for the scintillation light sharing in the crossover region. Deterioration effect caused by the light guide was understood. The influences of light guide and crossover region on the separable crystal size were evaluated. According to the test results, a gamma camera with a crystal block of 90 × 90 mm2 covered area, composed of 2 mm LYSO crystal pixels, was designed and fabricated. Measured performances showed that this camera worked fine in both 511 keV and lower energy gammas. The light loss behaviour within the crossover region was analyzed and realized. Through count rate measurements, the 176Lu nature background didn't show severe influence on the single photon imaging and exhibited an amount of less than 1/3 of all the events acquired. These results show that with using light sharing techniques, combination of multiple PSPMTs in both X and Y directions to build a large area imaging detector is capable to be achieved. Also this camera design is feasible to keep both the abilities for positron and single photon breast imaging applications. Separable crystal size is 2 mm with 2 mm thick glass applied for the light sharing in current status.

  10. Development of an LYSO based gamma camera for positron and scinti-mammography

    International Nuclear Information System (INIS)

    Liang, H-C; Jan, M-L; Lin, W-C; Yu, S-F; Shen, L-H; Su, J-L

    2009-01-01

    In this research, characteristics of combination of PSPMTs (position sensitive photo-multiplier tube) to form a larger detection area is studied. A home-made linear divider circuit was built for merging signals and readout. Borosilicate glasses were chosen for the scintillation light sharing in the crossover region. Deterioration effect caused by the light guide was understood. The influences of light guide and crossover region on the separable crystal size were evaluated. According to the test results, a gamma camera with a crystal block of 90 x 90 mm 2 covered area, composed of 2 mm LYSO crystal pixels, was designed and fabricated. Measured performances showed that this camera worked fine in both 511 keV and lower energy gammas. The light loss behaviour within the crossover region was analyzed and realized. Through count rate measurements, the 176 Lu nature background didn't show severe influence on the single photon imaging and exhibited an amount of less than 1/3 of all the events acquired. These results show that with using light sharing techniques, combination of multiple PSPMTs in both X and Y directions to build a large area imaging detector is capable to be achieved. Also this camera design is feasible to keep both the abilities for positron and single photon breast imaging applications. Separable crystal size is 2 mm with 2 mm thick glass applied for the light sharing in current status.

  11. A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper

    CERN Document Server

    Baussan, E; Bogomilov, M.; Bouquerel, E.; Cederkäll, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; Densham, C.; Dracos, M.; Ekelöf, T.; Eshraqi, M.; Fernandez Martinez, E.; Gaudiot, G.; Hall-Wilton, R.; Koutchouk, J.P.; Lindroos, M.; Matev, R.; McGinnis, D.; Mezzetto, M.; Miyamoto, R.; Mosca, L.; Ohlsson, T.; Öhman, H.; Osswald, F.; Peggs, S.; Poussot, P.; Ruber, R.; Tang, J.Y.; Tsenov, R.; Vankova-Kirilova, G.; Vassilopoulos, N.; Wildner, E.; Wurtz, J.

    2014-01-01

    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few $\\mu$s with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground ...

  12. Intrafractional tracking accuracy in infrared marker-based hybrid dynamic tumour-tracking irradiation with a gimballed linac

    International Nuclear Information System (INIS)

    Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Takahashi, Kunio; Tanabe, Hiroaki; Yano, Shinsuke; Miyabe, Yuki; Ueki, Nami; Kaneko, Shuji; Matsuo, Yukinori; Mizowaki, Takashi; Sawada, Akira; Kokubo, Masaki; Hiraoka, Masahiro

    2014-01-01

    Purpose: To verify the intrafractional tracking accuracy in infrared (IR) marker-based hybrid dynamic tumour tracking irradiation (“IR Tracking”) with the Vero4DRT. Materials and methods: The gimballed X-ray head tracks a moving target by predicting its future position from displacements of IR markers in real-time. Ten lung cancer patients who underwent IR Tracking were enrolled. The 95th percentiles of intrafractional mechanical (iE M 95 ), prediction (iE P 95 ), and overall targeting errors (iE T 95 ) were calculated from orthogonal fluoroscopy images acquired during tracking irradiation and from the synchronously acquired log files. Results: Averaged intrafractional errors were (left–right, cranio-caudal [CC], anterior–posterior [AP]) = (0.1 mm, 0.4 mm, 0.1 mm) for iE M 95 , (1.2 mm, 2.7 mm, 2.1 mm) for iE P 95 , and (1.3 mm, 2.4 mm, 1.4 mm) for iE T 95 . By correcting systematic prediction errors in the previous field, the iE P 95 was reduced significantly, by an average of 0.4 mm in the CC (p < 0.05) and by 0.3 mm in the AP (p < 0.01) directions. Conclusions: Prediction errors were the primary cause of overall targeting errors, whereas mechanical errors were negligible. Furthermore, improvement of the prediction accuracy could be achieved by correcting systematic prediction errors in the previous field

  13. Progress of the intense positron beam project EPOS

    International Nuclear Information System (INIS)

    Krause-Rehberg, R.; Brauer, G.; Jungmann, M.; Krille, A.; Rogov, A.; Noack, K.

    2008-01-01

    EPOS (the ELBE POsitron Source) is a running project to build an intense, bunched positron beam for materials research. It makes use of the bunched electron beam of the ELBE radiation source (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (40 MeV, 1 mA). ELBE has unique timing properties, the bunch length is <5 ps and the repetition time is 77 ns. In contrast to other Linacs made for Free Electron Lasers (e.g., TTF at DESY, Hamburg), ELBE can be operated in full cw-mode, i.e., with an uninterrupted sequence of bunches. The article continues an earlier publication. It concentrates on details of the timing system and describes issues of radiation protection

  14. Recent improvements in the SLC positron system performance

    International Nuclear Information System (INIS)

    Krejcik, P.; Corbett, J.; Ecklund, S.; Emma, P.; Fieguth, T.; Helm, R.; Kulikov, A.; Limberg, T.; Moshammer, H.; Ross, M.; Siemann, R.; Spence, W.; Woodley, M.

    1992-03-01

    The positron system is very specific to the SLC in that the positrons are accelerated in the same linac as the electrons that produce them and the electrons with which they collide. Some of the difficulties in tuning this system to peak performance are thus unlikely to be encountered in future linear colliders, but many of the lessons learned in beam matching are useful for future machines. The design and commissioning of this system has been previously reported so we only briefly describe the major subsystems before detailing the tuning and diagnostics involved in optimizing the performance of the overall system

  15. Gamma camera based Positron Emission Tomography: a study of the viability on quantification; Tomografia por emissao de positrons com sistemas PET/SPECT: um estudo da viabilidade de quantifizacao

    Energy Technology Data Exchange (ETDEWEB)

    Pozzo, Lorena

    2005-07-01

    Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, random, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 2D, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be delt with carefully in clinical quantification. Finally, the choice of the region

  16. A positron beam for the linear collider scheme of a B-meson factory

    International Nuclear Information System (INIS)

    Chehab, R.

    1988-02-01

    An approach for a conventional positron source intended to a BantiB linear collider scheme is here given. Optical matching devices between the source and the accelerator are considered and some comparisons are made regarding the maximum acceptance and the positron beam qualities. Focusing in the preaccelerator and in the main linac are also considered. Heating and radiation problems which may introduce severe limitations are only partly examined

  17. SU-F-T-615: Comparison of Plan Quality for Linac-Based Stereotactic Radiosurgery (SRS) Using Single- and Multi-Isocenter Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J [Dept of Radiation Medicine, Northwell Health, Lake Success, NY (United States); Dept of Radiation Oncology, NewYork Hospital/Weill Cornell Medical College, New York, NY (United States); Wernicke, A [Dept of Radiation Oncology, NewYork Hospital/Weill Cornell Medical College, New York, NY (United States); Pannullo, S [Dept of Neurological Surgery, NewYork Hospital/Weill Cornell Medical College, New York, NY (United States)

    2016-06-15

    Purpose: To compare the plan quality of linear accelerator (linac)-based stereotactic radiosurgery (SRS) using single-isocenter volumetric arc therapy (SI-VMAT), restricted single-isocenter dynamic-arc (RSI-DARC), and multi-isocenter DARC (MI-DARC) techniques. Methods: Fifteen SRS cases were randomly selected and re-planned using the SI-VMAT (Pinnacle), RSI-DARC (iPlanNet) and MI-DARC (iPlanNet). The number of planning target volumes (PTVs) for each plan ranged from 1 to 6. For SI-VMAT, a single isocenter and 3-4 VMAT beams are used for all PTVs, while for MI-DARC, each PTV has its own isocetner with 3 DARC beams. RSI-DARC uses one isocnter with 3-6 DARC beams to irradiate all PTVs within 2.5-cm radius. Both SI-DARC and RSI-DARC plans were optimized manually. The prescription dose was 20 Gy to each PTV. The maximal dose was 25 Gy for RSI-DARC and MI-DARC, but could not be controlled for SI-VMAT due to the nature of VMAT planning. Plan quality indexes including PTV coverage, mean dose of PTV (PTVmean) and tissue (Tmean), V12Gy, conformity index (CI), and V10Gy/VPTV were calculated and compared. Results: Full PTV coverage was achieved for all three techniques. Using the MI-DARC plans as the gold standard, the PTVmean of the SI-VMAT plans was 12.5%±8.3% (mean±standard deviation) higher, in comparison to 0.7%±1.4% for the RSI-DARC plans. Similar trend was observed for other indexes including V12Gy (39.4%±27.3% vs. 9.3%±7.8%), Tmean (35.0%±26.8% vs. 2.8%±3.4%), and V10Gy/VPTV (42.2%±31.5% vs. 9.9%±8.2%). CI is comparable (6.2%±14.2% vs. 6.3%±7.2%). Assuming the treatment time is proportional to the number of isocenters, the reduction of the treatment time in comparison to MI-DARC was 70% for SI-VMAT and 42% for RSI-DARC. Conclusion: Although the SI-VMAT can save a considerable amount of treatment time, the plan indexes also significantly deviates from the gold standard, MI-DARC. RSI-DARC, on the other hand, provides a good compromise between the treatment

  18. Light ion linacs for medical applications

    International Nuclear Information System (INIS)

    Bradbury, J.N.; Knapp, E.A.; Nagle, D.E.

    1975-01-01

    Recent advances in linear accelerator technology point to the feasibility of designing and developing practical medical linacs for producing protons, neutrons, or π mesons for the radiation therapy of cancer. Additional uses of such linacs could include radioisotope production and charged particle radiography. For widespread utilization medical linacs must exhibit reasonable cost, compactness, reliability, and simplicity of operation. Possible extensions of current accelerator technology which might provide these characteristics are discussed in connection with linac design, fabrication techniques, materials, power sources, injectors, and particle collection and delivery systems. Parameters for a medical proton linac for producing pions are listed. (U.S.)

  19. Drift Tube Linac Conditioning of Tank1

    CERN Document Server

    Shafqat, N; Toor, W A

    2014-01-01

    Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 µs long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 µs. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

  20. Tomography by positrons emission

    International Nuclear Information System (INIS)

    Mosconi, Sergio L.

    1999-01-01

    The tomography by positrons emission is a technology that allows to measure the concentration of positrons emission in a tri dimensional body through external measurements. Among the isotope emissions have carbon isotopes are ( 11 C), of the oxygen ( 15 O), of the nitrogen ( 13 N) that are three the element that constitute the base of the organic chemistry. Theses have on of the PET's most important advantages, since many biological interesting organic molecules can be tracer with these isotopes for the metabolism studies 'in vivo' through PET, without using organic tracers that modify the metabolism. The mentioned isotopes, also possess the characteristic of having short lifetime, that constitute on of PET's advantages from the dosimetric point of view. Among 11 C, 15 O, and 13 N, other isotopes that can be obtained of a generator as the 68 Ga and 82 Rb

  1. Fermilab 200 MeV linac control system hardware

    International Nuclear Information System (INIS)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac

  2. Fermilab 200 MeV linac control system hardware

    Energy Technology Data Exchange (ETDEWEB)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac.

  3. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  4. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  5. Emittance growth in rf linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1979-01-01

    As the space-charge limit is approached, the current that can be accelerated in an rf linac and the output emittance that can be expected are discussed. The role of the envelope equations to estimate limits is outlined. The results of numerical experiments to explore general properties of emittance growth are given

  6. The new Linac moves mountains

    CERN Multimedia

    2008-01-01

    The civil engineering work has started for Linac 4, one of the major renovation projects for the CERN accelerator complex. The work will be completed at the end of 2010 and the new linear accelerator is scheduled to be commissioned in 2013.

  7. Linac boosters for electrostatic machines

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brookhaven National Lab., Upton, NY

    1990-01-01

    A survey of linacs which are used as boosters to electrostatic accelerators is presented. Machines both operating and under construction, copper and superconducting, are reviewed. The review includes data on the accelerating structures, performance, rf and control, beam optics, budget, vacuum and cryogenics. (orig.)

  8. Superconducting radiofrequency linac development at Fermilab

    International Nuclear Information System (INIS)

    Holmes, Stephen D.

    2009-01-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  9. Progress in design of the SNS linac

    International Nuclear Information System (INIS)

    Hardekopf, R.

    2001-01-01

    The Spallation Neutron Source (SNS) is a six-laboratory collaboration to build an intense pulsed neutron facility at Oak Ridge, TN. The linac design has evolved from the conceptual design presented in 1997 in order to achieve higher initial performance and to incorporate desirable upgrade features. The linac is now designed to produce 2-MW beam power using a combination of radio-frequency quadrupole (RFQ) linac, drift-tube linac (DTL), coupled-cavity linac (CCL), and superconducting-RF (SRF) linac. Designs of each of these elements support he high peak intensity and high quality beam required for injection into the SNS accumulator ring. This paper will trace the evolution of the linac design and the progress made in the R and D program. (author)

  10. Florida State University superconducting linac

    International Nuclear Information System (INIS)

    Myers, E.G.; Fox, J.D.; Frawley, A.D.; Allen, P.; Faragasso, J.; Smith, D.; Wright, L.

    1988-01-01

    As early as the fall of 1977 it was decided that the future research needs of their nuclear structure laboratory required an increase in energy capability to at least 8 MeV per nucleon for the lighter ions, and that these needs could be met by the installation of a 17 MV tandem Van de Graaff accelerator. The chief problem with this proposal was the high cost. It became apparent that a far less expensive option was to construct a linear accelerator to boost the energy from their existing 9 MV tandem. The options open to them among linac boosters were well represented by the room temperature linac at Heidelberg and the superconducting Stony Brook and Argonne systems. By the Spring of 1979 it had been decided that both capital cost and electric power requirements favored a superconducting system. As regards the two superconducting resonator technologies - the Argonne niobium-copper or the Caltech-Stony Brook lead plated copper - the Argonne resonators, though more expensive to construct, had the advantages of more boost per resonator, greater durability of the superconducting surface and less stringent beam bunching requirements. In 1980 pilot funding from the State of Florida enabled the construction of a building addition to house the linac and a new target area, and the setting up of a small, three resonator, test booster. Major funding by the NSF for the laboratory upgrade started in 1984. With these funds they purchased their present helium liquefaction and transfer system and constructed three large cryostats, each housing four Argonne beta = 0.105 resonators and two superconducting solenoids. The last large cryostat was completed and installed on-line early this year and the linac was dedicated on March 20. Nuclear physics experiments using the whole linac began in early June. 4 references, 6 figures, 1 table

  11. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Science.gov (United States)

    Chen, Qushan; Hu, Tongning; Qin, Bin; Xiong, Yongqian; Fan, Kuanjun; Pei, Yuanji

    2018-04-01

    Huazhong University of Science and Technology (HUST) has built a compact linac-based terahertz free electron laser (THz-FEL) prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  12. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Directory of Open Access Journals (Sweden)

    Qushan Chen

    2018-04-01

    Full Text Available Huazhong University of Science and Technology (HUST has built a compact linac-based terahertz free electron laser (THz-FEL prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  13. Positron lifetime measurements and positron-annihilation induced auger electron spectroscpy using slow positron beams; Teisoku yodenshi bimu wo mochiita yodenshi jumyo sokutei oyobi yodenshi shometsu reiki oje denshi bunko

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R. [Electrotechnical Lab., Tsukuba (Japan)

    1996-02-20

    Slow positron beam with less than several eV can be controlled freely such as accelerating, throttling the beam size, shortening the pulse or making pulse with short time width and so forth. These low positron beams are applied to various measurements like Doppler broadening measurement of annihilation {gamma} rays or lifetime measurement of positron, and secondary particle measurements using positron microscope, positron electron ray diffraction, flight time method and so forth. In particular, these recent years, high intensity slow positron beams were possible using accelerators like electron linac and its application is increasing. In this report, pulse shortening method for high intensity slow positron beam, and incidence energy variable positron lifetime measurement method using this slow pulsed beam and flight time type positron-annihilation-induced auger electron spectroscopy are outlined. In future, these measurements can be possible to carry out with high resolution and also with high counting rate if higher intensity monochromatic excellent positron beam than present one is produced. 31 refs., 5 figs.

  14. Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance- and Computed Tomography-Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients.

    Science.gov (United States)

    Seith, Ferdinand; Gatidis, Sergios; Schmidt, Holger; Bezrukov, Ilja; la Fougère, Christian; Nikolaou, Konstantin; Pfannenberg, Christina; Schwenzer, Nina

    2016-01-01

    Attenuation correction (AC) in fully integrated positron emission tomography (PET)/magnetic resonance (MR) systems plays a key role for the quantification of tracer uptake. The aim of this prospective study was to assess the accuracy of standardized uptake value (SUV) quantification using MR-based AC in direct comparison with computed tomography (CT)-based AC of the same PET data set on a large patient population. Sixty-six patients (22 female; mean [SD], 61 [11] years) were examined by means of combined PET/CT and PET/MR (11C-choline, 18F-FDG, or 68Ga-DOTATATE) subsequently. Positron emission tomography images from PET/MR examinations were corrected with MR-derived AC based on tissue segmentation (PET(MR)). The same PET data were corrected using CT-based attenuation maps (μ-maps) derived from PET/CT after nonrigid registration of the CT to the MR-based μ-map (PET(MRCT)). Positron emission tomography SUVs were quantified placing regions of interest or volumes of interest in 6 different body regions as well as PET-avid lesions, respectively. The relative differences of quantitative PET values when using MR-based AC versus CT-based AC were varying depending on the organs and body regions assessed. In detail, the mean (SD) relative differences of PET SUVs were as follows: -7.8% (11.5%), blood pool; -3.6% (5.8%), spleen; -4.4% (5.6%)/-4.1% (6.2%), liver; -0.6% (5.0%), muscle; -1.3% (6.3%), fat; -40.0% (18.7%), bone; 1.6% (4.4%), liver lesions; -6.2% (6.8%), bone lesions; and -1.9% (6.2%), soft tissue lesions. In 10 liver lesions, distinct overestimations greater than 5% were found (up to 10%). In addition, overestimations were found in 2 bone lesions and 1 soft tissue lesion adjacent to the lung (up to 28.0%). Results obtained using different PET tracers show that MR-based AC is accurate in most tissue types, with SUV deviations generally of less than 10%. In bone, however, underestimations can be pronounced, potentially leading to inaccurate SUV quantifications. In

  15. Ventilation/Perfusion Positron Emission Tomography—Based Assessment of Radiation Injury to Lung

    Energy Technology Data Exchange (ETDEWEB)

    Siva, Shankar, E-mail: shankar.siva@petermac.org [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville (Australia); Hardcastle, Nicholas [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Bressel, Mathias [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, East Melbourne (Australia); Callahan, Jason [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); MacManus, Michael P.; Shaw, Mark; Plumridge, Nikki [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Hicks, Rodney J. [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Department of Medicine, University of Melbourne, Parkville (Australia); Steinfort, Daniel [Department of Medicine, University of Melbourne, Parkville (Australia); Department of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne (Australia); Ball, David L. [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Hofman, Michael S. [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Department of Medicine, University of Melbourne, Parkville (Australia)

    2015-10-01

    Purpose: To investigate {sup 68}Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). Methods and Materials: In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). Results: A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r{sup 2}=0.99, P<.01), with ventilation strongly negatively linear (r{sup 2}=0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. Conclusions: Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET

  16. Ventilation/Perfusion Positron Emission Tomography—Based Assessment of Radiation Injury to Lung

    International Nuclear Information System (INIS)

    Siva, Shankar; Hardcastle, Nicholas; Kron, Tomas; Bressel, Mathias; Callahan, Jason; MacManus, Michael P.; Shaw, Mark; Plumridge, Nikki; Hicks, Rodney J.; Steinfort, Daniel; Ball, David L.; Hofman, Michael S.

    2015-01-01

    Purpose: To investigate 68 Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). Methods and Materials: In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). Results: A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r 2 =0.99, P<.01), with ventilation strongly negatively linear (r 2 =0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. Conclusions: Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET/CT imaging. These

  17. Thirty-five years of drift-tube linac experience

    International Nuclear Information System (INIS)

    Knowles, H.B.

    1984-10-01

    The history of the drift-tube linear accelerator (linac) for the first 35 years of its existence is briefly reviewed. Both US and foreign experience is included. Particular attention is given to technological improvements, operational reliability, capital investment, and number of personnel committed to drift-tube linac (DTL) development. Preliminary data indicate that second- and third-generation (post-1960) DTLs have, in the US alone, operated for a combined total period of more than 75 machine-years and that very high reliability (>90%) has been achieved. Existing US drift-tube linacs represent a capital investment of at least $250 million (1983). Additional statistical evidence, derived from the proceedings of the last 11 linear accelerator conferences, supports the view that the DTL has achieved a mature technological base. The report concludes with a discussion of important recent advances in technology and their applications to the fourth generation of DTLs, many of which are now becoming operational

  18. Operational experience with the control scheme for IUAC linac booster

    International Nuclear Information System (INIS)

    Sahu, B.K.; Antony, J.; Mathuria, D.S.; Pandey, A.; Ghosh, S.; Mehta, R.; Rai, A.; Patra, P.; Choudhury, G.K.; Singh, K.; Ajith Kumar, B.P.; Kanjilal, D.; Roy, A.

    2009-01-01

    Accelerated beam from the first superconducting linear accelerator (linac) module of IUAC has been delivered to the user. The linac control scheme has worked successfully with the existing pelletron control scheme. Local RF control system consisting of Resonator controller and supporting RF modules are used for multipactoring conditioning, high power pulse conditioning and for the phase/amplitude locking of the superconducting resonators. Beam acceleration is done by adjusting the RF phase of each resonator with respect to master oscillator. The automation of control scheme is planned for smooth operation of linac with minimum human intervention. Python software support is added for writing automation routines in present control system software. An alternate tuning mechanism based on piezoelectric actuators has been successfully tested. (author)

  19. Beam position monitor for energy recovered linac beams

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Thomas; Evtushenko, Pavel

    2017-06-06

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  20. An energy recovery electron linac-on-ring collider

    International Nuclear Information System (INIS)

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-01-01

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10 33 (per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented

  1. Design and construction of the main linac module for the superconducting energy recovery linac project at Cornell

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, R.; Bullock, B.; He, Y.; Hoffstaetter, G.; Liepe, M.; O' Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V. [Cornell Laboratory for Accelerator-based Science and Education (CLASSE), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853 (United States)

    2014-01-29

    Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) and high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.

  2. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    Energy Technology Data Exchange (ETDEWEB)

    Xing, L [Stanford University, Stanford, CA (United States); Wong, J [Johns Hopkins University, Baltimore, MD (United States); Li, R [Stanford University, Palo Alto, CA (United States)

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gated VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.

  3. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    International Nuclear Information System (INIS)

    Xing, L; Wong, J; Li, R

    2014-01-01

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gated VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications

  4. Transmission positron microscopes

    International Nuclear Information System (INIS)

    Doyama, Masao; Kogure, Yoshiaki; Inoue, Miyoshi; Kurihara, Toshikazu; Yoshiie, Toshimasa; Oshima, Ryuichiro; Matsuya, Miyuki

    2006-01-01

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons

  5. Current status and future view of generation of slow positrons and applications of available antiparticles

    International Nuclear Information System (INIS)

    Tomimasu, T.

    1988-01-01

    The positron is the antielectron and annihilates with an electron from the surrounding medium dominantly into two 511 keV γ-rays. The two annihilation γ-rays are modified by the momentum and energy distributions of the electrons in the annihilation site. The annihilation rates are proportional to the electron density in the site. Therefore, the two annihilation γ-rays and the average lifetime of positrons can provide unique informations on a wide variety of problems in condensed matter physics. Slow positrons with narrow energy spread are more useful, compared with white positrons from radioactive isotopes, to the positron annihilation experiment, the low energy positron diffraction, the positron microscope and so on. This review describes the current status and future view on (1) the applications of the positron annihilation to the condensed matter physics, (2) the generation of slow positrons using electron linacs, (3) the positron beam handling system including the pulse stretcher with a Penning trap and (4) the applications of available antiparticles including monoenergetic positrons, muons, pions and antiprotons to the analysis and evaluation of materials, the energy storage and positronium radiations. (author)

  6. Theoretical calculations of positron lifetimes for metal oxides

    International Nuclear Information System (INIS)

    Mizuno, Masataka; Araki, Hideki; Shirai, Yasuharu

    2004-01-01

    Our recent positron lifetime measurements for metal oxides suggest that positron lifetimes of bulk state in metal oxides are shorter than previously reported values. We have performed theoretical calculations of positron lifetimes for bulk and vacancy states in MgO and ZnO using first-principles electronic structure calculations and discuss the validity of positron lifetime calculations for insulators. By comparing the calculated positron lifetimes to the experimental values, it wa found that the semiconductor model well reproduces the experimental positron lifetime. The longer positron lifetime previously reported can be considered to arise from not only the bulk but also from the vacancy induced by impurities. In the case of cation vacancy, the calculated positron lifetime based on semiconductor model is shorter than the experimental value, which suggests that the inward relaxation occurs around the cation vacancy trapping the positron. (author)

  7. Approach of a failure analysis for the MYRRHA linac

    International Nuclear Information System (INIS)

    Carneiro, J.P.; Medeiros-Romao, L.; Salemne, R.; Vandeplassche, D.; Biarotte, J.L.; Bouly, F.; Uriot, D.

    2015-01-01

    The MYRRHA project currently under development at SCK-CEN (Mol, Belgium) is a subcritical research reactor that requires a 600 MeV proton accelerator as a driver. This linac is expected to produce a beam power of 1.5 MW onto a spallation target for the reactor to deliver a thermal power around 70 MW. Thermomechanical considerations of the spallation target set stringent requirements on the beam trip rate which should not exceed 40 trips/year for interruptions longer than three seconds. The 3 underlying principles in the design of the MYRRHA linac are elements redundancy (like the dual-injector), elements operation at de-rated values (like cavities operating at about 30% from their nominal operating points) and the fault tolerance concept, which allows the failure of a beamline component to be compensated by its neighbouring elements. Studies presented in this document show that in the event of a failure of the first cryo-module or the first quadrupole doublet the linac can resume nominal operation with a re-matched lattice. Since the fault tolerance procedure is expected to work more efficiently at higher energies (due to lower space charge effects) we can extrapolate from our studies that the MYRRHA linac is expected to operate with the failure of any cryo-module or quadrupole doublet in the main linac. A virtual accelerator-based control system is mandatory for the operation of the MYRRHA linac to ensure the very fast implementation (<3 seconds) of the fault tolerance procedure. The virtual accelerator uses a beam dynamics code (like TRACEWIN or TRACK) to compute the model of the real accelerator in operation and interacts with this later through the accelerator control command

  8. first tank of Linac 1

    CERN Multimedia

    This was the first tank of the linear accelerator Linac1, the injection system for the Proton Synchrotron, It ran for 34 years (1958 - 1992). Protons entered at the far end and were accelerated between the copper drift tubes by an oscillating electromagnetic field. The field flipped 200 million times a second (200 MHz) so the protons spent 5 nanoseconds crossing a drift tube and a gap. Moving down the tank, the tubes and gaps had to get longer as the protons gained speed. The tank accelerated protons from 500 KeV to 10 MeV. Linac1 was also used to accelerate deutrons and alpha particles for the Intersecting Storage Rings and oxygen and sulpher ions for the Super Proton Synchrotron heavy ion programme.

  9. Review of induction linac studies

    International Nuclear Information System (INIS)

    Keefe, Denis

    1984-01-01

    The major emphasis of the U.S. program in Heavy Ion Fusion Accelerator Research is on developing and understanding induction-linac systems that employ multiple beams of high-current heavy ions. The culmination of the plan lies in building the High Temperature Experiment (HTE) which will involve an ion induction linac to deliver multiple high current beams, that can be focussed and overlapped on a two-millimeter diameter spot. A sequence of three major experimental activities are as follows. In the Single-Beam Transport Experiment (SBTE), the stability or otherwise transport of a high-current Cs +1 beam over a long distance is tested. In the Multiple-Beam Experiment (MBE), the experiment is designed to simulate on a small scale as many as possible of the features to be encountered in the HTE. (Mori, K.)

  10. ANU LINAC upgrade using multi-stub resonators

    Indian Academy of Sciences (India)

    LINAC development work at ANU is currently aimed at improving ... current through the rf joint at the base of the outer wall and so increasing joint losses. The ... The stub geometry was developed with a help of Superfish/Poisson software [8].

  11. Charge measurement system at 100 MeV linac

    International Nuclear Information System (INIS)

    Li Dongmei; Chinese Academy of Sciences, Beijing; Yin Chongxian; Ye Kairong

    2005-01-01

    A charge measurement system of 100 Mev linac is introduced in this paper. After describing the characteristics and functions of the system's components, the authors analyze the methods of data processing and systematic error in detail. Basing on these, the authors get system resolution in the lab. The actual measurement results are presented at last. (authors)

  12. Conceptual Design for the New RPI 2020 Linac

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, C.; Bane, K.; Dolgashev, V.; Jensen, A.; Haase, A.; Jongewaard, E.; Kemp, M.; Krasnykh, A.; Lewandowski, J.; Li, Z.; Neilson, J.; Pearson, C.; Tantawi, S.; Wang, J.; Yeremian, A.D.; /SLAC; Brand, P.; Danon, Y.; /Rensselaer Polytech. Inst.; Epping, B.; Donovan, T.; Block, R.; Leinweber, G.; /Knolls Atomic Power Lab.

    2014-10-29

    The Rensselaer Polytechnic Institute (RPI) spectrometer is an installation based on an L-band linear accelerator designed and installed many decades ago. While this installation has served many important experiments over the decades, a new more powerful and more flexible linac to serve a wider range of experiments is envisioned as an upgrade to the existing installation by 2020.

  13. New control system for the KEK-linac

    International Nuclear Information System (INIS)

    Kamikubota, N.; Furukawa, K.; Nakahara, K.; Abe, I.; Akimoto, H.

    1993-01-01

    New control system for the KEK-Linac has been developed. Unix-based workstations and VME-bus computers are introduced. They are inter-connected with an Ethernet, which is used as a high-speed data-exchange network. New system will start the operation after October 1993. (author)

  14. The BATES linac control system

    International Nuclear Information System (INIS)

    Russ, T.; Radouch, Z.

    1989-01-01

    The Bates linac control system (LCS), a distributed processing architecture, is described. Due to the historic evolution of the system, a mix of different hardware, operating systems and programming languages are used throughout. However, a standardized interface at the network level enables a smooth system integration. In particular, a multicasting scheme for data transmission over the network permits simultaneous database updates on more than one workstation. This allows for true distribution of data processing power. 3 figs

  15. LIL-W: Positron conversion target and solenoid (pictures 01 and 04).

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    In the direction of the beam, from right to left: a steering dipole (DHZ.25); the arm, at 45 deg, of a wire scanner which measures beam size; the conversion target, housed in the small tank with a window, where positrons are produced; immediately afterwards, invisible inside the vacuum chamber, is a pulsed solenoid to focus the emerging positrons; finally, a large solenoid, consisting of 3 pancakes, further focuses the positrons. Towards the left, the linac LIL-W, its accelerating structure hidden under a continuous outer solenoid mantle.

  16. Evaluation of contrast reproduction method based on the anatomical guidance of the cerebral images reconstruction in positron emission tomography

    International Nuclear Information System (INIS)

    Bataille, F.

    2007-04-01

    Positron emission tomography is a medical imaging modality providing in-vivo volumetric images of functional processes of the human body, which is used for the diagnosis and the following of neuro degenerative diseases. PET efficiency is however limited by its poor spatial resolution, which generates a decrease of the image local contrast and leads to an under-estimation of small cerebral structures involved in the degenerative mechanism of those diseases. This so-called partial volume effect degradation is usually corrected in a post-reconstruction processing framework through the use of anatomical information, whose spatial resolution allows a better discrimination between functional tissues. However, this kind of method has the major drawback of being very sensitive to the residual mismatches on the anatomical information processing. We developed in this thesis an alternative methodology to compensate for the degradation, by incorporating in the reconstruction process both a model of the system impulse response and an anatomically-based image prior constraint. This methodology was validated by comparison with a post-reconstruction correction strategy, using data from an anthropomorphic phantom acquisition and then we evaluated its robustness to the residual mismatches through a realistic Monte Carlo simulation corresponding to a cerebral exam. The proposed algorithm was finally applied to clinical data reconstruction. (author)

  17. Positron emission tomography

    International Nuclear Information System (INIS)

    Iio, Masahiro

    1982-01-01

    Utilization of positron emission tomography was reviewed in relation to construction and planned construction of small-size medical cyclotrons, planned construction of positron cameras and utilization of short-lived radionuclides. (Chiba, N.)

  18. Linacs for medical and industrial applications

    International Nuclear Information System (INIS)

    Hamm, R.W.

    1986-01-01

    Linear accelerators for medical and industrial applications have become an important commercial business. Microwave electron linacs for cancer radiation therapy and high-energy industrial radiography form the bulk of this market, but these, as well as induction linacs, are now being offered for radiation processing applications such as sterilization of disposable medical products, food preservation and material modifications. The radio frequency quadrupole (RFQ) linac has now made the ion linac also practical for commercial applications in medicine and industry, including radiation therapy, isotope production, neutron production, materials modification, and energy transfer processes. Ion linacs for several of these applications will soon be commercially available. The market for both ion and electron linacs is expected to significantly grow in several exciting and important areas

  19. A computed tomography-based spatial normalization for the analysis of [18F] fluorodeoxyglucose positron emission tomography of the brain.

    Science.gov (United States)

    Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung

    2014-01-01

    We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.

  20. Improved performance of the control scheme for IUAC superconducting Linac

    International Nuclear Information System (INIS)

    Sahu, B.K.; Suman, S.K.; Kumar, R.

    2015-01-01

    Since many years energized ion beams from linac are being delivered routinely for scheduled experiments using all the three accelerating modules of linac along with super buncher and rebuncher. Major efforts are dedicated to improve the performance of the control scheme to minimise the down time of the linac during operation. Earlier, a number of developments were carried out to improve the dynamics of the control scheme. The most significant of them is the piezoelectric actuator based tuning mechanism which is implemented in all the operational resonators of second and third accelerating modules of superconducting linac. This has helped us to bridge the gap between the accelerating fields achieved during Q measurement at 6 W of helium power and during phase locking of the resonator during beam operation at a given RF power (∼120W). The piezoelectric actuator based tuner is also instrumental to reduce the unlocking rate of the resonators. Pulse width modulation (PWM) control based helium gas operated tuner is implemented in few resonators to improve phase locking performance. CAMAC based distributed control scheme is upgraded to VME based distributed control without changing the existing client interface to maintain uniformity between the Pelletron and linac control. Python code support has been implemented to protect the resonators against high forward power during unlocking. This is also integrated with the display status of the resonators for monitoring. A frequency to voltage converter is incorporated in control scheme to monitor the frequency error. This has helped us to develop a scheme for automatic phase locking of the cavities using piezoelectric actuator based tuner control. (author)

  1. Heavy-ion-linac post-accelerators

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1979-01-01

    The main features of the tandem-linac system for heavy-ion acceleration are reviewed and illustrated in terms of the technology and performance of the superconducting heavy-ion energy booster at Argonne. This technology is compared briefly with the corresponding technologies of the superconducting linac at Stony Brook and the room-temperature linac at Heidelberg. The performance possibilities for the near-term future are illustrated in terms of the proposed extension of the Argonne booster to form ATLAS

  2. Efficient Cryosolid Positron Moderators

    Science.gov (United States)

    2012-08-01

    table layout Figure 21 shows the integration of the IR spectroscopy optics with the positron Moderation and Annihilation vacuum chambers on the...Characterization of Cryogenic Moderators The application of Matrix Isolation Spectroscopy (MIS) to characterizing cryogenic solid positron ...Matrix Isolation Spectroscopy capability into our Positron Moderation apparatus, which enables spectroscopic characterization of the cryogenic

  3. Positron emission tomography

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.

    1985-01-01

    This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology

  4. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    Science.gov (United States)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  5. Feedback system analysis for beam breakup in a multipass multisection electron linac

    International Nuclear Information System (INIS)

    Mosnier, A.; Aune, B.

    1986-06-01

    A recirculating electron accelerator based upon superconducting cavities technology is envisaged in different laboratories to produce a high duty cycle beam with energy in the GeV region. Beam break up is a severe limitation in this kind of accelerator due to the positive feedback of the returning beams. We present here an analysis based upon feedback system theory which takes into account the different cavities of the linac, the optics of the linac and of the recirculating path. An example is given for the Saclay proposal of a 2 GeV accelerator consisting of 4 passes in a 500 MeV, 100 m-long superconducting linac

  6. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Balša Terzić

    2014-10-01

    Full Text Available In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab’s Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  7. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G

    2004-03-25

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  8. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  9. High beam current shut-off systems in the APS linac and low energy transfer line

    International Nuclear Information System (INIS)

    Wang, X.; Knott, M.; Lumpkin, A.

    1994-01-01

    Two independent high beam current shut-off current monitoring systems (BESOCM) have been installed in the APS linac and the low energy transport line to provide personnel safety protection in the event of acceleration of excessive beam currents. Beam current is monitored by a fast current transformer (FCT) and fully redundant supervisory circuits connected to the Access Control Interlock System (ACIS) for beam intensity related shutdowns of the linac. One FCT is located at the end of the positron linac and the other in the low energy transport line, which directs beam to the positron accumulator ring (PAR). To ensure a high degree of reliability, both systems employ a continuous self-checking function, which injects a test pulse to a single-turn test winding after each ''real'' beam pulse to verify that the system is fully functional. The system is designed to be fail-safe for all possible system faults, such as loss of power, open or shorted signal or test cables, loss of external trigger, malfunction of gated integrator, etc. The system has been successfully commissioned and is now a reliable part of the total ACIS

  10. Polarized γ source based on Compton backscattering in a laser cavity

    Directory of Open Access Journals (Sweden)

    V. Yakimenko

    2006-09-01

    Full Text Available We propose a novel gamma source suitable for generating a polarized positron beam for the next generation of electron-positron colliders, such as the International Linear Collider (ILC, and the Compact Linear Collider (CLIC. This 30-MeV polarized gamma source is based on Compton scattering inside a picosecond CO_{2} laser cavity generated from electron bunches produced by a 4-GeV linac. We identified and experimentally verified the optimum conditions for obtaining at least one gamma photon per electron. After multiplication at several consecutive interaction points, the circularly polarized gamma rays are stopped on a target, thereby creating copious numbers of polarized positrons. We address the practicality of having an intracavity Compton-polarized positron source as the injector for these new colliders.

  11. Positron spectroscopy for materials characterization

    International Nuclear Information System (INIS)

    Schultz, P.J.; Snead, C.L. Jr.

    1988-01-01

    One of the more active areas of research on materials involves the observation and characterization of defects. The discovery of positron localization in vacancy-type defects in solids in the 1960's initiated a vast number of experimental and theoretical investigations which continue to this day. Traditional positron annihilation spectroscopic techniques, including lifetime studies, angular correlation, and Doppler broadening of annihilation radiation, are still being applied to new problems in the bulk properties of simple metals and their alloys. In addition new techniques based on tunable sources of monoenergetic positron beams have, in the last 5 years, expanded the horizons to studies of surfaces, thin films, and interfaces. In the present paper we briefly review these experimental techniques, illustrating with some of the important accomplishments of the field. 40 refs., 19 figs

  12. The proposed INEL intense slow positron source, beam line, and positron microscope facility

    International Nuclear Information System (INIS)

    Makowitz, H.; Denison, A.B.; Brown, B.

    1993-01-01

    A program is currently underway at the Idaho National Engineering Laboratory (INEL) to design and construct an Intense Slow Positron Beam Facility with an associated Positron Microscope. Positron beams have been shown to be valuable research tools and have potential application in industrial processing and nondestructive evaluation (microelectronics, etc.). The limit of resolution or overall usefulness of the technique has been limited because of lack of sufficient intensity. The goal of the INEL positron beam is ≥ 10 12 slow e+/s over a 0.03 cm diameter which represents a 10 3 to 10 4 advancement in beam current over existing beam facilities. The INEL is an ideal site for such a facility because of the nuclear reactors capable of producing intense positron sources and the personnel and facilities capable of handling high levels of radioactivity. A design using 58 Co with moderators and remoderators in conjunction with electrostatic positron beam optics has been reached after numerous computer code studies. Proof-of-principle electron tests have demonstrated the feasibility of the large area source focusing optics. The positron microscope development is occurring in conjunction with the University of Michigan positron microscope group. Such a Beam Facility and associated Intense Slow Positron Source (ISPS) can also be utilized for the generation and study of positron, and positron electron plasmas at ≤ 10 14 particles/cm 3 with plasma temperatures ranging from an eV to many keV, as well as an intense x-ray source via positron channeling radiation. The possibility of a tunable x-ray laser based on channeling positron radiation also exists. In this discussion the authors will present a progress report on various activities associated with the INEL ISPS

  13. SRF LINAC for future extension of the PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  14. Failure Modes Analysis for the MSU-RIA Driver Linac

    CERN Document Server

    Wu, Xiaoyu; Gorelov, Dmitry; Grimm, Terry L; Marti, Felix; York, Richard

    2005-01-01

    Previous end-to-end beam dynamics simulation studies* using experimentally-based input beams including alignment and rf errors and variation in charge-stripping foil thickness have indicated that the Rare Isotope Accelerator (RIA) driver linac proposed by MSU has adequate transverse and longitudinal acceptances to accelerate light and heavy ions to final energies of at least 400 MeV/u with beam powers of 100 to 400 kW. During linac operation, equipment loss due to, for example, cavity contamination, availability of cryogens, or failure of rf or power supply systems, will lead to at least a temporary loss of some of the cavities and focusing elements. To achieve high facility availability, each segment of the linac should be capable of adequate performance even with failed elements. Beam dynamics studies were performed to evaluate the linac performance under various scenarios of failed cavities and focusing elements with proper correction schemes, in order to prove the flexibility and robustness of the driver ...

  15. SRF LINAC for future extension of the PEFP

    International Nuclear Information System (INIS)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub

    2014-01-01

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  16. Conceptual Design of the Linac4 Main Dump

    CERN Document Server

    Leitao, I V; Maglioni, C

    2012-01-01

    Linac4 is the new CERN linear accelerator intended to replace the ageing Linac2 as the injector to the Proton Synchrotron Booster (PSB) for increasing the luminosity of the Large Hadron Collider (LHC). By delivering a 160MeV H- beam, Linac4 will provide the necessary conditions to double the brightness and intensity of the beam extracted from the PSB. This paper describes the conceptual design of the Linac4 Main Dump, where two different concepts relying respectively on water and air cooling were compared and evaluated. Based on the application of analytical models for the energy deposited by the beam, heat conduction and cooling concepts, a parametric study was performed. This approach allowed the identification of the “optimal” configuration for these two conceptual geometries and their relative comparison. Besides giving the theoretical guidelines for the design of the new dump, this work also contributes to the development of analytical tools to allow a better understanding of the influence of the se...

  17. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography.

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M; Levin, Craig S

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A larger resistivity is favorable for reducing the dark current (noise) in the detector crystal, and thus the higher resistivity BSO crystal has a lower (50% lower on average) noise level than CdTe. The CdTe and BSO crystals can achieve the same sensitivity under laser diode illumination at the same crystal bias voltage condition while the BSO crystal is not as sensitive to 511-keV photons as the CdTe crystal under the same crystal bias voltage. The amplitude of the modulation signal induced by 511-keV photons in BSO crystal is around 30% of that induced in CdTe crystal under the same bias condition. In addition, we have found that the optical modulation strength increases linearly with crystal bias voltage before saturation. The modulation signal with CdTe tends to saturate at bias voltages higher than 1500 V due to its lower resistivity (thus larger dark current) while the modulation signal strength with BSO still increases after 3500 V. Further increasing the bias voltage for BSO could potentially further enhance the modulation strength and thus, the sensitivity.

  18. Poster - 53: Improving inter-linac DMLC IMRT dose precision by fine tuning of MLC leaf calibration

    International Nuclear Information System (INIS)

    Nakonechny, Keith; Tran, Muoi; Sasaki, David; Beck, James; Poirier, Yannick; Malkoske, Kyle

    2016-01-01

    Purpose: To develop a method to improve the inter-linac precision of DMLC IMRT dosimetry. Methods: The distance between opposing MLC leaf banks (“gap size”) can be finely tuned on Varian linacs. The dosimetric effect due to small deviations from the nominal gap size (“gap error”) was studied by introducing known errors for several DMLC sliding gap sizes, and for clinical plans based on the TG119 test cases. The plans were delivered on a single Varian linac and the relationship between gap error and the corresponding change in dose was measured. The plans were also delivered on eight Varian 2100 series linacs (at two institutions) in order to quantify the inter-linac variation in dose before and after fine tuning the MLC calibration. Results: The measured dose differences for each field agreed well with the predictions of LoSasso et al. Using the default MLC calibration, the variation in the physical MLC gap size was determined to be less than 0.4 mm between all linacs studied. The dose difference between the linacs with the largest and smallest physical gap was up to 5.4% (spinal cord region of the head and neck TG119 test case). This difference was reduced to 2.5% after fine tuning the MLC gap calibration. Conclusions: The inter-linac dose precision for DMLC IMRT on Varian linacs can be improved using a simple modification of the MLC calibration procedure that involves fine adjustment of the nominal gap size.

  19. Poster - 53: Improving inter-linac DMLC IMRT dose precision by fine tuning of MLC leaf calibration

    Energy Technology Data Exchange (ETDEWEB)

    Nakonechny, Keith; Tran, Muoi; Sasaki, David; Beck, James; Poirier, Yannick; Malkoske, Kyle [Simcoe-Muskoka Regional Cancer Centre (Canada)

    2016-08-15

    Purpose: To develop a method to improve the inter-linac precision of DMLC IMRT dosimetry. Methods: The distance between opposing MLC leaf banks (“gap size”) can be finely tuned on Varian linacs. The dosimetric effect due to small deviations from the nominal gap size (“gap error”) was studied by introducing known errors for several DMLC sliding gap sizes, and for clinical plans based on the TG119 test cases. The plans were delivered on a single Varian linac and the relationship between gap error and the corresponding change in dose was measured. The plans were also delivered on eight Varian 2100 series linacs (at two institutions) in order to quantify the inter-linac variation in dose before and after fine tuning the MLC calibration. Results: The measured dose differences for each field agreed well with the predictions of LoSasso et al. Using the default MLC calibration, the variation in the physical MLC gap size was determined to be less than 0.4 mm between all linacs studied. The dose difference between the linacs with the largest and smallest physical gap was up to 5.4% (spinal cord region of the head and neck TG119 test case). This difference was reduced to 2.5% after fine tuning the MLC gap calibration. Conclusions: The inter-linac dose precision for DMLC IMRT on Varian linacs can be improved using a simple modification of the MLC calibration procedure that involves fine adjustment of the nominal gap size.

  20. Induction linacs as radiation processors

    International Nuclear Information System (INIS)

    Birx, D.L.

    1986-01-01

    Experiments at the Lawrence Livermore National Laboratory (LLNL), University of California, in conjunction with the University of California at Davis have shown induction linear accelerators (linacs) to be suitable for radiation processing of food. Here we describe how it might be possible to optimize this technology developded for the Department of Defense to serve in radiation processing. The possible advantages of accelerator-produced radiation over the use of radioisotopes include a tailor-made energy spectrum that can provide much deeper penetration and thereby better dose uniformity

  1. Signal multiplexing scheme for LINAC

    International Nuclear Information System (INIS)

    Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra

    2004-01-01

    For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)

  2. Induction linacs and pulsed power

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1995-01-01

    Progress in electronic power conversion technology is making possible a new class of induction linacs that can operate at extremely high repetition rates. Advances in insulator technology, pulse forming line design and switching may also lead to a new type of high current accelerator with accelerating gradients at least an order of magnitude greater than those attainable today. The evolution of the induction accelerator pulsed power system will be discussed along with some details of these emerging technologies which are at the frontiers of accelerator technology

  3. Basis for low beam loss in the high-current APT linac

    International Nuclear Information System (INIS)

    Wangler, T.P.; Gray, E.R.; Krawczyk, F.L.; Kurennoy, S.S.; Lawrence, G.P.; Ryne, R.D.; Crandall, K.R.

    1998-01-01

    The present evidence that the APT proton linac design will meet its goal of low beam loss operation. The conclusion has three main bases: (1) extrapolation from the understanding of the performance of the 800-MeV LANSCE proton linac at Los Alamos, (2) the theoretical understanding of the dominant halo-forming mechanism in the APT accelerator from physics models and multiparticle simulations, and (3) the conservative approach and key principles underlying the design of the APT linac, which are aimed at minimizing beam halo and providing large apertures to reduce beam loss to a very low value

  4. Study of characteristics of linac with TWRR

    International Nuclear Information System (INIS)

    Wang, Y.L.; Toyama, S.; Emoto, T.; Nomura, M.; Takahashi, N.; Oshita, H.; Hirano, K.; Sato, I.

    1994-01-01

    High power electron linac which is developed by PNC is an electron linac with the TWRR (Traveling Wave Resonant Ring). Some phenomena occurred on our high power test are mentioned. Some important characteristics such as stability and phase characteristic are discussed. (author)

  5. Application of superconductivity to intense proton linacs

    International Nuclear Information System (INIS)

    Heinrichs, H.

    1996-01-01

    Three examples of proposed superconducting linacs for intense particle beams are presented, and in two cases compared to normal conducting counterparts. Advantages and disadvantages of both types are discussed. Suggestions for future developments are presented. Finally a comparison of estimated operational costs of the normal and the superconducting linac for the ESS is given. (R.P.)

  6. Fermilab Linac Upgrade Conceptual Design: Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1989-07-01

    The goal of the Tevatron Collider Upgrade program is to improve the Collider luminosity and the fixed-target intensity. The Linac portion of this project will increase the energy of the existing 200- MeV linac to 400 MeV in order to reduce beam emittance degradation in the Booster.

  7. Linac design for the European spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H. [Universitaet Postfach, Frankfurt am Main (Germany)

    1995-10-01

    A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.

  8. Analysis of the LSC microbunching instability in MaRIE linac reference design

    International Nuclear Information System (INIS)

    Yampolsky, Nikolai

    2016-01-01

    In this report we estimate the effect of the microbunching instability in the MaRIE XFEL linac. The reference design for the linac is described in a separate report. The parameters of the L1, L2, and L3 linacs as well as BC1 and BC2 bunch compressors were the same as in the referenced report. The beam dynamics was assumed to be linear along the accelerator (which is a reasonable assumption for estimating the effect of the microbunching instability). The parameters of the bunch also match the parameters described in the referenced report. Additionally, it was assumed that the beam radius is equal to R = 100 m and does not change along linac. This assumption needs to be revisited at later studies. The beam dynamics during acceleration was accounted in the matrix formalism using a Matlab code. The input parameters for the linacs are: RF peak gradient, RF frequency, RF phase, linac length, and initial beam energy. The energy gain and the imposed chirp are calculated based on the RF parameters self-consistently. The bunch compressors are accounted in the matrix formalism as well. Each chicane is characterized by the beam energy and the R56 matrix element. It was confirmed that the linac and beam parameters described previously provide two-stage bunch compression with compression ratios of 10 and 20 resulting in the bunch of 3kA peak current.

  9. Amplitude-based optimal respiratory gating in positron emission tomography in patients with primary lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Grootjans, Willem; Meeuwis, Antoi P.W.; Vos, Charlotte S. van der; Gotthardt, Martin; Oyen, Wim J.G.; Visser, Eric P. [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Geus-Oei, Lioe-Fee de [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Enschede (Netherlands)

    2014-12-15

    Respiratory motion during PET imaging introduces quantitative and diagnostic inaccuracies, which may result in non-optimal patient management. This study investigated the effects of respiratory gating on image quantification using an amplitude-based optimal respiratory gating (ORG) algorithm. Whole body FDG-PET/CT was performed in 66 lung cancer patients. The respiratory signal was obtained using a pressure sensor integrated in an elastic belt placed around the patient's thorax. ORG images were reconstructed with 50 %, 35 %, and 20 % of acquired PET data (duty cycle). Lesions were grouped into anatomical locations. Differences in lesion volume between ORG and non-gated images, and mean FDG-uptake (SUV{sub mean}) were calculated. Lesions in the middle and lower lobes demonstrated a significant SUV{sub mean} increase for all duty cycles and volume decrease for duty cycles of 35 % and 20 %. Significant increase in SUV{sub mean} and decrease in volume for lesions in the upper lobes were observed for a 20 % duty cycle. The SUV{sub mean} increase for central lesions was significant for all duty cycles, whereas a significant volume decrease was observed for a duty cycle of 20 %. This study implies that ORG could influence clinical PET imaging with respect to response monitoring and radiotherapy planning. (orig.)

  10. High gradient linac for proton therapy

    Directory of Open Access Journals (Sweden)

    S. Benedetti

    2017-04-01

    Full Text Available Proposed for the first time almost 30 years ago, the research on radio frequency linacs for hadron therapy experienced a sparkling interest in the past decade. The different projects found a common ground on a relatively high rf operating frequency of 3 GHz, taking advantage of the availability of affordable and reliable commercial klystrons at this frequency. This article presents for the first time the design of a proton therapy linac, called TULIP all-linac, from the source up to 230 MeV. In the first part, we will review the rationale of linacs for hadron therapy. We then divided this paper in two main sections: first, we will discuss the rf design of the different accelerating structures that compose TULIP; second, we will present the beam dynamics design of the different linac sections.

  11. Superconducting heavy-ion linac at Argonne

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.G.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Pardo, R.C.; Shepard, K.W.

    1981-01-01

    The design, status, and performance of the first operating superconducting heavy-ion accelerator, a linac used to boost the energies of beams from a 9-MV tandem, is summarized. When completed in 1981, the linac will consist of 24 independently-phased split-ring niobium resonators operating at 97 MHz. This linac is designed to provide 29 MV of acceleration. Because of the modular character of the system, the linac has been operable and useful since mid-1978, when a beam was accelerated through 2 units and the first nuclear-physics experiments were preformed. Now, 16 resonators are in use, and a beam has been accelerated for approx. 6000 h. Resonator performance has been remarkably stable, in spite of vacuum accidents, and the linac as a whole operates reliably without operators in attendance during nights and weekends. The ease and speed with which the beam energy can be changed is proving to be unexpectedly valuable to users

  12. The Superconducting Super Collider (SSC) linac

    International Nuclear Information System (INIS)

    Watson, J.M.

    1990-09-01

    The preliminary design of the 600 MeV H - linac for the Superconducting Super Collider injector is described. The linac must provide a 25 mA beam during 7--35 μs macropulses at Hz within injection bursts. Normalized transverse emittances of less than 0.5 π mm-mrad (rms) are required for injection into the Low Energy Booster synchrotron. Cost, ease of commissioning, and operational reliability are important considerations. The linac will consists of an H - source with electrostatic LEBT, 2.5 MeV radiofrequency quadrupole accelerator, a 70 MeV drift-tube linac, and 530 MeV and the side-coupled linac operates at 1284 MHz. A modest total length of 150 m results from the tradeoff between cost optimization and reliability. The expected performance from beam dynamics simulations and the status of the project are described. 11 refs., 1 fig., 6 tabs

  13. Positron beam studies of transients in semiconductors

    International Nuclear Information System (INIS)

    Beling, C.D.; Ling, C.C.; Cheung, C.K.; Naik, P.S.; Zhang, J.D.; Fung, S.

    2006-01-01

    Vacancy-sensing positron deep level transient spectroscopy (PDLTS) is a positron beam-based technique that seeks to provide information on the electronic ionization levels of vacancy defects probed by the positron through the monitoring of thermal transients. The experimental discoveries leading to the concept of vacancy-sensing PDLTS are first reviewed. The major problem associated with this technique is discussed, namely the strong electric fields establish in the near surface region of the sample during the thermal transient which tend to sweep positrons into the contact with negligible defect trapping. New simulations are presented which suggest that under certain conditions a sufficient fraction of positrons may be trapped into ionizing defects rendering PDLTS technique workable. Some suggestions are made for techniques that might avoid the problematic electric field problem, such as optical-PDLTS where deep levels are populated using light and the use of high forward bias currents for trap filling

  14. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystronlike interaction with the accelerating cavities, leading to enhanced momentum spread. In this paper, we describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  15. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystron-like interaction with the accelerating cavities leading to enhanced momentum spread. In this paper, the author describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  16. Positron-containing systems and positron diagnostics

    International Nuclear Information System (INIS)

    1978-01-01

    The results of the experimental and theoretical investigations are presented. Considered are quantum-mechanical calculations of wave functions describing the states of positron-containing atomic systems and of cross-sections of the processes characterizing different interactions, and also the calculations of the behaviour of positrons in gases in the presence of an electric field. The results of experimental tests are presented by the data describing the behaviour of positrons and positronium in liquids, polymers and elastomers, complex oxides and in different solids. New equipment and systems developed on the basis of current studies are described. Examined is a possibility of applying the methods of model and effective potentials for studying the bound states of positron systems and for calculating cross-sections of elementary processes of elastic and inelastic collisions with a positron involved. The experimental works described indicate new possibilities of the positron diagnosis method: investigation of thin layers and films of semiconductor materials, defining the nature of chemical bonds in semiconductors, determination of the dislocation density in deformed semiconductors, derivation of important quantitative information of the energy states of radiation defects in them

  17. Simulation studies of the LAMPF proton linac

    International Nuclear Information System (INIS)

    Garnett, R.W.; Gray, E.R.; Rybarcyk, L.J.; Wangler, T.P.

    1995-01-01

    The LAMPF accelerator consists of two 0.75-MeV injectors, one for H + and the other for H - , a separate low-energy beam transport (LEBT) line for each beam species, a 0.75 to 100-MeV drift-tube linac (DTL) operating at 201.25-MHz, a 100-MeV transition region (TR), and a 100 to 800-MeV side-coupled linac (SCL) operating at 805-MHz. Each LEBT line consists of a series of quadrupoles to transport and transversely match the beam. The LEBT also contains a prebuncher, a main buncher, and an electrostatic deflector. The deflector is used to limit the fraction of a macropulse which is seen by the beam diagnostics throughout the linac. The DTL consists of four rf tanks and uses singlet FODO transverse focusing. The focusing period is doubled in the last two tanks by placing a quadrupole only in every other drift-tube. Doublet FDO transverse focusing is used in the SCL. The TR consists of separate transport lines for the H + and H - beams. The pathlengths for the two beams differ, by introducing bends, so as to delay arrival of one beam relative to the other and thereby produce the desired macropulse time structure. Peak beam currents typically range from 12 to 18-mA for varying macropulse lengths which give an average beam current of 1-mA. The number of particles per bunch is of the order 10 8 . The work presented here is an extension of previous work. The authors have attempted to do a more complete simulation by including modeling of the LEBT. No measurements of the longitudinal structure of the beam, except phase-scans, are performed at LAMPF. The authors show that, based on simulation results, the primary causes of beam spill are inefficient longitudinal capture and the lack of longitudinal matching. Measurements to support these claims are not presently made at LAMPF. However, agreement between measurement and simulation for the transverse beam properties and transmissions serve to benchmark the simulations

  18. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    International Nuclear Information System (INIS)

    Tohme, Michel S; Qi Jinyi

    2009-01-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 x 3 line phantom, an ultra-micro resolution phantom and a 22 Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  19. Cardiac positron emission tomography

    International Nuclear Information System (INIS)

    Eftekhari, M.; Ejmalian, G.

    2003-01-01

    Positron emission tomography is an intrinsically tool that provide a unique and unparalleled approach for clinicians and researchers to interrogate the heart noninvasively. The ability to label substances of physiological interest with positron-emitting radioisotopes has permitted insight into normal blood flow and metabolism and the alterations that occur with disease states. Positron emission tomography of the heart has evolved as a unique, noninvasive approach for the assessment of myocardial perfusion, metabolism, and function. Because of the intrinsic quantitative nature of positron emission tomography measurements as well as the diverse compounds that can be labeled with positron- emitting radioisotopes, studies with positron emission tomography have provided rich insight into the physiology of the heart under diverse conditions

  20. Positron emission computed tomography

    International Nuclear Information System (INIS)

    Grover, M.; Schelbert, H.R.

    1985-01-01

    Regional mycardial blood flow and substrate metabolism can be non-invasively evaluated and quantified with positron emission computed tomography (Positron-CT). Tracers of exogenous glucose utilization and fatty acid metabolism are available and have been extensively tested. Specific tracer kinetic models have been developed or are being tested so that glucose and fatty acid metabolism can be measured quantitatively by Positron-CT. Tracers of amino acid and oxygen metabolism are utilized in Positron-CT studies of the brain and development of such tracers for cardiac studies are in progress. Methods to quantify regional myocardial blood flow are also being developed. Previous studies have demonstrated the ability of Positron-/CT to document myocardial infarction. Experimental and clinical studies have begun to identify metabolic markers of reversibly ischemic myocardium. The potential of Positron-CT to reliably detect potentially salvageable myocardium and, hence, to identify appropriate therapeutic interventions is one of the most exciting applications of the technique

  1. High resolution positron tomography

    International Nuclear Information System (INIS)

    Brownell, G.L.; Burnham, C.A.

    1982-01-01

    The limits of spatial resolution in practical positron tomography are examined. The four factors that limit spatial resolution are: positron range; small angle deviation; detector dimensions and properties; statistics. Of these factors, positron range may be considered the fundamental physical limitation since it is independent of instrument properties. The other factors are to a greater or lesser extent dependent on the design of the tomograph

  2. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  3. Positron-atom collisions

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1984-01-01

    The past decade has seen the field of positron-atom collisions mature into an important sub-field of atomic physics. Increasingly intense positron sources are leading towards a situation in which electron and positron collision experiments will be on almost an equal footing, challenging theory to analyze their similarities and differences. The author reviews the advances made in theory, including dispersion theory, resonances, and inelastic processes. A survey of experimental progress and a brief discussion of astrophysical positronics is also included. (Auth.)

  4. Positron emission tomography

    International Nuclear Information System (INIS)

    Paans, A.M.J.

    1981-01-01

    Positron emitting radiopharmaceuticals have special applications in in-vivo studies of biochemical processes. The combination of a cyclotron for the production of radionuclides and a positron emission tomograph for the registration of the distribution of radioactivity in the body enables the measurement of local radioactivity concentration in tissues, and opens up new possibilities in the diagnosis and examination of abnormalities in the metabolism. The principles and procedures of positron emission tomography are described and the necessary apparatus considered, with emphasis on the positron camera. The first clinical applications using 55 Co bloemycine for tumor detection are presented. (C.F.)

  5. Positrons and positronium

    International Nuclear Information System (INIS)

    Jean, Y.C.; Lambrecht, R.M.

    1988-01-01

    This bibliography includes articles, proceedings, abstracts, reports and patents published between 1930 and 1984 on the subject of positrons, positron annihilation and positronium. The subject covers experimental and theoretical results in the areas of physics and chemistry of low and intermediate energy (< 0.6 MeV) positrons and positronium. The topics of interest are: fundamental properties, interactions with matter, nuclear technology, the history and philosophy of antimatter, the theory of the universe, and the applications of positrons in the chemical, physical, and biomedical sciences

  6. The concept of parallel input/output processing for an electron linac

    International Nuclear Information System (INIS)

    Emoto, Takashi

    1993-01-01

    The instrumentation of and the control system for the PNC 10 MeV CW electron linac are described. A new concept of parallel input/output processing for the linac has been introduced. It is based on a substantial number of input/output processors(IOP) using beam control and diagnostics. The flexibility and simplicity of hardware/software are significant advantages with this scheme. (author)

  7. 25th anniversary for Linac-2

    CERN Multimedia

    2003-01-01

    On Friday, 3 October 2003, the Linac team celebrated a quarter century of successful operation of one of its linear accelerators: Linac-2, the proton workhorse of the CERN accelerator complex. Linac-2, CERN's linear proton accelerator, has now been running for 25 years - ample reason for a small celebration. About 30 members of the original team (10 of the initially more than 50 are still working at CERN), and other CERN personnel met on 3 October 2003. Linac-2 is the first link in the accelerator chain Linac-2 - PS Booster - PS - SPS and eventually LHC. Beams from Linac-2 are used after further acceleration in the CERN complex for SPS fixed target physics; for antiproton production for the Antiproton Decelerator (AD); for test beams in the East Experimental Hall and in the PS; for nuclear physics at ISOLDE; for LHC test beams and in the past for both ISR physics and Antiproton production (AA/AC) and test beams in LEAR. Linac-2 was built to obtain higher intensities and better stability than with ...

  8. Preliminary conceptual design for a 510 MeV electron/positron injector for a UCLA φ factory

    International Nuclear Information System (INIS)

    Dahlbacka, G.; Hartline, R.; Barletta, W.; Pellegrini, C.

    1991-01-01

    UCLA is proposing a compact suer conducting high luminosity (10 32-33 cm -2 sec -1 ) e + e - collider for a φ factory. To achieve the required e + e - currents, full energy injections from a linac with intermediate storage in a Positron Accumulator Ring (PAR) is used. The elements of the linac are outlined with cost and future flexibility in mind. The preliminary conceptual design starts with a high current gun similar in design to those developed at SLAC and at ANL (for the APS). Four 4-section linac modules follow, each driven by a 60 MW klystron with a 1 μsec macropulse and an average current of 8.6 A. The first 4-section model is used to create positrons in a tungsten target at 186 MeV. The three remaining three modules are used to accelerate the e + e - beam to 558 MeV (no load limit) for injection into the PAR

  9. Study on design of proton linacs

    International Nuclear Information System (INIS)

    Yu Qingchang

    2000-01-01

    Two important directions in the development of proton linacs are high-current proton linacs (mainly applied in nuclear power field) and compact proton linacs (for proton therapy). There are some common characteristics in them: (1) Employment of the novel accelerating structures, which are combination and evolution of the conventional ones; (2) Accelerating beam with small emittance; (3) Requirement for high reliability. The construction of the former is, however, much more difficult because it still needs low beam lose rate and as high power transformation efficiency as possible. Some important problems in the design of these accelerators are discussed and some schemes designed are presented

  10. Overview of the Pelletron Linac facility, Mumbai

    International Nuclear Information System (INIS)

    Pillay, R.G.

    2011-01-01

    The Pelletron LINAC Facility at TIFR, Mumbai, comprising the 14 MV Pelletron and the superconducting LINAC booster caters to a variety of experiments in basic and applied Sciences. The Liquid Helium Refrigeration plant for the LINAC has been upgraded to enhance the refrigeration capacity. New instrumentation and interface for control and monitor of the cryogenic parameters, beam diagnostics and beam transport devices have been developed and installed. Digital implementation of the LLRF control has been demonstrated. All seven beam lines in new user halls have been commissioned and several new experimental setups have been added. (author)

  11. Operating experience with the ALS linac

    International Nuclear Information System (INIS)

    Selph, F.; Massoletti, D.

    1991-05-01

    The linac injector for the Advanced Light Source (ALS) at LBL was recently put into operation. Energy is 50 MeV, frequency 3 GHz. The electron gun delivers up to 6nC in a 3.0-ns bunch at 120 kV. A train of bunches is injected into a 1-Hz booster and accelerated to 1.5 GHz for storage ring injection. A magnetic analysis system is used for optimizing the linac. Measured beam properties from the gun and after acceleration in the linac are described. 9 refs., 3 figs

  12. Upgrade of the AGS H- linac

    International Nuclear Information System (INIS)

    Alessi, J.G.; Buxton, W.; Kponou, A.; LoDestro, V.; Mapes, M.; McNerney, A.J.; Raparia, D.

    1994-01-01

    The AGS linac presently accelerates 25 mA of H - to 200 MeV at a 5 Hz rep-rate and 500 μs pulse width. The Booster takes 4 pulses every 3.8 seconds, and the remaining pulses are used for isotope production. The authors are in the process of upgrading the linac to increase the average current delivered for isotope production by more than a factor of two, while at the same time expecting to decrease linac downtime. Various aspects of this upgrade are discussed, including the upgrade of the control system, new high power transmission line, transport line vacuum, and rf power supply system upgrades

  13. Laser-driven grating linac

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1982-01-01

    I would like to consider a 50 TeV on 50 TeV collider. Even a hadron machine with such an energy seems unrealistic with current technology. Magnetic fields higher than 10 Tesla are difficult and at this field the circumference would be 120 km. I conclude that only a high gradient Linac could be practical and that one should aim for 10 GeV/meter so as to keep the total length down to the order ot 10 km. Currently it is only plausible to obtain such fields using the very high energy densities produced by lasers. The luminosity is another issue. I aim for 10 33 to 10 34 but I am conscious that higher luminosities than even these are really desired, especially for an e + e - machine. I tend to assume that the machine is an e + e - machine but it will also accept hadrons

  14. Mechanical considerations in cw linacs

    International Nuclear Information System (INIS)

    King, J.D.

    1985-01-01

    An 80-MHz radio-frequency quadrupole (RFQ) linac has been designed, fabricated and operated at 100% duty factor (cw) for the Fusion Materials Irradiation Test (FMIT) project at Los Alamos. This paper describes the design features, fabrication techniques, and operational problems of the device. The RFQ is an assembly of heavy steel, copper-plated weldments. It measures about 15 ft (4.5 m) long by 5 ft (1.5 m) in diameter and weighs over 12 t. Major components are two pair of diametrically orthogonal vanes mounted in a core cylinder. The core is assembled into a manifold cylinder that couples rf power into the vane quadrants. The design features discussed include assembly of hollow wall, flood-cooled components; high-conductivity rf seals; removable and adjustable vanes; and tuning devices. Fabrication challenges such as close-tolerance weldments, vane-tip-contour machining and large-component plating requirements are covered

  15. Source and LINAC3 studies

    CERN Document Server

    Bellodi, G

    2017-01-01

    In the framework of the LHC Ion Injector Upgrade pro-gramme (LIU), several activities have been carried out in2016 to improve the ion source and Linac3 performance,with the goal to increase the beam current routinely deliv-ered to LEIR. The extraction region of the GTS-LHC ionsource was upgraded with enlarged vacuum chamber aper-tures and the addition of an einzel lens, yielding highertransmission through the rest of the machine. Also, a seriesof experiments have been performed to study the effects ofdouble frequency mixing on the afterglow performance ofthe source after installation of a Travelling Wave Tube Am-plifier (TWTA) as secondary microwave source at variablefrequency. Measurements have been carried out at a dedi-cated oven test stand for better understanding of the ionsource performance. Finally, several MD sessions werededicated to the study and characterization of the strippingfoils, after evidence of degradation in time was discoveredin the 2015 run.

  16. Parallel Beam Dynamics Simulation Tools for Future Light Source Linac Modeling

    International Nuclear Information System (INIS)

    Qiang, Ji; Pogorelov, Ilya v.; Ryne, Robert D.

    2007-01-01

    Large-scale modeling on parallel computers is playing an increasingly important role in the design of future light sources. Such modeling provides a means to accurately and efficiently explore issues such as limits to beam brightness, emittance preservation, the growth of instabilities, etc. Recently the IMPACT codes suite was enhanced to be applicable to future light source design. Simulations with IMPACT-Z were performed using up to one billion simulation particles for the main linac of a future light source to study the microbunching instability. Combined with the time domain code IMPACT-T, it is now possible to perform large-scale start-to-end linac simulations for future light sources, including the injector, main linac, chicanes, and transfer lines. In this paper we provide an overview of the IMPACT code suite, its key capabilities, and recent enhancements pertinent to accelerator modeling for future linac-based light sources

  17. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    International Nuclear Information System (INIS)

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the beam profile will be described

  18. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    CERN Document Server

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the b...

  19. Design of LINAC4, A New Injector for the CERN Booster

    CERN Document Server

    Garoby, R; Lombardi, A M; Rossi, C; Vretenar, M; Gerigk, F

    2004-01-01

    A new H- linac (Linac4) is presently under study at CERN. This accelerator, based on normal conducting structures at 352 and 704 MHz, will provide a 30 mA 160 MeV H- beam to the CERN PS Booster (PSB), thus overcoming the present space-charge bottleneck at injection with a 50 MeV proton beam. Linac4 is conceived as the first stage of a future 2.2 GeV superconducting linac (SPL) and it is therefore designed for a higher duty cycle than necessary for the PSB. This paper discusses the design choices, presents the layout of the facility and illustrates the advantages for the LHC and other CERN users. The R&D and construction strategy, which mainly relies upon international collaborations, is also presented.

  20. Development of a commissioning plan for the APT linac

    International Nuclear Information System (INIS)

    Funk, L.W.; Crandall, K.R.; Gilpatrick, J.D.; Gray, E.R.; Regan, A.H.; Rohlev, A.; Rybarcyk, L.J.; Wangler, T.P.

    1998-01-01

    The Accelerator Production of Tritium (APT) facility is based on a linac which incorporates both normal-conducting and superconducting RF technology and accelerates a 100-mA cw proton beam to an energy of 1,030 MeV or higher, depending on the desired production rate. Commissioning plans to achieve full power operation with minimum beam-induced activation of components have been evolving. This paper presents the main issues and the basic approaches that are now being discussed

  1. Positron annihilation microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Canter, K F [Brandeis Univ., Waltham, MA (United States)

    1997-03-01

    Advances in positron annihilation microprobe development are reviewed. The present resolution achievable is 3 {mu}m. The ultimate resolution is expected to be 0.1 {mu}m which will enable the positron microprobe to be a valuable tool in the development of 0.1 {mu}m scale electronic devices in the future. (author)

  2. Positrons in ionic crystals

    International Nuclear Information System (INIS)

    Pareja, R.

    1988-01-01

    Positron annihilation experiments in ionic crystals are reviewed and their results are arranged. A discussion about the positron states in these materials is made in the light of these results and the different proposed models. The positronium in alkali halides is specially considered. (Author)

  3. Positron emission tomography

    NARCIS (Netherlands)

    Paans, AMJ

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation using a

  4. PF slow positron source

    International Nuclear Information System (INIS)

    Shirakawa, A.; Enomoto, A.; Kurihara, T.

    1993-01-01

    A new slow-positron source is under construction at the Photon Factory. Positrons are produced by bombarding a tantalum rod with high-energy electrons; they are moderated in multiple tungsten vanes. We report here the present status of this project. (author)

  5. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  6. Linac-based extracranial radiosurgery with Elekta volumetric modulated arc therapy and an anatomy-based treatment planning system: Feasibility and initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Cilla, Savino, E-mail: savinocilla@gmail.com [Medical Physics Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II”, Università Cattolica del Sacro Cuore, Campobasso (Italy); Deodato, Francesco; Macchia, Gabriella; Digesù, Cinzia [Radiotherapy Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II”, Università Cattolica del Sacro Cuore, Campobasso (Italy); Ianiro, Anna; Viola, Pietro; Craus, Maurizio [Medical Physics Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II”, Università Cattolica del Sacro Cuore, Campobasso (Italy); Valentini, Vincenzo [Radiotherapy Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II”, Università Cattolica del Sacro Cuore, Campobasso (Italy); Radiation Oncology Unit, Policlinico Universitario “A. Gemelli”, Università Cattolica del Sacro Cuore, Roma (Italy); Piermattei, Angelo [Medical Physics Unit, Policlinico Universitario “A. Gemelli”, Università Cattolica del Sacro Cuore, Roma (Italy); Morganti, Alessio G. [Radiation Oncology Unit, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, S. Orsola-Malpighi Hospital, University of Bologna, Bologna (Italy)

    2016-07-01

    We reported our initial experience in using Elekta volumetric modulated arc therapy (VMAT) and an anatomy-based treatment planning system (TPS) for single high-dose radiosurgery (SRS-VMAT) of liver metastases. This study included a cohort of 12 patients treated with a 26-Gy single fraction. Single-arc VMAT plans were generated with Ergo++ TPS. The prescription isodose surface (IDS) was selected to fulfill the 2 following criteria: 95% of planning target volume (PTV) reached 100% of the prescription dose and 99% of PTV reached a minimum of 90% of prescription dose. A 1-mm multileaf collimator (MLC) block margin was added around the PTV. For a comparison of dose distributions with literature data, several conformity indexes (conformity index [CI], conformation number [CN], and gradient index [GI]) were calculated. Treatment efficiency and pretreatment dosimetric verification were assessed. Early clinical data were also reported. Our results reported that target and organ-at-risk objectives were met for all patients. Mean and maximum doses to PTVs were on average 112.9% and 121.5% of prescribed dose, respectively. A very high degree of dose conformity was obtained, with CI, CN, and GI average values equal to 1.29, 0.80, and 3.63, respectively. The beam-on-time was on average 9.3 minutes, i.e., 0.36 min/Gy. The mean number of monitor units was 3162, i.e., 121.6 MU/Gy. Pretreatment verification (3%-3 mm) showed an optimal agreement with calculated values; mean γ value was 0.27 and 98.2% of measured points resulted with γ < 1. With a median follow-up of 16 months complete response was observed in 12/14 (86%) lesions; partial response was observed in 2/14 (14%) lesions. No radiation-induced liver disease (RILD) was observed in any patients as well no duodenal ulceration or esophagitis or gastric hemorrhage. In conclusion, this analysis demonstrated the feasibility and the appropriateness of high-dose single-fraction SRS-VMAT in liver metastases performed with Elekta

  7. A linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1998-01-01

    The Spallation Neutron Source Project (SNS), to be constructed at Oak Ridge National Laboratory, accelerates H - ions to an energy of 1.0 GeV with an average current of 1-mA for injection into an accumulator ring that produces the short intense burst of protons needed for the spallation-neutron source. The linac will be the most intense source of H - ions and as such requires advanced design techniques to meet project technical goals. In particular, low beam loss is stressed for the chopped beam placing strong requirements on the beam dynamics and linac construction. Additionally, the linac is to be upgraded to the 2- and 4-MW beam-power levels with no increase in duty factor. The author gives an overview of the linac design parameters and design choices made

  8. Operational experience with the CERN hadron linacs

    International Nuclear Information System (INIS)

    Charmot, H.; Dutriat, C.; Hill, C.E.; Langbein, K.; Lombardi, A.M.; O'Neil, M.; Tanke, E.; Vretenar, M.

    1996-01-01

    The present CERN proton linac (Linac2) was commissioned in 1978 and since that date has been the primary source of protons to the CERN accelerator complex. During the past 18 years, the machine has had a very good reliability record in spite of the demands made upon it. Modifications have been made with the view of maintaining this reliability with reduced resources and new requirements from the users. Further demands will be made in the future for LHC operation. In 1994, a new linac for heavy ion production was put into service replacing the original CERN proton linac. As this machine was built within an international collaboration, operation had to take into account the novelty of the techniques used and the variety of equipment supplied by outside collaborators. Even so, the new machine has also had very good reliability. (author)

  9. System engineering in the SSC Linac

    International Nuclear Information System (INIS)

    Tooker, J.F.; Chang, C.R.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Hale, R.; Leifeste, G.T.; Nonte, J.; Prichard, B.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Yao, C.G.

    1992-01-01

    The design and construction of the SSC Linac involves various departments within the SSCL and many outside vendors. The adaptive incorporation of system engineering principles into the SSC Linac is described. This involves the development of specification trees with the breakdown and flow of functional and physical requirements from the top level system specifications to the lower level component specifications. Interfaces are defined, which specify and control the interconnections between the various components. Review cycles are presented during which the requirements, evolution of the design, and test plans are reviewed, monitored, and finalized. The Linac specification tree, interface definition, and reviews of the Linac are presented, including typical examples. (Author) 2 refs., 3 tabs

  10. The invention that is shaping Linac4

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Accelerator experts are no strangers to innovative optimizations of existing techniques and to the development of novel solutions. Sometimes, they even come up with ideas that have the potential to revolutionize the field. This is the case with the Tolerance Aligned Cantilever Mounting (TACM) system, a completely new way of supporting the drift tubes, one of the core elements of linear accelerators. The new, patent-pending technique will be implemented at Linac4.   Drift tubes in a prototype for Linac4, assembled using the new TACM technology. “Assemble and adjust” – that was the technique used to build drift-tube linacs before the arrival of the TACM. Now, the inventors’ motto has become ‘adjust and assemble’. The inversion of these two words represents a real revolution for people working in the field. “The drift tubes are a critical element of Linac4 and they have to satisfy several requirements: they have to be mechanically ...

  11. A low-neutron background slow-positron source

    International Nuclear Information System (INIS)

    White, M. M.

    1998-01-01

    The addition of a thermionic rf gun [1] and a photocathode rf gun will allow the Advanced Photon Source (APS) linear accelerator (linac) [2] [3] to become a free-electron laser (FEL) driver [4]. As the FEL project progresses, the existing high-charge DC thermionic gun will no longer be critical to APS operation and could be used to generate high-energy or low-energy electrons to drive a slow-positron source. We investigated possibilities to create a useful low-energy source that could operate semi-independently and would have a low neutron background

  12. Positron lifetime technique with applications in materials science

    International Nuclear Information System (INIS)

    Vries, J. de.

    1987-01-01

    This thesis deals with the positron lifetime technique as a method to measure extremely low concentrations of extremely small cavities in materials. The method is based upon the fact that the positron lieftime decreases as the electron density increases and upon the fact that a positron preferably annihilates in cavity-like defects in lattices. The theory of positron behaviour in materials and technical aspects of measuring positron liefetimes are described in ch.'s 2 and 3 respectively. Three methods for increasing the time resolution are discussed and some positron sources are described (ch.4). Some applications of the positron lifetime technique and experimental results are shown in chapter 5. 125 refs.; 61 figs.; 18 tabs

  13. Linac Coherent Light Source (LCLS) Design Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, Massimo

    1998-12-04

    The Stanford Linear Accelerator Center, in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. Starting in FY 1998, the first two-thirds of the SLAC linac will be used for injection into the B factory. This leaves the last one-third free for acceleration to 15 GeV. The LCLS takes advantage of this opportunity, opening the way for the next generation of synchrotron light sources with largely proven technology and cost effective methods. This proposal is consistent with the recommendations of the Report of the Basic Energy Sciences Advisory Committee (Synchrotron Radiation Light Source Working Group, October 18-19, 1997). The report recognizes that ''fourth-generation x-ray sources...will in all likelihood be based on the free electron laser concepts. If successful, this technology could yield improvements in brightness by many orders of magnitude.'' This Design Study, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac. Although this design is based on a consistent and feasible set of parameters, some components require more research and development to guarantee the performance. Given appropriate funding, this R and D phase can be completed in 2 years.

  14. University of Washington superconducting booster linac

    International Nuclear Information System (INIS)

    Storm, D.W.; Amsbaugh, J.F.; Cramer, J.G.; Swanson, H.E.; Trainor, T.A.; Vandenbosch, R.; Weitkamp, W.G.; Will, D.I.

    1985-01-01

    We have begun construction of a superconducting linac designed to accelerate ions from protons through about mass 60. Injected by our 9 MV-terminal tandem van de Graaff accelerator, the linac is expected to double the proton energy and quadruple the energies of heavier ions. The resonators are lead plated copper quarter wave structures. The overall layout and expected performance of the accelerator will be presented, along with a brief status report. 3 refs., 3 figs

  15. Development of RF System Model for CERN Linac2 Tanks

    CERN Document Server

    Joshi, G; Vretenar, M; Kumar, G; Agarwal, V

    2010-01-01

    An RF system model has been created for the CERN Linac2 Tanks. RF systems in this linac have both single and double feed architectures. The main elements of these systems are: RF power amplifier, main resonator, feed-line and the amplitude and phase feedback loops. The model of the composite system is derived by suitably concatenating the models of these individual sub-systems. For computational efficiency the modeling has been carried out in the base band. The signals are expressed in in-phase - quadrature domain, where the response of the resonator is expressed using two linear differential equations, making it valid for large signal conditions. MATLAB/SIMULINK has been used for creating the model. The model has been found useful in predicting the system behaviour, especially during the transients. In the paper we present the details of the model, highlighting the methodology, which could be easily extended to multiple feed RF systems.

  16. Control system for 10 MeV irradiation electron linac

    International Nuclear Information System (INIS)

    Zeng Ziqiang; Zhang Lifeng; Lu Weixing; Gao Zhenjiang; Zhang Yan; Han Guangwen; Wang Shuxian

    2005-01-01

    Control system of the 10 MeV electron linac using Distributed Control System (DCS) was studied. The hardware of control system consists of four SIEMENS PLCs and monitor computer, the software bases on STEP 7, Labwindows/CVI and SQL Server. The bus between the monitor computer and the main PLC is 100 M industrial networks, between PLCs is MPI bus, between PLC and remote partner is PROFIBUS, between PLC and terminals is RS485/422. The software of control system can provide a friendly human machine interface to operate the machine, protect the human and equipment from risk, and storage the status of the accelerator real time to the database. The monitor and maintenance of the linac can been carried out not only on local computer or local network, but also in internet. (author)

  17. Assessment of Alternative RF Linac Structures for APT

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-03-26

    The APT program has been examining both normal and superconducting variants of the APT linac for the past two years. A decision on which of the two will be the selected technology will depend upon several considerations including the results of ongoing feasibility experiments, the performance and overall attractiveness of each of the design concepts, and an assessment of the system-level features of both alternatives. The primary objective of the Assessment of Alternative RF Linac Structures for APT study reported herein was to assess and compare, at the system-level, the performance, capital and life cycle costs, reliability/availability/maintainability (RAM) and manufacturing schedules of APT RF linear accelerators based upon both superconducting and normal conducting technologies. A secondary objective was to perform trade studies to explore opportunities for system optimization, technology substitution and alternative growth pathways and to identify sensitivities to design uncertainties.

  18. Assessment of Alternative RF Linac Structures for APT

    International Nuclear Information System (INIS)

    None

    1997-01-01

    The APT program has been examining both normal and superconducting variants of the APT linac for the past two years. A decision on which of the two will be the selected technology will depend upon several considerations including the results of ongoing feasibility experiments, the performance and overall attractiveness of each of the design concepts, and an assessment of the system-level features of both alternatives. The primary objective of the Assessment of Alternative RF Linac Structures for APT study reported herein was to assess and compare, at the system-level, the performance, capital and life cycle costs, reliability/availability/maintainability (RAM) and manufacturing schedules of APT RF linear accelerators based upon both superconducting and normal conducting technologies. A secondary objective was to perform trade studies to explore opportunities for system optimization, technology substitution and alternative growth pathways and to identify sensitivities to design uncertainties

  19. Important aspects of linac beams for food irradiation

    International Nuclear Information System (INIS)

    McKeown, J.; Jones, R.T.

    1987-01-01

    Linac based irradiators will require careful design before they can be routinely adopted for the radiation processing of food. The transverse emittance and energy spread from simple injectors provide a significant challenge to the design of a beam delivery system which must handle high power especially in photon mode. Any nonuniform current distribution at the plane of the product is further complicated by large dose variations near the air/product interface, even with simple geometries. The paper describes the use of methods developed at AECL to control and monitor linac behaviour as well as electron interactions at the product surface. It also reports on activation cross-section measurements and particularly on neutron yields from composite targets, designed to monitor the energy of accelerators used in food applications. (orig.)

  20. Spectral fluence of neutrons generated by radiotherapeutic Linacs

    International Nuclear Information System (INIS)

    Kralik, Miloslav; Solc, Jaroslav; Smoldasova, Jana; Vondracek, Vladimir; Farkasova, Estera; Ticha, Ivana

    2015-01-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac. (authors)

  1. The trajectory control in the SLC linac

    International Nuclear Information System (INIS)

    Hsu, I.C.; Adolphsen, C.E.; Himel, T.M.; Seeman, J.T.

    1991-05-01

    Due to wake field effects, the trajectories of accelerated beams in the Linac should be well maintained to avoid severe beam breakup. In order to maintain a small emittance at the end of the Linac, the tolerance on the trajectory deviations become tighter when the beam intensities increase. The existing two beam trajectory correction method works well when the theoretical model agrees with the real machine lattice. Unknown energy deviations along the linac as well as wake field effects can cause the real lattice to deviate from the model. This makes the trajectory correction difficult. Several automated procedures have been developed to solve these problems. They are: an automated procedure to frequently steer the whole Linac by dividing the Linac into several small regions; an automated procedure to empirically correct the model to fit the real lattice and eight trajectory correcting feedback loops along the linac and steering through the collimator region with restricted corrector strengths and a restricted number of correctors. 6 refs., 2 figs

  2. The LINAC4 Project at CERN

    CERN Document Server

    Arnaudon, L; Bertone, C; Body, Y; Broere, J; Brunner, O; Buzio, M; Carli, C; Caspers, F; Corso, JP; Coupard, J; Dallocchio, A; Dos Santos, N; Garoby, R; Gerigk, F; Hammouti, L; Hanke, K; Jones, M; Kozsar, I; Lettry, J; Lallement, JB; Lombardi, A; Lopez-Hernandez, LA; Maglioni, C; Mathot, S; Maury, S; Mikulec, B; Nisbet, D; Noels, C; Paoluzzi, M; Puccio, B; Raich, U; Ramberger, S; Rossi, C; Schwerg, N; Scrivens, R; Vandoni, G; Weisz, S; Vollaire, J; Vretenar, M; Zickler, T

    2011-01-01

    As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H¯ linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the PS Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H¯ source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the L...

  3. A Comparison of Amplitude-Based and Phase-Based Positron Emission Tomography Gating Algorithms for Segmentation of Internal Target Volumes of Tumors Subject to Respiratory Motion

    International Nuclear Information System (INIS)

    Jani, Shyam S.; Robinson, Clifford G.; Dahlbom, Magnus; White, Benjamin M.; Thomas, David H.; Gaudio, Sergio; Low, Daniel A.; Lamb, James M.

    2013-01-01

    Purpose: To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). Methods and Materials: List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated. Results: Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001). Conclusions: Target volumes in images generated

  4. Clinical application of in vivo treatment delivery verification based on PET/CT imaging of positron activity induced at high energy photon therapy

    Science.gov (United States)

    Janek Strååt, Sara; Andreassen, Björn; Jonsson, Cathrine; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Näfstadius, Peder; Näslund, Ingemar; Schoenahl, Frederic; Brahme, Anders

    2013-08-01

    The purpose of this study was to investigate in vivo verification of radiation treatment with high energy photon beams using PET/CT to image the induced positron activity. The measurements of the positron activation induced in a preoperative rectal cancer patient and a prostate cancer patient following 50 MV photon treatments are presented. A total dose of 5 and 8 Gy, respectively, were delivered to the tumors. Imaging was performed with a 64-slice PET/CT scanner for 30 min, starting 7 min after the end of the treatment. The CT volume from the PET/CT and the treatment planning CT were coregistered by matching anatomical reference points in the patient. The treatment delivery was imaged in vivo based on the distribution of the induced positron emitters produced by photonuclear reactions in tissue mapped on to the associated dose distribution of the treatment plan. The results showed that spatial distribution of induced activity in both patients agreed well with the delivered beam portals of the treatment plans in the entrance subcutaneous fat regions but less so in blood and oxygen rich soft tissues. For the preoperative rectal cancer patient however, a 2 ± (0.5) cm misalignment was observed in the cranial-caudal direction of the patient between the induced activity distribution and treatment plan, indicating a beam patient setup error. No misalignment of this kind was seen in the prostate cancer patient. However, due to a fast patient setup error in the PET/CT scanner a slight mis-position of the patient in the PET/CT was observed in all three planes, resulting in a deformed activity distribution compared to the treatment plan. The present study indicates that the induced positron emitters by high energy photon beams can be measured quite accurately using PET imaging of subcutaneous fat to allow portal verification of the delivered treatment beams. Measurement of the induced activity in the patient 7 min after receiving 5 Gy involved count rates which were about

  5. Individualized Positron Emission Tomography–Based Isotoxic Accelerated Radiation Therapy Is Cost-Effective Compared With Conventional Radiation Therapy: A Model-Based Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bongers, Mathilda L., E-mail: ml.bongers@vumc.nl [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); Coupé, Veerle M.H. [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); De Ruysscher, Dirk [Radiation Oncology University Hospitals Leuven/KU Leuven, Leuven (Belgium); Department of Radiation Oncology, GROW Research Institute, Maastricht University Medical Center, Maastricht (Netherlands); Oberije, Cary; Lambin, Philippe [Department of Radiation Oncology, GROW Research Institute, Maastricht University Medical Center, Maastricht (Netherlands); Uyl-de Groot, Cornelia A. [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam (Netherlands)

    2015-03-15

    Purpose: To evaluate long-term health effects, costs, and cost-effectiveness of positron emission tomography (PET)-based isotoxic accelerated radiation therapy treatment (PET-ART) compared with conventional fixed-dose CT-based radiation therapy treatment (CRT) in non-small cell lung cancer (NSCLC). Methods and Materials: Our analysis uses a validated decision model, based on data of 200 NSCLC patients with inoperable stage I-IIIB. Clinical outcomes, resource use, costs, and utilities were obtained from the Maastro Clinic and the literature. Primary model outcomes were the difference in life-years (LYs), quality-adjusted life-years (QALYs), costs, and the incremental cost-effectiveness and cost/utility ratio (ICER and ICUR) of PET-ART versus CRT. Model outcomes were obtained from averaging the predictions for 50,000 simulated patients. A probabilistic sensitivity analysis and scenario analyses were carried out. Results: The average incremental costs per patient of PET-ART were €569 (95% confidence interval [CI] €−5327-€6936) for 0.42 incremental LYs (95% CI 0.19-0.61) and 0.33 QALYs gained (95% CI 0.13-0.49). The base-case scenario resulted in an ICER of €1360 per LY gained and an ICUR of €1744 per QALY gained. The probabilistic analysis gave a 36% probability that PET-ART improves health outcomes at reduced costs and a 64% probability that PET-ART is more effective at slightly higher costs. Conclusion: On the basis of the available data, individualized PET-ART for NSCLC seems to be cost-effective compared with CRT.

  6. High efficiency positron moderation

    International Nuclear Information System (INIS)

    Taqqu, D.

    1990-01-01

    A new positron moderation scheme is proposed. It makes use of electric and magnetic fields to confine the β + emitted by a radioactive source forcing them to slow down within a thin foil. A specific arrangement is described where an intermediary slowed-down beam of energy below 10 keV is produced. By directing it towards a standard moderator optimal conversion into slow positrons is achieved. This scheme is best applied to short lived β + emitters for which a 25% moderation efficiency can be reached. Within the state of the art technology a slow positron source intensity exceeding 2 x 10 10 e + /sec is achievable. (orig.)

  7. Positron emission tomography

    International Nuclear Information System (INIS)

    Wienhard, K.; Heiss, W.D.

    1984-01-01

    The principles and selected clinical applications of positron emission tomography are described. In this technique a chemical compound is labeled with a positron emitting isotope and its biochemical pathway is traced by coincidence detection of the two annihilation photons. The application of the techniques of computed tomography allows to reconstruct the spatial distribution of the radioactivity within a subject. The 18 F-deoxyglucose method for quantitative measurement of local glucose metabolism is discussed in order to illustrate the possibilities of positron emission tomography to record physiological processes in vivo. (orig.) [de

  8. Linac design for intense hadron beams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuan

    2009-12-14

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-{beta} region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the {phi}{sub s}=0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs

  9. Linac design for intense hadron beams

    International Nuclear Information System (INIS)

    Zhang, Chuan

    2009-01-01

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-β region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the φ s =0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs, no beam

  10. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    Science.gov (United States)

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.

  11. Linac Coherent Light Source (LCLS) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    2002-11-25

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R&D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

  12. Linac4 H− ion sources

    International Nuclear Information System (INIS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C.

    2016-01-01

    CERN’s 160 MeV H − linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H − source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H − source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described

  13. Multiple-linac approach for tritium production and other applications

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1995-01-01

    This report describes an approach to tritium production based on the use of multiple proton linear accelerators. Features of a single APTT Linac as proposed by the Los Alamos National Laboratory are presented and discussed. An alternative approach to the attainment of the same total proton beam power of 200 MW with several lower-performance superconducting Linacs is proposed and discussed. Although each of these accelerators are considerable extrapolations of present technology, the latter can nevertheless be built at less technical risk when compared to the single high-current APT Linac, particularly concerning the design and the performance of the low-energy front-end. The use of superconducting cavities is also proposed as a way of optimizing the accelerating gradient, the overall length, and the operational costs. The superconducting technology has already been successfully demonstrated in a number of large-size projects and should be seriously considered for the acceleration of intense low-energy beams of protons. Finally, each linear accelerator would represent an ideal source of very intense beams of protons for a variety of applications, such as: weapons and waste actinide transmutation processes, isotopes for medical application, spallation neutron sources, and the generation of intense beams of neutrinos and muons for nuclear and high-energy physics research. The research community at large has obviously an interest in providing expertise for, and in having access to, the demonstration, the construction, the operation, and the exploitation of these top-performance accelerators

  14. Relocatable cargo x-ray inspection systems utilizing compact linacs

    International Nuclear Information System (INIS)

    Sapp, W. Wade; Adams, William L.; Callerame, Joseph; Grodzins, Lee; Rothschild, Peter J.; Schueller, Richard; Mishin, Andrey V.; Smith, Gerald J.

    2001-01-01

    Magnetron-powered, X-band linacs with 3-4 MeV capability are compact enough to be readily utilized in relocatable high energy cargo inspection systems. Just such a system is currently under development at AS and E trade mark sign using the commercially available ISOSearch trade mark sign cargo inspection system as the base platform. The architecture permits the retention of backscatter imaging, which has proven to be an extremely valuable complement to the more usual transmission images. The linac and its associated segmented detector will provide an additional view with superior penetration and spatial resolution. The complete system, which is housed in two standard 40 ' ISO containers, is briefly described with emphasis on the installation and operating characteristics of the portable linac. The average rf power delivered by the magnetron to the accelerator section can be varied up to the maximum of about 1 kW. The projected system performance, including radiation dose to the environment, will be discussed and compared with other high energy systems

  15. H- Ion Sources For CERN’s Linac4

    CERN Document Server

    Lettry, J; Coutron, Y; Chaudeta, E; Dallocchio, A; Gil Flores, J; Hansen, J; Mahner, E; Mathot, S; Mattei, S; Midttun, O; Moyret, P; Nisbet, D; O’Neil, M; Paoluzzi, M; Pasquino, C; Pereira, H; Sanchez Arias, J; Schmitzer, C; Scrivens, R; Steyaert, D

    2013-01-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitabl...

  16. Applications of nucleoside-based molecular probes for the in vivo assessment of tumour biochemistry using positron emission tomography (PET

    Directory of Open Access Journals (Sweden)

    Leonard I. Wiebe

    2007-05-01

    Full Text Available Positron emission tomography (PET is a non-invasive nuclear imaging technique. In PET, radiolabelled molecules decay by positron emission. The gamma rays resulting from positron annihilation are detected in coincidence and mapped to produce three dimensional images of radiotracer distribution in the body. Molecular imaging with PET refers to the use of positron-emitting biomolecules that are highly specific substrates for target enzymes, transport proteins or receptor proteins. Molecular imaging with PET produces spatial and temporal maps of the target-related processes. Molecular imaging is an important analytical tool in diagnostic medical imaging, therapy monitoring and the development of new drugs. Molecular imaging has its roots in molecular biology. Originally, molecular biology meant the biology of gene expression, but now molecular biology broadly encompasses the macromolecular biology and biochemistry of proteins, complex carbohydrates and nucleic acids. To date, molecular imaging has focused primarily on proteins, with emphasis on monoclonal antibodies and their derivative forms, small-molecule enzyme substrates and components of cell membranes, including transporters and transmembrane signalling elements. This overview provides an introduction to nucleosides, nucleotides and nucleic acids in the context of molecular imaging.A tomografia por emissão de pósitrons (TEP é uma técnica de imagem não invasiva da medicina nuclear. A TEP utiliza moléculas marcadas com emissores de radiação beta positiva (pósitrons. As radiações gama medidas que resultam do aniquilamento dos pósitrons são detectadas por um sistema de coincidência e mapeadas para produzir uma imagem tridimensional da distribuição do radiotraçador no corpo. A imagem molecular com TEP refere-se ao uso de biomoléculas marcadas com emissor de pósitron que são substratos altamente específicos para alvos como enzimas, proteínas transportadoras ou receptores prot

  17. Positron reemission microscopy

    International Nuclear Information System (INIS)

    Brandes, G.F.; Canter, K.F.; Mills, A.P. Jr.

    1991-01-01

    The positron reemission microscope (PRM), originally proposed by Hulett, Dale and Pendyala, operates on principles fundamentally different from those utilized in existing microscopes and offers sensitivity and contrast not available in conventional microscopes

  18. Solvated Positron Chemistry. II

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1979-01-01

    The reaction of the hydrated positron, eaq+ with Cl−, Br−, and I− ions in aqueous solutions was studied by means of positron The measured angular correlation curves for [Cl−, e+], [Br−, e+, and [I−, e+] bound states were in good agreement with th Because of this agreement and the fact...... that the calculated positron wavefunctions penetrate far outside the X− ions in the [X−, e+] sta propose that a bubble is formed around the [X−, e+] state, similar to the Ps bubble found in nearly all liquids. F−ions did not react w Preliminary results showed that CN− ions react with eaq+ while OH−ions are non...... in the Cl− case) at higher concentrations. This saturation and the high-concentration effects-in the angular correlation results were interpreted as caused by rather complicated spur effects, wh It is proposed that spur electrons may pick off the positron from the [X−, e+ states with an efficiency which...

  19. Positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Sundar, C.S.; Viswanathan, B.

    1996-01-01

    An overview of positron annihilation spectroscopy, the experimental techniques and its application to studies on defects and electronic structure of materials is presented. The scope of this paper is to present the requisite introductory material, that will enable a better appreciation of the subsequent specialized articles on the applications of positron annihilation spectroscopy to investigate various problems in materials science. (author). 31 refs., 3 figs

  20. Positron emission tomography

    International Nuclear Information System (INIS)

    Chandrasekhar, Preethi; Himabindu, Pucha

    2000-01-01

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging technique used to study different molecular pathways and anatomical structures. PET has found extensive applications in various fields of medicine viz. cardiology, oncology, psychiatry/psychology, neuro science and pulmonology. This study paper basically deals with the physics, chemistry and biology behind the PET technique. It discusses the methodology for generation of the radiotracers responsible for emission of positrons and the annihilation and detection techniques. (author)

  1. Positron emission tomography

    International Nuclear Information System (INIS)

    Dvorak, O.

    1989-01-01

    The principle is briefly described of positron emission tomography, and its benefits and constraints are listed. It is emphasized that positron emission tomography (PET) provides valuable information on metabolic changes in the organism that are otherwise only very difficult to obtain, such as brain diagnosis including relationships between mental disorders and the physiology and pathophysiology of the brain. A PET machine is to be installed in Czechoslovakia in the near future. (L.O.)

  2. Progress of electron gun systems for the e-/e+ linac at KEK

    International Nuclear Information System (INIS)

    Ohsawa, S.; Ogawa, Y.; Otake, Y.; Yokota, M.; Fukuda, S.; Saito, Y.; Enomoto, A.; Azuma, O.; Iwata, H.; Asami, A.

    1989-01-01

    Several improvements have been made in the electron gun systems of the 2.5 GeV PF linac and the Positron Generator. In the electron gun system of the PF linac, the vacuum system and the focusing system have been modified, and the anode current was increased. In the case of a short pulse beam with a width of 2 ns, the anode current has been more than 200 mA for about a year with a constant pulse voltage output of a grid pulser. Injection time of the electron beam into the Accumulation Ring of TRISTAN has been normally less than 10 s. Meanwhile in the electron gun system of the Positron Generator, improvements have been made mainly in the following two points; (1) a raise of injection voltage of the gun from 115 kV to 150 kV, which was made possible by using a newly designed insulator, and (2) an increase of pulse voltage output of a grid pulser by use of new transistors with a high slew rate. As a result of these improvements, a maximum anode peak current of 12 A with a pulse width of 4 ns can be obtained, which satisfies the design parameters of the gun system. 7 refs., 8 figs

  3. Dispersion and betatron matching into the linac

    International Nuclear Information System (INIS)

    Decker, F.J.; Adolphsen, C.; Corbett, W.J.; Emma, P.; Hsu, I.; Moshammer, H.; Seeman, J.T.; Spence, W.L.

    1991-05-01

    In high energy linear colliders, the low emittance beam from a damping ring has to be preserved all the way to the linac, in the linac and to the interaction point. In particular, the Ring-To-Linac (RTL) section of the SLAC Linear Collider (SLC) should provide an exact betatron and dispersion match from the damping ring to the linac. A beam with a non-zero dispersion shows up immediately as an increased emittance, while with a betatron mismatch the beam filaments in the linac. Experimental tests and tuning procedures have shown that the linearized beta matching algorithms are insufficient if the actual transport line has some unknown errors not included in the model. Also, adjusting quadrupole strengths steers the beam if it is offset in the quadrupole magnets. These and other effects have lead to a lengthy tuning process, which in the end improves the matching, but is not optimal. Different ideas will be discussed which should improve this matching procedure and make it a more reliable, faster and simpler process. 5 refs., 2 figs

  4. Argonne superconducting heavy-ion linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2 0 K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (ΔE/E approximately equal to 2 x 10 -4 ) or very good time resolution

  5. Delta undulator for Cornell energy recovery linac

    Directory of Open Access Journals (Sweden)

    Alexander B. Temnykh

    2008-12-01

    Full Text Available In anticipation of a new era of synchrotron radiation sources based on energy recovery linac techniques, we designed, built, and tested a short undulator magnet prototype whose features make optimum use of the unique conditions expected in these facilities. The prototype has pure permanent magnet (PPM structure with 24 mm period, 5 mm diameter round gap, and is 30 cm long. In comparison with conventional undulator magnets it has the following: (i full x-ray polarization control.—It may generate varying linear polarized as well as left and right circular polarized x rays with photon flux much higher than existing Apple-II–type devices. (ii 40% stronger magnetic field in linear and approximately 2 times stronger in circular polarization modes. This advantage translates into higher x-ray flux. (iii Compactness.—The prototype can be enclosed in a ∼20  cm diameter cylindrical vacuum vessel. These advantages were achieved through a number of unconventional approaches. Among them is control of the magnetic field strength via longitudinal motion of the magnet arrays. The moving mechanism is also used for x-ray polarization control. The compactness is achieved using a recently developed permanent magnet soldering technique for fastening PM blocks. We call this device a “Delta” undulator after the shape of its PM blocks. The presented article describes the design study, various aspects of the construction, and presents some test results.

  6. Linac4 chopper line commissioning strategy

    CERN Document Server

    Bellodi, G; Lombardi, A M; Posocco, P A; Sargsyan, E

    2010-01-01

    The report outlines the strategy for beam-based commissioning of the Linac4 3 MeV chopper line as currently scheduled to start in the second half of 2011 in the Test Stand Area. A dedicated temporary diagnostics test bench will complement the measurement devices foreseen for permanent installation in the chopper line. A commissioning procedure is set out as a series of consecutive phases, each one supposed to meet a well- defined milestone in the path to fully characterise the beam-line. Specific set-ups for each stage are defined in terms of beam characteristics, machine settings and diagnostics used. Operational guidelines are given and expected results at the relative points of measurements are shown for simulated scenarios (on the basis of multi-particle tracking studies carried out with the codes PATH and TRACEWin). These are then interpreted in the light of the resolution limits of the available diagnostics instruments to assess the precision reach on individual measurements and the feasibility of techn...

  7. Kinetic description of electron-proton instability in high-intensity proton linacs and storage rings based on the Vlasov-Maxwell equations

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    1999-05-01

    electrons is negligibly small. We introduce the ion plasma frequency squared defined by ω[over ^]_{pb}^{2}=4πn[over ^]_{b}Z_{b}^{2}e^{2}/γ_{b}m_{b}, and the fractional charge neutralization defined by f=n[over ^]_{e}/Z_{b}n[over ^]_{b}, where n[over ^]_{b} and n[over ^]_{e} are the characteristic ion and electron densities. The equilibrium and stability analysis is carried out for arbitrary normalized beam intensity ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}}, and arbitrary fractional charge neutralization f, consistent with radial confinement of the beam particles. For the moderately high beam intensities envisioned in the proton linacs and storage rings for the Accelerator for Production of Tritium and the Spallation Neutron Source, the normalized beam intensity is typically ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}}≲ 0.1. For heavy ion fusion applications, however, the transverse beam emittance is very small, and the space-charge-dominated beam intensity is much larger, with ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}}≲ 2γ_{b}^{2}. The stability analysis shows that the instability growth rate Imω increases with increasing normalized beam intensity ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}} and increasing fractional charge neutralization f. In addition, the instability is strongest (largest growth rate for perturbations with azimuthal mode number ℓ=1, corresponding to a simple (dipole transverse displacement of the beam ions and the background electrons. For the case of overlapping step-function density profiles for the beam ions and background electrons, corresponding to monoenergetic ions and electrons, a key result is that there is no threshold in beam intensity ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}} or fractional charge neutralization f for the onset of instability. Finally, for the case of continuously varying density profiles with parabolic profile shape, a semiquantitative estimate is made of the effects of the corresponding spread in (depressed betatron frequency on stability

  8. Observation of a H- Beam at the CERN Linac 4 Test Stand using a Pepper-pot

    CERN Document Server

    Delerue, N; Midttun, O; Scrivens, R; Tsesmelis, E

    2010-01-01

    Pepper-pot based transverse emittance measurement has the advantage of providing a fast (single shot) measurement with a relatively simple hardware. We report on the installation of a pepper-pot at the CERN Linac 4 test stand.

  9. Challenges of the ILC Main Linac

    International Nuclear Information System (INIS)

    Ross, Marc

    2007-01-01

    With the completion of the ILC Reference Design Report (RDR), we begin the next phase of the project - development of the Engineering Design. Our strategy and priorities come from the identification, contained in the RDR, of scientific and engineering challenges of the ILC. First among these is the cost of the main linac which, including the associated earthworks and cooling/power systems, amounts to 60% of the ILC total cost. Next is the challenge to reach the highest practical gradient since this R and D has the largest cost leverage of any of the ongoing programs. Finally, we have to understand the beam dynamics and beam tuning processes in the main linac, as we will not have the opportunity to do full (or even large) scale tests of these before the linac is constructed.

  10. Integrated design of the SSC linac injector

    International Nuclear Information System (INIS)

    Evans, D.; Valiecnti, R.; Wood, F.

    1992-01-01

    The Ion Source, Low Energy Beam Transport (LEBT), and Radio Frequency Quadrupole (RFQ) of the Superconducting Super Collider (SSC) Linac act as a unit (referred to as the Linac Injector), the Ion Source and LEBT being cantilevered off of the RFQ. Immediately adjacent to both ends of the RFQ cavity proper are endwall chambers containing beam instrumentation and independently-operated vacuum isolation valves. The Linac Injector delivers 30 mA of H - beam at 2.5 MeV. This paper describes the design constraints imposed on the endwalls, aspects of the integration of the Ion Source and LEBT including attachment to the RFQ, maintainability and interchangeability of LEBTs, vacuum systems for each component, and the design of necessary support structure. (Author) 2 tab

  11. Variable-energy drift-tube linacs

    International Nuclear Information System (INIS)

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    1982-01-01

    Practical applications of ion linacs are more viable now than ever before because of the recent development of the radio-frequency quadrupole accelerating structure, as well as other technological advances developed under the Pion Generator for Medical Irradiations program. This report describes a practical technique for varying the energy of drift-tube linacs and thus further broadening the possibilities for linac applications. This technique involves using the post couplers (normally used to flatten and stabilize the electric fields) to create a step in the fields, thus terminating the acceleration process. In the examples given for a 70-MeV accelerator design, when using this technique the energy is continually variable down to 20 MeV, while maintaining a small energy spread

  12. Heavy ion induction linacs for fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Ho, D.D.M.

    1991-01-01

    In 1976 Denis Keefe proposed the heavy ion induction linac as a driver for inertial confinement fusion (ICF) power plants. Subsequent research has established that heavy ion fusion (HIF) is potentially an attractive energy source and has identified the issues that must be resolved to make HIF a reality. The principal accelerator issues are achieving adequately low transverse and longitudinal emittance and acceptable cost. Results from the single and multiple beam experiments at LBL on transverse emittance are encouraging. A predicted high current longitudinal instability that can affect longitudinal emittance is currently being studied. This paper presents an overview of economics and ICF target requirements and their relationship to accelerator design. It also presents a summary of the status of heavy ion induction linac research. It concludes with a discussion of research plans, including plans for the proposed Induction Linac Systems Experiments (ILSE)

  13. Focussing magnets for proton Linac of ADS

    International Nuclear Information System (INIS)

    Malhotra, Sanjay; Mahapatra, U.; Singh, Pitamber; Choudhury, R.K.; Goel, Priyanshu; Verma, Vishnu; Bhattacharya, S.; Srivastava, G.P.; Kailas, S.; Sahni, V.C.

    2009-01-01

    A linear accelerator comprising of Radio frequency quadruple (RFQ) and drift tube linac (DTL) is being developed by BARC. The Alvarez type post-coupled cw DTL accelerates protons from an energy of 3 MeV to 20 MeV. The drift tube linac is excited in TM010 mode, wherein the particles are accelerated by longitudinal electric fields at the gap crossings between drift tubes. The particles are subjected to transverse RF defocusing forces at the gap crossings due to the increasing electric fields in the gap. The transverse defocusing is corrected by housing magnetic quadrupole focussing lenses inside the drift tubes. The permanent magnet quadrupoles (PMQs) are placed inside the hermetically sealed drift tubes and provide a constant magnetic field gradient in the beam aperture. This paper discusses various aspects of magnetic design, selection of magnetic materials and the engineering development involved in the prototype development of these drift tubes for proton Linac. (author)

  14. ARIEL e-LINAC: Commissioning and Development

    Science.gov (United States)

    Laxdal, R. E.; Zvyagintsev, V.

    2016-09-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.

  15. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  16. Electro neutrons around a 12 MV Linac

    International Nuclear Information System (INIS)

    Vega C, H. R.; Perez L, L. H.

    2012-10-01

    Neutron contamination around Linacs for radiotherapy is a source of undesirable doses for the patient. The main source of these neutrons is the photonuclear reactions occurring in the Linac head and the patient body. Electrons also produce neutrons through (e, en) reactions. This reaction is known as electro disintegration and is carried out by the electron scattering that produce a virtual photon that is absorbed by the scattering nucleus producing the reaction e + A → (A-1) + n + e'. In this work the electron-neutron spectrum to 100 cm from the isocenter of a 12 MV Linac has been measured using a passive Bonner spheres spectrometer in a novel procedure named Planetary mode. (Author)

  17. ARIEL e-LINAC: Commissioning and Development

    International Nuclear Information System (INIS)

    Laxdal, R.E.; Zvyagintsev, V.

    2016-01-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented. (paper)

  18. Opportunities and challenges of a low-energy positron source in the LERF

    Science.gov (United States)

    Benson, Stephen; Wojtsekhowski, Bogdan; Vlahovic, Branislav; Golge, Serkan

    2018-05-01

    Though there are many applications of low energy positrons, many experiments are source limited. Using the LERF accelerator at the Thomas Jefferson National Accelerator Facility, it is possible to build a high brightness source of very low-energy positrons. The accelerator requirements are well within the capabilities of the installed hardware. The accelerator can produce 120 kW of beam with a beam energy of up to 170 MeV. For these experiments, we only need run at up to 120 MeV. The gamma-to-positron converter must be able to absorb 20% of the beam power that the linac delivers. At this low an energy the converter, though challenging, is possible. The transport of the low energy positrons from the production target to the next stage, where the energy is reduced even further, must have a very large acceptance to be able to efficiently transport the flux of positrons from the positron production target to the moderator. We propose to accomplish such a transport by means of a guiding solenoidal field with a novel endcap design. In this presentation, we will present the proposed schemes necessary to realize such a high brightness positron source.

  19. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  20. Application of RF Superconductivity to High-Current Linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.

    1998-01-01

    In 1997, the authors initiated a development program in Los Alamos for high-current superconducting proton-linac technology to build prototypes components of this linac to demonstrate the feasibility. The authors are building 700-MHz niobium cavities with elliptical shapes, as well as power couplers to transfer high RF power to these cavities. The cavities and power couplers will be integrated in cryostats as linac cryomodules. In this paper, they describe the linac design and the status of the development program

  1. Development of the Medium Energy Linac Systems

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Park, Bum Sik; Seol, Kyung Tae; Song, Young Gi; Yun, Sang Pil; Cho, Yong Sub; Hong, In Seok

    2008-05-01

    The main purpose of this project is developing 100-MeV proton linear accelerator (linac) for proton engineering frontier project (PEFP). In the first phase of the PEFP, the development of the 20-MeV linac has successfully finished. Hence the work scope of this project is designing the linac to accelerate proton beams from 20-MeV up to 100-MeV, fabricating the linac up to 45 MeV, fabricating one set of the medium energy beam transport (MEBT) tank, and developing the low level radio frequency (LLRF) system and the control system. The basic role of the new proton accelerator is accelerating 20-mA proton beams from 20 MeV up to 100 MeV. The first step of the design procedure is optimizing and determining the accelerator parameters. The beam loss is also main concern in the design stage. The drift tube (DT) and the quadrupole magnets are designed to be optimized to the new linac design. The other purpose is confirming the new design by fabricating and tuning the drift tube linac (DTL). The 20MeV proton beam divided into two directions. One is supplying the beams to user group by turning on the 45-degree bending magnet. The other is guided into the 100-MeV DTL by tuning off the dipole magnet. That is why the PEFP MEBT located after 20-MeV DTL. The MEBT is realized as two small DTL tanks with three cells and a 45-degree bending magnet. The fabrication of one MEBT tank is another purpose of this project. The other purposes of this project is developing the LLRF system to control the RF signal and control system to monitor and control the vacuum system, magnet power supply, etc

  2. Development of the High Energy Linac Systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Han Sung; Chung, Byung Chul; Jang, Ji Ho; Gao, Changgi; Li, Yingmin; Sun, An; Tang, Yazhe; Zhang, Lipoing; Hwang, Yong Seok

    2008-05-01

    The main purpose of this project is studying the extension plan of the proton engineering frontier project (PEFP) 100-MeV Linac. It includes three categories. One is studying operation plan of the PEFP linac and its extended accelerators, and developing a distribution system of 100-MeV proton beams with a laser striping. Other is designing superconducting RF (SRF) modules and fabricating and testing a copper cavity model. The other is designing a rapid cycling synchrotron (RCS). The operation scheme of the PEFP linac is related to the optimization in the operation of the 100-MeV linac, 200-MeV SRF, and RCS. We studied several operational method to increase the validity of the accelerators. The beam distribution system has two roles. One is supplying proton beams of 100 MeV to the user group. The laser stripping of the negative hydrogen atoms is used in this case. The other beams are directed to the next high energy accelerators. This study contributes to increase the availability of the proton beams. The SRF is one of candidates to extend the PEFP linac system. Since the accelerating gradient of the SRF is much higher than the normal conducting accelerator, a lot of institutes over the world are developing the SRF structure. Main purposes are designing an SRF module, fabricating and testing an copper model which has similar material properties as Nb of the usual SRF cavity material. The RCS is a synchrotron whose injector is the PEFP 100-MeV linac. Main purposes are determining the lattice structure, studying the fast and slow extraction system, simulating beam behavior in the designed synchrotron. The RCS will be used as the spallation neutron source and tools in the basic and applied science including medical application

  3. SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).

    Science.gov (United States)

    Muhammad, W; Lee, S; Hussain, A

    2012-06-01

    The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.

  4. Measurement of positron range in matter in strong magnetic fields

    International Nuclear Information System (INIS)

    Hammer, B.E.; Christensen, N.L.

    1995-01-01

    Positron range is one factor that places a limitation on Positron Emission Tomography (PET) resolution. The distance a positron travels through matter before it annihilates with an electron is a function of its initial energy and the electron density of the medium. A strong magnetic field limits positron range when momentum components are transverse to the field. Measurement of positron range was determined by deconvolving the effects of detector response and radioactive distribution from the measured annihilation spread function. The annihilation spread function for a 0.5 mm bead of 68 Ga was measured with 0.2 and 1.0 mm wide slit collimators. Based on the annihilation spread function FWHM (Full Width at Half Maximum) for a 1.0 mm wide slit the median positron range in tissue equivalent material is 0.87, 0.50, 0.22 mm at 0, 5.0 and 9.4 T, respectively

  5. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  6. EG and G electron linac modifications

    International Nuclear Information System (INIS)

    Norris, N.J.; Detch, J.L.; Kocimski, S.M.; Sawyer, C.R.; Hudson, C.L.

    1986-01-01

    A three-year modification of the EG and G electron linac has been performed to replace obsolete equipment and bring all subsystems up to the current state of the art. Components and subsystems were designed, constructed, and tested off-line to minimize interruption of experiments. The configuration of the modified linac is shown schematically, and performance characteristics are give. Each subsystem is described, including: the electron gun; solenoid focusing system; subharmonic bunchers; accelerating system; RF system; klystron modulators and power supplies; control system; beam handling system; vacuum system; and beam current monitors. 7 refs., 4 figs., 2 tabs

  7. Proton linacs for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in ∼4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented

  8. 4-rod RFQ linac for ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Hiroshi; Hamamoto, Nariaki; Inouchi, Yutaka [Nisshin Electric Co. Ltd., Kyoto (Japan)

    1997-03-01

    A 34 MHz 4-rod RFQ linac system has been upgraded in both its rf power efficiency and beam intensity. The linac is able to accelerate in cw operation 0.83 mA of a B{sup +} ion beam from 0.03 to 0.91 MeV with transmission of 61 %. The rf power fed to the RFQ is 29 kW. The unloaded Q-value of the RFQ has been improved approximately 61 % to 5400 by copper-plating stainless steel cooling pipes in the RFQ cavity. (author)

  9. Preinjector for Linac 1, accelerating column

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. High up on the wall of the Faraday cage (7403073X) is this drum-shaped container of the ion source (7403083X). It is mounted at the HV end of the accelerating column through which the ions (usually protons; many other types of ions in the course of its long history) proceed through the Faraday cage wall to the low-energy end (at ground potential) of Linac 1. The 520 kV accelerating voltage was supplied by a SAMES generator (7403074X).

  10. Positron studies in catalysis research

    International Nuclear Information System (INIS)

    1994-01-01

    During the past eight months, the authors have made progress in several areas relevant to the eventual use of positron techniques in catalysis research. They have come closer to the completion of their positron microscope, and at the same time have performed several studies in their non-microscopic positron spectrometer which should ultimately be applicable to catalysis. The current status of the efforts in each of these areas is summarized in the following sections: Construction of the positron microscope (optical element construction, data collection software, and electronic sub-assemblies); Doppler broadening spectroscopy of metal silicide; Positron lifetime spectroscopy of glassy polymers; and Positron lifetime measurements of pore-sizes in zeolites

  11. Positron emission tomography

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Diksic, M.; Meyer, E.; Feindel, W.H.

    1984-01-01

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. The most recent trends are reviewed in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography. (author)

  12. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    Cheng Bin; Weng Huimin; Han Rongdian; Ye Bangjiao

    2010-01-01

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  13. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-01

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting

  14. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-15

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting.

  15. 10 MeV RF electron linac for industrial applications

    International Nuclear Information System (INIS)

    2017-01-01

    Electron linacs have found numerous applications in the field of radiation processing on an industrial scale. High power RF electron linacs are commonly used for food irradiation, medical sterilization, cross-linking of polymers, etc. For this purpose, the 10 MeV RF linac has been indigenously designed, developed, commissioned and is being used regularly at 3 kW beam power. This paper gives a brief description of the linac and its utilization for various applications. Safety considerations and regulatory aspects of the linac are also discussed

  16. 50 years of positrons

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This year marks the 50th anniversary of one of the major landmarks of modern physics - the discovery of the positron, the antimatter counterpart of the electron. This provided the first evidence for antimatter, and it was also unprecedented for the existence of a new particle to have been predicted by theory. The positron and the concepts behind it were to radically change our picture of Nature. It led to the rapid advancement or our understanding, culminating some fifteen years later with the formulation of quantum electrodynamics as we now know it. (orig./HSI).

  17. Positron emission tomography

    CERN Document Server

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  18. The MEG positron spectrometer

    International Nuclear Information System (INIS)

    Nishiguchi, Hajime

    2007-01-01

    We have been developing an innovative spectrometer for the MEG experiment at the Paul Scherrer Institute (PSI) in Switzerland. This experiment searches for a lepton flavour violating decay μ + →e + γ with a sensitivity of 10 -13 in order to explore the region predicted by supersymmetric extensions of the standard model. The MEG positron spectrometer consists of a specially designed superconducting solenoidal magnet with a highly graded field, an ultimate low-mass drift chamber system, and a precise time measuring counter system. This innovative positron spectrometer is described here focusing on the drift chamber system

  19. Preliminary study on the possible use of superconducting half-wave resonators in the IFMIF Linac

    International Nuclear Information System (INIS)

    Mosnier, A.; Uriot, D.

    2007-01-01

    The driver of the International Fusion Materials Irradiation Facility (IFMIF) consists of two 125 mA, 40 MeV cw deuteron linacs, providing a total of 10 MW beam power to the liquid lithium target. A superconducting (SC) solution for the 5 to 40 MeV accelerator portion could offer some advantages compared with the copper Alvarez-type Drift Tube Linac reference design: linac length reduction and significant plug power saving. A SC scheme, based on multi-gap CH-structures has been proposed by IAP in Frankfurt. Another SC scheme, using half-wave resonators (HWR), which are in an advanced stage of development at different places, would allow a shorter focusing lattice, resulting in a safe beam transportation with minimal beam loss. In order to investigate the feasibility of the superconducting HWR option, faced with the very high space charge regime of the IFMIF linac, beam dynamics calculations have been performed. This paper presents an optimized linac layout, together with extensive multi-particle simulations including various field and alignment errors. (authors)

  20. Neutron and photon spectra in LINACs

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Martínez-Ovalle, S.A.; Lallena, A.M.; Mercado, G.A.; Benites-Rengifo, J.L.

    2012-01-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 –6 and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage. - Highlights: ► With MCNPX code realistic models of two LINACs were built. ► Photon and neutron spectra below the flattening filter and at the isocenter were calculated. ► Neutron spectrum at the flattening filter was compared against the Tosi et al. source-term model. ► Tosi et al. model underestimates the neutron contribution below 1 MeV. ► Photon spectra look alike to those published in literature.