WorldWideScience

Sample records for lime silica glass

  1. Waste vitrification: prediction of acceptable compositions in a lime-soda-silica glass-forming system

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Jantzen, C.M.

    1996-10-01

    A model is presented based upon calculated bridging oxygens which allows the prediction of the region of acceptable glass compositions for a lime-soda-silica glass-forming system containing mixed waste. The model can be used to guide glass formulation studies (e.g., treatability studies) or assess the applicability of vitrification to candidate waste streams

  2. Studies on the Potential of Waste Soda Lime Silica Glass in Glass Ionomer Cement Production

    Directory of Open Access Journals (Sweden)

    V. W. Francis Thoo

    2013-01-01

    Full Text Available Glass ionomer cements (GIC are produced through acid base reaction between calcium-fluoroaluminosilicate glass powder and polyacrylic acid (PAA. Soda lime silica glasses (SLS, mainly composed of silica (SiO2, have been utilized in this study as the source of SiO2 for synthesis of Ca-fluoroaluminosilicate glass. Therefore, the main objective of this study was to investigate the potential of SLS waste glass in producing GIC. Two glasses, GWX 1 (analytical grade SiO2 and GWX 2 (replacing SiO2 with waste SLS, were synthesized and then characterized using X-ray diffraction (XRD and energy dispersive X-ray (EDX. Synthesized glasses were then used to produce GIC, in which the properties were characterized using Fourier transform infrared spectroscopy (FT-IR and compressive test (from 1 to 28 days. XRD results showed that amorphous glass was produced by using SLS waste glass (GWX 2, which is similar to glass produced using analytical grade SiO2 (GWX 1. Results from FT-IR showed that the setting reaction of GWX 2 cements is slower compared to cement GWX 1. Compressive strengths for GWX 1 cements reached up to 76 MPa at 28 days, whereas GWX 2 cements showed a slightly higher value, which is 80 MPa.

  3. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    Science.gov (United States)

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The Fracture Process of Tempered Soda-Lime-Silica Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes; Stang, Henrik

    2009-01-01

    This work presents experimental observations of the characteristic fracture process of tempered glass. Square specimens with a side length of 300 mm, various thicknesses and a residual stress state characterized by photoelastic measurements were used. Fracture was initiated using a 2.5 mm diamond...

  5. OD bands in the IR spectra of a deuterated soda-lime-silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Peuker, C.; Brzezinka, K.W.; Gaber, M.; Kohl, A.; Geissler, H. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2001-07-01

    IR spectra of a deuterated glass of the composition (in mol%) 16 Na{sub 2}O . 10 CaO . 74 SiO{sub 2} complete earlier spectroscopic studies on water-poor soda-lime-silica glasses. The approved IR spectroscopic method of the deuterium exchange allows a reliable assignment of the hydroxyl bands also in the case of glasses. By spectra comparison the assignment of the IR bands at 3500 and 2800 cm{sup -1} to hydroxyl groups with different hydrogen bonding is verified. The IR band at about 4500 cm{sup -1} is interpreted as both a combination of the stretching vibrations {nu}O-H and {nu}Si-OH and a combination of the stretching vibration {nu}O-H and the deformation vibration {delta}SiOH. The bands at 1763 and 1602 cm{sup -1} are attributed to combination vibrations of the glass network. (orig.)

  6. Effect of sintering on crystallization and structural properties of soda lime silica glass

    Directory of Open Access Journals (Sweden)

    Zaid Mohd Hafiz Mohd

    2017-01-01

    Full Text Available The effect of sintering temperatures on crystallization and structural of the soda lime silica (SLS glass was reported. Elemental weight composition of the SLS glass powder was identified through Energy dispersive X-ray fluorescence (EDXRF analysis while the thermal behavior of the glass was determined using Differential thermal analysis (DTA technique. Archimedes’ method and direct geometric measurement were respectively used to determine bulk density and linear shrinkage of the glass samples. Crystallisation behavior of the samples was investigated by X-ray diffraction (XRD analysis and chemical bonds present in the samples were measured using Fourier Transform Infrared (FTIR spectroscopy. Results showed an increase in the density and linear shrinkage of the samples as a function of the sintering temperature. The XRD analysis revealed the formation of α-quartz (SiO2 and a minor amount of devitrite phases in the samples and these were further verified through the detection of chemical bonds by FTIR after sintering at 800ºC. The properties of the glass-ceramics can be explained on the basis of crystal chemistry which indicated that the alkali ions formed as carriers in the random network structure and can be recommended for the manufacture of glass fiber or toughened glass-ceramic insulators.

  7. A study on the plasticity of soda-lime silica glass via molecular dynamics simulations

    Science.gov (United States)

    Urata, Shingo; Sato, Yosuke

    2017-11-01

    Molecular dynamics (MD) simulations were applied to construct a plasticity model, which enables one to simulate deformations of soda-lime silica glass (SLSG) by using continuum methods. To model the plasticity, stress induced by uniaxial and a variety of biaxial deformations was measured by MD simulations. We found that the surfaces of yield and maximum stresses, which are evaluated from the equivalent stress-strain curves, are reasonably represented by the Mohr-Coulomb ellipsoid. Comparing a finite element model using the constructed plasticity model to a large scale atomistic model on a nanoindentation simulation of SLSG reveals that the empirical method is accurate enough to evaluate the SLSG mechanical responses. Furthermore, the effect of ion-exchange on the SLSG plasticity was examined by using MD simulations. As a result, it was demonstrated that the effects of the initial compressive stress on the yield and maximum stresses are anisotropic contrary to our expectations.

  8. Effects of ion implantation on the hardness and friction behaviour of soda-lime silica glass

    International Nuclear Information System (INIS)

    Bull, S.J.; Page, T.F.

    1992-01-01

    Ion implantation-induced changes in the near-surface mechanical properties of soda-lime silica glass have been investigated by indentation and scratch testing and have been found to be more complicated than changes in the corresponding properties of crystalline ceramic materials. Argon, nitrogen, carbon and potassium ions were used with energies in the range 45-300 keV. Hardness and scratch friction tests were performed under ambient laboratory conditions. At low doses, a decrease in hardness and an increase in both friction and surface stress are observed which are attributed to the electronic damage produced by ion implantation. At higher doses, the hardness increases again and a maximum is produced similar to the behaviour observed for crystalline materials. Similarly there is found to be a second stress and friction peak at this dose. This behaviour is shown to be due to the build-up of displacement damage produced by ion implantation and is thus very similar to the radiation hardening (and eventual amorphization) behaviour of ion-implanted crystalline ceramics. For glass, ''amorphization'' probably corresponds to some change in the existing amorphous state which, in turn, is responsible for the reduction in hardness, stress and friction at the highest doses. (author)

  9. Use of wasted foundry sand (WFS) as a partial substitute for silica in a soda lime glass

    International Nuclear Information System (INIS)

    Martin, A.C.; Ueno, O.K.; Folgueras, M.V.

    2016-01-01

    The waste foundry sand (WFS) is the main waste generates in foundry industries. Studies in the literature suggest the use of WFS in different materials, such as concrete, brick or asphalt. This work aims to partially replace the silica of a soda-lime glass by the WFS. The waste foundry sand has in its composition elements such as iron and aluminum that can affect the glass quality, which justifies the residue processing to reduce the impurity content. The treatments, that included mechanical agitation and thermal treatment, resulted in a slight decrease in the percent of iron with consequent increase of the silica content. After treatment, some sands were incorporated into the glass, that showed green color but with lower absorption intensity for the sand with less iron content. It was observed that it's possible to obtain glasses using WFS, however, there is difficulty in color controlling. (author

  10. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Directory of Open Access Journals (Sweden)

    Karima Amer Almasri

    Full Text Available The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3 based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM, Fourier transforms infrared reflection spectroscopy (FTIR, and X-ray diffraction (XRD. The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature. Keywords: Soda lime silica glass, Wollastonite, Sintering, Structural properties, Optical properties

  11. Structural and optical properties of Eu3+ activated low cost zinc soda lime silica glasses

    Directory of Open Access Journals (Sweden)

    Nur Alia Sheh Omar

    Full Text Available A low cost method was employed to synthesize ZnO-SLS:xEu3+ phosphors using recyclable bottle glass as silica source. The structural and optical properties of ZnO-SLS:xEu3+ (x = 0, 1, 2, 3, 4 and 5 wt.% glasses were determined using X-ray diffraction (XRD, Fourier transform infrared reflectance (FTIR, UV-visible (Uv-Vis and photoluminescence (PL spectroscopy. Structural investigation using XRD measurement had broadened the halo peak with the doping of dopants. FTIR spectra showed the glass system consists of –OH and SiO4 bands. Meanwhile, the optical measurement using UV-Vis absorption has been induced a blue shift of the electronic absorption edge. The emission peak intensity of ZnO-SLS:xEu3+ phosphors was enhanced with the progression of doping concentration and thus, revealed their potential as red emitting phosphors under 400 nm excitation. Keywords: Eu3+ doped ZnO-SLS glasses, Solid state method, Optical band gap, Photoluminescence

  12. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  13. Alkali passivation mechanism of sol-gel derived TiO2-SiO2 films coated on soda-lime-silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Matsuno, Y; Katayama, S; Tsuno, T [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Toge, N; Minami, T [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1992-09-01

    TiO2-SiO2 films prepared by the sol-gel method serves as an effective alkali passivation layer on a soda-lime-silica glass substrate and the film is superior to a sol-gel derived pure SiO2 film from the view point of weathering resistance improvement. To clarify the reason, alkali passivation mechanism of sol-gel derived TiO2-SiO2 glass films with different TiO2 contents coated on a soda-lime-silica glass substrate was studied by SIMS (secondary ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) analyses, and compared with the results of a sol-gel derived pure SiO2 film. As a result, the following conclusions were obtained: An increase in TiO2 content in the TiO2 SiO2 film increases the sodium concentration in the film, which was induced by sodium migration from the glass substrate during the heat-treatment. Because of the presence of sodium the TiO2 -SiO2 films serve not as a barrier but as an effective getter of alkali ions and thereby effectively improve the weathering resistance Of the glass substrate. 10 refs., 6 figs.

  14. Sulphate decomposition and sodium oxide activity in soda-lime-silica glass metls

    NARCIS (Netherlands)

    Beerkens, R.G.C.

    2003-01-01

    Reaction equilibrium constants for the sulfate decomposition process, which releases oxygen and sulfur oxide gas in sodalimesilica glass melts, have been determined. The chemical solubility of SO2, probably in the form of sulfite ions in sodalimesilica melts, has also been determined. The chemical

  15. Crystallization kinetics of a soda lime silica glass with TiO2 addition

    International Nuclear Information System (INIS)

    De la Parra A, S. M.; Alvarez M, A.; Torres G, L. C.; Sanchez, E. M.

    2009-01-01

    Studies conducted into Na 2 O-CaO-3SiO 2 glass composition suggest that its phase transformation occurs from the surface towards the interior of the sample. In a study carried out in 1982, it was reported that no addition of nucleating agents modified the mechanism. Taking advantage of the disposition materials synthesized by nanotechnology, in this study TiO 2 in nanometer size was used with the idea that, because of its qualities, it could modify the crystallization mechanism. The glasses obtained as well as the thermally treated samples, were evaluated by the X-ray diffraction (XRD) powder method, differential thermal analysis (DTA), and by optical microscopy and high resolution transmission electron microscopy (HRTEM). Within the range of TiO 2 concentration studied (0 - 10 wt %), 10 wt % of TiO 2 considerably reduced the Na 2 O-2CaO-3SiO 2 phase crystallization process. The crystallization mechanism was not modified and TiO 2 did not form compounds with the matrix components. (Author)

  16. Effect of thermal treatments on sputtered silver nanocluster/silica composite coatings on soda-lime glasses: ionic exchange and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M.; Ferraris, S., E-mail: sara.ferraris@polito.it; Miola, M.; Perero, S.; Balagna, C.; Verne, E. [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering (Italy); Gautier, G. [IMAMOTER Institute for Agricultural and Earthmoving Machines (Italy); Manfredotti, Ch.; Battiato, A.; Vittone, E. [University of Torino, Physics Department, NIS Excellence Centre and CNISM (Italy); Speranza, G. [Fondazione Bruno Kessler FBK (Italy); Bogdanovic, I. [Ruder Boskovic Institute, Experimental Physics Department (Croatia)

    2012-12-15

    Silver nanocluster/silica composite coatings were deposited on both soda-lime and silica glasses by radio frequency (RF) co-sputtering. The effect of thermal treatments on the microstructure in the range of 150-450 Degree-Sign C were examined by UV-visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Time of Flight-Elastic Recoil Detection Analysis. Sodium/silver ionic exchange was evidenced for coatings sputtered on soda-lime substrates after heating at 450 Degree-Sign C; presence of silver ions and/or silver nanoclusters, nanocluster size and their position inside the sputtered layers will be discussed for as-deposited and heated coatings on both substrates. The antibacterial activity of all coatings was determined against Staphylococcus aureus and Candida albicans by disk diffusion method and colonies forming units count; in agreement with microstructural results, the antibacterial activity present on all coatings was slightly reduced after heating at 450 Degree-Sign C. All coatings have been submitted to humidity plus UV ageing and sterilization by autoclave, gamma ray and ethylene oxide gas. Tape resistance (ASTM D3359-97) tests have been done on each coating before and after ageing and sterilizations, revealing a good adhesion on soda-lime substrates, except for those aged in humidity plus UV and sterilized by autoclave. Scratch tests and nanoindentation tests have been done on each coating, as-deposited and after heating at 450 Degree-Sign C. The coating hardness was improved by heating only when coatings were deposited on silica. The heating of coatings deposited on soda-lime substrates gave opposite effect on their hardness.

  17. Use of wasted foundry sand (WFS) as a partial substitute for silica in a soda lime glass; Utilizacao de areia descartada de fundicao (ADF) como substituinte parcial da silica em um vidro soda-cal

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.C.; Ueno, O.K.; Folgueras, M.V., E-mail: amandacarolinemartin@gmail.com [Universidade do Estado de Santa Catarina (CCT/UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas

    2016-07-01

    The waste foundry sand (WFS) is the main waste generates in foundry industries. Studies in the literature suggest the use of WFS in different materials, such as concrete, brick or asphalt. This work aims to partially replace the silica of a soda-lime glass by the WFS. The waste foundry sand has in its composition elements such as iron and aluminum that can affect the glass quality, which justifies the residue processing to reduce the impurity content. The treatments, that included mechanical agitation and thermal treatment, resulted in a slight decrease in the percent of iron with consequent increase of the silica content. After treatment, some sands were incorporated into the glass, that showed green color but with lower absorption intensity for the sand with less iron content. It was observed that it's possible to obtain glasses using WFS, however, there is difficulty in color controlling. (author.

  18. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different

  19. Development of soda-lime glasses from ornamental rock wastes

    International Nuclear Information System (INIS)

    Babisk, Michelle Pereira

    2009-01-01

    During the ornamental rocks production, among other steps, one saw the rock blocks in order to transform them into semi-finished plates. In this step, expressive amounts of residues are generated, which are not properly discharged in nature, without any programmed utilization. The residues of silicide rocks present, in their compositions, oxides which are raw materials employed to fabricate soda-lime type glasses (containing SiO_2, Al_2O_3, CaO, Na_2O and K_2O). On the other hand the residues of carbonatic rocks are constituted of glass net modifier oxides, like CaO and MgO. In this work it was developed four types of soda-lime glasses using ornamental rock residues, where the glasses compositions were adjusted by adding sand, as silica source, as well as sodium and calcium carbonates as sources of Na_2O and CaO, respectively. The obtained glasses were characterized by means of Archimed's method for densities measurements, microstructure by using optical and electronic microscopy, phases by means of X-ray diffraction (XRD), hardness by Vickers indentation, spectroscopy (UV/VIS), and hydrolytic resistance according to ISO 719. The XRD analyses confirmed the compositions total vitrification, where the greened aspect of the samples was due to the presence of the iron oxides. The produced glasses properties were compared with those of commercial glasses aiming their industrial employment. The main difference between the produced glasses and those commercials varied primarily regarding the amount of carbonates incorporated. The results showed that the ornamental rocks residues may be used as raw materials for glasses fabrication, and they found a useful economic destination rather than discharge which promotes undesirable environmental impact. (author)

  20. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    International Nuclear Information System (INIS)

    Eppler, F.H.; Yim, M.S.

    1998-01-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al 2 O 3 to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition

  1. Internal friction of hydrated soda-lime-silicate glasses.

    Science.gov (United States)

    Reinsch, S; Müller, R; Deubener, J; Behrens, H

    2013-11-07

    The internal friction of hydrated soda-lime-silica glasses with total water content (C(W)) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s(-1) to 50 s(-1). Total water content and concentrations of H2O molecules (C(H2O)) and OH groups (C(OH)) in the DMA specimens were determined by infrared spectroscopy. For low water contents (C(W) ≈ C(OH) friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (β(OH) relaxation). For large water contents (C(W) > 1 wt. %), where significant amounts of molecular water are evident (C(H2O) > 0.15 wt. %), however, internal friction spectra change unexpectedly: the β(OH) peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (β(H2O) relaxation) was assigned to the motions of H2O molecules. β(H2O) relaxation was found to be faster than β(OH) but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order γ < β(H2O) < β(OH) < α.

  2. Glass-Forming Ability of Soda Lime Borate Liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, J.C.; Smedskjær, Morten Mattrup

    2012-01-01

    We investigate the composition dependence of glass-forming ability (GFA) of a series of iron-containing soda lime borate liquids by substituting Na2O for B2O3. We have characterized GFA by measuring the glass stability against crystallization using a differential scanning calorimeter (DSC......). The results show that the GFA decreases when substituting Na2O for B2O3. Moreover, we find that there is no direct link between the kinetic fragility and GFA for the soda lime borate series studied herein. We have also discovered and clarified a striking thermal history dependence of the glass stability...

  3. Magnetic properties of Fe-Nd silica glass ceramics

    Science.gov (United States)

    Nayak, Manjunath T.; Desa, J. A. Erwin; Babu, P. D.

    2018-04-01

    Soda lime silica glass ceramics containing iron and neodymium have been synthesized. The XRD pattern revealed that the glass samples devitrified into multiple phases. Fe2O3 as an initial component converted into Fe3O4 in the sample during the synthesis, and was the main contributor to the magnetic property of the sample. The inclusion of Nd was found to enhance the magnetization of the sample at 5K. The coercivity of the sample increased with decrease in temperature from room to 5K.

  4. Characterization of cutting soda-lime glass sludge for the formulation of red ceramic products

    International Nuclear Information System (INIS)

    Filogonio, P.H.C.; Reis, A.S.; Louzada, D.M.; Della, V.P.

    2014-01-01

    Considering previous works that have demonstrated the feasibility of soda-lime glass incorporation into red ceramics, this paper aims to determine the potential for incorporation of cutting soda-lime glass sludge in red ceramic manufacturing. Therefore, the waste was characterized by X-ray fluorescence, X-ray diffraction, particle size distribution and thermal behavior. The results confirm the chemical and mineralogical similarity between waste and soda-lime glass. Because of this similarity, it is concluded that the soda-lime glass waste has the capability to be used in the manufacturing of red ceramics. (author)

  5. Advanced treatment of swine wastewater using an agent synthesized from amorphous silica and hydrated lime.

    Science.gov (United States)

    Tanaka, Yasuo; Hasegawa, Teruaki; Sugimoto, Kiyomi; Miura, Keiichi; Aketo, Tsuyoshi; Minowa, Nobutaka; Toda, Masaya; Kinoshita, Katsumi; Yamashita, Takahiro; Ogino, Akifumi

    2014-01-01

    Advanced treatment using an agent synthesized from amorphous silica and hydrated lime (M-CSH-lime) was developed and applied to swine wastewater treatment. Biologically treated wastewater and M-CSH-lime (approximately 6 w/v% slurry) were fed continuously into a column-shaped reactor from its bottom. Accumulated M-CSH-lime gradually formed a bed layer. The influent permeated this layer and contacted the M-CSH-lime, and the treatment reaction progressed. Treated liquid overflowing from the top of the reactor was neutralized with CO₂gas bubbling. The colour removal rate approximately exceeded 50% with M-CSH-lime addition rates of > 0.15 w/v%. The removal rate of PO(3⁻)(4) exceeded 80% with the addition of>0.03 w/v% of M-CSH-lime. The removal rates of coliform bacteria and Escherichia coli exceeded 99.9% with > 0.1 w/v%. Accumulated M-CSH-lime in the reactor was periodically withdrawn from the upper part of the bed layer. The content of citric-acid-soluble P₂O₅ in the recovered matter was>15% when the weight ratio of influent PO(3⁻)(4) -P to added M-CSH-lime was > 0.15. This content was comparable with commercial phosphorus fertilizer. The inhibitory effect of recovered M-CSH-lime on germination and growth of leafy vegetable komatsuna (Brassica rapa var. perviridis) was evaluated by an experiment using the Neubauer's pot. The recovered M-CSH-lime had no negative effect on germination and growth. These results suggest that advanced water treatment with M-CSH-lime was effective for simultaneous removal of colour, [Formula: see text] and coliform bacteria at an addition rate of 0.03-0.15 w/v%, and that the recovered M-CSH-lime would be suitable as phosphorus fertilizer.

  6. Performance of Portland cement mixes containing silica fume and mixed with lime-water

    Directory of Open Access Journals (Sweden)

    Metwally A.A. Abd Elaty

    2014-12-01

    Test results show that using lime-water in mixing enhances consistency degree compared to the corresponding control mixes. Furthermore, it delays both initial and final setting times compared with traditional water due to the common ion effect principles. Moreover, combined use of lime-water and silica fume enhances the pozzolanic reaction that was identified by the strength development at both early and later ages. The existence of CH crystals for higher percentages of silica fume (up to 30% for further reaction at later ages was observed by XRD results. Moreover, combined use of silica fume and lime-water ensures a high alkaline media around steel bars from the moment of ingredients mixing as long as later ages despite of pozzolanic reaction that was identified from results of chloride attack.

  7. Densification of silica glass at ambient pressure

    International Nuclear Information System (INIS)

    Zheng Lianqing; An Qi; Fu Rongshan; Ni Sidao; Luo, S.-N.

    2006-01-01

    We show that densification of silica glass at ambient pressure as observed in irradiation experiments can be attributed to defect generation and subsequent structure relaxation. In our molecular dynamics simulations, defects are created by randomly removing atoms, by displacing atoms from their nominal positions in an otherwise intact glass, and by assigning certain atom excess kinetic energy (simulated ion implantation). The former forms vacancies; displacing atoms and ion implantation produce both vacancies and 'interstitials'. Appreciable densification is induced by these defects after equilibration of the defective glasses. The structural and vibrational properties of the densified glasses are characterized, displaying resembling features regardless of the means of densification. These results indicate that relaxation of high free-energy defects into metastable amorphous structures enriched in atomic coordination serves as a common mechanism for densification of silica glass at ambient pressure

  8. Elastic Moduli of Permanently Densified Silica Glasses

    Science.gov (United States)

    Deschamps, T.; Margueritat, J.; Martinet, C.; Mermet, A.; Champagnon, B.

    2014-01-01

    Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio. The found elastic moduli are in excellent agreement with the sparse data extracted from literature, and we show that they do not depend on the thermodynamic path taken during densification (room temperature or heating). We also demonstrate that the longitudinal sound velocity exhibits an anomalous behavior, displaying a minimum for a densification ratio of 5%, and highlight the fact that this anomaly has to be distinguished from the compressibility anomaly of a-SiO2 in the elastic domain. PMID:25431218

  9. Lime

    Science.gov (United States)

    Miller, M.

    2006-01-01

    In 2005, US lime production was 20 Mt with a value of $1.5 billion. Production was unchanged compared with 2004. Captive production was 1.4 Mt. US consumption was 20.2 Mt. Most of the US lime trade was with Canada and Mexico. Despite some disruptions due to hurricanes Katrina and Rita, normal sales activities remained healthy.

  10. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  11. Three-dimensional printing of transparent fused silica glass

    Science.gov (United States)

    Kotz, Frederik; Arnold, Karl; Bauer, Werner; Schild, Dieter; Keller, Nico; Sachsenheimer, Kai; Nargang, Tobias M.; Richter, Christiane; Helmer, Dorothea; Rapp, Bastian E.

    2017-04-01

    Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.

  12. Preparation of soda-lime glass using rock wool waste; Preparacao de vidros sodo-calcicos utilizando residuo de la de rocha

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, F.C.; Della, V.P. [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil); Ballmann, T.J.S.; Folgueras, M.V. [Universidade do Estado de Santa Catarina (UESC), Joinville, SC (Brazil); Junkes, J.A., E-mail: janajunkes@gmail.com [Centro Universitario Tiradentes, Maceio, AL (Brazil)

    2016-10-15

    Discarded by the mining industry during the maintenance stoppages of pelletizing furnaces, rock wool has in its composition SiO{sub 2} (56%), Na{sub 2} O (12%) and CaO (7%) propitious for obtaining soda-lime glasses. Under this focus, this work developed soda-lime glasses formulations, using as main raw-material rock wool waste in proportions from 50 to 100% by adjusting the chemical composition of the formulations with sand, sodium and calcium carbonates, as silica, soda and lime sources, respectively. In some formulations the sodium carbonate was replaced by sodium sulfate, which acts as a refining agent, improving homogenization and reducing the bubble formation during the melting. Initially, the raw-materials were evaluated by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and thermogravimetric analysis. The tests showed that the rock wool waste has potential to be used in soda-lime glasses production, however, the chemical composition must be corrected. After knowing the waste potential, seven mixtures were prepared and molten at 1550 °C for 1 to 2 h. It has been found that the maximum rock wool waste percentage that can be used is between 60 and 80%, and that the 2 h melting time resulted in more homogeneous glasses and fewer bubbles according to the addition of sodium sulfate which is efficient for bubbles removal. (author)

  13. Refractive index engineering in silica glass

    DEFF Research Database (Denmark)

    Kristensen, Martin

    2003-01-01

    . This way the glass undergoes significant physical and chemical changes and in some cases very large non-linear effects have been demonstrated. This includes a non-linear coefficient around 22 pm/V in a wavelength range near 800 nm. The author believes this is due to the combined action of silver nano......The thesis covers research performed durint the last eight years by the author in collaboration with members of his group within the field of UV-written gratings and poling of silica-based materials. The subjects cover several steps on the value chain from basic physics and chemistry via component...... in detail in chapters 4,5 and 6. Chapter 4 describes the semi-classsical model developed by the author to describe the basic UV-induced processes in germanium-doped silica. The idea behind the model is that oxygen-deficient germanium centres in the glass work as gates for the UV-photon energy, which...

  14. Kinetics of dissolution of a biocide soda-lime glass powder containing silver nanoparticles

    International Nuclear Information System (INIS)

    Esteban-Tejeda, L.; Silva, A. C. da; Mello-Castanho, S. R.; Pacharroman, C.; Moya, J. S.

    2013-01-01

    In the present study we have studied the lixiviation kinetics of silver nanoparticles, as well as the solubility of a particulate system ( 2 lixiviation followed a Jander model (α 2 /4 ≈ Kt). It has been proven that nanostructured soda-lime glass/nAg composed by particles <30 μm with a 20 wt% of silver are a strong biocide versus Gram-positive, Gram-negative bacteria and yeasts. This soda-lime glass/nAg acts as a perfect dispenser of silver nanoparticles to the liquid media, avoiding the fast increasing of its concentration over the toxicity limit for human cells and for the environment.

  15. Measurement of lime/silica ratio in concrete using PGNAA technique

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-12-01

    Prompt gamma neutron activation analysis (PGNAA) technique has been used to determine lime/silica ratio in concrete samples using an accelerator-based PGNAA facility. The ratio was determined from the measured yield of 6.42 MeV prompt {gamma}-rays of calcium and 4.93 MeV {gamma}-rays of silicon from the six concrete samples. The experimental results were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the two. The study has demonstrated successful use of the accelerator-based PGNAA setup in non-destructive analysis of the concrete samples.

  16. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, Md. Shamim, E-mail: shamim@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Electronics and Communication Engineering Discipline, School of Science, Engineering and Technology, Khulna University, Khulna-9208 (Bangladesh); Dewanda, Fadia, E-mail: fdewanda@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Man Seop, E-mail: leems1502@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sekita, Hitoshi, E-mail: sekita@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan); Sumiyoshi, Tetsumi, E-mail: sumiy@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. Black-Right-Pointing-Pointer Periodic microstructures are printed on the glass surface for superhydrophobicity. Black-Right-Pointing-Pointer The contact angle of water droplet on the microstructured glass surface is 155 Degree-Sign . Black-Right-Pointing-Pointer The transparency of superhydrophobic glass is higher than 77% in visible spectrum. Black-Right-Pointing-Pointer We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152 Degree-Sign to 155 Degree-Sign . The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  17. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ahsan, Md. Shamim; Dewanda, Fadia; Lee, Man Seop; Sekita, Hitoshi; Sumiyoshi, Tetsumi

    2013-01-01

    Highlights: ► We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. ► Periodic microstructures are printed on the glass surface for superhydrophobicity. ► The contact angle of water droplet on the microstructured glass surface is 155°. ► The transparency of superhydrophobic glass is higher than 77% in visible spectrum. ► We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152° to 155°. The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  18. Positron annihilation in vitreous silica glasses

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro

    1993-01-01

    The annihilation characteristics of positrons in vitreous silica glasses (v-SiO 2 ) were studied by measurements of two-dimensional angular correlation of positron annihilation radiations and positron lifetime spectra. From the measurements, it was found that positrons and positronium (Ps) atoms mainly annihilate from trapped states by vacancy-type defects in v-SiO 2 . For v-SiO 2 specimens with cylindrical porous structures, annihilations of Ps with anisotropic momentum distributions were observed. This fact was attributed to the momentum uncertainty due to localization of Ps in a finite dimension of pores. This investigation showed possibilities for the detection of microstructures in v-SiO 2 by the positron annihilation technique. (author)

  19. Volumetric change of simulated radioactive waste glass irradiated by electron accelerator. [Silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Seichi; Furuya, Hirotaka; Inagaki, Yaohiro; Kozaka, Tetsuo; Sugisaki, Masayasu

    1987-11-01

    Density changes of simulated radioactive waste glasses, silica glass and Pyrex glass irradiated by an electron accelerator were measured by a ''sink-float'' technique. The density changes of the waste and silica glasses were less than 0.05 %, irradiated at 2.0 MeV up to the fluence of 1.7 x 10/sup 17/ ecm/sup 2/, while were remarkably smaller than that of Pyrex glass of 0.18 % shrinkage. Precision of the measurements in the density changes of the waste glass was lower than that of Pyrex glass possibly because of the inhomogeneity of the waste glass

  20. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  1. Surface morphology study in high speed milling of soda lime glass

    Science.gov (United States)

    Konneh, Mohamed; Bagum, Mst. Nasima; Ali, Mohammad Yeakub; Amin, A. K. M. Nurul

    2018-05-01

    Soda lime glass has a wide range of applications in optical, bio-medical and semi-conductor industries. It is undeniably a challenging task to produce micro finish surface on an amorphous brittle solid like soda lime glass due to its low fracture toughness. In order to obtain such a finish surface, ductile machining has been exploited, as this usually cause's plastic flow which control crack propagation. At sub-micro scale cutting parameters, researchers achieved nano finish surface in micro milling operation using coated tool. However it is possible to enhance the rate of material removal (RMR) of soda lime glass at flexible cutting condition. High speed cutting at micro meter level, extend of thermal softening might be prominent than the strain gradient strengthening. The purpose of this study was to explore the effects of high cutting speed end milling parameters on the surface texture of soda lime glass using uncoated carbide tool. The spindle speed, depth of cut and feed rate were varied from 20,000 to 40,000 rpm, 10 to 30 mm/min and 30 to 50 µm respectively. Mathematical model of roughness has been developed using Response Surface Methodology (RSM). Experimental verification confirmed that surface roughness (Ra) 0.38 µm is possible to achieve at increased RMR, 4.71 mm3/min.

  2. Fractal Loop Heat Pipe Performance Comparisons of a Soda Lime Glass and Compressed Carbon Foam Wick

    Science.gov (United States)

    Myre, David; Silk, Eric A.

    2014-01-01

    This study compares heat flux performance of a Loop Heat Pipe (LHP) wick structure fabricated from compressed carbon foam with that of a wick structure fabricated from sintered soda lime glass. Each wick was used in an LHP containing a fractal based evaporator. The Fractal Loop Heat Pipe (FLHP) was designed and manufactured by Mikros Manufacturing Inc. The compressed carbon foam wick structure was manufactured by ERG Aerospace Inc., and machined to specifications comparable to that of the initial soda lime glass wick structure. Machining of the compressed foam as well as performance testing was conducted at the United States Naval Academy. Performance testing with the sintered soda lime glass wick structures was conducted at NASA Goddard Space Flight Center. Heat input for both wick structures was supplied via cartridge heaters mounted in a copper block. The copper heater block was placed in contact with the FLHP evaporator which had a circular cross-sectional area of 0.88 cm(sup 2). Twice distilled, deionized water was used as the working fluid in both sets of experiments. Thermal performance data was obtained for three different Condenser/Subcooler temperatures under degassed conditions. Both wicks demonstrated comparable heat flux performance with a maximum of 75 W/cm observed for the soda lime glass wick and 70 W /cm(sup 2) for the compressed carbon foam wick.

  3. Soda-Lime-Silicate Float Glass: A Property Comparison

    Science.gov (United States)

    2017-10-01

    temperature. West Conshohocken (PA): ASTM International; 2012. 4. Quinn GD, Swab JJ . Fracture toughness of glasses as measured by the SCF and SEPB methods...Swab JJ , Patel PJ, Tran X, Gilde L, Luoto E, Gaviola MH, Gott A, Paulson B, Kilczewski S. Equibiaxial flexure strength of glass: influence of glass

  4. Establishing Relationship between Process Parameters and Temperature during High Speed End Milling of Soda Lime Glass

    Science.gov (United States)

    Nasima Bagum, Mst.; Konneh, Mohamed; Yeakub Ali, Mohammad

    2018-01-01

    In glass machining crack free surface is required in biomedical and optical industry. Ductile mode machining allows materials removal from brittle materials in a ductile manner rather than by brittle fracture. Although end milling is a versatile process, it has not been applied frequently for machining soda lime glass. Soda lime glass is a strain rate and temperature sensitive material; especially around glass transition temperature Tg, ductility increased and strength decreased. Hence, it is envisaged that the generated temperature by high-speed end milling (HSEM) could be brought close to the glass transition temperature, which promote ductile machining. In this research, the objective is to investigate the effect of high speed machining parameters on generated temperature. The cutting parameters were optimized to generate temperature around glass transition temperature of soda lime using response surface methodology (RSM). Result showed that the most influencing process parameter is feed rate followed by spindle speed and depth of cut to generate temperature. Confirmation test showed that combination of spindle speed 30,173 rpm, feed rate 13.2 mm/min and depth of cut 37.68 µm generate 635°C, hence ductile chip removal with machined surface Ra 0.358 µm was possible to achieve.

  5. Brittle to ductile transition in densified silica glass.

    Science.gov (United States)

    Yuan, Fenglin; Huang, Liping

    2014-05-22

    Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior.

  6. XAFS study on silica glasses irradiated in a nuclear reactor

    International Nuclear Information System (INIS)

    Yoshida, Tomoko; Yoshida, Hisao; Hara, Takanobu; Ii, Tatsuya; Okada, Tomohisa; Tanabe, Tetsuo

    2000-01-01

    X-ray absorption technique (XANES and EXAFS) was applied to study the local structures of silica glasses before and after the irradiation in a nuclear reactor. Although our separate photoluminescence (PL) measurements clearly showed the different aspects about oxygen vacancies in these samples, i.e., at least the B 2β type oxygen-deficient center exists as an intrinsic defect in the fused silica glass while another type B 2α center is formed in the synthesized silica glass, such differences did not directly reflect on the X-ray absorption spectra (XANES and EXAFS). However, the curve-fitting analysis of EXAFS showed that the number of oxygen atoms coordinated to Si relatively increased after the irradiation. This result may indicate the occurrence of the structural relaxation in the irradiated samples, that is, a slightly distorted SiO 4 tetrahedra in silica glasses relaxed to the regular SiO 4 tetrahedra due to the break of some connections between SiO 4 units in the silica glasses. Thus, the X-ray absorption technique gave the important information of the in-reactor irradiated silica glasses which complements the results obtained from PL measurements

  7. Compaction and Collapse Characteristics of Dune Sand Stabilized with Lime-Silica Fume Mix

    Directory of Open Access Journals (Sweden)

    Mohammed Y. Fattah

    2016-04-01

    Full Text Available The purpose of this research is to assess the suitability of dune sands as construction materials. Moreover, such a goal is considered beneficial in determining appropriate methods for soil stabilization or ground improvement and to assessing the suitability of dune sands as subgrade layer for carrying roads and rail foundation. Dune sand samples were collected from a region in Baiji area in Salah-Aldeen governorate, North of Iraq. A grey-colored densified silica fume (SF and lime (L are used. Three percentages are used for lime (3%, 6%, and 9%, and four rates are used for silica fume (3%, 6%, 9% and 12% and the maximum percentage of silica fume is mixed with the proportions of lime. Unsoaked California Bearing Ratio (CBR on compacted dune sands treated dune sands with L-SF by mixing and cured for one day. The increasing in CBR ranged between 443 – 707% at 2.54 mm penetration and 345 – 410% at 5.08 mm penetration.     Resumen El propósito de esta investigación es evaluar el uso de arena de dunas como materiales de construcción. Además, este objetivo permite determinar los métodos apropiados para la estabilización del suelo, el mejoramiento del terreno y la evaluación de pertinencia de la arena de dunas en capas subbase para carreteras y cimientos férreos. Se recolectaron muestras de arena de dunas en el área de Baiji, del comisionado Salah-Aldeen, al norte de Irak. Se utilizó vapor de óxido de silicio (SF, en inglés, grisáceo y densificado, y óxido de calcio (L. Se utilizaron tres porcentajes para el óxido de calcio (3 %, 6 % y 9 %, y cuatro para el óxido de silicio (3 %, 6 %,  9% y 12% y el máximo porcentaje del óxido de silicio se mezcló con las proporciones de óxido de calcio. Se realizó en seco el Ensayo de Relación de Soporte de California (del inglés California Bearing Ratio, CBR en arena de dunas compactada y tratada con la mezcla L-SF curada durante un día. El incremento en el ensayo CBR osciló entre 443

  8. Simultaneous removal of colour, phosphorus and disinfection from treated wastewater using an agent synthesized from amorphous silica and hydrated lime.

    Science.gov (United States)

    Yamashita, Takahiro; Aketo, Tsuyoshi; Minowa, Nobutaka; Sugimoto, Kiyomi; Yokoyama, Hiroshi; Ogino, Akifumi; Tanaka, Yasuo

    2013-01-01

    An agent synthesized from amorphous silica and hydrated lime (CSH-lime) was investigated for its ability to simultaneously remove the colour, phosphorus and disinfection from the effluents from wastewater treatment plants on swine farms. CSH-lime removed the colour and phosphate from the effluents, with the colour-removal effects especially high at pH 12, and phosphorous removal was more effective in strongly alkaline conditions (pH > 10). Colour decreased from 432 +/-111 (mean +/- SD) to 107 +/- 41 colour units and PO4(3-)P was reduced from 45 +/- 39 mg/L to undetectable levels at the CSH-lime dose of 2.0% w/v. Moreover, CSH-lime reduced the total organic carbon from 99.0 to 37.9 mg/L at the dose of 2.0% w/v and was effective at inactivating total heterotrophic and coliform bacteria. However, CSH-lime did not remove nitrogen compounds such as nitrite, nitrate and ammonium. Colour was also removed from dye solutions by CSH-lime, at the same dose.

  9. Investigation of the mechanical properties of silica glasses by indentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, A. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Voeroes, G. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Tasnadi, P. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Kovacs, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Somogyi, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary) Brody Research Center, G.E. Tungsram, Budapest (Hungary)); Szoellosi, J. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary) Brody Research Center, G.E. Tungsram, Budapest (Hungary))

    1993-11-01

    Soda lime silica glasses were investigated by continuous indentation tests. The load indentation depth curves were taken during the loading as well as the unloading period by a computer controlled MTS machine. It was found that the loading force is a quadratic function of the indentation depth during both the loading and unloading stage of the deformation. The validity of the quadratic relationship in the case of the unloading stage seems to be characteristic only for glasses. Taking into account the elastic relaxation of the indentation depth an estimation is given for the size of the hydrostatic core which is necessary to symmetrize the stress field around the indenter. Using the measured length of the radial cracks started from the corners of the Vickers indentation pattern the K[sub IC] values were calculated. (orig.).

  10. Glass properties in the yttria-alumina-silica system

    Science.gov (United States)

    Hyatt, M. J.; Day, D. E.

    1987-01-01

    The glass formation region in the yttria-alumina-silica system was investigated. Properties of glasses containing 25 to 55 wt pct yttria were measured and the effect of the composition was determined. The density, refractive index, thermal-expansion coefficient, and microhardness increased with increasing yttria content. The dissolution rate in 1N HCl increased with increasing yttria content and temperature. These glasses were also found to have high electrical resistivity.

  11. PREPARATION OF ZEOLITE X COATINGS ON SODA-LIME TYPE GLASS PLATES

    Directory of Open Access Journals (Sweden)

    M. Tatlier

    Full Text Available Abstract The dissolution of glass in highly alkaline reaction mixtures and the impact of this phenomenon on zeolite coating formation were investigated. Coating samples were prepared and characterized by X-ray diffraction (XRD, field emission gun scanning electron microscopy (FEGSEM and thermogravimetry (TG. It was demonstrated that zeolite X coatings might be prepared on soda-lime glass. Glass dissolved to some degree, up to 2% of its original mass, in the reaction mixtures for the conditions investigated. This dissolution affected the zeolite synthesis taking place on the glass surface, resulting in phases different from those obtained on inert metal surfaces in some cases, especially for the use of reaction mixtures with relatively high Si/Al ratios. The percentage of dissolution of glass plates increased with their decreasing thickness, indicating a surface phenomenon for the dissolution. The stabilities of the coatings, which varied with the synthesis conditions, benefited from the addition of extra thin layers of polyacrylic acid.

  12. Properties Of Soda/Yttria/Silica Glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1994-01-01

    Experimental study of glass-formation compositional region of soda/ yttria/silicate system and of selected physical properties of glasses within compositional region part of continuing effort to identify glasses with high coefficients of thermal expansion and high softening temperatures, for use as coatings on superalloys and as glass-to-metal seals.

  13. Mechanical performance of a biocompatible biocide soda-lime glass-ceramic.

    Science.gov (United States)

    López-Esteban, S; Bartolomé, J F; Dí Az, L A; Esteban-Tejeda, L; Prado, C; López-Piriz, R; Torrecillas, R; Moya, J S

    2014-06-01

    A biocompatible soda-lime glass-ceramic in the SiO2-Na2O-Al2O3-CaO-B2O3 system containing combeite and nepheline as crystalline phases, has been obtained at 750°C by two different routes: (i) pressureless sintering and (ii) Spark Plasma Sintering. The SPS glass-ceramic showed a bending strength, Weibull modulus, and toughness similar values to the cortical human bone. This material had a fatigue limit slightly superior to cortical bone and at least two times higher than commercial dental glass-ceramics and dentine. The in vitro studies indicate that soda-lime glass-ceramic is fully biocompatible. The in vivo studies in beagle jaws showed that implanted SPS rods presented no inflammatory changes in soft tissues surrounding implants in any of the 10 different cases after four months implantation. The radiological analysis indicates no signs of osseointegration lack around implants. Moreover, the biocide activity of SPS glass-ceramic versus Escherichia coli, was found to be >4log indicating that it prevents implant infections. Because of this, the SPS new glass-ceramic is particularly promising for dental applications (inlay, crowns, etc). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cr3+ and Cr4+ luminescence in glass ceramic silica

    International Nuclear Information System (INIS)

    Martines, Marco A.U.; Davolos, Marian R.; Jafelicci, Miguel Junior; Souza, Dione F. de; Nunes, Luiz A.O.

    2008-01-01

    This paper reports on the effect of glass ceramic silica matrix on [CrO 4 ] 4- and Cr 2 O 3 NIR and visible luminescence. Chromium-containing silica was obtained by precipitation from water-glass and chromium nitrate acid solution with thermal treatment at 1000 deg. C. From XRD results silica and silica-chromium samples are crystalline. The chromium emission spectrum presents two main broad bands: one in the NIR region (1.1-1.7μm) and other in the visible region (0.6-0.7μm) assigned to Cr 4+ and to Cr 3+ , respectively. This thermal treated glass ceramic silica-chromium sample stabilizes the [CrO 4 ] 4- where Cr 4+ substitutes for Si 4+ and also hexacoordinated Cr 3+ group probably as segregated phase in the system. It can be pointed out that luminescence spectroscopy is a powerful tool for detecting the two chromium optical centers in the glass ceramic silica

  15. Effect of embedded silver nanoparticles on refractive index of soda lime glass

    Science.gov (United States)

    Sonal, Sharma, Annu; Aggarwal, Sanjeev

    2018-05-01

    Silver glass nanocomposites were prepared by exposing silver doped soda lime glass slides obtained via ion-exchange reaction to a beam of 200 keV Argon ions (Ar+) at an off normal angle of 400 with doses of 5x1015 ions cm-2 and 1x1016 ions cm-2. These nanocomposites were further characterized using UV-visible spectrophotometer so as to study their transmission and reflection behavior and compute their refractive index and real and imaginary parts of dielectric function.

  16. Development of dense glass-ceramic from recycled soda-lime-silicate glass and fly ash for tiling

    Science.gov (United States)

    Mustaffar, Mohd Idham; Mahmud, Mohamad Haniza; Hassan, Mahadi Abu

    2017-12-01

    Dense glass-ceramics were prepared by sinter-crystallization process from a combination of soda-lime-silicate glass waste and fly ash. Bentonite clay that acted as a binder was also added in a prepared formulation. The powder mixture of soda-lime glass, fly ash and bentonite clay were compacted by using uniaxial hydraulic press machine and sintered at six (6) various temperatures namely 750, 800, 850, 900, 950 and 1000 °C. The heating rate and sintering time were set at 5 °C/min and 30 minutes respectively. The results revealed that modulus of rupture (MOR), density and linear shrinkage increase first from 750 to 800 °C but decrease later after 800 to 1000 °C. In the meantime, water absorption was showing completely an opposite trend. The glass-ceramic sintered at 800 °C was found to have the best combination of physical-mechanical properties and has the potential to be applied in the construction industry particularly as floor and wall tiles because of the simple manufacturing process at low temperature.

  17. A completely transparent, adhesively bonded soda-lime glass block masonry system

    Directory of Open Access Journals (Sweden)

    F. Oikonomopoulou

    2015-01-01

    Full Text Available A pioneering, all transparent, self-supporting glass block facade is presented in this paper. Previously realized examples utilize embedded metal components in order to obtain the desired structural performance despite the fact that these elements greatly affect the facade’s overall transparency level. Undeniably, the oxymoron ‘transparency and strength’ remains the prime concern in such applications. In this paper, a new, innovative structural system for glass block facades is described, which demonstrably meets both criteria. The structure is exclusively constructed by monolithic glass blocks, bonded with a colourless, UV-curing adhesive, obtaining thus a maximum transparency. In addition, the desired structural performance is achieved solely through the masonry system, without any opaque substructure. Differing from previous realized projects, solid soda-lime glass blocks are used rather than borosilicate ones. This article provides an overview of the integrated architectural and structural design and discusses the choice of materials. The structural verification of the system is demonstrated. The results show that the adhesively bonded glass block structure has the required self-structural behaviour, but only if strict tolerances are met in the geometry of the glass blocks.

  18. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    International Nuclear Information System (INIS)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J.; Meyer, Willem C.H.M.; Hyatt, Neil C.

    2013-01-01

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H 2 /N 2 atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required

  19. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom); Meyer, Willem C.H.M. [Necsa, South African Nuclear Energy Corporation, PO Box 582, Pretoria, Gauteng (South Africa); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2013-05-15

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H{sub 2}/N{sub 2} atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required.

  20. Fabrication of transparent superhydrophobic glass with fibered-silica network

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Shi, Zhenwu, E-mail: zwshi@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Jiang, Yingjie; Xu, Chengyun; Wu, Zhuhui; Wang, Yanyan [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Peng, Changsi, E-mail: changsipeng@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China)

    2017-06-15

    Highlights: • Superhydrophobic fibred-silica film with water contact angle of 166° and sliding angle of 1° was efficiently prepared using soot as template by CVD. • The film showed transmittance of 88% in visible range. • The superhydrophobic film possesses excellent mechanical robustness, chemical corrosion resistance, and thermal stability. • The superhydrophobic film showed outstanding self-cleaning behavior. - Abstract: In this paper, silica was deposited on the soot film pre-coated glass via chemical vapor deposition. Through calcination at 500 °C with the assistance of O{sub 2} airflow, the soot film was removed and a novel robust fibered-silica network film was then decorated onto the glass substrate. After modification with fluorosilane, the surface water contact angle (WCA) was 166° and sliding angle (SA) was 1° which behaves a good self-cleaning for the as-prepared glass. And its average transmittance was still over 88% in visible wavelength. Moreover, this fibered-silica coating showed a strong tolerance for heavy water droplets, acid/alkali corrosion, salt solution immersion and thermal treatment.

  1. Inverted opal luminescent Ce-doped silica glasses

    Directory of Open Access Journals (Sweden)

    R. Scotti

    2006-01-01

    Full Text Available Inverted opal Ce-doped silica glasses (Ce : Si molar ratio 1 ⋅ 10−3 were prepared by a sol-gel method using opals of latex microspheres as templates. The rare earth is homogeneously dispersed in silica host matrix, as evidenced by the absence of segregated CeO2, instead present in monolithic Ce-doped SG with the same cerium content. This suggests that the nanometric dimensions of bridges and junctions of the host matrix in the inverted opal structures favor the RE distribution avoiding the possible segregation of CeO2.

  2. Nonlinear optical properties of Sn+ ion-implanted silica glass

    International Nuclear Information System (INIS)

    Takeda, Y.; Hioki, T.; Motohiro, T.; Noda, S.; Kurauchi, T.

    1994-01-01

    The absolute value of the third-order nonlinear optical susceptibility, vertical stroke χ (3) vertical stroke , of Sn + ion-implanted silica glass was found to be similar 10 -6 esu. This value is as large as those reported for semiconductor-doped glasses. Silica glass substrates were implanted with Sn + ions at an acceleration energy of 400 keV to a dose of 2x10 17 ions/cm 2 at room temperature. Metallic Sn microcrystallites of 4-20 nm in diameter were found to be embedded in the silica glass matrix. The average volume fraction of the Sn microcrystallites was evaluated to be 28%. vertical stroke χ (3) vertical stroke and the imaginary part of the dielectric function, Im ε, had peaks at the same wavelength of 500 nm owing to surface plasmon resonance. The peak width of vertical stroke χ (3) vertical stroke was nearly half of that of Im ε, which can be explained by an effective medium theory. ((orig.))

  3. Formation of silver colloids on ion exchanged soda lime silicate glasses by irradiation

    International Nuclear Information System (INIS)

    Yoshimura, E.M.; Okuno, E.

    1998-01-01

    The effect of ionizing radiation (gamma rays, X-rays and electrons) on soda lime silicate glasses, in which part of the Na + was substituted by Ag + by means of an ionic exchange process, was studied. The techniques of thermally stimulated depolarization current (TSDC) and transmission electron microscopy (TEM) were employed to follow the formation of silver colloids by irradiation. Also the thermoluminescence (TL) of the samples was measured and three peaks between room temperature and 450 C were observed. The TEM and TSDC results agree that, as expected, ionizing radiation promotes the formation of silver colloids on the ion exchanged surface of soda lime glasses. Soft X-rays are much more efficient in the process than gamma rays and electrons. The correlation with thermoluminescence glow curves indicates that the intensity of a TL peak at 230 C can provide a rapid means of evaluating the presence of silver colloids. TL sensitivities, measured as area under the glow curve per unit mass and unit dose, are very similar for ion exchanged and not exchanged samples submitted to X-ray irradiation, although the peak temperatures differ in about 40 C in the two cases. For both electron and gamma irradiated samples, the TL sensitivity drops about an order of magnitude when compared to the X-ray irradiated ones. (orig.)

  4. Structural modification of silica glass by laser scanning

    International Nuclear Information System (INIS)

    Zhao Jian; Sullivan, James; Zayac, John; Bennett, Ted D.

    2004-01-01

    The thermophysical nature of rapid CO 2 laser heating of silica glass is explored using a numerical simulation that considers the structural state of the glass, as characterized by the fictive temperature. The fictive temperature reflects the thermodynamic temperature at which the glass structure would be in equilibrium. To demonstrate that the thermophysical model can accurately predict the structural change in the glass, the fictive temperature is measured experimentally utilizing the fact that the fictive temperature change corresponds to a change of glass properties that can be revealed through wet chemical etching. The relationship between the etch rate and the fictive temperature is determined by preparing and etching samples of known fictive temperature. Wet chemical etching is used to measure the fictive temperature over the entire laser affected zone and the results are found to compare favorably with the results of the thermophysical model. The model and experimental measurements demonstrate that rapid laser processing results in an increased fictive temperature near the surface of the glass. The fictive temperature increase is about 1000 K and is uniform to within 5% over the laser affected zone. Near the boundary of this zone, the fictive temperature transitions abruptly to the value of the surrounding untreated glass

  5. Low energy and low dose electron irradiation of potassium-lime-silicate glass investigated by XPS. I. Surface composition

    Czech Academy of Sciences Publication Activity Database

    Gedeon, O.; Zemek, Josef

    2003-01-01

    Roč. 320, - (2003), s. 177-186 ISSN 0022-3093 R&D Projects: GA ČR GA104/99/1407 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray photoelectron spectroscopy * potassium-lime-silicate glass * electron -solid interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.563, year: 2003

  6. New insight into atmospheric alteration of alkali-lime silicate glasses

    International Nuclear Information System (INIS)

    Alloteau, Fanny; Lehuédé, Patrice; Majérus, Odile; Biron, Isabelle; Dervanian, Anaïs; Charpentier, Thibault; Caurant, Daniel

    2017-01-01

    Highlights: •Glass silicate network hydrolysis is by far the predominant reaction at 80 °C. •Atmospheric conditions yield different altered layer structure than in immersion. •The altered layer bears about 10 wt% of water mainly as H-bonded SiOH groups. •Alkali ions stay embedded into the altered layer closed to SiOH and H 2 O species. -- Abstract: A mixed alkali lime silicate glass altered in atmospheric conditions (80 °C/85%RH, Relative Humidity) for various lengths of time was characterized at all scales. The altered glass forms a hydrated solid phase bearing about 10 wt% of H 2 O in the form of Si-OH groups and molecular water. No alkali depletion was observed after ageing tests. Structural results from 1 H, 23 Na and 29 Si MAS NMR point out the close proximity of Si-OH, H 2 O and Na + species. This study gives new insight into the mechanisms of the atmospheric alteration, essential to conservation strategies in industry and cultural heritage.

  7. Study of interaction in silica glass via model potential approach

    Science.gov (United States)

    Mann, Sarita; Rani, Pooja

    2016-05-01

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.

  8. Study of interaction in silica glass via model potential approach

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Sarita, E-mail: saritaiitr2003@gmail.com [Department of Physics, Panjab University, Chandigarh-160014 (India); Rani, Pooja [D.A.V. College, Sec-10, Chandigarh-160010 (India)

    2016-05-06

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO{sub 2} (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO{sub 2} has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=−21.92eV/molecule) to appropriately describe the structure of silica.

  9. Selective formation of GaN-based nanorod heterostructures on soda-lime glass substrates by a local heating method

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Young Joon; Kim, Yong-Jin [Department of Materials Science and Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Jeon, Jong-Myeong; Kim, Miyoung; Choi, Jun Hee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Baik, Chan Wook; Kim, Sun Il; Park, Sung Soo; Kim, Jong Min [Frontier Research Laboratory, Samsung Advanced Institute of Technology, PO Box 111, Kiheung 446-712 (Korea, Republic of); Yi, Gyu-Chul, E-mail: joonie.choi@samsung.com, E-mail: gcyi@snu.ac.kr [National Creative Research Initiative Center for Semiconductor Nanorods, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2011-05-20

    We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.

  10. Selective formation of GaN-based nanorod heterostructures on soda-lime glass substrates by a local heating method.

    Science.gov (United States)

    Hong, Young Joon; Kim, Yong-Jin; Jeon, Jong-Myeong; Kim, Miyoung; Choi, Jun Hee; Baik, Chan Wook; Kim, Sun Il; Park, Sung Soo; Kim, Jong Min; Yi, Gyu-Chul

    2011-05-20

    We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.

  11. Optical bleaching of bismuth implanted silica glass: A threshold effect

    International Nuclear Information System (INIS)

    Park, S.Y.; Magruder, R.H. III; Weeks, R.A.

    1992-01-01

    The near surface regions of high purity silica glass discs, Spectrosil A, were modified by implantation with bismuth ions at 160 key and room temperature. The glasses implanted with a nominal dose of 6x10 16 Bi/cm 2 at ∼5 μA/cm 2 were subsequently bleached with a 5.0 eV KrF pulsed excimer laser. The laser had an average pulse duration of ∼20 ns and repetition rate of 10 Hz. It was found that the bleaching was dependent upon the power density of the laser for a constant total integrated energy. Ion backscattering and optical absorption measurements were made before and after laser irradiation. Large changes in optical density and depth distribution of the implanted ions were observed at power densities of ≥45 mJ/cm 2 -pulse. Onset of threshold for bleaching of silica glass implanted with 6x10 16 Bi/cm 2 at 160 key and at room temperature is between 30 and 45 mJ/cm 2 -pulse

  12. Stress relaxation in tempered glass caused by heat soak testing

    DEFF Research Database (Denmark)

    Schneider, Jens; Hilcken, Jonas; Aronen, Antti

    2016-01-01

    Heat soak testing of tempered glass is a thermal process required after the tempering process itself to bring glasses of commercial soda-lime-silica-glass to failure that are contaminated with nickel sulphide inclusions, diameter 50 mm to 500 mm typically. Thus, the tests avoid a so-called "spont...... of commercial soda-lime-silica glass, it causes stress relaxation in tempered glass and the fracture pattern of the glass changes accordingly, especially thin glasses are affected. Based on the Tool-Narayanaswamy-Model, this paper comprises the theoretical background of the stress...

  13. Electrochemical redox reactions in solvated silica sol-gel glass

    International Nuclear Information System (INIS)

    Opallo, M.

    2002-01-01

    The studies of electrochemical redox reactions in solvated silica sol-gel glass were reviewed. The methodology of the experiments with emphasis on the direct preparation of the solid electrolyte and the application ultra microelectrodes was described. Generally, the level of the electrochemical signal is not much below that observed in liquid electrolyte. The current depends on time elapsed after gelation, namely the longer time, the smaller current. The differences between electrochemical behaviour of the redox couples in monoliths and thin layers were described. (author)

  14. Iron oxide coating films in soda-lime glass by triboadhesion

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J. O.; Arjona, M. J. [Boulevard Bahia s/n esq. Ignacio Comonfort, Chetumal (Mexico); Rodriguez-Lelis, J. M. [Interior Internado Palmira s/n, Cuernavaca, Morelos (Mexico)

    2009-04-15

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  15. Iron oxide coating films in soda-lime glass by triboadhesion

    International Nuclear Information System (INIS)

    Aguilar, J. O.; Arjona, M. J.; Rodriguez-Lelis, J. M.

    2009-01-01

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  16. Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses

    International Nuclear Information System (INIS)

    Qiao Yanbo; Wen Lei; Wu Botao; Ren Jinjun; Chen Danping; Qiu Jianrong

    2008-01-01

    Yb-doped and Yb-Al-codoped high silica glasses have been prepared by sintering nanoporous glasses. The absorption, fluorescent spectra and fluorescent lifetimes have been measured and the emission cross-section and minimum pump intensities were calculated. Codoping aluminum ions enhanced the fluorescence intensity of Yb-doped high silica glass obviously. The emission cross-sections of Yb-doped and Yb-Al-codoped high silica glasses were 0.65 and 0.82 pm 2 , respectively. The results show that Yb-Al-codoped high silica glass has better spectroscopic properties for a laser material. The study of high silica glass doped with ytterbium is helpful for its application in Yb laser systems, especially for high-power and high-repetition lasers

  17. The effects of silica fume and hydrated lime on the strength development and durability characteristics of concrete under hot water curing condition

    Directory of Open Access Journals (Sweden)

    Hamza Ali

    2017-01-01

    Full Text Available Sustainability is considered to be highly important for preserving continued industrial growth and human development. Concrete, being the world’s largest manufacturing material comprises cement as an essential binding component for strength development. However, excessive production of cement due to high degree of construction practices around the world frames cement as a leading pollutant of releasing significant amounts of CO2 in the atmosphere. To overcome this environmental degradation, silica fume and hydrated lime are used as partial replacements to cement. This paper begins with the examination of the partial replacement levels of hydrated lime and silica fume in concrete and their influence on the mechanical properties and durability characteristics of concrete. The effect of hot water curing on concrete incorporated with both silica fume and hydrated lime is also investigated in this paper. The results reported in this paper show that the use of silica fume as a partial replacement material improved both the mechanical properties and durability characteristics of concrete due to the formation of calcium silica hydrate crystals through the pozzolanic reaction. Although the hydrated lime did not significantly contribute in the development of strength, its presence enhanced the durability of concrete especially at long-term. The results also showed that hot water curing enhanced the strength development of concrete incorporated with silica fume due to the accelerated rate of both the hydration and pozzolanic reaction that takes place between silica fume and calcium hydroxide of the cement matrix particularly at early times. The results reported in this paper have significant contribution in the development of sustainable concrete. The paper does not only address the use of alternative binders as a partial replacement material in concrete but also suggest proper curing conditions for the proposed replacement materials. These practices

  18. Characteristics of waste automotive glasses as silica resource in ferrosilicon synthesis.

    Science.gov (United States)

    Farzana, Rifat; Rajarao, Ravindra; Sahajwalla, Veena

    2016-02-01

    This fundamental research on end-of-life automotive glasses, which are difficult to recycle, is aimed at understanding the chemical and physical characteristics of waste glasses as a resource of silica to produce ferrosilicon. Laboratory experiments at 1550°C were carried out using different automotive glasses and the results compared with those obtained with pure silica. In situ images of slag-metal separation showed similar behaviour for waste glasses and silica-bearing pellets. Though X-ray diffraction (XRD) showed different slag compositions for glass and silica-bearing pellets, formation of ferrosilicon was confirmed. Synthesized ferrosilicon alloy from waste glasses and silica were compared by Raman, X-ray photoelectron spectroscopy and scanning electron microscopy (SEM) analysis. Silicon concentration in the synthesized alloys showed almost 92% silicon recovery from the silica-bearing pellet and 74-92% silicon recoveries from various waste glass pellets. The polyvinyl butyral (PVB) plastic layer in the windshield glass decomposed at low temperature and did not show any detrimental effect on ferrosilicon synthesis. This innovative approach of using waste automotive glasses as a silica source for ferrosilicon production has the potential to create sustainable pathways, which will reduce specialty glass waste in landfill. © The Author(s) 2015.

  19. Can a soda-lime glass be used to demonstrate how patterns of strength dependence are influenced by pre-cementation and resin-cementation variables?

    LENUS (Irish Health Repository)

    Hooi, Paul

    2013-01-01

    To determine how the variability in biaxial flexure strength of a soda-lime glass analogue for a PLV and DBC material was influenced by precementation operative variables and following resin-cement coating.

  20. Deep glass etched microring resonators based on silica-on-silicon technology

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rottwitt, Karsten; Philipp, Hugh Taylor

    2006-01-01

    Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented.......Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented....

  1. An Analysis of the Nonlinear Spectral Mixing of Didymium and Soda-Lime Glass Beads Using Hyperspectral Imagery (HSI) Microscopy

    Science.gov (United States)

    2014-05-01

    2001). Learning with Kernels: Support Vector Machines , Regularization, Optimization, and Beyond. The MIT Press, Cambridge, MA, 644 p. [26] Banerjee...A., Burlina, P., and Broadwater, J., (2007). A Machine Learning Approach for finding hyperspectral endmembers. Proceedings of the IEEE International... lime glass beads using hyperspectral imagery (HSI) microscopy Ronald G. Resmini1*, Robert S. Rand2, David W. Allen3, and Christopher J. Deloye1

  2. Effects of roughness on interfacial performances of silica glass and non-polar polyarylacetylene resin composites

    International Nuclear Information System (INIS)

    Jiang, Z.X.; Huang, Y.D.; Liu, L.; Long, J.

    2007-01-01

    The influence of roughness on interfacial performances of silica glass/polyarylacetylene resin composites was investigated. In order to obtain different roughness, silica glass surface was abraded by different grits of abrasives and its topography was observed by scanning electron microscopy and atomic force microscopy. At the same time, the failure mechanisms of composites were analyzed by fracture morphologies and the interfacial adhesion was evaluated by shear strength test. The results indicated that shear strength of silica glass/polyarylacetylene resin composites firstly increased and then decreased with the surface roughness of silica glass increased. The best surface roughness range of silica glass was 40-60 nm. The main mechanism for the improvement of the interfacial adhesion was physical interlocking at the interface

  3. Impact of soda-lime borosilicate glass composition on water penetration and water structure at the first time of alteration

    International Nuclear Information System (INIS)

    Rebiscoul, D.; Bruguier, F.; Gin, S.; Magnin, V.

    2012-01-01

    In this study, the impact of soda-lime borosilicate glass composition and particularly the effect of charge compensators such Ca and Na and, of network formers such Si and Zr, on water penetration and water structure at the first time of alteration were investigated. Two non-destructive techniques were combined: the Fourier transform infrared spectroscopy in attenuated total reflection geometry to precise the predominant alteration mechanisms and assess the water structure in altered zone and the grazing incidence X-ray reflectometry to determine the thickness of the altered glass zone allowing to calculate the water diffusion coefficients through the glasses. The results of glass alteration at pH = 3 and 30 degrees C have shown that hydrolysis was the predominant mechanism after few seconds for glass having a high amount of non-binding oxygen. For the other glasses, which for the diffusion was the limiting reaction, the calculated water diffusion coefficients were comprised between 10 -21 and 10 -19 m 2 .s -1 and vary as a function of glass composition. An activation energy of 76.9 kJ.mol -1 was calculated and appears to be higher than inert gas diffusion through the glass highlighting that water molecules strongly interact with the glass matrix. (authors)

  4. Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass

    Science.gov (United States)

    Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj. Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased. PMID:22837711

  5. The anomalous yield behavior of fused silica glass

    Science.gov (United States)

    Schill, W.; Heyden, S.; Conti, S.; Ortiz, M.

    2018-04-01

    We develop a critical-state model of fused silica plasticity on the basis of data mined from molecular dynamics (MD) calculations. The MD data is suggestive of an irreversible densification transition in volumetric compression resulting in permanent, or plastic, densification upon unloading. The MD data also reveals an evolution towards a critical state of constant volume under pressure-shear deformation. The trend towards constant volume is from above, when the glass is overconsolidated, or from below, when it is underconsolidated. We show that these characteristic behaviors are well-captured by a critical state model of plasticity, where the densification law for glass takes the place of the classical consolidation law of granular media and the locus of constant-volume states defines the critical-state line. A salient feature of the critical-state line of fused silica, as identified from the MD data, that renders its yield behavior anomalous is that it is strongly non-convex, owing to the existence of two well-differentiated phases at low and high pressures. We argue that this strong non-convexity of yield explains the patterning that is observed in molecular dynamics calculations of amorphous solids deforming in shear. We employ an explicit and exact rank-2 envelope construction to upscale the microscopic critical-state model to the macroscale. Remarkably, owing to the equilibrium constraint the resulting effective macroscopic behavior is still characterized by a non-convex critical-state line. Despite this lack of convexity, the effective macroscopic model is stable against microstructure formation and defines well-posed boundary-value problems.

  6. High-performance geometric phase elements in silica glass

    Directory of Open Access Journals (Sweden)

    Rokas Drevinskas

    2017-06-01

    Full Text Available High-precision three-dimensional ultrafast laser direct nanostructuring of silica glass resulting in multi-layered space-variant dielectric metasurfaces embedded in volume is demonstrated. Continuous phase profiles of nearly any optical component are achieved solely by the means of geometric phase. Complex designs of half-wave retarders with 90% transmission at 532 nm and >95% transmission at >1 μm, including polarization gratings with efficiency nearing 90% and computer generated holograms with a phase gradient of ∼0.8π rad/μm, were fabricated. A vortex half-wave retarder generating a single beam optical vortex with a tunable orbital angular momentum of up to ±100ℏ is shown. The high damage threshold of silica elements enables the simultaneous optical manipulation of a large number of micro-objects using high-power laser beams. Thus, the continuous control of torque without altering the intensity distribution was implemented in optical trapping demonstration with a total of 5 W average power, which is otherwise impossible with alternate beam shaping devices. In principle, the direct-write technique can be extended to any transparent material that supports laser assisted nanostructuring and can be effectively exploited for the integration of printed optics into multi-functional optoelectronic systems.

  7. Characterization of waste soda-lime glass from the process lapping; Caracterizacao do rejeito de vidro sodo-calcico proveniente do processo de lapidacao

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, A.C.P.; Farias, A.C.M. de; Mendes, J.U.L., E-mail: galvao_alvaro@hotmail.com [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2014-07-01

    The beneficiation process of plates by stoning of soda-lime glass in glass industry generates, by itself, a residue not used (waste). The waste of this material is sent to landfills, causing environmental impacts. This study aimed to characterize and evaluate the waste of stoning of soda-lime glass (GP). After its acquisition, the GP was processed by grinding and sieving and subsequently characterized through the chemical analysis (XRF, XRD, EDS), morphology by SEM, particle size by laser diffraction and thermal gravimetric analysis (TGA and DSC). It was observed that the particles of GP are micrometer and irregular with the predominant presence of Na, Si and Ca, which are the characteristic elements of an amorphous soda-lime glass. The assessment of the chemical, morphological and thermogravimetric characteristics of GP allowed to suggest its reuse as reinforcing fillers or filler in composite materials to obtain thermal insulators. (author)

  8. Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation

    Directory of Open Access Journals (Sweden)

    A. C. P. Galvão

    2015-09-01

    Full Text Available AbstractThe beneficiation plate process by soda-lime glass lapping in the glass industry generates, an untapped residue (waste. The waste of this material is sent to landfills, causing impact on the environment. This work aimed to characterize and evaluate the waste of soda-lime glass (GP lapping. After its acquisition, the GP was processed by grinding and sieving and further characterized by the chemical/mineralogical analysis (XRF, EDS and XRD, SEM morphology, particle size by laser diffraction, thermogravimetric analyses (TGA and DSC and thermophysical analyses. It was observed that the GP particles are irregular and micrometric with the predominant presence of Na, Si and Ca elements characteristic of amorphous soda-lime glass. The assessment of the chemical/mineralogical, morphological, thermophysical and thermal gravimetric characteristics of GP suggest its reuse as reinforcing fillers or filler in composite materials to obtain thermal insulation.

  9. Investigations on the homogeneity of silica glass and on the order of X-amorphous silica by luminescence measurements

    International Nuclear Information System (INIS)

    Boden, G.

    1982-08-01

    Silica glasses melted from crystalline SiO 2 were exposed to ionizing radiation. At room temperature the spatial intensity distribution of the emitted luminescent radiation has been recorded by means of photographic or autoradiographic materials. Thereby schlieren and inhomogeneities are made visible and information is obtained on the melting process of the crystalline SiO 2 . Synthetic fused silica made from SiCl 4 shows no luminescent radiation. Depending on the penetration depth of the ionizing radiation the bulk or the surface of the sample can be studied. The decay curves of the integral luminescence intensity yield data on inhomogeneities in the silica glass leading to conclusions on order state and structure. The luminescence intensity and its half-life are a measure for the inhomogeneity of the silica glass and the existence of so-called 'preordered states'. This connection between luminescence intensity and the order state is found also with other X-amorphous SiO 2 modifications: silica gel, precipitated silicic acids, porous SiO 2 glasses, aerosil, thin SiO 2 layers, mechanically activated quartz: whereas no luminescence phenomena occur in disordered nearly ideally amorphous SiO 2 species, the luminescence increases with increasing order degree of the SiO 2 network and attains a high intensity in the case of the crystalline SiO 2 modifications quartz and cristobalite

  10. Effect of γ-irradiation on the electrical conductivity of some soda lime silicate glass containing blast furnace slag

    International Nuclear Information System (INIS)

    Elalaily, N.A.; Khalil, Magda M.I.; Ahmed, L.S.

    2007-01-01

    The effect of electric field strength on conduction in soda lime silicate glass doped with blast furnace slag with different concentration was studied and the value of jump distance was calculated. The structure and the mixed anion effect in the conductivity have been examined by measuring the electrical conductivity of glass samples at temperature ranging between 20 and 250 deg. C. The results showed that the electrical conductivity of the examined glasses are divided into three ranges depending on the temperature range. The first is from room temperature to about 49.5 deg. C, the second is at a temperature range of 60.3-104 deg. C where the glass shows a decrease in its conductivity with the increase in temperature. This was followed by another increase in the electrical conductivity with the increase in temperature. The results also showed that the glass becomes more insulating as the slag content increased. The effect of irradiation was also studied by exposing glass samples to two different irradiation doses. It can be noticed that irradiation causes an increase in the electrical conductivity, especially at high temperature. The results were discussed and correlated according to the molecular structure of the prepared glass

  11. Advanced treatment technique for swine wastewater using two agents: Thermally polymerized amorphous silica and hydrated lime for color and phosphorus removal and sulfur for nitrogen removal.

    Science.gov (United States)

    Hasegawa, Teruaki; Kurose, Yohei; Tanaka, Yasuo

    2017-10-01

    The efficacy of advanced treatment of swine wastewater using thermally polymerized, modified amorphous silica and hydrated lime (M-CSH-lime) for color and phosphorus removal and sulfur for nitrogen removal was examined with a demonstration-scale treatment plant. The color removal rate was approximately 78% at M-CSH-lime addition rates of > 0.055 wt/v%. The PO43--P removal rate exceeded 99.9% with > 0.023 wt/v%. pH of the effluent from the M-CSH-lime reactor increased with the addition rate till a maximum value of 12.7, which was effective in disinfection. The recovered M-CSH-lime would be suitable as a phosphorus fertilizer because the total P 2 O 5 content was approximately 10%. The nitrogen oxide (NOx-N) removal rate by sulfur denitrification increased to approximately 80% when the NOx-N loading rate was around 0.1 kg-N/ton-S/day. It was suggested that the combination of the two processes would be effective in the advanced treatment of swine wastewater. © 2017 Japanese Society of Animal Science.

  12. Viability for controlling long-term leaching of radionuclides from HLW glass by amorphous silica additives

    International Nuclear Information System (INIS)

    Inagaki, Y.; Uehara, S.

    2004-01-01

    Dissolution and deterioration experiments in coexistence system of amorphous silica and vitrified wastes have been executed in order to evaluating the effects of amorphous silica addition to high level radioactive vitrified waste (HLW glass) on suppression of nuclide leaching. Geo-chemical reaction mechanism among the vitrified waste, the amorphous silica and water was also evaluated. Dissolution of the silica network was suppressed by addition of the amorphous silica. However, the leaching of soluble nuclides like B proceeded depending on the hydration deterioration reaction. (A. Hishinuma)

  13. Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression

    Science.gov (United States)

    Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping

    2015-10-01

    Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.

  14. Radiation hardening in sol-gel derived Er3+-doped silica glasses

    International Nuclear Information System (INIS)

    Hari Babu, B.; León Pichel, Mónica; Ollier, Nadège; El Hamzaoui, Hicham; Bigot, Laurent; Savelii, Inna; Bouazaoui, Mohamed; Poumellec, Bertrand; Lancry, Matthieu; Ibarra, Angel

    2015-01-01

    The aim of the present paper is to report the effect of radiation on the Er 3+ -doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er 3+ -doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′ δ point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er 3+ to Er 2+ ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects

  15. High-silica glass matrix process for high-level waste solidification

    International Nuclear Information System (INIS)

    Simmons, J.H.; Macedo, P.B.

    1981-01-01

    In the search for an optimum glass matrix composition, we have determined that chemical durability and thermal stability are maximized, and that stress development is minimized for glass compositions containing large concentrations of glass-forming oxides, of which silica is the major component (80 mol%). These properties and characteristics were recently demonstrated to belong to very old geological glasses known as tektites (ages of 750,000 to 34 million years.) The barrier to simulating tektite compositions for the waste glasses was the high melting temperature (1600 to 1800 0 C) needed for these glasses. Such temperatures greatly complicate furnace design and maintenance and lead to an intolerable vaporization of many of the radioisotopes into the off-gas system. Research conducted at our laboratory led to the development of a porous high-silica waste glass material with approximately 80% SiO 2 by mole and 30% waste loading by weight. The process can handle a wide variety of compositions, and yields long, elliptical, monolithic samples, which consist of a loaded high-silica core completely enveloped in a high-silica glass tube, which has collapsed upon the core and sealed it from the outside. The outer glass layer is totally free of waste isotopes and provides an integral multibarrier protection system

  16. Three dimensional multilayer solenoid microcoils inside silica glass

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Si, Jinhai; Hou, Xun

    2016-01-01

    Three dimensional (3D) solenoid microcoils could generate uniform magnetic field. Multilayer solenoid microcoils are highly pursued for strong magnetic field and high inductance in advanced magnetic microsystems. However, the fabrication of the 3D multilayer solenoid microcoils is still a challenging task. In this paper, 3D multilayer solenoid microcoils with uniform diameters and high aspect ratio were fabricated in silica glass. An alloy (Bi/In/Sn/Pb) with high melting point was chosen as the conductive metal to overcome the limitation of working temperature and improve the electrical property. The inductance of the three layers microcoils was measured, and the value is 77.71 nH at 100 kHz and 17.39 nH at 120 MHz. The quality factor was calculated, and it has a value of 5.02 at 120 MHz. This approach shows an improvement method to achieve complex 3D metal microstructures and electronic components, which could be widely integrated in advanced magnetic microsystems.

  17. Development of high-average-power-laser medium based on silica glass

    International Nuclear Information System (INIS)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    We have developed a high-average-power laser material based on silica glass. A new method using Zeolite X is effective for homogeneously dispersing rare earth ions in silica glass to get a high quantum yield. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action, and therefore, we have carefully to treat the gelation and sintering processes, such as, selection of colloidal silica, pH value of for hydrolysis of tetraethylorthosilicate, and sintering history. The quality of the sintered sample and the applications are discussed. (author)

  18. Effect of barrier layers on the properties of indium tin oxide thin films on soda lime glass substrates

    International Nuclear Information System (INIS)

    Lee, Jung-Min; Choi, Byung-Hyun; Ji, Mi-Jung; An, Yong-Tae; Park, Jung-Ho; Kwon, Jae-Hong; Ju, Byeong-Kwon

    2009-01-01

    In this paper, the electrical, structural and optical properties of indium tin oxide (ITO) films deposited on soda lime glass (SLG) haven been investigated, along with high strain point glass (HSPG) substrate, through radio frequency magnetron sputtering using a ceramic target (In 2 O 3 :SnO 2 , 90:10 wt.%). The ITO films deposited on the SLG show a high electrical resistivity and structural defects compared with those deposited on HSPG due to the Na ions from the SLG diffusing to the ITO film by annealing. However, these properties can be improved by intercalating a barrier layer of SiO 2 or Al 2 O 3 between the ITO film and the SLG substrate. SIMS analysis has confirmed that the barrier layer inhibits the Na ion's diffusion from the SLG. In particular, the ITO films deposited on the Al 2 O 3 barrier layer, show better properties than those deposited on the SiO 2 barrier layer.

  19. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    Science.gov (United States)

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Studies of natural and 60Co gamma radio-induced conduction in metaphosphate glasses and silica

    International Nuclear Information System (INIS)

    Mengual Gil, M.A.

    1977-01-01

    A study of natural and 60 Co gamma radio-induced conduction in metaphosphate glasses and silica is presented. The experimental study of natural conduction current in metaphosphate glasses in function of temperature enables to observe two different values of the activation energies in the respective temperature ranges T>223K and T [fr

  1. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, University of Luxembourg, 162A avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany)], E-mail: martine.philipp@uni.lu

    2009-02-15

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  2. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    International Nuclear Information System (INIS)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K; Possart, W

    2009-01-01

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  3. The effects of gamma irradiation on the elastic properties of soda lime glass doped with cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Laopaiboon, R.; Laopaiboon, J.; Pencharee, S. [Glass Technology Excellent Center (GTEC), Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Nontachat, S. [Department of Radiotherapy, Ubon Ratchathani Cancer Centre, Ubon Ratchathani, 34190 (Thailand); Bootjomchai, C., E-mail: cherdsak_per@hotmail.co.th [Glass Technology Excellent Center (GTEC), Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand)

    2016-05-05

    Soda lime glass doped with cerium oxide was prepared using a conventional melt quenching technique. The density and molar volume of the glass samples were measured. Ultrasonic wave velocities of the glass samples were carried out using a pulse echo technique. The density and ultrasonic velocities were used for determining elastic moduli of the glass samples, both before and after irradiation with gamma rays at 1 kGy. The results revealed that the influence of gamma irradiation caused the matrix structure of the glass samples to be damaged by creating displacements, electronic defects and/or breaks in the network bonds, leading to the formation of non-bridging oxygens (NBOs). Elastic properties were investigated under the influence of gamma irradiation. The results also revealed that the structures of the glass samples were distorted by irradiation. Damage by irradiation created the NBOs and/or the transformation of main glass network structures from Q{sub 4} to Q{sub 3}. Evidence of these results was acquired from FTIR spectra. The results of FTIR supported the results and were obtained from ultrasonic velocities. In addition, the elastic properties obtained from experiments were compared with theoretical values calculated from the Makishima and Mackenzie model (M–M model). - Highlights: • Results show good agreement between experimental and theoretical of elastic moduli. • Influence of irradiation created a distorted network structure. • Transformation of network structure from Ref. Q{sub 4} to Q{sub 3} after irradiation. • FTIR result is good evidence of the result is obtained from ultrasonic technique.

  4. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  5. Structural analysis and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Yusuke; Akiyama, Kazuhiko [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan); Kobzi, Balázs; Sinkó, Katalin; Homonnay, Zoltán [Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117 (Hungary); Kuzmann, Ernő [Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117 (Hungary); Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest 1512 (Hungary); Ristić, Mira; Krehula, Stjepko [Division of Materials Chemistry, RuđerBošković Institute, Bijenička cesta 54, Zagreb 10000 (Croatia); Nishida, Tetsuaki [Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555 (Japan); Kubuki, Shiro, E-mail: kubuki@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan)

    2015-10-05

    Highlights: • Hematite was precipitated by heat treatment of iron aluminosilicate glass. • The hematite phase shows visible light photocatalytic activity. • We could prepare an effective photocatalyst from ‘ubiquitous elements’. - Abstract: A relationship between structure and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate (15Na{sub 2}O⋅15CaO⋅40Fe{sub 2}O{sub 3}⋅xAl{sub 2}O{sub 3}⋅(30−x)SiO{sub 2}) glass (xNCFAS) was investigated by means of {sup 57}Fe-Mössbauer spectroscopy, X-ray diffractometry (XRD) and UV–visible light absorption spectroscopy (UV–VIS). The {sup 57}Fe-Mössbauer spectrum of 11NCFAS glass measured after heat-treatment at 1000 °C for 100 min was composed of a paramagnetic doublet due to Fe{sup III}(T{sub d}) and two magnetic sextets due to regular hematite (α-Fe{sub 2}O{sub 3}) and hematite with larger internal magnetic field. X-ray diffraction patterns of heat-treated xNCFAS samples resulted in decrease of α-Fe{sub 2}O{sub 3} and increase of Ca{sub 2}Fe{sub 22}O{sub 33} or CaFe{sub 2}O{sub 4} with alumina content. A quick decrease in methylene blue (MB) concentration from 15.6 to 4.7 μmol L{sup −1} was observed in the photocatalytic reaction test with 40 mg of heat-treated 11NCFAS glass under visible light-exposure. The largest first-order rate constant of MB decomposition (k) was estimated to be 9.26 × 10{sup −3} min{sup −1}. Tauc’s plot yielded a band gap energy (E{sub g}) of 1.88 eV for heat-treated 11NCFAS glass, which is smaller than previously reported E{sub g} of 2.2 eV for α-Fe{sub 2}O{sub 3}. These results prove that addition of Al{sub 2}O{sub 3} into iron-containing soda lime silicate glass is favorable for the preparation of improved visible light-photocatalyst with ‘ubiquitous’ elements.

  6. Comparison of optical properties of Eu3+ ions in the silica gel glasses obtained by different preparation techniques

    International Nuclear Information System (INIS)

    Legendziewicz, J.; Sokolnicki, J.; Keller, B.; Borzechowska, M.; Strek, W.

    1996-01-01

    Silica-gel glasses doped with Eu 3+ ions were obtained by different preparation techniques. The absorption, emission and excitation spectra of the obtained glasses were measured in the range of 77-300 K. The energy levels diagrams of Eu 3+ ions were derived. An intensity analysis of f-f transitions was performed. In particular, polymeric structure behaviour of europium compounds entrapped in silica gel glasses was temperature controlled during the preparation of glasses. Their optical properties were investigated. (author)

  7. Anisotropic surroundings effects on photo absorption of partially embedded Au nanospheroids in silica glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xuan; Shibayama, Tamaki, E-mail: shiba@qe.eng.hokudai.ac.jp; Watanabe, Seiichi [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628 (Japan); Yu, Ruixuan; Ishioka, Junya [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628 (Japan)

    2015-02-15

    The influence of a directly adjacent or an anisotropic surrounding medium alters the plasmonic properties of a nanoparticle because it provides a mechanism for symmetry breaking of the scattering. Given the success of ion irradiation induced embedment of rigid metallic nanospheroids into amorphous substrate, it is possible to examine the effect of the silica glass substrate on the plasmonic properties of these embedded nanospheroids. In this work presented here, discrete dipole approximation (DDA) calculations for the Au nanospheroids’ optical properties were performed based on 3–dimensional (3D) configuration extracted from planar SEM micrographs and cross–sectional TEM micrographs of the Au nanospheroids partially embedded in the silica glass, and the well–matched simulations with respect to the experimental measurements could demonstrate the dielectric constant at the near surface of silica glass decreased after Ar–ion irradiation.

  8. Fluorescence lifetime studies of MeV erbium implanted silica glass

    International Nuclear Information System (INIS)

    Lidgard, A.; Polman, A.; Jacobsen, D.C.; Blonder, G.E.; Kistler, R.; Poate, J.M.; Becker, P.C.

    1991-01-01

    MeV erbium ion implantation into various SiO 2 glasses has been studied with the aim of incorporating the rare-earth dopant as an optically active ion in the silica network. The lifetime of the excited state ranges from 1.6 to 12.8 ms, depending on base material and implantation fluence. These results have positive implications for silica-based integrated optical technology. (Author)

  9. Fluorescence lifetime studies of MeV erbium implanted silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Lidgard, A.; Polman, A.; Jacobsen, D.C.; Blonder, G.E.; Kistler, R.; Poate, J.M.; Becker, P.C. (AT and T Bell Labs., Murray Hill, NJ (USA))

    1991-05-23

    MeV erbium ion implantation into various SiO{sub 2} glasses has been studied with the aim of incorporating the rare-earth dopant as an optically active ion in the silica network. The lifetime of the excited state ranges from 1.6 to 12.8 ms, depending on base material and implantation fluence. These results have positive implications for silica-based integrated optical technology. (Author).

  10. Mechanical Properties of a High Lead Glass Used in the Mars Organic Molecule Analyzer

    Science.gov (United States)

    Salem, Jonathan A.; Smith, Nathan A.; Ersahin, Akif

    2015-01-01

    The elastic constants, strength, fracture toughness, slow crack growth parameters, and mirror constant of a high lead glass supplied as tubes and funnels were measured using ASTM International (formerly ASTM, American Society for Testing and Materials) methods and modifications thereof. The material exhibits lower Young's modulus and slow crack growth exponent as compared to soda-lime silica glass. Highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.

  11. Fabrication of silica glass containing yellow oxynitride phosphor by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Hiroyo; Yoshimizu, Hisato; Hirosaki, Naoto; Inoue, Satoru, E-mail: SEGAWA.Hiroyo@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-06-15

    We have prepared silica glass by the sol-gel method and studied its ability to disperse the Ca-{alpha}-SiAlON:Eu{sup 2+} phosphor for application in white light emitting diodes (LEDs). The emission color generated by irradiating doped glass with a blue LED at 450 nm depended on the concentration of SiAlON and the glass thickness, resulting in nearly white light. The luminescence efficiency of 1-mm-thick glass depended on the SiAlON concentration, and was highest at 4 wt% SiAlON.

  12. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  13. Porous Silica Sol-Gel Glasses Containing Reactive V2O5 Groups

    Science.gov (United States)

    Stiegman, Albert E.

    1995-01-01

    Porous silica sol-gel glasses into which reactive vanadium oxide functional groups incorporated exhibit number of unique characteristics. Because they bind molecules of some species both reversibly and selectively, useful as chemical sensors or indicators or as scrubbers to remove toxic or hazardous contaminants. Materials also oxidize methane gas photochemically: suggests they're useful as catalysts for conversion of methane to alcohol and for oxidation of hydrocarbons in general. By incorporating various amounts of other metals into silica sol-gel glasses, possible to synthesize new materials with broad range of new characteristics.

  14. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    International Nuclear Information System (INIS)

    Choi, D.Y.; Lee, J.H.; Kim, D.S.; Jung, S.T.

    2004-01-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit

  15. The Effects of Salt Water on the Slow Crack Growth of Soda Lime Silicate Glass

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth parameters of soda-lime silicate were measured in distilled and salt water of various concentrations in order to determine if stress corrosion susceptibility is affected by the presence of salt and the contaminate formation of a weak sodium film. Past research indicates that solvents effect the rate of crack growth, however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the slow crack growth parameters A and n. However, for typical engineering purposes, the effect can be ignored.

  16. Effects of Aqueous Solutions on the Slow Crack Growth of Soda-Lime-Silicate Glass

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth (SCG) parameters of soda-lime-silicate were measured in distilled and saltwater of various concentrations in order to determine if the presence of salt and the contaminate formation of a weak sodium film affects stress corrosion susceptibility. Past research indicates that solvents affect the rate of crack growth; however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the SCG parameters A and n at high concentrations; however, for typical engineering purposes, the effect can be ignored.

  17. Use of rice rusk ash and spent catalyst as a source of raw material for the production and characterization of soda-lime silicate glasses destined for packaging

    International Nuclear Information System (INIS)

    Araujo, M.S.; Martinelli, J.R.; Genova, L.A.; Prado, U.S. do

    2016-01-01

    Study on the use of rice husk ash (RHA) and waste catalyst (ECAT), two industrial solid waste generated in large quantities in Brazil, getting soda-lime glass for the production of packaging. Both the waste may be classified as class II waste according to NBR 10,004. Samples were produced adding Na_2CO_3 and CaO to obtain a composition within the range of commercial soda-lime glasses. The results showed that both can be used as received (without any previous treatment) replacing important raw materials, source of Al_2O_3 and SiO2, necessary for glass formation. The produced samples were amber due to the presence of nickel (Ni2+ ions) from the ECAT and optical transmittance of 18%. These also showed good homogeneity, i.e., absence of bubbles and striae and dissolution rate higher than a commercial soda-lime glass. In general, the samples are presented suitable for applications that require low transmittance such as colored glass containers, which does not require perfect visibility and transparency. Finally, the waste level of incorporation was approximately 78 mass%. (author)

  18. Study of the influence of chemical composition on the pozzolanicity of soda-lime glass microparticles

    International Nuclear Information System (INIS)

    Sales, R.B.C.; Mohallem, N.D.S.; Aguilar, M.T.P.

    2014-01-01

    The use of residues presents interesting possibilities for obtaining eco-efficient concretes. Research has investigated the use of glass residue in Portland cement composite, whether as an aggregate or a supplementary material. However, there is still no consensus on the influence of the chemical composition of glass on the behaviour of the composites in which it is used. This paper aims to analyse the influence of this composition on the performance of cement composites produced with microparticles of colourless and amber glass. Pozzolanicity was assessed by means of direct tests (modified Chapelle and electrical conductivity) and indirect tests (chemical characterization, X-ray diffraction, thermo analysis and pozzolanic activity index). Most of the results show that microparticles of both types of glass display pozzolanic activity, with no significant differences between them. This indicates the potential for the use of glass microparticles as a supplementary material in cement composites. (author)

  19. A simulation approach to material removal in microwave drilling of soda lime glass at 2.45 GHz

    Science.gov (United States)

    Lautre, Nitin Kumar; Sharma, Apurbba Kumar; Pradeep, Kumar; Das, Shantanu

    2015-09-01

    Material removal during microwave drilling is basically due to thermal ablation of the material in the vicinity of the drilling tool. The microtip of the tool, also termed as concentrator, absorbs microwaves and ionizes the dielectric in its proximity creating a zone of plasma. The plasma takes the shape of a sphere owing to the atmospheric sphere, which acts as the source of thermal energy to be used for processing a material. This mechanism of heating, also called localized microwave heating, was used in the present study to drill holes in 1.2-mm-thick soda lime glass. The mechanism of material removal had been analyzed through simulation of the hot spot region, and the results were attempted to explain through experiment observations. It was realized that the glass being a poor conductor of heat, a low power (90 W in this case) yields better drilling results owing to more localized heat corresponding to a low-volume plasma sphere. The low application time prevents further heat transfer, and a localized concentration of heat becomes possible that primarily causes the material ablation. The plasma sphere appears sustain while the tool moves through the bulk of the glass thickness although its volume gets further shrunk. The process needs careful selection of the parameters. The simulation results show relatively low temperature in the top half (opposite to the tool tip) of the plasma sphere which eventually causes the semimolten viscous glass to collapse into the drill cavity as the tool advances into the bulk and stops the movement of the tool. The continued plasma sphere raises the tip temperature, which makes the tip to melt and gets blunt. The plasma formation ceases owing to larger diameter of the tool, and the tool gets stuck which could be verified through experimental results.

  20. On-line plutonium measurement by alpha counting using a silica glass sensor

    International Nuclear Information System (INIS)

    Edeline, J.C.; Furgolle, B.

    1980-01-01

    Some cerium activated high purity silica glasses are good sensors for ionising particles counting. These sensors may be used for measuring plutonium concentrations in corrosive solutions which are typical in reprocessing operations. The thickness of the sensor has been reduced to minimize beta sensitivity. The thin sensor is hold by molecular adhesion to a thick glass mount which is soldered to the stainless steel sample cell [fr

  1. Influence of glass furnace operational conditions on the evaporation from soda-lime and borosilicate glass melts.

    NARCIS (Netherlands)

    Beerkens, R.G.C.

    2000-01-01

    The evaporation of sodium and boron species from the melts in industrial glass furnaces leads to emissions of particulates (dust) and to furnace atmospheres containing reactive evaporation products. These reactive species, especially alkali vapors, can react with the superstructure refractories

  2. Hydration of high-silica glasses in the deep sea

    International Nuclear Information System (INIS)

    Federman, A.N.

    1986-01-01

    Natural analogs of nuclear waste glasses are important because they provide information of the one variable that is not controllable in the laboratory - long intervals of time in the actual environment of storage. Some natural glasses have persisted for millions of years in deep-sea sediments in the form of disseminated particles and distinct tephra layers, while other apparently similar specimens have been completely altered to clay assemblages relatively quickly. Geologists have reached no firm conclusions as to why these differences exist, and more research is certainly warranted. These glasses vary in age, composition, and in the in-situ conditions they have experienced. They may provide important information for two different aspects of nuclear waste glass research: First, the chemical composition and especially the water content of these glasses as a function of time may give an understanding of the mechanisms and rates of diffusion in glasses in the natural environment. Second, the apparent differing durability of these glasses in different environmental conditions may suggest the optimal characteristics of a nuclear waste glass depository

  3. Visible light activated catalytic effect of iron containing soda-lime silicate glass characterized by 57Fe-Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Shiro Kubuki; Jun Iwanuma; Yusuke Takahashi; Kazuhiko Akiyama; Ernoe Kuzmann; Hungarian Academy of Sciences, Budapest; Tetsuaki Nishida

    2014-01-01

    A relationship between local structure and visible light activated catalytic effect of iron containing soda lime silicate glass with the composition of 15Na 2 O·15CaO·xFe 2 O 3 ·(70-x)SiO 2 , x = 5-50 mass %, abbreviated as NCFSx was investigated by means of 57 Fe-Moessbauer spectroscopy, X-ray diffractometry (XRD), small angle X-ray scattering (SAXS), electrospray ionization mass spectrometry (ESI-MS) and ultraviolet-visible light absorption spectroscopy (UV-Vis). Moessbauer spectra of NCFSx glass with 'x' being equal to or larger than 30 after isothermal annealing at 1,000 deg C for 100 min consisted of a paramagnetic doublet and a magnetic sextet. The former had isomer shift (δ) of 0.24 mm s -1 and quadrupole splitting (Δ) of 0.99 mm s -1 due to distorted Fe III O 4 tetrahedra, and the latter had δ of 0.36 mm s -1 and internal magnetic field (H int ) of 51.8 T due to hematite (α-Fe 2 O 3 ). The absorption area (A) of α-Fe 2 O 3 varied from 47.2 to 75.9, 93.1, 64.8 and 47.9 % with 'x' from 30 to 35, 40, 45 and 50, indicating that the amount of precipitated α-Fe 2 O 3 varied with the Fe 2 O 3 content of NCFSx glass. The precipitation of α-Fe 2 O 3 was also confirmed by XRD study of annealed NCFS glass with 'x' larger than 30. A relaxed sexted with δ, H int and Γ of 0.34 mm s -1 and 37.9 T and 1.32 mm s -1 was observed from the Moessbauer spectra of annealed NCFSx glass with 'x' of 45 and 50, implying that the precipitation of non-stoichiometric iron hydroxide oxide with the composition of Fe 1.833 (OH) 0.5 O 2.5 having the similar structure of α-Fe 2 O 3 and α-FeOOH. A remarkable decrease in the concentration of methylene blue (MB) from 10 to 0.0 μmol L -1 with the first-order rate constant (k) of 2.87 × 10 -2 h -1 was observed for 10-day leaching test using annealed NCFS50 glass under visible light irradiation. ESI-MS study indicated that existence of fragments with m/z value of 129, 117 and 207 etc. originating from MB having m/z of 284. This

  4. ToF-SIMS analysis for leaching studies of potash–lime–silica glass

    International Nuclear Information System (INIS)

    De Bardi, Monica; Hutter, Herbert; Schreiner, Manfred

    2013-01-01

    In this work the durability to acidic solutions of two kinds of potash–lime–silica glasses with compositions typical for mediaeval stained glass was investigated. The low amount of network formers such as silica and alumina, and the high amount of network modifiers such as potassium and calcium, give to the glass a lower chemical stability compared to modern glass. Studies on its durability are of interest to understand degradation mechanisms. In particular the leaching procedure was focused on determining any correlation between the type of acid and the corrosion of glass independently from the pH value, which was kept constant during the different acidic treatments. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a valuable tool to study compositional variations of glass, giving useful information concerning provenance, effects of the conservation environment, of weathering or leaching processes and about the compositional differences between the corroded layer and the bulk as a function of depth. In spite of that the insulating properties of glass, the surface roughness and the parameters used for the measurements can lead to possible misinterpretations of the results; in this paper these difficulties are discussed, in order to better interpret the analyses performed on leached glass. ToF-SIMS data are influenced by strong matrix effects making quantification difficult; for this reason the quantitative composition and surface morphology of the leached layer were additionally investigated with scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM–EDX)

  5. A dynamic fatigue study of soda-lime silicate and borosilicate glasses using small scale indentation flaws

    International Nuclear Information System (INIS)

    Dabbs, T.P.; Lawn, B.R.; Kelly, P.L.

    1982-01-01

    The dynamic fatigue characteristics of two glasses, soda-lime silicate and borosilicate, in water have been studied using a controlled indentation flaw technique. It is argued that the indentation approach offers several advantages over more conventional fatigue testing procedures: (i) the reproducibility of data is relatively high, eliminating statistics as a basis of analysis: (ii) the flaw ultimately responsible for failure is well defined and may be conveniently characterised before and after (and during, if necessary) the strength test; (iii) via adjustment of the indentation load, the size of the flaw can be suitably predetermined. Particular attention is devoted to the third point because of the facility it provides for systematic investigation of the range of flaw sizes over which macroscopic crack behaviour remains applicable. The first part of the paper summarises the essential fracture mechanics theory of the extension of an indentation flaw to failure. In the next part of the paper the results of dynamic fatigue tests on glass rods in distilled water are described. Data are obtained for Vickers indentation loads in the range 0.05 to 100 N, corresponding to contact dimensions of 2 to 100 μm. Finally, the implications of the results in relation to the response of 'natural' flaws are discussed. (author)

  6. The role of residual cracks on alkali silica reactivity of recycled glass aggregates

    DEFF Research Database (Denmark)

    Maraghechi, Hamed; Shafaatian, Seyed-Mohammad-Hadi; Fischer, Gregor

    2012-01-01

    Despite its environmental and economical advantages, crushed recycled glass has limited application as concrete aggregates due to its deleterious alkali-silica reaction. To offer feasible mitigation strategies, the mechanism of ASR should be well understood. Recent research showed that unlike some...

  7. Refractive index and density in F- and Cl-doped silica glasses

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Shimodaira, Noriaki; Sekiya, Edson H.; Saito, Kazuya; Ikushima, Akira J.

    2005-01-01

    The refractive index and density of fluorine- and chlorine-doped silica glasses were measured as functions of fictive temperature. The halogen concentrations were observed to have a refractive index or density that is independent of the fictive temperature were found. This implies that these properties are not affected by any heat-treatment conditions

  8. Glass formation and properties in the system calcia-gallia-silica

    Science.gov (United States)

    Angel, Paul W.; Ray, Chandra S.; Day, Delbert E.

    1990-01-01

    The glass-forming region in the calcia-gallia-silica system is studied and found to be fairly large, with a density of 3-4 g/cu cm, a refractive index of 1.6-1.73, an Abbe number of 35-58, a thermal expansion coefficient of 6.5-11.5 x 10 to the -7th/deg C, and a Vickers microhardness of 5.2-7.3 GPa. Crystalline phases are identified at the boundary of the glass-forming region. The structural groups in the glass-forming compositions are analyzed by infrared absorption spectroscopy.

  9. Porous glass with high silica content for nuclear waste storage : preparation, characterization and leaching

    International Nuclear Information System (INIS)

    Aegerter, M.A.; Santos, D.I. dos; Ventura, P.C.S.

    1984-01-01

    Aqueous solutions simulating radioactive nuclear wastes (like Savanah River Laboratory) were incorporated in porous glass matrix with high silica content prepared by decomposition of borosilicate glass like Na 2 O - B 2 O 3 - SiO 2 . After sintering, the samples were submitted, during 28 days, to standard leaching tests MCC1, MCC5 (Soxhlet) and stagnating. The total weight loss, ph, as well as the integral and differential leaching rates and the accumulated concentrations in the leach of Si, Na, B, Ca, Mn, Al, Fe and Ni. The results are compared with the results from reference borosilicate glass, made by fusion, ceramic, synroc, concrets, etc... (E.G.) [pt

  10. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol-gel derived silica glass

    Science.gov (United States)

    Le Rouge, A.; El Hamzaoui, H.; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L.

    2015-05-01

    A new approach to dope a silica glass with gold nanoparticles (GNPs) is presented. It consisted in embedding zirconia-coated GNPs in a silica sol to form a doped silica gel. Then, the sol-doped nanoporous silica xerogel is densified leading to the formation of a glass monolith. The spectral position and shape of the surface plasmon resonance (SPR) reported around 520 nm remain compatible with small spherical GNPs in a silica matrix. The saturable absorption behavior of this gold/zirconia-doped silica glass has been evidenced by Z-scan technique. A second-order nonlinear absorption coefficient β of about -13.7 cm GW-1 has been obtained at a wavelength near the SPR of the GNPs.

  11. Structure and spectral properties of the silver-containing high-silica glasses

    International Nuclear Information System (INIS)

    Girsova, M A; Golovina, G F; Anfimova, I N; Antropova, T V; Arsent'ev, M Yu

    2016-01-01

    Silver-containing high-silica glasses were synthesized by an impregnation of the silica porous glasses (PGs) first with AgNO 3 aqueous solution (with or without the presence of the sensitizers, such as Cu(NO 3 ) 2 or Ce(NO 3 ) 3 ), next in the mixed halide salt (NH 4 Cl, KBr, KI) solution. Then some part of the samples was sintered at the temperatures from 850 to 900°C up to closing of the pores. The structure of glasses was studied by UV-VIS-NIR and IR spectroscopy and X-ray diffraction (XRD) techniques. According to XRD data the silver-containing high-silica glasses contain the AgBr, AgI, Ag 3 PO 4 , (CuBr) 0.75 (CuI) 0.25 phases. IR spectra confirmed B-O-B, Si- O-Si, P-O-P, O-P-O, O-B-O bonds, (PO 4 ) 3- and P-O - groups in glasses. (paper)

  12. Development of a tuned interfacial force field parameter set for the simulation of protein adsorption to silica glass.

    Science.gov (United States)

    Snyder, James A; Abramyan, Tigran; Yancey, Jeremy A; Thyparambil, Aby A; Wei, Yang; Stuart, Steven J; Latour, Robert A

    2012-12-01

    Adsorption free energies for eight host-guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5-9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface.

  13. Photon emission induced by brittle fracture of borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Sato, Yoshitaka [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Kishi, Tetsuo [Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Yasuda, Kouichi [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-05-15

    Photon emission (PE) at wavelength ranges of 430–490 nm (B-PE), 500–600 nm (G-PE) and 610–680 nm (R-PE) caused by brittle fracture was simultaneously measured in the nanosecond-to-microsecond and millisecond time domains for two types of borosilicate glasses: Pyrex-type Tempax glass and BK7 glass. The results were compared to those for silica and soda lime glasses. The time dependence of the PE of Tempax glass was similar to that of silica glass, while the PE intensity was lower. Because Tempax glass contains both silica-rich and borate-rich amorphous phases, the PE must be mainly produced by the fracture of the silica-rich phase. Moreover, the proportion of B-PE of Tempax glass was higher than that of silica glass. This suggests that the measured B-PE might also include very weak PE caused by the fracture of the borate-rich phase. The PE time dependence of BK7 glass was similar to that of soda lime glass, which was different from the case for Tempax glass. The PE intensity of BK7 glass was slightly higher than that of soda lime glass, but much lower than that of Tempax glass. The result indicates that non-bridging oxygen in the glasses affects crack propagation behavior and reduces the PE. - Highlights: • Photon emission (PE) upon brittle fracture of borosilicate glasses was measured. • Pyrex-type Tempax and BK7 glasses showed different PE characteristics. • The rupture of Si–O bonds produces much stronger PE than that of B–O bonds. • Non-bridging oxygen in glass affects crack propagation behavior and reduces the PE.

  14. Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers.

    Science.gov (United States)

    Jain, Chhavi; Rodrigues, Bruno P; Wieduwilt, Torsten; Kobelke, Jens; Wondraczek, Lothar; Schmidt, Markus A

    2016-02-22

    Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering.

  15. Influence of Thermal Annealing and a Glass Coating on the Strength of Soda-Lime-Silicate Glass

    Science.gov (United States)

    2017-11-01

    7. Fletcher PC, Tillman JJ . Effect of silicone quenching and acid polishing on the strength of glass. J Am Ceram Soc. 1964;47(8):379–382. 8...advanced ceramics at ambient temperature. West Conshohocken (PA): ASTM International; 2015. 14. Swab JJ , Thies SR, Wright JC, Shoenstein JA, Patel PJ

  16. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam

    International Nuclear Information System (INIS)

    Niry, M. D.; Khalesifard, H. R.; Mostafavi-Amjad, J.; Ahangary, A.; Azizian-Kalandaragh, Y.

    2012-01-01

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar + laser beam (intensity: 9.2 x 10 4 W/cm 2 ) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  17. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Mingfei [Henan Key Laboratory Cultivation Base of Mine Environmental Protection and Ecological Remediation, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Fu, Zegang [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Wang, Yaping, E-mail: wangyp326@163.com [School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan China (China); Wang, Jingyu [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Zhang, Zhiyuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2017-01-15

    Highlights: • CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. • A part of PbO was reduced into Pb and detached from the glass phase. • The rest of PbO and other metal oxides were mainly concentrated in the B{sub 2}O{sub 3} phase. • PbO enriched in the interconnected B{sub 2}O{sub 3} phase can be completely leached out by HNO{sub 3}. • High silica glass powder(SiO{sub 2} purity >95%) was obtained after the leaching process. - Abstract: In this study, a novel process for the removal of toxic lead from the CRT funnel glass and synchronous preparation of high silica glass powder was developed by a carbon-thermal reduction enhanced glass phase separation process. CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. In the thermal process, a part of PbO contained in the funnel glass was reduced into metallic Pb and detached from the glass phase. The rest of PbO and other metal oxides (including Na{sub 2}O, K{sub 2}O, Al{sub 2}O{sub 3,} BaO and CaO) were mainly concentrated in the boric oxide phase. The metallic Pb phase and boric oxide phase were completely leached out by 5 mol/L HNO{sub 3}. The lead removal rate was 99.80% and high silica glass powder (SiO{sub 2} purity >95 wt%) was obtained by setting the temperature, B{sub 2}O{sub 3} added amount and holding time at 1000 °C, 20% and 30 mins, respectively. The prepared high silicate glass powders can be used as catalyst carrier, semipermeable membranes, adsorbents or be remelted into high silicate glass as an ideal substitute for quartz glass. Thus this study proposed an eco-friendly and economical process for recycling Pb-rich electronic glass waste.

  18. Analysis of soda-lime glasses using non-negative matrix factor deconvolution of Raman spectra

    OpenAIRE

    Woelffel , William; Claireaux , Corinne; Toplis , Michael J.; Burov , Ekaterina; Barthel , Etienne; Shukla , Abhay; Biscaras , Johan; Chopinet , Marie-Hélène; Gouillart , Emmanuelle

    2015-01-01

    International audience; Novel statistical analysis and machine learning algorithms are proposed for the deconvolution and interpretation of Raman spectra of silicate glasses in the Na 2 O-CaO-SiO 2 system. Raman spectra are acquired along diffusion profiles of three pairs of glasses centered around an average composition of 69. 9 wt. % SiO 2 , 12. 7 wt. % CaO , 16. 8 wt. % Na 2 O. The shape changes of the Raman spectra across the compositional domain are analyzed using a combination of princi...

  19. Modeling and evaluating of surface roughness prediction in micro-grinding on soda-lime glass considering tool characterization

    Science.gov (United States)

    Cheng, Jun; Gong, Yadong; Wang, Jinsheng

    2013-11-01

    The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 μm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5×107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion

  20. Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO{sub 2}-PVA nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Murata, Takahiro [Faculty of Education and Master' s Course in Education, Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Fujino, Shigeru, E-mail: fujino@astec.kyushu-u.ac.jp [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2015-07-15

    Monolithic silica glasses doped with Cu ions were prepared by immersing a mesoporous SiO{sub 2}-polyvinyl alcohol (PVA) nanocomposite in a copper nitrate solution followed by sintering at 1100 °C for 12 h in air. The Cu ions were reduced from divalent to monovalent during the sintering process and consequently Cu{sup +} was doped into the silica glass matrix. The sintered glass possessed blue or yellow photoluminescence (PL) under UV irradiation, depending on the total concentration of Cu ions in the sintered silica glass. At a lower concentration below 30 ppm, the isolated Cu{sup +} existed in the glass matrix resulting in the blue PL. However, above 70 ppm, the Cu{sup +}–Cu{sup +} pairs were present, exhibiting the yellow PL. It was demonstrated that the PL characteristics of the sintered silica glasses doped with monovalent copper ions were affected by the total concentration of Cu ions in the glass, which can be adjusted as a function of the immersion conditions. - Highlights: • Silica glass doped with Cu{sup +} was fabricated by sintering the nanocomposite. • The Cu ions were reduced from divalent to monovalent during the sintering process. • The sintered glass possessed blue or yellow PL under UV irradiation. • The blue and yellow PL are due to isolated Cu{sup +} and Cu{sup +}–Cu{sup +} pairs, respectively. • The PL characteristics depended on the total concentration of Cu ions in the glass.

  1. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  2. A completely transparent, adhesively bonded soda-lime glass block masonry system

    NARCIS (Netherlands)

    Oikonomopoulou, F.; Veer, F.A.; Nijsse, R.; Baardolf, G.

    2014-01-01

    A pioneering, all transparent, self-supporting glass block facade is presented in this paper. Previously realized examples utilize embedded metal components in order to obtain the desired structural performance despite the fact that these elements greatly affect the facade’s overall transparency

  3. Silica nanoparticles on front glass for efficiency enhancement in superstrate-type amorphous silicon solar cells

    Science.gov (United States)

    Das, Sonali; Banerjee, Chandan; Kundu, Avra; Dey, Prasenjit; Saha, Hiranmay; Datta, Swapan K.

    2013-10-01

    Antireflective coating on front glass of superstrate-type single junction amorphous silicon solar cells (SCs) has been applied using highly monodispersed and stable silica nanoparticles (NPs). The silica NPs having 300 nm diameter were synthesized by Stober technique where the size of the NPs was controlled by varying the alcohol medium. The synthesized silica NPs were analysed by dynamic light scattering technique and Fourier transform infrared spectroscopy. The NPs were spin coated on glass side of fluorinated tin oxide (SnO2: F) coated glass superstrate and optimization of the concentration of the colloidal solution, spin speed and number of coated layers was done to achieve minimum reflection characteristics. An estimation of the distribution of the NPs for different optimization parameters has been done using field-emission scanning electron microscopy. Subsequently, the transparent conducting oxide coated glass with the layer having the minimum reflectance is used for fabrication of amorphous silicon SC. Electrical analysis of the fabricated cell indicates an improvement of 6.5% in short-circuit current density from a reference of 12.40 mA cm-2 while the open circuit voltage and the fill factor remains unaltered. A realistic optical model has also been proposed to gain an insight into the system.

  4. Silica nanoparticles on front glass for efficiency enhancement in superstrate-type amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Das, Sonali; Kundu, Avra; Dey, Prasenjit; Saha, Hiranmay; Datta, Swapan K; Banerjee, Chandan

    2013-01-01

    Antireflective coating on front glass of superstrate-type single junction amorphous silicon solar cells (SCs) has been applied using highly monodispersed and stable silica nanoparticles (NPs). The silica NPs having 300 nm diameter were synthesized by Stober technique where the size of the NPs was controlled by varying the alcohol medium. The synthesized silica NPs were analysed by dynamic light scattering technique and Fourier transform infrared spectroscopy. The NPs were spin coated on glass side of fluorinated tin oxide (SnO 2 : F) coated glass superstrate and optimization of the concentration of the colloidal solution, spin speed and number of coated layers was done to achieve minimum reflection characteristics. An estimation of the distribution of the NPs for different optimization parameters has been done using field-emission scanning electron microscopy. Subsequently, the transparent conducting oxide coated glass with the layer having the minimum reflectance is used for fabrication of amorphous silicon SC. Electrical analysis of the fabricated cell indicates an improvement of 6.5% in short-circuit current density from a reference of 12.40 mA cm −2 while the open circuit voltage and the fill factor remains unaltered. A realistic optical model has also been proposed to gain an insight into the system. (paper)

  5. Oxidation state variation under {beta}-irradiation in an iron-bearing soda lime glass system

    Energy Technology Data Exchange (ETDEWEB)

    Rossano, S; Boizot, B [Lab. des Solides Irradies, UMR 7642 CEA-CNRS-Ecole Polytechnique, Palaiseau (France); Jean-Soro, L; Hullebusch, E van; Gouzin, L; Combes, R [Lab. Geomateriaux et Environnement, EA 4119, Univ. Paris-Est Marne la Vallee (France); Farges, F [Museum National d' Histoire Naturelle de Paris, UMR CNRS 7202, Paris (France); Labanowski, J [Lab. de Chimie et Microbiologie de l' Eau, UMR CNRS 6008, Univ. de Poitiers (France); Linares, J [GEMAC, UMR 8635, Univ. de Versailles Saint-Quentin-en-Yvelines (France); Swarbrick, J C [European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, Cedex 9 (France); Harfouche, M, E-mail: stephanie.rossano@univ-paris-est.f [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen (Switzerland)

    2009-11-15

    The effect of ionizing radiation on glasses in the system SiO{sub 2}-CaO-Na{sub 2}O-Fe{sub 2}O{sub 3} is investigated as a function of iron concentration or / and irradiation dose by a pre-edge analysis at the iron K-edge. While reduction phenomenon is clearly observed for large irradiation doses (5 C), the effect of irradiation for intermediate doses is more challenging to interpret. Comparison between X-ray absorption measurements, colorimetry results and Electron Paramagnetic Resonance measurements suggest that iron environment may be modified without the ions being reduced.

  6. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.

    Science.gov (United States)

    Luo, Junhang; Wang, Jiangwei; Bitzek, Erik; Huang, Jian Yu; Zheng, He; Tong, Limin; Yang, Qing; Li, Ju; Mao, Scott X

    2016-01-13

    Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.

  7. Molecular dynamics study of shock compression in porous silica glass

    Science.gov (United States)

    Jones, Keith; Lane, J. Matthew D.; Vogler, Tracy J.

    2017-06-01

    The shock response of porous amorphous silica is investigated using classical molecular dynamics, over a range of porosity ranging from fully dense (2.21 g/cc) down to 0.14 g/cc. We observe an enhanced densification in the Hugoniot response at initial porosities above 50 %, and the effect increases with increasing porosity. In the lowest initial densities, after an initial compression response, the systems expand with increased pressure. These results show good agreement with experiments. Mechanisms leading to enhanced densification will be explored, which appear to differ from mechanisms observed in similar studies in silicon. Sandia National Laboratories is a multi mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Preparation and Characterization of Lightweight Mullite-Silica Rich Glass Aggregates

    Directory of Open Access Journals (Sweden)

    Nan Li

    2011-09-01

    Full Text Available Phase compositions, microstructures and properties of four lightweight mullite-silica rich glass aggregates with high strength were investigated by X-ray diffractometry (XRD, scanning electron microscopy (SEM, and FactSage 6.2 software. It was found that the lightweight aggregates with higher Al2O3 content had higher mullite content, porosity and larger mullite crystallites, but lower content and viscosity of melt at elevated temperature. Most of Fe2O3 and TiO2 were incorporated in mullite and most of K2O and Na2O were in glass to reduce viscosity of melt at elevated temperature.

  9. Thermal stability and practical applications of UV induced index changes in silica glasses

    DEFF Research Database (Denmark)

    Rathje, Jacob

    2000-01-01

    This thesis represents the partial fulfilment of the requirements for the danish ph.d. degree. I have been involved in both basic research of UV induced refractive index changes in silica glasses and in concrete applications. I have performed work on the thermal stability of UV-induced index...... the asymmetry showed good agreement with the obeserved data. The results were used to make a direction sensitive bend sensor of only one fiber. The sensor has further the advantage that it is insensitve to cross sensitivity from temperature, strin, and other external factors. Finally, an investigation of Nragg...... changes in silica glasses where a new continuous isochronal annealing method was introduced. The method was applied to gratings written in D2-loaded fibers and non-loaded fibers. For the non-loaded fibers the obtained results are in good agreement with what has previously been observed. For the D2-loaded...

  10. The effect of heat treatment on the magnitude and composition of residual gas in sealed silica glass ampoules

    Science.gov (United States)

    Palosz, W.; Szofran, F. R.; Lehoczky, S. L.

    1994-01-01

    The residual gas pressure and composition in sealed silica glass ampoules as a function of different treatment procedures has been investigated. The dependence of the residual gas on the outgassing and annealing parameters has been determined. The effects of the fused silica brand, of the ampoule fabrication, and of post-outgassing procedures have been evaluated.

  11. Spectral dependence of nonlinear optical absorption of silica glass with copper nanoparticles

    International Nuclear Information System (INIS)

    Golubev, A N; Nikitin, S I; Smirnov, M A; Stepanov, A L

    2011-01-01

    The nonlinear optical properties of silica glass with copper nanoparticles synthesized by ion implantation were investigated by z-scan method in nanosecond time scale. The reverse saturation absorption (RSA) at the wavelength range of 450–540 nm and saturation absorption (SA) at 550–585 nm were observed. It was supposed that the two-photon electron absorption from bound of d-states determined the RSA effect and the SA is due to saturation of plasmon excitation.

  12. Wettability of modified silica layers deposited on glass support activated by plasma

    Energy Technology Data Exchange (ETDEWEB)

    Terpiłowski, Konrad, E-mail: terpil@umcs.pl [Department of Physical Chemistry – Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, Lublin (Poland); Rymuszka, Diana [Department of Physical Chemistry – Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, Lublin (Poland); Goncharuk, Olena V.; Sulym, Iryna Ya.; Gun’ko, Vladimir M. [Chuiko Institute of Surface Chemistry, National Academy of Science of Ukraine, Kiev (Ukraine)

    2015-10-30

    Highlights: • New modified silica materials synthesis. • Support surface plasma activation. • Apparent surface free energy determination. • Equilibrium contact angle calculation. - Abstract: Fumed silica modified by hexamethyldisilazane [HDMS] and polydimethylsiloxane [PDMS] was dispersed in a polystyrene/chloroform solution. To increase adhesion between deposited silica layers and a glass surface, the latter was pretreated with air plasma for 30 s. The silica/polystyrene dispersion was deposited on the glass support using a spin coater. After deposition, the plates were dried in a desiccator for 24 h. Water advancing and receding contact angles were measured using the tilted plate method. The apparent surface free energy (γ{sub S}) was evaluated using the contact angle hysteresis approach. The surface topography was determined using the optical profilometry method. Contact angles changed from 59.7° ± 4.4 (at surface coverage with trimethylsilyl groups Θ = 0.14) to 155° ± 3.1 at Θ = 1. The value of γ{sub S} decreased from 51.3 ± 2.8 mJ/m{sup 2} (for the sample at the lowest value of Θ) to 1.0 ± 0.4 mJ/m{sup 2} for the most hydrophobic sample. Thus, some systems with a high degree of modification by HDMS showed superhydrophobicity, and the sliding angle amounted to about 16° ± 2.1.

  13. Effect of silica and water content on the glass transition of poly(ethylene glycol) monomethylether-silica gel-lithium perchlorate ormolytes

    International Nuclear Information System (INIS)

    Korwin, Rebecca S.; Masui, Hitoshi

    2005-01-01

    The effect of silica and water content on the glass transition temperature, T g , of MPEG2000-silica-LiClO 4 ormolytes was assessed by differential scanning calorimetry (DSC). The sol-gel synthesized ormolytes consisted of various amounts of poly(ethylene glycol) monomethylether (M.W. 2000 g/mol; i.e., MPEG2000) tethered to silica gel through the hydroxyl terminus via a urethane linkage. DSC features corresponding to physisorbed and hydrogen-bonded water, as well as the glass transition of the polyether, were identified. Both silica and LiClO 4 raise the T g and suppress crystallization of the polyether component. Water plasticizes the polyether and stoichiometrically solvates and sequesters Li + , thereby, lowering T g

  14. Bone Loss at Implant with Titanium Abutments Coated by Soda Lime Glass Containing Silver Nanoparticles: A Histological Study in the Dog

    Science.gov (United States)

    Martinez, Arturo; Guitián, Francisco; López-Píriz, Roberto; Bartolomé, José F.; Cabal, Belén; Esteban-Tejeda, Leticia; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression. PMID:24466292

  15. Bone loss at implant with titanium abutments coated by soda lime glass containing silver nanoparticles: a histological study in the dog.

    Directory of Open Access Journals (Sweden)

    Arturo Martinez

    Full Text Available The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression.

  16. Short and medium range order in two-component silica glasses by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Inoue, K.; Kataoka, H.; Nagai, Y.; Hasegawa, M.; Kobayashi, Y.

    2014-01-01

    The dependence of chemical composition on the average sizes of subnanometer-scale intrinsic structural open spaces surrounded by glass random networks in two-component silica-based glasses was investigated systematically using positronium (Ps) confined in the open spaces. The average sizes of the open spaces for SiO 2 -B 2 O 3 and SiO 2 -GeO 2 glasses are only slightly dependent on the chemical compositions because the B 2 O 3 and GeO 2 are glass network formers that are incorporated into the glass network of the base SiO 2 . However, the open space sizes for all SiO 2 -R 2 O (R = Li, Na, K) glasses, where R 2 O is a glass network modifier that occupies the open spaces, decrease rapidly with an increase in the R 2 O concentration. Despite the large difference in the ionic radii of the alkali metal (R) atoms, the open space sizes decrease similarly for all the alkali metal atoms studied. This dependence of the chemical composition on the open space sizes in SiO 2 -R 2 O observed by Ps shows that the alkali metal atoms do not randomly occupy the structural open spaces, but filling of the open spaces by R 2 O proceeds selectively from the larger to the smaller open spaces as the R 2 O concentrations are increased.

  17. The Structure and Properties of Silica Glass Nanostructures using Novel Computational Systems

    Science.gov (United States)

    Doblack, Benjamin N.

    The structure and properties of silica glass nanostructures are examined using computational methods in this work. Standard synthesis methods of silica and its associated material properties are first discussed in brief. A review of prior experiments on this amorphous material is also presented. Background and methodology for the simulation of mechanical tests on amorphous bulk silica and nanostructures are later presented. A new computational system for the accurate and fast simulation of silica glass is also presented, using an appropriate interatomic potential for this material within the open-source molecular dynamics computer program LAMMPS. This alternative computational method uses modern graphics processors, Nvidia CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model select materials, this enhancement allows the addition of accelerated molecular dynamics simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal of this project is to investigate the structure and size dependent mechanical properties of silica glass nanohelical structures under tensile MD conditions using the innovative computational system. Specifically, silica nanoribbons and nanosprings are evaluated which revealed unique size dependent elastic moduli when compared to the bulk material. For the nanoribbons, the tensile behavior differed widely between the models simulated, with distinct characteristic extended elastic regions. In the case of the nanosprings simulated, more clear trends are observed. In particular, larger nanospring wire cross-sectional radii (r) lead to larger Young's moduli, while larger helical diameters (2R) resulted in smaller Young's moduli. Structural transformations and theoretical models are also analyzed to identify

  18. Glass formation, properties and structure of soda-yttria-silica glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1992-01-01

    The glass formation region of the soda yttria silicate system was determined. The glasses within this region were measured to have a density of 2.4 to 3.1 g/cu cm, a refractive index of 1.50 to 1.60, a coefficient of thermal expansion of 7 x 10(exp -6)/C, softening temperatures between 500 and 780 C, and Vickers hardness values of 3.7 to 5.8 GPa. Aqueous chemical durability measurements were made on select glass compositions while infrared transmission spectra were used to study the glass structure and its effect on glass properties. A compositional region was identified which exhibited high thermal expansion, high softening temperatures, and good chemical durability.

  19. Wiping frictional properties of electrospun hydrophobic/hydrophilic polyurethane nanofiber-webs on soda-lime glass and silicon-wafer.

    Science.gov (United States)

    Watanabe, Kei; Wei, Kai; Nakashima, Ryu; Kim, Ick Soo; Enomoto, Yuji

    2013-04-01

    In the present work, we conducted the frictional tests of hydrophobic and hydrophilic polyurethane (PUo and PUi) nanofiber webs against engineering materials; soda-lime glass and silicon wafer. PUi/glass combination, with highest hydrophilicity, showed the highest friction coefficient which decrease with the increase of the applied load. Furthermore, the effects of fluorine coating are also investigated. The friction coefficient of fluorine coated hydrophobic PU nanofiber (PUof) shows great decrease against the silicon wafer. Finally, wiping ability and friction property are investigated when the substrate surface is contaminated. Nano-particle dusts are effectively collected into the pores by wiping with PUo and PUi nanofiber webs both on glass and silicon wafer. The friction coefficient gradually increased with the increase of the applied load.

  20. Nonlinear relationship between the Product Consistency Test (PCT) response and the Al/B ratio in a soda-lime aluminoborosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Farooqi, Rahmat Ullah, E-mail: rufarooqi@postech.ac.kr [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Hrma, Pavel [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Pacific Northwest National Laboratory, Richland, WA (United States)

    2016-06-15

    We have investigated the effect of Al/B ratio on the Product Consistency Test (PCT) response. In an aluminoborosilicate soda-lime glass based on a modified International Simple Glass, ISG-3, the Al/B ratio varied from 0 to 0.55 (in mole fractions). In agreement with various models of the PCT response as a function of glass composition, we observed a monotonic increase of B and Na releases with decreasing Al/B mole ratio, but only when the ratio was higher than 0.05. Below this value (Al/B < 0.05), we observed a sharp decrease that we attribute to B in tetrahedral coordination.

  1. Enhancing the performance of Ce:YAG phosphor-in-silica-glass by controlling interface reaction

    International Nuclear Information System (INIS)

    Zhou, Beiying; Luo, Wei; Liu, Sheng; Gu, Shijia; Lu, Mengchen; Zhang, Yan; Fan, Yuchi; Jiang, Wan; Wang, Lianjun

    2017-01-01

    Dispersing the Ce"3"+ doped yttrium aluminum garnet (Ce:YAG) phosphor in the glass matrix has been widely investigated to replace conventional organic resin or silicone packaging. However, the reaction layer formed between commercial phosphors and glass matrix severely degrades the optical performance of Ce:YAG phosphor in silica glass (PiSG) materials. This paper demonstrates an ultra-fast method for preparing high performance PiSG materials. Instead of traditional melting process, the highly transparent PiSG samples can be rapidly fabricated from mixtures of commercial Ce:YAG phosphor and mesoporous SiO_2 (SBA-15) powders using spark plasma sintering (SPS) at relatively low temperature (1000 °C) within short time (10 min). Owing to the inhibition of the deleterious interface reactions between Ce:YAG phosphor and silica glass matrix, the phosphor has been perfectly preserved, and the internal relative quantum yield of the PiSG sample reaches as high as 93.5% when excited at 455 nm, which is the highest efficiency in current research. Furthermore, combining the PiSG sample, we successfully fabricate a light-emitting diode (LED) module exhibiting a superior performance with luminous efficacy of 127.9 lm/W, correlated color temperature of 5877 K and color rendering index of 69 at the operating current of 120 mA. This work on the high performance LED modules provides not only a new approach to fabricate the functional glass-based materials that is sensitive to the high temperature, but also a possibility to extend the lifetime and improve the optical performances of the glass based LEDs.

  2. Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete

    International Nuclear Information System (INIS)

    Bumanis, G; Bajare, D; Korjakins, A; Locs, J

    2013-01-01

    Main component in the lightweight concrete, which provides its properties, is aggregate. A lot of investigations on alkali silica reaction (ASR) between cement and lightweight aggregates have been done with their results published in the academic literature. Whereas expanded glass granules, which is relatively new product in the market of building materials, has not been a frequent research object. Therefore lightweight granules made from waste glass and eight types of cement with different chemical and mineralogical composition were examined in this research. Expanded glass granules used in this research is commercially available material produced by Penostek. Lightweight concrete mixtures were prepared by using commercial chemical additives to improve workability of concrete. The aim of the study is to identify effect of cement composition to the ASR reaction which occurs between expanded glass granules and binder. Expanded glass granules mechanical and physical properties were determined. In addition, properties of fresh and hardened concrete were determined. The ASR test was processed according to RILEM AAR-2 testing recommendation. Tests with scanning electron microscope and microstructural investigations were performed for expanded glass granules and hardened concrete specimens before and after exposing them in alkali solution

  3. Change in silica sources in Roman and post-Roman glass

    International Nuclear Information System (INIS)

    Aerts, A.; Velde, B.; Janssens, K.; Dijkman, W.

    2003-01-01

    Although Roman and post-Empire glasses found in Europe are reputed to have a very constant composition and hence source of components, it appears that some 4-5th century and later specimens show evidence of a different source of silica (sand) component. Zirconium and titanium are the discriminating elements. Data presented here for 278 specimens from 1st to 4th century German and Belgian samples indicate a strongly homogeneous Zr and Ti content; N: number of analyzed samples while 62 samples from Maastricht show low Zr-Ti contents from 1st to 3rd century samples while 4-5th century samples show a strong trend of concomitant Ti and Zr increase. If the high values of Zr-Ti represent a new source of silica (sand) the trend from low to high content suggests that a significant amount of low Zr-Ti glass was recycled to form these glass objects. Similar high Ti content can be seen in analysis results reported for other but not all 4-5th century samples found in northern Europe while earlier productions show typical low Ti contents. Although the fusing agent for these glasses seems to have always been natron (a mineral deposit in the Nile delta) from Hellenistic times to the 9th century, a change in the silica source, indicated by variation of the Ti and Zr content, could very well reflect the results of political instability of the 4-5th century exemplified by the fragmentation of the Roman Empire into two parts

  4. Change in silica sources in Roman and post-Roman glass

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, A.; Velde, B.; Janssens, K.; Dijkman, W

    2003-04-18

    Although Roman and post-Empire glasses found in Europe are reputed to have a very constant composition and hence source of components, it appears that some 4-5th century and later specimens show evidence of a different source of silica (sand) component. Zirconium and titanium are the discriminating elements. Data presented here for 278 specimens from 1st to 4th century German and Belgian samples indicate a strongly homogeneous Zr and Ti content; N: number of analyzed samples while 62 samples from Maastricht show low Zr-Ti contents from 1st to 3rd century samples while 4-5th century samples show a strong trend of concomitant Ti and Zr increase. If the high values of Zr-Ti represent a new source of silica (sand) the trend from low to high content suggests that a significant amount of low Zr-Ti glass was recycled to form these glass objects. Similar high Ti content can be seen in analysis results reported for other but not all 4-5th century samples found in northern Europe while earlier productions show typical low Ti contents. Although the fusing agent for these glasses seems to have always been natron (a mineral deposit in the Nile delta) from Hellenistic times to the 9th century, a change in the silica source, indicated by variation of the Ti and Zr content, could very well reflect the results of political instability of the 4-5th century exemplified by the fragmentation of the Roman Empire into two parts.

  5. Change in silica sources in Roman and post-Roman glass

    Science.gov (United States)

    Aerts, A.; Velde, B.; Janssens, K.; Dijkman, W.

    2003-04-01

    Although Roman and post-Empire glasses found in Europe are reputed to have a very constant composition and hence source of components, it appears that some 4-5th century and later specimens show evidence of a different source of silica (sand) component. Zirconium and titanium are the discriminating elements. Data presented here for 278 specimens from 1st to 4th century German and Belgian samples indicate a strongly homogeneous Zr and Ti content; N: number of analyzed samples while 62 samples from Maastricht show low Zr-Ti contents from 1st to 3rd century samples while 4-5th century samples show a strong trend of concomitant Ti and Zr increase. If the high values of Zr-Ti represent a new source of silica (sand) the trend from low to high content suggests that a significant amount of low Zr-Ti glass was recycled to form these glass objects. Similar high Ti content can be seen in analysis results reported for other but not all 4-5th century samples found in northern Europe while earlier productions show typical low Ti contents. Although the fusing agent for these glasses seems to have always been natron (a mineral deposit in the Nile delta) from Hellenistic times to the 9th century, a change in the silica source, indicated by variation of the Ti and Zr content, could very well reflect the results of political instability of the 4-5th century exemplified by the fragmentation of the Roman Empire into two parts.

  6. Heat accumulation regime of femtosecond laser writing in fused silica and Nd:phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Bukharin, M.A. [Moscow Institute of Physics and Technology, Moscow Region (Russian Federation); Optosystems Ltd., Troitsk, Moscow (Russian Federation); Khudyakov, D.V. [Optosystems Ltd., Troitsk, Moscow (Russian Federation); Physics Instrumentation Center of the General Physics Institute, Troitsk, Moscow (Russian Federation); Vartapetov, S.K. [Physics Instrumentation Center of the General Physics Institute, Troitsk, Moscow (Russian Federation)

    2015-04-01

    We investigated refractive index induced by direct femtosecond laser writing inside fused silica and Nd:phosphate glass in heat accumulation regime. Spatial profile and magnitude of induced refractive index were investigated at various pulse repetition rates and translation velocities. It was shown that the magnitude of induced refractive index significantly rises with decreasing in time interval between successive laser pulses below the time for thermal diffusion. Going from nonthermal regime to heat accumulation regime, we achieved induced refractive index growth from 4 x 10{sup -3} up to 6.5 x 10{sup -3} in fused silica and from -6 x 10{sup -3} to -9 x 10{sup -3} in Nd:phosphate glass. Aspect ratio of treated area decreased from 2.1 down to less than 1.5 without correcting optical elements. It was shown that in heat accumulation regime, the treated area was surrounded by region of alternatively changed refractive index with significant magnitude up to -2 x 10{sup -3}. Wide regions of decreased refractive index enable fabrication of depressed cladding waveguides. We demonstrated low-loss (0.3 dB/cm) tubular waveguide inside fused silica. For orthogonal polarizations of guiding light, we achieved a small difference between losses as 0.1 dB/cm using highly symmetric written tracks forming the cladding. The desired structure was simulated with the beam propagation method, and the results were in good agreement with experiment data. (orig.)

  7. Correlation between acoustical and structural properties of glasses: Extension of Abd El-Moneim model for bioactive silica based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Moneim, Amin, E-mail: aminabdelmoneim@hotmail.com

    2016-04-15

    Correlation between room temperature ultrasonic attenuation coefficient and the most significant structural parameters has been studied in the bioactive silica based glasses, for the first time. The correlation has been carried out in the quaternary SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5} glass system using the two semi-empirical formulas, which have been presented recently by the author. Changes in the elastic properties, related to the substitution of SiO{sub 2} by alkali Na{sub 2}O and alkaline earth CaO oxides, have also been deduced by evaluating the mean atomic volume, packing density, fractal bond connectivity and density of the analogous crystalline structure. Furthermore, values of the theoretical elastic moduli have been calculated on the basis of Makishima-Mackenzie theory and compared with the corresponding observed values. Results show that the correlation between ultrasonic attenuation coefficient and the oxygen density, average atomic ring size, first-order stretching force constant and experimental bulk modulus was achieved at 5 MHz frequency. Values of the theoretically calculated shear modulus are in excellent correlation (C. R. ≻95%) with the corresponding experimental ones. The divergence between the theoretical and experimental values of bulk modulus has been discussed. - Highlights: • Abd El-Moneim model was extended for bioactive glasses. • Ultrasonic attenuation was correlated with structural parameters. • Correlation was carried out in Si–Na–Ca–P glasses. • The model is valid for all investigated glass samples. • Agreement between theoretical and experimental elastic moduli was studied.

  8. Ionic conductivity of sodium silicate glasses grown within confined volume of mesoporous silica template

    Science.gov (United States)

    Chatterjee, Soumi; Saha, Shyamal Kumar; Chakravorty, Dipankar

    2018-04-01

    Nanodimensional sodium silicate glasses of composition 30Na2O.70SiO2 has been prepared within the pores of 5.5 nm of mesoporous silica as a template using the surfactant P123. The nanocomposite was characterized by X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectroscopy. Electrical conductivity of the sample was studied by ac impedance spectroscopy. The activation energy for ionic conduction was found to be 0.13 eV with dc conductivity at room temperature of 10-6 S-cm-1. This is attributed to the creation of oxygen ion vacancies at the interface of mesoporous silica and nanoglass arising out of the presence of Si2+ species in the system. These nanocomposites are expected to be useful for applications in sodiumion battery for storage of renewable energy.

  9. EFFECTS OF LIGHTWEIGHT MULLITE-SILICA RICH GLASS COMPOSITE AGGREGATES ON PROPERTIES OF CASTABLES

    Directory of Open Access Journals (Sweden)

    Li Y.

    2013-09-01

    Full Text Available Mullite-silica rich glass (MSRG composite is a material which is more efficient than chamotte for refractory utilization of clay. The effects of lightweight MSRG composite aggregate on the properties of refractory castables were studied by XRD, SEM and EDS, etc. Comparing with a common lightweight chamotte aggregate, it was found that the hot modulus of rupture, refractoriness under load and thermal shock resistance of the castable with lightweight MSRG aggregate were higher than those of the castable with a common lightweight chamotte aggregate because MSRG did not contain silica crystalline phases and contained a liquid phase with very high viscosity at high temperature. The castables with lightweight chamotte aggregate have higher thermal expansion because of existence of cristobalite and quartz, and have lower thermal conductivity because of higher porosity.

  10. Large third-order optical nonlinearity of silver colloids in silica glasses synthesized by ion implantation

    International Nuclear Information System (INIS)

    Ghosh, Binita; Chakraborty, Purushottam

    2011-01-01

    Silver ion implantations in fused silica glasses have been made to synthesize silver nanocluster-glass composites and a combination of 'Anti-Resonant Interferometric Nonlinear Spectroscopy (ARINS)' and 'Z-scan' techniques has been employed for the measurement of the third-order optical susceptibility of these nanocomposites. The ARINS technique utilizes the dressing of two unequal-intensity counter-propagating pulsed optical beams with differential nonlinear phases, which occurs upon traversing the sample. This difference in phase manifests itself in the intensity-dependent transmission, measurement of which enables us to extract the values of nonlinear refractive index (η 2 ) and nonlinear absorption coefficient (β), finally yielding the real and imaginary parts of the third-order dielectric susceptibility (χ (3) ). The real and imaginary parts of χ (3) are obtained in the orders of 10 -10 e.s.u for silver nanocluster-glass composites. The present value of χ (3) , to our knowledge, is extremely accurate and much more reliable compared to the values previously obtained by other workers for similar silver-glass nanocomposites using only Z-scan technique. Optical nonlinearity has been explained to be due to two-photon absorption in the present nanocomposite glasses and is essentially of electronic origin.

  11. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  12. SAXS study of silica sols, gels and glasses obtained by the sol gel process

    International Nuclear Information System (INIS)

    Santos, D.I. dos; Aegerter, M.A.

    1988-01-01

    Systematic SAXS studies have been performed at the LURE Synchrotron, Orsay, using an intense beam of point like cross-section to obtain information about the sol -> humid gel -> dried gel -> silica glass transformation. The intensity curves have been analysed in term of power law in log-log plots, whose exponent is related to mass and surface fractal dimensions of the structure. It was found that almost all phases present fractal structures and for the case of basic gels, is of hierarchical nature. The aerogels are formed by a dense matrix, with a smooth surface and exhibit a very narrow auto-similarity range that gives a mass fractal dimension. (author) [pt

  13. Monte Carlo simulations of homogeneous upconversion in erbium-doped silica glasses

    DEFF Research Database (Denmark)

    Philipsen, Jacob Lundgreen; Bjarklev, Anders Overgaard

    1997-01-01

    Quenching of Er3+ ions by homogeneous energy-transfer upconversion in high-concentration erbium-doped silica glasses has been theoretically investigated, The results indicate that at Er3+ concentrations of 1.0-2.0·1026 m-3 or below, the kinetic limit of strong migration is not reached, and hence...... the widely accepted quadratic upconversion model is not generally valid. Nevertheless, the results offer an explanation of the experimental observations of quadratic upconversion. Furthermore, it has been shown that at a given population inversion, the quenching rate depends on the rate of exchange...

  14. Fiber fuse light-induced continuous breakdown of silica glass optical fiber

    CERN Document Server

    Todoroki, Shin-ichi

    2014-01-01

    This book describes the fiber fuse phenomenon that causes a serious problem for the present optical communication systems. High-power light often brings about catastrophic damage to optical devices. Silica glass optical fibers with ultralow transmission loss are not the exception. A fiber fuse appears in a heated region of the fiber cable delivering a few watts of light and runs toward the light source destroying its core region. Understanding this phenomenon is a necessary first step in the development of future optical communication systems. This book provides supplementary videos and photog

  15. Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses

    International Nuclear Information System (INIS)

    Da-Yong, Liu; Yan, Li; Yan-Ping, Dou; Heng-Chang, Guo; Hong, Yang; Qi-Huang, Gong

    2008-01-01

    Multi-mode interference waveguides are fabricated inside silica glass by transverse writing geometry with femtosecond laser pulses. The influences of several writing and reading factors on the output mode are systematically studied. The experimental results of straight waveguides are in good agreement with the simulations by the beam propagation method. By integrating a straight waveguide with a bent waveguide, a 1 × 2 multi-mode splitter is formed and 2 × 3 lobes are observed in the output mode. (fundamental areas of phenomenology (including applications))

  16. Laser ablation of toluene liquid for surface micro-structuring of silica glass

    International Nuclear Information System (INIS)

    Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Gumpenberger, T.; Kurosaki, R.

    2006-01-01

    Microstructures with well-defined micropatterns were fabricated on the surfaces of silica glass using a laser-induced backside wet etching (LIBWE) method by diode-pumped solid state (DPSS) UV laser at the repetition rate of 10 kHz. For a demonstration of flexible rapid prototyping as mask-less exposure system, the focused laser beam was directed to the sample by galvanometer-based point scanning system. Additionally, a diagnostics study of plume propagation in the ablated products of toluene solid film was carried out with an intensified CCD (ICCD) camera

  17. Microstructure characterization of the soda-lime-glass/copper-indium-gallium-selenium interface in Cu-poor Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian, E-mail: wangjustb@gmail.com; Qiao, Yi; Zhu, Jie, E-mail: jiezhu@ustb.edu.cn

    2015-05-29

    The microstructure characteristics of the soda-lime-glass/Cu(In,Ga)Se{sub 2} (SLG/CIGS) interface in Cu-poor CIGS films are investigated by transmission electron microscopy and selected area electronic diffraction (SAED). The SAED patterns show very sharp and strong spots, indicating the main structure of CIGS chalcopyrite. Small dispersed crystals with size distribution from 2 to 5 nm seem to be embedded in amorphous matrix, and additional spots indicate the presence of an ordered vacancy compound (OVC). This observation is consistent with the Raman results, and the OVC phase with the nanoclusters exists in the CIGS matrix, instead of layer structure. Lattice distortion results in local changes in contrast. Some pseudo-disordered structure is observed, however, the structure is actually the chalcopyrite CIGS structure. 180° rotation twins are also observed at the SLG/CIGS interface. Lattice distortion is widely observed at the interface of the Cu-poor CIGS films, and the extra spots could be caused by different lattice orientations. - Highlights: • Cu(In,Ga)Se{sub 2} (CIGS) were prepared on bare soda-lime-glass (SLG) substrates. • Microstructure of the SLG/CIGS interface was investigated. • An ordered vacancy compound (OVC) phase was observed. • The OVC phase with nanoclusters exists in the CIGS matrix, instead of layer structure. • 180° rotation twins were observed at the SLG/CIGS interface.

  18. Dynamic compressive properties and failure mechanism of glass fiber reinforced silica hydrogel

    International Nuclear Information System (INIS)

    Yang Jie; Li Shukui; Yan Lili; Huo Dongmei; Wang Fuchi

    2010-01-01

    The dynamic compressive properties of glass fiber reinforced silica (GFRS) hydrogel were investigated using a spilt Hopkinson pressure bar. Failure mechanism of GFRS hydrogel was studied by scanning electron microscopy (SEM). Result showed that dynamic compressive stresses were much higher than the quasi-static compressive stresses at the same strain. The dynamic compressive strength was directly proportional to the strain rate with same sample dimensions. The dynamic compressive strength was directly proportional to the sample basal area at same strain rate. Dynamic compressive failure strain was small. At high strain rates, glass fibers broke down and separated from the matrix, pores shrank rapidly. Failure resulted from the increase of lateral tensile stress in hydrogel under dynamic compression.

  19. IR-spectroscopical investigations on the glass structure of porous and sintered compacts of colloidal silica gels

    Science.gov (United States)

    Clasen, Rolf; Hornfeck, M.; Theiss, Wolfgang

    1991-08-01

    The forming and sintering of fumed silica powders is an interesting route for the preparation of large, very pure or doped silica glasses with a precise geometry. The processing from the shaping of a porous compact to the sintering of transparent silica glass can be successfully investigated with optical spectroscopy. As only the dielectric function DF (a dielectric function is the square root of the complex refractive index) characterizes the material, the vibrational bands were calculated from reflectance measurements. In compacts of fine particles, the topology cannot be neglected. Therefore, the models describing topological effects are briefly reviewed. With these model calculations it could be proven that new bands in the compacts and the significant shifts in the reflectance spectra during sintering are mainly caused by topological effects and that changes in the glass structure play only a secondary role.

  20. Chemical stability of soda-alumina-zirconia-silica glasses to Na, Na2S4, and S

    International Nuclear Information System (INIS)

    Bloom, S.I.; Bradley, J.; Nelson, P.A.; Roche, M.F.

    1985-01-01

    Twenty-two glasses with a broad range of compositions, spanning the quaternary soda-alumina-zirconia-silica system, have been prepared to allow characterization of the various properties of the system. The glasses were characterized by their resistivities, energies of activation for conduction, and glass transition temperatures. The glasses were screened for compositions of especially high chemical stability of static corrosion tests in Na, S, and Na 2 S 4 for 1000h at 400 0 C. Among the glasses tested, the high soda glasses showed the smallest weight change after exposure to the three media. The weight change observed was comparable to that seen in the Dow borate glass and beta'' alumina

  1. Optical transmission of silica glass during swift-heavy-ion implantation

    International Nuclear Information System (INIS)

    Plaksin, Oleg; Okubo, Nariaki; Takeda, Yoshihiko; Amekura, Hiroshi; Kono, Kenichiro; Kishimoto, Naoki

    2004-01-01

    Metal nanoparticles fabricated by heavy-ion implantation of insulators are promising for non-linear optical applications. Spectra of optical transmission of silica glass in the visible region were measured during and after implantation of 3 MeV Cu 2+ ions. Three absorption bands contribute to the spectra: transient absorption (TA) at 2.34 eV, a surface plasmon resonance (SPR) peak at 2.21 eV and a tail of residual absorption (RA), which increases when the photon energy is increased from 2.2 to 2.6 eV. The TA and a change of the SPR peak strongly contribute to the total transient absorption obtained as the difference in absorption during and after irradiation. The effect of RA shows up as a decrease of absorption after switching on the ion beam. The TA provides a means for selective electronic excitation by a laser during implantation of silica glass. The precipitation of Cu atoms and the growth of Cu nanoparticles are well distinguishable stages of nanoparticle formation. The SPR peak appears at a fluence of 3.3 x 10 16 ions/cm 2 , corresponding to the onset of precipitation. At fluences higher than 3.4 x 10 16 ions/cm 2 , when the growth of nanoparticles predominates, the fluence dependence of the SPR peak is linear

  2. Use of rice rusk ash and spent catalyst as a source of raw material for the production and characterization of soda-lime silicate glasses destined for packaging

    International Nuclear Information System (INIS)

    Araujo, Mariana Silva de

    2016-01-01

    In this study, the use of two industrial solid wastes (ISW), generated in large quantities in Brazil, were presented in production of soda-lime silicate glasses destined for packaging. The evaluated wastes were rice husk ash (RHA) and the spent catalyst at the Petrochemical Fluid Catalytic Cracking units (ECAT), both may be classified as a class II solid waste according to NBR 10.004. This new proposal for the allocation of such wastes is an alternative to current provisions, seeking not only to minimize environmental impacts, but also enrich them as raw materials. For the samples production, besides ISW were used melting oxide (Na 2 CO 3 ) and stabilizer oxide (CaO).The results demonstrate that both can be used in their raw form (without treatment) replacing important raw materials, sources of Al 2 O 3 and SiO 2 , essential for glass formation. The samples obtained presented amber color due to the presence of nickel (Ni² + ion) from ECAT and 18% of optical transmittance. They also showed a good homogeneity, i.e., absence of bubbles and striae and 1,33 x 10 -8 g/cm²·day of hydrolytic resistance according to ISO695-1984. Thus, the obtained glass is suitable for applications requiring low light transmittance such as colored glasses containers in general, which does not require perfect visibility and transparency. The incorporation in the final composition was approximately 78% in mass. (author)

  3. Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings

    Directory of Open Access Journals (Sweden)

    Sabina Yasmin

    2018-06-01

    Full Text Available Following the rapid growing economy, the Bangladeshi dwellers are replacing their traditional (mud-, bamboo-, and wood-based houses to modern multistoried buildings, where different types of glasses are being used as decorative as well as structural materials due to their various advantageous properties. In this study, we inquire the protective and dosimetric capability of commercial glasses for ionizing radiation. Four branded glass samples (PHP-Bangladesh, Osmania-Bangladesh, Nasir-Bangladesh, and Rider-China of same thickness and color but different elemental weight fractions were analyzed for shielding and dosimetric properties. The chemical composition of the studied material was evaluated by EDX technique. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the attenuation coefficients of the studied materials for 59 keV, 661 keV, 1173 keV and 1332 keV photon energies. A number of shielding parameters- half value layer (HVL, radiation protection efficiency (RPE and effective atomic number (Zeff were also evaluated. The data were compared with the available literature (where applicable to understand its shielding capability relative to the standard materials such as lead. Among the studied brands, Rider (China shows relatively better indices to be used as ionizing radiation shielding material. The obtained, Zeff of the studied glass samples showed comparable values to the TLD-200 dosimeter, thus considered suitable for environmental radiation monitoring purposes. Keywords: Silica-based commercial glass, HPGe γ-ray spectrometry, EDX analyses, Shielding effectiveness, Dosimetric properties

  4. Diffusion and aggrigation of implanted Ag and Au in a lithia-alumina-silica glass

    International Nuclear Information System (INIS)

    Arnold, G.W.; Borders, J.A.

    1976-01-01

    Optical extinction and Rutherford backscattering (RBS) techniques have been employed to obtain information on the size and spatial distribution of Au and Ag colloids in implanted (Au + ,Ag + )lithia-alumina-silica glass. The formation of metallic aggregates (colloids), necessary for preparation of a glass-ceramic surface layer, proceeds readily with annealing temperature for Au-implanted samples but not for Ag-implanted material. The optical and RBS spectra show that the particle size and spatial distribution in Ag-implanted samples are sensitive to sample temperature and ion-beam heating effects, while these parameters for Au-implanted samples are relatively insensitive to temperature and beam current. It is suggested that this behaviour is related to differences in the dissolution energies of Ag and Au aggregates. A two-peaked spatial distribution for Ag implanted at room temperature at a dose rate of approximately 1 μA cm -2 is observed which may result from the trappings of Ag in the ion displacement damage region of the glass during implantation. (author)

  5. Diffusion and aggregation of implanted Ag and Au in a lithia--alumina--silica glass

    International Nuclear Information System (INIS)

    Arnold, G.W.; Borders, J.A.

    1975-01-01

    Optical extinction and Rutherford backscattering (RBS) techniques were employed to obtain information on the size and spatial distribution of Au- and Ag-colloids in implanted (Au + , Ag + ) lithia-alumina-silica glass. The formation of metallic aggregates (colloids), necessary for preparation of a glass-ceramic surface layer, proceeds readily with annealing temperature for Au-implanted samples but not for Ag-implanted material. The optical and RBS spectra show that the particle size and spatial distribution in as-implanted samples are sensitive to sample temperature and ion-beam heating effects, while these parameters for Au-implanted samples are relatively insensitive to temperature and beam current. It is suggested that this behavior is related to differences in the dissolution energies of Ag and Au aggregates. A two-peaked spatial distribution for Ag implanted at room temperature at a dose rate of approximately 1 μA/cm 2 is observed which may result from the trapping of Ag in the compacted damage region of the glass during implantation. (auth)

  6. Analysis of polycyclic aromatic hydrocarbons I. Determination by gas chromatography with glass and fused silica capillary columns

    International Nuclear Information System (INIS)

    Perez, M. M.; Gonzalez, D.

    1987-01-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column. The limitations and the advantages of the procedure are discussed in terms of separation efficiency, sensitivity and precision. (Author) 17 refs

  7. Defect production in silica glasses under gamma-irradiation at the quenched nuclear reactor

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Kalanov, M.U.; Ibragimova, E.M.; Sandalov, V.N.; Muminov, M.L.

    2004-01-01

    Full text: Radiation defect production in oxides is highly interesting for atom and solar energy, and also for burying nuclear waste. Combine effect of neutron and gamma-radiation on materials was studied extensively and only neutrons are believed to displace atoms, although 60 Co-gamma quanta were proved to displace light anions (O, F) by inelastic mechanism. On the example of polished plates of pure fused quartz and barium-silica glasses containing nano-crystalline inclusions, and also nano-porous glass, the effect of gamma-radiation of the quenched reactor was studied in the energy range of 0.2-7 MeV. The time period was selected when practically constant current ∼10-20 nA is maintained in the ionizing chamber, corresponding to the average gamma-flux of 15-30 Gy/s. Optical absorption and photoluminescence spectra and also structure of the grasses were studied. It turned out, that the charged oxygen vacancies accumulation rate is higher in Barium glass than in the pure one, because for SiO 2 with small Z the photoelectric effect is weak, while the Compton scattering and photonuclear reactions prevail, and for Barium - just the opposite. The radiation-induced growth of the crystalline precipitates was noticed in the both glasses, which before had been attributed to the elastic atom displacements by fast neutrons. The density of Ba-glass increases with irradiation. The efficiency of defect production by the gamma-component even of the quenched reactor turned out much higher than that under irradiation with 60 Co gamma-source of ∼1.25 MeV to the equivalent dose at the current dose rate of ∼ 7 Gy/s (and before at 45 Gy/s). A 100-times increase of the surface proton conductivity was discovered in the porous glasses under gamma-irradiation due to water vapor radiolysis on the pore surface. The irradiated porous glass is recommended as an active electrode in the hydrogen fuel element. The work was done under the grant F2.1.2 from Center of Science and Technology

  8. Synthesis of multilayered structure of nano-dimensional silica glass/reduced graphene oxide for advanced electrochemical applications.

    Science.gov (United States)

    Ghosh, Arnab; Miah, Milon; Majumder, Chinmoy; Bag, Shekhar; Chakravorty, Dipankar; Saha, Shyamal Kumar

    2018-03-28

    During the past few years, intensive research has been carried out to design new functional materials for superior electrochemical applications. Due to low storage capacity and low charge transport, silica based glasses have not yet been investigated for their supercapacitive behavior. Therefore, in the present study, a multilayered structure of silica-based nanoglass and reduced graphene oxide has been designed to remarkably enhance the specific capacitance by exploiting the porosity, large surface area, sufficient dangling bonds in the nanoglass and high electrical conductivity of rGO. The charge transport in the composite structure is also investigated to understand the electrochemical properties. It is found that Simmons tunneling or direct tunneling is the dominant mechanism of charge conduction between the graphene layers via the potential barrier of silica nanoglass phase. We believe that this study will open up a new area in the design of glass-based two-dimensional nanocomposites for superior supercapacitor applications.

  9. Fabrication of 3D electro-thermal micro actuators in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Li, Qichao; Shan, Chao; Yang, Qing; Chen, Feng; Bian, Hao; Hou, Xun

    2017-02-01

    This paper demonstrates a novel electro-thermal micro actuator's design, fabrication and device tests which combine microfluidic technology and microsolidics process. A three-dimensional solenoid microchannel with high aspect ratio is fabricated inside the silica glass by an improved femtosecond laser wet etch (FLWE) technology, and the diameter of the spiral coil is only 200 μm. Molten alloy (Bi/In/Sn/Pb) with high melting point is injected into the three-dimensional solenoid microchannel inside the silica glass , then it solidifys and forms an electro-thermal micro actuator. The device is capable of achieving precise temperature control and quick response, and can also be easily integrated into MEMS, sensors and `lab on a chip' (LOC) platform inside the fused silica substrate.

  10. Characterization of residues of effluent treatment plant from lapping process of soda-lime glass and its application in the production of concrete

    International Nuclear Information System (INIS)

    Antonio, Aline Pignaton; Calmon, Joao Luiz; Tristao, Fernando Avancini

    2012-01-01

    This study enunciates the physical, chemical and mineralogical composition of the residue from the process of ETE cutting of soda-lime glasses and its application in concrete as a replacement to the weight of CPV ARI RS cement, at levels of 0, 5, 10, 15 and 20%. Tests were performed on fresh and hardened (ages 3, 7, 28 and 300 days). The results were compared and statistically analyzed. In the fresh state, reductions in the amount of exuding water and consistency were observed. The results of compressive strength were statistically different, while the results for the tensile strength by diametrical compression and modulus of elasticity results were belonging to homogeneous groups. Beneficial effects the levels of residue on the cementitious matrix and the transition zone of concrete were identified by SEM, particularly concrete in S15

  11. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses

    Science.gov (United States)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.

    2018-04-01

    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  12. Effect of silver nanoparticles on the dielectric properties of holmium doped silica glass

    International Nuclear Information System (INIS)

    Rejikumar, P.R.; Jyothy, P.V.; Mathew, Siby; Thomas, Vinoy; Unnikrishnan, N.V.

    2010-01-01

    The effect of silver nanoparticle co-doping on the dielectric properties of holmium doped silica glasses was studied. Silver nanoparticles of size between 20 and 22 nm were produced by the sol-gel technique. One of the samples showed an icosahedral morphology of the nanocrystal formed, along with spherical morphology. It was found that the tuning of the dielectric constant values could be accomplished by co-doping. The sample, with 1 wt% of Ho, had low dielectric constant values within the range 100 Hz-3 MHz due to the formation of quasi-molecular structures of holmium. This effect was evaded to some extent with silver co-doping as a result of the interdispersion of holmium complexes. Also it was found that the co-doping produced a higher dielectric loss which was calculated from the tan δ-log f graph. The Cole-Cole parameters and the Jonscher power law parameters were also calculated and are presented.

  13. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-02-01

    This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.

  14. A study of positron properties in quartz crystals and synthetic silica glass

    International Nuclear Information System (INIS)

    Anwand, W.; Brauer, G.; Hesegawa, M.; Dersch, O.; Rauch, F.

    2001-01-01

    The monoenergetic positron beamline 'SPONSOR' at Rossendorf has been used to investigate the positron behaviour in a naturally grown Brasilian quartz, two synthetic quartz crystals of different origin, and synthetic silica glass. The measurements allow us to obtain the positron diffusion length of free positrons and Bloch para-positronium, if formed, in these materials. In addition, hydrothermal treatment of a synthetic quartz has been used to introduce hydrogen into the crystal up to a certain depth. The presence of hydrogen is found to influence the formation of para-positronium. The depth distribution of hydrogen has been measured independently by the nuclear reaction analysis, and will be discussed in comparison with the results deduced from the positron studies. (author)

  15. IRON REDOX EQUILIBRIUM AND DIFFUSIVITY IN MIXED ALKALI-ALKALINE EARTH-SILICA GLASS MELTS

    Directory of Open Access Journals (Sweden)

    KI-DONG KIM

    2011-03-01

    Full Text Available Dependence of redox behavior and diffusivity of iron on temperature and composition was studied in mixed alkali-alkaline earth-silica glass melts by means of square wave voltammetry (SWV. The voltammograms showed that irrespective of K2O/(Na2O+K2O the peak potential due to Fe3+/Fe2+ moved toward negative direction with temperature decrease and the peak current showed a strong dependence on frequency at constant temperature. Iron diffusion coefficient versus melt viscosity showed a good linearity. The compositional dependence showed that the peak potential shifted to the positive direction with increase of K2O but a typical mixed alkali effect occurred in iron diffusion either at constant temperature or at constant viscosity.

  16. Influence of thermal cycling on flexural properties of composites reinforced with unidirectional silica-glass fibers.

    Science.gov (United States)

    Meriç, Gökçe; Ruyter, I Eystein

    2008-08-01

    The purpose was to investigate the effect of water storage and thermal cycling on the flexural properties of differently sized unidirectional fiber-reinforced composites (FRCs) containing different quantities of fibers. The effect of fiber orientation on the thermal expansion of FRCs as well as how the stresses in the composites can be affected was considered. An experimental polymeric base material was reinforced with silica-glass fibers. The cleaned and silanized fibers were sized with either linear PBMA-size or crosslinked PMMA-size. For the determination of flexural properties and water uptake, specimens were processed with various quantities of differently sized unidirectional fibers. Water uptake of FRC was measured. Water immersed specimens were thermally cycled for 500 and 12,000 cycles (5 degrees C/55 degrees C). Flexural properties of "dry" and wet specimens with and without thermal cycling were determined by a three-point bending test. The linear coefficients of thermal expansion (LCTE) for FRC samples with different fiber orientations were determined using a thermomechanical analyzer. Water uptake of the FRC specimens increased with a decrease in fiber content of the FRC. Flexural properties of FRCs improved with increasing fiber content, whereas the flexural properties were not influenced significantly by water and thermal cycling. Fiber orientation had different effects on LCTE of FRCs. Unidirectional FRCs had two different LCTE in longitudinal and transverse directions whereas bidirectional FRCs had similar LCTE in two directions and a higher one in the third direction. The results of the study suggest that the surface-treated unidirectional silica-glass FRC can be used for long-term clinical applications in the oral cavity.

  17. Effects of ionizing radiations on the optical properties of ionic copper-activated sol-gel silica glasses

    Science.gov (United States)

    Al Helou, Nissrine; El Hamzaoui, Hicham; Capoen, Bruno; Ouerdane, Youcef; Boukenter, Aziz; Girard, Sylvain; Bouazaoui, Mohamed

    2018-01-01

    Studying the impact of radiations on doped silica glasses is essential for several technological applications. Herein, bulk silica glasses, activated with various concentrations of luminescent monovalent copper (Cu+), have been prepared using the sol-gel technique. Thereafter, these glasses were subjected to X- or γ-rays irradiation at 1 MGy(SiO2) accumulated dose. The effect of these ionizing radiations on the optical properties of these glasses, as a function of the Cu-doping content, were investigated using optical absorption and photoluminescence spectroscopies. Before any irradiation, the glass with the lowest copper concentration exhibits blue and green luminescence bands under UV excitation, suggesting that Cu+ ions occupy both cubic and tetragonal symmetry sites. However, at higher Cu-doping level, only the green emission band exists. Moreover, we showed that the hydroxyl content decreases with increasing copper doping concentration. Both X and γ radiation exposures induced visible absorption due to HC1 color centers in the highly Cu-doped glasses. In the case of the lower Cu-doped glass, the Cu+ sites with a cubic symmetry are transformed into sites with tetragonal symmetry.

  18. The analysis of lightweight brick strength pressure with mixture of glass powder and silica fume

    Science.gov (United States)

    Nursyamsi; Liang, William

    2018-03-01

    Little by little the engineers research how the development of concrete that can utilize waste. In the utilization of the waste, it can be functioned as mixing material which the chemical or the physical traits of the used goods contain similarity to the mixture of concrete in general, one of them is glass powder as the substitute of cement. The glass powder that utilizes is the one that is sifted through sieve No. 200 as much as 10% of the weight of the cement. The testing specimen of the concrete brick is make of the mixture with the ratio of 1:7, then is added with the foaming agent (1:30) and silica fume (10% of the weight of the cement). Furthermore, visual examination, absorption, net weight and testing specimen compressive strength. The data analysis uses the reference of SNI 03 – 0349 – 1989 regarding Concrete Brick for the Match for the Wall. Foaming Agent is make by using modified hand drill and brace. The testing specimen uses the brick mold with the size of 40 cm x 20cm x 10 cm. Based on this research, it shows that the quality that results from brick is still qualified based on SNI 03 – 0349 – 1989.

  19. Workability of glass reinforced concrete (GRC) with granite and silica sand aggregates

    Science.gov (United States)

    Moceikis, R.; Kičaitė, A.; Keturakis, E.

    2017-10-01

    Glass fiber reinforced concrete (GRC) opens the door for lightweight and complex shaped innovative construction, adding architectural value to buildings. With panel thickness down to 15 mm, considerable amount of total loads and materials per square meter of facade can be saved, if compared to conventionally used 80 mm thickness outer layer in insulated precast concrete wall elements. Even though GRC is used for over 50 years in such countries as Great Britain, USA and Japan, there are very few examples and little research done in Eastern Europe with this building material. European Commission propagates sustainable design as commitment to energy efficiency, environmental stewardship and conservation. For this reason, GRC plays important role in mowing toward these goals. In this paper, GRC premix recipes including fine granite and silica sands, reinforced with 13mm length alkali resistant glass fibers are investigated. Two CEM I 52,5R cements with different particle sizes were used and severe water dissociation noticed in one of concrete mixes. Cement particle size distribution determined with laser diffraction particle analyser Cilas 1090LD. To determine modulus of rupture (M.O.R.) and limit of proportionality (L.O.P), plates thickness 15 and 20 mm were produced and tested for flexural resistance according to 4-point bending scheme. Concrete workability tests were made according EN 1170-1.

  20. In vitro bioactivity of soda lime borate glasses with substituted SrO in sodium phosphate solution

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2014-09-01

    Full Text Available Borate glasses with the basic composition 0.6B2O3·0.2Na2O·0.2CaO and SrO progressively substituting CaO were prepared and characterized for their bone-bonding ability. The obtained glasses were thermally treated and converted to their glass-ceramic derivatives. In this study, FTIR spectral analyses were done for the prepared glasses and glass-ceramics before and after immersion in a sodium phosphate solution for extended times. The appearance of two IR bands within the spectral range 550–680 cm-1 after immersion confirms the formation of hydroxyapatite. X-ray diffraction studies and scanning electron microscope analysis supported the obtained infrared spectroscopy results. The solubility test (measurements of the weight loss in aqueous sodium phosphate solution was conducted for measuring the dissolution of both glassy and crystalline derivatives to find out the role of SrO. The corrosion behaviour of the glasses and glass-ceramics indicate the increase of weight loss with the increase of SrO content. Different suggested proposals were introduced to explain this abnormal behaviour.

  1. Early stage of weathering of medieval-like potash-lime model glass: evaluation of key factors.

    Science.gov (United States)

    Gentaz, Lucile; Lombardo, Tiziana; Loisel, Claudine; Chabas, Anne; Vallotto, Marta

    2011-02-01

    Throughout history, a consequent part of the medieval stained glass windows have been lost, mostly because of deliberate or accidental mechanic destruction during war or revolution, but, in some cases, did not withstand the test of time simply because of their low durability. Indeed, the glasses that remain nowadays are for many in a poor state of conservation and are heavily deteriorated. Under general exposure conditions, stained glass windows undergo different kinds of weathering processes that modify their optical properties, chemistry, and structure: congruent dissolution, leaching, and particle deposition (the combination of those two leading together to the formation of neocrystallisations and eventually crusts). Previous research has studied the weathering forms and the mechanisms from which they are originated, some others identified the main environmental parameters responsible for the deterioration and highlighted that both intrinsic (glass composition) and extrinsic (environmental parameters) factors influence glass degradation. Nevertheless, a clear quantification of the impact of the different deterioration extrinsic factors has not been performed. By analysing the results obtained with model glass (durable and nondurable) exposed in the field, this paper proposes a simple mathematical computation evaluating the contribution of the different weathering factors for the early stages of exposure of the stained glasses. In the case of non durable glass, water runoff was identified as the main factor inducing the leaching (83.4 ± 2.6% contribution), followed by gas (6.4 ± 1.5%) and particle deposition (6.8 ± 2.2%) and adsorbed water (3.4 ± 0.6%). Moreover, it was shown that the extrinsic stimuli superimposes with the impact of glass composition to the weathering. Those results show that the role played by dry deposition, even if less important than that of the wet deposition, cannot be neglected.

  2. Study of phase separation and crystallization phenomena in soda-lime borosilicate glass enriched in MoO3

    International Nuclear Information System (INIS)

    Magnin, M.

    2009-09-01

    Molybdenum oxide immobilization (MoO 3 , as fission product) is one of the major challenges in the nuclear glass formulation issues for high level waste solutions conditioning since many years, these solutions arising from spent nuclear fuel reprocessing. Phase separation and crystallisation processes may arise in molten glass when the MoO 3 content is higher than its solubility limit that may depend on glass composition. Molybdenum combined with other elements such as alkali and alkaline-earth may form crystalline molybdates, known as 'yellow phases' in nuclear glasses which may decrease the glass durability. In order to confine high level wastes (HLW) such as the fission product solutions arising from the reprocessing of high burn-up UOX-type nuclear spent fuels, a new glass composition (HLW glass) is being optimized. This work is devoted to the study of the origin and the mechanism of phase separation and crystallization phenomena induced by molybdenum oxide incorporation in the HLW glass. From microstructural and structural point of view, the molybdenum oxide behavior was studied in glass compositions belonging to the SiO 2 -B 2 O 3 - Na 2 O-CaO simplified system which constituted basis for the HLW glass formulation. The structural role of molybdenum oxide in borosilicate network explaining the phase separation and crystallization tendency was studied through the coupling of structural ( 95 Mo, 29 Si, 11 B, 23 Na MAS NMR, XRD) and microstructural (SEM, HRTEM) analysis techniques. The determination of phase separation (critical temperature) and crystallization (liquidus temperature) appearance temperatures by in situ viscosimetry and Raman spectroscopy experiments allowed us to propose a transformation scenario during melt cooling. These processes and the nature of the crystalline phases formed (CaMoO 4 , Na 2 MoO 4 ) that depend on the evolution of MoO 3 , CaO and B 2 O 3 contents were correlated with changes of sodium and calcium cations proportions in the

  3. 100 MeV silver ions induced defects and modifications in silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Vijay S.; Deore, Avinash V.; Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411007 (India); Kanjilal, D. [Inter University Accelerator Centre, New Delhi 110067 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2014-07-15

    Highlights: •Study of silver ion induced defects and modifications in silica glass. •Variation in oxygen deficiency centres (ODA-II) and nonbridging oxygen hole centres (NBOHC). •Study of structural damage in terms of Urbach energy. -- Abstract: A few silica glass samples having 1 cm{sup 2} area and 0.1 cm thickness were irradiated with 100 MeV energy Ag{sup 7+} ions for the fluences ranging from 1 × 10{sup 12} ions/cm{sup 2} to 5 × 10{sup 13} ions/cm{sup 2}. The optical properties and the corresponding induced defects were characterised by the techniques such as UV–Visible, Photoluminescence (PL), Fourier transform infrared (FTIR), and Electron spin resonance (ESR) spectroscopy. The UV–Visible absorption spectra show two peaks, one at 5 eV and another weak peak at 5.8 eV. A peak observed at 5.0 eV corresponds to B{sub 2} band (oxygen deficiency in SiO{sub 2} network) and the peak at 5.8 eV is due to the paramagnetic defects like E′ centre. The intensities of these peaks found to be increased with increase in ion fluence. It attributes to the increase in the concentration of E′ centres and B{sub 2} band respectively. In addition, the optical band gap energy, Urbach energy and the defects concentration have been calculated using Urbach plot. The optical band gap found to be decreased from 4.65 eV to 4.39 eV and the Urbach energy found to be increased from 60 meV to 162 meV. The defect concentration of nonbridging oxygen hole centres (NBOHC) and E′ centres are found to be increased to 1.69 × 10{sup 13} cm{sup −3} and 3.134 × 10{sup 14} cm{sup −3} respectively. In PL spectra, the peak appeared at 1.92 eV and 2.7 eV envisage the defects of nonbridging oxygen hole centres and B{sub 2α} oxygen deficient centres respectively. ESR spectra also confirms the existence of E′ and NBOHC centres. FTIR spectra shows scissioning of Si-O-Si bonds and the formation of Si-H and Si-OH bonds, which supports to the co-existence of the defects induced by Ag

  4. EPR study of gamma and neutron irradiation effects on KU1, KS-4V and Infrasil 301 silica glasses

    International Nuclear Information System (INIS)

    Lagomacini, Juan C.; Bravo, David; Leon, Monica; Martin, Piedad; Ibarra, Angel; Martin, Agustin; Lopez, Fernando J.

    2011-01-01

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 and KS-4V high purity quartz glasses and commercial silica Infrasil 301, irradiated with gamma rays up to a dose of 11.6 MGy and neutron fluences of 10 21 and 10 22 n/m 2 . Gamma irradiations produce a much higher concentration of defect centres (mainly E', POR and NBOHC) for KU1 and I301 than for KS-4V silica. In contrast, neutron irradiation at the highest fluence produces similar concentrations in all silica types. These results agree to a good extent with those obtained in previous optical absorption measurements. Moreover, oxygen-related centres (POR and NBOHC) have been well characterized by means of electron paramagnetic resonance.

  5. EPR study of gamma and neutron irradiation effects on KU1, KS-4V and Infrasil 301 silica glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lagomacini, Juan C., E-mail: jc.lagomacini@uam.es [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Bravo, David [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Leon, Monica; Martin, Piedad; Ibarra, Angel [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Martin, Agustin [Dept. Fisica e Instalaciones, ETS Arquitectura UPM, E-28040 Madrid (Spain); Lopez, Fernando J. [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)

    2011-10-01

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 and KS-4V high purity quartz glasses and commercial silica Infrasil 301, irradiated with gamma rays up to a dose of 11.6 MGy and neutron fluences of 10{sup 21} and 10{sup 22} n/m{sup 2}. Gamma irradiations produce a much higher concentration of defect centres (mainly E', POR and NBOHC) for KU1 and I301 than for KS-4V silica. In contrast, neutron irradiation at the highest fluence produces similar concentrations in all silica types. These results agree to a good extent with those obtained in previous optical absorption measurements. Moreover, oxygen-related centres (POR and NBOHC) have been well characterized by means of electron paramagnetic resonance.

  6. Room Temperature Imprint Using Crack-Free Monolithic SiO2-PVA Nanocomposite for Fabricating Microhole Array on Silica Glass

    Directory of Open Access Journals (Sweden)

    Shigeru Fujino

    2015-01-01

    Full Text Available This paper aims to fabricate microhole arrays onto a silica glass via a room temperature imprint and subsequent sintering by using a monolithic SiO2-poly(vinyl alcohol (PVA nanocomposite as the silica glass precursor. The SiO2-PVA suspension was prepared from fumed silica particles and PVA, followed by drying to obtain tailored SiO2-PVA nanocomposites. The dependence of particle size of the fumed silica particles on pore size of the nanocomposite was examined. Nanocomposites prepared from 7 nm silica particles possessed suitable mesopores, whereas the corresponding nanocomposites prepared from 30 nm silica particles hardly possessed mesopores. The pore size of the nanocomposites increased as a function of decreasing pH of the SiO2-PVA suspension. As a consequence, the crack-free monolithic SiO2-PVA nanocomposite was obtained using 7 nm silica particles via the suspension at pH 3. Micropatterns were imprinted on the monolithic SiO2-PVA nanocomposite at room temperature. The imprinted nanocomposite was sintered to a transparent silica glass at 1200°C in air. The fabricated sintered glass possessed the microhole array on their surface with aspect ratios identical to the mold.

  7. Luminescence of Tb.sup.3+./sup.-doped high silica glass under UV and X-ray excitation

    Czech Academy of Sciences Publication Activity Database

    Chewpraditkul, W.; Shen, Y.; Chen, D.; Beitlerová, Alena; Nikl, Martin

    2013-01-01

    Roč. 35, č. 3 (2013), s. 426-430 ISSN 0925-3467 R&D Projects: GA MŠk LH12185 Institutional support: RVO:68378271 Keywords : Tb 3+ * luminescence * luminescence decays * porous silica glass * scintillation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.075, year: 2013 http://dx.doi.org/10.1016/j.optmat.2012.09.012

  8. Electron, hole and exciton self-trapping in germanium doped silica glass from DFT calculations with self-interaction correction

    International Nuclear Information System (INIS)

    Du Jincheng; Rene Corrales, L.; Tsemekhman, Kiril; Bylaska, Eric J.

    2007-01-01

    Density functional theory (DFT) calculations were employed to understand the refractive index change in germanium doped silica glasses for the trapped states of electronic excitations induced by UV irradiation. Local structure relaxation and excess electron density distribution were calculated upon self-trapping of an excess electron, hole, and exciton in germanium doped silica glass. The results show that both the trapped exciton and excess electron are highly localized on germanium ion and, to some extent, on its oxygen neighbors. Exciton self-trapping is found to lead to the formation of a Ge E' center and a non-bridging hole center. Electron trapping changes the GeO 4 tetrahedron structure into trigonal bi-pyramid with the majority of the excess electron density located along the equatorial line. The self-trapped hole is localized on bridging oxygen ions that are not coordinated to germanium atoms that lead to elongation of the Si-O bonds and change of the Si-O-Si bond angles. We carried out a comparative study of standard DFT versus DFT with a hybrid PBE0 exchange and correlation functional. The results show that the two methods give qualitatively similar relaxed structure and charge distribution for electron and exciton trapping in germanium doped silica glass; however, only the PBE0 functional produces the self-trapped hole

  9. Structural changes in irreversibly densified fused silica: implications for the chemical resistance of high level nuclear waste glasses

    International Nuclear Information System (INIS)

    Susman, S.; Volin, K.J.; Liebermann, R.C.; Gwanmesia, G.D.; Yanbin Wang

    1990-01-01

    Energetic photons and energetic particles create changes in the structure of nuclear waste glasses. These can be observed as changes in the average bulk physical properties. For example, exposure of fused silica to high doses of neutron bombardment leads to a maximum average compaction of 3%. However, this does not reveal the true extent of the densification that takes place at a microscopic level. Recent advances in high pressure technology have yielded large samples of fused silica which have been permanently densified under pressure and whose bulk density has been increased by 20%. These specimens have an overall structure that replicates the microstructure of a radiation damaged glass. Measurements have been made for the first time of the structural changes in this pressure densified vitreous silica using neutron diffraction and infrared absorption spectrometry. Extensive alterations in intermediate range order have been observed with consequent anticipated changes in chemical reactivity. The resistance of high level waste glasses to leaching by groundwater must be considered in light of these experimental findings. (author)

  10. Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar

    International Nuclear Information System (INIS)

    Aly, M.; Hashmi, M.S.J.; Olabi, A.G.; Messeiry, M.; Abadir, E.F.; Hussain, A.I.

    2012-01-01

    Highlights: → Glass powder (GP) and nano-silica (CS) were used as a partial cement replacement in cement mortar (CM). → No damaging effect can be detected due to the reaction between GP and CM with particle size up to 75 μm. → Hybrid combination of GP/CS greatly improved mechanical properties and microstructure of CM. -- Abstract: This paper presents a laboratory study of the properties of colloidal nano-silica (CS)/waste glass cement composites. The microstructure, alkali-silica reaction (ASR), and the mechanical properties of cement mortars containing waste glass powder (WG) as a cement replacement with and without CS are investigated and compared with plain mortar. In addition, the hydration of cement compounds was followed by differential thermal analysis (DTA), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The results show that incorporation of WG has a positive effect on the mechanical properties of cement mortars especially when CS is presented. In addition, the DTA/TGA results and XRD analysis show a reduction in the calcium hydroxide (CH) content in mortars with both WG and a hybrid combination of WG and CS. This confirms the improvement of mechanical properties and the occurrence of the pozzolanic reaction after 28 days of hydration.

  11. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  12. β-Irradiation Effects on the Formation and Stability of CaMoO4 in a Soda Lime Borosilicate Glass Ceramic for Nuclear Waste Storage.

    Science.gov (United States)

    Patel, Karishma B; Boizot, Bruno; Facq, Sébastien P; Lampronti, Giulio I; Peuget, Sylvain; Schuller, Sophie; Farnan, Ian

    2017-02-06

    Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO 4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO 3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO 4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal β-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO 4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to β-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO 4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO 4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo 6+ to Mo 5+ during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion

  13. Synthesis of nanocrystalline LaF3 doped silica glasses by hydrofluoric acid catalyzed sol–gel process

    International Nuclear Information System (INIS)

    Nagayama, Shuhei; Kajihara, Koichi; Kanamura, Kiyoshi

    2012-01-01

    Highlights: ► Silica glasses doped by LaF 3 nanocrystals are obtained by HF-catalyzed sol–gel method. ► The processing time (∼1 week) is much shorter than that of previous studies. ► The uptake of SiF groups in the glass matrix greatly reduces the SiOH concentration. ► Effects of sintering conditions and properties of Er 3+ -doped samples are presented. - Abstract: Silica glasses doped with LaF 3 nanocrystals were prepared by HF-catalyzed sol–gel method. HF was used both as fluorine source and as catalyst of the sol–gel reaction, making it possible to shorten the processing time with reducing the concentration of SiOH groups to ∼10 18 cm −3 . The resultant glasses are transparent at visible spectral range, and the optical loss at the ultraviolet absorption edge is dominated by the Rayleigh scattering from LaF 3 crystallites. The size of LaF 3 crystallites increases with an increase in the sintering temperature and time, and is smaller than ∼40 nm in samples showing good visible transparency. Green upconversion photoluminescence is observed in an Er 3+ -doped sample under excitation at 980 nm.

  14. The Effect of Composition on Spinel Crystals Equilibrium in Low-Silica High-Level Waste Glasses

    International Nuclear Information System (INIS)

    Jiricka, Milos; Hrma, Pavel R.; Vienna, John D.

    2003-01-01

    The liquidus temperature (TL) and the equilibrium mass fraction of spinel were measured in the regions of low-silica (less than 42 mass% SiO2) high-level waste borosilicate glasses within the spinel primary phase field as functions of glass composition. The components that varied, one at a time, were Al2O3, B2O3, Cr2O3, Fe2O3, Li2O, MnO, Na2O, NiO, SiO2, and ZrO2. The effects of Al2O3, B2O3, Fe2O3, NiO, SiO2, and ZrO2 on the TL in this region and in glasses with 42 to 56 mass% SiO2 were similar. However, in the low-silica region, Cr2O3 increased the TL substantially less, and Li2O and Na2O decreased the TL significantly less than in the region with 42 to 56 mass% SiO2. The effect of MnO on the TL of the higher SiO2 glasses is not yet understood with sufficient accuracy. The temperature at which the equilibrium mass fraction of spinel was 1 mass% was 25C to 64C below the TL

  15. Effect of silver ions on the energy transfer from host defects to Tb ions in sol–gel silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbass, Abd Ellateef [Department of Physics, University of the Free State, Bloemfontein (South Africa); Department of Physics, Sudan University of Science and Technology (Sudan); Swart, H.C. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa)

    2015-04-15

    Plasmonic metal structures have been suggested to enhance the luminescence from rare-earth (RE) ions, but this enhancement is not yet well understood or applied to phosphor materials. Although some reports using Ag nanoparticles (NPs) in glass have attributed enhancement of RE emission to the strong electric fields associated with Ag NPs, it has also been proposed that the enhancement is instead due to energy transfer from Ag ions to RE ions. Our work using sol–gel silica shows a third possibility, namely that enhancement of the RE (e.g. Tb) emission is due to energy transfer from defects of the host material to the Tb ions, where the addition of Ag influences the silica host defects. The oxidation state of Ag as a function of annealing temperature was investigated by x-ray diffraction, transmission electron microscopy, UV–vis measurements and x-ray photoelectron spectroscopy, while optical properties were investigated using a Cary Eclipse fluorescence spectrophotometer or by exciting samples with a 325 nm He–Cd laser. The results showed that Ag ions have a significant effect on the silica host defects, which resulted in enhancement of the green Tb emission at 544 nm for non-resonant excitation using a wavelength of 325 nm. - Highlights: • Conversion of Ag ions to metallic nanoparticles after annealing of sol–gel silica. • Addition of Ag resulted in enhanced green luminescence from Tb ions in silica. • Enhancement is attributed to the effect of added Ag on the host defects of silica.

  16. Potassium/sodium ion exchange of sodium aluminosilicate and soda-lime glasses with potassium nitrate melts

    International Nuclear Information System (INIS)

    Richter, E.

    1983-08-01

    The alkali self-diffusion coefficients, the concentration-dependent interdiffusion coefficients, and the actual equilibrium constants of the ion exchange process were determinated for model glasses of the Na 2 O-Al 2 O 3 -SiO 2 type and the Na 2 O-CaO-SiO 2 type by nuclear techniques. The measured self-diffusion data and interdiffusion coefficients were used to estimate the stress profiles initiated by the K/Na exchange below the transformation temperature in the surface region. The activation volume of the sodium and potassium ions for diffusion through the surface zone stressed by ion exchange was determined. The disturbing influence of small concentrations of determined divalent cations in KNO 3 (especially Ca 2+ ) was investigated and thermodynamically described. Possibilities were demonstrated to remove these disturbances by anionic admixtures to the KNO 3 melt. Conclusions were drawn for the technical process of the chemical strengthening of glass by K/Na ion exchange at lower temperatures. (author)

  17. Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; Pierce, Eric M.; Burton, Sarah D.; Bovaird, Chase C.

    2011-03-24

    As part of ongoing studies to evaluate the relationships between structural variations in silicate glasses and rates of glass dissolution in aqueous media, molecular structures present in sodium borosilicate glasses of composition Na2O.xB2O3.(3-x)SiO2, with x 1 (Na2O/B2O3 ratio 1), were analyzed using deep-UV Raman spectroscopy. The results were quantified in terms of the fraction of SiO4 tetrahedra with one non-bridging oxygen (Q3) and then correlated with Na2O and B2O3 content. Increasing Na2O was found to raise the fraction of Q3 units in the glasses systematically, in agreement with studies on related glasses, and, as long as the value of x was not too high, contribute to higher rates of dissolution in single pass flow-through testing. The finding was obtained across more than one series of silica-rich glasses prepared for independent dissolution studies. In contrast, dissolution rates were less strongly determined by the Q3 fraction when the value of x was near unity and appeared to grow larger upon further reduction of the Q3 fraction. The results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO4 tetrahedron replaces the Q3 unit as the charge-compensating structure for Na+ ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference.

  18. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses.

    Science.gov (United States)

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-03-27

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.

  19. Ce+3-and Tb+3-luminescence in glasses. Ce+3-activated bulk silica and silica thin films. An α-particle detector based on a Ce+3-activated silica thin film. A Ce+3-Tb+3-energy transfer in a high melting point phosphate glass

    International Nuclear Information System (INIS)

    Heindl, R.; Loriers, J.; Sella, J.C.; Robert, A.

    1984-07-01

    While many Ce +3 -activated glasses of different type emit strongly under UV (253,7 nm) and β-ray excitation, only the commercial silicate glass NE 905 shows an useful emission when exposed to α-particles. Only phosphate glasses have give the green Tb +3 -emission, when doped by it, under UV and α and β radiation. Sputtered films of Ce +3 -activated silica have appropriate luminescence properties, adherence to the substrate and a perfect chemical resistance to hot nitric acid. An α-particle detector has been built which has permitted the quantitative detection of plutonium in the presence of other radiative ions

  20. ZnO films grown by pulsed-laser deposition on soda lime glass substrates for the ultraviolet inactivation of Staphylococcus epidermidis biofilms

    Directory of Open Access Journals (Sweden)

    Jean-Paul Mosnier, Richard J O'Haire, Enda McGlynn, Martin O Henry, Stephen J McDonnell, Maria A Boyle and Kevin G McGuigan

    2009-01-01

    Full Text Available We found that a ZnO film of 2 μm thickness which was laser-deposited at room temperature onto a plain soda lime glass substrate, exhibits notable antibacterial activity against a biofilm of Staphylococcus epidermidis when back-illuminated by a UVA light source with a peak emission wavelength of about 365 nm. X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM, UV-visible absorption spectroscopy, Raman spectroscopy and x-ray photoemission spectroscopy (XPS were used to characterize the ZnO films before and after the interactions with the biofilm and the ultraviolet light, respectively. The as-deposited film was highly textured with the wurtzite (0002 in-plane orientation (c-axis perpendicular to ZnO surface and had a surface rms roughness of 49.7 nm. In the as-deposited film, the Zn to O ratio was 1 to 0.95. After the UV and biofilm treatments, the ZnO film surface had become rougher (rms roughness 68.1 nm and presented uniform micron-sized pitting randomly distributed, while the zinc to oxygen ratio had become 1 to 2.2. In this case, both the UV-visible and Raman spectra pointed to degradation of the structural quality of the material. On the strength of these data, we propose a model for the mediation of the bactericidal activity in which the photogeneration of highly oxidizing species and the presence of active surface defect sites both play an important role. This study is of particular interest for the acute problem of disinfection of pathogenic biofilms which form on medical device/implant surfaces.

  1. Watching Silica's Dance: Imaging the Structure and Dynamics of the Atomic (Re-) Arrangements in 2D Glass

    Science.gov (United States)

    Muller, David

    2014-03-01

    Even though glasses are almost ubiquitous--in our windows, on our iPhones, even on our faces--they are also mysterious. Because glasses are notoriously difficult to study, basic questions like: ``How are the atoms arranged? Where and how do glasses break?'' are still under contention. We use aberration corrected transmission electron microscopy (TEM) to image the atoms in a new two-dimensional phase of silica glass - freestanding it becomes the world's thinnest pane of glass at only 3-atoms thick, and take a unique look into these questions. Using atom-by-atom imaging and spectroscopy, we are able to reconstruct the full structure and bonding of this 2D glass and identify it as a bi-tetrahedral layer of SiO2. Our images also strikingly resemble Zachariasen's original cartoon models of glasses, drawn in 1932. As such, our work realizes an 80-year-old vision for easily understandable glassy systems and introduces promising methods to test theoretical predictions against experimental data. We image atoms in the disordered solid and track their motions in response to local strain. We directly obtain ring statistics and pair distribution functions that span short-, medium-, and long-range order, and test these against long-standing theoretical predictions of glass structure and dynamics. We use the electron beam to excite atomic rearrangements, producing surprisingly rich and beautiful videos of how a glass bends and breaks, as well as the exchange of atoms at a solid/liquid interface. Detailed analyses of these videos reveal a complex dance of elastic and plastic deformations, phase transitions, and their interplay. These examples illustrate the wide-ranging and fundamental materials physics that can now be studied at atomic-resolution via transmission electron microscopy of two-dimensional glasses. Work in collaboration with: S. Kurasch, U. Kaiser, R. Hovden, Q. Mao, J. Kotakoski, J. S. Alden, A. Shekhawat, A. A. Alemi, J. P. Sethna, P. L. McEuen, A.V. Krasheninnikov

  2. Conversion of radioactive ferrocyanide compounds to immobile glasses

    International Nuclear Information System (INIS)

    Schulz, W.W.; Dressen, A.L.

    1977-01-01

    Complex radioactive ferrocyanide compounds result from the scavenging of cesium from waste products produced in the chemical reprocessing of nuclear fuel. These ferrocyanides, in accordance with this process, are converted to an immobile glass, resistant to leaching by water, by fusion together with sodium carbonate and a mixture of (a) basalt and boron trioxide (B 2 O 3 ) or (b) silica (SiO 2 ) and lime (CaO). 7 claims

  3. High thermal behavior of a new glass ceramic developed from silica xerogel/SnO{sub 2} composite

    Energy Technology Data Exchange (ETDEWEB)

    Aripin, H., E-mail: aripin@unsil.ac.id [Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia); Mitsudo, Seitaro, E-mail: mitsudo@fir.u-fukui.ac.jp [Research Center for Development of Far Infrared Region (FIR Center), University of Fukui, Bunkyo 3-9-1 Fukui 910-8507 (Japan); Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com [Departement Physics, Faculty of Mathematics and Natural Science, Haluoleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Priatna, Edvin, E-mail: ujack05@yahoo.com [Department of Electrical Engineering, Faculty of Engineering, Siliwangi University, Tasikmalaya (Indonesia); Sabchevski, Svilen, E-mail: sabch@ie.bas.bg [Lab. Plasma Physics and Engineering, Institute of Electronics of the Bulgarian Academy of Sciences, 72 Tzarigradsko Shose Blvd., Sofia 1784 (Bulgaria)

    2016-02-08

    In this investigation, a new glass ceramics have been produced by mixing SnO{sub 2} and amorphous silica xerogel (ASX) extracted from sago waste ash. The composition has been prepared by adding 10 mol% of SnO{sub 2} into SX. The samples have been dry pressed and sintered in the temperature range between 800 °C and 1500 °C. The effects of temperature on the crystallization of silica xerogel after adding SnO{sub 2} and their relationship to bulk density have been studied. The crystallization process of the silica xerogel/SnO{sub 2} composite has been examined by an X-ray diffraction (XRD) and the bulk density has been characterized on the basis of the experimental data obtained using Archimedes′ principle. It has been found that an addition of SnO{sub 2} confers an appreciable effect on the grain and from the interpretation of XRD patterns allow one to explain the increase in the density by an increased crystallite size of SnO{sub 2} in the composite.

  4. Modification of medium-range order in silica glass by ball-milling: real- and reciprocal-space structural correlations for the first sharp diffraction peak

    International Nuclear Information System (INIS)

    Mukai, Akira; Kohara, Shinji; Uchino, Takashi

    2007-01-01

    We have carried out high-energy x-ray diffraction measurements on mechanically milled silica glass. It has been found that the first sharp diffraction peak (FSDP) in the structure factor S(Q) of silica glass appreciably decreases in intensity as a result of mechanical milling, whereas the observed features of the other peaks in S(Q) almost remain unchanged. The corresponding real-space correlation function of the milled samples shows a marked decrease in intensity at r∼5 A. This gives an experimental manifestation that the dominant real-space structural correlation pertaining to the FSDP occurs at r∼5 A

  5. Modification of medium-range order in silica glass by ball-milling: real- and reciprocal-space structural correlations for the first sharp diffraction peak

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Akira [Department of Chemistry, Kobe University, Kobe 657-8501 (Japan); Kohara, Shinji [SPring-8, Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Uchino, Takashi [Department of Chemistry, Kobe University, Kobe 657-8501 (Japan)

    2007-11-14

    We have carried out high-energy x-ray diffraction measurements on mechanically milled silica glass. It has been found that the first sharp diffraction peak (FSDP) in the structure factor S(Q) of silica glass appreciably decreases in intensity as a result of mechanical milling, whereas the observed features of the other peaks in S(Q) almost remain unchanged. The corresponding real-space correlation function of the milled samples shows a marked decrease in intensity at r{approx}5 A. This gives an experimental manifestation that the dominant real-space structural correlation pertaining to the FSDP occurs at r{approx}5 A.

  6. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  7. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    International Nuclear Information System (INIS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-01-01

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  8. Inward Cationic Diffusion and Formation of Silica-Rich Surface Nanolayer of Glass

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng

    2009-01-01

    form and are incorporated into the glass structure. Both the V4+ and the hydroxyl contents increase with increasing ta and hydrogen partial pressure. The inward diffusion enhances the hardness of the glass surface. The mechanism of the inward diffusion is suggested on the basis of a model describing...

  9. Nano-phase separation and structural ordering in silica-rich mixed network former glasses.

    Science.gov (United States)

    Liu, Hao; Youngman, Randall E; Kapoor, Saurabh; Jensen, Lars R; Smedskjaer, Morten M; Yue, Yuanzheng

    2018-06-13

    We investigate the structure, phase separation, glass transition, and crystallization in a mixed network former glass series, i.e., B2O3-Al2O3-SiO2-P2O5 glasses with varying SiO2/B2O3 molar ratio. All the studied glasses exhibit two separate glassy phases: droplet phase (G1) with the size of 50-100 nm and matrix phase (G2), corresponding to a lower calorimetric glass transition temperature (Tg1) and a higher one (Tg2), respectively. Both Tg values decrease linearly with the substitution of B2O3 for SiO2, but the magnitude of the decrease is larger for Tg1. Based on nuclear magnetic resonance and Raman spectroscopy results, we infer that the G1 phase is rich in boroxol rings, while the G2 phase mainly involves the B-O-Si network. Both phases contain BPO4- and AlPO4-like units. Ordered domains occur in G2 upon isothermal and dynamic heating, driven by the structural heterogeneity in the as-prepared glasses. The structural ordering lowers the activation energy of crystal growth, thus promoting partial crystallization of G2. These findings are useful for understanding glass formation and phase separation in mixed network former oxide systems, and for tailoring their properties.

  10. Characterization of deep wet etching of fused silica glass for single cell and optical sensor deposition

    International Nuclear Information System (INIS)

    Zhu, Haixin; Holl, Mark; Ray, Tathagata; Bhushan, Shivani; Meldrum, Deirdre R

    2009-01-01

    The development of a high-throughput single-cell metabolic rate monitoring system relies on the use of transparent substrate material for a single cell-trapping platform. The high optical transparency, high chemical resistance, improved surface quality and compatibility with the silicon micromachining process of fused silica make it very attractive and desirable for this application. In this paper, we report the results from the development and characterization of a hydrofluoric acid (HF) based deep wet-etch process on fused silica. The pin holes and notching defects of various single-coated masking layers during the etching are characterized and the most suitable masking materials are identified for different etch depths. The dependence of the average etch rate and surface roughness on the etch depth, impurity concentration and HF composition are also examined. The resulting undercut from the deep HF etch using various masking materials is also investigated. The developed and characterized process techniques have been successfully implemented in the fabrication of micro-well arrays for single cell trapping and sensor deposition. Up to 60 µm deep micro-wells have been etched in a fused silica substrate with over 90% process yield and repeatability. To our knowledge, such etch depth has never been achieved in a fused silica substrate by using a non-diluted HF etchant and a single-coated masking layer at room temperature

  11. Radio-luminescence efficiency and rare-earth dispersion in Tb-doped silica glasses

    Czech Academy of Sciences Publication Activity Database

    Fasoli, M.; Moretti, F.; Lauria, A.; Chiodini, N.; Vedda, A.; Nikl, Martin

    2007-01-01

    Roč. 42, - (2007), s. 784-787 ISSN 1350-4487 Institutional research plan: CEZ:AV0Z10100521 Keywords : sol-gel * scintillators * silica * rare earths * terbium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.054, year: 2007

  12. Positron annihilation study of structural subnanovoids and irradiation damages in silica-based glasses

    International Nuclear Information System (INIS)

    Inoue, K.

    2004-01-01

    Structural subnanovoids in glass solidified with radioactive waste disposal were studied by positron annihilation 2-dimensional angular correlation and positron life time measurements. Positroniums in crystalline SiO 2 were in a delocalized state, but in glass SiO 2 were in a localized state. Pick-off annihilation (pair annihilation between an ortho-positroniums and a spin antiparallel electron) rate was shortened with decreasing molarity of glass network formers and consequently radii of structural subnanovoids were reduced. The sizes of structural subnanovoids determined from the pick-off annihilation were good agreement with those measured by momentum distribution of para-positroniums. In waste disposal model glass, no presence of positronims indicated that radioactive substances occupied almost all subnanovoids, and therefore voids with large size enough to localize positroniums (above 0.1 nm radius) could not be present. (Y. Kazumata)

  13. Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from ab initio molecular dynamics.

    Science.gov (United States)

    Spiekermann, Georg; Steele-MacInnis, Matthew; Schmidt, Christian; Jahn, Sandro

    2012-04-21

    Vibrational spectroscopy techniques are commonly used to probe the atomic-scale structure of silica species in aqueous solution and hydrous silica glasses. However, unequivocal assignment of individual spectroscopic features to specific vibrational modes is challenging. In this contribution, we establish a connection between experimentally observed vibrational bands and ab initio molecular dynamics (MD) of silica species in solution and in hydrous silica glass. Using the mode-projection approach, we decompose the vibrations of silica species into subspectra resulting from several fundamental structural subunits: The SiO(4) tetrahedron of symmetry T(d), the bridging oxygen (BO) Si-O-Si of symmetry C(2v), the geminal oxygen O-Si-O of symmetry C(2v), the individual Si-OH stretching, and the specific ethane-like symmetric stretching contribution of the H(6)Si(2)O(7) dimer. This allows us to study relevant vibrations of these subunits in any degree of polymerization, from the Q(0) monomer up to the fully polymerized Q(4) tetrahedra. Demonstrating the potential of this approach for supplementing the interpretation of experimental spectra, we compare the calculated frequencies to those extracted from experimental Raman spectra of hydrous silica glasses and silica species in aqueous solution. We discuss observed features such as the double-peaked contribution of the Q(2) tetrahedral symmetric stretch, the individual Si-OH stretching vibrations, the origin of the experimentally observed band at 970 cm(-1) and the ethane-like vibrational contribution of the H(6)Si(2)O(7) dimer at 870 cm(-1).

  14. Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter

    International Nuclear Information System (INIS)

    Andre, Damien; Iordanoff, Ivan; Charles, Jean-luc; Jebahi, Mohamed; Neauport, Jerome

    2013-01-01

    The mechanical behavior of materials is usually simulated by a continuous mechanics approach. However, non-continuous phenomena such as multi-fracturing cannot be accurately simulated using a continuous description. The discrete element method (DEM) naturally accounts for discontinuities and is therefore a good alternative to the continuum approach. This work uses a discrete element model based on interaction given by 3D beam model. This model has proved to correctly simulate the elastic properties at the macroscopic scale. The simulation of brittle cracks is now tackled. This goal is attained by computing a failure criterion based on an equivalent hydrostatic stress. This microscopic criterion is then calibrated to fit experimental values of the macroscopic failure stress. Then, the simulation results are compared to experimental results of indentation tests in which a spherical indenter is used to load a silica glass, which is considered to be a perfectly brittle elastic material. (authors)

  15. Silanization of silica and glass slides for DNA microarrays by impregnation and gas phase protocols: A comparative study

    International Nuclear Information System (INIS)

    Phaner-Goutorbe, Magali; Dugas, Vincent; Chevolot, Yann; Souteyrand, Eliane

    2011-01-01

    Surface immobilization of oligonucleotide probes (oligoprobes) is a key issue in the development of DNA-chips. The immobilization protocol should guarantee good availability of the probes, low non-specific adsorption and reproducibility. We have previously reported a silanization protocol with tert-butyl-11-(dimethylamino)silylundecanoate performed by impregnation (Impregnation Protocol, IP) of silica substrates from dilute silane solutions, leading to surfaces bearing carboxylic groups. In this paper, the Impregnation protocol is compared with a Gas phase Protocol (GP) which is more suited to industrial requirements such as reliable and robust processing, cost efficiency, etc.... The morphology of the oligoprobe films at the nanoscale (characterized by Atomic Force Microscopy) and the reproducibility of subsequent oligoprobes immobilization steps have been investigated for the two protocols on thermal silica (Si/SiO 2 ) and glass slide substrates. IP leads to smooth surfaces whereas GP induces the formation of islands features suggesting a non-continuous silane layer. The reproducibility of the overall surface layer (18.75 mm 2 ) has been evaluated through the covalent immobilization of a fluorescent oligoprobes. Average fluorescent signals of 6 (a.u.) and 4 (a.u.) were observed for IP and GP, respectively, with a standard deviation of 1 for both protocols. Thus, despite a morphological difference of the silane layer at the nanometer scale, the density of the immobilized probes remained similar.

  16. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  17. Giant basal spicule from the deep-sea glass sponge Monorhaphis chuni: synthesis of the largest bio-silica structure on Earth by silicatein

    Science.gov (United States)

    Wang, Xiao-hong; Zhang, Xue-hua; Schröder, Heinz C.; Müller, Werner E. G.

    2009-09-01

    Like all sponges (phylum Porifera), the glass sponges (Hexactinellida) are provided with an elaborate and distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Schulze described the largest siliceous hexactinellid sponge on Earth, the up to 3 m high Monorhaphis chuni, collected during the German Deep Sea Expedition "Valdivia" (1898-1899). This species develops an equally large bio-silica structure, the giant basal spicule (3 m × 10 mm). Using these spicules as a model, one can obtain the basic knowledge on the morphology, formation, and development of silica skeletal elements. The silica matrix is composed of almost pure silica, endowing it with unusual optophysical properties, which are superior to those of man-made waveguides. Experiments suggest that the spicules function in vivo as a nonocular photoreception system. The spicules are also provided with exceptional mechanical properties. Like demosponges, the hexactinellids synthesize their silica enzymatically via the enzyme silicatein (27 kDa protein). This enzyme is located in/embedded in the silica layers. This knowledge will surely contribute to a further utilization and exploration of silica in biomaterial/biomedical science.

  18. Synthesis of Er and Er : Yb doped sol–gel derived silica glass and ...

    Indian Academy of Sciences (India)

    Unknown

    Materials Science Centre, †Central Research Facility, Optical Fibre Unit, Indian Institute of Technology,. Kharagpur 721 302, India. MS received 1 March 2004; revised 4 July 2004. Abstract. Er3+ and Er3+ : Yb3+ doped optical quality, crack and bubble free glasses for possible use in mak- ing laser material have been ...

  19. Luminescence and scintillation of Eu.sup.2+./sup.-doped high silica glass

    Czech Academy of Sciences Publication Activity Database

    Chewpraditkul, W.; Chen, D.; Yu, B.; Zhang, Q.; Shen, Y.; Nikl, Martin; Kučerková, Romana; Beitlerová, Alena; Wanarak, C.; Phunpueok, A.

    2011-01-01

    Roč. 5, č. 1 (2011), s. 40-42 ISSN 1862-6254 R&D Projects: GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : glasses * Eu 2+ * luminescence * scintillation * time-resolved luminescence * porous materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.218, year: 2011

  20. Thermodynamics of non-bridging oxigen in silica bio-compatible glass-ceramics

    Czech Academy of Sciences Publication Activity Database

    Koga, N.; Strnad, Z.; Šesták, Jaroslav; Strnad, J.

    2003-01-01

    Roč. 71, - (2003), s. 927-937 ISSN 1418-2874 R&D Projects: GA AV ČR IAA4010101 Institutional research plan: CEZ:AV0Z1010914 Keywords : bio-compatible * bone-like apatite * glass-ceramics * mimetic material * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.598, year: 2002

  1. Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings

    Science.gov (United States)

    Yasmin, Sabina; Barua, Bijoy Sonker; Khandaker, Mayeen Uddin; Chowdhury, Faruque-Uz-Zaman; Rashid, Md. Abdur; Bradley, David A.; Olatunji, Michael Adekunle; Kamal, Masud

    2018-06-01

    Following the rapid growing economy, the Bangladeshi dwellers are replacing their traditional (mud-, bamboo-, and wood-based) houses to modern multistoried buildings, where different types of glasses are being used as decorative as well as structural materials due to their various advantageous properties. In this study, we inquire the protective and dosimetric capability of commercial glasses for ionizing radiation. Four branded glass samples (PHP-Bangladesh, Osmania-Bangladesh, Nasir-Bangladesh, and Rider-China) of same thickness and color but different elemental weight fractions were analyzed for shielding and dosimetric properties. The chemical composition of the studied material was evaluated by EDX technique. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the attenuation coefficients of the studied materials for 59 keV, 661 keV, 1173 keV and 1332 keV photon energies. A number of shielding parameters- half value layer (HVL), radiation protection efficiency (RPE) and effective atomic number (Zeff) were also evaluated. The data were compared with the available literature (where applicable) to understand its shielding capability relative to the standard materials such as lead. Among the studied brands, Rider (China) shows relatively better indices to be used as ionizing radiation shielding material. The obtained, Zeff of the studied glass samples showed comparable values to the TLD-200 dosimeter, thus considered suitable for environmental radiation monitoring purposes.

  2. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  3. Glass viscosity calculation based on a global statistical modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  4. What Is Crystalline Silica?

    Science.gov (United States)

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  5. Using STED and ELSM confocal microscopy for a better knowledge of fused silica polished glass interface

    International Nuclear Information System (INIS)

    Catrin, Rodolphe; Neauport, Jerome; Taroux, Daniel; Corbineau, Thomas; Cormont, Philippe; Maunier, Cedric; Legros, Philippe

    2013-01-01

    Characteristics and nature of close surface defects existing in fused silica polished optical surfaces were explored. Samples were deliberately scratched using a modified polishing process in presence of different fluorescent dyes. Various techniques including Epi-fluorescence Laser Scanning Mode (ELSM) or Stimulated Emission Depletion (STED) confocal microscopy were used to measure and quantify scratches that are sometimes embedded under the polished layer. We show using a nondestructive technique that depth of the modified region extends far below the surface. Moreover cracks of 120 nm width can be present ten micrometers below the surface. (authors)

  6. A Comparative Study of the Addition Effect of Diopside and Silica Sulfuric Acid Nanoparticles on Mechanical Properties of Glass Ionomer Cements

    Directory of Open Access Journals (Sweden)

    M. Rezazadeh

    2016-09-01

    Full Text Available The aim of the present study is to study the effects of adding  diopside (CaMgSi2O6 as well as silica sulfuric acid nanoparticles to ceramic part of glass ionomer cement (GIC in order to improve its mechanical properties. To do this, firstly, diopside (DIO nanoparticles with chemical formula of CaMgSi2O6 were synthesized using sol-gel process and then, the structural and morphological properties of synthesized diopside nanoparticles were investigated. The results of scanning electron microscopy (SEM and particle size analyzing (PSA confirmed that synthesized diopside are nanoparticles and agglomerated. Besides, the result of X-ray diffraction (XRD analyses approved the purity of diopside nanoparticles compounds. Silica sulfuric acid (SSA nanoparticles are also prepared by chemical modification of silica nanoparticles by means of chlorosulfonic acid. Fourier transform infrared spectroscopy (FTIR technique was used to find about the presence of the (SO3H groups on the surface of silica sulfuric acid nanoparticles. Furthermore, various amounts (0.1, 3 and 5 wt.% of diopside and silica sulfuric acid nanoparticles were added to the ceramic part of GIC (Fuji II GIC commercial type to produce glass ionomer cement nanocomposites. The mechanical properties of the produced nanocomposites were measured using the compressive strength, three-point flexural strength and diametral tensile strength methods. Fourier transform infrared spectroscopy technique confirmed the presence of the (SO3H groups on the surface of silica nanoparticles. The compressive strength, three-point flexural strength and diametral tensile strength were 42.5, 15.4 and 6 MPa, respectively, without addition. Although adding 1% silica solfonic acid improved nanocomposite mchanical properties by almost 122%, but maximum increase in nanocomposite mechanical properties was observed in the nanocomposites with 3% diposid, in which 160% increase was seen in the mechanical properties.

  7. Diffusion structural analysis study of titania films deposited by sol-gel technique on silica glass

    Czech Academy of Sciences Publication Activity Database

    Balek, V.; Mitsuhashi, T.; Bountseva, I.M.; Haneda, H.; Málek, Z.; Šubrt, Jan

    2003-01-01

    Roč. 26, 1-3 (2003), s. 185-189 ISSN 0928-0707. [International Workshop on Glasses, Ceramics, Hybrids and Nanocomposites from Gels /11./. Abano Terme, 16.09.2001-21.09.2001] Institutional research plan: CEZ:AV0Z4032918 Keywords : titania film * diffusion structural analysis * sol-gel Subject RIV: CA - Inorganic Chemistry Impact factor: 1.546, year: 2003

  8. Temperature dependence of luminescence for different surface flaws in high purity silica glass

    International Nuclear Information System (INIS)

    Fournier, J.; Grua, P.; Neauport, J.; Fargin, E.; Jubera, V.; Talaga, D.; Del Guerzo, A.; Raffy, G.; Jouannigot, S.

    2013-01-01

    In situ temperature dependence of the Photoluminescence under 325 nm irradiation is used to investigate defect populations existing in different surface flaws in high purity fused silica. Five photoluminescence bands peaking at 1.9, 2.1, 2.3, 2.63 and 3.11 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. The Gaussian deconvolution of spectra allows dividing the five luminescence bands in two categories. The former corresponds to bands showing a significant intensity enhancement while temperature decreases; the latter corresponds to bands remaining insensitive to the temperature evolution. Such a behavior brings new information on defects involved in laser damage mechanism at 351 nm in nanosecond regime. (authors)

  9. Glass Furnace Project, October 1982-March 1983

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.

    1983-01-01

    In the Glass Furnace Project currently under way at Mound, a treatment technology for low-level radioactive waste is being evaluated that will combine volume reduction and immobilization in one step. Initial work focused on demonstrating the ability of the furnace to efficiently incinerate nonradioactive, simulated power-plant waste and on determining the adequacy of immobilization in a soda-lime silica matrix. Further evaluation of the system will involve a demonstration of the combustion and containment of radioactive waste. In preparation for this next phase of the program, preliminary investigation and design work were conducted during the past six months. 5 figures, 1 table

  10. The effect of silica fume and metakaolin on glass-fibre reinforced concrete (GRC ageing

    Directory of Open Access Journals (Sweden)

    Enfedaque Díaz, A.

    2010-12-01

    Full Text Available The deterioration of the mechanical properties of glassfibre reinforced concrete (GRC over time rules out the use of this material in load-bearing structures. While one possible solution to this problem is the addition of pozzolans or metakaolin to the cement mortar, the amounts needed to ensure GRC integrity raise its price to non-competitive levels. Experimental research has been conducted to analyze whether the addition of small amounts of silica fume or metakaolin can prevent or mitigate the ageing issue. Unfortunately, the findings indicate that the addition of small proportions of metakaolin or silica fume to GRC are ineffective in improving its long-term performance.

    Para el uso del mortero de cemento reforzado con fibras de vidrio (GRC en estructuras portantes se han de solucionar los problemas de reducción de las propiedades mecánicas que aparecen con el paso del tiempo. Estos problemas pueden ser solucionados mediante la adición de puzolanas o de metacaolín, a la pasta de mortero de cemento. Sin embargo, la cantidad de metacaolín que ha de ser añadida es elevada y el precio del GRC fabricado está fuera del mercado. Se ha realizado una campaña experimental que analiza si la adición de humo de sílice o de metacaolín en proporciones reducidas consigue evitar o paliar el problema del envejecimiento, que supone un freno al uso del GRC en elementos estructurales. Desgraciadamente, los resultados experimentales muestran que proporciones bajas de metacaolín o de humo de sílice no son efectivas para reducir el problema de pérdida de propiedades mecánicas.

  11. The viscosity window of the silicate glass foam production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2017-01-01

    which can offer a practical starting point for the optimisation procedure. The melt viscosity might be the most important parameter for controlling the foaming process and the glass foam density. In this work, we attempt to define a viscosity range in which foaming of different glasses results...... in a maximum of foam expansion. The expansion maximum is obtained for different glasses (labware, E-glass, CRT panel, soda-lime-silica) by foaming with CaCO3 at isokom temperature and from literature data. In general, the viscosity window was found to be within 104–106 Pa s when foaming with MnO2 or metal...... carbonates (CaCO3, Na2CO3, MgCO3, SrCO3, dolomite) whereas SiC requires higher temperatures and correspondingly lower viscosities (103.3–104.0 Pa s). These findings can help assessing the implementation of new resources in the glass foam production....

  12. Dynamic fatigue of a lithia-alumina-silica glass-ceramic

    Science.gov (United States)

    Tucker, Dennis S.

    1990-01-01

    A dynamic fatigue study was performed on a Li2O-Al2O3-SiO2 glass-ceramic in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N = 20) to stress corrosion in ambient conditions. Analysis also indicated the elements should survive applied stresses incurred during grinding and polishing operations.

  13. Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Paul, Mukul C. [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Kir' yanov, Alexander V. [Centro de Investigaciones en Optica, Guanajuato (Mexico); Bysakh, Sandip [Electron Microscopic Section, Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-08-15

    The basic material and optical properties of chromium-doped nanophase-separated yttria-alumina-silica (YAS) glass based optical preforms and fibers, fabricated through the modified chemical vapor deposition process in conjunction with solution doping technique under suitable thermal annealing conditions are reported. The size of the phase-separated particles within the core of the annealed preform is around 20-30 nm which is significantly reduced to around 5.0 nm in the drawn fiber. The absorption spectra of fibers drawn from the annealed and non-annealed preform samples revealed the presence of Cr{sup 4+}, Cr{sup 3+}, and Cr{sup 6+} specie. Numerically, extinction of absorption drops ∝3-3.5 times for the annealed sample as a result of nano-phase restructuration during annealing process. Intense broadband emission (within 500-800 nm) in case of the annealed preform sample is observed as compared to the non-annealed one and is associated with the presence of Cr{sup 3+} ions in nanostructured environment inside the YAS core glass. The final fibers show broadband emission ranging from 900 to 1400 nm under pumping at 1064 nm which is attributed mainly to the presence of Cr{sup 3+}/Cr{sup 4+} ions. The fabricated fibers seem to be a potential candidate for the development of fiber laser sources for the visible and near-infra ranges and for effective Q-switching units for ∝1-1.1 μm all-fiber ytterbium lasers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Glass transition of poly (methyl methacrylate) filled with nanosilica and core-shell structured silica

    DEFF Research Database (Denmark)

    Song, Yihu; Bu, Jing; Zuo, Min

    2017-01-01

    transition and segmental dynamics of PMMA in the nanocomposites prepared via solution casting was compared. The remarkable depression (≥10 °C) of glass transition temperature (Tg) induced by the incorporation of SiO2 and CS was both observed at low loadings. Here, different mechanisms were responsible...... for the effect of SiO2 and CS on the segmental acceleration of PMMA matrix. The formation of rigid amorphous fraction (RAF) layer around SiO2 with the thickness of 16.4 nm led to the adjacent molecular packing frustration, while the “lubrication” effect of nonwetting interface between the grafted crosslinked......Core-shell (CS) nanocomposite particles with 53.4 wt% cross-linked poly (methyl methacrylate) (PMMA) shell of 11.6 nm in thickness were fabricated via miniemulsion polymerization of methyl methacrylate in the presence of modified nanosilica. The influence of nanosilica and CS nanoparticles on glass...

  15. Highly-Bioreactive Silica-Based Mesoporous Bioactive Glasses Enriched with Gallium(III

    Directory of Open Access Journals (Sweden)

    Sandra Sanchez-Salcedo

    2018-03-01

    Full Text Available Beneficial effects in bone cell growth and antibacterial action are currently attributed to Ga3+ ions. Thus, they can be used to upgrade mesoporous bioactive glasses (MBGs, investigated for tissue engineering, whenever they released therapeutic amounts of gallium ions to the surrounding medium. Three gallium-enriched MBGs with composition (in mol % xSiO2–yCaO–zP2O5–5Ga2O3, being x = 70, y = 15, z = 10 for Ga_1; x = 80, y = 12, z = 3 for Ga_2; and x = 80, y = 15, z = 0 for Ga_3, were investigated and compared with the gallium-free 80SiO2–15CaO–5P2O5 MBG (B. 29Si and 31P MAS NMR analyses indicated that Ga3+ acts as network modifier in the glass regions with higher polymerization degree and as network former in the zones with high concentration of classical modifiers (Ca2+ ions. Ga_1 and Ga_2 exhibited a quick in vitro bioactive response because they were coated by an apatite-like layer after 1 and 3 days in simulated body fluid. Although we have not conducted biological tests in this paper (cells or bacteria, Ga_1 released high but non-cytotoxic amounts of Ga3+ ions in Todd Hewitt Broth culture medium that were 140 times higher than the IC90 of Pseudomonas aeruginosa bacteria, demonstrating its potential for tissue engineering applications.

  16. Analysis of optical properties behaviour of CLEARCERAM, fused silica and CaF2 glasses exposed to simulated space conditions

    Science.gov (United States)

    Fernández-Rodríguez, M.; Alvarado, C. G.; Núñez, A.; Álvarez-Herrero, A.

    2017-11-01

    produced by the radiation environment on the optical materials can be classified in two types: ionizing or non-ionizing. This damage may produce continual or accumulative (dose) alterations on the optical material performances, or may produce alterations which not remain along the time (transitory effects). The effects of the radiation on optical materials can be summarized on changes of optical transmission and refractive index, variation of density and superficial degradation [4-6]. Two non-invasive and non-destructive techniques such as Optical Spectrum Analyzer and Spectroscopic Ellipsometry [7] have been used to characterize optically the three kinds of studied glasses, CaF2, Fused Silica and Clearceram. The study of the temperature and radiation effects on the glasses optical properties showed that the gamma radiation is the principal responsible of glasses optical degradation. The optical properties of the Clearceram glass have been affected by the gamma irradiation due to the absorption bands induced by the radiation in the visible spectral range (color centers). Therefore, an analysis about the behavior of these color centers with the gamma radiation total dose and with the time after the irradiation has been carried out in the same way that it is performed in [8].

  17. Use of rice rusk ash and spent catalyst as a source of raw material for the production and characterization of soda-lime silicate glasses destined for packaging; Utilizacao de residuos de catalisador (ECAT) e cinzas da casca de arroz (CCA) na elaboracao de vidros silicatos soda-cal destinados ao setor de embalagem

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, M.S.; Martinelli, J.R.; Genova, L.A.; Prado, U.S. do, E-mail: araujo.mariaana@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais

    2016-07-01

    Study on the use of rice husk ash (RHA) and waste catalyst (ECAT), two industrial solid waste generated in large quantities in Brazil, getting soda-lime glass for the production of packaging. Both the waste may be classified as class II waste according to NBR 10,004. Samples were produced adding Na{sub 2}CO{sub 3} and CaO to obtain a composition within the range of commercial soda-lime glasses. The results showed that both can be used as received (without any previous treatment) replacing important raw materials, source of Al{sub 2}O{sub 3} and SiO2, necessary for glass formation. The produced samples were amber due to the presence of nickel (Ni2+ ions) from the ECAT and optical transmittance of 18%. These also showed good homogeneity, i.e., absence of bubbles and striae and dissolution rate higher than a commercial soda-lime glass. In general, the samples are presented suitable for applications that require low transmittance such as colored glass containers, which does not require perfect visibility and transparency. Finally, the waste level of incorporation was approximately 78 mass%. (author)

  18. Modification of Lime Mortars with Synthesized Aluminosilicates

    Science.gov (United States)

    Loganina, Valentina I.; Sadovnikova, Marija E.; Jezierski, Walery; Małaszkiewicz, Dorota

    2017-10-01

    The increasing attention for restoration of buildings of historical and architectural importance has increased the interest for lime-based binders, which could be applied for manufacturing repair mortars and plasters compatible with historical heritage. Different additives, admixtures or fibers may be incorporated to improve mechanical and thermal features of such materials. In this study synthesized aluminosilicates (SA) were applied as an additive for lime mortar. The technology of synthesis consisted in the deposition of aluminosilicates from a sodium liquid glass by the aluminum sulphate Al2(SO4)3. The goal of this investigation was developing a new method of aluminosilicates synthesis from a sodium liquid glass and using this new material as a component for a lime mortar. Aluminosilicates were precipitated from the solution of aluminum sulphate Al2(SO)3 and sodium silicate. SA were then used as an additive to calcareous compositions and their influence was tested. Mortars were prepared with commercial air lime and siliceous river sand. Air lime binder was replaced by 5 and 10 wt.% of SA. Calcareous composition specimens were formed at water/lime ratio 1.0. The following analyses were made: grain size distribution of SA, X-ray diffraction analysis (XRD), sorption properties, plastic strength and compressive strength of lime mortars. XRD pattern of the SA shows the presence of thenardite, gibbsite and amorphous phase represented by aggregate of nano-size cristobalite-like crystallites. Application of SA leads to increase of compressive strength after 90 days of hardening by 28% and 53% at SA content 5 and 10% respectively comparing to specimens without this additive. Contents of chemically bound lime in the reference specimens after 28 days of hardening in air-dry conditions was 46.5%, while in specimens modified with SA contained 50.0-55.3% of bound lime depending on filtrate pH. This testifies to high activity of calcareous composition. The new blended lime

  19. Temperature dependence of luminescence from silica glasses under in-reactor and 60Co gamma-ray irradiation

    Science.gov (United States)

    Takahara, Shogo; Yoshida, Tomoko; Tanabe, Tetuo; , Tatuya, Ii; Hirano, Masahiro; Okada, Moritami

    2004-06-01

    In order to investigate the temperature effects on the dynamic radiation damaging process, we have carried out in situ measurements of in-reactor luminescence (IRL) and gamma-ray induced luminescence (GIL) of a silica glass at temperatures ranging from 70 K to 370 K. Both luminescence spectra were found to consist of two broad emission centers at 3.1 eV and 4.1 eV with an additional temperature independent emission around 2.5 eV. The 2.5 eV emission different from the other two showed long tail to the lower energy side and was attributed to the Cherenkov radiation. The 3.1 eV band was attributed to a B 2 β oxygen deficient center on the basis of our photoluminescence measurement. The intensity of the 3.1 eV IRL increased with increasing temperature up to ca. 200 K and saturated above 200 K, which is clearly different from the reported temperature dependence of 3.1 eV photoluminescence, suggesting the existence of some different relaxation mechanism of excited electron under ionizing radiations.

  20. Optical Degradation of Colloidal Eu-Complex Embedded in Silica Glass Film Using Reprecipitation and Sol-Gel Methods.

    Science.gov (United States)

    Fukuda, Takeshi; Kurabayashi, Tomokazu; Yamaki, Tatsuki

    2016-04-01

    A reprecipitation method has been investigated for fabricating colloidal nanoparticles using Eu-complex. Herein, we investigated optical degradation characteristics of (1,10-phenanthroline)tris [4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato]europium(III) colloidal nanoparticles, which were embedded into a silica glass film fabricated by a conventional sol-gel process. At first, we tried several types of good solvents for the reprecipitation method, and dimethyl sulfoxide (DMSO) is found to be a suitable solvent for realizing the small diameter and the high long-term stability against the ultraviolet irradiation even though the boing point of DMSO is higher than that of water used as a poor solvent. By optimizing the good solvent and the concentration of Eu-complex, the relative photoluminescence intensity of 0.96 was achieved even though the ultraviolet light was continuously irradiated for 90 min. In addition, the average diameter of 106 nm was achieved when DMSO was used as a good solvent, resulting in the high transmittance at a visible wavelength region. Therefore, we can achieve the transparent emissive thin film with a center wavelength of 612 nm, and the optical degradation was drastically reduced by forming nanoparticles.

  1. EPR reversible signature of self-trapped holes in fictive temperature-treated silica glass

    Science.gov (United States)

    Lancry, Matthieu; Ollier, Nadège; Babu, B. H.; Herrero, Christian; Poumellec, Bertrand

    2018-03-01

    Post-mortem electron paramagnetic resonance spectroscopy experiments have been carried out between room temperature and 20 K to examine the radiation-induced defects in fictive temperature (Tf) treated Heraeus F300 silica (0.1 ppm OH, 1500 ppm Cl2). In particular, we focus our attention on Self-Trapped Hole (STH) centers detected in 1000 °C, 1100 °C, and 1200 °C Tf treated samples irradiated at room temperature by gamma rays at 6 kGy. By repeating annealing cycles between 77 and 300 K on the same samples, we observed that the EPR signal attributed to STH decreases as the temperature increases but in a reversible manner. We evidenced a deviation from the Curie law for T > 70 K and suggested an interpretation based on the decrease in the "strain-assisted TH" population by reversible excitation of the trapped hole to a delocalized state with an activation energy of 7.8 meV. This also means that the precursors of hole trapping sites (a local strain atomic configuration) remain stable until 300 K at least.

  2. Hydrogen Silsesquioxane based silica glass coatings for the corrosion protection of austenitic stainless steel

    DEFF Research Database (Denmark)

    Lampert, Felix; Jensen, Annemette Hindhede; Din, Rameez Ud

    2016-01-01

    -film barrier coatings were deposited on AISI 316L grade austenitic stainless steel with 2B surface finish from Hydrogen Silsesquioxane (HSQ) spin-on-glass precursor and thermally cured to tailor the film properties. Results showed that curing at 500 °C resulted in a film-structure with a polymerized siloxane...... backbone and a reduced amount of Si-H moieties. The coatings showed good substrate coverage and the average thickness was between 200 and 400 nm on the rough substrate surface, however, film thicknesses of > 1400 nm were observed at substrate defects. Deposition of these films significantly improved...... the barrier-properties by showing a 1000 times higher modulus while an ionic transport over the coating was also observed....

  3. Fabrication of transparent superhydrophobic silica-based film on a glass substrate

    Science.gov (United States)

    Wang, Shing-Dar; Luo, Shih-Shiang

    2012-05-01

    Tetraethoxysilane (TEOS) was hydrolyzed in an acidic environment and then reacted with hexamethyldisilazane (HMDS) to obtain a superhydrophobic transparent film on a glass substrate. The molar ratios of water and ethanol to TEOS, the pH value of the acidic (or basic) water that is used to hydrolyze TEOS, the heat treatment conditions and other factors were investigated systematically to optimize the transmission through, and the contact angle of water on the film. HMDS (total amount of HMDS/TEOS = 2) was divided into 20 parts, which were added into the sol successively to prevent the sudden production of a large quantity of NH3 in a small area of the sol. The optical and hydrophobic properties of the sol gel continued to change after it had been prepared. The conditions that TEOS was hydrolyzed with acidic water at pH 1.2 at 70 °C and the sol gel was aged at 20 °C for 48 h realized transmission of 90.9% and a water contact angle of 154.3°. No additional surface chemistry modification was needed.

  4. Quantifying Silica Reactivity in Subsurface Environments: Reaction Affinity and Solute Matrix Controls on Quartz and SiO2 Glass Dissolution Kinetics

    International Nuclear Information System (INIS)

    Dove, Patricia M.

    1999-01-01

    Our goal is to develop a quantitative and mechanistic understanding of amorphous silica, SiO2(am), dissolution kinetics in aqueous solutions. A knowledge of fundamental controls on the reactivity of simple Si-O bonded phases is the baseline of behavior for understanding highly complex silica phases. In the Earth, silicate minerals comprise >70% of the crust and dominate virtually every subsurface system. More importantly for the objectives of this EMSP project, the silicates are important because compositionally complex glasses will become the front line of defense in containing radioactive wastes in the nation's long term and interim storage strategies. To date, the behavior of SiO2(am) is largely inferred from studies of the better known crystalline polymorphs (e.g. alpha-quartz). In the first step towards constructing a general model for amorphous silica reactivity in the complex fluid compositions of natural waters, we are determining the dissolution behavior as a function of temperature, solution pH and cation concentration. With these data we are determining relationships between SiO2 glass structure and dissolution rates in aqueous solutions, as described below

  5. Quantifying silica reactivity in subsurface environments: Reaction affinity and solute matrix controls on quartz and SiO2 glass. 1997 annual progress report

    International Nuclear Information System (INIS)

    Dove, P.M.

    1997-01-01

    'The author reports the preliminary results of the experiments on the dissolution behavior of vitreous silica (v-SiO 2 ) into aqueous solutions of variable pH and ionic strength. The experiments are being conducted in mixed flow reactors with a high circulation rate that simulates constant-stirred conditions, the efficacy of which the authors discuss below. The preliminary results indicate that v-SiO 2 dissolves into aqueous solutions approximately two orders of magnitude more quickly than crystalline silica (e.g., quartz). With additional experiments, they will utilize the dissolution rate data as a framework for understanding the behavior of waste glass compositions in the subsurface. In other work related to the studies of glass reactivity, the author has written one book chapter that will be published as part of a proceedings for the CEA/VALRHO international nuclear waste disposal conference held in Mejannes le Clap, France. In separate work, she is presently writing a second book chapter for the volume entitled Adsorption on Silica Surfaces.'

  6. Phase Separation and Crystallization in soda-lime borosilicate glass enriched in MoO{sub 3} studied by in situ Raman spectroscopy at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, M.; Schuller, S.; Advocat, T. [CEA Valrho, DEN/DTCD/SCDV, Laboratoire d' Etude de Base sur les Verres, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Caurant, D.; Majerus, O. [Laboratoire de Chimie de la Matiere Condensee de Paris- LCMCP - UMR-CNRS 7574, Ecole Nationale Superieure de Chimie de Paris - ENSCP, Paristech, 75231 Paris (France); Ligny, D. de [Laboratoire de Physico-Chimie des Materiaux Luminescents- LPCML - UMR-CNRS 5620, Universite Claude Bernard Lyon1, 69622 Villeurbanne (France)

    2008-07-01

    Phase separation and crystallisation processes may arise in molten glass when the MoO{sub 3} content exceeds its solubility limit. Molybdenum combined with other elements such as alkali and alkaline-earth may form crystalline molybdates, known as 'yellow phases' in nuclear glasses. In order to establish the sequence of phase separation and crystallization processes occurring during the cooling of the melt, a non-radioactive simplified glass composition was chosen in the SiO{sub 2}-B{sub 2}O{sub 3}-Na{sub 2}O-CaO system, with 2 mol.% MoO{sub 3}. Various cooling scenarios were tested: cooling by air blowing, quenching between two copper plates and cooling on metallic plate. The resulting glass specimens were then characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy in temperature. These observations made it possible to determine the sequence and the appearance temperature of phenomena upon cooling: first, a phase separation occurs, (small droplets dispersed in the molten glass) followed by molybdates crystallization inside the droplets. (authors)

  7. FY 1999 results of the regional consortium R and D project/the regional consortium energy R and D. 1st year. Development of the energy-saving type production technology of high-purity/transparent silica glass; 1999 nendo kojundo tomei sekiei glass no sho energy gata seizo gijutsu no kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of achieving the remarkable energy conservation, high accuracy and low cost in the production of high-purity/transparent silica glass, the developmental research was conducted on slip casting method. In the development of technology to synthesize silica powder by the sol-gel method, monodisperse - polydisperse high-purity colloidal silica was obtained. In the development of technology to make silica power ultra-highly pure, a process was found out in which silica particles can be obtained by applying moderate amounts of ammonium bicarbonate and aqueous ammonia to the solution of silicic acid for heating. In the slip cast forming, a high-density forming body with a mean particle size of 1.5{mu}m was obtained. In the trial manufacture of reflector model, a translucent silica glass sintered body was obtained by transcribing the gypsum type dimensional shape in high purity. Besides, experimental researches were conducted on the examination of gypsum type/resin type and evaluation of physical properties, heat deterioration characteristics of the actual multi-layer film and trial manufacture of the heat resistant film, analysis/evaluation of trace impurities inside silica glass, conditions for the manufacture of dense silica glass sheets, etc. (NEDO)

  8. Modification of a Phenolic Resin with Epoxy- and Methacrylate-Functionalized Silica Sols to Improve the Ablation Resistance of Their Glass Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Yu Hu

    2014-01-01

    Full Text Available Functionalized silica sols were obtained by the hydrolytic condensation of (γ-methacryloxypropyltrimethoxysilane (MPMS, (γ-glycidyloxypropyltrimethoxysilane (GPMS and tetraethoxysilane (TEOS. Three different sols were obtained: MPS (derived from MPMS and TEOS, GPS-MPS (derived from GPMS, MPMS and TEOS, and GPSD (derived from GPMS, TEOS and diglycidyl ether of bisphenol A, DGEBA. These silica sols were mixed with a phenolic resin (PR. Ethylenediamine was used as a hardener for epoxy-functionalized sols and benzoyl peroxide was used as an initiator of the free-radical polymerization of methacrylate-functionalized silica sols. Glass fiber-reinforced composites were obtained from the neat PR and MPS-PR, GPS-MPS-PR and GPSD-PR. The resulting composites were evaluated as ablation resistant materials in an acetylene-oxygen flame. A large increase in the ablation resistance was observed when the PR was modified by the functionalized silica sols. The ablation resistance of the composites decreased as follows: GPSD-PR > MPS-PR > GPS-MPS-PR > PR.

  9. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying

    Science.gov (United States)

    Zhou, Ting; Cheng, Xudong; Pan, Yuelei; Li, Congcong; Gong, Lunlun; Zhang, Heping

    2018-04-01

    In order to maintain the integrity, glass fiber (GF) reinforced silica aerogel composites were synthesized using methltrimethoxysilane (MTMS) and water glass co-precursor by freeze drying method. The composites were characterized by scanning electron microscopy, Brunauer-Emmett-Teller analysis, uniaxial compressive test, three-point bending test, thermal conductivity analysis, contact angle test, TG-DSC analysis. It was found that the molar ratio of MTMS/water glass could significantly affect the properties of composites. The bulk density and thermal conductivity first decreased and then increased with the increasing molar ratio. The composites showed remarkable mechanical strength and flexibility compared with pure silica aerogel. Moreover, when the molar ratio is 1.8, the composites showed high specific surface area (870.9 m2/g), high contact angle (150°), great thermal stability (560 °C) and low thermal conductivity (0.0248 W/m·K). These outstanding properties indicate that GF/aerogels have broad prospects in the field of thermal insulation.

  10. Effects of annealing atmosphere on ZnO{sup -} ions-implanted silica glass: synthesis of Zn and ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kuiri, P K [Department of Physics, Achhruram Memorial College, P.O. Jhalda, Purulia 723202 (India); Mahapatra, D P, E-mail: kuiripk@gmail.co [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2010-10-06

    The effects of annealing atmosphere (argon or oxygen) on Zn nanoparticles (NPs), embedded in silica glass, synthesized by implanting 50 keV ZnO{sup -} ions to a fluence of 7 x 10{sup 16} cm{sup -2} have been studied. Optical absorption (OA) measurements carried out on the as-implanted samples have been found to result in a surface plasmon resonance (SPR) band centred at {approx}255 nm due to the presence of Zn NPs in the silica glass. An increase in SPR peak intensity with a corresponding reduction of its full width at half maximum have been seen in the OA spectrum taken from the as-implanted sample following annealing in Ar ambient at 700 {sup 0}C for 2 h, indicating a growth in the size of Zn NPs. However, annealing the as-implanted sample in O{sub 2} gas at 700 {sup 0}C for 2 h has been found to result in a steep absorption edge at {approx}364 nm in the OA spectrum which indicates the formation of ZnO NPs. These ZnO NPs show quantum confinement effects due to their small sizes. No observable photoluminescence (PL) emission has been seen from Zn NPs, whereas an excitonic band at {approx}368 nm and three deep-level PL emission bands at {approx}453 nm, {approx}521 nm and {approx}650 nm, respectively, have been seen from ZnO NPs. It was argued that the deep-level PLs were due to the singly ionized oxygen vacancies located at ZnO NPs' surfaces. These observations suggest that ZnO NPs were formed due to oxidation of Zn NPs via interaction with the indiffusing O{sub 2} molecules during annealing in O{sub 2} ambient, but not with the interaction of the implanted oxygen in silica glass.

  11. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  12. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica.

    Science.gov (United States)

    Leenakul, Wilaiwan; Tunkasiri, Tawee; Tongsiri, Natee; Pengpat, Kamonpan; Ruangsuriya, Jetsada

    2016-04-01

    45S5 bioactive glass is a highly bioactive substance that has the ability to promote stem cell differentiation into osteoblasts--the cells that create bone matrix. The aim of this work is to analyze physical and mechanical properties of 45S5 bioactive glass fabricated by using rice husk ash as its silica source. The 45S5 bioactive glass was prepared by melting the batch at 1300 °C for 3h. The samples were sintered at different temperatures ranging from 900 to 1050 °C with a fixed dwell-time of 2h. The phase transitions, density, porosity and microhardness values were investigated and reported. DTA analysis was used to examine the crystallization temperatures of the glasses prepared. We found that the sintering temperature had a significant effect on the mechanical and physical properties of the bioactive glass. The XRD showed that when the sintering temperature was above 650 °C, crystallization occurred and bioactive glass-ceramics with Na2Ca2Si3O9, Na2Ca4(PO4)2SiO4 and Ca3Si2O7 were formed. The optimum sintering temperature resulting in maximum mechanical values was around 1050 °C, with a high density of 2.27 g/cm(3), 16.96% porosity and the vicker microhardness value of 364HV. Additionally, in vitro assay was used to examine biological activities in stimulated body fluid (SBF). After incubation in SBF for 7 days, all of the samples showed formations of apatite layers indicating that the 45S5 bioactive glasses using rice husk as a raw material were also bioactive. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    Science.gov (United States)

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  14. The influence of post-annealing treatment on the wettability of Ag+/Na+ ion-exchanged soda-lime glasses

    International Nuclear Information System (INIS)

    Razzaghi, Ahmad; Maleki, Maniya; Azizian-Kalandaragh, Yashar

    2013-01-01

    In this paper, the effect of thermal annealing and the duration of ion-exchange on the wetting parameters of the Ag + /Na + ion-exchanged glasses have been reported. The analysis of wetting angle in different post-annealing temperatures shows that the wetting angle is increased by increasing the annealing temperature. The wetting parameters of Ag + /Na + ion-exchanged glasses at different ion-exchanged periods of time have been also investigated. Scanning electron microscopy (SEM), UV–Visible spectroscopy and Fourier transform infrared (FTIR) spectroscopy have been used for determination of surface morphology and composition analysis of the prepared samples. The results of SEM show changes in the surface of the samples for different post-annealing temperatures. The optical characterization using UV–Vis spectroscopy shows an increase in the intensity of the absorption peak with increasing the ion-exchange duration. The FTIR spectroscopy confirms the formation of silver oxide material on the surface of Ag + /Na + ion-exchanged glasses.

  15. Microwave studies on the dielectric properties of Sm3+ and Sm3+/CdTe doped sol-gel silica glasses

    International Nuclear Information System (INIS)

    Mathew, Siby; Rejikumar, P.R.; Yohannan, Jaimon; Mathew, K.T.; Unnikrishnan, N.V.

    2008-01-01

    Complex permittivity and conductivity studies of Samarium and Samarium/semiconductor cadmium telluride sol-gel silica glass samples were done. We use cavity perturbation technique at S band frequencies using TE 10p Mode. Structural evolution of the matrix on annealing is discussed based on FTIR analysis/XRD power diffraction. In cavity perturbation technique dielectric parameters like complex permittivity and conductivity are determined by measuring changes in resonant frequency due to small perturbation inside the cavity produced by the introduction of the samples. The addition of the semiconductor along with the samarium was found to lower the permittivity, loss factor and conductivity. Variations of permittivity values with annealing temperature find applications in IC Technology, optic fibre communication, etc. The Sm 3+ /CdTe doped glasses can also be used in the fabrication of new and improved materials for microwave electronic circuits and in electromagnetic shielding devices

  16. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  17. Study of the focusing effect of silica microspheres on the upconversion of Er{sup 3+}–Yb{sup 3+} codoped glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Rodríguez, C., E-mail: cjperez@ull.edu.es [Dpto. Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n E-38206 La Laguna, Tenerife (Spain); Imanieh, M.H. [Department of Chemical and Environmental Engineering, University of Toledo, Toledo, OH (United States); Department of Materials, Ceramic Division, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Martín, L.L [Dpto. Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n E-38206 La Laguna, Tenerife (Spain); Ríos, S. [Dpto. de Física Básica, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n E-38206 La Laguna, Tenerife (Spain); Martín, I.R. [Dpto. Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n E-38206 La Laguna, Tenerife (Spain); MALTA Consolider Team, Av. Astrofísico Francisco Sánchez, s/n E-38206 La Laguna, Tenerife (Spain); Yekta, Bijan Eftekhari [Department of Materials, Ceramic Division, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-11-05

    Highlights: •Silica microspheres have been located on the surface of glass and glass ceramics samples codoped with Er and Yb. •Microspheres act as microlens of the 950 nm excitation light resulting in focalized excited regions in the samples with sizes under the micron. •Intense red upconversion is achieved in the focalized areas. •Microspheres collect the upconversion emission light, scoping with the together microlensing properties an enhancement of the detected signal in a 3x factor. •Performed Finite-Difference Time-Domain simulations predict the size of the focalized regions in good agreement with the experimental measurements. -- Abstract: The upconversion emission properties of Er{sup 3+}–Yb{sup 3+} codoped glass and glass ceramic samples with different Si/Al ratios and thermal treatments were analyzed by covering their surfaces with silica microspheres (3.8 μm diameter). A 950 nm laser beam is focused by the microspheres producing a set of photonic nanojets near the surface of the samples. After the upconversion processes of the Er{sup 3+} ions located in each microsphere focus area, these ions emit light in the green and red regions. The red emission from each sample was measured, yielding an upconversion intensity in the focal areas three times higher than the emission from the bare substrate. To estimate the real size of the red emission area under a single microsphere, a deconvolution of the measured focal spots with the Point Spread Function of the experimental setup was performed, resulting in a Full Width at Half Maximum of 330 nm. The results obtained by Finite-Difference Time-Domain simulations are in good agreement with the experimental values.

  18. Study of the focusing effect of silica microspheres on the upconversion of Er3+–Yb3+ codoped glass ceramics

    International Nuclear Information System (INIS)

    Pérez-Rodríguez, C.; Imanieh, M.H.; Martín, L.L; Ríos, S.; Martín, I.R.; Yekta, Bijan Eftekhari

    2013-01-01

    Highlights: •Silica microspheres have been located on the surface of glass and glass ceramics samples codoped with Er and Yb. •Microspheres act as microlens of the 950 nm excitation light resulting in focalized excited regions in the samples with sizes under the micron. •Intense red upconversion is achieved in the focalized areas. •Microspheres collect the upconversion emission light, scoping with the together microlensing properties an enhancement of the detected signal in a 3x factor. •Performed Finite-Difference Time-Domain simulations predict the size of the focalized regions in good agreement with the experimental measurements. -- Abstract: The upconversion emission properties of Er 3+ –Yb 3+ codoped glass and glass ceramic samples with different Si/Al ratios and thermal treatments were analyzed by covering their surfaces with silica microspheres (3.8 μm diameter). A 950 nm laser beam is focused by the microspheres producing a set of photonic nanojets near the surface of the samples. After the upconversion processes of the Er 3+ ions located in each microsphere focus area, these ions emit light in the green and red regions. The red emission from each sample was measured, yielding an upconversion intensity in the focal areas three times higher than the emission from the bare substrate. To estimate the real size of the red emission area under a single microsphere, a deconvolution of the measured focal spots with the Point Spread Function of the experimental setup was performed, resulting in a Full Width at Half Maximum of 330 nm. The results obtained by Finite-Difference Time-Domain simulations are in good agreement with the experimental values

  19. Element analysis on Japanese ancient glass by PIXE method

    International Nuclear Information System (INIS)

    Koizumi, Y.; Kobayashi, K.

    2001-01-01

    The authors analyzed ancient glasses using PIXE (particle induced X-ray emission) method associated with the accelerator used for the trace analysis of environments and organisms. They examined whether the material properties of the glasses made by ancient technology have correlation with those of each era or each region both in and out of Japan. The alkali lime glasses excavated from Japanese ancient ruins are classified as soda lime glasses and potash lime glasses, and intermediate glasses containing both are also detected. As for the glasses between the late Yayoi period and the early Tumulus period in eastern Japan, glass beads were mostly classified as potash lime glasses. In the mid and late Tumulus periods, soda lime glasses and the glasses with an intermediate composition increased in addition to potash lime glasses. In the analysis of the glass beads excavated from the ruins of the late Yayoi period to the early Tumult period in Tsushima, potash lime glasses and soda lime glasses coexisted in the same period. Most of the coloring components of deep-blue system mostly found in eastern Japan were manganese and iron, and the coloring components such as blue, green, sky blue, etc. were copper. Yellow was the color expressed with lead or lead - iron. The coloring materials were common regardless of the classification of glasses based on main components. (A.O.)

  20. Coating of Zircaloy sheaths with silica glass using the Sol-Gel technique for protection against oxidation

    International Nuclear Information System (INIS)

    De Sanctis, O.; Pellegri, N.; Gomez, L.

    1990-01-01

    With the aim of improving corrosion resistance of Zircaloy, a few Zircaloy sheaths were covered with vitreous silica. Deposition was made by dip coating in tetraetilortosilicate (TEOS) solutions and later densification treatment at 500 degrees C. Oxidation tests were performed and compared with sheaths not covered with silica. As a result, an effective increase in the resistance to dry oxidation was found in sheaths which had been protected. The coating-Zircaloy interface was studied using XPS (scanner). (Author). 6 refs., 3 figs

  1. Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2014-01-01

    Full Text Available Ultrasonic vibration assisted micro end grinding (UAMEG is a promising processing method for micro parts made of hard and brittle materials. First, the influence of ultrasonic assistance on the mechanism of this processing technology is theoretically analyzed. Then, in order to reveal the effects of ultrasonic vibration and grinding parameters on grinding forces and surface quality, contrast grinding tests of silica glass with and without ultrasonic assistance using micro radial electroplated diamond wheel are conducted. The grinding forces are measured using a three-component dynamometer. The surface characteristics are detected using the scanning electron microscope. The experiment results demonstrate that grinding forces are significantly reduced by introducing ultrasonic vibration into conventional micro end grinding (CMEG of silica glass; ultrasonic assistance causes inhibiting effect on variation percentages of tangential grinding force with grinding parameters; ductile machining is easier to be achieved and surface quality is obviously improved due to ultrasonic assistance in UAMEG. Therefore, larger grinding depth and feed rate adopted in UAMEG can lead to the improvement of removal rate and machining efficiency compared with CMEG.

  2. Rootstocks for 'Tahiti' lime

    Directory of Open Access Journals (Sweden)

    Stenzel Neusa Maria Colauto

    2004-01-01

    Full Text Available The 'Tahiti' lime (Citrus latifolia Tanaka is an important commercial citrus cultivar in Brazil. 'Rangpur' lime has being used as its main rootstock, but it is susceptible to root rot caused by Phytophthora, reducing tree longevity. An experiment was set up in a randomized block design, with three trees per plot of each rootstock and four replicates, and run for 12 years, aiming to compare the performance of 'IAC-5 Tahiti' lime, budded on 'Rangpur' lime (Citrus limonia Osb.; 'C-13' citrange (Citrus sinensis (L. Osb. × Poncirus trifoliata (L. Raf.; 'African' rough lemon (Citrus jambhiri Lush.; 'Volkamer' lemon (Citrus volkameriana Ten. & Pasq.; trifoliate orange (Poncirus trifoliata (L. Raf.; 'Sunki' mandarin (Citrus sunki Hort. ex Tan. and 'Cleopatra' mandarin (Citrus reshni Hort. ex Tan.. Eleven years after the establishment of the orchard, trees with the greatest canopy development were budded on 'C-13' citrange and 'African' rough lemon, and both differed significantly from trees budded on trifoliate orange, 'Sunki' and 'Cleopatra' mandarins, which presented the smallest canopy development. Trees budded on 'Rangpur' lime and 'C-13' citrange had the highest cumulative yields, and were different from trees budded on trifoliate orange, 'Cleopatra' and 'Sunki' mandarins. There was no rootstock effect on mean fruit weight and on the total soluble solid/acid ratio in the juice. The 'Rangpur' lime and the 'Cleopatra' mandarin rootstocks reduced longevity of plants.

  3. the suitability of lime rice husk ash cement as construction material

    African Journals Online (AJOL)

    NIJOTECH

    Enugu State University of Science and Technology, Enugu, Nigeria. ... It was therefore concluded that high percentage contents of silica, ... the Lime Rice Husk Ash cement when used as a construction material would depend ... thermal treatment of the silica in the husk .... test specimen in their moulds were stored in a.

  4. Analysis of polycyclic aromatic hydrocarbons I. Determination by gas chromatography with glass and fused silica capillary columns; Analisis de Hidrocarburos aromaticos policiclicos. I. Determinacion por cromatografia de gases con columnas capilares de vidrio de silice fundida

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M M; Gonzalez, D

    1987-07-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column. The limitations and the advantages of the procedure are discussed in terms of separation efficiency, sensitivity and precision. (Author) 17 refs.

  5. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  6. Characterization of surface layers formed under natural environmental conditions on medieval glass from Siponto (Southern Italy)

    International Nuclear Information System (INIS)

    Genga, Alessandra; Siciliano, Maria; Fama, Lia; Filippo, Emanuela; Siciliano, Tiziana; Mangone, Annarosa; Traini, Angela; Laganara, Caterina

    2008-01-01

    In this paper a low-vacuum scanning electron microscope (SEM) coupled with an energy-dispersive X-ray spectrometer (EDX) was used to investigate the alteration processes that occur on silica-soda-lime glass exposed to soil materials and dated from XI to second half of XIII sec. The chemical data were collected for altered glass gel and fresh glass. In order to study the influence of chemical composition on weathering process, 16 glasses have been selected on the basis of the chemical characterization and on the basis of the different corrosion processes present on the fragments. Six selected samples had been produced with the use of natron as fluxer and 10 samples with the use of plant ash as fluxer. The analysed pieces come from Siponto excavations (Foggia, Italy) and they include feet and rims of chalices, fragments of lamps and of globular bottles

  7. Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water-ethanol mixture

    Science.gov (United States)

    Van, Hieu Le; Buczynski, Ryszard; Long, Van Cao; Trippenbach, Marek; Borzycki, Krzysztof; Manh, An Nguyen; Kasztelanic, Rafal

    2018-01-01

    We present experimental and simulation results of the zero-dispersion shift in photonics crystal fibers infiltrated with water-ethanol mixture. The fiber based on the fused silica glass with a hexagonal lattice consists of seven rings of air-holes filled by liquid. We show that it is possible to shift the zero-dispersion wavelength by 35 ps/nm/km when changing the temperature by 60 °C, and by 42 ps/nm/km when changing the concentration of ethanol from 0 to 100%. The results also show that for the optical fiber filed with pure ethanol the flattened part of the dispersion shifts from anomalous to the normal regime at temperatures below -70 °C.

  8. Investigating in vitro bioactivity and magnetic properties of the ferrimagnetic bioactive glass–ceramic fabricated using soda-lime–silica waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, M. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Street, Shiraz (Iran, Islamic Republic of); Hashemi, B., E-mail: hashemib@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Street, Shiraz (Iran, Islamic Republic of); Shokrollahi, H. [Electroceramics Group, Materials Science and Engineering Department, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of)

    2014-04-01

    The main purpose of the current research is the production and characterization of a ferrimagnetic bioactive glass–ceramic prepared through the solid-state reaction method using soda-lime–silica waste glass as the main raw material. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural, thermal and magnetic properties of the samples were examined by X-ray diffraction (XRD), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). The apatite surface layer formation was examined by the scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The calcium ion concentration in the solutions was measured by atomic absorption spectroscopy (AAS). VSM results revealed that with the addition of 5–20 wt% strontium hexaferrite to bioactive glass–ceramics, the ferrimagnetic bioactive glass–ceramics with hysteresis losses between 7024 and 75,852 erg/g were obtained. The in vitro test showed that the onset formation time of hydroxyapatite layer on the surface of the samples was 14 days and after 30 days, this layer was completed. - Highlights: • A novel ferrimagnetic bioactive glass–ceramic was synthesized by an incorporation method. • The bioactive part was synthesized by the solid-state reaction method using soda-lime–silica waste glass. • The doping of SrFe{sub 12}O{sub 19} to Bioglass{sup ®} 45S5 glass–ceramic is likely to decrease bioactivity.

  9. Degradation of glass artifacts: application of modern surface analytical techniques.

    Science.gov (United States)

    Melcher, Michael; Wiesinger, Rita; Schreiner, Manfred

    2010-06-15

    A detailed understanding of the stability of glasses toward liquid or atmospheric attack is of considerable importance for preserving numerous objects of our cultural heritage. Glasses produced in the ancient periods (Egyptian, Greek, or Roman glasses), as well as modern glass, can be classified as soda-lime-silica glasses. In contrast, potash was used as a flux in medieval Northern Europe for the production of window panes for churches and cathedrals. The particular chemical composition of these potash-lime-silica glasses (low in silica and rich in alkali and alkaline earth components), in combination with increased levels of acidifying gases (such as SO(2), CO(2), NO(x), or O(3)) and airborne particulate matter in today's urban or industrial atmospheres, has resulted in severe degradation of important cultural relics, particularly over the last century. Rapid developments in the fields of microelectronics and computer sciences, however, have contributed to the development of a variety of nondestructive, surface analytical techniques for the scientific investigation and material characterization of these unique and valuable objects. These methods include scanning electron microscopy in combination with energy- or wavelength-dispersive spectrometry (SEM/EDX or SEM/WDX), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM). In this Account, we address glass analysis and weathering mechanisms, exploring the possibilities (and limitations) of modern analytical techniques. Corrosion by liquid substances is well investigated in the glass literature. In a tremendous number of case studies, the basic reaction between aqueous solutions and the glass surfaces was identified as an ion-exchange reaction between hydrogen-bearing species of the attacking liquid and the alkali and alkaline earth ions in the glass, causing a depletion of the latter in the outermost surface layers. Although mechanistic analogies to liquid corrosion are obvious, atmospheric

  10. Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M [ORNL; WindischJr., Charles F. [Pacific Northwest National Laboratory (PNNL); Burton, Sarah D. [Pacific Northwest National Laboratory (PNNL); Bovaird, Chase C. [Pacific Northwest National Laboratory (PNNL)

    2010-01-01

    As part of ongoing studies to evaluate relationships between structure and rates of dissolution of silicate glasses in aqueous media, sodium borosilicate glasses of composition Na2O xB2O3 (3 x)SiO2, with x 1 (Na2O/B2O3 ratio 1), were analyzed using deep-UV Raman spectroscopy. Results were quantified in terms of the fraction of SiO4 tetrahedra with one non-bridging oxygen (Q3) and then correlated with Na2O and B2O3 content. The Q3 fractionwas found to increase with increasing Na2O content, in agreement with studies on related glasses, and, as long as the value of x was not too high, this contributed to higher rates of dissolution in single pass flow-through testing. In contrast, dissolution rates were less strongly determined by the Q3 fraction when the value of x was near unity, and appeared to grow larger upon further reduction of the Q3 fraction. Results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO4 tetrahedron replaces the Q3 unit as the charge-compensating structure for Na+ ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference.

  11. Quantifying Silica Reactivity in Subsurface Environments: Reaction Affinity and Solute Matrix Controls on Quartz and SiO2 Glass Dissolution Kinetics

    International Nuclear Information System (INIS)

    Dove, Patricia M.

    2000-01-01

    During the three years of this project, Professor Dove's laboratory made tremendous progress in understanding controls on amorphous silica dissolution kinetics in aqueous solutions. Our findings have already received considerable attention. In hydrothermal and low temperature studies, the work focused on determining quantitative and mechanistic controls on the most abundant silica polymorphs in Earth environments--quartz and amorphous silica. Our studies achieved goals set forth in the original proposal to establish a new quantitative understanding of amorphous silica dissolution. This support has resulted in 10 journal, 12 abstracts and 2 thesis publications. The PI and students were also recognized with 6 awards during this period. The 1998 EMSP conference in Chicago was an important meeting for our project. The symposium, enabled P.I. Dove to establish valuable contacts with ''users'' having specific needs for the findings of our EMSP project related to the urgency of problems in the Tanks Focus Area (TFA). Since that time, our working relations developed as Dove interacted with TFA scientists and engineers on the problems of waste glass properties. These interactions refined our experimental objectives to better meet their needs. Dove presented the results of EMSP research findings to a TFA subgroup at a Product Acceptance Workshop held in Salt Lake City during December 1998. The travel costs to attend this unanticipated opportunity were paid from EMSP project funds. In January 2000, Dove also attended a similar meeting in Atlanta with PNNL, SRL and BNF scientists/engineers to discuss new issues and make another level of decisions on the Product Acceptance goals. Our EMSP-funded research interfaced very well with the ongoing studies of Dr. Pete McGrail and colleagues in the Applied Geochemistry Group at PNNL. The value of our work to ''users'' was further demonstrated when Dove's EMSP-funded Postdoc, Dr. Jonathan Icenhower was hired by the same PNNL group. With

  12. Degradation of glass in the soil

    Energy Technology Data Exchange (ETDEWEB)

    Romich, H.; Gerlach, S.; Mottner, P. [Fraunhofer-Institut fur Silicatforschung (ISC), Wertheim-Bronnbach (Germany)

    2004-07-01

    Full text of publication follows: Glass has been produced and used in Europe for over 2000 years. Glass objects from the Roman period onwards have been excavated during the last centuries. In general, Roman glass is chemically quite stable, and often the only sign of chemical alteration is an iridescent surface, caused by the leaching of cations, which leads to the formation of a hydrated silica-rich layer. Medieval potash glasses are much less durable, and their surfaces are often found deeply leached, sometimes to a point that no unaltered glass remains. These surfaces may be coherent, though fragile, or they are laminar, with no cohesion between the layers at all. In this study an analytical examination of a series of fragments of archaeological glass retrieved from different sites near Cologne and Stuttgart (Germany) has been carried out. Samples of corroded glasses were analysed by optical microscopy and SEM/EDX (surface and cross sections) in order to obtain information about the chemical composition of the bulk glass and the weathered layers. Since the environmental parameters have constantly varied for archaeological objects, mechanistic studies have to rely on laboratory experiments under controlled conditions. For an extensive exposure programme standardised soil or natural garden earth was used, for which the pH was modified. Several corrosion sensitive potash-lime silicate glasses have been designed to study the effect of glass composition. A model glass consisting of SiO{sub 2} (54.2), CaO (28.8) and K{sub 2}O (17.0 weight-%) mostly lead to the formation of a crust on the leached layer, with a total thickness of 100 micrometer (for soil with pH 7 to 8, 12 months exposure). Model glasses also containing Al, Mg and P have built up preferably laminated structures (total thickness up to 200 micrometer). This presentation will give an overview about the variety of degradation phenomena observed on originals and compare the results with controlled laboratory

  13. Potential Use Of Carbide Lime Waste As An Alternative Material To Conventional Hydrated Lime Of Cement-Lime Mortars

    OpenAIRE

    Al Khaja, Waheeb A.

    1992-01-01

    The present study aimed at the possibility of using the carbide lime waste as an alternative material to the conventional lime used for cement-lime mortar. The waste is a by-product obtained in the generation of acetylene from calcium carbide. Physical and chemical properties of the wastes were studied. Two cement-lime-sand mix proportions containing carbide lime waste were compared with the same mix proportions containing conventional lime along with a control mix without lime. Specimens wer...

  14. Studies of glasses by positron annihilation

    International Nuclear Information System (INIS)

    Brauer, G.; Boden, G.

    1981-04-01

    Investigations of silica glasses, pyrocerams and metallic glasses by positron annihilation (lifetime, Doppler broadening) are presented. The measurements on silica glasses showed, that silica glass fused from naturally occuring quartz exhibits a higher order than that one produced from SiCl 4 . Furthermore it was found that the order of silica glasses increases after heat treatment above 900 0 C. Thus the X-amorphous state of silica glasses could be characterized by positron annihilation what is impossible at present by diffraction methods. (author)

  15. [Review of lime carbon sink.

    Science.gov (United States)

    Liu, Li Li; Ling, Jiang Hua; Tie, Li; Wang, Jiao Yue; Bing, Long Fei; Xi, Feng Ming

    2018-01-01

    Under the background of "missing carbon sink" mystery and carbon capture and storage (CCS) technology development, this paper summarized the lime material flow process carbon sink from the lime carbonation principles, impact factors, and lime utilization categories in chemical industry, metallurgy industry, construction industry, and lime kiln ash treatment. The results showed that the lime carbonation rate coefficients were mainly impacted by materials and ambient conditions; the lime carbon sink was mainly in chemical, metallurgy, and construction industries; and current researches focused on the mechanisms and impact factors for carbonation, but their carbon sequestration calculation methods had not been proposed. Therefore, future research should focus on following aspects: to establish a complete system of lime carbon sequestration accounting method in view of material flow; to calculate lime carbon sequestration in both China and the world and explain their offset proportion of CO 2 emission from lime industrial process; to analyze the contribution of lime carbon sequestration to missing carbon sink for clarifying part of missing carbon sinks; to promote the development of carbon capture and storage technology and provide some scientific bases for China's international negotiations on climate change.

  16. Natural and gamma radiation-induced conduction of silica and metaphosphate glass layers deposed by radiofrequency cathode sputtering

    International Nuclear Information System (INIS)

    Serra, Andre

    1977-01-01

    We present a study of natural and 60 Co induced conductions in radiofrequency sputtering deposed layers. Capacimetry and electronic microscopy observations permit a knowledge of the physical characteristics, mainly: homogeneity and thickness of these layers. A study of the natural current permit to characterise electrically the deposited films, the electrode and bulk insulator effects. In induced conduction, the behaviour of currents as a function of dose rate is interpreted in terms of ROSE'S and FOWLER'S photoconductivity theories. Induced currents versus applied fields are observed and compared with these obtained in the case of dielectric liquids and glasses. (author) [fr

  17. Micropatterning of biomolecules on a glass substrate in fused silica microchannels by using photolabile linker-based surface activation

    International Nuclear Information System (INIS)

    Jang, K.; Mawatari, K.; Kitamori, T.; Xu, Y.; Sato, K.; Tanaka, Y.

    2012-01-01

    We report on a straightforward method for creating micropatterns of multiple biomolecules. The anti-fouling agent 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer and a photolabile linker (PL) were covalently linked to an amino-terminated silane surface. Patterns were generated by selective removal of the MPC polymer via UV irradiation. Multiple micropatterns of fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (BSA) and rhodamine-labeled goat fragment antigen-binding fragments (FAB) were deposited on a same glass substrate. We also employed micropatterning of multiple biomolecules in that Texas red-labeled BSA and FITC-labeled rabbit anti-mouse IgG were placed inside a microchannel. (author)

  18. Lifetime Prediction of Nano-Silica based Glass Fibre/Epoxy composite by Time Temperature Superposition Principle

    Science.gov (United States)

    Anand, Abhijeet; Banerjee, Poulami; Prusty, Rajesh Kumar; Ray, Bankin Chandra

    2018-03-01

    The incorporation of nano fillers in Fibre reinforced polymer (FRP) composites has been a source of experimentation for researchers. Addition of nano fillers has been found to improve mechanical, thermal as well as electrical properties of Glass fibre reinforced polymer (GFRP) composites. The in-plane mechanical properties of GFRP composite are mainly controlled by fibers and therefore exhibit good values. However, composite exhibits poor through-thickness properties, in which the matrix and interface are the dominant factors. Therefore, it is conducive to modify the matrix through dispersion of nano fillers. Creep is defined as the plastic deformation experienced by a material for a temperature at constant stress over a prolonged period of time. Determination of Master Curve using time-temperature superposition principle is conducive for predicting the lifetime of materials involved in naval and structural applications. This is because such materials remain in service for a prolonged time period before failure which is difficult to be kept marked. However, the failure analysis can be extrapolated from its behaviour in a shorter time at an elevated temperature as is done in master creep analysis. The present research work dealt with time-temperature analysis of 0.1% SiO2-based GFRP composites fabricated through hand-layup method. Composition of 0.1% for SiO2nano fillers with respect to the weight of the fibers was observed to provide optimized flexural properties. Time and temperature dependence of flexural properties of GFRP composites with and without nano SiO2 was determined by conducting 3-point bend flexural creep tests over a range of temperature. Stepwise isothermal creep tests from room temperature (30°C) to the glass transition temperature Tg (120°C) were performed with an alternative creep/relaxation period of 1 hour at each temperature. A constant stress of 40MPa was applied during the creep tests. The time-temperature superposition principle was

  19. The chemical durability of glasses suitable for the storage of high level radioactive wastes, (1)

    International Nuclear Information System (INIS)

    Terai, Ryohei; Hara, Shigeo; Kawamoto, Takamichi; Nanbu, Tadahiko; Nakamura, Takao.

    1975-01-01

    To develop the glassy materials suitable for the long-term storage of high level radioactive wastes, the chemical durability of the glasses of borax-alumina-silica system has been investigated. The test was carried out by the following three ways, (1) glass-disk immersion method, (2) continuous leach method and (3) method prescribed in JIS-R3502. In the continuous leach method, glass grains were exposed to circulating water at a constant temperature for a week to obtain the leach factor or leach rate. It was found from the experimental results that, as the silica content increased, the melting temperature of the glasses progressively increased and the chemical durability was considerably improved, and that B 2 O 3 and Na 2 O constituents were preferentially dissolved in water leaving relatively insoluble components such as SiO 2 and Al 2 O 3 . The rate at which B 2 O 3 and Na 2 O in glass are leached out is governed by three processes, that is, (1) the boundary reaction on the glass surface, (2) the diffusion process through the hydrated layer, and (3) the disintegration of hydrated layer. The first process probably corresponds to the hydration of boric oxides on the glass surface or to the ion exchange between protons in solution and Na + ions in glass, and the second process seems to correspond to the diffusion of protons through the hydrated layer on the glass surface. Although the ratio of [Na-BO 4 ]/[BO 3 ] in the borax-silica glasses was determined to be 0.5 by means of NMR measurement, Na 2 O/B 2 O 3 ratio in leached solution was less than 0.5, indicating that [BO 3 ] groups in glass were more soluble than [Na-BO 4 ] groups. From the viewpoint of appreciation of safety, the chemical durability of the glasses of borax-aluminasilica system was rather unsatisfactory, but that of the glasses containing silica in quantities was comparable to the soda-lime silicate sheet glasses. (auth.)

  20. Dolomitic lime containing hydraulic additive

    International Nuclear Information System (INIS)

    Lagzdina, S.; Sedmalis, U.; Bidermanis, L.; Liepins, J.; Grosvalds, I.

    1997-01-01

    To obtain qualitative dolomitic lime the optimum calcination temperature of dolomite containing about 9 % of clayey substances is 900 deg C. The mechanical strength of dolomitic lime containing 30 % of brick waste additive after 6-9 months of hardening is 1.4-1.5 times higher than that of samples without hydraulic additive, for calcium lime - 2.2-2.6 times higher. Generally the mechanical strength of dolomitic lime is higher than that one of calcium lime. It can be explained by the active role of MgO in the hydration and hardening processes of dolomitic lime. Xray diffraction phase analysis was performed by X-ray diffractometer DPON-3M with Cu-K α emission filter

  1. Lime-water consolidation effects on poor lime mortars

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana

    2012-01-01

    Roč. 43, č. 1 (2012), s. 31-36 ISSN 0044-9466 R&D Projects: GA ČR(CZ) GA103/09/2067 Institutional support: RVO:68378297 Keywords : lime mortar s * lime -water consolidation * conservation Subject RIV: JN - Civil Engineering

  2. LIME REQUIREMENT DETERMINATION AND LIMING IMPACT ON SOIL NUTRIENT STATUS

    Directory of Open Access Journals (Sweden)

    Krunoslav Karalić

    2010-06-01

    Full Text Available The aim of conducted research was to determine the influence of liming, mineral and organic fertilization on soil chemical properties and nutrient availability in the soil, yield height and mineral composition of alfalfa. Results were used to create regression models for prediction of liming impact on soil chemical properties. Liming and fertilization experiment was sat up in 20 L volume plastic pots with two types of acid soils with different texture from two sites. Ten liming and fertilization treatments were applied in four repetitions. Lime treatments increased soil pH values and decreased hydrolytic acidity. Mineral and organic fertilization affected additional soil acidification. Application of lime intensified mineralization and humus decomposition, while organic fertilization raised humus content. The results showed significant increase of AL-P2O5 and K2O availability. The treatments increased soil Ca concentrations, but at the same time decreased exchangeable Mg concentrations. Soil pH increase resulted in lower Fe, Mn, Zn and Cu availability. Soil CEC was increased by applied treatments. Lime rates increased number and height of alfalfa plants, as well as yield of leaf, stalk increased concentrations of N, P, K and Ca in alfalfa leaf and stalk, but decreased leaf Mg and Fe, Mn, Zn and Cu concentrations. Regression computer models predicted with adequate accuracy P, Fe, Mn, Zn and Cu availability and final pH value as a result of liming and fertilization impact.

  3. Lime-Stabilized Black Cotton Soil and Brick Powder Mixture as Subbase Material

    Directory of Open Access Journals (Sweden)

    S. Srikanth Reddy

    2018-01-01

    Full Text Available Various researchers, for the past few decades, had tried to stabilize black cotton soil using lime for improving its shrinkage and swelling characteristics. But these days, the cost of lime has increased resulting in increase in need for alternative and cost effective waste materials such as fly ash and rice husk ash. Brick powder, one among the alternative materials, is a fine powdered waste that contains higher proportions of silica and is found near brick kilns in rural areas. The objective of the study is to investigate the use of lime-stabilized black cotton soil and brick powder mixture as subbase material in flexible pavements. Black cotton soil procured from the local area, tested for suitability as subbase material, turned out to be unsuitable as it resulted in very less CBR value. Even lime stabilization of black cotton soil under study has not showed up the required CBR value specified for the subbase material of flexible pavement by MORTH. Hence the lime-stabilized black cotton soil is proportioned with brick powder to obtain optimum mixture that yields a better CBR value. The mixture of 20% brick powder and 80% lime-stabilized black cotton soil under study resulted in increase in the CBR value by about 135% in comparison with lime-stabilized black cotton soil. Thus it is promising to use the mixture of brick powder and lime-stabilized black cotton soil as subbase material in flexible pavements.

  4. Characterization of residues of effluent treatment plant from lapping process of soda-lime glass and its application in the production of concrete; Caracterizacao de residuo de estacao de tratamento de efluentes de processo de lapidacao de vidro sodo-calcico e sua aplicacao na producao de concreto

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Aline Pignaton; Calmon, Joao Luiz; Tristao, Fernando Avancini, E-mail: apignaton@hotmail.com, E-mail: calmonbarcelona@gmail.com, E-mail: fernandoavancini@ct.ufes.br [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Programa de Pos-Graduacao em Engenharia Civil

    2012-07-01

    This study enunciates the physical, chemical and mineralogical composition of the residue from the process of ETE cutting of soda-lime glasses and its application in concrete as a replacement to the weight of CPV ARI RS cement, at levels of 0, 5, 10, 15 and 20%. Tests were performed on fresh and hardened (ages 3, 7, 28 and 300 days). The results were compared and statistically analyzed. In the fresh state, reductions in the amount of exuding water and consistency were observed. The results of compressive strength were statistically different, while the results for the tensile strength by diametrical compression and modulus of elasticity results were belonging to homogeneous groups. Beneficial effects the levels of residue on the cementitious matrix and the transition zone of concrete were identified by SEM, particularly concrete in S15.

  5. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  6. Mechanical properties of silicate glasses exposed to a low-Earth orbit

    Science.gov (United States)

    Wiedlocher, David E.; Tucker, Dennis S.; Nichols, Ron; Kinser, Donald L.

    1992-01-01

    The effects of a 5.8 year exposure to low earth orbit environment upon the mechanical properties of commercial optical fused silica, low iron soda-lime-silica, Pyrex 7740, Vycor 7913, BK-7, and the glass ceramic Zerodur were examined. Mechanical testing employed the ASTM-F-394 piston on 3-ball method in a liquid nitrogen environment. Samples were exposed on the Long Duration Exposure Facility (LDEF) in two locations. Impacts were observed on all specimens except Vycor. Weibull analysis as well as a standard statistical evaluation were conducted. The Weibull analysis revealed no differences between control samples and the two exposed samples. We thus concluded that radiation components of the Earth orbital environment did not degrade the mechanical strength of the samples examined within the limits of experimental error. The upper bound of strength degradation for meteorite impacted samples based upon statistical analysis and observation was 50 percent.

  7. Effects of silver adsorbed on fumed silica, silver phosphate glass, bentonite organomodified with silver and titanium dioxide in aquatic indicator organisms.

    Science.gov (United States)

    Tomacheski, Daiane; Pittol, Michele; Simões, Douglas Naue; Ribeiro, Vanda Ferreira; Santana, Ruth Marlene Campomanes

    2017-06-01

    In order to reduce the level of transmission of diseases caused by bacteria and fungi, the development of antimicrobial additives for use in personal care, hygiene products, clothing and others has increased. Many of these additives are based on metals such as silver and titanium. The disposal of these products in the environment has raised concerns pertaining to their potential harmfulness for beneficial organisms. The objective of this study was to evaluate the influence of the shape, surface chemistry, size and carrier of three additives containing silver and one with titanium dioxide (TiO 2 ) on microcrustacean survival. Daphnia magna was used as a bioindicator for acute exposure test in suspensions from 0.0001 to 10,000ppm. Ceriodaphnia dubia was used for chronic test in TiO 2 suspensions from 0.001 to 100ppm. D. magna populations presented high susceptibility to all silver based additives, with 100% mortality after 24hr of exposure. A different result was found in the acute experiments containing TiO 2 suspensions, with mortality rates only after 48hr of incubation. Even on acute and chronic tests, TiO 2 did not reach a linear concentration-response versus mortality, with 1ppm being more toxic than 10,000ppm on acute test and 0.001 more toxic than 0.01ppm on chronic assay. Silver based material toxicity was attributed to silver itself, and had no relation to either form (nano or ion) or carrier (silica, phosphate glass or bentonite). TiO 2 demonstrated to have a low acute toxicity against D. magna. Copyright © 2016. Published by Elsevier B.V.

  8. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  9. Erbium-doped borosilicate glasses containing various amounts of P2O5 and Al2O3: Influence of the silica content on the structure and thermal, physical, optical and luminescence properties

    International Nuclear Information System (INIS)

    Bourhis, Kevin; Massera, Jonathan; Petit, Laeticia; Koponen, Joona; Fargues, Alexandre; Cardinal, Thierry; Hupa, Leena; Hupa, Mikko; Dussauze, Marc; Rodriguez, Vincent; Ferraris, Monica

    2015-01-01

    Highlights: • Er 3+ doped borosilicate glasses were processed with different compositions and characterizations. • An increase in the SiO 2 content leads to a silicate-rich environment around the Er 3+ site. • An increase in the SiO 2 content decreases the Er 3+ absorption cross-section at 980 nm. • Glasses with 60 mol% of SiO 2 exhibit a stronger emission intensity at 1530 nm than glasses with x = 50. • Highest 1.5 μm emission intensity was achieved for the Al and P containing glass with 60 mol% of SiO 2 . - Abstract: The influence of the silica content on several properties of Er-doped borosilicate glasses in the presence of various amounts of P 2 O 5 and Al 2 O 3 has been investigated. The introduction of P 2 O 5 and/or Al 2 O 3 are responsible for structural modifications in the glass network through a charge-compensation mechanism related to the formation of negatively-charged PO 4 and AlO 4 groups or through the formation of AlPO 4 -like structural units. In this paper, we show that an increase in the SiO 2 content leads to a silicate-rich environment around the Er 3+ site, resulting in an increased dependence of the Er 3+ ions optical and luminescence properties on the P 2 O 5 and/or Al 2 O 3 concentration. The highest emission intensity at 1.5 μm was achieved for the glass with an equal proportion of P and Al in the glass system with 60 mol% of SiO 2

  10. Durability of air lime mortar

    DEFF Research Database (Denmark)

    Nielsen, Anders

    2016-01-01

    This contribution deals with the physical and chemical reasons why pure air lime mortars used in masonry of burned bricks exposed to outdoor climate have shown to be durable from the Middle Ages to our days. This sounds strange in modern times where pure air lime mortars are regarded as weak...... materials, which are omitted from standards for new masonry buildings, where use of hydraulic binders is prescribed. The reasons for the durability seam to be two: 1. The old mortars have high lime contents. 2. The carbonation process creates a pore structure with a fine pored outer layer and coarser pores...

  11. Clustering of germanium atoms in silica glass responsible for the 3.1 eV emission band studied by optical absorption and X-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Yoshida, Tomoko; Muto, Shunsuke; Yuliati, Leny; Yoshida, Hisao; Inada, Yasuhiro

    2009-01-01

    Correlation between the 3.1 eV emission band and local atomic configuration was systematically examined for Ge + implanted silica glass by UV-vis optical absorption spectroscopy and X-ray absorption fine structure (XAFS) analysis. The 2.7 eV emission band, commonly observed in defective silica, was replaced by the sharp and intense 3.1 eV emission band for the Ge + fluence > 2 x 10 16 cm -2 , in which UV-vis absorption spectra suggested clustering of Ge atoms with the size ∼1 nm. XAFS spectroscopy indicated that the Ge atoms were under coordinated with oxygen atoms nearly at a neutral valence state on average. The present results are consistent with the previous ESR study but imply that the small Ge clusters rather than the O=Ge: complexes (point defects) are responsible for the 3.1 eV emission band.

  12. Study of the influence of chemical composition on the pozzolanicity of soda-lime glass microparticles; Estudo da influencia da composicao quimica na pozolanicidade de microparticulas de vidro soda-cal

    Energy Technology Data Exchange (ETDEWEB)

    Sales, R.B.C. [Universidade do Estado de Minas Gerais (UEMG), MG (Brazil). Departamento de Ciencias e Tecnologia; Sales, F.A.; Correa, E.C.; Patricio, P. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), MG (Brazil); Mohallem, N.D.S.; Aguilar, M.T.P., E-mail: teresa@ufmg.br [Universidade Federal de Minas Gerais (UFMG), MG (Brazil)

    2014-07-01

    The use of residues presents interesting possibilities for obtaining eco-efficient concretes. Research has investigated the use of glass residue in Portland cement composite, whether as an aggregate or a supplementary material. However, there is still no consensus on the influence of the chemical composition of glass on the behaviour of the composites in which it is used. This paper aims to analyse the influence of this composition on the performance of cement composites produced with microparticles of colourless and amber glass. Pozzolanicity was assessed by means of direct tests (modified Chapelle and electrical conductivity) and indirect tests (chemical characterization, X-ray diffraction, thermo analysis and pozzolanic activity index). Most of the results show that microparticles of both types of glass display pozzolanic activity, with no significant differences between them. This indicates the potential for the use of glass microparticles as a supplementary material in cement composites. (author)

  13. Bioactivity studies on TiO2-bearing Na2O–CaO–SiO2–B2O3 glasses

    International Nuclear Information System (INIS)

    Jagan Mohini, G.; Sahaya Baskaran, G.; Ravi Kumar, V.; Piasecki, M.; Veeraiah, N.

    2015-01-01

    Soda lime silica borate glasses mixed with different concentrations of TiO 2 are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~ 21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO 2 on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO 2 concentration indicated that about 6.0 mol% of TiO 2 is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. - Highlights: • Soda lime silica borate glasses mixed with TiO 2 are synthesized. • Bioactivity of the glasses is studied by immersing them in SBF solution. • XRD and SEM studies indicated the formation of hydroxyapatite layer on the surface. • Quantum of degradability is the highest in the glasses mixed with 6.0 mol% of TiO 2. • The results are analyzed using IR and optical absorption studies

  14. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    2002-01-01

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  15. Thiol-functionalized silica colloids, grains, and membranes for irreversible adsorption of metal(oxide) nanoparticles

    NARCIS (Netherlands)

    Claesson, E.M.; Philipse, A.P.

    2007-01-01

    Thiol-functionalization is described for silica surfaces from diverging origin, including commercial silica nanoparticles and St¨ober silica as well as silica structures provided by porous glasses and novel polymer-templated silica membranes. The functionalization allows in all cases for the

  16. Freeze concentration of lime juice

    Directory of Open Access Journals (Sweden)

    Ampawan Tansakul

    2008-11-01

    Full Text Available The main objective of this research was to study the effects of processing conditions, i.e. cooling medium temperature (-6, -12 and -18C and scraper blade rotational speed (50, 100 and 150 rpm on the freeze concentration of lime juice. The initial soluble solid content of lime juice was 7.6 Brix. Results showed that soluble solid content of lime juice increased as cooling medium temperature decreased while scraper blade rotational speed increased. It was also found that the processing condition with -18˚C cooling medium temperature and 150 rpm rotational speed of the scraper blade was the best among all studied conditions, although the loss of the soluble solids with ice crystals during ice separation was relatively high at 35%.

  17. Utilization of slaked lime for the regulation of pH value in the process of copper

    Directory of Open Access Journals (Sweden)

    Petković Aleksandar V.

    2009-01-01

    Full Text Available The investigations of used lime at plant from company Messer-Tehnogas, Belgrade, were in the aim to improvement technologically results from flotation concentration of copper minerals in flotation plant Veliki Krivelj. This paper shows usage of slaked lime, which is waste in the process of technical gas production, for regulation of pH value in the process of copper minerals flotation concentration. It is important to point out that slaked lime is a waste material that is not dangerous. Preparation and dosage includes preparation procedures, which enable introduction into flotation process with the aim of achieving better results. Lime from Limekiln Zagrađe is brought into four storage places in flotation. Volume of each storage place is 80 m3. Lime in pieces from storage place is added by airbladders on transportation line and by system of transportation lines lime gets to the ball mill. At the mill entrance water is added and then follows lime grinding. Milk glass of lime thus prepared goes to the pump basket from where is transported by pipeline to conditioner, and then by manual and (or automatic valves it is dosed to the flotation concentration of copper minerals process. Prospect of advancement and rationalization of the used lime in flotation plant Bor, Veliki Krivelj and Majdanpek as well as a way to link different branches of industry was demonstrated. Total cost of lime supplying, transporting, preparation and distribution related slaked lime is lower for 2.955 din/kg. Particularly, using lime from Messer in content of 2.1 g/l value of pH 11.82 is possible to obtain.

  18. Optimization of lime treatment processes

    International Nuclear Information System (INIS)

    Zinck, J. M.; Aube, B. C.

    2000-01-01

    Lime neutralization technology used in the treatment of acid mine drainage and other acidic effluents is discussed. Theoretical studies and laboratory experiments designed to optimize the technology of lime neutralization processes and to improve the cost efficiency of the treatment process are described. Effluent quality, slaking temperature, aeration, solid-liquid separation, sludge production and geochemical stability have been studied experimentally and on site. Results show that through minor modification of the treatment process, costs, sludge volume generated, and metal released to the environment can be significantly reduced. 17 refs., 4 figs

  19. Mineral Resource of the Month: Lime

    Science.gov (United States)

    Corathers, Lisa A.

    2015-01-01

    Lime is the common term for several chemicals in three major categories: quicklime, hydrated lime and refractory dead-burned dolomite. Lime is almost never found naturally. It is primarily manufactured by burning limestone in kilns, followed by hydration when necessary. 

  20. Bioactivity studies on TiO{sub 2}-bearing Na{sub 2}O–CaO–SiO{sub 2}–B{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jagan Mohini, G. [Department of Physics, Andhra Loyola College, Vijayawada 520 008, Andhra Pradesh (India); Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India); Sahaya Baskaran, G. [Department of Physics, Andhra Loyola College, Vijayawada 520 008, Andhra Pradesh (India); Ravi Kumar, V. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India); Piasecki, M. [Institute of Physics, J. Dlugosz University, Al. Armii Krajowej 13/15, Czestochowa (Poland); Veeraiah, N., E-mail: nvr8@rediffmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India)

    2015-12-01

    Soda lime silica borate glasses mixed with different concentrations of TiO{sub 2} are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~ 21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO{sub 2} on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO{sub 2} concentration indicated that about 6.0 mol% of TiO{sub 2} is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. - Highlights: • Soda lime silica borate glasses mixed with TiO{sub 2} are synthesized. • Bioactivity of the glasses is studied by immersing them in SBF solution. • XRD and SEM studies indicated the formation of hydroxyapatite layer on the surface. • Quantum of degradability is the highest in the glasses mixed with 6.0 mol% of TiO{sub 2.} • The results are analyzed using IR and optical absorption studies.

  1. CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand

    Directory of Open Access Journals (Sweden)

    N. Srisittipokakun

    Full Text Available In this research, glass productions from rice husk ash (RHA and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm and Fe2+ (1050 nm ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction. Keywords: Rice husk ash, Glass, Optical, Physical

  2. Effect of various additives on microstructure, mechanical properties, and in vitro bioactivity of sodium oxide-calcium oxide-silica-phosphorus pentoxide glass-ceramics.

    Science.gov (United States)

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2013-09-01

    The partial substitution of MgO, TiO2, or CaF2 for CaO in the Na2O-CaO-SiO2-P2O5 (45S5) system was conducted by the sol-gel method and a comparative study on structural, mechanical properties, and bioactivity of the glasses was reported. Based on thermogravimetric and differential thermal analysis, the gels were sintered with a suitable heat treatment procedure. The glass-ceramic properties were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and so on, and the bioactivity of the glass-ceramic was evaluated by in vitro assays in simulated body fluid (SBF). Results indicate that with the partial substitution of MgO, TiO2, CaF2 for CaO in glass composition, the mechanical properties of the glass-ceramics have been significantly improved. Furthermore, CaF2 promotes glass crystallization and the crystallization does not inhibit the glass-ceramic bioactivity. All samples possess bioactivity; however, the bioactivity of these glass-ceramics is quite different. Compared with 45S5, the introduction of MgO decreases the ability of apatite induction. The addition of TiO2 does not significantly improve the bioactivity, and the replacement of CaO by CaF2 shows a higher bioactivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Lime treatment of stabilized leachates

    International Nuclear Information System (INIS)

    Renou, S.; Poulain, S.; Givaudan, J. G.; Sahut, C.; Moulin, P.

    2009-01-01

    Reverse Osmosis is the most widely used method for treating municipal solid waste landfill leachates, since it produces a permeate in compliance with reject requirements. However, the efficiency of this process at the industrial scale is limited mainly because of membrane fouling and the high osmotic pressures involved. Although lime precipitation is traditionally used to eliminate the temporary hardness of water by de-carbonation, it has also been shown to be highly efficient in removing humic substances which are known to have strong fouling potential towards membranes. Our objective is to study the lime/leachate physico-chemistry, in order to determine the potential of the lime precipitation as pre-treatment for reverse osmosis. The results show that the lime treatment makes it possible (i) to act efficiently on the inorganic fraction of leachates through a de-carbonation mechanism which entails massive precipitation of the carbonates under the form of CaCO 3 , (ii) to eliminate by co-precipitation the high Molecular Weight (MW) organic macromolecules (≥ 50, 000 g.mol -1 ) such as humic acids, and (iii) to generate a stable residue that can be easily stored at a landfill. The reverse osmosis step will be facilitated through significant reduction of the osmotic pressures and prevention of membrane fouling. (authors)

  4. Characterization of yellow and colorless decorative glasses from the Temple of the Emerald Buddha, Bangkok, Thailand

    Science.gov (United States)

    Klysubun, Wantana; Ravel, Bruce; Klysubun, Prapong; Sombunchoo, Panidtha; Deenan, Weeraya

    2013-06-01

    Yellow and colorless ancient glasses, which were once used to decorate the Temple of the Emerald Buddha, Bangkok, Thailand, around 150 years ago, are studied to unravel the long-lost glass-making recipes and manufacturing techniques. Analyses of chemical compositions, using synchrotron x-ray fluorescence (SRXRF), indicate that the Thai ancient glasses are soda lime silica glasses (60 % SiO2; 10 % Na2O; 10 % CaO) bearing lead oxide between 2-16 %. Iron (1.5-9.4 % Fe2O3) and manganese (1.7 % MnO) are present in larger abundance than the other 3 d transition metals detected (0.04-0.2 %). K-edge x-ray absorption near edge spectroscopy (XANES) and extended x-ray absorption fine structure spectroscopy (EXAFS) provide conclusive evidence on the oxidation states of Fe being 3+ and Mn being 2+ and on short-length tetrahedral structures around the cations. This suggests that iron is used as a yellow colorant with manganese as a decolorant. L 3-edge XANES results reveal the oxidation states of lead as 2+. The results from this work provide information crucial for replicating these decorative glasses for the future restoration of the Temple of the Emerald Buddha.

  5. 1998 Annual Study Report. Standardization of methods for evaluating properties of new glass at high temperature; 1998 nendo seika hokokusho. New glass koon bussei no hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    High-temperature properties of glass melts, e.g., density, volume expansion coefficient, surface tension, viscosity, specific heat, thermal and electrical conductivity, redox equilibrium and gas solubility, are basic factors that must be considered in high quality glass melting technology and computer simulation of the glass tank furnace. The structure of the glass melts is also important for understanding these properties. This R and D program is aimed at proposing the international standards for the methods of measuring these high-temperature properties of the melts. The 1988 efforts are directed to the measuring technologies for density, volume expansion coefficient, surface tension, viscosity, specific heat, thermal and electrical conductivity, redox equilibrium, gas solubility and melt structures of soda-lime-silica glass melts. The R and D for measuring methods for high-temperature melts through international cooperation and establishment of the international standards for these methods are proposed in the joint CGR/HVG/TNO/GPF conference, which provides the arena for information exchange by glass manufacturers. (NEDO)

  6. A molecular dynamics study of the atomic structure of (CaO)x(SiO2)1-x glasses.

    Science.gov (United States)

    Mead, Robert N; Mountjoy, Gavin

    2006-07-27

    The local atomic environment of Ca in (CaO)x(SiO2)1-x glasses is of interest because of the role of Ca in soda-lime glass, the application of calcium silicate glasses as biomaterials, and the previous experimental measurement of the Ca-Ca correlation in CaSiO(3) glass. Molecular dynamics has been used to obtain models of (CaO)x(SiO2)1-x glasses with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5, and with approximately 1000 atoms and size approximately 25 A. As expected, the models contain a tetrahedral silica network, the connectivity of which decreases as x increases. In the glass-forming region, i.e., x = 0.4 and 0.5, Ca has a mixture of 6- and 7-fold coordination. Bridging oxygen makes an important contribution to the coordination of Ca, with most bridging oxygens coordinated to 2 Si plus 1 Ca. The x = 0.5 model is in reasonable agreement with previous experimental studies, and does not substantiate the previous theory of cation ordering, which predicted Ca arranged in sheets. In the phase-separated region, i.e., x = 0.1 and 0.2, there is marked clustering of Ca.

  7. Enhancement of nonlinear optical properties of compounds of silica

    Indian Academy of Sciences (India)

    The aim of this paper is to introduce a method for enhancing the nonlinear optical properties in silica glass by using metallic nanoparticles. First, the T-matrix method is developed to calculate the effective dielectric constant for the compound of silica glass and metallic nanoparticles, both of which possess nonlinear dielectric ...

  8. Effect of high thermal expansion glass infiltration on mechanical ...

    Indian Academy of Sciences (India)

    This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high temperature.

  9. The Largest Bio-Silica Structure on Earth: The Giant Basal Spicule from the Deep-Sea Glass Sponge Monorhaphis chuni

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2011-01-01

    Full Text Available The depth of the ocean is plentifully populated with a highly diverse fauna and flora, from where the Challenger expedition (1873–1876 treasured up a rich collection of vitreous sponges [Hexactinellida]. They have been described by Schulze and represent the phylogenetically oldest class of siliceous sponges [phylum Porifera]; they are eye-catching because of their distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Later, during the German Deep Sea Expedition “Valdivia” (1898-1899, Schulze could describe the largest siliceous hexactinellid sponge on Earth, the up to 3 m high Monorhaphis chuni, which develops the equally largest bio-silica structures, the giant basal spicules (3 m × 10 mm. With such spicules as a model, basic knowledge on the morphology, formation, and development of the skeletal elements could be elaborated. Spicules are formed by a proteinaceous scaffold which mediates the formation of siliceous lamellae in which the proteins are encased. Up to eight hundred 5 to 10 μm thick lamellae can be concentrically arranged around an axial canal. The silica matrix is composed of almost pure silicon and oxygen, providing it with unusual optophysical properties that are superior to those of man-made waveguides. Experiments indicated that the spicules function in vivo as a nonocular photoreception system. In addition, the spicules have exceptional mechanical properties, combining mechanical stability with strength and stiffness. Like demosponges the hexactinellids synthesize their silica enzymatically, via the enzyme silicatein. All these basic insights will surely contribute also to a further applied utilization and exploration of bio-silica in material/medical science.

  10. The largest Bio-Silica Structure on Earth: The Giant Basal Spicule from the Deep-Sea Glass Sponge Monorhaphis chuni.

    Science.gov (United States)

    Wang, Xiaohong; Gan, Lu; Jochum, Klaus P; Schröder, Heinz C; Müller, Werner E G

    2011-01-01

    The depth of the ocean is plentifully populated with a highly diverse fauna and flora, from where the Challenger expedition (1873-1876) treasured up a rich collection of vitreous sponges [Hexactinellida]. They have been described by Schulze and represent the phylogenetically oldest class of siliceous sponges [phylum Porifera]; they are eye-catching because of their distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Later, during the German Deep Sea Expedition "Valdivia" (1898-1899), Schulze could describe the largest siliceous hexactinellid sponge on Earth, the up to 3 m high Monorhaphis chuni, which develops the equally largest bio-silica structures, the giant basal spicules (3 m × 10 mm). With such spicules as a model, basic knowledge on the morphology, formation, and development of the skeletal elements could be elaborated. Spicules are formed by a proteinaceous scaffold which mediates the formation of siliceous lamellae in which the proteins are encased. Up to eight hundred 5 to 10 μm thick lamellae can be concentrically arranged around an axial canal. The silica matrix is composed of almost pure silicon and oxygen, providing it with unusual optophysical properties that are superior to those of man-made waveguides. Experiments indicated that the spicules function in vivo as a nonocular photoreception system. In addition, the spicules have exceptional mechanical properties, combining mechanical stability with strength and stiffness. Like demosponges the hexactinellids synthesize their silica enzymatically, via the enzyme silicatein. All these basic insights will surely contribute also to a further applied utilization and exploration of bio-silica in material/medical science.

  11. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-01-01

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included

  12. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A.

    1995-01-01

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  13. Comparative evaluation of aerial lime mortars for architectural conservation

    OpenAIRE

    Faria, Paulina; Henriques, Fernando M.A.; Rato, Vasco

    2008-01-01

    Journal of Cultural Heritage 9 (2008) 338-346 International bibliography on conservation usually refers that mortars made with lime putty with long extinction periods behave better than others made with the current dry hydrated limes. In order to evaluate this assess, an experimental study of lime mortars was carried out, using dry hydrated lime and two lime putties. It becomes clear that the use of lime putties with long extinction periods in mortars allow better performances, pa...

  14. Ectomycorrhizal activity as affected by soil liming

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Solbritt

    1996-05-01

    Acidification of the forest soils in southern Sweden due to atmospheric deposition has become evident during recent decades. To counteract further acidification, liming of forests in the most affected areas has been proposed. Most forest trees in the temperate and boreal forest ecosystems live in symbiosis with ectomycorrhizal fungi, and their uptake of mineral nutrients from the soil is greatly influenced by the symbiosis. In this thesis effects of liming on ectomycorrhiza have been studied in relation to effects on root colonization, fungal growth and nitrogen uptake. In field experiments the effects of liming on ectomycorrhizal colonization of root tips were variable, possibly due to different soil types and climatic variations. However, a changed mycorrhizal community structure could be detected. Laboratory studies also showed that the substrate may influence the outcome of lime applications; the nutrient status of the substrate had a marked effect on how mycelial growth was affected by liming. Under the experimental conditions used in the studies presented in this thesis, liming reduced the uptake of nitrogen and phosphorus by both mycorrhizal and non-mycorrhizal plants. The amount of extractable nitrogen and phosphorus in the peat was also reduced by liming. The latter could be due to either microbial or chemical immobilization. The lime induced decrease in nitrogen uptake was stronger in non-mycorrhizal plants than in mycorrhizal plants. Thus, the mycorrhizal plants had a higher ability to deal with the negative effects of liming on nitrogen availability. This was not the case for phosphorus. The lime induced decrease in phosphorus uptake was stronger for mycorrhizal plants, and in the highest lime treatment there was no significant difference between the mycorrhizal and the non-mycorrhizal spruce plants. 76 refs, 2 figs, 1 tab

  15. Effect of thermal history on the structure of chemically and vapor deposited silver films on glass

    International Nuclear Information System (INIS)

    Shelby, J.E.; Nichols, M.C.; Smith, D.K. Jr.; Vitko, J. Jr.

    1981-01-01

    The observation of silver agglomeration in second surface mirrors used for solar applications has emphasized consideration of the effect of thermal history on the optical properties of mirrors. Thermal history effects may arise from the processing of mirrors, the application of protective coatings, or from outdoor exposure. Mirrors may be subject to elevated temperatures (T less than or equal to 400 0 C) for short periods of time, or to low temperatures (T less than or equal to 60 0 C) for long (less than or equal to 30 years) periods of time. Although a significant amount of work has been done on thermally driven agglomeration of silver films, most of these studies have been restricted to vapor deposited films on vitreous silica. Large area reflectors, such as those used in heliostats, will almost certainly be deposited by commercial chemical methods on substrates of soda-lime-silicate or other glasses which differ considerably from vitreous silica in composition and properties. The present study addresses the effect of this change in deposition technique and substrate on silver agglomeration. These problems were studied by optical and scanning electron microscopy, reflectometry, and x-ray diffraction. The results indicate that both the method used to deposit the silver and the type of glass affect the agglomeration process and the character of the reflective film

  16. Fluorescence metrology of silica sol–gels – The effect of D2O and ...

    Indian Academy of Sciences (India)

    Administrator

    industrial quality control and helping fundamental research. ... Of all the possible syntheses, sodium silicate (i.e. water glass) production of silica gel, ... fine silica gel powders used in many applications (e.g. chromatography, toothpaste etc).

  17. a study on silica sand quality in yazaram and mugulbu deposits

    African Journals Online (AJOL)

    ENGR. G A DUVUNA

    A STUDY ON SILICA SAND QUALITY IN YAZARAM AND MUGULBU ... the lowest percentage of silica content of 77.60% and the grain morphology was found to be angular with specific ..... things.com/articles/glass colouring.html, accessed.

  18. Hydrogen Chloride Reaction with Lime and Limestone

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Jensen, Peter I.; Dam-Johansen, Kim

    1992-01-01

    The capacity of solid slaked lime and limestone for binding HCl from a gas phase has been investigated in the temperature range 60-1000 °C. The binding capacity is largest in the range 500-600 °C. However, for slaked lime in the presence of water, a large binding capacity is observed also below 150...

  19. Simple Analysis of Historical Lime Mortars

    Science.gov (United States)

    Pires, Joa~o

    2015-01-01

    A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…

  20. Towards the industrial solar production of lime

    Energy Technology Data Exchange (ETDEWEB)

    Meier, A.; Bonaldi, E. [QualiCal SA, Bergamo (Italy); Cella, G.M. [QualiCal SA, Bergamo (Italy); Lipinski, W.; Palumbo, R.; Steinfeld, A. [ETH Zuerich (Switzerland) and PSI; Wieckert, C.; Wuillemin, D.

    2002-03-01

    A new industrial concept that aims at the development of the chemical engineering technology for the solar production of lime is being examined. To establish the technical feasibility, a 10 kW solar reactor has been designed, constructed, and experimentally tested at a high-flux solar furnace. The quality of the produced solar lime meets industrial standards. (author)

  1. LANDSCAPE ARCHAEOLOGY ALONG LIMES TRANSALUTANUS

    Directory of Open Access Journals (Sweden)

    Eugen S. Teodor

    2014-09-01

    Full Text Available The project addresses the historical monuments comprised in the longest Roman ‘linear defence’ structure present on the Romanian territory.Despite it being the longest, this historic structure is the least protected and the least known in its technical details. Was indeed Limes Transalutanus an incomplete limes (lacking civilian settlements, for example, an odd construction (a vallum without fossa, an early-alarm line rather than a proper defensive line? Taking on these historical and archaeological challenges, the team attempts to develop an investigation technology applicable to large scale archaeological landscapes - a full evaluation chain, involving aerial survey, surface survey, geophysical investigation, multispectral images analysis, statistic evaluation and archaeological diggings. This technological chain will be systematically applied on the whole length of the objective, that is, on a 155 km distance. The attempt to find answers to issues related to the earth works’ functionality, layout, structure, chronology and relation with adjacent sites will be grounded on exploring the relations of the monument with the surrounding environment, by focussing on finding methods to reconstruct the features of the ancient landscapes, like systematic drilling, palynological tests and toponymical studies.

  2. Glass leaching performance

    International Nuclear Information System (INIS)

    Chick, L.A.; Turcotte, R.P.

    1983-05-01

    Current understanding of the leaching performance of high-level nuclear waste (HLW) glass is summarized. The empirical model of waste glass leaching behavior developed shows that at high water flow rates the glass leach rate is kinetically limited to a maximum value. At intermediate water flow rates, leaching is limited by the solution concentration of silica and decreases with decreasing water flow rates. Release of soluble elements is controlled by silica dissolution because silica forms the binding network of the glass. At low water flow rates, mass loss rates reach values controlled by formation rates of alteration minerals, or by diffusion of dissolution products through essentially stagnant water. The parameters reviewed with respect to their quantifiable influence on leaching behavior include temperature, pH, leachant composition, glass composition, thermal history, and radiation. Of these, temperature is most important since the rate of mass loss approximately doubles with each 10 0 C increase in dilute solutions. The pH has small effects within the 4 to 10 range. The chemical composition of the leachant is most important with regard to its influence on alteration product formation. Glass composition exhibits the largest effects at high flow rates where improved glasses leach from ten to thirty times slower than glass 76 to 68. The effects of the thermal history (devitrification) of the glass are not likely to be significant. Radiation effects are important primarily in that radiolysis can potentially drive pH values to less than 4. Radiation damage to the glass causes insignificant changes in leaching performance

  3. Zirconium based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2006-01-01

    Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould

  4. SEM-EDS analysis of ancient gold leaf glass mosaic tesserae. A contribution to the dating of the materials

    International Nuclear Information System (INIS)

    Conventi, A; Verità, M; Neri, E

    2012-01-01

    Metal leaf (gold, silver or their alloys) glass tesserae began to be used in wall mosaics in the first century AD (the first examples are in Rome) and their use has been uninterrupted up to day. The metal leaf could be obtained from circulating coins, jewellery or refining. According to various techniques that have changed over the centuries, the leaf was hot fixed between two glass layers. From an archaeological point of view, it is interesting to know when and where these tesserae were made, if they were new made or if they were reused tesserae recovered from earlier dismantled mosaics. The determination of the glass composition of the tesserae is not of great help in this connection, for the same kind of glass was used over long periods. Available information is still scanter for glasses produced between the 1st to 8th centuries when the batch of raw materials (a natural soda called natron and a silica-lime sand) was melted in large tank furnaces and chunks of raw glass were transported all over the Mediterranean to be remelted and shaped into manufacts in small pot furnaces. The SEM-EDS analysis is proposed in this study as a useful tool to investigate the composition of both the glass and the gold alloy in leaf tesserae from mosaics of the 1st - 9th centuries. The comparison of the composition of the gold leaf of the tesserae with that of circulating gold coins (for which an important analytical data base is available), adds further information to the glass analysis, allowing us to improve the dating of the tesserae and increase the knowledge that may result from scientific analyses. The results demonstrate that good quantitative analyses of the metal leaf can be performed and that metal leaves made of pure gold or gold-silver alloys were used.

  5. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    International Nuclear Information System (INIS)

    Maddrell, Ewan; Thornber, Stephanie; Hyatt, Neil C.

    2015-01-01

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na 2 O–Al 2 O 3 –B 2 O 3 –SiO 2 glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio

  6. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  7. The antifungal efficiency of carbide lime slurry compared with the commercial lime efficiency

    Science.gov (United States)

    Strigac, J.; Mikusinec, J.; Strigacova, J.; Stevulova, N.

    2017-10-01

    The article deals with studying the antifungal efficiency of carbide lime slurry compared to industrially manufactured commercial lime. Antifungal efficiency expressed as mould proofness properties was tested on the fungi using the procedure given in standard CSN 72 4310. A mixture of fungi Aspergillus niger, Chaetomium globosum, Penicillium funiculosum, Paecilomyces variotii and Gliocladium virens was utilized for testing. The scale for evaluating mould proofness properties according to CSN 72 4310 is from 0 to 5 in degree of fungi growth, where 0 means that no fungi growth occurs and the building products and materials possess fungistatic properties. The study confirms the fungistatic propeties of carbide lime slurry as well as industrially manufactured commercial lime. However, carbide lime slurry and industrially manufactured commercial lime possess no fungicidal effect.

  8. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2015-01-01

    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hyperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  9. Diffusion and ionic conduction in oxide glasses

    International Nuclear Information System (INIS)

    Mehrer, H; Imre, A W; Tanguep-Nijokep, E

    2008-01-01

    The ion transport properties of soda-lime silicate and alkali borate glasses have been studied with complimentary tracer diffusion and impedance spectroscopy techniques in order to investigate the ion dynamics and mixed-alkali effect (MAE). In soda-lime silicate glasses the tracer diffusivity of 22 Na alkali ions is more than six orders of magnitude faster than the diffusivity of earth alkali 45 Ca ions. This observation is attributed to a stronger binding of bivalent earth alkali ions to the glass network as compared to that of alkali ions. The conductivity of the investigated standard soda-lime silicate glasses is mostly due to the high mobility of sodium ions and a temperature independent Haven ratio of about 0.45 is obtained. For single alkali sodium-borate glasses, the Haven ratio is also temperature independent, however, it is decreases with decreasing temperature for rubidium-borate glass. The MAE was investigated for Na-Rb borate glasses and it was observed that the tracer diffusivities of 22 Na and 86 Rb ions cross, when plotted as function of the relative alkali content. This crossover occurs near the Na/(Na+Rb) ratio of the conductivity minimum due to MAE. The authors suggest that this crossover and the trend of diffusion coefficients is the key to an understanding of the MAE

  10. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

    1998-01-01

    Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations (±10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample

  11. Subgrade stabilization alternatives to lime and cement.

    Science.gov (United States)

    2010-04-15

    This project involved four distinct research activities, (1) the influence of temperature on lime-stabilized soils, (2) the influence of temperature on cement-stabilized soils (3) temperature modeling of stabilized subgrade and (4) use of calcium chl...

  12. Evaluation of the influence of sprinkling powdered slaked lime on microorganisms for the prevention of domestic animal infectious diseases.

    Science.gov (United States)

    Mori, Miho; Sakagami, Yoshikazu; Hamazaki, Yousuke; Jojima, Toru

    2018-04-23

    When infectious diseases arise in domestic animals, a large amount of slaked lime is sprinkled on cattle sheds and their surroundings for disinfection and prevention. However, optimal sprinkling methods, standard and upper limit of slaked lime, and influence of slaked lime on non-target microorganisms remain unclear. In this study, we clarified detailed microbicidal effects of slaked lime via in vitro experiments and the influence of sprinkling powdered slaked lime (PSL) in field soil on microorganisms. In vitro disinfection tests assessing the appropriate amount of water and ventilation conditions were also performed in sterilized glass bottles with soil and Salmonella enterica subsp. enterica serovar Typhimurium. Under conditions with a small amount of water relative to the amount of PSL, the bactericidal effect and sustainability of powdered slaked lime (PSL) tended to be lower than those without spraying water. Moreover, the sterilization effect markedly decreased after 7 days under conditions with abundant water. These results indicate that the amount of sprayed water is very important for the bactericidal effect and persistence of PSL. A field experiment showed that the pH and exchange calcium (Ca) content of the soil sprinkled with over 1000 g m -2 PSL remained high even after a long period (≥1 year), with values of approximately 0.5-1.0 and approximately 3-11 times the level without PSL, respectively. However, sprinkling PSL did not influence viable microbial counts at any concentration.

  13. Complexing Agents and pH Influence on Chemical Durability of Type I Molded Glass Containers.

    Science.gov (United States)

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-01-01

    Among the factors that affect the glass surface chemical durability, pH and complexing agents present in aqueous solution have the main role. Glass surface attack can be also related to the delamination issue causing glass particles' appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed. The present study emphasizes the possible synergy between a few complexing agents with pH on borosilicate glass chemical durability.Hydrolytic attack was performed in small-volume 23 mL type I glass containers autoclaved according to the European Pharmacopoeia or United States Pharmacopeia for 1 h at 121 °C, in order to enhance the chemical attack due to time, temperature, and the unfavorable surface/volume ratio. Solutions of 0.048 M or 0.024 M (M/L) of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid), together with sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ±0.05 units at fixed values 5.5, 6.6, 7, 7.4, 8, and 9 by LiOH diluted solution.Because silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by inductively coupled plasma atomic emission spectrophotometry. The work was completed by the analysis of the silicon release in the worst attack conditions of molded glass, soda lime type II glass, and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by scanning electron microscopy was finally performed to check for the surface status after the worst chemical attack condition by citric acid. LAY ABSTRACT: Glass, like every packaging material, can have some usage limits, mainly in basic pH solutions. The issue of glass surface degradation particles that appear in vials (delamination) has forced a number of drug product recalls in recent years

  14. Characterization of a lime-pozzolan plaster containing phase change material

    International Nuclear Information System (INIS)

    Pavlíková, Milena; Pavlík, Zbyšek; Trník, Anton; Pokorný, Jaroslav; Černý, Robert

    2015-01-01

    A PCM (Phase Change Material) modified lime-pozzolan plaster for improvement of thermal energy storage of building envelopes is studied in the paper. The investigated plaster is composed of lime hydrate, pozzolan admixture based on metakaolin and mudstone, silica sand, water and paraffin wax encapsulated in polymer capsule. The reference plaster without PCM application is studied as well. The analyzed materials are characterized by bulk density, matrix density, total open porosity, compressive strength and pore size distribution. The temperature of phase change, heat of fusion and crystallization are studied using DSC (Difference Scanning Calorimetry) analysis performed in air atmosphere. In order to get information on materials hygrothermal performance, determination of thermal and hygric properties is done in laboratory conditions. Experimental data reveal a substantial improvement of heat storage capacity of PCM-modified plaster as compared to the reference material without PCM

  15. Recycled sand in lime-based mortars.

    Science.gov (United States)

    Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K

    2014-12-01

    The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Balancing guava nutrition with liming and fertilization

    Directory of Open Access Journals (Sweden)

    Amanda Hernandes

    2012-12-01

    Full Text Available Guava response to liming and fertilization can be monitored by tissue testing. Tissue nutrient signature is often diagnosed against nutrient concentration standards. However, this approach has been criticized for not considering nutrient interactions and to generate numerical biases as a result of data redundancy, scale dependency and non-normal distribution. Techniques of compositional data analysis can control those biases by balancing groups of nutrients, such as those involved in liming and fertilization. The sequentially arranged and orthonormal isometric log ratios (ilr or balances avoid numerical bias inherent to compositional data. The objectives were to relate tissue nutrient balances with the production of "Paluma" guava orchards differentially limed and fertilized, and to adjust the current patterns of nutrient balance with the range of more productive guava trees. It was conducted one experiment of 7-yr of liming and three experiments of 3-yr with N, P and K trials in 'Paluma' orchards on an Oxisol. Plant N, P, K, Ca and Mg were monitored yearly. It was selected the [N, P, K | Ca, Mg], [N, P | K], [N | P] and [Ca | Mg] balances to set apart the effects of liming (Ca-Mg and fertilizers (N-K on macronutrient balances. Liming largely influenced nutrient balances of guava in the Oxisol while fertilization was less influential. The large range of guava yields and nutrient balances allowed defining balance ranges and comparing them with the critical ranges of nutrient concentration values currently used in Brazil and combined into ilr coordinates.

  17. Shock wave propagation in soda lime glass using optical ...

    Indian Academy of Sciences (India)

    2016-06-16

    Jun 16, 2016 ... probe beam in the transverse direction coupled with an optical streak .... (650 ps) was split using a beam splitter after the fifth amplifier stage in the ..... [17] A S Joshi et al, Fusion Engg. Design 44, 067 (1999). [18] A K Sharma ...

  18. Surface cracking in proton-irradiated glass

    International Nuclear Information System (INIS)

    Jensen, T.; Lawn, B.R.; Dalglish, R.L.; Kelly, J.C.

    1976-01-01

    Some observations are reported of the surface fracture behaviour of soda-lime glass slabs (6mm thick Pilkington float glass) irradiated with 480 kV protons. A simple indentation microfracture technique provided a convenient means of probing the irradiated surface regions. Basically, the technique involves loading a standard Vickers diamond pyramid indenter onto the area of interest such that a well-developed deformation/fracture pattern is generated. (author)

  19. Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures [Thermo-mechanical modeling of laser-induced structural relaxation and deformation of SiO2 glass

    Energy Technology Data Exchange (ETDEWEB)

    Vignes, Ryan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Soules, Thomas F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Stolken, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Elhadj, Selim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Mauro, J.

    2012-12-17

    In a fully coupled thermomechanical model of the nanoscale deformation in amorphous SiO2 due to laser heating is presented. Direct measurement of the transient, nonuniform temperature profiles was used to first validate a nonlinear thermal transport model. Densification due to structural relaxation above the glass transition point was modeled using the Tool-Narayanaswamy (TN) formulation for the evolution of structural relaxation times and fictive temperature. TN relaxation parameters were derived from spatially resolved confocal Raman scattering measurements of Si–O–Si stretching mode frequencies. These thermal and microstructural data were used to simulate fictive temperatures which are shown to scale nearly linearly with density, consistent with previous measurements from Shelby et al. Volumetric relaxation coupled with thermal expansion occurring in the liquid-like and solid-like glassy states lead to residual stresses and permanent deformation which could be quantified. But, experimental surface deformation profiles between 1700 and 2000 K could only be reconciled with our simulation by assuming a roughly 2 × larger liquid thermal expansion for a-SiO2 with a temperature of maximum density ~150 K higher than previously estimated by Bruckner et al. Calculated stress fields agreed well with recent laser-induced critical fracture measurements, demonstrating accurate material response prediction under processing conditions of practical interest.

  20. Improved control of sucrose losses and clarified juice turbidity with lime saccharate in hot lime clarification of sugarcane juice and other comparisons with milk of lime

    Science.gov (United States)

    A comparative investigation of adding milk of lime (MOL) versus lime saccharate (SACCH) in hot lime clarification of juice at a U.S. sugarcane factory was undertaken to quantify performance across the 2009 processing season after a preliminary factory study in 2008. SACCH was prepared by adding hyd...

  1. Water sensitivity and microporosity in organosilica glasses

    NARCIS (Netherlands)

    Dral, Albertine Petra

    2017-01-01

    In this dissertation the water sensitivityand microporosity of organosilica glasses are studied. The research focuses onfundamental material understanding, but stands in close relation with theindustrial application of organically bridged silicas as molecular sievingmembranes. Chapter1 presents a

  2. Erbium-doped borosilicate glasses containing various amounts of P{sub 2}O{sub 5} and Al{sub 2}O{sub 3}: Influence of the silica content on the structure and thermal, physical, optical and luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Bourhis, Kevin [Politecnico di Torino, DISAT, Istituto di Ingegneria e Fisica dei Materiali, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Massera, Jonathan [Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, FI-33720 Tampere (Finland); BioMediTech, Tampere (Finland); Petit, Laeticia, E-mail: laeticia.petit@nlight.net [Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku (Finland); nLIGHT Corporation, Sorronrinne 9, FI-08500 Lohja (Finland); Koponen, Joona [nLIGHT Corporation, Sorronrinne 9, FI-08500 Lohja (Finland); Fargues, Alexandre; Cardinal, Thierry [CNRS, Université de Bordeaux, ISM, 351 Cours de la Libération, F-33405 Talence (France); Hupa, Leena; Hupa, Mikko [Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku (Finland); Dussauze, Marc; Rodriguez, Vincent [CNRS, Université de Bordeaux, ICMCB, 87 Avenue du Dr Schweitzer, F-33608 Pessac (France); Ferraris, Monica [Politecnico di Torino, DISAT, Istituto di Ingegneria e Fisica dei Materiali, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy)

    2015-10-15

    Highlights: • Er{sup 3+} doped borosilicate glasses were processed with different compositions and characterizations. • An increase in the SiO{sub 2} content leads to a silicate-rich environment around the Er{sup 3+} site. • An increase in the SiO{sub 2} content decreases the Er{sup 3+} absorption cross-section at 980 nm. • Glasses with 60 mol% of SiO{sub 2} exhibit a stronger emission intensity at 1530 nm than glasses with x = 50. • Highest 1.5 μm emission intensity was achieved for the Al and P containing glass with 60 mol% of SiO{sub 2}. - Abstract: The influence of the silica content on several properties of Er-doped borosilicate glasses in the presence of various amounts of P{sub 2}O{sub 5} and Al{sub 2}O{sub 3} has been investigated. The introduction of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3} are responsible for structural modifications in the glass network through a charge-compensation mechanism related to the formation of negatively-charged PO{sub 4} and AlO{sub 4} groups or through the formation of AlPO{sub 4}-like structural units. In this paper, we show that an increase in the SiO{sub 2} content leads to a silicate-rich environment around the Er{sup 3+} site, resulting in an increased dependence of the Er{sup 3+} ions optical and luminescence properties on the P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3} concentration. The highest emission intensity at 1.5 μm was achieved for the glass with an equal proportion of P and Al in the glass system with 60 mol% of SiO{sub 2}.

  3. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    Science.gov (United States)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a

  4. Biomimetic silica encapsultation of living cells

    Science.gov (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  5. Silica artificial opal incorporated with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjiang, E-mail: wjli@zju.edu.cn [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China); Sun Tan [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China)

    2009-07-15

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  6. Silica artificial opal incorporated with silver nanoparticles

    International Nuclear Information System (INIS)

    Li Wenjiang; Sun Tan

    2009-01-01

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  7. Enhancement of the glass corrosion in the presence of clay minerals: testing experimental results with an integrated glass dissolution model

    International Nuclear Information System (INIS)

    Godon, N.; Vernaz, E.Y.

    1992-01-01

    Recent glass dissolution experiments, conducted at 90 deg C in the presence of potential backfill materials, indicate remarkably faster glass corrosion in the presence of clay, compared to tests where the glass is leached either alone or with alternative backfill materials. This effect correlates with the clay content in the backfill, and may be attributed to the removal of silica from solution. Scorpion, or dissolution with reprecipitation of a silica-rich clay, have been proposed as possible mechanisms for the silica consumption. The results of some experiments have been tested against a glass dissolution model, in which a widely used kinetic equation for glass corrosion is coupled with diffusive silica transport through a single porosity, linearly sorbing medium, which represents the backfilling. Because the glass corrosion rates imposed by the kinetic equation are inversely proportional to the silicic acid concentration of the leachant contacting the glass, the model predicts enhanced glass dissolution if silica is sorbed by the porous medium. The experimental data proved to be consistent with the predicted enhancement of the glass dissolution. Moreover, the model-estimated distribution coefficients for silica sorption (K d ) fall within the range of values extracted from available literature data, thus supporting the hypothesis that the observed high corrosion rates are due to sorption of silica on the clay mineral surfaces. (author)

  8. Lime in gold and uranium mining

    International Nuclear Information System (INIS)

    Van Staden, C.M.

    1979-01-01

    In this article the author discusses the role of lime in gold and uranium extraction and looks more closely at the industry's efforts to improve the environment by vegetation of sand dumps and slimes dams. He then comes to the conclusion that lime has been and still is the most effective, practical and cheapest chemical that can be used in the South African gold and uranium mining industry to settle pulps, protect cyanide solutions, aid the vegetation of dumps and neutralise acidic waters and residues. The gold and uranium industry is very pollution concious, and in South Africa the importance of the role that lime plays in combating air and water pollution cannot be over emphasised

  9. Gamma ray shielding characteristic of BiZnBo-SLS and PbZnBo-SLS glass

    Science.gov (United States)

    Syuhada Ahmad, Nor; Shahrim Mustafa, Iskandar; Mansor, Ishak; Malik, Muhammad Fadhirul Izwan bin Abdul; Ain Nabilah Razali, Nur; Nordin, Sufiniza

    2018-05-01

    The radiation shielding and optical properties of x [RmOn] (0.5‑x) [ZnO] 0.2 [B2O3] 0.3 [SLS], where RmOn are Bi2O3 and PbO with x = 0.05, 0.10, 0.20, 0.30, 0.40, and 0.45 have been prepared by using the melt-quenching method at 1200 °C and was investigated on their physical, structural and gamma ray shielding properties. Field-emission scanning electron microscope (FESEM) data revealed that the particle morphologies is aggregated and irregular in shapes and size. Energy dispersive x-ray spectroscopy (EDS) elemental mapping data confirmed that all mentioned element all present on the prepared glass. Soda Lime Silica (SLS) that is mainly composed of SiO2 has been utilized in this study as the source of SiO2 for fabrication of glass system. From the result, the density and molar volume of both glass samples increased as Bi2O3 and PbO content increased. The gamma ray shielding properties, such as linear attenuation and mass attenuation coefficient, were increased while half value layer (HVL) and mean free path (MFP) were decreased as the increased in Bi2O3 and PbO concentrations. It is recognized that the mass attenuation coefficient value of Bi2O3 and PbO glass are slightly different. From this study, it can be concluded that from the non-toxicity and shielding point of view, the bismuth glass is a good shield to gamma radiation as compared to lead glass.

  10. Fluorescence metrology of silica sol-gels

    Indian Academy of Sciences (India)

    We have developed a new method for measuring in-situ the growth of the nanometre-size silica particles which lead to the formation of sol-gel glasses. This technique is based on the decay of fluorescence polarisation anisotropy due to Brownian rotation of dye molecules bound to the particles. Results to date give near ...

  11. 27 CFR 9.27 - Lime Kiln Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.27 Lime Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley...

  12. 46 CFR 148.04-23 - Unslaked lime in bulk.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Unslaked lime in bulk. 148.04-23 Section 148.04-23... HAZARDOUS MATERIALS IN BULK Special Additional Requirements for Certain Material § 148.04-23 Unslaked lime in bulk. (a) Unslaked lime in bulk must be transported in unmanned, all steel, double-hulled barges...

  13. Full quantitative phase analysis of hydrated lime using the Rietveld method

    International Nuclear Information System (INIS)

    Lassinantti Gualtieri, Magdalena; Romagnoli, Marcello; Miselli, Paola; Cannio, Maria; Gualtieri, Alessandro F.

    2012-01-01

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2–15 wt.%.

  14. Full quantitative phase analysis of hydrated lime using the Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Romagnoli, Marcello; Miselli, Paola; Cannio, Maria [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Gualtieri, Alessandro F. [Dipartimento di Scienze della Terra, Universita Degli Studi di Modena e Reggio Emilia, I-41100 Modena (Italy)

    2012-09-15

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2-15 wt.%.

  15. Silica removal in industrial effluents with high silica content and low hardness.

    Science.gov (United States)

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  16. Use of kaolin waste for production os soil-lime blocks

    International Nuclear Information System (INIS)

    Anjos, C.M. dos; Neves, G.A.

    2011-01-01

    There is an evident growth in waste generation over the last decades, especially in developing countries. The mining industry produces large quantities and different kinds and levels of dangerousness, such as the kaolin processing industry, which produces waste based on silica, mica and kaolinite. Disposal of this material in an inappropriate location causes significant environmental impacts, which could be minimized with the use of waste as raw material for use in construction. This paper has as main objective to study the incorporation of the kaolin processing waste into soil-lime. The residues of kaolin were calcined at a temperature of 800 ° C for evaluation of pozzolanic activity. Raw materials and conventional alternatives were characterized by means of test particle size analysis by laser diffraction, chemical analysis, X-ray diffraction. Then, blocks conventional soil-lime and soil-lime with the introduction of residual kaolin in proportions of 10%, 20%, 30% and 40% were cast and cured in a moist chamber for periods of 28, 60 and 90 days. The technological tests of compressive strength results obtained within the specifications of the ABNT. The best results were for 90 days of healing and 20% residue. (author)

  17. Phase transitions and glass transition in a hyperquenched silica–alumina glass

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Zhao, D.H.; Yue, Yuanzheng

    2017-01-01

    We investigate phase transitions, glass transition, and dynamic behavior in the hyperquenched 69SiO2–31Al2O3 (mol%) glass (SA glass). Upon reheating, the SA glass exhibits a series of thermal responses. Subsequent to the sub-Tg enthalpy release, the glass undergoes a large jump in isobaric heat...... capacity (ΔCp) during glass transition, implying the fragile nature of the SA glass. The mullite starts to form before the end of glass transition, indicating that the SA glass is extremely unstable against crystallization. After the mullite formation, the remaining glass phase exhibits an increased Tg...... and a suppressed ΔCp. The formation of cristobalite at 1553 K indicates the dominance of silica in the remaining glass matrix. The cristobalite gradually re-melts as the isothermal heat-treatment temperature is raised from 1823 to 1853 K, which is well below the melting point of cristobalite, while the amount...

  18. Waste glass/metal interactions in brines

    International Nuclear Information System (INIS)

    Shade, J.W.; Pederson, L.R.; McVay, G.L.

    1983-05-01

    Leaching studies of MCC 76-68 glass in synthetic brines high in NaCl were performed from 50 to 150 0 C and included interactive testing with ductile iron and titanium. Hydrolysis of the glass matrix was generally slower in saturated brines than in deionized water, due to a lower solubility of silica in the brines. Inclusion of ductile iron in the tests resulted in accelerated leach rates because irion-silica reactions occurred which reduced the silica saturation fraction. At 150 0 C, iron also accelerated the rate of crystalline reaction product formation which were primarily Fe-bearing sepiolite and talc. 16 references

  19. Scaling properties of fracture surfaces on glass strengthened by ionic exchange

    International Nuclear Information System (INIS)

    Garza-Mendez, F.J.; Hinojosa-Rivera, M.; Gomez, I.; Sanchez, E.M.

    2007-01-01

    In this work the results of the statistical topometric analysis of fracture surfaces of soda-lime-silica glass with and without ionic exchange treatment are reported. In this case, the mechanism of substitution is K + -Na + . atomic force microscopy (AFM) was employed to record the topometric data from the fracture surface. The roughness exponent (ζ) and the correlation length (ξ) were calculated by the variable bandwidth method. The analysis for both glasses (subjected and non-subjected to ionic exchange) for ζ shows a value ∼0.8, this value agrees well with that reported in the literature for rapid crack propagation in a variety of materials. The correlation length shows different values for each condition. These results, along with those of microhardness indentations suggest that the self-affine correlation length is influenced by the complex interactions of the stress field of microcracks with that resulting from the collective behavior of the point defects introduced by the strengthening mechanism of ionic exchange

  20. Fertilizer and Lime: Why They Are Used.

    Science.gov (United States)

    McCaslin, Judith Strand

    This unit teaching guide is designed to help teachers explain the principles of fertilizer and lime use. The first of four major sections is a teaching outline keyed to transparency masters and student handouts. Thirteen major areas are covered in the teaching outline: (1) plant needs; (2) uses of fertilizer; (3) nutrients for plant growth; (4)…

  1. Peat Soil Stabilization using Lime and Cement

    Directory of Open Access Journals (Sweden)

    Mohd Zambri Nadhirah

    2018-01-01

    Full Text Available This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  2. Peat Soil Stabilization using Lime and Cement

    Science.gov (United States)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  3. Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives

    Directory of Open Access Journals (Sweden)

    Fatma H. Margha

    2012-12-01

    Full Text Available Ternary borate glasses from the system Na2O·CaO·B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crystalline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.

  4. The Stabilization of Weathered Dolerite Aggregates with Cement, Lime, and Lime Fly Ash for Pavement Construction

    Directory of Open Access Journals (Sweden)

    Felix N. Okonta

    2014-01-01

    Full Text Available An experimental program was performed on weathered dolerite specimens stabilized by adding varying percentages of cement (4, 8, 12, and 16 % and lime (6 and 12 % and a combination of lime and fly ash (6% lime + 12% Fly ash and 12% lime + 12% Fly ash % by dry weight of soil. The strength was examined under three different curing methods, namely, membrane curing (MBC, alternate moist-air curing (MAC, and water curing (WAC, by conducting unconfined compressive strength (UCS tests. Simple polynomial and linear functions (regression models were used to define the relationships between the variables investigated. Membrane curing (MBC gave results close enough to the water curing (WAC to indicate that it can be confidently used on the field during pavement construction. From the results obtained, for class B (interurban collector and major rural roads pavement construction, addition of 8% cement was recommended for road base construction with stabilized WDA. Also the addition of 12 + 12% Lime and Fly Ash was recommended for road subbase construction with stabilized WDA. Stabilized WDA against the prejudiced myths would perform satisfactorily for base and subbase construction in both heavily trafficked and low volume roads with economic quantities of cement, lime, and fly ash in South Africa.

  5. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica

    Energy Technology Data Exchange (ETDEWEB)

    Özarslan, Ali Can, E-mail: alicanozarslan@gmail.com; Yücel, Sevil, E-mail: syucel@yildiz.edu.tr

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. - Highlights: • Production of 3-D bioactive glass scaffolds from different silica sources • The effect of biosilica from rice hull ash on the bioactive glass scaffold • Sr additive impact on the bioactivity and biodegradability properties of scaffolds.

  6. A Re-evaluation of the Physiochemistry of Glass on the Basis of Recent Developments and its Relevance to the Glass Industry

    NARCIS (Netherlands)

    Veer, F.A.; Bristogianni, Telesilla; Justino de Lima, Clarissa; Louter, Christian; Bos, Freek; Belis, Jan; Veer, Fred; Nijsse, Rob

    The classical image of glass is that of a rigid, transparent brittle material characterized by a non-crystalline microstructure. This 19th and 20th century image however is mostly based on the contrast between soda lime glass and metals. It does not really make sense in the 21th century where more

  7. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  8. Effect of the preparation of lime putties on their properties.

    Science.gov (United States)

    Navrátilová, Eva; Tihlaříková, Eva; Neděla, Vilém; Rovnaníková, Pavla; Pavlík, Jaroslav

    2017-12-08

    In the study of lime as the basic component of historical mortars and plasters, four lime putties prepared from various kinds of lime of various granulometry and by various ways of preparation were evaluated. The rheological properties and micro-morphologic changes, growing of calcite crystals, and rate of carbonation were monitored. The lime putty prepared from lump lime achieves the best rheological properties, yield stress 214.7 Pa and plastic viscosity 2.6 Pa·s. The suitability of this lime putty was checked by testing the development of calcium hydroxide and calcite crystals using scanning electron microscopy and environmental scanning electron microscopy. The disordered crystals of calcium hydroxide exhibit better carbonation resulting in the large crystals of calcite; therefore, the mortar prepared from the lump lime has the highest flexural strength and compressive strength 0.8/2.5 MPa, its carbonation is the fastest and exhibits the longest durability. Also, thanks to the micro-morphological characterization of samples in their native state by means of environmental scanning electron microscopy, the new way of lime putty preparation by mixing was proven. The preparation consists in the mechanical crash of the lime particles immediately after hydration. This enables the properties of putty prepared from lump lime to be nearly reached.

  9. Formation of Uniform Hollow Silica microcapsules

    Science.gov (United States)

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  10. An Aerobic Digestion of Lime Sludge.

    Science.gov (United States)

    1982-07-01

    removal. 1,2 After lime addition, phosphorus is considered to be in the form of calcium hydroxyapatite (Ca5-(OH)(P04 )3 ), which will not resolubilize...U: c a e - ~ -’ tr *cr. V. (r. C . -~~~ C c C C&c cj Ir u -. C Fy. - U C C - C F.~-cc 0.c gC - - gg MFC - - C -66 TABLE 20. SUMMARY OF LEAST

  11. Geomechanical properties of lime stabilized clayey sands

    International Nuclear Information System (INIS)

    Arabani, M.; Karami, M. Veis

    2007-01-01

    Clayey sands that have low plasticity, low compressibility and high strength under loads, are suitable as a base material for any engineering construction projects as well as for roads and building construction. Decrease of plasticity and compressibility as well as increase in strength of these materials can be obtained by many different methods. Of these methods, lime stabilization is a common, applicable, and easy to use approach that can improve geomechanical and geotechnical properties of clayey sand fills. In this study some important geomechanical properties and geotechnical properties of clayey sands including compressive strength, CBR and elastic plastic behavior are investigated. A range of gradations representative of those gradations found in situ in the north of Iran were selected for testing and samples were artificially rebuilt in the laboratory. The mixes were then stabilized with hydrated lime and cured. Different mechanical tests were performed on mature materials. The stress-strain behavior of lime-stabilized mixes was plotted and a parabolic function was used to estimate the trend of stress-strain behavior. The data show that there is a correlation among the results of uniaxial load test, tensile strength, and CBR of the tested specimens. Also, results of the unconfined compression test and the indirect tensile strength test show that an increase in clay content up to a certain percent, in the clay-sand fills, tends to increase the strength of the materials in compression as well as in tension. (author)

  12. Imperial Limes - Projections in Medieval Imperial Idea

    Directory of Open Access Journals (Sweden)

    Z.Z. Zhekov

    2015-08-01

    Full Text Available Roman imperial limes from I - V BC was the first state border in world history, which in some sense corresponds to the modern concept of political boundary. It represents sustainable political, military and economic barrier between the Romans and the rest of the world. With minor modifications it retains their basic strategic concept during the period as expressed from the emperors Augustus and Tiberius. Limes become powerful barrier that separates cultural Roman Hellenistic world of the wild barbarian but at the same time limits the constructed infrastructure of roads, forts and towns became a natural cultural, commercial and political mediator between these two initially hostile worlds. In border towns developed a lively trade between Romans and barbarians. Roman traders penetrate inside the barbarian lands getting to know their culture and history. Studying foreign peoples and countries they convey information gathered imperial legate of the Roman population. The same process was developed and of course in the opposite direction. Exchange of information on the other promotes mutual understanding and open living on both sides of the Roman Limes.

  13. Taylor impact of glass rods

    International Nuclear Information System (INIS)

    Willmott, G.R.; Radford, D.D.

    2005-01-01

    The deformation and fracture behavior of soda-lime and borosilicate glass rods was examined during classic and symmetric Taylor impact experiments for impact pressures to 4 and 10 GPa, respectively. High-speed photography and piezoresistive gauges were used to measure the failure front velocities in both glasses, and for impact pressures below ∼2 GPa the failure front velocity increases rapidly with increasing pressure. As the pressure was increased above ∼3 GPa, the failure front velocities asymptotically approached maximum values between the longitudinal and shear wave velocities of each material; at ∼4 GPa, the average failure front velocities were 4.7±0.5 and 4.6±0.5 mm μs -1 for the soda-lime and borosilicate specimens, respectively. The observed mechanism of failure in these experiments involved continuous pressure-dependent nucleation and growth of microcracks behind the incident wave. As the impact pressure was increased, there was a decrease in the time to failure. The density of cracks within the failed region was material dependent, with the more open-structured borosilicate glass showing a larger fracture density

  14. Glasses obtained from industrial wastes

    International Nuclear Information System (INIS)

    Bortoluzzi, D.; Oliveira Fillho, J.; Uggioni, E.; Bernardin, A.M.

    2009-01-01

    This paper deals with the study of the vitrification mechanism as an inertization method for industrial wastes contaminated with heavy metals. Ashes from coal (thermoelectric), wastes from mining (fluorite and feldspar) and plating residue were used to compose vitreous systems planed by mixture design. The chemical composition of the wastes was determined by XRF and the formulations were melted at 1450 deg C for 2h using 10%wt of CaCO 3 (fluxing agent). The glasses were poured into a mold and annealed (600 deg C). The characteristic temperatures were determined by thermal analysis (DTA, air, 20 deg C/min) and the mechanical behavior by Vickers microhardness. As a result, the melting temperature is strongly dependent on silica content of each glass, and the fluorite residue, being composed mainly by silica, strongly affects Tm. The microhardness of all glasses is mainly affected by the plating residue due to the high iron and zinc content of this waste. (author)

  15. Characteristic Asphalt Concrete Wearing Course (ACWC) Using Variation Lime Filler

    Science.gov (United States)

    Permana, R. A.; Pramesti, F. P.; Setyawan, A.

    2018-03-01

    This research use of lime filler Sukaraja expected add durability layers of concrete pavement is asphalt damage caused by the weather and load traffic. This study attempts to know how much value characteristic Marshall on a mixture of concrete asphalt using lime filler. This research uses experimental methods that is with a pilot to get results, thus will look filler utilization lime on construction concrete asphalt variation in filler levels 2 %, 3 %, 4 %.The results showed that the use of lime filler will affect characteristic a mixture of concrete asphalt. The more filler chalk used to increase the value of stability. On the cretaceous filler 2 % value of stability is 1067,04 kg. When lime filler levels added to the levels of filler 4 %, the value of stability increased to 1213,92 kg. The flexibility increased the number of filler as levels lime 2 % to 4 % suggests that are conducted more stiff mix.

  16. Effects of corn cob ash on lime stabilized lateritic soil

    Science.gov (United States)

    Nnochiri, Emeka Segun

    2018-03-01

    This study assesses the effects of Corn Cob Ash (CCA) on lime-stabilized lateritic soil. Preliminary tests were carried out on the natural soil sample for purpose of identification and classification. Lime being the main stabilizing material was thoroughly mixed with the soil sample to determine the optimum lime requirement of the sample as a basis for evaluating the effects of the CCA. The optimum lime requirement was 10%. The CCA was thereafter added to the lime stabilized soil in varying proportions of 2, 4, 6, 8 and 10%. Unsoaked CBR increased from 83% at 0% CCA to highest value of 94% at 4% CCA. Unconfined Compressive Strength (UCS) values increased from 1123kN/m2 at 0% CCA to highest value of 1180kN/m2 at 4% CCA. It was therefore concluded that CCA can serve as a good complement for lime stabilization in lateritic soil.

  17. Liming as a method to remedy lakes contaminated by radiostrontium

    International Nuclear Information System (INIS)

    Haakanson, Lars

    2003-01-01

    This work has identified the characteristics regulating lake sensitivity to 90 Sr-contamination and why certain lakes are likely to respond positively to lake liming (Ca-treatment) and when this would not be a feasible or economic remedial measure to lower 90 Sr-levels in fish. The results demonstrate that liming would work best in (1) small, (2) low-productive, (3) oligohumic, (4) acid lakes with (5) low initial Ca-concentrations. It is important to start the liming as soon as possible after the fallout. The liming model discussed in this work can be used to calculate the changes in lake Ca-concentrations and the duration of the liming. The Sr-model can be used to calculate changes in Sr-levels in water, sediments and fish. At best, these simulations indicate that it is realistic to expect that lake liming can reduce peak levels of 90 Sr in fish by 25-40%

  18. Use of demolition residues construction in soil-lime bricks

    International Nuclear Information System (INIS)

    Figueiredo, S.S.; Silva, C.G.; Silva, I.A.; Neves, G.A.

    2011-01-01

    Besides being responsible for several environmental damage caused by its residues, the construction industry is also considered the greatest natural resources consumer. When finely ground, such residues can exhibit cementing properties, which may replace part of the lime used in the manufacture of soil-lime bricks. This study aimed to verify the viability of using demolition residues (DR) in soil-lime bricks without structural function. For this, test specimens were prepared using mixes in a 1:10 ratio of lime:soil and embedding residue in partial replacement of lime in the proportions of 25%, 50% and 75%. The test specimens were submitted to curing periods of 28 and 52 days, then it was determined the compression strength. The results showed that when embedded on moderate percentages, demolition residues construction can be used in the production of soil-lime bricks. (author)

  19. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  20. Diffusion in glass

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak, A S

    1991-12-31

    Rutherford backscattering spectromertry technique (RBS) was used to characterize and investigate the depth distribution profiles of Ca-impurities of Ca-doped soda-time glass. The purposely added Ca-impurities were introduced inti the glass matrix by a normal ion exchange diffusion process. The measurements and analysis were performed using 2 MeV {sup 2}He{sup +} ions supplied from the University of Jordan Van de Graff acceierator (JOVAG). The normalized concetration versus depth profile distributions for the Ca-imourities were determined, both theoretically and experimentally. The theoretical treatment was carried out by setting up and soiving the diffusion equation under the conditions of the experiment. The resulting profiles are characterized by a compiementary error function. the theoretical treeatment was extended to include the various methods of enhancing the diffusion process, e.g. using an electric field. The diffusion coefficient, assumed constant, of the Ca-impurities exchanged in the soda-lime glass was determined to be 1.23 x 10{sup 13} cm{sup 2}/s. A comparison between theoretically and experimentally determined profiles is made and commented at, where several conclusions are drawn and suggestions for future work are mentioned. (author). 38 refs., 21 figs., 10 Tabs.

  1. Removal of phosphate from greenhouse wastewater using hydrated lime.

    Science.gov (United States)

    Dunets, C Siobhan; Zheng, Youbin

    2014-01-01

    Phosphate (P) contamination in nutrient-laden wastewater is currently a major topic of discussion in the North American greenhouse industry. Precipitation of P as calcium phosphate minerals using hydrated lime could provide a simple, inexpensive method for retrieval. A combination of batch experiments and chemical equilibrium modelling was used to confirm the viability of this P removal method and determine lime addition rates and pH requirements for greenhouse wastewater of varying nutrient compositions. Lime: P ratio (molar ratio of CaMg(OH)₄: PO₄‒P) provided a consistent parameter for estimating lime addition requirements regardless of initial P concentration, with a ratio of 1.5 providing around 99% removal of dissolved P. Optimal P removal occurred when lime addition increased the pH from 8.6 to 9.0, suggesting that pH monitoring during the P removal process could provide a simple method for ensuring consistent adherence to P removal standards. A Visual MINTEQ model, validated using experimental data, provided a means of predicting lime addition and pH requirements as influenced by changes in other parameters of the lime-wastewater system (e.g. calcium concentration, temperature, and initial wastewater pH). Hydrated lime addition did not contribute to the removal of macronutrient elements such as nitrate and ammonium, but did decrease the concentration of some micronutrients. This study provides basic guidance for greenhouse operators to use hydrated lime for phosphate removal from greenhouse wastewater.

  2. Time evolution of pore system in lime - Pozzolana composites

    Science.gov (United States)

    Doleželová, Magdaléna; Čáchová, Monika; Scheinherrová, Lenka; Keppert, Martin

    2017-11-01

    The lime - pozzolana mortars and plasters are used in restoration works on building cultural heritage but these materials are also following the trend of energy - efficient solutions in civil engineering. Porosity and pore size distribution is one of crucial parameters influencing engineering properties of porous materials. The pore size distribution of lime based system is changing in time due to chemical processes occurring in the material. The present paper describes time evolution of pore system in lime - pozzolana composites; the obtained results are useful in prediction of performance of lime - pozzolana systems in building structures.

  3. Low Velocity Sphere Impact of a Borosilicate Glass

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, Timothy G [ORNL; Ferber, Mattison K [ORNL; Wereszczak, Andrew A [ORNL; Fox, Ethan E [ORNL

    2012-05-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Borofloat borosilicate glass, and is a follow-up to a similar study completed by the authors on Starphire soda-lime silicate glass last year. The response of the borosilicate glass to impact testing at different angles was also studied. The Borofloat glass was supplied by the US Army Research Laboratory and its tin-side was impacted or indented. The intent was to better understand low velocity impact response in the Borofloat. Seven sphere materials were used whose densities bracket that of rock: borosilicate glass, soda-lime silicate glass, silicon nitride, aluminum oxide, zirconium oxide, carbon steel, and a chrome steel. A gas gun or a ball-drop test setup was used to produce controlled velocity delivery of the spheres against the glass tile targets. Minimum impact velocities to initiate fracture in the Borofloat were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the seven sphere-Borofloat-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) BS glass responded similarly to soda-lime silicate glass when spherically indented but quite differently under sphere impact conditions; (2) Frictional effects contributed to fracture initiation in BS glass when it spherically indented. This effect was also observed with soda-lime silicate glass; (3) The force necessary to initiate fracture in BS glass under spherical impact decreases with increasing elastic modulus of the sphere material. This trend is opposite to what was observed with soda-lime silicate glass. Friction cannot explain this trend and the authors do not have a legitimate explanation for it yet; (4) The force necessary to initiate contact-induced fracture is higher under dynamic conditions than under quasi-static conditions. That

  4. Thermal expansion at low temperatures of glass-ceramics and glasses

    Energy Technology Data Exchange (ETDEWEB)

    White, G K [National Measurement Lab., Sydney (Australia)

    1976-08-01

    The linear thermal expansion coefficient, ..cap alpha.., has been measured from 2 to 32 K and from 55 to 90 K for a machineable glass-ceramic, an 'ultra-low expansion' titanium silicate glass (Corning ULE), and ceramic glasses (Cer-Vit and Zerodur), and for glassy carbon. ..cap alpha.. is negative for the ultra-low expansion materials below 100 K, as for pure vitreous silica. Comparative data are reported for ..cap alpha..-quartz , ..cap alpha..-cristobalite, common opal, and vitreous silica.

  5. Influence of the sintering temperature in the microstructure of foam glass obtained from waste glass

    International Nuclear Information System (INIS)

    Pokorny, A.; Vicenzi, J.; Bergmann, C.P.

    2012-01-01

    In this work, foam glasses were produced from grounded soda-lime glass and a synthetic carbonate, used as a foaming agent, with a similar composition to a dolomite lime, added with different oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , MnO 2 , Na 2 O, K 2 O, TiO 2 and P 2 O 5 ). The objective was to evaluate the influence of sintering temperature on the properties and microstructure of the obtained material. In addition, the effect of addition of the oxides in the expansion of the ceramic bodies was evaluated. The ceramic bodies were formulated with 3 weight percent of synthetic carbonate, uniaxially pressed and fired within the temperature range from 700 deg C to 950 deg C, with a heating rate of 150K/h. The technological characterization of the ceramic bodies involved the determination of the volumetric expansion and their microstructures have been characterized by optical microscopy and scanning electron microscopy. The experimental results have shown foam glass can be obtained from grounded soda-lime glass, using synthetic carbonate, with the introduction of the different oxides, as foaming agent. (author)

  6. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  7. HEAT INSULATING LIME DRY MORTARS FOR FINISHING OF WALLS MADE OF FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    Loganina Valentina Ivanovna

    2016-05-01

    Full Text Available Different aerated mortars are used for pargeting of walls made of aerated concrete. Though the regulatory documents don’t specify the dependence of plaster density from the density grade of gas-concrete blocks. In case of facing of gas-concrete blocks with the grade D500 using plaster mortars with the density 1400…1600 km/m3 there occurs a dismatch in the values of thermal insulation and vapor permeability of the plaster and base. The authors suggest using dry mortars for finishing of gas-concrete block of the grades D500 и D600, which allow obtaining facing thermal insulating coatings. The efficiency of using four different high-porous additives in the lime dry mortar was compared. They were: hollow glass microspheres, aluminosilicate ash microspheres, expanded vermiculite sand, expanded pearlitic sand. The high efficiency of hollow glass microspheres in heat insulating finishing mortars compared to other fillers is proved.

  8. Green synthesis of water-glass from municipal solid waste incineration bottom ash

    NARCIS (Netherlands)

    Hendrix, Y.; Alam, Q.; Thijs, L.; Lazaro Garcia, A.; Brouwers, H.J.H.

    2017-01-01

    Water-glass is extensively used as a silica precursor in different chemical applications such as alkali activated binders and nano-silica. The current production of water-glass involves the fusion of sand with soda ash at temperatures above 1000 ºC, which makes the production expensive and

  9. In-situ investigations of corrosion processes on glass and metal surfaces by scanning probe microscopy (SPM)

    International Nuclear Information System (INIS)

    Nicolussi-Leck, G.

    1996-09-01

    The corrosion of potash-lime-silica glass was observed in-situ by AFM (atomic force microscopy) for the first time. The topographic changes with time due to the interaction of a replica glass with the ambient atmosphere were studied. A comparison of dynamic mode AFM and static mode AFM has demonstrated their potential for the investigation of soft, sensitive specimens. A combination of both methods yielded a correlation between structural changes during the corrosion process and different corrosion products on glass. The activation of surface reactions by the tip touching the surface could be observed with dynamic mode AFM. In-situ sample preparation and introduction of a defined atmosphere consisting of nitrogen with adjustable amounts of relative humidity and varying contents of SO 2 and NO 2 allowed model studies of the atmospheric corrosion. A replica glass with medieval composition was used in order to investigate the impact of the above described conditions. Besides the influence of the relative humidity the effects of SO 2 and NO 2 as well as their, synergistic effects could be studied. The evaluation of the phase signal in dynamic mode AFM in addition to the topographic information allowed the identification of humid domains in and on corrosion products, respectively. The observed contrast and thus the adhesion forces, are mainly related to the different water coverage of the surface regions or the hydroscopic properties, respectively. Furthermore, the topographic changes of copper-nickel, and palladium surfaces exposed to humidified nitrogen with SO 2 have been observed in-situ. Contrary to the assumption of the metal surfaces being covered by a homogeneous layer of corrosion products, distinct clusters of products could be observed. In case of different kinds of products these clusters were arranged adjacent to each other rather than in different stacked layers. (author)

  10. IMPROVEMENT OF EXPANSIVE SOIL BY USING SILICA FUME

    Directory of Open Access Journals (Sweden)

    Kawther Y. AL-Soudany

    2018-01-01

    Full Text Available Expansive soils are characterized by their considerable volumetric deformations representing a serious challenge for the stability of the engineering structures such as foundations. Consequently, the measurements of swelling properties, involving swelling and swell pressure, become extremely important in spite of their determination needs a lot of time with costly particular equipment. Thus, serious researches attempts have been tried to remedy such soils by means of additives such as cement, lime, steel fibers, stone dust, fly ash and silica fume. In this research the study of silica fume has studied to treatment expansion soil, the clay soil was brought from Al-Nahrawan in Baghdad. The soil selected for the present investigation prepared in laboratory by mixing natural soil with different percentages of bentonite (30, 50 and 70% by soil dry weight. The test program included the effect of bentonite on natural soil then study the effect of silica fume (SF on prepared soil by adding different percentage of silica fume (3, 5, and 7 by weight to the prepared soils and the influence of these admixtures was observed by comparing their results with those of untreated soils (prepared soils. The results show that both liquid limit and plasticity index decreased with the addition of silica fume, while the plastic limit is increase with its addition. As well as, a decrease in the maximum dry unit weight with an increase in the optimum water contents have been obtained with increasing the percentage of addition of the silica fume. It is also observed an improvement in the free swell, swelling pressure by using silica fume. It can be concluded that the silica fume stabilization may be used as a successful way for the treatment of expansive clay.

  11. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  12. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  13. LIMES Large Infrastructure in Mathematics - Enhanced Services

    CERN Document Server

    Fachinformationszentrum Energie, Physik, Mathematik. Karlsruhe

    The Large Infrastructure in Mathematics - Enhanced Services (LIMES) Project is a RTD project within the Fifth (EC) Framework Programme - Horizontal Programme "Improving human research potential and the socio-economic knowledge base", Access to Resear The objective of this project is to upgrade the existing database Zentralblatt-MATH into a European based world class database for mathematics (pure and applied) by a process of technical improvement and wide Europeanisation, improving the present distribuited system. The goal is to make Zentralblatt MATH a world reference database, offering full coverage of the mathematics literature worldwide ncluding bibliographic data, peer reviews and/or abstracts, indexing, classification and search,

  14. Oxide glass structure evolution under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Mendoza, C.; Peuget, S.; Charpentier, T.; Moskura, M.; Caraballo, R.; Bouty, O.; Mir, A.H.; Monnet, I.; Grygiel, C.; Jegou, C.

    2014-01-01

    Highlights: • Structure of SHI irradiated glass is similar to the one of a hyper quenched glass. • D2 Raman band associated to 3 members ring is only observed in irradiated glass. • Irradiated state seems slightly different to an equilibrated liquid quenched rapidly. - Abstract: The effects of ion tracks on the structure of oxide glasses were examined by irradiating a silica glass and two borosilicate glass specimens containing 3 and 6 oxides with krypton ions (74 MeV) and xenon ions (92 MeV). Structural changes in the glass were observed by Raman and nuclear magnetic resonance spectroscopy using a multinuclear approach ( 11 B, 23 Na, 27 Al and 29 Si). The structure of irradiated silica glass resembles a structure quenched at very high temperature. Both borosilicate glass specimens exhibited depolymerization of the borosilicate network, a lower boron coordination number, and a change in the role of a fraction of the sodium atoms after irradiation, suggesting that the final borosilicate glass structures were quenched from a high temperature state. In addition, a sharp increase in the concentration of three membered silica rings and the presence of large amounts of penta- and hexacoordinate aluminum in the irradiated 6-oxide glass suggest that the irradiated glass is different from a liquid quenched at equilibrium, but it is rather obtained from a nonequilibrium liquid that is partially relaxed by very rapid quenching within the ion tracks

  15. Acoustic properties of a porous glass (vycor) at hypersonic frequencies

    International Nuclear Information System (INIS)

    Levelut, C; Pelous, J

    2007-01-01

    Brillouin scattering experiments have been performed from 5 to 1600 K in vycor, a porous silica glass. The acoustic velocity and attenuation at hypersonic frequencies are compared to those of bulk silica and others porous silica samples. The experimental evidence for the influence of porosity on the scattering by acoustic waves is compared to calculations. The correlation between internal friction and thermal conductivity at low temperature is discussed

  16. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  17. A-thermal elastic behavior of silicate glasses.

    Science.gov (United States)

    Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique

    2016-02-24

    Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.

  18. Raman band intensities of tellurite glasses.

    Science.gov (United States)

    Plotnichenko, V G; Sokolov, V O; Koltashev, V V; Dianov, E M; Grishin, I A; Churbanov, M F

    2005-05-15

    Raman spectra of TeO2-based glasses doped with WO3, ZnO, GeO2, TiO2, MoO3, and Sb2O3 are measured. The intensity of bands in the Raman spectra of MoO3-TeO2 and MoO3-WO3-TeO2 glasses is shown to be 80-95 times higher than that for silica glass. It is shown that these glasses can be considered as one of the most promising materials for Raman fiber amplifiers.

  19. Incorporation of turmeric-lime mixture during the preparation of ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... behaviour) of 2 min-blanched samples (both treated and control) were the maximum among other corresponding puree samples. Thus, 2 min blanching time may be preferred for the preparation of this new type of turmeric-lime treated tomato puree product. Key words: Turmeric-lime, Lycopersicon ...

  20. Carbonation of lime and cement stabilized layers in road construction

    CSIR Research Space (South Africa)

    Netterberg, F

    1984-04-01

    Full Text Available The problem of deterioration of lime, lime-slag and cement stabilized pavement layers during curing, before sealing and in service is partly ascribed to carbonation of the stabilizer during curing and subsequent exposure to the atmosphere before...

  1. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    Science.gov (United States)

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  2. 76 FR 82295 - Central Power & Lime LLC; Notice of Filing

    Science.gov (United States)

    2011-12-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EL12-18-000; QF82-207-007] Central Power & Lime LLC; Notice of Filing December 23, 2011. Take notice that on December 22, 2011, Central Power & Lime LLC, pursuant to sections 18 CFR 292.205(c) and 385.207 of the Federal Energy...

  3. Efficacy and phytotoicity of lime sulphur in organic apple production

    NARCIS (Netherlands)

    Holb, I.J.; Jong, de P.F.; Heijne, B.

    2003-01-01

    Curative and preventive efficacy and phytotoxicity of lime sulphur spray schedules, based on a warning system, were evaluated in the Netherlands during two growing seasons under field conditions. In most cases, lime sulphur treatments applied either curatively or preventively resulted in

  4. Stabilization of expansive soil using bagasse ash & lime | Wubshet ...

    African Journals Online (AJOL)

    7-5 soil on the AASHTO classification was stabilized using 3% lime, 15% bagasse ash and 15% bagasse ash in combination with 3% lime by dry weight of the soil. The effect of the additives on the soil was investigated with respect to plastcity, ...

  5. A nano approach to consolidation of degraded historic lime mortars

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana; Ziegenbalg, G.

    2009-01-01

    Roč. 8, č. 2 (2009), s. 13-22 ISSN 1662-5250 R&D Projects: GA ČR(CZ) GA103/06/1609 Institutional research plan: CEZ:AV0Z20710524 Keywords : lime water * calcium hydroxide nanosuspension * lime mortar Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.571, year: 2009

  6. Liming of acid tropical soils: practice, prospects and constraints ...

    African Journals Online (AJOL)

    But the incidental inclusion of liming materials in fertilizers has not been effective and sustainable due to the intensive land use activities, constant application of acid-forming chemical fertilizers, leaching losses of bases and crop removal. Liming materials themselves vary in their calcium and magnesium contents and ...

  7. Engineering Properties of Bentonite Stabilized with Lime and Phosphogypsum

    Directory of Open Access Journals (Sweden)

    Kumar Sujeet

    2014-12-01

    Full Text Available Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swell increased and the free swell index decreased with the addition of 8 % phosphogypsum to the bentonite + 8 % lime mix. The unconfined compressive strength of the bentonite + 8 % lime increased with the addition of 8 % phosphogypsum as well as an increase in the curing period up to 14 days. The liquid limit and plastic limit of the bentonite + 8 % lime increased, whereas the plasticity index remained constant with the addition of 8 % phosphogypsum. The California bearing ratio, modulus of subgrade reaction, and secant modulus increased for the bentonite stabilized with lime and phosphogypsum. The coefficient of the consolidation of the bentonite increased with the addition of 8 % lime and no change with the addition of 8 % phosphogypsum.

  8. Some studies on the reaction between fly ash and lime

    Indian Academy of Sciences (India)

    Unknown

    Blain's air permeability apparatus was used for ... Pulverized lime with high per- centage of CaO (> 80 ... kept in a low-pressure autoclave at an average steam pressure and ... ing the solubility of lime in a solvent containing 1 part by volume of ...

  9. Electrochromic Glasses.

    Science.gov (United States)

    1980-07-31

    this glass and that dipole-dipole correlations contribute to the "ferroelectric-like" character of this amorphous system. The TeO2 -W03 glasses can only...shows the dielectric constant and Fig. I(b) glass from pure TeO2 ot pure WO. In addition, glass the tan 8 of the WO glass as a function of temperature... glasses containing WO, in various glass forming nitworks of LifO-B1O0, Na:O-BzO,, and TeO2 were prepared from reagent grade oxides at 800 C - 9SO C in

  10. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm; Letailleur, Alban A; Søndergård, Elin

    2011-01-01

    We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination of the imprin......We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination...... of the imprinted hybrid sol-gel material produces purely inorganic silica, which has very low autofluorescence and can be fusion bonded to a glass lid. Compared to top-down processing of fused silica or silicon substrates, imprint of sol-gel silica enables fabrication of high-quality nanofluidic devices without...

  11. Thorough investigation of the oxygen heterocyclic fraction of lime (Citrus aurantifolia (Christm.) Swingle) juice.

    Science.gov (United States)

    Costa, Rosaria; Russo, Marina; De Grazia, Selenia; Grasso, Elisa; Dugo, Paola; Mondello, Luigi

    2014-04-01

    Reversed-phase-HPLC analysis by means of superficially porous silica particle columns (fused-core) was applied to the investigation of flavonoids, coumarins, and psoralens in lime juice samples. Hesperidin (367.0 ± 16.0 ppm) and eriocitrin (148.0 ± 7.9 ppm) were the most abundant flavonoids. Fifteen coumarins and furocoumarins were determined, including bergamottin (29.6 ± 1.1 ppm), 5-geranyloxy-7-methoxycoumarin (16.5 ± 0.6 ppm), and oxypeucedanin hydrate (9.9 ± 0.5 ppm) as predominant compounds. These molecules are today well known for their beneficial effects on human health. As a consequence, the present study, beyond investigating for the first time the chemical composition of lime juice, highlights also its health-promoting qualities, due to its content of flavonoids and coumarins. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Energy saving plan for lime calcining kiln

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Lime calcining kilns operating in China are of old type, consuming more heat energy by 30% or more than the latest type kilns. For the purpose of the COP3 joint implementation, a renewal plan was discussed taking up Benxi Steel Group Company as the object. The new type kiln is a parallel flow energy regenerating (Maerz) kiln. It has as high thermal efficiency as 900 kcal/kg of product. Annual fuel conservation as converted into crude oil will be 7.49x10{sup 3} tons, annual fuel cost reduction will be 101,200,000 yuan, and annual reduction in CO2 emission will be 23,200 tons. The estimated cost required for the project will be 991 million yen, or 66,070,000 yuan if the exchange rate is assumed to be 15 yen to one yuan. The profitability was discussed based on using bank loans and the special environmental yen loan. The investment recovering period was calculated as 7.9 years. This provides no realizability as a project on the business base. However, China strongly desires renewal of the facilities because of discharge of dust from old type facilities, and inferior quality of lime products. The project could be a candidate without doubt if the CDM system will have been established. (NEDO)

  13. Root distribution of rootstocks for 'Tahiti' lime

    Directory of Open Access Journals (Sweden)

    Neves Carmen Silvia Vieira Janeiro

    2004-01-01

    Full Text Available Field studies on citrus roots are important for genetic selection of cultivars and for management practices such as localized irrigation and fertilization. To characterize root systems of six rootstocks, taking into consideration chemical and physical characteristics of a clayey Typic Hapludox of the Northern State of Paraná, this study was performed having as scion the 'IAC-5 Tahiti' lime [Citrus latifolia (Yu. Tanaka]. The rootstocks 'Rangpur' lime (C. limonia Osbeck, 'Africa Rough' lemon (C. jambhiri Lush., 'Sunki' mandarin [C. sunki (Hayata hort. ex Tan.], Poncirus trifoliata (L. Raf., 'C13' citrange [C. sinensis (L. Osb. x P. trifoliata (L. Raf] and 'Catânia 2' Volkamer lemon (C. volkameriana Ten. & Pasq. were used applying the trench profile method and the SIARCS® 3.0 software to determine root distribution. 'C-13' citrange had the largest root system. 'Volkamer' lemon and 'Africa Rough' lemon presented the smallest amount of roots. The effective depth for 80 % of roots was 31-53 cm in rows and 67-68 cm in inter-rows. The effective distance of 80 % of roots measured from the tree trunk exceeded the tree canopy for P. trifoliata, 'Sunki' mandarin, and 'Volkamer' and 'Africa Rough' lemons.

  14. Surface chemistry and durability of borosilicate glass

    International Nuclear Information System (INIS)

    Carroll, S.A.; Bourcier, W.L.; Phillips, B.L.

    1994-01-01

    Important glass-water interactions are poorly understood for borosilicate glass radioactive waste forms. Preliminary results show that glass durability is dependent on reactions occurring at the glass-solution interface. CSG glass (18.2 wt. % Na 2 O, 5.97 wt. % CaO, 11.68 wt. % Al 2 O 3 , 8.43 wt. % B 2 O 3 , and 55.73 wt. % SiO 2 ) dissolution and net surface H + and OH - adsorption are minimal at near neutral pH. In the acid and alkaline pH regions, CSG glass dissolution rates are proportional to [H + ] adsorbed 2 and [OH - ] adsorbed 0.8 , respectively. In contrast, silica gel dissolution and net H + and OH - adsorption are minimal and independent of pH in acid to neutral solutions. In the alkaline pH region, silica gel dissolution is proportional to [OH - ] adsorbed 0.9 adsorbed . Although Na adsorption is significant for CSG glass and silica gel in the alkaline pH regions, it is not clear if it enhances dissolution, or is an artifact of depolymerization of the framework bonds

  15. Wetland vegetation responses to liming an Adirondack watershed

    Energy Technology Data Exchange (ETDEWEB)

    Mackun, I.R.

    1993-01-01

    Watershed liming as a long-term mitigation strategy to neutralize lake acidity, from increasing acid deposition, was initiated in North America at Woods Lake in the west central Adirondack region of New York. In October 1989, a dose of 10 MT lime (83.5% CaCO[sub 3]) ha[sup [minus]1] was aerially applied to 48% of the watershed. The wetlands adjacent to Woods Lake showed two distinct community types: one dominated by Chamaedaphne calyculata, and one dominated by graminoids and other herbaceous species. Within two years, liming did not alter the structure of either community type, and changed the cover or frequency of only 6 of 64 individual taxa. Most of these changes occurred in the herbaceous community type. The only strong positive response to liming was a nearly threefold increase in cover of the rhizomatous sedge Cladium mariscoides. The cover of Carex interior and Sphagnum spp. benefited from lime addition, while cover of Drosera intermedia and Muhlenbergia uniflora, and frequency of Hypericum canadense responded negatively to lime. Liming influenced the competitive release of only three taxa, all forbs with small growth forms. The tissue chemistry of foliage and twigs of Myrica gale, Chamaedaphne calyculata, and Carex stricta in the Chamaedaphne calyculata community type clearly illustrated species-specific patterns of nutrient accumulation and allocation both before and after liming. Concentrations of 17 of 20 elements responded to liming, although the responses varied among species and plant parts. Carex foliage was least responsive to liming, and Chamaedaphne twigs were most responsive. Elemental changes in plant tissues will be reflected in litter and many influence long-term nutrient dynamics in the wetland community.

  16. Holes generation in glass using large spot femtosecond laser pulses

    Science.gov (United States)

    Berg, Yuval; Kotler, Zvi; Shacham-Diamand, Yosi

    2018-03-01

    We demonstrate high-throughput, symmetrical, holes generation in fused silica glass using a large spot size, femtosecond IR-laser irradiation which modifies the glass properties and yields an enhanced chemical etching rate. The process relies on a balanced interplay between the nonlinear Kerr effect and multiphoton absorption in the glass which translates into symmetrical glass modification and increased etching rate. The use of a large laser spot size makes it possible to process thick glasses at high speeds over a large area. We have demonstrated such fabricated holes with an aspect ratio of 1:10 in a 1 mm thick glass samples.

  17. A Study on Silica Sand Quality in Yazaram and Mugulbu Deposits ...

    African Journals Online (AJOL)

    The suitability of silica sand deposits of Yazaram and Mugulbu in Mubi South Local Government Area of Adamawa State, Nigeria for commercial glass production were assessed based on the chemical and physical properties of the silica sand samples collected along the river side's. Test was carried out at the National ...

  18. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  19. water alteration processes and kinetics of basaltic glasses, natural analogue of nuclear glasses

    International Nuclear Information System (INIS)

    Techer, I.; Advocat, Th.; Vernaz, E.; Lancelot, J.R.; Liotard, J.M.

    1997-01-01

    Dissolution experiments of a basaltic glass were carried out at 90 deg C for different reaction progresses. The initial dissolution rate was compared with values obtained for rhyolitic glass and the R7T7 nuclear glass. The activation energy was also determined by computing literature data. The results provide similar reactional mechanism for basaltic and nuclear glasses. Dissolution rates measured under saturation conditions were compared to theoretical dissolution rates. These ones were calculated using two kinetic models: the first rate equation is the Grambow's law which only takes into account ortho-silica acid activity; the second rate equation was proposed by Daux et al., where silica and aluminum are combined to formulate the affinity. The comparison between experimental and theoretical results point out that these two models are not appropriate to describe the alteration kinetic of basaltic glasses. (authors)

  20. Effects of beta/gamma radiation on nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-07-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted {beta}-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of {beta}/{gamma} radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  1. Effects of beta/gamma radiation on nuclear waste glasses

    International Nuclear Information System (INIS)

    Weber, W.J.

    1997-01-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted β-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of β/γ radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  2. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, Timothy G [ORNL; Fox, Ethan E [ORNL; Wereszczak, Andrew A [ORNL; Ferber, Mattison K [ORNL

    2012-06-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) sphere impact testing of two materials from the lithium aluminosilicate family reinforced with different amounts of ceramic particulate, i.e., glass-ceramic materials, SCHOTT Resistan{trademark}-G1 and SCHOTT Resistan{trademark}-L. Both materials are provided by SCHOTT Glass (Duryea, PA). This work is a follow-up to similar sphere impact studies completed by the authors on PPG's Starphire{reg_sign} soda-lime silicate glass and SCHOTT BOROFLOAT{reg_sign} borosilicate glass. A gas gun or a sphere-drop test setup was used to produce controlled velocity delivery of silicon nitride (Si{sub 3}N{sub 4}) spheres against the glass ceramic tile targets. Minimum impact velocities to initiate fracture in the glass-ceramics were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between sphere and target material. Quasistatic spherical indentation was also performed on both glass ceramics and their contact damage responses were compared to those of soda-lime silicate and borosilicate glasses. Lastly, variability of contact damage response was assessed by performing spherical indentation testing across the area of an entire glass ceramic tile. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Resistan{trademark}-L glass ceramic required the highest velocity of sphere impact for damage to initiate. Starphire{reg_sign} soda-lime silicate glass was second best, then Resistan{trademark}-G1 glass ceramic, and then BOROFLOAT{reg_sign} borosilicate glass. (2) Glass-ceramic Resistan{trademark}-L also required the largest force to initiate ring crack from quasi-static indentation. That ranking was followed, in descending order, by Starphire{reg_sign} soda-lime silicate glass, Resistan{trademark}-G1 glass ceramic, and BOROFLOAT{reg_sign} borosilicate glass

  3. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  4. Influence of aggregate and supplementary cementitious materials on the properties of hydrated lime (CL90s mortars

    Directory of Open Access Journals (Sweden)

    S. Pavía

    2016-11-01

    Full Text Available Hydrated lime is a historic material currently used in conservation. It hardens slowly by carbonation slowing construction however, supplementary cementitious materials accelerate hardening enhancing strength. Hydrated-lime mortars with rice husk ash–RHA-; ground granulated blastfurnace slag–GGBS- and increasing amounts of two aggregates were studied. Increasing aggregate lowered strength as interfacial zones proliferate; it lowered hygric properties and raised water demand. Aggregate content/composition didn’t affect the high water retention. For the higher aggregate contents (90 days, limestone mortars are c.20% stronger than silica mortars while the (1:1 silica sand mortars are 56% stronger in flexion. Additions increased strength with little impact on hygric properties. GGBS increased strength c.six times. RHA increased strength with little impact on hygric properties due to its great specific surface and high water-demand increasing porosity. GGBS and RHA properties ruling hydrate production and the kinetics of the pozzolanic reaction are considered partially responsible for the mortar property variation.

  5. Basaltic glasses from Iceland and the deep sea: Natural analogues to borosilicate nuclear waste-form glass

    International Nuclear Information System (INIS)

    Jercinovic, M.J.; Ewing, R.C.

    1987-12-01

    The report provides a detailed analysis of the alteration process and products for natural basaltic glasses. Information of specific applicability to the JSS project include: * The identification of typical alteration products which should be expected during the long-term corrosion process of low-silica glasses. The leached layers contain a relatively high proportion of crystalline phases, mostly in the form of smectite-type clays. Channels through the layer provide immediate access of solutions to the fresh glass/alteration layer interface. Thus, glasses are not 'protected' from further corrosion by the surface layer. * Corrosion proceeds with two rates - an initial rate in silica-undersaturated environments and a long-term rate in silica-saturated environments. This demonstrates that there is no unexpected change in corrosion rate over long periods of time. The long-term corrosion rate is consistent with that of borosilicate glasses. * Precipitation of silica-containing phases can result in increased alteration of the glass as manifested by greater alteration layer thicknesses. This emphasizes the importance of being able to predict which phases form during the reaction sequence. * For natural basaltic glasses the flow rate of water and surface area of exposed glass are critical parameters in minimizing glass alteration over long periods of time. The long-term stability of basalt glasses is enhanced when silica concentrations in solution are increased. In summary, there is considerable agreement between corrosion phenomena observed for borosilicate glasses in the laboratory and those observed for natural basalt glasses of great age. (With 121 refs.) (authors)

  6. Kinetic and thermodynamic controls on silica reactivity: an analog for waste disposal media

    International Nuclear Information System (INIS)

    Dove, P.M.; Icenhower, J.

    1997-01-01

    Silicate glasses are currently being proposed as the disposal media for radioactive and other toxic wastes. The dissolution behaviour of borosilicate glass is incompletely understood. One approach is to simplify the chemistry and first develop a better understanding of vitreous silica (v-SiO 2 ) as a simple analog of waste glass. This article reviews all the knowledge that is known about the dissolution of silica. Studies quantifying the effects of temperature, solution pH, and single salts on dissolution rates of quartz suggest that pH and cation-dependent dissolution trends hold for all of the silica polymorphs. The purpose of this review is to develop a consistent picture of glass reactivity by understanding how the molecular arrangement of constituents within glass, beginning with the Si-O bond, affects the dissolution processes. (A.C.)

  7. Kinetic and thermodynamic controls on silica reactivity: an analog for waste disposal media

    Energy Technology Data Exchange (ETDEWEB)

    Dove, P.M.; Icenhower, J. [Georgia Inst. of Tech., School of Earth and Atmospheric Sciences, Atlanta, GA (United States)

    1997-07-01

    Silicate glasses are currently being proposed as the disposal media for radioactive and other toxic wastes. The dissolution behaviour of borosilicate glass is incompletely understood. One approach is to simplify the chemistry and first develop a better understanding of vitreous silica (v-SiO{sub 2}) as a simple analog of waste glass. This article reviews all the knowledge that is known about the dissolution of silica. Studies quantifying the effects of temperature, solution pH, and single salts on dissolution rates of quartz suggest that pH and cation-dependent dissolution trends hold for all of the silica polymorphs. The purpose of this review is to develop a consistent picture of glass reactivity by understanding how the molecular arrangement of constituents within glass, beginning with the Si-O bond, affects the dissolution processes. (A.C.)

  8. Liming and postharvest quality of carambola fruits

    Directory of Open Access Journals (Sweden)

    Renato de Mello Prado

    2005-09-01

    Full Text Available To determine the effects of lime application on the postharvest quality of carambola fruit, an experiment with carambola trees cultivated on an acid soil was conducted at the Bebedouro, São Paulo, Brazil. The trees were treated with increasing doses of lime during the pre-planting period. Liming led to a increase in calcium concentration of carambola leaves and fruits. Adequate nutrition of the plant with calcium improved post-harvest fruit quality, permitting a longer (~ 2 days period of storage under ambient conditions.Tendo como objetivo avaliar os efeitos da aplicação de doses crescentes de calcário ao solo, na qualidade de frutos de caramboleira pela avaliação das alterações físico-químicas dos frutos após a colheita, foi instalado um experimento em Bebedouro-SP,Brasil, sobre um Latossolo Vermelho distrófico, ácido. Os tratamentos foram doses crescentes de calcário, em pré-plantio, como segue: D0 = zero; D1 = metade da dose; D2 = a dose; D3 = 1,5 vez a dose; e D4 = 2 vezes a dose para elevar V= 70%. No florescimento da caramboleira, avaliou-se o teor de cálcio na folha. Após a colheita dos frutos, determinou-se o teor de cálcio na polpa, o peso dos frutos, diâmetro transversal, comprimento, peso da polpa, % de polpa, ºBrix, acidez titulável e Ratio dos frutos. Diariamente, durante sete dias de armazenamento em condições ambiente, determinou-se a perda de massa fresca e a firmeza dos frutos. A calagem proporcionou um aumentou linear de cálcio nas folhas e nos frutos da caramboleira. A nutrição adequada da planta com cálcio melhorou a qualidade dos frutos pós-colheita, permitindo um período de armazenamento mais longo (~ 2 days, em condições ambiente.

  9. Study of the creep of lime-stabilised zirconia

    International Nuclear Information System (INIS)

    Saint-Jacques, Robert G.

    1971-09-01

    This research thesis reports the study of creep of stabilised zirconia containing between 13 and 20 per cent of lime, at temperatures between 1.200 and 1.400 C, and under compression stresses between 500 and 4.000 pounds by square inch. Specimens are polycrystalline with an average grain diameter between 7 and 29 microns. The author notably shows that the creep rate of lime-stabilised zirconia is directly proportional to the applied stress, and that the creep apparent activation energy is close to activation energy of volume self-diffusion of calcium and zirconium in lime-stabilised zirconia. Results of creep tests show that, in the studied conditions, the creep rate is directly proportional to the inverse of the grain average diameter, and this is in compliance with the Gifkins and Snowden theory of creep by sliding at grain boundaries. The author also shows that the creep rate of the lime stabilised zirconia varies with lime content, and reaches a maximum when zirconia contains about 15 per cent of lime. Lower creep rates obtained for higher and lower lime contents are explained [fr

  10. Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Kooltheat, Nateelak; Kamuthachad, Ludthawun; Anthapanya, Methinee; Samakchan, Natthapon; Sranujit, Rungnapa Pankla; Potup, Pachuen; Ferrante, Antonio; Usuwanthim, Kanchana

    2016-04-01

    Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effect of lime concentration on gelatinized maize starch dispersions properties.

    Science.gov (United States)

    Lobato-Calleros, C; Hernandez-Jaimes, C; Chavez-Esquivel, G; Meraz, M; Sosa, E; Lara, V H; Alvarez-Ramirez, J; Vernon-Carter, E J

    2015-04-01

    Maize starch was lime-cooked at 92 °C with 0.0-0.40% w/w Ca(OH)2. Optical micrographs showed that lime disrupted the integrity of insoluble remnants (ghosts) and increased the degree of syneresis of the gelatinized starch dispersions (GSD). The particle size distribution was monomodal, shifting to smaller sizes and narrower distributions with increasing lime concentration. X-ray patterns and FTIR spectra showed that crystallinity decreased to a minimum at lime concentration of 0.20% w/w. Lime-treated GSD exhibited thixotropic and viscoelastic behaviour. In the linear viscoelastic region the storage modulus was higher than the loss modulus, but a crossover between these moduli occurred in the non-linear viscoelastic region. The viscoelastic properties decreased with increased lime concentration. The electrochemical properties suggested that the amylopectin-rich remnants and the released amylose contained in the continuous matrix was firstly attacked by calcium ions at low lime levels (<0.20% w/w), disrupting the starch gel microstructure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Phytochemical fingerprints of lime honey collected in serbia.

    Science.gov (United States)

    Gašić, Uroš; Šikoparija, Branko; Tosti, Tomislav; Trifković, Jelena; Milojković-Opsenica, Dušanka; Natić, Maja; Tešić, Živoslav

    2014-01-01

    Composition of phenolic compounds and the sugar content were determined as the basis for characterization of lime honey from Serbia. Particular attention was given to differences in phytochemical profiles of ripe and unripe lime honey and lime tree nectar. Melissopalynological analysis confirmed domination of Tilia nectar in all analyzed samples. Phenolic acids, abscisic acid, flavonoids, and flavonoid glycosides were determined by means of ultra-HPLC coupled with a hybrid mass spectrometer (UHPLC-OrbiTrap). Sugar content was determined using high-performance anion-exchange chromatography with amperometric detection. Similar phenolic compounds characterized unripe and ripe honeys, while the lime tree nectar profile showed notable differences. Compared to lime tree nectar, a high amount of chrysin, pinocembrin, and galangin were detected in both ripe and unripe lime honey. Fructose and glucose were the major constituents of all investigated samples, and amounts were within the limits established by European Union legislation. Sucrose content in the nectar sample was up to two-fold higher when compared to all honey samples. Isomaltose and gentiobiose with turanose content were different in analyzed production stages of lime honey.

  13. Managing ecosystems without prior knowledge: pathological outcomes of lake liming

    Directory of Open Access Journals (Sweden)

    David G. Angeler

    2017-12-01

    Full Text Available Management actions often need to be taken in the absence of ecological information to mitigate the impact of pressing environmental problems. Managers counteracted the detrimental effects of cultural acidification on aquatic ecosystems during the industrial era using liming to salvage biodiversity and ecosystem services. However, historical contingencies, i.e., whether lakes were naturally acidic or degraded because of acidification, were largely unknown and therefore not accounted for in management. It is uncertain whether liming outcomes had a potentially detrimental effect on naturally acidic lakes. Evidence from paleolimnological reconstructions allowed us to analyze community structure in limed acidified and naturally acidic lakes, and acidified and circumneutral references. We analyzed community structure of phytoplankton, zooplankton, macroinvertebrates (littoral, sublittoral, profundal, and fish between 2000 and 2004. Naturally acidic limed lakes formed communities that were not representative of the other lake types. The occurrence of fish species relevant for ecosystem service provisioning (fisheries potential in naturally acidic limed lakes were confounded by biogeographical factors. In addition, sustained changes in water quality were conducive to harmful algal blooms. This highlights a pathological outcome of liming lakes when their naturally acidic conditions are not accounted for. Because liming is an important social-ecological system, sustained ecological change of lakes might incur undesired costs for societies in the long term.

  14. Lime stabilization of expansive soil from Sergipe - Brazil

    Directory of Open Access Journals (Sweden)

    Leite Rafaella

    2016-01-01

    Full Text Available Expansive soils are characterized by volumetric changes caused by variations in moisture. They can cause several damages to civil constructions, especially to lightweight structures, including cracks and fissures. Chemical stabilization through addition of lime is one of the most effective techniques used to treat this type of soil. Due to cationic exchanges, lime can significantly reduce swell potential. This research studied a disturbed sample of expansive soil collected in Nossa Senhora do Socorro – Sergipe, Brazil, through the following laboratory tests: sieve and hydrometer tests, Atterberg Limits, compaction, free swell and swell pressure. All direct and indirect methods mentioned in this paper indicated that the natural soil presented high to very high degree of expansion, which reached approximately 20% of free swell and nearly 200 kPa of swell pressure. In order to evaluate the effect of lime, the same tests were conducted in soil-lime mixtures, using lime contents of 3%, 6% and 9%. The results confirmed the efficiency of lime stabilization. It was noted that, as lime content increased, there was reduction of clay fraction and increment of silt fraction; plasticity index decreased to nearly its half; compaction curve was displaced; and free swell and swell pressure reduced significantly.

  15. Lime utilization in the laboratory, field, and design of pavement layers : final report.

    Science.gov (United States)

    2017-01-01

    The objective of this study was to review and report the best practices of using lime (i.e., granulated lime, hydrated lime, and slurry lime) to dry soil, in working tables, and in pavement applications. The project also reviewed and documented the i...

  16. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Directory of Open Access Journals (Sweden)

    Jeseung Yoo

    2015-01-01

    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  17. Use of lime cement stabilized pavement construction

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M.A.; Raju, G.V.R.P. [JNTU College of Engineering, Kakinada (India). Dept. of Civil Engineering

    2009-08-15

    Expansive clay is a major source of heave induced structural distress. Swelling of expansive soils causes serious problems and produce damages to many structures. Many research organizations are doing extensive work on waste materials concerning the feasibility and environmental suitability. Fly ash, a waste by product from coal burning in thermal power stations, is abundant in India causing severe health, environmental and disposal problems. Attempts are made to investigate the stabilization process with model test tracks over expansive subgrade in flexible pavements. Cyclic plate load tests are carried out on the tracks with chemicals like lime and cement introduced in fly ash subbase laid on sand and expansive subgrades. Test results show that maximum load carrying capacity is obtained for stabilized fly ash subbase compared to untreated fly ash subbase.

  18. Radiation hardening of sol gel-derived silica fiber preforms through fictive temperature reduction.

    Science.gov (United States)

    Hari Babu, B; Lancry, Matthieu; Ollier, Nadege; El Hamzaoui, Hicham; Bouazaoui, Mohamed; Poumellec, Bertrand

    2016-09-20

    The impact of fictive temperature (Tf) on the evolution of point defects and optical attenuation in non-doped and Er3+-doped sol-gel silica glasses was studied and compared to Suprasil F300 and Infrasil 301 glasses before and after γ-irradiation. To this aim, sol-gel optical fiber preforms have been fabricated by the densification of erbium salt-soaked nanoporous silica xerogels through the polymeric sol-gel technique. These γ-irradiated fiber preforms have been characterized by FTIR, UV-vis-NIR absorption spectroscopy, electron paramagnetic resonance, and photoluminescence measurements. We showed that a decrease in the glass fictive temperature leads to a decrease in the glass disorder and strained bonds. This mainly results in a lower defect generation rate and thus less radiation-induced attenuation in the UV-vis range. Furthermore, it was found that γ-radiation "hardness" is higher in Er3+-doped sol-gel silica compared to un-doped sol-gel silica and standard synthetic silica glasses. The present work demonstrates an effective strategy to improve the radiation resistance of optical fiber preforms and glasses through glass fictive temperature reduction.

  19. Durability of Mortar Made with Fine Glass Powdered Particles

    Directory of Open Access Journals (Sweden)

    Rosemary Bom Conselho Sales

    2017-01-01

    Full Text Available Different studies investigate the use of waste glass in Portland cement compounds, either as aggregates or as supplementary cementitious materials. Nevertheless, it seems that there is no consensus about the influence of particle color and size on the behavior of the compounds. This study addresses the influence of cement replacement by 10 and 20% of the colorless and amber soda-lime glass particles sized around 9.5 μm on the performance of Portland cement mortars. Results revealed that the partial replacement of cement could contribute to the production of durable mortars in relation to the inhibition of the alkali-aggregate reaction. This effect was more marked with 20% replacement using amber glass. Samples containing glass microparticles were more resistant to corrosion, in particular those made of colorless glass. The use of colorless and amber glass microparticles promoted a reduction in wear resistance.

  20. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  1. Self-defects and self diffusion in a silica glass: a first-principles study; Etude ab-initio des auto-defauts et des mecanismes d'auto-diffusion dans un verre de silice

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.; Colomer, S

    2004-11-15

    SiO{sub 2} and silica based compounds are key materials in a variety of scientific and technological fields as, for instance, in microelectronics or nuclear technology. In all these fields, one of the still open questions is their long term aging in a radioactive environment. Due to the complexity of the effects of radiations upon matter, the understanding of the long term aging needs the knowledge of diffusion mechanisms at the atomic scale. In that context, numerical modelling appears as a way to access this scale. We present a first principles study on self-defects and self-diffusion in a silica model. As expected, at variance with SiO{sub 2} crystalline phases, the defects formation energies are distributed, due to the non-equivalence of defects sites. We prove that the formation energy dispersion is correlated to the local stress. Concerning the equilibrium concentrations and oxygen diffusion mechanism, we discuss how the shape of the distribution, as well as impurity levels within the gap, play a main role in the dominance of defect types. Finally we present the main oxygen diffusion mechanism in homogeneous and heterogeneous defect formation regime. (author)

  2. Crystallization of Na2O-SiO2 gel and glass

    Science.gov (United States)

    Neilson, G. F.; Weinberg, M. C.

    1984-01-01

    The crystallization behavior of a 19 wt pct soda silica gel and gel-derived glass was compared to that of the ordinary glass of the same composition. Both bulk and ground glass samples were utilized. X-ray diffraction measurements were made to identify the crystalline phases and gauge the extent of crystallization. It was found that the gel crystallized in a distinctive manner, while the gel glass behavior was not qualitatively different from that of the ordinary glass.

  3. Cordierite Glass-Ceramics for Dielectric Materials

    International Nuclear Information System (INIS)

    Siti Mazatul Azwa Saiyed Mohd Nurddin; Selamat, Malek; Ismail, Abdullah

    2007-01-01

    The objective of this project is to examine the potential of using Malaysian silica sand deposit as SiO2 raw material in producing cordierite glass-ceramics (2MgO-2Al2O3-5SiO2) for dielectric materials. Upgraded silica sands from Terengganu and ex-mining land in Perak were used in the test-works. The glass batch of the present work has a composition of 45.00% SiO2, 24.00% Al2O3, 15.00% MgO and 8.50% TiO2 as nucleation agent. From the differential thermal analysis results, the crystallization temperature was found to start around 900 deg. C. The glass samples were heat-treated at 900 deg. C and 1000 deg. C. The X-ray diffraction analysis (XRD) results showed glass-ceramics from Terengganu samples containing mainly cordierite and minor β-quartz crystals. However, glass-ceramics from ex-mining land samples contained mainly α-quartz and minor cordierite crystals. Glass-ceramics with different crystal phases exhibit different mechanical, dielectric and thermal properties. Based on the test works, both silica sand deposits, can be potentially used to produce dielectric material component

  4. Enhancement of nonlinear optical properties of compounds of silica ...

    Indian Academy of Sciences (India)

    Enhancement of nonlinear optical properties of compounds of silica glass and metallic nanoparticle. A GHARAATI1,∗ and A KAMALDAR1,2. 1Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran. 2Department of Education 1, Shiraz, Iran. ∗. Corresponding author. E-mail: agharaati@pnu.ac.

  5. Temperature dependence of Young's modulus of silica refractories

    Czech Academy of Sciences Publication Activity Database

    Gregorová, E.; Černý, Martin; Pabst, W.; Esposito, L.; Zanelli, C.; Hamáček, J.; Kutzendorfer, J.

    2015-01-01

    Roč. 41, č. 1 (2015), s. 1129-1138 ISSN 0272-8842 Institutional support: RVO:67985891 Keywords : mechanical properties * elastic modulus (Young's modulus ) * SiO2 * Silica brick materials (cristobalite, tridymite) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.758, year: 2015

  6. One-pot synthesis of hydroxyapatite–silica nanopowder composite ...

    Indian Academy of Sciences (India)

    (GIC) and Vickers hardness was evaluated. Results shown that the ... property might lead to extend the clinical indications, especially in stress bearing areas. Keywords. Hydroxyapatite–silica nanopowder; sol–gel technique; glass ionomer cement; hardness. 1. ..... A large hardness means greater resistance to plastic defor-.

  7. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  8. Terahertz-induced Kerr effect in amorphous chalcogenide glasses

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Strikwerda, Andrew; Iwaszczuk, Krzysztof

    2013-01-01

    We have investigated the terahertz-induced third-order (Kerr) nonlinear optical properties of the amorphous chalcogenide glasses As2S3 and As2Se3. Chalcogenide glasses are known for their high optical Kerr nonlinearities which can be several hundred times greater than those of fused silica. We use...

  9. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  10. Plasticity, Swell-Shrink, and Microstructure of Phosphogypsum Admixed Lime Stabilized Expansive Soil

    OpenAIRE

    James, Jijo; Pandian, P. Kasinatha

    2016-01-01

    The study involved utilization of an industrial waste, Phosphogypsum (PG), as an additive to lime stabilization of an expansive soil. Three lime dosages, namely, initial consumption of lime (ICL), optimum lime content (OLC), and less than ICL (LICL), were identified for the soil under study for stabilizing the soil. Along with lime, varying doses of PG were added to the soil for stabilization. The effect of stabilization was studied by performing index tests, namely, liquid limit, plastic lim...

  11. Thermoluminescence emission spectrometry of glass display in mobile phones and resulting evaluation of the dosimetric properties of a specific type of display glass

    International Nuclear Information System (INIS)

    Discher, Michael; Woda, Clemens

    2014-01-01

    Glass displays of mobile phones are sensitive to ionizing radiation and can be used for retrospective dosimetry for the purpose of triage after a radiological accident or attack. In this study the two main types of glass display that are used in modern mobile phones were investigated using thermoluminescence (TL) emission spectrometry. A different TL spectrum was observed for the glass display of category A (lime-aluminosilicate glass) and category B (boron-silicate glass). Based on the spectral measurements an optimized detection window was chosen to re-evaluate the dosimetric properties (dose response, optical and long-term stability) of glass display category B. - Highlights: • Two display glass types show similar TL emission peaks but with strongly different relative intensities. • The intrinsic background TL signal peaks at similar wavelengths as the radiation induced signal. • Dosimetric properties of one display glass type were re-evaluated using an optimized detection window

  12. Coagulation chemistries for silica removal from cooling tower water.

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  13. Volcanic glasses, their origins and alteration processes

    Science.gov (United States)

    Friedman, I.; Long, W.

    1984-01-01

    Natural glass can be formed by volcanic processes, lightning (fulgarites) burning coal, and by meteorite impact. By far the most common process is volcanic - basically the glass is rapidly chilled molten rock. All natural glasses are thermodynamically unstable and tend to alter chemically or to crystallize. The rate of these processes is determined by the chemical composition of the magma. The hot and fluid basaltic melts have a structure that allows for rapid crystal growth, and seldom forms glass selvages greater than a few centimeters thick, even when the melt is rapidly cooled by extrusion in the deep sea. In contrast the cooler and very viscous rhyolitic magmas can yield bodies of glass that are tens of meters thick. These highly polymerized magmas have a high silica content - often 71-77% SiO2. Their high viscosity inhibits diffusive crystal growth. Basalt glass in sea water forms an alteration zone called palagonite whose thickness increases linearly with time. The rate of diffusion of water into rhyolitic glass, which follows the relationship - thickness = k (time) 1 2, has been determined as a function of the glass composition and temperature. Increased SiO2 increases the rate, whereas increased CaO, MgO and H2O decrease the rate. The activation energy of water diffusion varies from about 19 to 22 kcal/mol. for the glasses studied. The diffusion of alkali out of rhyolite glass occurs simultaneously with water diffusion into the glass. The rate of devitrification of rhyolitic glass is a function of the glass viscosity, which in turn is a function of water content and temperature. Although all of the aforementioned processes tend to destroy natural glasses, the slow rates of these processes, particularly for rhyolitic glass, has allowed samples of glass to persist for 60 million years. ?? 1984.

  14. Economic evaluation of the industrial solar production of lime

    International Nuclear Information System (INIS)

    Meier, Anton; Gremaud, Nicolas; Steinfeld, Aldo

    2005-01-01

    The use of concentrated solar energy in place of fossil fuels for driving the endothermic calcination reaction CaCO 3 → CaO + CO 2 at above 1300 K has the potential of reducing CO 2 emissions by 20% in a state-of-the-art lime plant and up to 40% in a conventional cement plant. An economic assessment for an industrial solar calcination plant with 25 MW th solar input indicates that the cost of solar produced lime ranges between 128 and 157 $/t, about twice the current selling price of conventional lime. The solar production of high purity lime for special sectors in the chemical and pharmaceutical industry might be competitive with conventional fossil fuel based calcination processes at current fuel prices

  15. occupational health problems studied among the workers of lime

    African Journals Online (AJOL)

    RAMGANES

    In present study, an extensive health survey of 573 lime kiln workers of Maihar and Jhukehi region of ... Among the observed health anomalies, ..... Health benefits of air pollution control in ... “Association of Indoor and Outdoor Particulate.

  16. Ring Formation in Lime Kilns; Ringbildning i Mesaugnar II

    Energy Technology Data Exchange (ETDEWEB)

    Dhak, Janice [AaF-Process AB, Stockholm (Sweden)

    2003-07-15

    The key to a cost efficient and high performance pulp production is low variations in the production level. Despite the fact that all pulp mills always work with improvements to eliminate problems with ring formations, AaF has at several mill seen that the operation of a lime kiln still often is disturbed by ring formation. In 1999 AAF made an extensive investigation of more than 10 lime kilns in Sweden, considering operational data, kiln data and lime chemical analyzes. The result pointed out the importance of how the lime kiln is operated and that dead load and contaminants in the lime was less important. The report suggested that it is the difference in the temperature between the flue gas and the lime that is of importance. There are no quantified process values available that guides for a 'best practice' way to run a lime kiln to avoid ring formation. The goal with this project has been to develop a strategy for operation of a kiln in a way that lowers the risk for ring formation. The results from simulations of a number of lime kilns in this project could not proof that a low difference in the temperature between the flue gas and the lime was the main cause of problems with ring formation and thus it was not possible to quantify the optimal difference to avoid rings. Probably the most important information from the simulations was that it is not the temperature difference in number of degrees that is of importance, rather the fact that the temperature difference in the kalcining zone varies, and time to time reach below the critical level were lime occasionally is cooled down. It can be the case if the temperature profile of the flue gas temporarily changes or if the lime mud temperature profile is changed. The reason for changes in the temperature profile is discussed in the report. The most important factors discussed are: Variations in the energy input e.g. oil and methanol/strong gases in cocombustion. One single fuel is easier to control

  17. Producer gas and its use for the manufacture of lime

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K; Kumar, S

    1976-04-01

    An analysis of available data indicates that coal-based producer gas is superior to coal or wood as a fuel for lime kilns and much more readily available than oil or natural gas. With producer gas, chemical-grade lime is obtained, and the kiln capacity is increased, so that a smaller unit can be used or more lime obtained. With a mixture of coal and wood as the fuel, the lime produced is contaminated with ash. The added cost of the gas-producer unit can be paid out in one year owing to the greater demand for and the consequent higher prices obtainable for the chemical-grade product. In addition, the flue gases from the kiln can be used in place of steam to heat the gas producer, but experimental studies are needed to determine the magnitude of the savings in fuel consumption. 15 references.

  18. Analysis on soil compressibility changes of samples stabilized with lime

    Directory of Open Access Journals (Sweden)

    Elena-Andreea CALARASU

    2016-12-01

    Full Text Available In order to manage and control the stability of buildings located on difficult foundation soils, several techniques of soil stabilization were developed and applied worldwide. Taking into account the major significance of soil compressibility on construction durability and safety, the soil stabilization with a binder like lime is considered one of the most used and traditional methods. The present paper aims to assess the effect of lime content on soil geotechnical parameters, especially on compressibility ones, based on laboratory experimental tests, for several soil categories in admixture with different lime dosages. The results of this study indicate a significant improvement of stabilized soil parameters, such as compressibility and plasticity, in comparison with natural samples. The effect of lime stabilization is related to an increase of soil structure stability by increasing the bearing capacity.

  19. Heat Transfer Modelling of Glass Media within TPV Systems

    Science.gov (United States)

    Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola

    2004-11-01

    Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.

  20. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  1. Audiovisual Documentation of an International Seminar : Case: LIME

    OpenAIRE

    Tikkanen, Kirsti; Rönnberg, Mira

    2013-01-01

    The aim of this Bachelor’s thesis is to create a documentary video of an international seminar held in Kerava, Finland, in June 2013. The seminar was called Learning on Immigration and Multicultural Education (LIME) and it was conducted by Kerava Adult Education Center (later Keravan Opisto). LIME was a two-year intercultural project funded by the European Union. Different non-governmental organizations and adult education centers from eight European countries took part on the project. The ai...

  2. Lime helps establish crownvetch on coal-breaker refuse

    Science.gov (United States)

    Miroslaw M. Czapowskyj; Edward A. Sowa

    1976-01-01

    A study was begun in 1965 to determine the effect of lime fertilizer, and mulch on the establishment and growth of crownvetch crowns planted on anthracite coal-breaker refuse. After 7 years the lime application had by far the strongest effect. Both 2.5 and 5.0 tons per acre increased survival and ground cover manyfold, and both treatments were equally beneficial from...

  3. Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Isabel Izquierdo-Barba

    2008-01-01

    Full Text Available The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed.

  4. Kinetics of silica-phase transitions

    International Nuclear Information System (INIS)

    Duffy, C.J.

    1993-07-01

    In addition to the stable silica polymorph quartz, several metastable silica phases are present in Yucca Mountain. The conversion of these phases to quartz is accompanied by volume reduction and a decrease in the aqueous silica activity, which may destabilize clinoptilolite and mordenite. The primary reaction sequence for the silica phases is from opal or glass to disordered opal-CT, followed by ordering of the opal-CT and finally by the crystallization of quartz. The ordering of opal-CT takes place in the solid state, whereas the conversion of opal-CT takes place through dissolution-reprecipitation involving the aqueous phase. It is proposed that the rate of conversion of opal-CT to quartz is controlled by diffusion of defects out of a disordered surface layer formed on the crystallizing quartz. The reaction rates are observed to be dependent on temperature, pressure, degree of supersaturation, and pH. Rate equations selected from the literature appear to be consistent with observations at Yucca Mountain

  5. Long-Term Exposure to Silica Dust and Risk of Total and Cause-Specific Mortality in Chinese Workers: A Cohort Study

    OpenAIRE

    Chen, Weihong; Liu, Yuewei; Wang, Haijiao; Hnizdo, Eva; Sun, Yi; Su, Liangping; Zhang, Xiaokang; Weng, Shaofan; Bochmann, Frank; Hearl, Frank J.; Chen, Jingqiong; Wu, Tangchun

    2012-01-01

    Editors' Summary Background Walk along most sandy beaches and you will be walking on millions of grains of crystalline silica, one of the commonest minerals on earth and a major ingredient in glass and in ceramic glazes. Silica is also used in the manufacture of building materials, in foundry castings, and for sandblasting, and respirable (breathable) crystalline silica particles are produced during quarrying and mining. Unfortunately, silica dust is not innocuous. Several serious diseases ar...

  6. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    Science.gov (United States)

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  7. Elemental analysis of Taiwanese areca nut and limes with INAA

    International Nuclear Information System (INIS)

    Wei, Y.Y.; Chung, C.

    1997-01-01

    The popular areca nuts were sampled and their stuffed white and red lime were collected simultaneously from four marketplaces in Taiwan in different growing seasons. Samples of areca nut were treated via homogenizer prior to freeze drying, about 100-150 mg each of the areca nut and lime were packed into PE bag. Samples were irradiated with neutron flux about 10 12 n x cm -2 x s -1 . A total of 17, 18, and 13 elements was analyzed with INAA for white lime, red lime, and areca nut, respectively. The results indicated that Ca have the highest concentration in both limes. Most elements in collected samples have wide range of concentrations among different seasons and marketplaces. It is suggested that the elemental concentration of areca nut and limes exists in divergence originated from various farms in Taiwan. In addition, four elements of Ca, Fe, Mg, and Sc are probably overtaken by persons having chewing habit of areca nut and their effects on oral cancer are discussed. (author)

  8. Modeling of Viscosity and Thermal Expansion of Bioactive Glasses

    OpenAIRE

    Farid, Saad B. H.

    2012-01-01

    The behaviors of viscosity and thermal expansion for different compositions of bioactive glasses have been studied. The effect of phosphorous pentoxide as a second glass former in addition to silica was investigated. Consequently, the nonlinear behaviors of viscosity and thermal expansion with respect to the oxide composition have been modeled. The modeling uses published data on bioactive glass compositions with viscosity and thermal expansion. -regression optimization technique has been uti...

  9. Thermal conductivities of some lead and bismuth glasses

    NARCIS (Netherlands)

    Velden, P.F. van

    1965-01-01

    Thermal conductivities have been measured, mainly at 40°C, of glasses within the systems PbO-Bi2O3-SiO2, PbO-Bi2O3-Al2O3-SiO2, and BaO- (Bi2O3 or PbO) -SiO2. Aiming at lowest thermal conductivity, preference was given to glasses of low silica and low alumina contents. Glass formation persists at

  10. Experimental Effects of Lime Application on Aquatic Macrophytes: 2. Growth Response Versus Treatment Time and Lime Concentration

    National Research Council Canada - National Science Library

    James, William F; Barko, John W

    2006-01-01

    This research investigated the effects of applying lime (as calcium hydroxide; Ca(OH)2) either early or later in the life cycle on the growth, survivorship, and reproductive success of Sago Pondweed...

  11. Study of lime vs. no lime in cold in-place recycled asphalt concrete pavements : final report.

    Science.gov (United States)

    1991-09-01

    The resilient characteristics of cold in-place recycled asphalt concrete with and without lime were examined. Six core samples were obtained from a site two months after construction; six months later, six additional core samples were obtained from t...

  12. The effect of clay on the dissolution of nuclear waste glass

    Science.gov (United States)

    Lemmens, K.

    2001-09-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher

  13. The effect of clay on the dissolution of nuclear waste glass

    International Nuclear Information System (INIS)

    Lemmens, K.

    2001-01-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher

  14. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  15. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  16. Interpretation of the lime column penetration test

    International Nuclear Information System (INIS)

    Liyanapathirana, D S; Kelly, R B

    2010-01-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  17. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  18. Characterization of enameled glass excavated from Laem Pho, southern Thailand

    Science.gov (United States)

    Dhanmanonda, W.; Won-in, K.; Tancharakorn, S.; Tantanuch, W.; Thongleurm, C.; Kamwanna, T.; Dararutana, P.

    2012-07-01

    Laem Pho in Surat Thani, southern province of Thailand is one of the most important historic site on the eastern shore of the Gulf of Thailand. In this work, the enameled glass fragments which looked-like Islamic glass mainly excavated from this site were analyzed using SEM-EDS, PIXE and μ-XRF, in order to understand the chemical composition by comparing the archaeological data and topology. The structure of the enameled decoration was also studied. The resulting data indicated that high-magnesia alkali-lime silicate glass was produced. The presence of transition metals such as copper, iron and manganese were affected on the glass colorations. Typological classifications, technological observations and comparative studies serve to clarify the development and cultural inter-relationships of various glass objects along the trade and exchange networks in ancient maritime.

  19. Characterization of enameled glass excavated from Laem Pho, southern Thailand

    International Nuclear Information System (INIS)

    Dhanmanonda, W; Won-in, K; Tancharakorn, S; Tantanuch, W; Thongleurm, C; Kamwanna, T; Dararutana, P

    2012-01-01

    Laem Pho in Surat Thani, southern province of Thailand is one of the most important historic site on the eastern shore of the Gulf of Thailand. In this work, the enameled glass fragments which looked-like Islamic glass mainly excavated from this site were analyzed using SEM-EDS, PIXE and μ-XRF, in order to understand the chemical composition by comparing the archaeological data and topology. The structure of the enameled decoration was also studied. The resulting data indicated that high-magnesia alkali-lime silicate glass was produced. The presence of transition metals such as copper, iron and manganese were affected on the glass colorations. Typological classifications, technological observations and comparative studies serve to clarify the development and cultural inter-relationships of various glass objects along the trade and exchange networks in ancient maritime.

  20. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H4SiO4) with higher [H4SiO4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H4SiO4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alteration products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi2O6)∙H2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH)3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of