Likelihood Ratio Based Mixed Resolution Facial Comparison
Peng, Y.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.
2015-01-01
In this paper, we propose a novel method for low-resolution face recognition. It is especially useful for a common situation in forensic search where faces of low resolution, e.g. on surveillance footage or in a crowd, must be compared to a high-resolution reference. This method is based on the
DEFF Research Database (Denmark)
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Mandsberg, Lotte Frigaard
2008-01-01
with an exponentially decaying function of the time between observations is suggested. A model with a full covariance structure containing OD-dependent variance and an autocorrelation structure is compared to a model with variance only and with no variance or correlation implemented. It is shown that the model...... are used for parameter estimation. The data is log-transformed such that a linear model can be applied. The transformation changes the variance structure, and hence an OD-dependent variance is implemented in the model. The autocorrelation in the data is demonstrated, and a correlation model...... that best describes data is a model taking into account the full covariance structure. An inference study is made in order to determine whether the growth rate of the five bacteria strains is the same. After applying a likelihood-ratio test to models with a full covariance structure, it is concluded...
Lin, Jen-Jen; Cheng, Jung-Yu; Huang, Li-Fei; Lin, Ying-Hsiu; Wan, Yung-Liang; Tsui, Po-Hsiang
2017-05-01
The Nakagami distribution is an approximation useful to the statistics of ultrasound backscattered signals for tissue characterization. Various estimators may affect the Nakagami parameter in the detection of changes in backscattered statistics. In particular, the moment-based estimator (MBE) and maximum likelihood estimator (MLE) are two primary methods used to estimate the Nakagami parameters of ultrasound signals. This study explored the effects of the MBE and different MLE approximations on Nakagami parameter estimations. Ultrasound backscattered signals of different scatterer number densities were generated using a simulation model, and phantom experiments and measurements of human liver tissues were also conducted to acquire real backscattered echoes. Envelope signals were employed to estimate the Nakagami parameters by using the MBE, first- and second-order approximations of MLE (MLE 1 and MLE 2 , respectively), and Greenwood approximation (MLE gw ) for comparisons. The simulation results demonstrated that, compared with the MBE and MLE 1 , the MLE 2 and MLE gw enabled more stable parameter estimations with small sample sizes. Notably, the required data length of the envelope signal was 3.6 times the pulse length. The phantom and tissue measurement results also showed that the Nakagami parameters estimated using the MLE 2 and MLE gw could simultaneously differentiate various scatterer concentrations with lower standard deviations and reliably reflect physical meanings associated with the backscattered statistics. Therefore, the MLE 2 and MLE gw are suggested as estimators for the development of Nakagami-based methodologies for ultrasound tissue characterization. Copyright © 2017 Elsevier B.V. All rights reserved.
Bolck, A.; Ni, H.; Lopatka, M.
2015-01-01
Likelihood ratio (LR) models are moving into the forefront of forensic evidence evaluation as these methods are adopted by a diverse range of application areas in forensic science. We examine the fundamentally different results that can be achieved when feature- and score-based methodologies are
Comparison of likelihood testing procedures for parallel systems with covariances
International Nuclear Information System (INIS)
Ayman Baklizi; Isa Daud; Noor Akma Ibrahim
1998-01-01
In this paper we considered investigating and comparing the behavior of the likelihood ratio, the Rao's and the Wald's statistics for testing hypotheses on the parameters of the simple linear regression model based on parallel systems with covariances. These statistics are asymptotically equivalent (Barndorff-Nielsen and Cox, 1994). However, their relative performances in finite samples are generally known. A Monte Carlo experiment is conducted to stimulate the sizes and the powers of these statistics for complete samples and in the presence of time censoring. Comparisons of the statistics are made according to the attainment of assumed size of the test and their powers at various points in the parameter space. The results show that the likelihood ratio statistics appears to have the best performance in terms of the attainment of the assumed size of the test. Power comparisons show that the Rao statistic has some advantage over the Wald statistic in almost all of the space of alternatives while likelihood ratio statistic occupies either the first or the last position in term of power. Overall, the likelihood ratio statistic appears to be more appropriate to the model under study, especially for small sample sizes
Likelihood-ratio-based biometric verification
Bazen, A.M.; Veldhuis, Raymond N.J.
2002-01-01
This paper presents results on optimal similarity measures for biometric verification based on fixed-length feature vectors. First, we show that the verification of a single user is equivalent to the detection problem, which implies that for single-user verification the likelihood ratio is optimal.
Likelihood Ratio-Based Biometric Verification
Bazen, A.M.; Veldhuis, Raymond N.J.
The paper presents results on optimal similarity measures for biometric verification based on fixed-length feature vectors. First, we show that the verification of a single user is equivalent to the detection problem, which implies that, for single-user verification, the likelihood ratio is optimal.
Liu, Fang; Eugenio, Evercita C
2018-04-01
Beta regression is an increasingly popular statistical technique in medical research for modeling of outcomes that assume values in (0, 1), such as proportions and patient reported outcomes. When outcomes take values in the intervals [0,1), (0,1], or [0,1], zero-or-one-inflated beta (zoib) regression can be used. We provide a thorough review on beta regression and zoib regression in the modeling, inferential, and computational aspects via the likelihood-based and Bayesian approaches. We demonstrate the statistical and practical importance of correctly modeling the inflation at zero/one rather than ad hoc replacing them with values close to zero/one via simulation studies; the latter approach can lead to biased estimates and invalid inferences. We show via simulation studies that the likelihood-based approach is computationally faster in general than MCMC algorithms used in the Bayesian inferences, but runs the risk of non-convergence, large biases, and sensitivity to starting values in the optimization algorithm especially with clustered/correlated data, data with sparse inflation at zero and one, and data that warrant regularization of the likelihood. The disadvantages of the regular likelihood-based approach make the Bayesian approach an attractive alternative in these cases. Software packages and tools for fitting beta and zoib regressions in both the likelihood-based and Bayesian frameworks are also reviewed.
Comparisons of likelihood and machine learning methods of individual classification
Guinand, B.; Topchy, A.; Page, K.S.; Burnham-Curtis, M. K.; Punch, W.F.; Scribner, K.T.
2002-01-01
Classification methods used in machine learning (e.g., artificial neural networks, decision trees, and k-nearest neighbor clustering) are rarely used with population genetic data. We compare different nonparametric machine learning techniques with parametric likelihood estimations commonly employed in population genetics for purposes of assigning individuals to their population of origin (“assignment tests”). Classifier accuracy was compared across simulated data sets representing different levels of population differentiation (low and high FST), number of loci surveyed (5 and 10), and allelic diversity (average of three or eight alleles per locus). Empirical data for the lake trout (Salvelinus namaycush) exhibiting levels of population differentiation comparable to those used in simulations were examined to further evaluate and compare classification methods. Classification error rates associated with artificial neural networks and likelihood estimators were lower for simulated data sets compared to k-nearest neighbor and decision tree classifiers over the entire range of parameters considered. Artificial neural networks only marginally outperformed the likelihood method for simulated data (0–2.8% lower error rates). The relative performance of each machine learning classifier improved relative likelihood estimators for empirical data sets, suggesting an ability to “learn” and utilize properties of empirical genotypic arrays intrinsic to each population. Likelihood-based estimation methods provide a more accessible option for reliable assignment of individuals to the population of origin due to the intricacies in development and evaluation of artificial neural networks. In recent years, characterization of highly polymorphic molecular markers such as mini- and microsatellites and development of novel methods of analysis have enabled researchers to extend investigations of ecological and evolutionary processes below the population level to the level of
H.264 SVC Complexity Reduction Based on Likelihood Mode Decision
Directory of Open Access Journals (Sweden)
L. Balaji
2015-01-01
Full Text Available H.264 Advanced Video Coding (AVC was prolonged to Scalable Video Coding (SVC. SVC executes in different electronics gadgets such as personal computer, HDTV, SDTV, IPTV, and full-HDTV in which user demands various scaling of the same content. The various scaling is resolution, frame rate, quality, heterogeneous networks, bandwidth, and so forth. Scaling consumes more encoding time and computational complexity during mode selection. In this paper, to reduce encoding time and computational complexity, a fast mode decision algorithm based on likelihood mode decision (LMD is proposed. LMD is evaluated in both temporal and spatial scaling. From the results, we conclude that LMD performs well, when compared to the previous fast mode decision algorithms. The comparison parameters are time, PSNR, and bit rate. LMD achieve time saving of 66.65% with 0.05% detriment in PSNR and 0.17% increment in bit rate compared with the full search method.
H.264 SVC Complexity Reduction Based on Likelihood Mode Decision.
Balaji, L; Thyagharajan, K K
2015-01-01
H.264 Advanced Video Coding (AVC) was prolonged to Scalable Video Coding (SVC). SVC executes in different electronics gadgets such as personal computer, HDTV, SDTV, IPTV, and full-HDTV in which user demands various scaling of the same content. The various scaling is resolution, frame rate, quality, heterogeneous networks, bandwidth, and so forth. Scaling consumes more encoding time and computational complexity during mode selection. In this paper, to reduce encoding time and computational complexity, a fast mode decision algorithm based on likelihood mode decision (LMD) is proposed. LMD is evaluated in both temporal and spatial scaling. From the results, we conclude that LMD performs well, when compared to the previous fast mode decision algorithms. The comparison parameters are time, PSNR, and bit rate. LMD achieve time saving of 66.65% with 0.05% detriment in PSNR and 0.17% increment in bit rate compared with the full search method.
Simulation-based marginal likelihood for cluster strong lensing cosmology
Killedar, M.; Borgani, S.; Fabjan, D.; Dolag, K.; Granato, G.; Meneghetti, M.; Planelles, S.; Ragone-Figueroa, C.
2018-01-01
Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with Λ cold dark matter cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, α and β. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected z > 0.5 Massive Cluster Survey clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in this estimate and consequential ability to compare competing cosmologies, which arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshift distribution and dynamical state. The relation between triaxial cluster masses at various overdensities provides a promising alternative to the strong lensing test.
LDR: A Package for Likelihood-Based Sufficient Dimension Reduction
Directory of Open Access Journals (Sweden)
R. Dennis Cook
2011-03-01
Full Text Available We introduce a new mlab software package that implements several recently proposed likelihood-based methods for sufficient dimension reduction. Current capabilities include estimation of reduced subspaces with a fixed dimension d, as well as estimation of d by use of likelihood-ratio testing, permutation testing and information criteria. The methods are suitable for preprocessing data for both regression and classification. Implementations of related estimators are also available. Although the software is more oriented to command-line operation, a graphical user interface is also provided for prototype computations.
Likelihood-based inference for clustered line transect data
DEFF Research Database (Denmark)
Waagepetersen, Rasmus; Schweder, Tore
2006-01-01
The uncertainty in estimation of spatial animal density from line transect surveys depends on the degree of spatial clustering in the animal population. To quantify the clustering we model line transect data as independent thinnings of spatial shot-noise Cox processes. Likelihood-based inference...
Likelihood-based Dynamic Factor Analysis for Measurement and Forecasting
Jungbacker, B.M.J.P.; Koopman, S.J.
2015-01-01
We present new results for the likelihood-based analysis of the dynamic factor model. The latent factors are modelled by linear dynamic stochastic processes. The idiosyncratic disturbance series are specified as autoregressive processes with mutually correlated innovations. The new results lead to
Likelihood-based inference for clustered line transect data
DEFF Research Database (Denmark)
Waagepetersen, Rasmus Plenge; Schweder, Tore
The uncertainty in estimation of spatial animal density from line transect surveys depends on the degree of spatial clustering in the animal population. To quantify the clustering we model line transect data as independent thinnings of spatial shot-noise Cox processes. Likelihood-based inference...
Likelihood-Based Inference in Nonlinear Error-Correction Models
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbæk, Anders
We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...
Likelihood-Based Inference of B Cell Clonal Families.
Directory of Open Access Journals (Sweden)
Duncan K Ralph
2016-10-01
Full Text Available The human immune system depends on a highly diverse collection of antibody-making B cells. B cell receptor sequence diversity is generated by a random recombination process called "rearrangement" forming progenitor B cells, then a Darwinian process of lineage diversification and selection called "affinity maturation." The resulting receptors can be sequenced in high throughput for research and diagnostics. Such a collection of sequences contains a mixture of various lineages, each of which may be quite numerous, or may consist of only a single member. As a step to understanding the process and result of this diversification, one may wish to reconstruct lineage membership, i.e. to cluster sampled sequences according to which came from the same rearrangement events. We call this clustering problem "clonal family inference." In this paper we describe and validate a likelihood-based framework for clonal family inference based on a multi-hidden Markov Model (multi-HMM framework for B cell receptor sequences. We describe an agglomerative algorithm to find a maximum likelihood clustering, two approximate algorithms with various trade-offs of speed versus accuracy, and a third, fast algorithm for finding specific lineages. We show that under simulation these algorithms greatly improve upon existing clonal family inference methods, and that they also give significantly different clusters than previous methods when applied to two real data sets.
Corporate brand extensions based on the purchase likelihood: governance implications
Directory of Open Access Journals (Sweden)
Spyridon Goumas
2018-03-01
Full Text Available This paper is examining the purchase likelihood of hypothetical service brand extensions from product companies focusing on consumer electronics based on sector categorization and perceptions of fit between the existing product category and image of the company. Prior research has recognized that levels of brand knowledge eases the transference of associations and affect to the new products. Similarity to the existing products of the parent company and perceived image also influence the success of brand extensions. However, sector categorization may interfere with this relationship. The purpose of this study is to examine Greek consumers’ attitudes towards hypothetical brand extensions, and how these are affected by consumers’ existing knowledge about the brand, sector categorization and perceptions of image and category fit of cross-sector extensions. This aim is examined in the context of technological categories, where less-known companies exhibited significance in purchase likelihood, and contradictory with the existing literature, service companies did not perform as positively as expected. Additional insights to the existing literature about sector categorization are provided. The effect of both image and category fit is also examined and predictions regarding the effect of each are made.
Safe semi-supervised learning based on weighted likelihood.
Kawakita, Masanori; Takeuchi, Jun'ichi
2014-05-01
We are interested in developing a safe semi-supervised learning that works in any situation. Semi-supervised learning postulates that n(') unlabeled data are available in addition to n labeled data. However, almost all of the previous semi-supervised methods require additional assumptions (not only unlabeled data) to make improvements on supervised learning. If such assumptions are not met, then the methods possibly perform worse than supervised learning. Sokolovska, Cappé, and Yvon (2008) proposed a semi-supervised method based on a weighted likelihood approach. They proved that this method asymptotically never performs worse than supervised learning (i.e., it is safe) without any assumption. Their method is attractive because it is easy to implement and is potentially general. Moreover, it is deeply related to a certain statistical paradox. However, the method of Sokolovska et al. (2008) assumes a very limited situation, i.e., classification, discrete covariates, n(')→∞ and a maximum likelihood estimator. In this paper, we extend their method by modifying the weight. We prove that our proposal is safe in a significantly wide range of situations as long as n≤n('). Further, we give a geometrical interpretation of the proof of safety through the relationship with the above-mentioned statistical paradox. Finally, we show that the above proposal is asymptotically safe even when n(')
Likelihood Inference of Nonlinear Models Based on a Class of Flexible Skewed Distributions
Directory of Open Access Journals (Sweden)
Xuedong Chen
2014-01-01
Full Text Available This paper deals with the issue of the likelihood inference for nonlinear models with a flexible skew-t-normal (FSTN distribution, which is proposed within a general framework of flexible skew-symmetric (FSS distributions by combining with skew-t-normal (STN distribution. In comparison with the common skewed distributions such as skew normal (SN, and skew-t (ST as well as scale mixtures of skew normal (SMSN, the FSTN distribution can accommodate more flexibility and robustness in the presence of skewed, heavy-tailed, especially multimodal outcomes. However, for this distribution, a usual approach of maximum likelihood estimates based on EM algorithm becomes unavailable and an alternative way is to return to the original Newton-Raphson type method. In order to improve the estimation as well as the way for confidence estimation and hypothesis test for the parameters of interest, a modified Newton-Raphson iterative algorithm is presented in this paper, based on profile likelihood for nonlinear regression models with FSTN distribution, and, then, the confidence interval and hypothesis test are also developed. Furthermore, a real example and simulation are conducted to demonstrate the usefulness and the superiority of our approach.
Zhou, Xiaofan; Shen, Xing-Xing; Hittinger, Chris Todd
2018-01-01
Abstract The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses. PMID:29177474
Moment Conditions Selection Based on Adaptive Penalized Empirical Likelihood
Directory of Open Access Journals (Sweden)
Yunquan Song
2014-01-01
Full Text Available Empirical likelihood is a very popular method and has been widely used in the fields of artificial intelligence (AI and data mining as tablets and mobile application and social media dominate the technology landscape. This paper proposes an empirical likelihood shrinkage method to efficiently estimate unknown parameters and select correct moment conditions simultaneously, when the model is defined by moment restrictions in which some are possibly misspecified. We show that our method enjoys oracle-like properties; that is, it consistently selects the correct moment conditions and at the same time its estimator is as efficient as the empirical likelihood estimator obtained by all correct moment conditions. Moreover, unlike the GMM, our proposed method allows us to carry out confidence regions for the parameters included in the model without estimating the covariances of the estimators. For empirical implementation, we provide some data-driven procedures for selecting the tuning parameter of the penalty function. The simulation results show that the method works remarkably well in terms of correct moment selection and the finite sample properties of the estimators. Also, a real-life example is carried out to illustrate the new methodology.
Improved Likelihood Function in Particle-based IR Eye Tracking
DEFF Research Database (Denmark)
Satria, R.; Sorensen, J.; Hammoud, R.
2005-01-01
In this paper we propose a log likelihood-ratio function of foreground and background models used in a particle filter to track the eye region in dark-bright pupil image sequences. This model fuses information from both dark and bright pupil images and their difference image into one model. Our...... enhanced tracker overcomes the issues of prior selection of static thresholds during the detection of feature observations in the bright-dark difference images. The auto-initialization process is performed using cascaded classifier trained using adaboost and adapted to IR eye images. Experiments show good...
Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.
Huang, Lan; Zheng, Dan; Zalkikar, Jyoti; Tiwari, Ram
2017-02-01
In recent decades, numerous methods have been developed for data mining of large drug safety databases, such as Food and Drug Administration's (FDA's) Adverse Event Reporting System, where data matrices are formed by drugs such as columns and adverse events as rows. Often, a large number of cells in these data matrices have zero cell counts and some of them are "true zeros" indicating that the drug-adverse event pairs cannot occur, and these zero counts are distinguished from the other zero counts that are modeled zero counts and simply indicate that the drug-adverse event pairs have not occurred yet or have not been reported yet. In this paper, a zero-inflated Poisson model based likelihood ratio test method is proposed to identify drug-adverse event pairs that have disproportionately high reporting rates, which are also called signals. The maximum likelihood estimates of the model parameters of zero-inflated Poisson model based likelihood ratio test are obtained using the expectation and maximization algorithm. The zero-inflated Poisson model based likelihood ratio test is also modified to handle the stratified analyses for binary and categorical covariates (e.g. gender and age) in the data. The proposed zero-inflated Poisson model based likelihood ratio test method is shown to asymptotically control the type I error and false discovery rate, and its finite sample performance for signal detection is evaluated through a simulation study. The simulation results show that the zero-inflated Poisson model based likelihood ratio test method performs similar to Poisson model based likelihood ratio test method when the estimated percentage of true zeros in the database is small. Both the zero-inflated Poisson model based likelihood ratio test and likelihood ratio test methods are applied to six selected drugs, from the 2006 to 2011 Adverse Event Reporting System database, with varying percentages of observed zero-count cells.
Validation of DNA-based identification software by computation of pedigree likelihood ratios
Slooten, K.
Disaster victim identification (DVI) can be aided by DNA-evidence, by comparing the DNA-profiles of unidentified individuals with those of surviving relatives. The DNA-evidence is used optimally when such a comparison is done by calculating the appropriate likelihood ratios. Though conceptually
Likelihood based inference for partially observed renewal processes
van Lieshout, Maria Nicolette Margaretha
2016-01-01
This paper is concerned with inference for renewal processes on the real line that are observed in a broken interval. For such processes, the classic history-based approach cannot be used. Instead, we adapt tools from sequential spatial point process theory to propose a Monte Carlo maximum
Directory of Open Access Journals (Sweden)
César da Silva Chagas
2013-04-01
Full Text Available Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI, derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs was greater than of the classic Maximum Likelihood Classifier (MLC. Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 % was superior to the MLC map (57.94 %. The main errors when using the two classifiers were caused by: a the geological heterogeneity of the area coupled with problems related to the geological map; b the depth of lithic contact and/or rock exposure, and c problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.
DEFF Research Database (Denmark)
Borkowski, Robert; Johannisson, Pontus; Wymeersch, Henk
2014-01-01
We perform an experimental investigation of a maximum likelihood-based (ML-based) algorithm for bulk chromatic dispersion estimation for digital coherent receivers operating in uncompensated optical networks. We demonstrate the robustness of the method at low optical signal-to-noise ratio (OSNR...
Evaluation of Smoking Prevention Television Messages Based on the Elaboration Likelihood Model
Flynn, Brian S.; Worden, John K.; Bunn, Janice Yanushka; Connolly, Scott W.; Dorwaldt, Anne L.
2011-01-01
Progress in reducing youth smoking may depend on developing improved methods to communicate with higher risk youth. This study explored the potential of smoking prevention messages based on the Elaboration Likelihood Model (ELM) to address these needs. Structured evaluations of 12 smoking prevention messages based on three strategies derived from…
Generalized Empirical Likelihood-Based Focused Information Criterion and Model Averaging
Directory of Open Access Journals (Sweden)
Naoya Sueishi
2013-07-01
Full Text Available This paper develops model selection and averaging methods for moment restriction models. We first propose a focused information criterion based on the generalized empirical likelihood estimator. We address the issue of selecting an optimal model, rather than a correct model, for estimating a specific parameter of interest. Then, this study investigates a generalized empirical likelihood-based model averaging estimator that minimizes the asymptotic mean squared error. A simulation study suggests that our averaging estimator can be a useful alternative to existing post-selection estimators.
International Nuclear Information System (INIS)
Horsch, Karla; Pesce, Lorenzo L.; Giger, Maryellen L.; Metz, Charles E.; Jiang Yulei
2012-01-01
Purpose: The authors developed scaling methods that monotonically transform the output of one classifier to the ''scale'' of another. Such transformations affect the distribution of classifier output while leaving the ROC curve unchanged. In particular, they investigated transformations between radiologists and computer classifiers, with the goal of addressing the problem of comparing and interpreting case-specific values of output from two classifiers. Methods: Using both simulated and radiologists' rating data of breast imaging cases, the authors investigated a likelihood-ratio-scaling transformation, based on ''matching'' classifier likelihood ratios. For comparison, three other scaling transformations were investigated that were based on matching classifier true positive fraction, false positive fraction, or cumulative distribution function, respectively. The authors explored modifying the computer output to reflect the scale of the radiologist, as well as modifying the radiologist's ratings to reflect the scale of the computer. They also evaluated how dataset size affects the transformations. Results: When ROC curves of two classifiers differed substantially, the four transformations were found to be quite different. The likelihood-ratio scaling transformation was found to vary widely from radiologist to radiologist. Similar results were found for the other transformations. Our simulations explored the effect of database sizes on the accuracy of the estimation of our scaling transformations. Conclusions: The likelihood-ratio-scaling transformation that the authors have developed and evaluated was shown to be capable of transforming computer and radiologist outputs to a common scale reliably, thereby allowing the comparison of the computer and radiologist outputs on the basis of a clinically relevant statistic.
Validation of DNA-based identification software by computation of pedigree likelihood ratios.
Slooten, K
2011-08-01
Disaster victim identification (DVI) can be aided by DNA-evidence, by comparing the DNA-profiles of unidentified individuals with those of surviving relatives. The DNA-evidence is used optimally when such a comparison is done by calculating the appropriate likelihood ratios. Though conceptually simple, the calculations can be quite involved, especially with large pedigrees, precise mutation models etc. In this article we describe a series of test cases designed to check if software designed to calculate such likelihood ratios computes them correctly. The cases include both simple and more complicated pedigrees, among which inbred ones. We show how to calculate the likelihood ratio numerically and algebraically, including a general mutation model and possibility of allelic dropout. In Appendix A we show how to derive such algebraic expressions mathematically. We have set up these cases to validate new software, called Bonaparte, which performs pedigree likelihood ratio calculations in a DVI context. Bonaparte has been developed by SNN Nijmegen (The Netherlands) for the Netherlands Forensic Institute (NFI). It is available free of charge for non-commercial purposes (see www.dnadvi.nl for details). Commercial licenses can also be obtained. The software uses Bayesian networks and the junction tree algorithm to perform its calculations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
ldr: An R Software Package for Likelihood-Based Su?cient Dimension Reduction
Directory of Open Access Journals (Sweden)
Kofi Placid Adragni
2014-11-01
Full Text Available In regression settings, a su?cient dimension reduction (SDR method seeks the core information in a p-vector predictor that completely captures its relationship with a response. The reduced predictor may reside in a lower dimension d < p, improving ability to visualize data and predict future observations, and mitigating dimensionality issues when carrying out further analysis. We introduce ldr, a new R software package that implements three recently proposed likelihood-based methods for SDR: covariance reduction, likelihood acquired directions, and principal fitted components. All three methods reduce the dimensionality of the data by pro jection into lower dimensional subspaces. The package also implements a variable screening method built upon principal ?tted components which makes use of ?exible basis functions to capture the dependencies between the predictors and the response. Examples are given to demonstrate likelihood-based SDR analyses using ldr, including estimation of the dimension of reduction subspaces and selection of basis functions. The ldr package provides a framework that we hope to grow into a comprehensive library of likelihood-based SDR methodologies.
Comparison of IRT Likelihood Ratio Test and Logistic Regression DIF Detection Procedures
Atar, Burcu; Kamata, Akihito
2011-01-01
The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…
John Hogland; Nedret Billor; Nathaniel Anderson
2013-01-01
Discriminant analysis, referred to as maximum likelihood classification within popular remote sensing software packages, is a common supervised technique used by analysts. Polytomous logistic regression (PLR), also referred to as multinomial logistic regression, is an alternative classification approach that is less restrictive, more flexible, and easy to interpret. To...
de Queiroz, K; Poe, S
2001-06-01
Advocates of cladistic parsimony methods have invoked the philosophy of Karl Popper in an attempt to argue for the superiority of those methods over phylogenetic methods based on Ronald Fisher's statistical principle of likelihood. We argue that the concept of likelihood in general, and its application to problems of phylogenetic inference in particular, are highly compatible with Popper's philosophy. Examination of Popper's writings reveals that his concept of corroboration is, in fact, based on likelihood. Moreover, because probabilistic assumptions are necessary for calculating the probabilities that define Popper's corroboration, likelihood methods of phylogenetic inference--with their explicit probabilistic basis--are easily reconciled with his concept. In contrast, cladistic parsimony methods, at least as described by certain advocates of those methods, are less easily reconciled with Popper's concept of corroboration. If those methods are interpreted as lacking probabilistic assumptions, then they are incompatible with corroboration. Conversely, if parsimony methods are to be considered compatible with corroboration, then they must be interpreted as carrying implicit probabilistic assumptions. Thus, the non-probabilistic interpretation of cladistic parsimony favored by some advocates of those methods is contradicted by an attempt by the same authors to justify parsimony methods in terms of Popper's concept of corroboration. In addition to being compatible with Popperian corroboration, the likelihood approach to phylogenetic inference permits researchers to test the assumptions of their analytical methods (models) in a way that is consistent with Popper's ideas about the provisional nature of background knowledge.
International Nuclear Information System (INIS)
Beer, M.
1980-01-01
The maximum likelihood method for the multivariate normal distribution is applied to the case of several individual eigenvalues. Correlated Monte Carlo estimates of the eigenvalue are assumed to follow this prescription and aspects of the assumption are examined. Monte Carlo cell calculations using the SAM-CE and VIM codes for the TRX-1 and TRX-2 benchmark reactors, and SAM-CE full core results are analyzed with this method. Variance reductions of a few percent to a factor of 2 are obtained from maximum likelihood estimation as compared with the simple average and the minimum variance individual eigenvalue. The numerical results verify that the use of sample variances and correlation coefficients in place of the corresponding population statistics still leads to nearly minimum variance estimation for a sufficient number of histories and aggregates
On the performance of social network and likelihood-based expert weighting schemes
International Nuclear Information System (INIS)
Cooke, Roger M.; ElSaadany, Susie; Huang Xinzheng
2008-01-01
Using expert judgment data from the TU Delft's expert judgment database, we compare the performance of different weighting schemes, namely equal weighting, performance-based weighting from the classical model [Cooke RM. Experts in uncertainty. Oxford: Oxford University Press; 1991.], social network (SN) weighting and likelihood weighting. The picture that emerges with regard to SN weights is rather mixed. SN theory does not provide an alternative to performance-based combination of expert judgments, since the statistical accuracy of the SN decision maker is sometimes unacceptably low. On the other hand, it does outperform equal weighting in the majority of cases. The results here, though not overwhelmingly positive, do nonetheless motivate further research into social interaction methods for nominating and weighting experts. Indeed, a full expert judgment study with performance measurement requires an investment in time and effort, with a view to securing external validation. If high confidence in a comparable level of validation can be obtained by less intensive methods, this would be very welcome, and would facilitate the application of structured expert judgment in situations where the resources for a full study are not available. Likelihood weights are just as resource intensive as performance-based weights, and the evidence presented here suggests that they are inferior to performance-based weights with regard to those scoring variables which are optimized in performance weights (calibration and information). Perhaps surprisingly, they are also inferior with regard to likelihood. Their use is further discouraged by the fact that they constitute a strongly improper scoring rule
Directory of Open Access Journals (Sweden)
Ross S Williamson
2015-04-01
Full Text Available Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron's probability of spiking. One popular method, known as maximally informative dimensions (MID, uses an information-theoretic quantity known as "single-spike information" to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex.
Laser-Based Slam with Efficient Occupancy Likelihood Map Learning for Dynamic Indoor Scenes
Li, Li; Yao, Jian; Xie, Renping; Tu, Jinge; Feng, Chen
2016-06-01
Location-Based Services (LBS) have attracted growing attention in recent years, especially in indoor environments. The fundamental technique of LBS is the map building for unknown environments, this technique also named as simultaneous localization and mapping (SLAM) in robotic society. In this paper, we propose a novel approach for SLAMin dynamic indoor scenes based on a 2D laser scanner mounted on a mobile Unmanned Ground Vehicle (UGV) with the help of the grid-based occupancy likelihood map. Instead of applying scan matching in two adjacent scans, we propose to match current scan with the occupancy likelihood map learned from all previous scans in multiple scales to avoid the accumulation of matching errors. Due to that the acquisition of the points in a scan is sequential but not simultaneous, there unavoidably exists the scan distortion at different extents. To compensate the scan distortion caused by the motion of the UGV, we propose to integrate a velocity of a laser range finder (LRF) into the scan matching optimization framework. Besides, to reduce the effect of dynamic objects such as walking pedestrians often existed in indoor scenes as much as possible, we propose a new occupancy likelihood map learning strategy by increasing or decreasing the probability of each occupancy grid after each scan matching. Experimental results in several challenged indoor scenes demonstrate that our proposed approach is capable of providing high-precision SLAM results.
Likelihood-based methods for evaluating principal surrogacy in augmented vaccine trials.
Liu, Wei; Zhang, Bo; Zhang, Hui; Zhang, Zhiwei
2017-04-01
There is growing interest in assessing immune biomarkers, which are quick to measure and potentially predictive of long-term efficacy, as surrogate endpoints in randomized, placebo-controlled vaccine trials. This can be done under a principal stratification approach, with principal strata defined using a subject's potential immune responses to vaccine and placebo (the latter may be assumed to be zero). In this context, principal surrogacy refers to the extent to which vaccine efficacy varies across principal strata. Because a placebo recipient's potential immune response to vaccine is unobserved in a standard vaccine trial, augmented vaccine trials have been proposed to produce the information needed to evaluate principal surrogacy. This article reviews existing methods based on an estimated likelihood and a pseudo-score (PS) and proposes two new methods based on a semiparametric likelihood (SL) and a pseudo-likelihood (PL), for analyzing augmented vaccine trials. Unlike the PS method, the SL method does not require a model for missingness, which can be advantageous when immune response data are missing by happenstance. The SL method is shown to be asymptotically efficient, and it performs similarly to the PS and PL methods in simulation experiments. The PL method appears to have a computational advantage over the PS and SL methods.
International Nuclear Information System (INIS)
Ahn, Sangtae; Asma, Evren; Cheng, Lishui; Manjeshwar, Ravindra M; Ross, Steven G; Miao, Jun; Jin, Xiao; Wollenweber, Scott D
2015-01-01
Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs. (paper)
A theory of timing in scintillation counters based on maximum likelihood estimation
International Nuclear Information System (INIS)
Tomitani, Takehiro
1982-01-01
A theory of timing in scintillation counters based on the maximum likelihood estimation is presented. An optimum filter that minimizes the variance of timing is described. A simple formula to estimate the variance of timing is presented as a function of photoelectron number, scintillation decay constant and the single electron transit time spread in the photomultiplier. The present method was compared with the theory by E. Gatti and V. Svelto. The proposed method was applied to two simple models and rough estimations of potential time resolution of several scintillators are given. The proposed method is applicable to the timing in Cerenkov counters and semiconductor detectors as well. (author)
Likelihood-based inference for cointegration with nonlinear error-correction
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbek, Anders Christian
2010-01-01
We consider a class of nonlinear vector error correction models where the transfer function (or loadings) of the stationary relationships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long-run cointegration parameters, and the short-run parameters. Asymptotic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normality can be found. A simulation study...
Filipiak, Katarzyna; Klein, Daniel; Roy, Anuradha
2017-01-01
The problem of testing the separability of a covariance matrix against an unstructured variance-covariance matrix is studied in the context of multivariate repeated measures data using Rao's score test (RST). The RST statistic is developed with the first component of the separable structure as a first-order autoregressive (AR(1)) correlation matrix or an unstructured (UN) covariance matrix under the assumption of multivariate normality. It is shown that the distribution of the RST statistic under the null hypothesis of any separability does not depend on the true values of the mean or the unstructured components of the separable structure. A significant advantage of the RST is that it can be performed for small samples, even smaller than the dimension of the data, where the likelihood ratio test (LRT) cannot be used, and it outperforms the standard LRT in a number of contexts. Monte Carlo simulations are then used to study the comparative behavior of the null distribution of the RST statistic, as well as that of the LRT statistic, in terms of sample size considerations, and for the estimation of the empirical percentiles. Our findings are compared with existing results where the first component of the separable structure is a compound symmetry (CS) correlation matrix. It is also shown by simulations that the empirical null distribution of the RST statistic converges faster than the empirical null distribution of the LRT statistic to the limiting χ 2 distribution. The tests are implemented on a real dataset from medical studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Maximum likelihood-based analysis of photon arrival trajectories in single-molecule FRET
Energy Technology Data Exchange (ETDEWEB)
Waligorska, Marta [Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland); Molski, Andrzej, E-mail: amolski@amu.edu.pl [Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland)
2012-07-25
Highlights: Black-Right-Pointing-Pointer We study model selection and parameter recovery from single-molecule FRET experiments. Black-Right-Pointing-Pointer We examine the maximum likelihood-based analysis of two-color photon trajectories. Black-Right-Pointing-Pointer The number of observed photons determines the performance of the method. Black-Right-Pointing-Pointer For long trajectories, one can extract mean dwell times that are comparable to inter-photon times. -- Abstract: When two fluorophores (donor and acceptor) are attached to an immobilized biomolecule, anti-correlated fluctuations of the donor and acceptor fluorescence caused by Foerster resonance energy transfer (FRET) report on the conformational kinetics of the molecule. Here we assess the maximum likelihood-based analysis of donor and acceptor photon arrival trajectories as a method for extracting the conformational kinetics. Using computer generated data we quantify the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) in selecting the true kinetic model. We find that the number of observed photons is the key parameter determining parameter estimation and model selection. For long trajectories, one can extract mean dwell times that are comparable to inter-photon times.
DEFF Research Database (Denmark)
Boiroux, Dimitri; Juhl, Rune; Madsen, Henrik
2016-01-01
This paper addresses maximum likelihood parameter estimation of continuous-time nonlinear systems with discrete-time measurements. We derive an efficient algorithm for the computation of the log-likelihood function and its gradient, which can be used in gradient-based optimization algorithms....... This algorithm uses UD decomposition of symmetric matrices and the array algorithm for covariance update and gradient computation. We test our algorithm on the Lotka-Volterra equations. Compared to the maximum likelihood estimation based on finite difference gradient computation, we get a significant speedup...
Owen, Art B
2001-01-01
Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It also facilitates incorporating side information, and it simplifies accounting for censored, truncated, or biased sampling.One of the first books published on the subject, Empirical Likelihood offers an in-depth treatment of this method for constructing confidence regions and testing hypotheses. The author applies empirical likelihood to a range of problems, from those as simple as setting a confidence region for a univariate mean under IID sampling, to problems defined through smooth functions of means, regression models, generalized linear models, estimating equations, or kernel smooths, and to sampling with non-identically distributed data. Abundant figures offer vi...
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods
Directory of Open Access Journals (Sweden)
Anthony Hoak
2017-03-01
Full Text Available We develop an interactive likelihood (ILH for sequential Monte Carlo (SMC methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL and TUD-Stadtmitte using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA and classification of events, activities and relationships for multi-object trackers (CLEAR MOT. In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.
Maximum Likelihood-Based Methods for Target Velocity Estimation with Distributed MIMO Radar
Directory of Open Access Journals (Sweden)
Zhenxin Cao
2018-02-01
Full Text Available The estimation problem for target velocity is addressed in this in the scenario with a distributed multi-input multi-out (MIMO radar system. A maximum likelihood (ML-based estimation method is derived with the knowledge of target position. Then, in the scenario without the knowledge of target position, an iterative method is proposed to estimate the target velocity by updating the position information iteratively. Moreover, the Carmér-Rao Lower Bounds (CRLBs for both scenarios are derived, and the performance degradation of velocity estimation without the position information is also expressed. Simulation results show that the proposed estimation methods can approach the CRLBs, and the velocity estimation performance can be further improved by increasing either the number of radar antennas or the information accuracy of the target position. Furthermore, compared with the existing methods, a better estimation performance can be achieved.
Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods.
Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J
2017-03-03
We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.
Chen, Ying-Ju; Ning, Wei; Gupta, Arjun K
2016-05-01
The mean residual life (MRL) function is one of the basic parameters of interest in survival analysis that describes the expected remaining time of an individual after a certain age. The study of changes in the MRL function is practical and interesting because it may help us to identify some factors such as age and gender that may influence the remaining lifetimes of patients after receiving a certain surgery. In this paper, we propose a detection procedure based on the empirical likelihood for the changes in MRL functions with right censored data. Two real examples are also given: Veterans' administration lung cancer study and Stanford heart transplant to illustrate the detecting procedure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Gang, Grace J. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9, Canada and Department of Biomedical Engineering, Johns Hopkins University, Baltimore Maryland 21205 (Canada); Stayman, J. Webster; Zbijewski, Wojciech [Department of Biomedical Engineering, Johns Hopkins University, Baltimore Maryland 21205 (United States); Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9, Canada and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States)
2014-08-15
Purpose: Nonstationarity is an important aspect of imaging performance in CT and cone-beam CT (CBCT), especially for systems employing iterative reconstruction. This work presents a theoretical framework for both filtered-backprojection (FBP) and penalized-likelihood (PL) reconstruction that includes explicit descriptions of nonstationary noise, spatial resolution, and task-based detectability index. Potential utility of the model was demonstrated in the optimal selection of regularization parameters in PL reconstruction. Methods: Analytical models for local modulation transfer function (MTF) and noise-power spectrum (NPS) were investigated for both FBP and PL reconstruction, including explicit dependence on the object and spatial location. For FBP, a cascaded systems analysis framework was adapted to account for nonstationarity by separately calculating fluence and system gains for each ray passing through any given voxel. For PL, the point-spread function and covariance were derived using the implicit function theorem and first-order Taylor expansion according toFessler [“Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): Applications to tomography,” IEEE Trans. Image Process. 5(3), 493–506 (1996)]. Detectability index was calculated for a variety of simple tasks. The model for PL was used in selecting the regularization strength parameter to optimize task-based performance, with both a constant and a spatially varying regularization map. Results: Theoretical models of FBP and PL were validated in 2D simulated fan-beam data and found to yield accurate predictions of local MTF and NPS as a function of the object and the spatial location. The NPS for both FBP and PL exhibit similar anisotropic nature depending on the pathlength (and therefore, the object and spatial location within the object) traversed by each ray, with the PL NPS experiencing greater smoothing along directions with higher noise. The MTF of FBP
Likelihood ratio-based integrated personal risk assessment of type 2 diabetes.
Sato, Noriko; Htun, Nay Chi; Daimon, Makoto; Tamiya, Gen; Kato, Takeo; Kubota, Isao; Ueno, Yoshiyuki; Yamashita, Hidetoshi; Fukao, Akira; Kayama, Takamasa; Muramatsu, Masaaki
2014-01-01
To facilitate personalized health care for multifactorial diseases, risks of genetic and clinical/environmental factors should be assessed together for each individual in an integrated fashion. This approach is possible with the likelihood ratio (LR)-based risk assessment system, as this system can incorporate manifold tests. We examined the usefulness of this system for assessing type 2 diabetes (T2D). Our system employed 29 genetic susceptibility variants, body mass index (BMI), and hypertension as risk factors whose LRs can be estimated from openly available T2D association data for the Japanese population. The pretest probability was set at a sex- and age-appropriate population average of diabetes prevalence. The classification performance of our LR-based risk assessment was compared to that of a non-invasive screening test for diabetes called TOPICS (with score based on age, sex, family history, smoking, BMI, and hypertension) using receiver operating characteristic analysis with a community cohort (n = 1263). The area under the receiver operating characteristic curve (AUC) for the LR-based assessment and TOPICS was 0.707 (95% CI 0.665-0.750) and 0.719 (0.675-0.762), respectively. These AUCs were much higher than that of a genetic risk score constructed using the same genetic susceptibility variants, 0.624 (0.574-0.674). The use of ethnically matched LRs is necessary for proper personal risk assessment. In conclusion, although LR-based integrated risk assessment for T2D still requires additional tests that evaluate other factors, such as risks involved in missing heritability, our results indicate the potential usability of LR-based assessment system and stress the importance of stratified epidemiological investigations in personalized medicine.
Debris Likelihood, based on GhostNet, NASA Aqua MODIS, and GOES Imager, EXPERIMENTAL
National Oceanic and Atmospheric Administration, Department of Commerce — Debris Likelihood Index (Estimated) is calculated from GhostNet, NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended...
A biclustering algorithm for binary matrices based on penalized Bernoulli likelihood
Lee, Seokho; Huang, Jianhua Z.
2013-01-01
We propose a new biclustering method for binary data matrices using the maximum penalized Bernoulli likelihood estimation. Our method applies a multi-layer model defined on the logits of the success probabilities, where each layer represents a
Performances of the likelihood-ratio classifier based on different data modelings
Chen, C.; Veldhuis, Raymond N.J.
2008-01-01
The classical likelihood ratio classifier easily collapses in many biometric applications especially with independent training-test subjects. The reason lies in the inaccurate estimation of the underlying user-specific feature density. Firstly, the feature density estimation suffers from
Tom, C. H.; Miller, L. D.
1984-01-01
The Bayesian maximum likelihood parametric classifier has been tested against the data-based formulation designated 'linear discrimination analysis', using the 'GLIKE' decision and "CLASSIFY' classification algorithms in the Landsat Mapping System. Identical supervised training sets, USGS land use/land cover classes, and various combinations of Landsat image and ancilliary geodata variables, were used to compare the algorithms' thematic mapping accuracy on a single-date summer subscene, with a cellularized USGS land use map of the same time frame furnishing the ground truth reference. CLASSIFY, which accepts a priori class probabilities, is found to be more accurate than GLIKE, which assumes equal class occurrences, for all three mapping variable sets and both levels of detail. These results may be generalized to direct accuracy, time, cost, and flexibility advantages of linear discriminant analysis over Bayesian methods.
Wobbling and LSF-based maximum likelihood expectation maximization reconstruction for wobbling PET
International Nuclear Information System (INIS)
Kim, Hang-Keun; Son, Young-Don; Kwon, Dae-Hyuk; Joo, Yohan; Cho, Zang-Hee
2016-01-01
Positron emission tomography (PET) is a widely used imaging modality; however, the PET spatial resolution is not yet satisfactory for precise anatomical localization of molecular activities. Detector size is the most important factor because it determines the intrinsic resolution, which is approximately half of the detector size and determines the ultimate PET resolution. Detector size, however, cannot be made too small because both the decreased detection efficiency and the increased septal penetration effect degrade the image quality. A wobbling and line spread function (LSF)-based maximum likelihood expectation maximization (WL-MLEM) algorithm, which combined the MLEM iterative reconstruction algorithm with wobbled sampling and LSF-based deconvolution using the system matrix, was proposed for improving the spatial resolution of PET without reducing the scintillator or detector size. The new algorithm was evaluated using a simulation, and its performance was compared with that of the existing algorithms, such as conventional MLEM and LSF-based MLEM. Simulations demonstrated that the WL-MLEM algorithm yielded higher spatial resolution and image quality than the existing algorithms. The WL-MLEM algorithm with wobbling PET yielded substantially improved resolution compared with conventional algorithms with stationary PET. The algorithm can be easily extended to other iterative reconstruction algorithms, such as maximum a priori (MAP) and ordered subset expectation maximization (OSEM). The WL-MLEM algorithm with wobbling PET may offer improvements in both sensitivity and resolution, the two most sought-after features in PET design. - Highlights: • This paper proposed WL-MLEM algorithm for PET and demonstrated its performance. • WL-MLEM algorithm effectively combined wobbling and line spread function based MLEM. • WL-MLEM provided improvements in the spatial resolution and the PET image quality. • WL-MLEM can be easily extended to the other iterative
Stability of maximum-likelihood-based clustering methods: exploring the backbone of classifications
International Nuclear Information System (INIS)
Mungan, Muhittin; Ramasco, José J
2010-01-01
Components of complex systems are often classified according to the way they interact with each other. In graph theory such groups are known as clusters or communities. Many different techniques have been recently proposed to detect them, some of which involve inference methods using either Bayesian or maximum likelihood approaches. In this paper, we study a statistical model designed for detecting clusters based on connection similarity. The basic assumption of the model is that the graph was generated by a certain grouping of the nodes and an expectation maximization algorithm is employed to infer that grouping. We show that the method admits further development to yield a stability analysis of the groupings that quantifies the extent to which each node influences its neighbors' group membership. Our approach naturally allows for the identification of the key elements responsible for the grouping and their resilience to changes in the network. Given the generality of the assumptions underlying the statistical model, such nodes are likely to play special roles in the original system. We illustrate this point by analyzing several empirical networks for which further information about the properties of the nodes is available. The search and identification of stabilizing nodes constitutes thus a novel technique to characterize the relevance of nodes in complex networks
Maximum likelihood-based analysis of single-molecule photon arrival trajectories
Hajdziona, Marta; Molski, Andrzej
2011-02-01
In this work we explore the statistical properties of the maximum likelihood-based analysis of one-color photon arrival trajectories. This approach does not involve binning and, therefore, all of the information contained in an observed photon strajectory is used. We study the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion and the Bayesian information criterion (BIC) in selecting the true kinetic model. We focus on the low excitation regime where photon trajectories can be modeled as realizations of Markov modulated Poisson processes. The number of observed photons is the key parameter in determining model selection and parameter estimation. For example, the BIC can select the true three-state model from competing two-, three-, and four-state kinetic models even for relatively short trajectories made up of 2 × 103 photons. When the intensity levels are well-separated and 104 photons are observed, the two-state model parameters can be estimated with about 10% precision and those for a three-state model with about 20% precision.
Maximum likelihood-based analysis of single-molecule photon arrival trajectories.
Hajdziona, Marta; Molski, Andrzej
2011-02-07
In this work we explore the statistical properties of the maximum likelihood-based analysis of one-color photon arrival trajectories. This approach does not involve binning and, therefore, all of the information contained in an observed photon strajectory is used. We study the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion and the Bayesian information criterion (BIC) in selecting the true kinetic model. We focus on the low excitation regime where photon trajectories can be modeled as realizations of Markov modulated Poisson processes. The number of observed photons is the key parameter in determining model selection and parameter estimation. For example, the BIC can select the true three-state model from competing two-, three-, and four-state kinetic models even for relatively short trajectories made up of 2 × 10(3) photons. When the intensity levels are well-separated and 10(4) photons are observed, the two-state model parameters can be estimated with about 10% precision and those for a three-state model with about 20% precision.
International Nuclear Information System (INIS)
Rajan, Jeny; Jeurissen, Ben; Sijbers, Jan; Verhoye, Marleen; Van Audekerke, Johan
2011-01-01
In this paper, we propose a method to denoise magnitude magnetic resonance (MR) images, which are Rician distributed. Conventionally, maximum likelihood methods incorporate the Rice distribution to estimate the true, underlying signal from a local neighborhood within which the signal is assumed to be constant. However, if this assumption is not met, such filtering will lead to blurred edges and loss of fine structures. As a solution to this problem, we put forward the concept of restricted local neighborhoods where the true intensity for each noisy pixel is estimated from a set of preselected neighboring pixels. To this end, a reference image is created from the noisy image using a recently proposed nonlocal means algorithm. This reference image is used as a prior for further noise reduction. A scheme is developed to locally select an appropriate subset of pixels from which the underlying signal is estimated. Experimental results based on the peak signal to noise ratio, structural similarity index matrix, Bhattacharyya coefficient and mean absolute difference from synthetic and real MR images demonstrate the superior performance of the proposed method over other state-of-the-art methods.
Zeilinger, Adam R; Olson, Dawn M; Andow, David A
2014-08-01
Consumer feeding preference among resource choices has critical implications for basic ecological and evolutionary processes, and can be highly relevant to applied problems such as ecological risk assessment and invasion biology. Within consumer choice experiments, also known as feeding preference or cafeteria experiments, measures of relative consumption and measures of consumer movement can provide distinct and complementary insights into the strength, causes, and consequences of preference. Despite the distinct value of inferring preference from measures of consumer movement, rigorous and biologically relevant analytical methods are lacking. We describe a simple, likelihood-based, biostatistical model for analyzing the transient dynamics of consumer movement in a paired-choice experiment. With experimental data consisting of repeated discrete measures of consumer location, the model can be used to estimate constant consumer attraction and leaving rates for two food choices, and differences in choice-specific attraction and leaving rates can be tested using model selection. The model enables calculation of transient and equilibrial probabilities of consumer-resource association, which could be incorporated into larger scale movement models. We explore the effect of experimental design on parameter estimation through stochastic simulation and describe methods to check that data meet model assumptions. Using a dataset of modest sample size, we illustrate the use of the model to draw inferences on consumer preference as well as underlying behavioral mechanisms. Finally, we include a user's guide and computer code scripts in R to facilitate use of the model by other researchers.
Wu, Yufeng
2012-03-01
Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.
Physician Bayesian updating from personal beliefs about the base rate and likelihood ratio.
Rottman, Benjamin Margolin
2017-02-01
Whether humans can accurately make decisions in line with Bayes' rule has been one of the most important yet contentious topics in cognitive psychology. Though a number of paradigms have been used for studying Bayesian updating, rarely have subjects been allowed to use their own preexisting beliefs about the prior and the likelihood. A study is reported in which physicians judged the posttest probability of a diagnosis for a patient vignette after receiving a test result, and the physicians' posttest judgments were compared to the normative posttest calculated from their own beliefs in the sensitivity and false positive rate of the test (likelihood ratio) and prior probability of the diagnosis. On the one hand, the posttest judgments were strongly related to the physicians' beliefs about both the prior probability as well as the likelihood ratio, and the priors were used considerably more strongly than in previous research. On the other hand, both the prior and the likelihoods were still not used quite as much as they should have been, and there was evidence of other nonnormative aspects to the updating, such as updating independent of the likelihood beliefs. By focusing on how physicians use their own prior beliefs for Bayesian updating, this study provides insight into how well experts perform probabilistic inference in settings in which they rely upon their own prior beliefs rather than experimenter-provided cues. It suggests that there is reason to be optimistic about experts' abilities, but that there is still considerable need for improvement.
Parameter-free bearing fault detection based on maximum likelihood estimation and differentiation
International Nuclear Information System (INIS)
Bozchalooi, I Soltani; Liang, Ming
2009-01-01
Bearing faults can lead to malfunction and ultimately complete stall of many machines. The conventional high-frequency resonance (HFR) method has been commonly used for bearing fault detection. However, it is often very difficult to obtain and calibrate bandpass filter parameters, i.e. the center frequency and bandwidth, the key to the success of the HFR method. This inevitably undermines the usefulness of the conventional HFR technique. To avoid such difficulties, we propose parameter-free, versatile yet straightforward techniques to detect bearing faults. We focus on two types of measured signals frequently encountered in practice: (1) a mixture of impulsive faulty bearing vibrations and intrinsic background noise and (2) impulsive faulty bearing vibrations blended with intrinsic background noise and vibration interferences. To design a proper signal processing technique for each case, we analyze the effects of intrinsic background noise and vibration interferences on amplitude demodulation. For the first case, a maximum likelihood-based fault detection method is proposed to accommodate the Rician distribution of the amplitude-demodulated signal mixture. For the second case, we first illustrate that the high-amplitude low-frequency vibration interferences can make the amplitude demodulation ineffective. Then we propose a differentiation method to enhance the fault detectability. It is shown that the iterative application of a differentiation step can boost the relative strength of the impulsive faulty bearing signal component with respect to the vibration interferences. This preserves the effectiveness of amplitude demodulation and hence leads to more accurate fault detection. The proposed approaches are evaluated on simulated signals and experimental data acquired from faulty bearings
Pradhan, Vivek; Saha, Krishna K; Banerjee, Tathagata; Evans, John C
2014-07-30
Inference on the difference between two binomial proportions in the paired binomial setting is often an important problem in many biomedical investigations. Tang et al. (2010, Statistics in Medicine) discussed six methods to construct confidence intervals (henceforth, we abbreviate it as CI) for the difference between two proportions in paired binomial setting using method of variance estimates recovery. In this article, we propose weighted profile likelihood-based CIs for the difference between proportions of a paired binomial distribution. However, instead of the usual likelihood, we use weighted likelihood that is essentially making adjustments to the cell frequencies of a 2 × 2 table in the spirit of Agresti and Min (2005, Statistics in Medicine). We then conduct numerical studies to compare the performances of the proposed CIs with that of Tang et al. and Agresti and Min in terms of coverage probabilities and expected lengths. Our numerical study clearly indicates that the weighted profile likelihood-based intervals and Jeffreys interval (cf. Tang et al.) are superior in terms of achieving the nominal level, and in terms of expected lengths, they are competitive. Finally, we illustrate the use of the proposed CIs with real-life examples. Copyright © 2014 John Wiley & Sons, Ltd.
Kelly, D. A.; Fermelia, A.; Lee, G. K. F.
1990-01-01
An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.
Estimation of Financial Agent-Based Models with Simulated Maximum Likelihood
Czech Academy of Sciences Publication Activity Database
Kukačka, Jiří; Baruník, Jozef
2017-01-01
Roč. 85, č. 1 (2017), s. 21-45 ISSN 0165-1889 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : heterogeneous agent model, * simulated maximum likelihood * switching Subject RIV: AH - Economics OBOR OECD: Finance Impact factor: 1.000, year: 2016 http://library.utia.cas.cz/separaty/2017/E/kukacka-0478481.pdf
A Reliability Test of a Complex System Based on Empirical Likelihood
Zhou, Yan; Fu, Liya; Zhang, Jun; Hui, Yongchang
2016-01-01
To analyze the reliability of a complex system described by minimal paths, an empirical likelihood method is proposed to solve the reliability test problem when the subsystem distributions are unknown. Furthermore, we provide a reliability test statistic of the complex system and extract the limit distribution of the test statistic. Therefore, we can obtain the confidence interval for reliability and make statistical inferences. The simulation studies also demonstrate the theorem results.
Taghva, Alexander; Karst, Edward; Underwood, Paul
2017-08-01
Concordant paresthesia coverage is an independent predictor of pain relief following spinal cord stimulation (SCS). Using aggregate data, our objective is to produce a map of paresthesia coverage as a function of electrode location in SCS. This retrospective analysis used x-rays, SCS programming data, and paresthesia coverage maps from the EMPOWER registry of SCS implants for chronic neuropathic pain. Spinal level of dorsal column stimulation was determined by x-ray adjudication and active cathodes in patient programs. Likelihood of paresthesia coverage was determined as a function of stimulating electrode location. Segments of paresthesia coverage were grouped anatomically. Fisher's exact test was used to identify significant differences in likelihood of paresthesia coverage as a function of spinal stimulation level. In the 178 patients analyzed, the most prevalent areas of paresthesia coverage were buttocks, anterior and posterior thigh (each 98%), and low back (94%). Unwanted paresthesia at the ribs occurred in 8% of patients. There were significant differences in the likelihood of achieving paresthesia, with higher thoracic levels (T5, T6, and T7) more likely to achieve low back coverage but also more likely to introduce paresthesia felt at the ribs. Higher levels in the thoracic spine were associated with greater coverage of the buttocks, back, and thigh, and with lesser coverage of the leg and foot. This paresthesia atlas uses real-world, aggregate data to determine likelihood of paresthesia coverage as a function of stimulating electrode location. It represents an application of "big data" techniques, and a step toward achieving personalized SCS therapy tailored to the individual's chronic pain. © 2017 International Neuromodulation Society.
International Nuclear Information System (INIS)
Wall, M.J.W.
1992-01-01
The notion of open-quotes probabilityclose quotes is generalized to that of open-quotes likelihood,close quotes and a natural logical structure is shown to exist for any physical theory which predicts likelihoods. Two physically based axioms are given for this logical structure to form an orthomodular poset, with an order-determining set of states. The results strengthen the basis of the quantum logic approach to axiomatic quantum theory. 25 refs
Evidence Based Medicine; Positive and Negative Likelihood Ratios of Diagnostic Tests
Directory of Open Access Journals (Sweden)
Alireza Baratloo
2015-10-01
Full Text Available In the previous two parts of educational manuscript series in Emergency, we explained some screening characteristics of diagnostic tests including accuracy, sensitivity, specificity, and positive and negative predictive values. In the 3rd part we aimed to explain positive and negative likelihood ratio (LR as one of the most reliable performance measures of a diagnostic test. To better understand this characteristic of a test, it is first necessary to fully understand the concept of sensitivity and specificity. So we strongly advise you to review the 1st part of this series again. In short, the likelihood ratios are about the percentage of people with and without a disease but having the same test result. The prevalence of a disease can directly influence screening characteristics of a diagnostic test, especially its sensitivity and specificity. Trying to eliminate this effect, LR was developed. Pre-test probability of a disease multiplied by positive or negative LR can estimate post-test probability. Therefore, LR is the most important characteristic of a test to rule out or rule in a diagnosis. A positive likelihood ratio > 1 means higher probability of the disease to be present in a patient with a positive test. The further from 1, either higher or lower, the stronger the evidence to rule in or rule out the disease, respectively. It is obvious that tests with LR close to one are less practical. On the other hand, LR further from one will have more value for application in medicine. Usually tests with 0.1 < LR > 10 are considered suitable for implication in routine practice.
Maximum likelihood based multi-channel isotropic reverberation reduction for hearing aids
DEFF Research Database (Denmark)
Kuklasiński, Adam; Doclo, Simon; Jensen, Søren Holdt
2014-01-01
We propose a multi-channel Wiener filter for speech dereverberation in hearing aids. The proposed algorithm uses joint maximum likelihood estimation of the speech and late reverberation spectral variances, under the assumption that the late reverberant sound field is cylindrically isotropic....... The dereverberation performance of the algorithm is evaluated using computer simulations with realistic hearing aid microphone signals including head-related effects. The algorithm is shown to work well with signals reverberated both by synthetic and by measured room impulse responses, achieving improvements...
Directory of Open Access Journals (Sweden)
Behrooz Attaran
2015-01-01
Full Text Available Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estimation values, which are derived from the vibration signals of test data. The results shows that the performance of the proposed optimized system is better than most previous studies, even though it uses only two features. Effectiveness of the above method is illustrated using obtained bearing vibration data.
A likelihood ratio test for species membership based on DNA sequence data
DEFF Research Database (Denmark)
Matz, Mikhail V.; Nielsen, Rasmus
2005-01-01
DNA barcoding as an approach for species identification is rapidly increasing in popularity. However, it remains unclear which statistical procedures should accompany the technique to provide a measure of uncertainty. Here we describe a likelihood ratio test which can be used to test if a sampled...... sequence is a member of an a priori specified species. We investigate the performance of the test using coalescence simulations, as well as using the real data from butterflies and frogs representing two kinds of challenge for DNA barcoding: extremely low and extremely high levels of sequence variability....
Inference for the Sharpe Ratio Using a Likelihood-Based Approach
Directory of Open Access Journals (Sweden)
Ying Liu
2012-01-01
Full Text Available The Sharpe ratio is the prominent risk-adjusted performance measure used by practitioners. Statistical testing of this ratio using its asymptotic distribution has lagged behind its use. In this paper, highly accurate likelihood analysis is applied for inference on the Sharpe ratio. Both the one- and two-sample problems are considered. The methodology has O(n−3/2 distributional accuracy and can be implemented using any parametric return distribution structure. Simulations are provided to demonstrate the method's superior accuracy over existing methods used for testing in the literature.
The unfolding of NaI(Tl) γ-ray spectrum based on maximum likelihood method
International Nuclear Information System (INIS)
Zhang Qingxian; Ge Liangquan; Gu Yi; Zeng Guoqiang; Lin Yanchang; Wang Guangxi
2011-01-01
NaI(Tl) detectors, having a good detection efficiency, are used to detect gamma rays in field surveys. But the poor energy resolution hinders their applications, despite the use of traditional methods to resolve the overlapped gamma-ray peaks. In this paper, the maximum likelihood (ML) solution is used to resolve the spectrum. The ML method,which is capable of decomposing the peaks in energy difference of over 2/3 FWHM, is applied to scale NaI(Tl) the spectrometer. The result shows that the net area is in proportion to the content of isotopes and the precision of scaling is better than the stripping ration method. (authors)
New BFA Method Based on Attractor Neural Network and Likelihood Maximization
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.; Snášel, V.
2014-01-01
Roč. 132, 20 May (2014), s. 14-29 ISSN 0925-2312 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional support: RVO:67985807 Keywords : recurrent neural network * associative memory * Hebbian learning rule * neural network application * data mining * statistics * Boolean factor analysis * information gain * dimension reduction * likelihood-maximization * bars problem Subject RIV: IN - Informatics, Computer Science Impact factor: 2.083, year: 2014
The phylogenetic likelihood library.
Flouri, T; Izquierdo-Carrasco, F; Darriba, D; Aberer, A J; Nguyen, L-T; Minh, B Q; Von Haeseler, A; Stamatakis, A
2015-03-01
We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface for developing likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data structures and functions that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as likelihood calculations, model parameter as well as branch length optimization, and tree space exploration. The highly optimized and parallelized implementation of the phylogenetic likelihood function and a thorough documentation provide a framework for rapid development of scalable parallel phylogenetic software. By example of two likelihood-based phylogenetic codes we show that the PLL improves the sequential performance of current software by a factor of 2-10 while requiring only 1 month of programming time for integration. We show that, when numerical scaling for preventing floating point underflow is enabled, the double precision likelihood calculations in the PLL are up to 1.9 times faster than those in BEAGLE. On an empirical DNA dataset with 2000 taxa the AVX version of PLL is 4 times faster than BEAGLE (scaling enabled and required). The PLL is available at http://www.libpll.org under the GNU General Public License (GPL). © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Kieftenbeld, Vincent; Natesan, Prathiba
2012-01-01
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Earthquake likelihood model testing
Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A.
2007-01-01
INTRODUCTIONThe Regional Earthquake Likelihood Models (RELM) project aims to produce and evaluate alternate models of earthquake potential (probability per unit volume, magnitude, and time) for California. Based on differing assumptions, these models are produced to test the validity of their assumptions and to explore which models should be incorporated in seismic hazard and risk evaluation. Tests based on physical and geological criteria are useful but we focus on statistical methods using future earthquake catalog data only. We envision two evaluations: a test of consistency with observed data and a comparison of all pairs of models for relative consistency. Both tests are based on the likelihood method, and both are fully prospective (i.e., the models are not adjusted to fit the test data). To be tested, each model must assign a probability to any possible event within a specified region of space, time, and magnitude. For our tests the models must use a common format: earthquake rates in specified “bins” with location, magnitude, time, and focal mechanism limits.Seismology cannot yet deterministically predict individual earthquakes; however, it should seek the best possible models for forecasting earthquake occurrence. This paper describes the statistical rules of an experiment to examine and test earthquake forecasts. The primary purposes of the tests described below are to evaluate physical models for earthquakes, assure that source models used in seismic hazard and risk studies are consistent with earthquake data, and provide quantitative measures by which models can be assigned weights in a consensus model or be judged as suitable for particular regions.In this paper we develop a statistical method for testing earthquake likelihood models. A companion paper (Schorlemmer and Gerstenberger 2007, this issue) discusses the actual implementation of these tests in the framework of the RELM initiative.Statistical testing of hypotheses is a common task and a
Maximum-likelihood methods for array processing based on time-frequency distributions
Zhang, Yimin; Mu, Weifeng; Amin, Moeness G.
1999-11-01
This paper proposes a novel time-frequency maximum likelihood (t-f ML) method for direction-of-arrival (DOA) estimation for non- stationary signals, and compares this method with conventional maximum likelihood DOA estimation techniques. Time-frequency distributions localize the signal power in the time-frequency domain, and as such enhance the effective SNR, leading to improved DOA estimation. The localization of signals with different t-f signatures permits the division of the time-frequency domain into smaller regions, each contains fewer signals than those incident on the array. The reduction of the number of signals within different time-frequency regions not only reduces the required number of sensors, but also decreases the computational load in multi- dimensional optimizations. Compared to the recently proposed time- frequency MUSIC (t-f MUSIC), the proposed t-f ML method can be applied in coherent environments, without the need to perform any type of preprocessing that is subject to both array geometry and array aperture.
A biclustering algorithm for binary matrices based on penalized Bernoulli likelihood
Lee, Seokho
2013-01-31
We propose a new biclustering method for binary data matrices using the maximum penalized Bernoulli likelihood estimation. Our method applies a multi-layer model defined on the logits of the success probabilities, where each layer represents a simple bicluster structure and the combination of multiple layers is able to reveal complicated, multiple biclusters. The method allows for non-pure biclusters, and can simultaneously identify the 1-prevalent blocks and 0-prevalent blocks. A computationally efficient algorithm is developed and guidelines are provided for specifying the tuning parameters, including initial values of model parameters, the number of layers, and the penalty parameters. Missing-data imputation can be handled in the EM framework. The method is tested using synthetic and real datasets and shows good performance. © 2013 Springer Science+Business Media New York.
Directory of Open Access Journals (Sweden)
Huapeng Wang
2015-01-01
Full Text Available Forensic speaker recognition is experiencing a remarkable paradigm shift in terms of the evaluation framework and presentation of voice evidence. This paper proposes a new method of forensic automatic speaker recognition using the likelihood ratio framework to quantify the strength of voice evidence. The proposed method uses a reference database to calculate the within- and between-speaker variability. Some acoustic-phonetic features are extracted automatically using the software VoiceSauce. The effectiveness of the approach was tested using two Mandarin databases: A mobile telephone database and a landline database. The experiment's results indicate that these acoustic-phonetic features do have some discriminating potential and are worth trying in discrimination. The automatic acoustic-phonetic features have acceptable discriminative performance and can provide more reliable results in evidence analysis when fused with other kind of voice features.
Cheng, Qin-Bo; Chen, Xi; Xu, Chong-Yu; Reinhardt-Imjela, Christian; Schulte, Achim
2014-11-01
In this study, the likelihood functions for uncertainty analysis of hydrological models are compared and improved through the following steps: (1) the equivalent relationship between the Nash-Sutcliffe Efficiency coefficient (NSE) and the likelihood function with Gaussian independent and identically distributed residuals is proved; (2) a new estimation method of the Box-Cox transformation (BC) parameter is developed to improve the effective elimination of the heteroscedasticity of model residuals; and (3) three likelihood functions-NSE, Generalized Error Distribution with BC (BC-GED) and Skew Generalized Error Distribution with BC (BC-SGED)-are applied for SWAT-WB-VSA (Soil and Water Assessment Tool - Water Balance - Variable Source Area) model calibration in the Baocun watershed, Eastern China. Performances of calibrated models are compared using the observed river discharges and groundwater levels. The result shows that the minimum variance constraint can effectively estimate the BC parameter. The form of the likelihood function significantly impacts on the calibrated parameters and the simulated results of high and low flow components. SWAT-WB-VSA with the NSE approach simulates flood well, but baseflow badly owing to the assumption of Gaussian error distribution, where the probability of the large error is low, but the small error around zero approximates equiprobability. By contrast, SWAT-WB-VSA with the BC-GED or BC-SGED approach mimics baseflow well, which is proved in the groundwater level simulation. The assumption of skewness of the error distribution may be unnecessary, because all the results of the BC-SGED approach are nearly the same as those of the BC-GED approach.
Tsou, Haiping; Yan, Tsun-Yee
1999-04-01
This paper describes an extended-source spatial acquisition and tracking scheme for planetary optical communications. This scheme uses the Sun-lit Earth image as the beacon signal, which can be computed according to the current Sun-Earth-Probe angle from a pre-stored Earth image or a received snapshot taken by other Earth-orbiting satellite. Onboard the spacecraft, the reference image is correlated in the transform domain with the received image obtained from a detector array, which is assumed to have each of its pixels corrupted by an independent additive white Gaussian noise. The coordinate of the ground station is acquired and tracked, respectively, by an open-loop acquisition algorithm and a closed-loop tracking algorithm derived from the maximum likelihood criterion. As shown in the paper, the optimal spatial acquisition requires solving two nonlinear equations, or iteratively solving their linearized variants, to estimate the coordinate when translation in the relative positions of onboard and ground transceivers is considered. Similar assumption of linearization leads to the closed-loop spatial tracking algorithm in which the loop feedback signals can be derived from the weighted transform-domain correlation. Numerical results using a sample Sun-lit Earth image demonstrate that sub-pixel resolutions can be achieved by this scheme in a high disturbance environment.
Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field
Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting
2016-09-01
In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.
Horton, Rachael Jane; Minniti, Antoinette; Mireylees, Stewart; McEntegart, Damian
2008-11-01
Non-compliance in clinical studies is a significant issue, but causes remain unclear. Utilizing the Elaboration Likelihood Model of persuasion, this study assessed the psychophysical peripheral cue 'Interactive Voice Response System (IVRS) call frequency' on compliance. 71 participants were randomized to once daily (OD), twice daily (BID) or three times daily (TID) call schedules over two weeks. Participants completed 30-item cognitive function tests at each call. Compliance was defined as proportion of expected calls within a narrow window (+/- 30 min around scheduled time), and within a relaxed window (-30 min to +4 h). Data were analyzed by ANOVA and pairwise comparisons adjusted by the Bonferroni correction. There was a relationship between call frequency and compliance. Bonferroni adjusted pairwise comparisons showed significantly higher compliance (p=0.03) for the BID (51.0%) than TID (30.3%) for the narrow window; for the extended window, compliance was higher (p=0.04) with OD (59.5%), than TID (38.4%). The IVRS psychophysical peripheral cue call frequency supported the ELM as a route to persuasion. The results also support OD strategy for optimal compliance. Models suggest specific indicators to enhance compliance with medication dosing and electronic patient diaries to improve health outcomes and data integrity respectively.
Directory of Open Access Journals (Sweden)
Rajat Malik
Full Text Available A class of discrete-time models of infectious disease spread, referred to as individual-level models (ILMs, are typically fitted in a Bayesian Markov chain Monte Carlo (MCMC framework. These models quantify probabilistic outcomes regarding the risk of infection of susceptible individuals due to various susceptibility and transmissibility factors, including their spatial distance from infectious individuals. The infectious pressure from infected individuals exerted on susceptible individuals is intrinsic to these ILMs. Unfortunately, quantifying this infectious pressure for data sets containing many individuals can be computationally burdensome, leading to a time-consuming likelihood calculation and, thus, computationally prohibitive MCMC-based analysis. This problem worsens when using data augmentation to allow for uncertainty in infection times. In this paper, we develop sampling methods that can be used to calculate a fast, approximate likelihood when fitting such disease models. A simple random sampling approach is initially considered followed by various spatially-stratified schemes. We test and compare the performance of our methods with both simulated data and data from the 2001 foot-and-mouth disease (FMD epidemic in the U.K. Our results indicate that substantial computation savings can be obtained--albeit, of course, with some information loss--suggesting that such techniques may be of use in the analysis of very large epidemic data sets.
Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.
2003-01-01
Demonstrated, through simulation, that stationary autoregressive moving average (ARMA) models may be fitted readily when T>N, using normal theory raw maximum likelihood structural equation modeling. Also provides some illustrations based on real data. (SLD)
A likelihood-based framework for the analysis of discussion threads
Gómez, Vincenc; Kappen, Hilbert J.; Litvak, Nelli; Kaltenbrunner, Andreas
2013-01-01
Online discussion threads are conversational cascades in the form of posted messages that can be generally found in social systems that comprise many-to-many interaction such as blogs, news aggregators or bulletin board systems. We propose a framework based on generative models of growing trees to
A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT
Wang, Yingmei; Wang, Ge; Mao, Shuwei; Cong, Wenxiang; Ji, Zhilong; Cai, Jian-Feng; Ye, Yangbo
2016-11-01
Standard computed tomography (CT) cannot reproduce spectral information of an object. Hardware solutions include dual-energy CT which scans the object twice in different x-ray energy levels, and energy-discriminative detectors which can separate lower and higher energy levels from a single x-ray scan. In this paper, we propose a software solution and give an iterative algorithm that reconstructs an image with spectral information from just one scan with a standard energy-integrating detector. The spectral information obtained can be used to produce color CT images, spectral curves of the attenuation coefficient μ (r,E) at points inside the object, and photoelectric images, which are all valuable imaging tools in cancerous diagnosis. Our software solution requires no change on hardware of a CT machine. With the Shepp-Logan phantom, we have found that although the photoelectric and Compton components were not perfectly reconstructed, their composite effect was very accurately reconstructed as compared to the ground truth and the dual-energy CT counterpart. This means that our proposed method has an intrinsic benefit in beam hardening correction and metal artifact reduction. The algorithm is based on a nonlinear polychromatic acquisition model for x-ray CT. The key technique is a sparse representation of iterations in a framelet system. Convergence of the algorithm is studied. This is believed to be the first application of framelet imaging tools to a nonlinear inverse problem.
International Nuclear Information System (INIS)
Bilska-Wolak, Anna O; Floyd, Carey E Jr
2004-01-01
While mammography is a highly sensitive method for detecting breast tumours, its ability to differentiate between malignant and benign lesions is low, which may result in as many as 70% of unnecessary biopsies. The purpose of this study was to develop a highly specific computer-aided diagnosis algorithm to improve classification of mammographic masses. A classifier based on the likelihood ratio was developed to accommodate cases with missing data. Data for development included 671 biopsy cases (245 malignant), with biopsy-proved outcome. Sixteen features based on the BI-RADS TM lexicon and patient history had been recorded for the cases, with 1.3 ± 1.1 missing feature values per case. Classifier evaluation methods included receiver operating characteristic and leave-one-out bootstrap sampling. The classifier achieved 32% specificity at 100% sensitivity on the 671 cases with 16 features that had missing values. Utilizing just the seven features present for all cases resulted in decreased performance at 100% sensitivity with average 19% specificity. No cases and no feature data were omitted during classifier development, showing that it is more beneficial to utilize cases with missing values than to discard incomplete cases that cannot be handled by many algorithms. Classification of mammographic masses was commendable at high sensitivity levels, indicating that benign cases could be potentially spared from biopsy
Directory of Open Access Journals (Sweden)
Wonkuk Kim
Full Text Available Recent studies suggest that copy number polymorphisms (CNPs may play an important role in disease susceptibility and onset. Currently, the detection of CNPs mainly depends on microarray technology. For case-control studies, conventionally, subjects are assigned to a specific CNP category based on the continuous quantitative measure produced by microarray experiments, and cases and controls are then compared using a chi-square test of independence. The purpose of this work is to specify the likelihood ratio test statistic (LRTS for case-control sampling design based on the underlying continuous quantitative measurement, and to assess its power and relative efficiency (as compared to the chi-square test of independence on CNP counts. The sample size and power formulas of both methods are given. For the latter, the CNPs are classified using the Bayesian classification rule. The LRTS is more powerful than this chi-square test for the alternatives considered, especially alternatives in which the at-risk CNP categories have low frequencies. An example of the application of the LRTS is given for a comparison of CNP distributions in individuals of Caucasian or Taiwanese ethnicity, where the LRTS appears to be more powerful than the chi-square test, possibly due to misclassification of the most common CNP category into a less common category.
Extended likelihood inference in reliability
International Nuclear Information System (INIS)
Martz, H.F. Jr.; Beckman, R.J.; Waller, R.A.
1978-10-01
Extended likelihood methods of inference are developed in which subjective information in the form of a prior distribution is combined with sampling results by means of an extended likelihood function. The extended likelihood function is standardized for use in obtaining extended likelihood intervals. Extended likelihood intervals are derived for the mean of a normal distribution with known variance, the failure-rate of an exponential distribution, and the parameter of a binomial distribution. Extended second-order likelihood methods are developed and used to solve several prediction problems associated with the exponential and binomial distributions. In particular, such quantities as the next failure-time, the number of failures in a given time period, and the time required to observe a given number of failures are predicted for the exponential model with a gamma prior distribution on the failure-rate. In addition, six types of life testing experiments are considered. For the binomial model with a beta prior distribution on the probability of nonsurvival, methods are obtained for predicting the number of nonsurvivors in a given sample size and for predicting the required sample size for observing a specified number of nonsurvivors. Examples illustrate each of the methods developed. Finally, comparisons are made with Bayesian intervals in those cases where these are known to exist
Heinrich, Verena; Kamphans, Tom; Mundlos, Stefan; Robinson, Peter N; Krawitz, Peter M
2017-01-01
Next generation sequencing technology considerably changed the way we screen for pathogenic mutations in rare Mendelian disorders. However, the identification of the disease-causing mutation amongst thousands of variants of partly unknown relevance is still challenging and efficient techniques that reduce the genomic search space play a decisive role. Often segregation- or linkage analysis are used to prioritize candidates, however, these approaches require correct information about the degree of relationship among the sequenced samples. For quality assurance an automated control of pedigree structures and sample assignment is therefore highly desirable in order to detect label mix-ups that might otherwise corrupt downstream analysis. We developed an algorithm based on likelihood ratios that discriminates between different classes of relationship for an arbitrary number of genotyped samples. By identifying the most likely class we are able to reconstruct entire pedigrees iteratively, even for highly consanguineous families. We tested our approach on exome data of different sequencing studies and achieved high precision for all pedigree predictions. By analyzing the precision for varying degrees of relatedness or inbreeding we could show that a prediction is robust down to magnitudes of a few hundred loci. A java standalone application that computes the relationships between multiple samples as well as a Rscript that visualizes the pedigree information is available for download as well as a web service at www.gene-talk.de CONTACT: heinrich@molgen.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Fornito, A; Yücel, M; Patti, J; Wood, S J; Pantelis, C
2009-03-01
Voxel-based morphometry (VBM) is a popular tool for mapping neuroanatomical changes in schizophrenia patients. Several recent meta-analyses have identified the brain regions in which patients most consistently show grey matter reductions, although they have not examined whether such changes reflect differences in grey matter concentration (GMC) or grey matter volume (GMV). These measures assess different aspects of grey matter integrity, and may therefore reflect different pathological processes. In this study, we used the Anatomical Likelihood Estimation procedure to analyse significant differences reported in 37 VBM studies of schizophrenia patients, incorporating data from 1646 patients and 1690 controls, and compared the findings of studies using either GMC or GMV to index grey matter differences. Analysis of all studies combined indicated that grey matter reductions in a network of frontal, temporal, thalamic and striatal regions are among the most frequently reported in literature. GMC reductions were generally larger and more consistent than GMV reductions, and were more frequent in the insula, medial prefrontal, medial temporal and striatal regions. GMV reductions were more frequent in dorso-medial frontal cortex, and lateral and orbital frontal areas. These findings support the primacy of frontal, limbic, and subcortical dysfunction in the pathophysiology of schizophrenia, and suggest that the grey matter changes observed with MRI may not necessarily result from a unitary pathological process.
Withers, Giselle F; Wertheim, Eleanor H
2004-01-01
This study applied principles from the Elaboration Likelihood Model of Persuasion to the prevention of disordered eating. Early adolescent girls watched either a preventive videotape only (n=114) or video plus post-video activity (verbal discussion, written exercises, or control discussion) (n=187); or had no intervention (n=104). Significantly more body image and knowledge improvements occurred at post video and follow-up in the intervention groups compared to no intervention. There were no outcome differences among intervention groups, or between girls with high or low elaboration likelihood. Further research is needed in integrating the videotape into a broader prevention package.
International Nuclear Information System (INIS)
Arab, M.N.; Ayaz, M.
2004-01-01
The performance of transmission line insulator is greatly affected by dust, fumes from industrial areas and saline deposit near the coast. Such pollutants in the presence of moisture form a coating on the surface of the insulator, which in turn allows the passage of leakage current. This leakage builds up to a point where flashover develops. The flashover is often followed by permanent failure of insulation resulting in prolong outages. With the increase in system voltage owing to the greater demand of electrical energy over the past few decades, the importance of flashover due to pollution has received special attention. The objective of the present work was to study the performance of overhead line insulators in the presence of contaminants such as induced salts. A detailed review of the literature and the mechanisms of insulator flashover due to the pollution are presented. Experimental investigations on the behavior of overhead line insulators under industrial salt contamination are carried out. A special fog chamber was designed in which the contamination testing of insulators was carried out. Flashover behavior under various degrees of contamination of insulators with the most common industrial fume components such as Nitrate and Sulphate compounds was studied. Substituting the normal distribution parameter in the probability distribution function based on maximum likelihood develops a statistical method. The method gives a high accuracy in the estimation of the 50% flashover voltage, which is then used to evaluate the critical flashover index at various contamination levels. The critical flashover index is a valuable parameter in insulation design for numerous applications. (author)
Adank, Patti
2012-01-01
The role of speech production mechanisms in difficult speech comprehension is the subject of on-going debate in speech science. Two Activation Likelihood Estimation (ALE) analyses were conducted on neuroimaging studies investigating difficult speech comprehension or speech production. Meta-analysis 1 included 10 studies contrasting comprehension…
Lee, Woong-Kyu
2012-01-01
The principal objective of this study was to gain insight into attitude changes occurring during IT acceptance from the perspective of elaboration likelihood model (ELM). In particular, the primary target of this study was the process of IT acceptance through an education program. Although the Internet and computers are now quite ubiquitous, and…
Composite likelihood estimation of demographic parameters
Directory of Open Access Journals (Sweden)
Garrigan Daniel
2009-11-01
Full Text Available Abstract Background Most existing likelihood-based methods for fitting historical demographic models to DNA sequence polymorphism data to do not scale feasibly up to the level of whole-genome data sets. Computational economies can be achieved by incorporating two forms of pseudo-likelihood: composite and approximate likelihood methods. Composite likelihood enables scaling up to large data sets because it takes the product of marginal likelihoods as an estimator of the likelihood of the complete data set. This approach is especially useful when a large number of genomic regions constitutes the data set. Additionally, approximate likelihood methods can reduce the dimensionality of the data by summarizing the information in the original data by either a sufficient statistic, or a set of statistics. Both composite and approximate likelihood methods hold promise for analyzing large data sets or for use in situations where the underlying demographic model is complex and has many parameters. This paper considers a simple demographic model of allopatric divergence between two populations, in which one of the population is hypothesized to have experienced a founder event, or population bottleneck. A large resequencing data set from human populations is summarized by the joint frequency spectrum, which is a matrix of the genomic frequency spectrum of derived base frequencies in two populations. A Bayesian Metropolis-coupled Markov chain Monte Carlo (MCMCMC method for parameter estimation is developed that uses both composite and likelihood methods and is applied to the three different pairwise combinations of the human population resequence data. The accuracy of the method is also tested on data sets sampled from a simulated population model with known parameters. Results The Bayesian MCMCMC method also estimates the ratio of effective population size for the X chromosome versus that of the autosomes. The method is shown to estimate, with reasonable
Boden, Lauren M; Boden, Stephanie A; Premkumar, Ajay; Gottschalk, Michael B; Boden, Scott D
2018-02-09
Retrospective analysis of prospectively collected data. To create a data-driven triage system stratifying patients by likelihood of undergoing spinal surgery within one year of presentation. Low back pain (LBP) and radicular lower extremity (LE) symptoms are common musculoskeletal problems. There is currently no standard data-derived triage process based on information that can be obtained prior to the initial physician-patient encounter to direct patients to the optimal physician type. We analyzed patient-reported data from 8006 patients with a chief complaint of LBP and/or LE radicular symptoms who presented to surgeons at a large multidisciplinary spine center between September 1, 2005 and June 30, 2016. Univariate and multivariate analysis identified independent risk factors for undergoing spinal surgery within one year of initial visit. A model incorporating these risk factors was created using a random sample of 80% of the total patients in our cohort, and validated on the remaining 20%. The baseline one-year surgery rate within our cohort was 39% for all patients and 42% for patients with LE symptoms. Those identified as high likelihood by the center's existing triage process had a surgery rate of 45%. The new triage scoring system proposed in this study was able to identify a high likelihood group in which 58% underwent surgery, which is a 46% higher surgery rate than in non-triaged patients and a 29% improvement from our institution's existing triage system. The data-driven triage model and scoring system derived and validated in this study (Spine Surgery Likelihood model [SSL-11]), significantly improved existing processes in predicting the likelihood of undergoing spinal surgery within one year of initial presentation. This triage system will allow centers to more selectively screen for surgical candidates and more effectively direct patients to surgeons or non-operative spine specialists. 4.
Obtaining reliable Likelihood Ratio tests from simulated likelihood functions
DEFF Research Database (Denmark)
Andersen, Laura Mørch
It is standard practice by researchers and the default option in many statistical programs to base test statistics for mixed models on simulations using asymmetric draws (e.g. Halton draws). This paper shows that when the estimated likelihood functions depend on standard deviations of mixed param...
Sethi, Suresh; Linden, Daniel; Wenburg, John; Lewis, Cara; Lemons, Patrick R.; Fuller, Angela K.; Hare, Matthew P.
2016-01-01
Error-tolerant likelihood-based match calling presents a promising technique to accurately identify recapture events in genetic mark–recapture studies by combining probabilities of latent genotypes and probabilities of observed genotypes, which may contain genotyping errors. Combined with clustering algorithms to group samples into sets of recaptures based upon pairwise match calls, these tools can be used to reconstruct accurate capture histories for mark–recapture modelling. Here, we assess the performance of a recently introduced error-tolerant likelihood-based match-calling model and sample clustering algorithm for genetic mark–recapture studies. We assessed both biallelic (i.e. single nucleotide polymorphisms; SNP) and multiallelic (i.e. microsatellite; MSAT) markers using a combination of simulation analyses and case study data on Pacific walrus (Odobenus rosmarus divergens) and fishers (Pekania pennanti). A novel two-stage clustering approach is demonstrated for genetic mark–recapture applications. First, repeat captures within a sampling occasion are identified. Subsequently, recaptures across sampling occasions are identified. The likelihood-based matching protocol performed well in simulation trials, demonstrating utility for use in a wide range of genetic mark–recapture studies. Moderately sized SNP (64+) and MSAT (10–15) panels produced accurate match calls for recaptures and accurate non-match calls for samples from closely related individuals in the face of low to moderate genotyping error. Furthermore, matching performance remained stable or increased as the number of genetic markers increased, genotyping error notwithstanding.
DEFF Research Database (Denmark)
De Carvalho, Elisabeth; Omar, Samir; Slock, Dirk
2013-01-01
We analyze two algorithms that have been introduced previously for Deterministic Maximum Likelihood (DML) blind estimation of multiple FIR channels. The first one is a modification of the Iterative Quadratic ML (IQML) algorithm. IQML gives biased estimates of the channel and performs poorly at low...... to the initialization. Its asymptotic performance does not reach the DML performance though. The second strategy, called Pseudo-Quadratic ML (PQML), is naturally denoised. The denoising in PQML is furthermore more efficient than in DIQML: PQML yields the same asymptotic performance as DML, as opposed to DIQML......, but requires a consistent initialization. We furthermore compare DIQML and PQML to the strategy of alternating minimization w.r.t. symbols and channel for solving DML (AQML). An asymptotic performance analysis, a complexity evaluation and simulation results are also presented. The proposed DIQML and PQML...
Gengsheng Qin; Davis, Angela E; Jing, Bing-Yi
2011-06-01
For a continuous-scale diagnostic test, it is often of interest to find the range of the sensitivity of the test at the cut-off that yields a desired specificity. In this article, we first define a profile empirical likelihood ratio for the sensitivity of a continuous-scale diagnostic test and show that its limiting distribution is a scaled chi-square distribution. We then propose two new empirical likelihood-based confidence intervals for the sensitivity of the test at a fixed level of specificity by using the scaled chi-square distribution. Simulation studies are conducted to compare the finite sample performance of the newly proposed intervals with the existing intervals for the sensitivity in terms of coverage probability. A real example is used to illustrate the application of the recommended methods.
Thompson, Bryony A; Goldgar, David E; Paterson, Carol; Clendenning, Mark; Walters, Rhiannon; Arnold, Sven; Parsons, Michael T; Michael D, Walsh; Gallinger, Steven; Haile, Robert W; Hopper, John L; Jenkins, Mark A; Lemarchand, Loic; Lindor, Noralane M; Newcomb, Polly A; Thibodeau, Stephen N; Young, Joanne P; Buchanan, Daniel D; Tavtigian, Sean V; Spurdle, Amanda B
2013-01-01
Mismatch repair (MMR) gene sequence variants of uncertain clinical significance are often identified in suspected Lynch syndrome families, and this constitutes a challenge for both researchers and clinicians. Multifactorial likelihood model approaches provide a quantitative measure of MMR variant pathogenicity, but first require input of likelihood ratios (LRs) for different MMR variation-associated characteristics from appropriate, well-characterized reference datasets. Microsatellite instability (MSI) and somatic BRAF tumor data for unselected colorectal cancer probands of known pathogenic variant status were used to derive LRs for tumor characteristics using the Colon Cancer Family Registry (CFR) resource. These tumor LRs were combined with variant segregation within families, and estimates of prior probability of pathogenicity based on sequence conservation and position, to analyze 44 unclassified variants identified initially in Australasian Colon CFR families. In addition, in vitro splicing analyses were conducted on the subset of variants based on bioinformatic splicing predictions. The LR in favor of pathogenicity was estimated to be ~12-fold for a colorectal tumor with a BRAF mutation-negative MSI-H phenotype. For 31 of the 44 variants, the posterior probabilities of pathogenicity were such that altered clinical management would be indicated. Our findings provide a working multifactorial likelihood model for classification that carefully considers mode of ascertainment for gene testing. © 2012 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Driscoll, Donald D [Case Western Reserve Univ., Cleveland, OH (United States)
2004-05-01
The Cryogenic Dark Matter Search (CDMS) uses cryogenically-cooled detectors made of germanium and silicon in an attempt to detect dark matter in the form of Weakly-Interacting Massive Particles (WIMPs). The expected interaction rate of these particles is on the order of 1/kg/day, far below the 200/kg/day expected rate of background interactions after passive shielding and an active cosmic ray muon veto. Our detectors are instrumented to make a simultaneous measurement of both the ionization energy and thermal energy deposited by the interaction of a particle with the crystal substrate. A comparison of these two quantities allows for the rejection of a background of electromagnetically-interacting particles at a level of better than 99.9%. The dominant remaining background at a depth of ~ 11 m below the surface comes from fast neutrons produced by cosmic ray muons interacting in the rock surrounding the experiment. Contamination of our detectors by a beta emitter can add an unknown source of unrejected background. In the energy range of interest for a WIMP study, electrons will have a short penetration depth and preferentially interact near the surface. Some of the ionization signal can be lost to the charge contacts there and a decreased ionization signal relative to the thermal signal will cause a background event which interacts at the surface to be misidentified as a signal event. We can use information about the shape of the thermal signal pulse to discriminate against these surface events. Using a subset of our calibration set which contains a large fraction of electron events, we can characterize the expected behavior of surface events and construct a cut to remove them from our candidate signal events. This thesis describes the development of the 6 detectors (4 x 250 g Ge and 2 x 100 g Si) used in the 2001-2002 CDMS data run at the Stanford Underground Facility with a total of 119 livedays of data. The preliminary results presented are based on the first use
International Nuclear Information System (INIS)
Lowrey, Justin D.; Biegalski, Steven R.F.
2012-01-01
The spectrum deconvolution analysis tool (SDAT) software code was written and tested at The University of Texas at Austin utilizing the standard spectrum technique to determine activity levels of Xe-131m, Xe-133m, Xe-133, and Xe-135 in β–γ coincidence spectra. SDAT was originally written to utilize the method of least-squares to calculate the activity of each radionuclide component in the spectrum. Recently, maximum likelihood estimation was also incorporated into the SDAT tool. This is a robust statistical technique to determine the parameters that maximize the Poisson distribution likelihood function of the sample data. In this case it is used to parameterize the activity level of each of the radioxenon components in the spectra. A new test dataset was constructed utilizing Xe-131m placed on a Xe-133 background to compare the robustness of the least-squares and maximum likelihood estimation methods for low counting statistics data. The Xe-131m spectra were collected independently from the Xe-133 spectra and added to generate the spectra in the test dataset. The true independent counts of Xe-131m and Xe-133 are known, as they were calculated before the spectra were added together. Spectra with both high and low counting statistics are analyzed. Studies are also performed by analyzing only the 30 keV X-ray region of the β–γ coincidence spectra. Results show that maximum likelihood estimation slightly outperforms least-squares for low counting statistics data.
Soli, Sigfrid D; Giguère, Christian; Laroche, Chantal; Vaillancourt, Véronique; Dreschler, Wouter A; Rhebergen, Koenraad S; Harkins, Kevin; Ruckstuhl, Mark; Ramulu, Pradeep; Meyers, Lawrence S
corrections environments. The likelihood of effective speech communication at communication distances of 0.5 and 1 m was often less than 0.50 for normal vocal effort. Likelihood values often increased to 0.80 or more when raised or loud vocal effort was used. Effective speech communication at and beyond 5 m was often unlikely, regardless of vocal effort. ESII modeling of nonstationary real-world noise environments may prove an objective means of characterizing their impact on the likelihood of effective speech communication. The normative reference provided by these measures predicts the extent to which hearing impairments that increase the ESII value required for effective speech communication also decrease the likelihood of effective speech communication. These predictions may provide an objective evidence-based link between the essential hearing-critical job task requirements of public safety and law enforcement personnel and ESII-based hearing assessment of individuals who seek to perform these jobs.
Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies.
Rukhin, Andrew L
2011-01-01
A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed.
Nakamura, M; Saito, K; Wakabayashi, M
1990-04-01
The purpose of this study was to investigate how attitude change is generated by the recipient's degree of attitude formation, evaluative-emotional elements contained in the persuasive messages, and source expertise as a peripheral cue in the persuasion context. Hypotheses based on the Attitude Formation Theory of Mizuhara (1982) and the Elaboration Likelihood Model of Petty and Cacioppo (1981, 1986) were examined. Eighty undergraduate students served as subjects in the experiment, the first stage of which involving manipulating the degree of attitude formation with respect to nuclear power development. Then, the experimenter presented persuasive messages with varying combinations of evaluative-emotional elements from a source with either high or low expertise on the subject. Results revealed a significant interaction effect on attitude change among attitude formation, persuasive message and the expertise of the message source. That is, high attitude formation subjects resisted evaluative-emotional persuasion from the high expertise source while low attitude formation subjects changed their attitude when exposed to the same persuasive message from a low expertise source. Results exceeded initial predictions based on the Attitude Formation Theory and the Elaboration Likelihood Model.
Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed
2016-07-01
Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Attractor comparisons based on density
International Nuclear Information System (INIS)
Carroll, T. L.
2015-01-01
Recognizing a chaotic attractor can be seen as a problem in pattern recognition. Some feature vector must be extracted from the attractor and used to compare to other attractors. The field of machine learning has many methods for extracting feature vectors, including clustering methods, decision trees, support vector machines, and many others. In this work, feature vectors are created by representing the attractor as a density in phase space and creating polynomials based on this density. Density is useful in itself because it is a one dimensional function of phase space position, but representing an attractor as a density is also a way to reduce the size of a large data set before analyzing it with graph theory methods, which can be computationally intensive. The density computation in this paper is also fast to execute. In this paper, as a demonstration of the usefulness of density, the density is used directly to construct phase space polynomials for comparing attractors. Comparisons between attractors could be useful for tracking changes in an experiment when the underlying equations are too complicated for vector field modeling
Alberink, Ivo; de Jongh, Arent; Rodriguez, Crystal
2014-01-01
In recent studies, the evidential value of the similarity of minutiae configurations of fingermarks and fingerprints, for example expressed by automated fingerprint identification systems (AFIS), is determined by likelihood ratios (LRs). The paper explores whether there is an effect on LRs if conditioning takes place on specified fingers, fingerprints, or fingermarks under competing hypotheses: In addition, an approach is explored where conditioning is asymmetric. Comparisons between fingerprints and simulated fingermarks with eight minutiae are performed to produce similarity score distributions for each type of conditioning, given a fixed AFIS matching algorithm. Both similarity scores and LRs are significantly different if the conditioning changes. Given a common-source scenario, "LRs" resulting from asymmetric conditioning are on average higher. The difference may reach a factor of 2000. As conditioning on a suspect's finger(print) is labor-intensive and requires a cooperating suspect, it is recommended to just condition on the number of minutiae in the fingermark. © 2013 American Academy of Forensic Sciences.
Wu, Haiyan; Luo, Yi; Feng, Chunliang
2016-12-01
People often align their behaviors with group opinions, known as social conformity. Many neuroscience studies have explored the neuropsychological mechanisms underlying social conformity. Here we employed a coordinate-based meta-analysis on neuroimaging studies of social conformity with the purpose to reveal the convergence of the underlying neural architecture. We identified a convergence of reported activation foci in regions associated with normative decision-making, including ventral striatum (VS), dorsal posterior medial frontal cortex (dorsal pMFC), and anterior insula (AI). Specifically, consistent deactivation of VS and activation of dorsal pMFC and AI are identified when people's responses deviate from group opinions. In addition, the deviation-related responses in dorsal pMFC predict people's conforming behavioral adjustments. These are consistent with current models that disagreement with others might evoke "error" signals, cognitive imbalance, and/or aversive feelings, which are plausibly detected in these brain regions as control signals to facilitate subsequent conforming behaviors. Finally, group opinions result in altered neural correlates of valuation, manifested as stronger responses of VS to stimuli endorsed than disliked by others. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Murray, Aja Louise; Booth, Tom; Eisner, Manuel; Obsuth, Ingrid; Ribeaud, Denis
2018-05-22
Whether or not importance should be placed on an all-encompassing general factor of psychopathology (or p factor) in classifying, researching, diagnosing, and treating psychiatric disorders depends (among other issues) on the extent to which comorbidity is symptom-general rather than staying largely within the confines of narrower transdiagnostic factors such as internalizing and externalizing. In this study, we compared three methods of estimating p factor strength. We compared omega hierarchical and explained common variance calculated from confirmatory factor analysis (CFA) bifactor models with maximum likelihood (ML) estimation, from exploratory structural equation modeling/exploratory factor analysis models with a bifactor rotation, and from Bayesian structural equation modeling (BSEM) bifactor models. Our simulation results suggested that BSEM with small variance priors on secondary loadings might be the preferred option. However, CFA with ML also performed well provided secondary loadings were modeled. We provide two empirical examples of applying the three methodologies using a normative sample of youth (z-proso, n = 1,286) and a university counseling sample (n = 359).
A maximum likelihood framework for protein design
Directory of Open Access Journals (Sweden)
Philippe Hervé
2006-06-01
Full Text Available Abstract Background The aim of protein design is to predict amino-acid sequences compatible with a given target structure. Traditionally envisioned as a purely thermodynamic question, this problem can also be understood in a wider context, where additional constraints are captured by learning the sequence patterns displayed by natural proteins of known conformation. In this latter perspective, however, we still need a theoretical formalization of the question, leading to general and efficient learning methods, and allowing for the selection of fast and accurate objective functions quantifying sequence/structure compatibility. Results We propose a formulation of the protein design problem in terms of model-based statistical inference. Our framework uses the maximum likelihood principle to optimize the unknown parameters of a statistical potential, which we call an inverse potential to contrast with classical potentials used for structure prediction. We propose an implementation based on Markov chain Monte Carlo, in which the likelihood is maximized by gradient descent and is numerically estimated by thermodynamic integration. The fit of the models is evaluated by cross-validation. We apply this to a simple pairwise contact potential, supplemented with a solvent-accessibility term, and show that the resulting models have a better predictive power than currently available pairwise potentials. Furthermore, the model comparison method presented here allows one to measure the relative contribution of each component of the potential, and to choose the optimal number of accessibility classes, which turns out to be much higher than classically considered. Conclusion Altogether, this reformulation makes it possible to test a wide diversity of models, using different forms of potentials, or accounting for other factors than just the constraint of thermodynamic stability. Ultimately, such model-based statistical analyses may help to understand the forces
Thorn, Graeme J; King, John R
2016-01-01
The Gram-positive bacterium Clostridium acetobutylicum is an anaerobic endospore-forming species which produces acetone, butanol and ethanol via the acetone-butanol (AB) fermentation process, leading to biofuels including butanol. In previous work we looked to estimate the parameters in an ordinary differential equation model of the glucose metabolism network using data from pH-controlled continuous culture experiments. Here we combine two approaches, namely the approximate Bayesian computation via an existing sequential Monte Carlo (ABC-SMC) method (to compute credible intervals for the parameters), and the profile likelihood estimation (PLE) (to improve the calculation of confidence intervals for the same parameters), the parameters in both cases being derived from experimental data from forward shift experiments. We also apply the ABC-SMC method to investigate which of the models introduced previously (one non-sporulation and four sporulation models) have the greatest strength of evidence. We find that the joint approximate posterior distribution of the parameters determines the same parameters as previously, including all of the basal and increased enzyme production rates and enzyme reaction activity parameters, as well as the Michaelis-Menten kinetic parameters for glucose ingestion, while other parameters are not as well-determined, particularly those connected with the internal metabolites acetyl-CoA, acetoacetyl-CoA and butyryl-CoA. We also find that the approximate posterior is strongly non-Gaussian, indicating that our previous assumption of elliptical contours of the distribution is not valid, which has the effect of reducing the numbers of pairs of parameters that are (linearly) correlated with each other. Calculations of confidence intervals using the PLE method back this up. Finally, we find that all five of our models are equally likely, given the data available at present. Copyright © 2015 Elsevier Inc. All rights reserved.
Maximum likelihood of phylogenetic networks.
Jin, Guohua; Nakhleh, Luay; Snir, Sagi; Tuller, Tamir
2006-11-01
Horizontal gene transfer (HGT) is believed to be ubiquitous among bacteria, and plays a major role in their genome diversification as well as their ability to develop resistance to antibiotics. In light of its evolutionary significance and implications for human health, developing accurate and efficient methods for detecting and reconstructing HGT is imperative. In this article we provide a new HGT-oriented likelihood framework for many problems that involve phylogeny-based HGT detection and reconstruction. Beside the formulation of various likelihood criteria, we show that most of these problems are NP-hard, and offer heuristics for efficient and accurate reconstruction of HGT under these criteria. We implemented our heuristics and used them to analyze biological as well as synthetic data. In both cases, our criteria and heuristics exhibited very good performance with respect to identifying the correct number of HGT events as well as inferring their correct location on the species tree. Implementation of the criteria as well as heuristics and hardness proofs are available from the authors upon request. Hardness proofs can also be downloaded at http://www.cs.tau.ac.il/~tamirtul/MLNET/Supp-ML.pdf
Wang, Liang; Xia, Yu; Jiang, Yu-Xin; Dai, Qing; Li, Xiao-Yi
2012-11-01
To assess the efficacy of sonography for discriminating nodular Hashimoto thyroiditis from papillary thyroid carcinoma in patients with sonographically evident diffuse Hashimoto thyroiditis. This study included 20 patients with 24 surgically confirmed Hashimoto thyroiditis nodules and 40 patients with 40 papillary thyroid carcinoma nodules; all had sonographically evident diffuse Hashimoto thyroiditis. A retrospective review of the sonograms was performed, and significant benign and malignant sonographic features were selected by univariate and multivariate analyses. The combined likelihood ratio was calculated as the product of each feature's likelihood ratio for papillary thyroid carcinoma. We compared the abilities of the original sonographic features and combined likelihood ratios in diagnosing nodular Hashimoto thyroiditis and papillary thyroid carcinoma by their sensitivity, specificity, and Youden index. The diagnostic capabilities of the sonographic features varied greatly, with Youden indices ranging from 0.175 to 0.700. Compared with single features, combinations of features were unable to improve the Youden indices effectively because the sensitivity and specificity usually changed in opposite directions. For combined likelihood ratios, however, the sensitivity improved greatly without an obvious reduction in specificity, which resulted in the maximum Youden index (0.825). With a combined likelihood ratio greater than 7.00 as the diagnostic criterion for papillary thyroid carcinoma, sensitivity reached 82.5%, whereas specificity remained at 100.0%. With a combined likelihood ratio less than 1.00 for nodular Hashimoto thyroiditis, sensitivity and specificity were 90.0% and 92.5%, respectively. Several sonographic features of nodular Hashimoto thyroiditis and papillary thyroid carcinoma in a background of diffuse Hashimoto thyroiditis were significantly different. The combined likelihood ratio may be superior to original sonographic features for
Likelihood devices in spatial statistics
Zwet, E.W. van
1999-01-01
One of the main themes of this thesis is the application to spatial data of modern semi- and nonparametric methods. Another, closely related theme is maximum likelihood estimation from spatial data. Maximum likelihood estimation is not common practice in spatial statistics. The method of moments
A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for ...
Directory of Open Access Journals (Sweden)
Janne Pitkäniemi
Full Text Available BACKGROUND: In genetic studies of rare complex diseases it is common to ascertain familial data from population based registries through all incident cases diagnosed during a pre-defined enrollment period. Such an ascertainment procedure is typically taken into account in the statistical analysis of the familial data by constructing either a retrospective or prospective likelihood expression, which conditions on the ascertainment event. Both of these approaches lead to a substantial loss of valuable data. METHODOLOGY AND FINDINGS: Here we consider instead the possibilities provided by a Bayesian approach to risk analysis, which also incorporates the ascertainment procedure and reference information concerning the genetic composition of the target population to the considered statistical model. Furthermore, the proposed Bayesian hierarchical survival model does not require the considered genotype or haplotype effects be expressed as functions of corresponding allelic effects. Our modeling strategy is illustrated by a risk analysis of type 1 diabetes mellitus (T1D in the Finnish population-based on the HLA-A, HLA-B and DRB1 human leucocyte antigen (HLA information available for both ascertained sibships and a large number of unrelated individuals from the Finnish bone marrow donor registry. The heterozygous genotype DR3/DR4 at the DRB1 locus was associated with the lowest predictive probability of T1D free survival to the age of 15, the estimate being 0.936 (0.926; 0.945 95% credible interval compared to the average population T1D free survival probability of 0.995. SIGNIFICANCE: The proposed statistical method can be modified to other population-based family data ascertained from a disease registry provided that the ascertainment process is well documented, and that external information concerning the sizes of birth cohorts and a suitable reference sample are available. We confirm the earlier findings from the same data concerning the HLA-DR3
Likelihood inference for unions of interacting discs
DEFF Research Database (Denmark)
Møller, Jesper; Helisova, K.
2010-01-01
This is probably the first paper which discusses likelihood inference for a random set using a germ-grain model, where the individual grains are unobservable, edge effects occur and other complications appear. We consider the case where the grains form a disc process modelled by a marked point...... process, where the germs are the centres and the marks are the associated radii of the discs. We propose to use a recent parametric class of interacting disc process models, where the minimal sufficient statistic depends on various geometric properties of the random set, and the density is specified......-based maximum likelihood inference and the effect of specifying different reference Poisson models....
Likelihood inference for unions of interacting discs
DEFF Research Database (Denmark)
Møller, Jesper; Helisová, Katarina
To the best of our knowledge, this is the first paper which discusses likelihood inference or a random set using a germ-grain model, where the individual grains are unobservable edge effects occur, and other complications appear. We consider the case where the grains form a disc process modelled...... is specified with respect to a given marked Poisson model (i.e. a Boolean model). We show how edge effects and other complications can be handled by considering a certain conditional likelihood. Our methodology is illustrated by analyzing Peter Diggle's heather dataset, where we discuss the results...... of simulation-based maximum likelihood inference and the effect of specifying different reference Poisson models....
Oviedo-Trespalacios, Oscar; Haque, Md Mazharul; King, Mark; Washington, Simon
2018-05-29
This study investigated how situational characteristics typically encountered in the transport system influence drivers' perceived likelihood of engaging in mobile phone multitasking. The impacts of mobile phone tasks, perceived environmental complexity/risk, and drivers' individual differences were evaluated as relevant individual predictors within the behavioral adaptation framework. An innovative questionnaire, which includes randomized textual and visual scenarios, was administered to collect data from a sample of 447 drivers in South East Queensland-Australia (66% females; n = 296). The likelihood of engaging in a mobile phone task across various scenarios was modeled by a random parameters ordered probit model. Results indicated that drivers who are female, are frequent users of phones for texting/answering calls, have less favorable attitudes towards safety, and are highly disinhibited were more likely to report stronger intentions of engaging in mobile phone multitasking. However, more years with a valid driving license, self-efficacy toward self-regulation in demanding traffic conditions and police enforcement, texting tasks, and demanding traffic conditions were negatively related to self-reported likelihood of mobile phone multitasking. The unobserved heterogeneity warned of riskier groups among female drivers and participants who need a lot of convincing to believe that multitasking while driving is dangerous. This research concludes that behavioral adaptation theory is a robust framework explaining self-regulation of distracted drivers. © 2018 Society for Risk Analysis.
Directory of Open Access Journals (Sweden)
Marc Baguelin
2011-02-01
Full Text Available Estimating the age-specific incidence of an emerging pathogen is essential for understanding its severity and transmission dynamics. This paper describes a statistical method that uses likelihoods to estimate incidence from sequential serological data. The method requires information on seroconversion intervals and allows integration of information on the temporal distribution of cases from clinical surveillance. Among a family of candidate incidences, a likelihood function is derived by reconstructing the change in seroprevalence from seroconversion following infection and comparing it with the observed sequence of positivity among the samples. This method is applied to derive the cumulative and weekly incidence of A/H1N1 pandemic influenza in England during the second wave using sera taken between September 2009 and February 2010 in four age groups (1-4, 5-14, 15-24, 25-44 years. The highest cumulative incidence was in 5-14 year olds (59%, 95% credible interval (CI: 52%, 68% followed by 1-4 year olds (49%, 95% CI: 38%, 61%, rates 20 and 40 times higher respectively than estimated from clinical surveillance. The method provides a more accurate and continuous measure of incidence than achieved by comparing prevalence in samples grouped by time period.
Yan, Yuan
2017-07-13
Gaussian likelihood inference has been studied and used extensively in both statistical theory and applications due to its simplicity. However, in practice, the assumption of Gaussianity is rarely met in the analysis of spatial data. In this paper, we study the effect of non-Gaussianity on Gaussian likelihood inference for the parameters of the Matérn covariance model. By using Monte Carlo simulations, we generate spatial data from a Tukey g-and-h random field, a flexible trans-Gaussian random field, with the Matérn covariance function, where g controls skewness and h controls tail heaviness. We use maximum likelihood based on the multivariate Gaussian distribution to estimate the parameters of the Matérn covariance function. We illustrate the effects of non-Gaussianity of the data on the estimated covariance function by means of functional boxplots. Thanks to our tailored simulation design, a comparison of the maximum likelihood estimator under both the increasing and fixed domain asymptotics for spatial data is performed. We find that the maximum likelihood estimator based on Gaussian likelihood is overall satisfying and preferable than the non-distribution-based weighted least squares estimator for data from the Tukey g-and-h random field. We also present the result for Gaussian kriging based on Matérn covariance estimates with data from the Tukey g-and-h random field and observe an overall satisfactory performance.
Yan, Yuan; Genton, Marc G.
2017-01-01
Gaussian likelihood inference has been studied and used extensively in both statistical theory and applications due to its simplicity. However, in practice, the assumption of Gaussianity is rarely met in the analysis of spatial data. In this paper, we study the effect of non-Gaussianity on Gaussian likelihood inference for the parameters of the Matérn covariance model. By using Monte Carlo simulations, we generate spatial data from a Tukey g-and-h random field, a flexible trans-Gaussian random field, with the Matérn covariance function, where g controls skewness and h controls tail heaviness. We use maximum likelihood based on the multivariate Gaussian distribution to estimate the parameters of the Matérn covariance function. We illustrate the effects of non-Gaussianity of the data on the estimated covariance function by means of functional boxplots. Thanks to our tailored simulation design, a comparison of the maximum likelihood estimator under both the increasing and fixed domain asymptotics for spatial data is performed. We find that the maximum likelihood estimator based on Gaussian likelihood is overall satisfying and preferable than the non-distribution-based weighted least squares estimator for data from the Tukey g-and-h random field. We also present the result for Gaussian kriging based on Matérn covariance estimates with data from the Tukey g-and-h random field and observe an overall satisfactory performance.
Ego involvement increases doping likelihood.
Ring, Christopher; Kavussanu, Maria
2018-08-01
Achievement goal theory provides a framework to help understand how individuals behave in achievement contexts, such as sport. Evidence concerning the role of motivation in the decision to use banned performance enhancing substances (i.e., doping) is equivocal on this issue. The extant literature shows that dispositional goal orientation has been weakly and inconsistently associated with doping intention and use. It is possible that goal involvement, which describes the situational motivational state, is a stronger determinant of doping intention. Accordingly, the current study used an experimental design to examine the effects of goal involvement, manipulated using direct instructions and reflective writing, on doping likelihood in hypothetical situations in college athletes. The ego-involving goal increased doping likelihood compared to no goal and a task-involving goal. The present findings provide the first evidence that ego involvement can sway the decision to use doping to improve athletic performance.
Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You
2017-12-01
The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.
Likelihood estimators for multivariate extremes
Huser, Raphaë l; Davison, Anthony C.; Genton, Marc G.
2015-01-01
The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.
Likelihood estimators for multivariate extremes
Huser, Raphaël
2015-11-17
The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.
Generalized empirical likelihood methods for analyzing longitudinal data
Wang, S.; Qian, L.; Carroll, R. J.
2010-01-01
Efficient estimation of parameters is a major objective in analyzing longitudinal data. We propose two generalized empirical likelihood based methods that take into consideration within-subject correlations. A nonparametric version of the Wilks
Multi-Channel Maximum Likelihood Pitch Estimation
DEFF Research Database (Denmark)
Christensen, Mads Græsbøll
2012-01-01
In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...
GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.
Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd
2018-01-01
In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.
Practical likelihood analysis for spatial generalized linear mixed models
DEFF Research Database (Denmark)
Bonat, W. H.; Ribeiro, Paulo Justiniano
2016-01-01
We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are......, respectively, examples of binomial and count datasets modeled by spatial generalized linear mixed models. Our results show that the Laplace approximation provides similar estimates to Markov Chain Monte Carlo likelihood, Monte Carlo expectation maximization, and modified Laplace approximation. Some advantages...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...
Comparison of home- and gymnasium-based resistance training on ...
African Journals Online (AJOL)
Comparison of home- and gymnasium-based resistance training on flexibility in the ... which is especially essential in the maintenance of functional abilities of the ... the effects of a home- and gymnasium-based resistance training programme ...
Algorithms of maximum likelihood data clustering with applications
Giada, Lorenzo; Marsili, Matteo
2002-12-01
We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.
Maximum likelihood positioning algorithm for high-resolution PET scanners
International Nuclear Information System (INIS)
Gross-Weege, Nicolas; Schug, David; Hallen, Patrick; Schulz, Volkmar
2016-01-01
Purpose: In high-resolution positron emission tomography (PET), lightsharing elements are incorporated into typical detector stacks to read out scintillator arrays in which one scintillator element (crystal) is smaller than the size of the readout channel. In order to identify the hit crystal by means of the measured light distribution, a positioning algorithm is required. One commonly applied positioning algorithm uses the center of gravity (COG) of the measured light distribution. The COG algorithm is limited in spatial resolution by noise and intercrystal Compton scatter. The purpose of this work is to develop a positioning algorithm which overcomes this limitation. Methods: The authors present a maximum likelihood (ML) algorithm which compares a set of expected light distributions given by probability density functions (PDFs) with the measured light distribution. Instead of modeling the PDFs by using an analytical model, the PDFs of the proposed ML algorithm are generated assuming a single-gamma-interaction model from measured data. The algorithm was evaluated with a hot-rod phantom measurement acquired with the preclinical HYPERION II D PET scanner. In order to assess the performance with respect to sensitivity, energy resolution, and image quality, the ML algorithm was compared to a COG algorithm which calculates the COG from a restricted set of channels. The authors studied the energy resolution of the ML and the COG algorithm regarding incomplete light distributions (missing channel information caused by detector dead time). Furthermore, the authors investigated the effects of using a filter based on the likelihood values on sensitivity, energy resolution, and image quality. Results: A sensitivity gain of up to 19% was demonstrated in comparison to the COG algorithm for the selected operation parameters. Energy resolution and image quality were on a similar level for both algorithms. Additionally, the authors demonstrated that the performance of the ML
Likelihood ratio data to report the validation of a forensic fingerprint evaluation method
Ramos, Daniel; Haraksim, Rudolf; Meuwly, Didier
2017-01-01
Data to which the authors refer to throughout this article are likelihood ratios (LR) computed from the comparison of 5–12 minutiae fingermarks with fingerprints. These LRs data are used for the validation of a likelihood ratio (LR) method in forensic evidence evaluation. These data present a
Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation
Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.
2015-11-01
We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.
The Laplace Likelihood Ratio Test for Heteroscedasticity
Directory of Open Access Journals (Sweden)
J. Martin van Zyl
2011-01-01
Full Text Available It is shown that the likelihood ratio test for heteroscedasticity, assuming the Laplace distribution, gives good results for Gaussian and fat-tailed data. The likelihood ratio test, assuming normality, is very sensitive to any deviation from normality, especially when the observations are from a distribution with fat tails. Such a likelihood test can also be used as a robust test for a constant variance in residuals or a time series if the data is partitioned into groups.
A simulation study of likelihood inference procedures in rayleigh distribution with censored data
International Nuclear Information System (INIS)
Baklizi, S. A.; Baker, H. M.
2001-01-01
Inference procedures based on the likelihood function are considered for the one parameter Rayleigh distribution with type1 and type 2 censored data. Using simulation techniques, the finite sample performances of the maximum likelihood estimator and the large sample likelihood interval estimation procedures based on the Wald, the Rao, and the likelihood ratio statistics are investigated. It appears that the maximum likelihood estimator is unbiased. The approximate variance estimates obtained from the asymptotic normal distribution of the maximum likelihood estimator are accurate under type 2 censored data while they tend to be smaller than the actual variances when considering type1 censored data of small size. It appears also that interval estimation based on the Wald and Rao statistics need much more sample size than interval estimation based on the likelihood ratio statistic to attain reasonable accuracy. (authors). 15 refs., 4 tabs
Calibration of two complex ecosystem models with different likelihood functions
Hidy, Dóra; Haszpra, László; Pintér, Krisztina; Nagy, Zoltán; Barcza, Zoltán
2014-05-01
The biosphere is a sensitive carbon reservoir. Terrestrial ecosystems were approximately carbon neutral during the past centuries, but they became net carbon sinks due to climate change induced environmental change and associated CO2 fertilization effect of the atmosphere. Model studies and measurements indicate that the biospheric carbon sink can saturate in the future due to ongoing climate change which can act as a positive feedback. Robustness of carbon cycle models is a key issue when trying to choose the appropriate model for decision support. The input parameters of the process-based models are decisive regarding the model output. At the same time there are several input parameters for which accurate values are hard to obtain directly from experiments or no local measurements are available. Due to the uncertainty associated with the unknown model parameters significant bias can be experienced if the model is used to simulate the carbon and nitrogen cycle components of different ecosystems. In order to improve model performance the unknown model parameters has to be estimated. We developed a multi-objective, two-step calibration method based on Bayesian approach in order to estimate the unknown parameters of PaSim and Biome-BGC models. Biome-BGC and PaSim are a widely used biogeochemical models that simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems (in this research the developed version of Biome-BGC is used which is referred as BBGC MuSo). Both models were calibrated regardless the simulated processes and type of model parameters. The calibration procedure is based on the comparison of measured data with simulated results via calculating a likelihood function (degree of goodness-of-fit between simulated and measured data). In our research different likelihood function formulations were used in order to examine the effect of the different model
Tapered composite likelihood for spatial max-stable models
Sang, Huiyan
2014-05-01
Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.
Tapered composite likelihood for spatial max-stable models
Sang, Huiyan; Genton, Marc G.
2014-01-01
Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.
MXLKID: a maximum likelihood parameter identifier
International Nuclear Information System (INIS)
Gavel, D.T.
1980-07-01
MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables
A Predictive Likelihood Approach to Bayesian Averaging
Directory of Open Access Journals (Sweden)
Tomáš Jeřábek
2015-01-01
Full Text Available Multivariate time series forecasting is applied in a wide range of economic activities related to regional competitiveness and is the basis of almost all macroeconomic analysis. In this paper we combine multivariate density forecasts of GDP growth, inflation and real interest rates from four various models, two type of Bayesian vector autoregression (BVAR models, a New Keynesian dynamic stochastic general equilibrium (DSGE model of small open economy and DSGE-VAR model. The performance of models is identified using historical dates including domestic economy and foreign economy, which is represented by countries of the Eurozone. Because forecast accuracy of observed models are different, the weighting scheme based on the predictive likelihood, the trace of past MSE matrix, model ranks are used to combine the models. The equal-weight scheme is used as a simple combination scheme. The results show that optimally combined densities are comparable to the best individual models.
Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting.
Zhao, Bo; Setsompop, Kawin; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L
2016-08-01
This paper introduces a statistical estimation framework for magnetic resonance (MR) fingerprinting, a recently proposed quantitative imaging paradigm. Within this framework, we present a maximum likelihood (ML) formalism to estimate multiple MR tissue parameter maps directly from highly undersampled, noisy k-space data. A novel algorithm, based on variable splitting, the alternating direction method of multipliers, and the variable projection method, is developed to solve the resulting optimization problem. Representative results from both simulations and in vivo experiments demonstrate that the proposed approach yields significantly improved accuracy in parameter estimation, compared to the conventional MR fingerprinting reconstruction. Moreover, the proposed framework provides new theoretical insights into the conventional approach. We show analytically that the conventional approach is an approximation to the ML reconstruction; more precisely, it is exactly equivalent to the first iteration of the proposed algorithm for the ML reconstruction, provided that a gridding reconstruction is used as an initialization.
Subtracting and Fitting Histograms using Profile Likelihood
D'Almeida, F M L
2008-01-01
It is known that many interesting signals expected at LHC are of unknown shape and strongly contaminated by background events. These signals will be dif cult to detect during the rst years of LHC operation due to the initial low luminosity. In this work, one presents a method of subtracting histograms based on the pro le likelihood function when the background is previously estimated by Monte Carlo events and one has low statistics. Estimators for the signal in each bin of the histogram difference are calculated so as limits for the signals with 68.3% of Con dence Level in a low statistics case when one has a exponential background and a Gaussian signal. The method can also be used to t histograms when the signal shape is known. Our results show a good performance and avoid the problem of negative values when subtracting histograms.
Likelihood based testing for no fractional cointegration
DEFF Research Database (Denmark)
Lasak, Katarzyna
. The standard cointegration analysis only considers the assumption that deviations from equilibrium can be integrated of order zero, which is very restrictive in many cases and may imply an important loss of power in the fractional case. We consider the alternative hypotheses with equilibrium deviations...... that can be mean reverting with order of integration possibly greater than zero. Moreover, the degree of fractional cointegration is not assumed to be known, and the asymptotic null distribution of both tests is found when considering an interval of possible values. The power of the proposed tests under...
Comparison of gas dehydration methods based on energy ...
African Journals Online (AJOL)
Comparison of gas dehydration methods based on energy consumption. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... This study compares three conventional methods of natural gas (Associated Natural Gas) dehydration to carry out ...
Essays on empirical likelihood in economics
Gao, Z.
2012-01-01
This thesis intends to exploit the roots of empirical likelihood and its related methods in mathematical programming and computation. The roots will be connected and the connections will induce new solutions for the problems of estimation, computation, and generalization of empirical likelihood.
Nearly Efficient Likelihood Ratio Tests for Seasonal Unit Roots
DEFF Research Database (Denmark)
Jansson, Michael; Nielsen, Morten Ørregaard
In an important generalization of zero frequency autore- gressive unit root tests, Hylleberg, Engle, Granger, and Yoo (1990) developed regression-based tests for unit roots at the seasonal frequencies in quarterly time series. We develop likelihood ratio tests for seasonal unit roots and show...... that these tests are "nearly efficient" in the sense of Elliott, Rothenberg, and Stock (1996), i.e. that their local asymptotic power functions are indistinguishable from the Gaussian power envelope. Currently available nearly efficient testing procedures for seasonal unit roots are regression-based and require...... the choice of a GLS detrending parameter, which our likelihood ratio tests do not....
A Comparison of Alternative Tax Bases
John Freebairn
2005-01-01
The revenue, efficiency, equity and operating costs properties of alternative tax bases or taxable sums are compared and contrasted. Initially the assessment is made for generic, comprehensive tax bases on income and consumption flows, wealth stocks, and on transactions. On the criteria of efficiency and equity, there are unresolved conceptual and empirical arguments in choosing between income, consumption and wealth tax bases, but general revenue raising transaction taxes are inferior. In pr...
Likelihood ratio sequential sampling models of recognition memory.
Osth, Adam F; Dennis, Simon; Heathcote, Andrew
2017-02-01
The mirror effect - a phenomenon whereby a manipulation produces opposite effects on hit and false alarm rates - is benchmark regularity of recognition memory. A likelihood ratio decision process, basing recognition on the relative likelihood that a stimulus is a target or a lure, naturally predicts the mirror effect, and so has been widely adopted in quantitative models of recognition memory. Glanzer, Hilford, and Maloney (2009) demonstrated that likelihood ratio models, assuming Gaussian memory strength, are also capable of explaining regularities observed in receiver-operating characteristics (ROCs), such as greater target than lure variance. Despite its central place in theorising about recognition memory, however, this class of models has not been tested using response time (RT) distributions. In this article, we develop a linear approximation to the likelihood ratio transformation, which we show predicts the same regularities as the exact transformation. This development enabled us to develop a tractable model of recognition-memory RT based on the diffusion decision model (DDM), with inputs (drift rates) provided by an approximate likelihood ratio transformation. We compared this "LR-DDM" to a standard DDM where all targets and lures receive their own drift rate parameters. Both were implemented as hierarchical Bayesian models and applied to four datasets. Model selection taking into account parsimony favored the LR-DDM, which requires fewer parameters than the standard DDM but still fits the data well. These results support log-likelihood based models as providing an elegant explanation of the regularities of recognition memory, not only in terms of choices made but also in terms of the times it takes to make them. Copyright © 2016 Elsevier Inc. All rights reserved.
Profile-likelihood Confidence Intervals in Item Response Theory Models.
Chalmers, R Philip; Pek, Jolynn; Liu, Yang
2017-01-01
Confidence intervals (CIs) are fundamental inferential devices which quantify the sampling variability of parameter estimates. In item response theory, CIs have been primarily obtained from large-sample Wald-type approaches based on standard error estimates, derived from the observed or expected information matrix, after parameters have been estimated via maximum likelihood. An alternative approach to constructing CIs is to quantify sampling variability directly from the likelihood function with a technique known as profile-likelihood confidence intervals (PL CIs). In this article, we introduce PL CIs for item response theory models, compare PL CIs to classical large-sample Wald-type CIs, and demonstrate important distinctions among these CIs. CIs are then constructed for parameters directly estimated in the specified model and for transformed parameters which are often obtained post-estimation. Monte Carlo simulation results suggest that PL CIs perform consistently better than Wald-type CIs for both non-transformed and transformed parameters.
Generalized empirical likelihood methods for analyzing longitudinal data
Wang, S.
2010-02-16
Efficient estimation of parameters is a major objective in analyzing longitudinal data. We propose two generalized empirical likelihood based methods that take into consideration within-subject correlations. A nonparametric version of the Wilks theorem for the limiting distributions of the empirical likelihood ratios is derived. It is shown that one of the proposed methods is locally efficient among a class of within-subject variance-covariance matrices. A simulation study is conducted to investigate the finite sample properties of the proposed methods and compare them with the block empirical likelihood method by You et al. (2006) and the normal approximation with a correctly estimated variance-covariance. The results suggest that the proposed methods are generally more efficient than existing methods which ignore the correlation structure, and better in coverage compared to the normal approximation with correctly specified within-subject correlation. An application illustrating our methods and supporting the simulation study results is also presented.
Asymptotic Likelihood Distribution for Correlated & Constrained Systems
Agarwal, Ujjwal
2016-01-01
It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.
Composite likelihood and two-stage estimation in family studies
DEFF Research Database (Denmark)
Andersen, Elisabeth Anne Wreford
2004-01-01
In this paper register based family studies provide the motivation for linking a two-stage estimation procedure in copula models for multivariate failure time data with a composite likelihood approach. The asymptotic properties of the estimators in both parametric and semi-parametric models are d...
Maximum-Likelihood Detection Of Noncoherent CPM
Divsalar, Dariush; Simon, Marvin K.
1993-01-01
Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.
Likelihood analysis of the minimal AMSB model
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Borsato, M.; Chobanova, V.; Lucio, M.; Santos, D.M. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Sakurai, K. [Institute for Particle Physics Phenomenology, University of Durham, Science Laboratories, Department of Physics, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Buchmueller, O.; Citron, M.; Costa, J.C.; Richards, A. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); De Roeck, A. [Experimental Physics Department, CERN, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [School of Physics, University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, Melbourne (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); CERN, Theoretical Physics Department, Geneva (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Cantabria (Spain); Isidori, G. [Physik-Institut, Universitaet Zuerich, Zurich (Switzerland); Luo, F. [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba (Japan); Olive, K.A. [School of Physics and Astronomy, University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)
2017-04-15
We perform a likelihood analysis of the minimal anomaly-mediated supersymmetry-breaking (mAMSB) model using constraints from cosmology and accelerator experiments. We find that either a wino-like or a Higgsino-like neutralino LSP, χ{sup 0}{sub 1}, may provide the cold dark matter (DM), both with similar likelihoods. The upper limit on the DM density from Planck and other experiments enforces m{sub χ{sup 0}{sub 1}}
Likelihood Analysis of Supersymmetric SU(5) GUTs
Bagnaschi, E.
2017-01-01
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringi...
Balzer, Laura; Staples, Patrick; Onnela, Jukka-Pekka; DeGruttola, Victor
2017-04-01
Several cluster-randomized trials are underway to investigate the implementation and effectiveness of a universal test-and-treat strategy on the HIV epidemic in sub-Saharan Africa. We consider nesting studies of pre-exposure prophylaxis within these trials. Pre-exposure prophylaxis is a general strategy where high-risk HIV- persons take antiretrovirals daily to reduce their risk of infection from exposure to HIV. We address how to target pre-exposure prophylaxis to high-risk groups and how to maximize power to detect the individual and combined effects of universal test-and-treat and pre-exposure prophylaxis strategies. We simulated 1000 trials, each consisting of 32 villages with 200 individuals per village. At baseline, we randomized the universal test-and-treat strategy. Then, after 3 years of follow-up, we considered four strategies for targeting pre-exposure prophylaxis: (1) all HIV- individuals who self-identify as high risk, (2) all HIV- individuals who are identified by their HIV+ partner (serodiscordant couples), (3) highly connected HIV- individuals, and (4) the HIV- contacts of a newly diagnosed HIV+ individual (a ring-based strategy). We explored two possible trial designs, and all villages were followed for a total of 7 years. For each village in a trial, we used a stochastic block model to generate bipartite (male-female) networks and simulated an agent-based epidemic process on these networks. We estimated the individual and combined intervention effects with a novel targeted maximum likelihood estimator, which used cross-validation to data-adaptively select from a pre-specified library the candidate estimator that maximized the efficiency of the analysis. The universal test-and-treat strategy reduced the 3-year cumulative HIV incidence by 4.0% on average. The impact of each pre-exposure prophylaxis strategy on the 4-year cumulative HIV incidence varied by the coverage of the universal test-and-treat strategy with lower coverage resulting in a larger
Price Comparisons on the Internet Based on Computational Intelligence
Kim, Jun Woo; Ha, Sung Ho
2014-01-01
Information-intensive Web services such as price comparison sites have recently been gaining popularity. However, most users including novice shoppers have difficulty in browsing such sites because of the massive amount of information gathered and the uncertainty surrounding Web environments. Even conventional price comparison sites face various problems, which suggests the necessity of a new approach to address these problems. Therefore, for this study, an intelligent product search system was developed that enables price comparisons for online shoppers in a more effective manner. In particular, the developed system adopts linguistic price ratings based on fuzzy logic to accommodate user-defined price ranges, and personalizes product recommendations based on linguistic product clusters, which help online shoppers find desired items in a convenient manner. PMID:25268901
Maximum likelihood estimation for integrated diffusion processes
DEFF Research Database (Denmark)
Baltazar-Larios, Fernando; Sørensen, Michael
We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated...... EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...... by measurement errors. Integrated volatility is an example of this type of observations. Another example is ice-core data on oxygen isotopes used to investigate paleo-temperatures. The data can be viewed as incomplete observations of a model with a tractable likelihood function. Therefore we propose a simulated...
Maintaining symmetry of simulated likelihood functions
DEFF Research Database (Denmark)
Andersen, Laura Mørch
This paper suggests solutions to two different types of simulation errors related to Quasi-Monte Carlo integration. Likelihood functions which depend on standard deviations of mixed parameters are symmetric in nature. This paper shows that antithetic draws preserve this symmetry and thereby...... improves precision substantially. Another source of error is that models testing away mixing dimensions must replicate the relevant dimensions of the quasi-random draws in the simulation of the restricted likelihood. These simulation errors are ignored in the standard estimation procedures used today...
Planck 2013 results. XV. CMB power spectra and likelihood
Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Le Jeune, M.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Lindholm, V.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-01-01
We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 = 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained b...
Likelihood analysis of supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Costa, J.C.; Buchmueller, O.; Citron, M.; Richards, A.; De Vries, K.J. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Sakurai, K. [University of Durham, Science Laboratories, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Borsato, M.; Chobanova, V.; Lucio, M.; Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); Roeck, A. de [CERN, Experimental Physics Department, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Theoretical Physics Department, CERN, Geneva 23 (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Cantoblanco, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)
2017-02-15
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R} - χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub τ} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC. (orig.)
Likelihood analysis of supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E. [DESY, Hamburg (Germany); Costa, J.C. [Imperial College, London (United Kingdom). Blackett Lab.; Sakurai, K. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomonology; Warsaw Univ. (Poland). Inst. of Theoretical Physics; Collaboration: MasterCode Collaboration; and others
2016-10-15
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and avour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets+E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R}-χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub T} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC.
Efficient Bit-to-Symbol Likelihood Mappings
Moision, Bruce E.; Nakashima, Michael A.
2010-01-01
This innovation is an efficient algorithm designed to perform bit-to-symbol and symbol-to-bit likelihood mappings that represent a significant portion of the complexity of an error-correction code decoder for high-order constellations. Recent implementation of the algorithm in hardware has yielded an 8- percent reduction in overall area relative to the prior design.
Gaussian copula as a likelihood function for environmental models
Wani, O.; Espadas, G.; Cecinati, F.; Rieckermann, J.
2017-12-01
Parameter estimation of environmental models always comes with uncertainty. To formally quantify this parametric uncertainty, a likelihood function needs to be formulated, which is defined as the probability of observations given fixed values of the parameter set. A likelihood function allows us to infer parameter values from observations using Bayes' theorem. The challenge is to formulate a likelihood function that reliably describes the error generating processes which lead to the observed monitoring data, such as rainfall and runoff. If the likelihood function is not representative of the error statistics, the parameter inference will give biased parameter values. Several uncertainty estimation methods that are currently being used employ Gaussian processes as a likelihood function, because of their favourable analytical properties. Box-Cox transformation is suggested to deal with non-symmetric and heteroscedastic errors e.g. for flow data which are typically more uncertain in high flows than in periods with low flows. Problem with transformations is that the results are conditional on hyper-parameters, for which it is difficult to formulate the analyst's belief a priori. In an attempt to address this problem, in this research work we suggest learning the nature of the error distribution from the errors made by the model in the "past" forecasts. We use a Gaussian copula to generate semiparametric error distributions . 1) We show that this copula can be then used as a likelihood function to infer parameters, breaking away from the practice of using multivariate normal distributions. Based on the results from a didactical example of predicting rainfall runoff, 2) we demonstrate that the copula captures the predictive uncertainty of the model. 3) Finally, we find that the properties of autocorrelation and heteroscedasticity of errors are captured well by the copula, eliminating the need to use transforms. In summary, our findings suggest that copulas are an
Modeling gene expression measurement error: a quasi-likelihood approach
Directory of Open Access Journals (Sweden)
Strimmer Korbinian
2003-03-01
Full Text Available Abstract Background Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametric model is assumed (usually a transformed normal distribution or the empirical distribution is estimated. However, both these strategies may not be optimal for gene expression data, as the non-parametric approach ignores known structural information whereas the fully parametric models run the risk of misspecification. A further related problem is the choice of a suitable scale for the model (e.g. observed vs. log-scale. Results Here a simple semi-parametric model for gene expression measurement error is presented. In this approach inference is based an approximate likelihood function (the extended quasi-likelihood. Only partial knowledge about the unknown true distribution is required to construct this function. In case of gene expression this information is available in the form of the postulated (e.g. quadratic variance structure of the data. As the quasi-likelihood behaves (almost like a proper likelihood, it allows for the estimation of calibration and variance parameters, and it is also straightforward to obtain corresponding approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also be employed in regression approaches to model systematic (e.g. array or dye effects. Conclusions The quasi-likelihood framework provides a simple and versatile approach to analyze gene expression data that does not make any strong distributional assumptions about the underlying error model. For several simulated as well as real data sets it provides a better fit to the data than competing models. In an example it also
Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen
2018-03-01
Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data-space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper we use massive asymptotically-optimal data compression to reduce the dimensionality of the data-space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parameterized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate Density Estimation Likelihood-Free Inference with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological datasets.
Di Maggio, Jimena; Fernández, Carolina; Parodi, Elisa R; Diaz, M Soledad; Estrada, Vanina
2016-01-01
In this paper we address the formulation of two mechanistic water quality models that differ in the way the phytoplankton community is described. We carry out parameter estimation subject to differential-algebraic constraints and validation for each model and comparison between models performance. The first approach aggregates phytoplankton species based on their phylogenetic characteristics (Taxonomic group model) and the second one, on their morpho-functional properties following Reynolds' classification (Functional group model). The latter approach takes into account tolerance and sensitivity to environmental conditions. The constrained parameter estimation problems are formulated within an equation oriented framework, with a maximum likelihood objective function. The study site is Paso de las Piedras Reservoir (Argentina), which supplies water for consumption for 450,000 population. Numerical results show that phytoplankton morpho-functional groups more closely represent each species growth requirements within the group. Each model performance is quantitatively assessed by three diagnostic measures. Parameter estimation results for seasonal dynamics of the phytoplankton community and main biogeochemical variables for a one-year time horizon are presented and compared for both models, showing the functional group model enhanced performance. Finally, we explore increasing nutrient loading scenarios and predict their effect on phytoplankton dynamics throughout a one-year time horizon. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phylogenetic analysis using parsimony and likelihood methods.
Yang, Z
1996-02-01
The assumptions underlying the maximum-parsimony (MP) method of phylogenetic tree reconstruction were intuitively examined by studying the way the method works. Computer simulations were performed to corroborate the intuitive examination. Parsimony appears to involve very stringent assumptions concerning the process of sequence evolution, such as constancy of substitution rates between nucleotides, constancy of rates across nucleotide sites, and equal branch lengths in the tree. For practical data analysis, the requirement of equal branch lengths means similar substitution rates among lineages (the existence of an approximate molecular clock), relatively long interior branches, and also few species in the data. However, a small amount of evolution is neither a necessary nor a sufficient requirement of the method. The difficulties involved in the application of current statistical estimation theory to tree reconstruction were discussed, and it was suggested that the approach proposed by Felsenstein (1981, J. Mol. Evol. 17: 368-376) for topology estimation, as well as its many variations and extensions, differs fundamentally from the maximum likelihood estimation of a conventional statistical parameter. Evidence was presented showing that the Felsenstein approach does not share the asymptotic efficiency of the maximum likelihood estimator of a statistical parameter. Computer simulations were performed to study the probability that MP recovers the true tree under a hierarchy of models of nucleotide substitution; its performance relative to the likelihood method was especially noted. The results appeared to support the intuitive examination of the assumptions underlying MP. When a simple model of nucleotide substitution was assumed to generate data, the probability that MP recovers the true topology could be as high as, or even higher than, that for the likelihood method. When the assumed model became more complex and realistic, e.g., when substitution rates were
A comparison of maximum entropy and maximum likelihood estimation
Oude Lansink, A.G.J.M.
1999-01-01
Gegevens betreffende het ondernemerschap op Nederlandse akkerbouwbedrijven zijn in 2 benaderingsmethodes verwerkt, welke onderling op voorspellende nauwkeurigheid en op prijs-elasticiteit zijn vergeleken
Factors Associated with Young Adults’ Pregnancy Likelihood
Kitsantas, Panagiota; Lindley, Lisa L.; Wu, Huichuan
2014-01-01
OBJECTIVES While progress has been made to reduce adolescent pregnancies in the United States, rates of unplanned pregnancy among young adults (18–29 years) remain high. In this study, we assessed factors associated with perceived likelihood of pregnancy (likelihood of getting pregnant/getting partner pregnant in the next year) among sexually experienced young adults who were not trying to get pregnant and had ever used contraceptives. METHODS We conducted a secondary analysis of 660 young adults, 18–29 years old in the United States, from the cross-sectional National Survey of Reproductive and Contraceptive Knowledge. Logistic regression and classification tree analyses were conducted to generate profiles of young adults most likely to report anticipating a pregnancy in the next year. RESULTS Nearly one-third (32%) of young adults indicated they believed they had at least some likelihood of becoming pregnant in the next year. Young adults who believed that avoiding pregnancy was not very important were most likely to report pregnancy likelihood (odds ratio [OR], 5.21; 95% CI, 2.80–9.69), as were young adults for whom avoiding a pregnancy was important but not satisfied with their current contraceptive method (OR, 3.93; 95% CI, 1.67–9.24), attended religious services frequently (OR, 3.0; 95% CI, 1.52–5.94), were uninsured (OR, 2.63; 95% CI, 1.31–5.26), and were likely to have unprotected sex in the next three months (OR, 1.77; 95% CI, 1.04–3.01). DISCUSSION These results may help guide future research and the development of pregnancy prevention interventions targeting sexually experienced young adults. PMID:25782849
Review of Elaboration Likelihood Model of persuasion
藤原, 武弘; 神山, 貴弥
1989-01-01
This article mainly introduces Elaboration Likelihood Model (ELM), proposed by Petty & Cacioppo, that is, a general attitude change theory. ELM posturates two routes to persuasion; central and peripheral route. Attitude change by central route is viewed as resulting from a diligent consideration of the issue-relevant informations presented. On the other hand, attitude change by peripheral route is viewed as resulting from peripheral cues in the persuasion context. Secondly we compare these tw...
Secondary Analysis under Cohort Sampling Designs Using Conditional Likelihood
Directory of Open Access Journals (Sweden)
Olli Saarela
2012-01-01
Full Text Available Under cohort sampling designs, additional covariate data are collected on cases of a specific type and a randomly selected subset of noncases, primarily for the purpose of studying associations with a time-to-event response of interest. With such data available, an interest may arise to reuse them for studying associations between the additional covariate data and a secondary non-time-to-event response variable, usually collected for the whole study cohort at the outset of the study. Following earlier literature, we refer to such a situation as secondary analysis. We outline a general conditional likelihood approach for secondary analysis under cohort sampling designs and discuss the specific situations of case-cohort and nested case-control designs. We also review alternative methods based on full likelihood and inverse probability weighting. We compare the alternative methods for secondary analysis in two simulated settings and apply them in a real-data example.
Likelihood inference for a nonstationary fractional autoregressive model
DEFF Research Database (Denmark)
Johansen, Søren; Ørregård Nielsen, Morten
2010-01-01
This paper discusses model-based inference in an autoregressive model for fractional processes which allows the process to be fractional of order d or d-b. Fractional differencing involves infinitely many past values and because we are interested in nonstationary processes we model the data X1......,...,X_{T} given the initial values X_{-n}, n=0,1,..., as is usually done. The initial values are not modeled but assumed to be bounded. This represents a considerable generalization relative to all previous work where it is assumed that initial values are zero. For the statistical analysis we assume...... the conditional Gaussian likelihood and for the probability analysis we also condition on initial values but assume that the errors in the autoregressive model are i.i.d. with suitable moment conditions. We analyze the conditional likelihood and its derivatives as stochastic processes in the parameters, including...
THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.
Theobald, Douglas L; Wuttke, Deborah S
2006-09-01
THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.
Unbinned likelihood analysis of EGRET observations
International Nuclear Information System (INIS)
Digel, Seth W.
2000-01-01
We present a newly-developed likelihood analysis method for EGRET data that defines the likelihood function without binning the photon data or averaging the instrumental response functions. The standard likelihood analysis applied to EGRET data requires the photons to be binned spatially and in energy, and the point-spread functions to be averaged over energy and inclination angle. The full-width half maximum of the point-spread function increases by about 40% from on-axis to 30 degree sign inclination, and depending on the binning in energy can vary by more than that in a single energy bin. The new unbinned method avoids the loss of information that binning and averaging cause and can properly analyze regions where EGRET viewing periods overlap and photons with different inclination angles would otherwise be combined in the same bin. In the poster, we describe the unbinned analysis method and compare its sensitivity with binned analysis for detecting point sources in EGRET data
Approximate maximum likelihood estimation for population genetic inference.
Bertl, Johanna; Ewing, Gregory; Kosiol, Carolin; Futschik, Andreas
2017-11-27
In many population genetic problems, parameter estimation is obstructed by an intractable likelihood function. Therefore, approximate estimation methods have been developed, and with growing computational power, sampling-based methods became popular. However, these methods such as Approximate Bayesian Computation (ABC) can be inefficient in high-dimensional problems. This led to the development of more sophisticated iterative estimation methods like particle filters. Here, we propose an alternative approach that is based on stochastic approximation. By moving along a simulated gradient or ascent direction, the algorithm produces a sequence of estimates that eventually converges to the maximum likelihood estimate, given a set of observed summary statistics. This strategy does not sample much from low-likelihood regions of the parameter space, and is fast, even when many summary statistics are involved. We put considerable efforts into providing tuning guidelines that improve the robustness and lead to good performance on problems with high-dimensional summary statistics and a low signal-to-noise ratio. We then investigate the performance of our resulting approach and study its properties in simulations. Finally, we re-estimate parameters describing the demographic history of Bornean and Sumatran orang-utans.
Deformation of log-likelihood loss function for multiclass boosting.
Kanamori, Takafumi
2010-09-01
The purpose of this paper is to study loss functions in multiclass classification. In classification problems, the decision function is estimated by minimizing an empirical loss function, and then, the output label is predicted by using the estimated decision function. We propose a class of loss functions which is obtained by a deformation of the log-likelihood loss function. There are four main reasons why we focus on the deformed log-likelihood loss function: (1) this is a class of loss functions which has not been deeply investigated so far, (2) in terms of computation, a boosting algorithm with a pseudo-loss is available to minimize the proposed loss function, (3) the proposed loss functions provide a clear correspondence between the decision functions and conditional probabilities of output labels, (4) the proposed loss functions satisfy the statistical consistency of the classification error rate which is a desirable property in classification problems. Based on (3), we show that the deformed log-likelihood loss provides a model of mislabeling which is useful as a statistical model of medical diagnostics. We also propose a robust loss function against outliers in multiclass classification based on our approach. The robust loss function is a natural extension of the existing robust loss function for binary classification. A model of mislabeling and a robust loss function are useful to cope with noisy data. Some numerical studies are presented to show the robustness of the proposed loss function. A mathematical characterization of the deformed log-likelihood loss function is also presented. Copyright 2010 Elsevier Ltd. All rights reserved.
Maximum likelihood as a common computational framework in tomotherapy
International Nuclear Information System (INIS)
Olivera, G.H.; Shepard, D.M.; Reckwerdt, P.J.; Ruchala, K.; Zachman, J.; Fitchard, E.E.; Mackie, T.R.
1998-01-01
Tomotherapy is a dose delivery technique using helical or axial intensity modulated beams. One of the strengths of the tomotherapy concept is that it can incorporate a number of processes into a single piece of equipment. These processes include treatment optimization planning, dose reconstruction and kilovoltage/megavoltage image reconstruction. A common computational technique that could be used for all of these processes would be very appealing. The maximum likelihood estimator, originally developed for emission tomography, can serve as a useful tool in imaging and radiotherapy. We believe that this approach can play an important role in the processes of optimization planning, dose reconstruction and kilovoltage and/or megavoltage image reconstruction. These processes involve computations that require comparable physical methods. They are also based on equivalent assumptions, and they have similar mathematical solutions. As a result, the maximum likelihood approach is able to provide a common framework for all three of these computational problems. We will demonstrate how maximum likelihood methods can be applied to optimization planning, dose reconstruction and megavoltage image reconstruction in tomotherapy. Results for planning optimization, dose reconstruction and megavoltage image reconstruction will be presented. Strengths and weaknesses of the methodology are analysed. Future directions for this work are also suggested. (author)
Corporate governance effect on financial distress likelihood: Evidence from Spain
Directory of Open Access Journals (Sweden)
Montserrat Manzaneque
2016-01-01
Full Text Available The paper explores some mechanisms of corporate governance (ownership and board characteristics in Spanish listed companies and their impact on the likelihood of financial distress. An empirical study was conducted between 2007 and 2012 using a matched-pairs research design with 308 observations, with half of them classified as distressed and non-distressed. Based on the previous study by Pindado, Rodrigues, and De la Torre (2008, a broader concept of bankruptcy is used to define business failure. Employing several conditional logistic models, as well as to other previous studies on bankruptcy, the results confirm that in difficult situations prior to bankruptcy, the impact of board ownership and proportion of independent directors on business failure likelihood are similar to those exerted in more extreme situations. These results go one step further, to offer a negative relationship between board size and the likelihood of financial distress. This result is interpreted as a form of creating diversity and to improve the access to the information and resources, especially in contexts where the ownership is highly concentrated and large shareholders have a great power to influence the board structure. However, the results confirm that ownership concentration does not have a significant impact on financial distress likelihood in the Spanish context. It is argued that large shareholders are passive as regards an enhanced monitoring of management and, alternatively, they do not have enough incentives to hold back the financial distress. These findings have important implications in the Spanish context, where several changes in the regulatory listing requirements have been carried out with respect to corporate governance, and where there is no empirical evidence regarding this respect.
Statistical modelling of survival data with random effects h-likelihood approach
Ha, Il Do; Lee, Youngjo
2017-01-01
This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R (“frailtyHL”), while the real-world data examples together with an R package, “frailtyHL” in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to research...
The likelihood principle and its proof – a never-ending story…
DEFF Research Database (Denmark)
Jørgensen, Thomas Martini
2015-01-01
An ongoing controversy in philosophy of statistics is the so-called “likelihood principle” essentially stating that all evidence which is obtained from an experiment about an unknown quantity θ is contained in the likelihood function of θ. Common classical statistical methodology, such as the use...... of significance tests, and confidence intervals, depends on the experimental procedure and unrealized events and thus violates the likelihood principle. The likelihood principle was identified by that name and proved in a famous paper by Allan Birnbaum in 1962. However, ever since both the principle itself...... as well as the proof has been highly debated. This presentation will illustrate the debate of both the principle and its proof, from 1962 and up to today. An often-used experiment to illustrate the controversy between classical interpretation and evidential confirmation based on the likelihood principle...
Dimension-Independent Likelihood-Informed MCMC
Cui, Tiangang; Law, Kody; Marzouk, Youssef
2015-01-01
Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters, which in principle can be described as functions. By exploiting low-dimensional structure in the change from prior to posterior [distributions], we introduce a suite of MCMC samplers that can adapt to the complex structure of the posterior distribution, yet are well-defined on function space. Posterior sampling in nonlinear inverse problems arising from various partial di erential equations and also a stochastic differential equation are used to demonstrate the e ciency of these dimension-independent likelihood-informed samplers.
Dimension-Independent Likelihood-Informed MCMC
Cui, Tiangang
2015-01-07
Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters, which in principle can be described as functions. By exploiting low-dimensional structure in the change from prior to posterior [distributions], we introduce a suite of MCMC samplers that can adapt to the complex structure of the posterior distribution, yet are well-defined on function space. Posterior sampling in nonlinear inverse problems arising from various partial di erential equations and also a stochastic differential equation are used to demonstrate the e ciency of these dimension-independent likelihood-informed samplers.
Approximate maximum parsimony and ancestral maximum likelihood.
Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat
2010-01-01
We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.
Likelihood functions for the analysis of single-molecule binned photon sequences
Energy Technology Data Exchange (ETDEWEB)
Gopich, Irina V., E-mail: irinag@niddk.nih.gov [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)
2012-03-02
Graphical abstract: Folding of a protein with attached fluorescent dyes, the underlying conformational trajectory of interest, and the observed binned photon trajectory. Highlights: Black-Right-Pointing-Pointer A sequence of photon counts can be analyzed using a likelihood function. Black-Right-Pointing-Pointer The exact likelihood function for a two-state kinetic model is provided. Black-Right-Pointing-Pointer Several approximations are considered for an arbitrary kinetic model. Black-Right-Pointing-Pointer Improved likelihood functions are obtained to treat sequences of FRET efficiencies. - Abstract: We consider the analysis of a class of experiments in which the number of photons in consecutive time intervals is recorded. Sequence of photon counts or, alternatively, of FRET efficiencies can be studied using likelihood-based methods. For a kinetic model of the conformational dynamics and state-dependent Poisson photon statistics, the formalism to calculate the exact likelihood that this model describes such sequences of photons or FRET efficiencies is developed. Explicit analytic expressions for the likelihood function for a two-state kinetic model are provided. The important special case when conformational dynamics are so slow that at most a single transition occurs in a time bin is considered. By making a series of approximations, we eventually recover the likelihood function used in hidden Markov models. In this way, not only is insight gained into the range of validity of this procedure, but also an improved likelihood function can be obtained.
Derivation of LDA log likelihood ratio one-to-one classifier
Spreeuwers, Lieuwe Jan
2014-01-01
The common expression for the Likelihood Ratio classifier using LDA assumes that the reference class mean is available. In biometrics, this is often not the case and only a single sample of the reference class is available. In this paper expressions are derived for biometric comparison between
Directory of Open Access Journals (Sweden)
Anand Prakash
2014-03-01
Full Text Available Wireless Sensor Networks (WSNs with their dynamic applications gained a tremendous attention of researchers. Constant monitoring of critical situations attracted researchers to utilize WSNs at vast platforms. The main focus in WSNs is to enhance network localization as much as one could, for efficient and optimal utilization of resources. Different approaches based upon redundancy are proposed for optimum functionality. Localization is always related with redundancy of sensor nodes deployed at remote areas for constant and fault tolerant monitoring. In this work, we propose a comparison of classic flooding and the gossip protocol for homogenous networks which enhances stability and throughput quiet significantly.
The likelihood ratio as a random variable for linked markers in kinship analysis.
Egeland, Thore; Slooten, Klaas
2016-11-01
The likelihood ratio is the fundamental quantity that summarizes the evidence in forensic cases. Therefore, it is important to understand the theoretical properties of this statistic. This paper is the last in a series of three, and the first to study linked markers. We show that for all non-inbred pairwise kinship comparisons, the expected likelihood ratio in favor of a type of relatedness depends on the allele frequencies only via the number of alleles, also for linked markers, and also if the true relationship is another one than is tested for by the likelihood ratio. Exact expressions for the expectation and variance are derived for all these cases. Furthermore, we show that the expected likelihood ratio is a non-increasing function if the recombination rate increases between 0 and 0.5 when the actual relationship is the one investigated by the LR. Besides being of theoretical interest, exact expressions such as obtained here can be used for software validation as they allow to verify the correctness up to arbitrary precision. The paper also presents results and advice of practical importance. For example, we argue that the logarithm of the likelihood ratio behaves in a fundamentally different way than the likelihood ratio itself in terms of expectation and variance, in agreement with its interpretation as weight of evidence. Equipped with the results presented and freely available software, one may check calculations and software and also do power calculations.
Sampling of systematic errors to estimate likelihood weights in nuclear data uncertainty propagation
International Nuclear Information System (INIS)
Helgesson, P.; Sjöstrand, H.; Koning, A.J.; Rydén, J.; Rochman, D.; Alhassan, E.; Pomp, S.
2016-01-01
In methodologies for nuclear data (ND) uncertainty assessment and propagation based on random sampling, likelihood weights can be used to infer experimental information into the distributions for the ND. As the included number of correlated experimental points grows large, the computational time for the matrix inversion involved in obtaining the likelihood can become a practical problem. There are also other problems related to the conventional computation of the likelihood, e.g., the assumption that all experimental uncertainties are Gaussian. In this study, a way to estimate the likelihood which avoids matrix inversion is investigated; instead, the experimental correlations are included by sampling of systematic errors. It is shown that the model underlying the sampling methodology (using univariate normal distributions for random and systematic errors) implies a multivariate Gaussian for the experimental points (i.e., the conventional model). It is also shown that the likelihood estimates obtained through sampling of systematic errors approach the likelihood obtained with matrix inversion as the sample size for the systematic errors grows large. In studied practical cases, it is seen that the estimates for the likelihood weights converge impractically slowly with the sample size, compared to matrix inversion. The computational time is estimated to be greater than for matrix inversion in cases with more experimental points, too. Hence, the sampling of systematic errors has little potential to compete with matrix inversion in cases where the latter is applicable. Nevertheless, the underlying model and the likelihood estimates can be easier to intuitively interpret than the conventional model and the likelihood function involving the inverted covariance matrix. Therefore, this work can both have pedagogical value and be used to help motivating the conventional assumption of a multivariate Gaussian for experimental data. The sampling of systematic errors could also
Maximum Likelihood and Bayes Estimation in Randomly Censored Geometric Distribution
Directory of Open Access Journals (Sweden)
Hare Krishna
2017-01-01
Full Text Available In this article, we study the geometric distribution under randomly censored data. Maximum likelihood estimators and confidence intervals based on Fisher information matrix are derived for the unknown parameters with randomly censored data. Bayes estimators are also developed using beta priors under generalized entropy and LINEX loss functions. Also, Bayesian credible and highest posterior density (HPD credible intervals are obtained for the parameters. Expected time on test and reliability characteristics are also analyzed in this article. To compare various estimates developed in the article, a Monte Carlo simulation study is carried out. Finally, for illustration purpose, a randomly censored real data set is discussed.
Estimating likelihood of future crashes for crash-prone drivers
Subasish Das; Xiaoduan Sun; Fan Wang; Charles Leboeuf
2015-01-01
At-fault crash-prone drivers are usually considered as the high risk group for possible future incidents or crashes. In Louisiana, 34% of crashes are repeatedly committed by the at-fault crash-prone drivers who represent only 5% of the total licensed drivers in the state. This research has conducted an exploratory data analysis based on the driver faultiness and proneness. The objective of this study is to develop a crash prediction model to estimate the likelihood of future crashes for the a...
Similar tests and the standardized log likelihood ratio statistic
DEFF Research Database (Denmark)
Jensen, Jens Ledet
1986-01-01
When testing an affine hypothesis in an exponential family the 'ideal' procedure is to calculate the exact similar test, or an approximation to this, based on the conditional distribution given the minimal sufficient statistic under the null hypothesis. By contrast to this there is a 'primitive......' approach in which the marginal distribution of a test statistic considered and any nuisance parameter appearing in the test statistic is replaced by an estimate. We show here that when using standardized likelihood ratio statistics the 'primitive' procedure is in fact an 'ideal' procedure to order O(n -3...
Modelling maximum likelihood estimation of availability
International Nuclear Information System (INIS)
Waller, R.A.; Tietjen, G.L.; Rock, G.W.
1975-01-01
Suppose the performance of a nuclear powered electrical generating power plant is continuously monitored to record the sequence of failure and repairs during sustained operation. The purpose of this study is to assess one method of estimating the performance of the power plant when the measure of performance is availability. That is, we determine the probability that the plant is operational at time t. To study the availability of a power plant, we first assume statistical models for the variables, X and Y, which denote the time-to-failure and the time-to-repair variables, respectively. Once those statistical models are specified, the availability, A(t), can be expressed as a function of some or all of their parameters. Usually those parameters are unknown in practice and so A(t) is unknown. This paper discusses the maximum likelihood estimator of A(t) when the time-to-failure model for X is an exponential density with parameter, lambda, and the time-to-repair model for Y is an exponential density with parameter, theta. Under the assumption of exponential models for X and Y, it follows that the instantaneous availability at time t is A(t)=lambda/(lambda+theta)+theta/(lambda+theta)exp[-[(1/lambda)+(1/theta)]t] with t>0. Also, the steady-state availability is A(infinity)=lambda/(lambda+theta). We use the observations from n failure-repair cycles of the power plant, say X 1 , X 2 , ..., Xsub(n), Y 1 , Y 2 , ..., Ysub(n) to present the maximum likelihood estimators of A(t) and A(infinity). The exact sampling distributions for those estimators and some statistical properties are discussed before a simulation model is used to determine 95% simulation intervals for A(t). The methodology is applied to two examples which approximate the operating history of two nuclear power plants. (author)
A comparison of food crispness based on the cloud model.
Wang, Minghui; Sun, Yonghai; Hou, Jumin; Wang, Xia; Bai, Xue; Wu, Chunhui; Yu, Libo; Yang, Jie
2018-02-01
The cloud model is a typical model which transforms the qualitative concept into the quantitative description. The cloud model has been used less extensively in texture studies before. The purpose of this study was to apply the cloud model in food crispness comparison. The acoustic signals of carrots, white radishes, potatoes, Fuji apples, and crystal pears were recorded during compression. And three time-domain signal characteristics were extracted, including sound intensity, maximum short-time frame energy, and waveform index. The three signal characteristics and the cloud model were used to compare the crispness of the samples mentioned above. The crispness based on the Ex value of the cloud model, in a descending order, was carrot > potato > white radish > Fuji apple > crystal pear. To verify the results of the acoustic signals, mechanical measurement and sensory evaluation were conducted. The results of the two verification experiments confirmed the feasibility of the cloud model. The microstructures of the five samples were also analyzed. The microstructure parameters were negatively related with crispness (p cloud model method can be used for crispness comparison of different kinds of foods. The method is more accurate than the traditional methods such as mechanical measurement and sensory evaluation. The cloud model method can also be applied to other texture studies extensively. © 2017 Wiley Periodicals, Inc.
Block Empirical Likelihood for Longitudinal Single-Index Varying-Coefficient Model
Directory of Open Access Journals (Sweden)
Yunquan Song
2013-01-01
Full Text Available In this paper, we consider a single-index varying-coefficient model with application to longitudinal data. In order to accommodate the within-group correlation, we apply the block empirical likelihood procedure to longitudinal single-index varying-coefficient model, and prove a nonparametric version of Wilks’ theorem which can be used to construct the block empirical likelihood confidence region with asymptotically correct coverage probability for the parametric component. In comparison with normal approximations, the proposed method does not require a consistent estimator for the asymptotic covariance matrix, making it easier to conduct inference for the model's parametric component. Simulations demonstrate how the proposed method works.
Exergetic comparison of two KRW-based IGCC power plants
International Nuclear Information System (INIS)
Tsatsaronis, G.; Tawfik, T.; Lin, L.; Gallaspy, D.T.
1991-01-01
In studies supported by the U.S. Department of Energy and the Electric Power Research Institute, several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. Two of these configurations are compared in this paper, from the exergetic viewpoint. The exergetic comparison identifies the causes of performance differences between the two cases: differences in the exergy destruction of the gasification system, the gas turbine system, and the gas cooling process, as well as differences in the exergy loss accompanying the solids to disposal stream. The potential for using oxygen-blown versus air-blown KRW gasifiers, and hot gas versus cold gas cleanup processes is evaluated
A Comparison of Moments-Based Logo Recognition Methods
Directory of Open Access Journals (Sweden)
Zili Zhang
2014-01-01
Full Text Available Logo recognition is an important issue in document image, advertisement, and intelligent transportation. Although there are many approaches to study logos in these fields, logo recognition is an essential subprocess. Among the methods of logo recognition, the descriptor is very vital. The results of moments as powerful descriptors were not discussed before in terms of logo recognition. So it is unclear which moments are more appropriate to recognize which kind of logos. In this paper we find out the relations between logos with different transforms and moments, which moments are fit for logos with different transforms. The open datasets are employed from the University of Maryland. The comparisons based on moments are carried out from the aspects of logos with noise, and rotation, scaling, rotation and scaling.
Comparison of three sensory profiling methods based on consumer perception
DEFF Research Database (Denmark)
Reinbach, Helene Christine; Giacalone, Davide; Ribeiro, Letícia Machado
2014-01-01
The present study compares three profiling methods based on consumer perceptions in their ability to discriminate and describe eight beers. Consumers (N=135) evaluated eight different beers using Check-All-That-Apply (CATA) methodology in two variations, with (n=63) and without (n=73) rating...... the intensity of the checked descriptors. With CATA, consumers rated 38 descriptors grouped in 7 overall categories (berries, floral, hoppy, nutty, roasted, spicy/herbal and woody). Additionally 40 of the consumers evaluated the same samples by partial Napping® followed by Ultra Flash Profiling (UFP). ANOVA...... comparisons the RV coefficients varied between 0.90 and 0.97, indicating a very high similarity between all three methods. These results show that the precision and reproducibility of sensory information obtained by consumers by CATA is comparable to that of Napping. The choice of methodology for consumer...
Comparison of lists of genes based on functional profiles
Directory of Open Access Journals (Sweden)
Salicrú Miquel
2011-10-01
Full Text Available Abstract Background How to compare studies on the basis of their biological significance is a problem of central importance in high-throughput genomics. Many methods for performing such comparisons are based on the information in databases of functional annotation, such as those that form the Gene Ontology (GO. Typically, they consist of analyzing gene annotation frequencies in some pre-specified GO classes, in a class-by-class way, followed by p-value adjustment for multiple testing. Enrichment analysis, where a list of genes is compared against a wider universe of genes, is the most common example. Results A new global testing procedure and a method incorporating it are presented. Instead of testing separately for each GO class, a single global test for all classes under consideration is performed. The test is based on the distance between the functional profiles, defined as the joint frequencies of annotation in a given set of GO classes. These classes may be chosen at one or more GO levels. The new global test is more powerful and accurate with respect to type I errors than the usual class-by-class approach. When applied to some real datasets, the results suggest that the method may also provide useful information that complements the tests performed using a class-by-class approach if gene counts are sparse in some classes. An R library, goProfiles, implements these methods and is available from Bioconductor, http://bioconductor.org/packages/release/bioc/html/goProfiles.html. Conclusions The method provides an inferential basis for deciding whether two lists are functionally different. For global comparisons it is preferable to the global chi-square test of homogeneity. Furthermore, it may provide additional information if used in conjunction with class-by-class methods.
COMPARISON of FUZZY-BASED MODELS in LANDSLIDE HAZARD MAPPING
Directory of Open Access Journals (Sweden)
N. Mijani
2017-09-01
Full Text Available Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR and Quality Sum (QS. The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.
Likelihood inference for a fractionally cointegrated vector autoregressive model
DEFF Research Database (Denmark)
Johansen, Søren; Ørregård Nielsen, Morten
2012-01-01
such that the process X_{t} is fractional of order d and cofractional of order d-b; that is, there exist vectors ß for which ß'X_{t} is fractional of order d-b, and no other fractionality order is possible. We define the statistical model by 0inference when the true values satisfy b0¿1/2 and d0-b0......We consider model based inference in a fractionally cointegrated (or cofractional) vector autoregressive model with a restricted constant term, ¿, based on the Gaussian likelihood conditional on initial values. The model nests the I(d) VAR model. We give conditions on the parameters...... process in the parameters when errors are i.i.d. with suitable moment conditions and initial values are bounded. When the limit is deterministic this implies uniform convergence in probability of the conditional likelihood function. If the true value b0>1/2, we prove that the limit distribution of (ß...
Applying exclusion likelihoods from LHC searches to extended Higgs sectors
International Nuclear Information System (INIS)
Bechtle, Philip; Heinemeyer, Sven; Staal, Oscar; Stefaniak, Tim; Weiglein, Georg
2015-01-01
LHC searches for non-standard Higgs bosons decaying into tau lepton pairs constitute a sensitive experimental probe for physics beyond the Standard Model (BSM), such as supersymmetry (SUSY). Recently, the limits obtained from these searches have been presented by the CMS collaboration in a nearly model-independent fashion - as a narrow resonance model - based on the full 8 TeV dataset. In addition to publishing a 95 % C.L. exclusion limit, the full likelihood information for the narrowresonance model has been released. This provides valuable information that can be incorporated into global BSM fits. We present a simple algorithm that maps an arbitrary model with multiple neutral Higgs bosons onto the narrow resonance model and derives the corresponding value for the exclusion likelihood from the CMS search. This procedure has been implemented into the public computer code HiggsBounds (version 4.2.0 and higher). We validate our implementation by cross-checking against the official CMS exclusion contours in three Higgs benchmark scenarios in the Minimal Supersymmetric Standard Model (MSSM), and find very good agreement. Going beyond validation, we discuss the combined constraints of the ττ search and the rate measurements of the SM-like Higgs at 125 GeV in a recently proposed MSSM benchmark scenario, where the lightest Higgs boson obtains SM-like couplings independently of the decoupling of the heavier Higgs states. Technical details for how to access the likelihood information within HiggsBounds are given in the appendix. The program is available at http:// higgsbounds.hepforge.org. (orig.)
Maximum Likelihood Approach for RFID Tag Set Cardinality Estimation with Detection Errors
DEFF Research Database (Denmark)
Nguyen, Chuyen T.; Hayashi, Kazunori; Kaneko, Megumi
2013-01-01
Abstract Estimation schemes of Radio Frequency IDentification (RFID) tag set cardinality are studied in this paper using Maximum Likelihood (ML) approach. We consider the estimation problem under the model of multiple independent reader sessions with detection errors due to unreliable radio...... is evaluated under dierent system parameters and compared with that of the conventional method via computer simulations assuming flat Rayleigh fading environments and framed-slotted ALOHA based protocol. Keywords RFID tag cardinality estimation maximum likelihood detection error...
Anticipating cognitive effort: roles of perceived error-likelihood and time demands.
Dunn, Timothy L; Inzlicht, Michael; Risko, Evan F
2017-11-13
Why are some actions evaluated as effortful? In the present set of experiments we address this question by examining individuals' perception of effort when faced with a trade-off between two putative cognitive costs: how much time a task takes vs. how error-prone it is. Specifically, we were interested in whether individuals anticipate engaging in a small amount of hard work (i.e., low time requirement, but high error-likelihood) vs. a large amount of easy work (i.e., high time requirement, but low error-likelihood) as being more effortful. In between-subject designs, Experiments 1 through 3 demonstrated that individuals anticipate options that are high in perceived error-likelihood (yet less time consuming) as more effortful than options that are perceived to be more time consuming (yet low in error-likelihood). Further, when asked to evaluate which of the two tasks was (a) more effortful, (b) more error-prone, and (c) more time consuming, effort-based and error-based choices closely tracked one another, but this was not the case for time-based choices. Utilizing a within-subject design, Experiment 4 demonstrated overall similar pattern of judgments as Experiments 1 through 3. However, both judgments of error-likelihood and time demand similarly predicted effort judgments. Results are discussed within the context of extant accounts of cognitive control, with considerations of how error-likelihood and time demands may independently and conjunctively factor into judgments of cognitive effort.
Dimension-independent likelihood-informed MCMC
Cui, Tiangang
2015-10-08
Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters that represent the discretization of an underlying function. This work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. Two distinct lines of research intersect in the methods developed here. First, we introduce a general class of operator-weighted proposal distributions that are well defined on function space, such that the performance of the resulting MCMC samplers is independent of the discretization of the function. Second, by exploiting local Hessian information and any associated low-dimensional structure in the change from prior to posterior distributions, we develop an inhomogeneous discretization scheme for the Langevin stochastic differential equation that yields operator-weighted proposals adapted to the non-Gaussian structure of the posterior. The resulting dimension-independent and likelihood-informed (DILI) MCMC samplers may be useful for a large class of high-dimensional problems where the target probability measure has a density with respect to a Gaussian reference measure. Two nonlinear inverse problems are used to demonstrate the efficiency of these DILI samplers: an elliptic PDE coefficient inverse problem and path reconstruction in a conditioned diffusion.
Reducing the likelihood of long tennis matches.
Barnett, Tristan; Alan, Brown; Pollard, Graham
2006-01-01
Long matches can cause problems for tournaments. For example, the starting times of subsequent matches can be substantially delayed causing inconvenience to players, spectators, officials and television scheduling. They can even be seen as unfair in the tournament setting when the winner of a very long match, who may have negative aftereffects from such a match, plays the winner of an average or shorter length match in the next round. Long matches can also lead to injuries to the participating players. One factor that can lead to long matches is the use of the advantage set as the fifth set, as in the Australian Open, the French Open and Wimbledon. Another factor is long rallies and a greater than average number of points per game. This tends to occur more frequently on the slower surfaces such as at the French Open. The mathematical method of generating functions is used to show that the likelihood of long matches can be substantially reduced by using the tiebreak game in the fifth set, or more effectively by using a new type of game, the 50-40 game, throughout the match. Key PointsThe cumulant generating function has nice properties for calculating the parameters of distributions in a tennis matchA final tiebreaker set reduces the length of matches as currently being used in the US OpenA new 50-40 game reduces the length of matches whilst maintaining comparable probabilities for the better player to win the match.
Dimension-independent likelihood-informed MCMC
Cui, Tiangang; Law, Kody; Marzouk, Youssef M.
2015-01-01
Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters that represent the discretization of an underlying function. This work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. Two distinct lines of research intersect in the methods developed here. First, we introduce a general class of operator-weighted proposal distributions that are well defined on function space, such that the performance of the resulting MCMC samplers is independent of the discretization of the function. Second, by exploiting local Hessian information and any associated low-dimensional structure in the change from prior to posterior distributions, we develop an inhomogeneous discretization scheme for the Langevin stochastic differential equation that yields operator-weighted proposals adapted to the non-Gaussian structure of the posterior. The resulting dimension-independent and likelihood-informed (DILI) MCMC samplers may be useful for a large class of high-dimensional problems where the target probability measure has a density with respect to a Gaussian reference measure. Two nonlinear inverse problems are used to demonstrate the efficiency of these DILI samplers: an elliptic PDE coefficient inverse problem and path reconstruction in a conditioned diffusion.
Maximum likelihood window for time delay estimation
International Nuclear Information System (INIS)
Lee, Young Sup; Yoon, Dong Jin; Kim, Chi Yup
2004-01-01
Time delay estimation for the detection of leak location in underground pipelines is critically important. Because the exact leak location depends upon the precision of the time delay between sensor signals due to leak noise and the speed of elastic waves, the research on the estimation of time delay has been one of the key issues in leak lovating with the time arrival difference method. In this study, an optimal Maximum Likelihood window is considered to obtain a better estimation of the time delay. This method has been proved in experiments, which can provide much clearer and more precise peaks in cross-correlation functions of leak signals. The leak location error has been less than 1 % of the distance between sensors, for example the error was not greater than 3 m for 300 m long underground pipelines. Apart from the experiment, an intensive theoretical analysis in terms of signal processing has been described. The improved leak locating with the suggested method is due to the windowing effect in frequency domain, which offers a weighting in significant frequencies.
Maximum likelihood versus likelihood-free quantum system identification in the atom maser
International Nuclear Information System (INIS)
Catana, Catalin; Kypraios, Theodore; Guţă, Mădălin
2014-01-01
We consider the problem of estimating a dynamical parameter of a Markovian quantum open system (the atom maser), by performing continuous time measurements in the system's output (outgoing atoms). Two estimation methods are investigated and compared. Firstly, the maximum likelihood estimator (MLE) takes into account the full measurement data and is asymptotically optimal in terms of its mean square error. Secondly, the ‘likelihood-free’ method of approximate Bayesian computation (ABC) produces an approximation of the posterior distribution for a given set of summary statistics, by sampling trajectories at different parameter values and comparing them with the measurement data via chosen statistics. Building on previous results which showed that atom counts are poor statistics for certain values of the Rabi angle, we apply MLE to the full measurement data and estimate its Fisher information. We then select several correlation statistics such as waiting times, distribution of successive identical detections, and use them as input of the ABC algorithm. The resulting posterior distribution follows closely the data likelihood, showing that the selected statistics capture ‘most’ statistical information about the Rabi angle. (paper)
Julien, Clavel; Leandro, Aristide; Hélène, Morlon
2018-06-19
Working with high-dimensional phylogenetic comparative datasets is challenging because likelihood-based multivariate methods suffer from low statistical performances as the number of traits p approaches the number of species n and because some computational complications occur when p exceeds n. Alternative phylogenetic comparative methods have recently been proposed to deal with the large p small n scenario but their use and performances are limited. Here we develop a penalized likelihood framework to deal with high-dimensional comparative datasets. We propose various penalizations and methods for selecting the intensity of the penalties. We apply this general framework to the estimation of parameters (the evolutionary trait covariance matrix and parameters of the evolutionary model) and model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel's lambda models. We show using simulations that our penalized likelihood approach dramatically improves the estimation of evolutionary trait covariance matrices and model parameters when p approaches n, and allows for their accurate estimation when p equals or exceeds n. In addition, we show that penalized likelihood models can be efficiently compared using Generalized Information Criterion (GIC). We implement these methods, as well as the related estimation of ancestral states and the computation of phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the utility of the new proposed framework by evaluating evolutionary models fit, analyzing integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst model suggesting an early diversification of brain morphology during the ecological radiation of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional multivariate comparative data.
Comparison of wind turbines based on power curve analysis
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-02-01
In the study measured power curves for 46 wind turbines were analyzed with the purpose to establish the basis for a consistent comparison of the efficiency of the wind turbines. Emphasis is on wind turbines above 500 kW rated power, with power curves measured after 1994 according to international recommendations. The available power curves fulfilling these requirements were smoothened according to a procedure developed for the purpose in such a way that the smoothened power curves are equally representative as the measured curves. The resulting smoothened power curves are presented in a standardized format for the subsequent processing. Using wind turbine data from the power curve documentation the analysis results in curves for specific energy production (kWh/M{sup 2}/yr) versus specific rotor load (kW/M{sup 2}) for a range of mean wind speeds. On this basis generalized curves for specific annual energy production versus specific rotor load are established for a number of generalized wind turbine concepts. The 46 smoothened standardized power curves presented in the report, the procedure developed to establish them, and the results of the analysis based on them aim at providers of measured power curves as well as users of them including manufacturers, advisors and decision makers. (au)
Evaluation and Comparison of Extremal Hypothesis-Based Regime Methods
Directory of Open Access Journals (Sweden)
Ishwar Joshi
2018-03-01
Full Text Available Regime channels are important for stable canal design and to determine river response to environmental changes, e.g., due to the construction of a dam, land use change, and climate shifts. A plethora of methods is available describing the hydraulic geometry of alluvial rivers in the regime. However, comparison of these methods using the same set of data seems lacking. In this study, we evaluate and compare four different extremal hypothesis-based regime methods, namely minimization of Froude number (MFN, maximum entropy and minimum energy dissipation rate (ME and MEDR, maximum flow efficiency (MFE, and Millar’s method, by dividing regime channel data into sand and gravel beds. The results show that for sand bed channels MFN gives a very high accuracy of prediction for regime channel width and depth. For gravel bed channels we find that MFN and ‘ME and MEDR’ give a very high accuracy of prediction for width and depth. Therefore the notion that extremal hypotheses which do not contain bank stability criteria are inappropriate for use is shown false as both MFN and ‘ME and MEDR’ lack bank stability criteria. Also, we find that bank vegetation has significant influence in the prediction of hydraulic geometry by MFN and ‘ME and MEDR’.
Cogeneration based on gasified biomass - a comparison of concepts
Energy Technology Data Exchange (ETDEWEB)
Olsson, Fredrik
1999-01-01
In this report, integration of drying and gasification of biomass into cogeneration power plants, comprising gas turbines, is investigated. The thermodynamic cycles considered are the combined cycle and the humid air turbine cycle. These are combined with either pressurised or near atmospheric gasification, and steam or exhaust gas dryer, in a number of combinations. An effort is made to facilitate a comparison of the different concepts by using, and presenting, similar assumptions and input data for all studied systems. The resulting systems are modelled using the software package ASPEN PLUS{sup TM}, and for each system both the electrical efficiency and the fuel utilisation are calculated. The investigation of integrated gasification combined cycles (IGCC), reveals that systems with pressurised gasification have a potential for electrical efficiencies approaching 45% (LHV). That is 4 - 5 percentage points higher than the corresponding systems with near atmospheric gasification. The type of dryer in the system mainly influences the fuel utilisation, with an advantage of approximately 8 percentage points (LHV) for the steam dryer. The resulting values of fuel utilisation for the IGCC systems are in the range of 78 - 94% (LHV). The results for the integrated gasification humid air turbine systems (IGHAT) indicate that electrical efficiencies close to the IGCC are achievable, provided combustion of the fuel gas in highly humidified air is feasible. Reaching a high fuel utilisation is more difficult for this concept, unless the temperature levels in the district heating network are low. For comparison a conventional cogeneration plant, based on a CFB boiler and a steam turbine (Rankine cycle), is also modelled in ASPEN PLUS{sup TM}. The IGCC and IGHAT show electrical efficiencies in the range of 37 - 45% (LHV), compared with a calculated value of 31% (LHV) for the Rankine cycle cogeneration plant. Apart from the electrical efficiency, also a high value of fuel
Atmospheric circulation classification comparison based on wildfires in Portugal
Pereira, M. G.; Trigo, R. M.
2009-04-01
Atmospheric circulation classifications are not a simple description of atmospheric states but a tool to understand and interpret the atmospheric processes and to model the relation between atmospheric circulation and surface climate and other related variables (Radan Huth et al., 2008). Classifications were initially developed with weather forecasting purposes, however with the progress in computer processing capability, new and more robust objective methods were developed and applied to large datasets prompting atmospheric circulation classification methods to one of the most important fields in synoptic and statistical climatology. Classification studies have been extensively used in climate change studies (e.g. reconstructed past climates, recent observed changes and future climates), in bioclimatological research (e.g. relating human mortality to climatic factors) and in a wide variety of synoptic climatological applications (e.g. comparison between datasets, air pollution, snow avalanches, wine quality, fish captures and forest fires). Likewise, atmospheric circulation classifications are important for the study of the role of weather in wildfire occurrence in Portugal because the daily synoptic variability is the most important driver of local weather conditions (Pereira et al., 2005). In particular, the objective classification scheme developed by Trigo and DaCamara (2000) to classify the atmospheric circulation affecting Portugal have proved to be quite useful in discriminating the occurrence and development of wildfires as well as the distribution over Portugal of surface climatic variables with impact in wildfire activity such as maximum and minimum temperature and precipitation. This work aims to present: (i) an overview the existing circulation classification for the Iberian Peninsula, and (ii) the results of a comparison study between these atmospheric circulation classifications based on its relation with wildfires and relevant meteorological
The behavior of the likelihood ratio test for testing missingness
Hens, Niel; Aerts, Marc; Molenberghs, Geert; Thijs, Herbert
2003-01-01
To asses the sensitivity of conclusions to model choices in the context of selection models for non-random dropout, one can oppose the different missing mechanisms to each other; e.g. by the likelihood ratio tests. The finite sample behavior of the null distribution and the power of the likelihood ratio test is studied under a variety of missingness mechanisms. missing data; sensitivity analysis; likelihood ratio test; missing mechanisms
DEFF Research Database (Denmark)
Bohlin, Jon; Snipen, Lars; Cloeckaert, Axel
2010-01-01
BACKGROUND: Classification of bacteria within the genus Brucella has been difficult due in part to considerable genomic homogeneity between the different species and biovars, in spite of clear differences in phenotypes. Therefore, many different methods have been used to assess Brucella taxonomy....... In the current work, we examine 32 sequenced genomes from genus Brucella representing the six classical species, as well as more recently described species, using bioinformatical methods. Comparisons were made at the level of genomic DNA using oligonucleotide based methods (Markov chain based genomic signatures...... between the oligonucleotide based methods used. Whilst the Markov chain based genomic signatures grouped the different species in genus Brucella according to host preference, the codon and amino acid frequencies based methods reflected small differences between the Brucella species. Only minor differences...
Penalized Maximum Likelihood Estimation for univariate normal mixture distributions
International Nuclear Information System (INIS)
Ridolfi, A.; Idier, J.
2001-01-01
Due to singularities of the likelihood function, the maximum likelihood approach for the estimation of the parameters of normal mixture models is an acknowledged ill posed optimization problem. Ill posedness is solved by penalizing the likelihood function. In the Bayesian framework, it amounts to incorporating an inverted gamma prior in the likelihood function. A penalized version of the EM algorithm is derived, which is still explicit and which intrinsically assures that the estimates are not singular. Numerical evidence of the latter property is put forward with a test
Maximum likelihood pedigree reconstruction using integer linear programming.
Cussens, James; Bartlett, Mark; Jones, Elinor M; Sheehan, Nuala A
2013-01-01
Large population biobanks of unrelated individuals have been highly successful in detecting common genetic variants affecting diseases of public health concern. However, they lack the statistical power to detect more modest gene-gene and gene-environment interaction effects or the effects of rare variants for which related individuals are ideally required. In reality, most large population studies will undoubtedly contain sets of undeclared relatives, or pedigrees. Although a crude measure of relatedness might sometimes suffice, having a good estimate of the true pedigree would be much more informative if this could be obtained efficiently. Relatives are more likely to share longer haplotypes around disease susceptibility loci and are hence biologically more informative for rare variants than unrelated cases and controls. Distant relatives are arguably more useful for detecting variants with small effects because they are less likely to share masking environmental effects. Moreover, the identification of relatives enables appropriate adjustments of statistical analyses that typically assume unrelatedness. We propose to exploit an integer linear programming optimisation approach to pedigree learning, which is adapted to find valid pedigrees by imposing appropriate constraints. Our method is not restricted to small pedigrees and is guaranteed to return a maximum likelihood pedigree. With additional constraints, we can also search for multiple high-probability pedigrees and thus account for the inherent uncertainty in any particular pedigree reconstruction. The true pedigree is found very quickly by comparison with other methods when all individuals are observed. Extensions to more complex problems seem feasible. © 2012 Wiley Periodicals, Inc.
Transfer Entropy as a Log-Likelihood Ratio
Barnett, Lionel; Bossomaier, Terry
2012-09-01
Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.
A Non-standard Empirical Likelihood for Time Series
DEFF Research Database (Denmark)
Nordman, Daniel J.; Bunzel, Helle; Lahiri, Soumendra N.
Standard blockwise empirical likelihood (BEL) for stationary, weakly dependent time series requires specifying a fixed block length as a tuning parameter for setting confidence regions. This aspect can be difficult and impacts coverage accuracy. As an alternative, this paper proposes a new version...... of BEL based on a simple, though non-standard, data-blocking rule which uses a data block of every possible length. Consequently, the method involves no block selection and is also anticipated to exhibit better coverage performance. Its non-standard blocking scheme, however, induces non......-standard asymptotics and requires a significantly different development compared to standard BEL. We establish the large-sample distribution of log-ratio statistics from the new BEL method for calibrating confidence regions for mean or smooth function parameters of time series. This limit law is not the usual chi...
Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach
Sohail, Muhammad Sadiq
2012-06-01
This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous with the frequency grid of the ZP-OFDM system. The proposed structure based technique uses the fact that the NBI signal is sparse as compared to the ZP-OFDM signal in the frequency domain. The structure is also useful in reducing the computational complexity of the proposed method. The paper also presents a data aided approach for improved NBI estimation. The suitability of the proposed method is demonstrated through simulations. © 2012 IEEE.
Music genre classification via likelihood fusion from multiple feature models
Shiu, Yu; Kuo, C.-C. J.
2005-01-01
Music genre provides an efficient way to index songs in a music database, and can be used as an effective means to retrieval music of a similar type, i.e. content-based music retrieval. A new two-stage scheme for music genre classification is proposed in this work. At the first stage, we examine a couple of different features, construct their corresponding parametric models (e.g. GMM and HMM) and compute their likelihood functions to yield soft classification results. In particular, the timbre, rhythm and temporal variation features are considered. Then, at the second stage, these soft classification results are integrated to result in a hard decision for final music genre classification. Experimental results are given to demonstrate the performance of the proposed scheme.
Preliminary application of maximum likelihood method in HL-2A Thomson scattering system
International Nuclear Information System (INIS)
Yao Ke; Huang Yuan; Feng Zhen; Liu Chunhua; Li Enping; Nie Lin
2010-01-01
Maximum likelihood method to process the data of HL-2A Thomson scattering system is presented. Using mathematical statistics, this method maximizes the possibility of the likeness between the theoretical data and the observed data, so that we could get more accurate result. It has been proved to be applicable in comparison with that of the ratios method, and some of the drawbacks in ratios method do not exist in this new one. (authors)
Efficient Detection of Repeating Sites to Accelerate Phylogenetic Likelihood Calculations.
Kobert, K; Stamatakis, A; Flouri, T
2017-03-01
The phylogenetic likelihood function (PLF) is the major computational bottleneck in several applications of evolutionary biology such as phylogenetic inference, species delimitation, model selection, and divergence times estimation. Given the alignment, a tree and the evolutionary model parameters, the likelihood function computes the conditional likelihood vectors for every node of the tree. Vector entries for which all input data are identical result in redundant likelihood operations which, in turn, yield identical conditional values. Such operations can be omitted for improving run-time and, using appropriate data structures, reducing memory usage. We present a fast, novel method for identifying and omitting such redundant operations in phylogenetic likelihood calculations, and assess the performance improvement and memory savings attained by our method. Using empirical and simulated data sets, we show that a prototype implementation of our method yields up to 12-fold speedups and uses up to 78% less memory than one of the fastest and most highly tuned implementations of the PLF currently available. Our method is generic and can seamlessly be integrated into any phylogenetic likelihood implementation. [Algorithms; maximum likelihood; phylogenetic likelihood function; phylogenetics]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Planck intermediate results: XVI. Profile likelihoods for cosmological parameters
DEFF Research Database (Denmark)
Bartlett, J.G.; Cardoso, J.-F.; Delabrouille, J.
2014-01-01
We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the CDM best-fit solution with respect to previously-released results, and the construction of frequentist confidence intervals using profile likelihoods. The agr...
Planck 2013 results. XV. CMB power spectra and likelihood
DEFF Research Database (Denmark)
Tauber, Jan; Bartlett, J.G.; Bucher, M.
2014-01-01
This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best...
The modified signed likelihood statistic and saddlepoint approximations
DEFF Research Database (Denmark)
Jensen, Jens Ledet
1992-01-01
SUMMARY: For a number of tests in exponential families we show that the use of a normal approximation to the modified signed likelihood ratio statistic r * is equivalent to the use of a saddlepoint approximation. This is also true in a large deviation region where the signed likelihood ratio...... statistic r is of order √ n. © 1992 Biometrika Trust....
Accelerated maximum likelihood parameter estimation for stochastic biochemical systems
Directory of Open Access Journals (Sweden)
Daigle Bernie J
2012-05-01
. Conclusions This work provides a novel, accelerated version of a likelihood-based parameter estimation method that can be readily applied to stochastic biochemical systems. In addition, our results suggest opportunities for added efficiency improvements that will further enhance our ability to mechanistically simulate biological processes.
CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE
International Nuclear Information System (INIS)
Czekala, Ian; Andrews, Sean M.; Mandel, Kaisey S.; Green, Gregory M.; Hogg, David W.
2015-01-01
We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line “outliers.” By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf
Targeted maximum likelihood estimation for a binary treatment: A tutorial.
Luque-Fernandez, Miguel Angel; Schomaker, Michael; Rachet, Bernard; Schnitzer, Mireille E
2018-04-23
When estimating the average effect of a binary treatment (or exposure) on an outcome, methods that incorporate propensity scores, the G-formula, or targeted maximum likelihood estimation (TMLE) are preferred over naïve regression approaches, which are biased under misspecification of a parametric outcome model. In contrast propensity score methods require the correct specification of an exposure model. Double-robust methods only require correct specification of either the outcome or the exposure model. Targeted maximum likelihood estimation is a semiparametric double-robust method that improves the chances of correct model specification by allowing for flexible estimation using (nonparametric) machine-learning methods. It therefore requires weaker assumptions than its competitors. We provide a step-by-step guided implementation of TMLE and illustrate it in a realistic scenario based on cancer epidemiology where assumptions about correct model specification and positivity (ie, when a study participant had 0 probability of receiving the treatment) are nearly violated. This article provides a concise and reproducible educational introduction to TMLE for a binary outcome and exposure. The reader should gain sufficient understanding of TMLE from this introductory tutorial to be able to apply the method in practice. Extensive R-code is provided in easy-to-read boxes throughout the article for replicability. Stata users will find a testing implementation of TMLE and additional material in the Appendix S1 and at the following GitHub repository: https://github.com/migariane/SIM-TMLE-tutorial. © 2018 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Application of the Elaboration Likelihood Model of Attitude Change to Assertion Training.
Ernst, John M.; Heesacker, Martin
1993-01-01
College students (n=113) participated in study comparing effects of elaboration likelihood model (ELM) based assertion workshop with those of typical assertion workshop. ELM-based workshop was significantly better at producing favorable attitude change, greater intention to act assertively, and more favorable evaluations of workshop content.…
Likelihood analysis of parity violation in the compound nucleus
International Nuclear Information System (INIS)
Bowman, D.; Sharapov, E.
1993-01-01
We discuss the determination of the root mean-squared matrix element of the parity-violating interaction between compound-nuclear states using likelihood analysis. We briefly review the relevant features of the statistical model of the compound nucleus and the formalism of likelihood analysis. We then discuss the application of likelihood analysis to data on panty-violating longitudinal asymmetries. The reliability of the extracted value of the matrix element and errors assigned to the matrix element is stressed. We treat the situations where the spins of the p-wave resonances are not known and known using experimental data and Monte Carlo techniques. We conclude that likelihood analysis provides a reliable way to determine M and its confidence interval. We briefly discuss some problems associated with the normalization of the likelihood function
Towers, Sherry; Mubayi, Anuj; Castillo-Chavez, Carlos
2018-01-01
When attempting to statistically distinguish between a null and an alternative hypothesis, many researchers in the life and social sciences turn to binned statistical analysis methods, or methods that are simply based on the moments of a distribution (such as the mean, and variance). These methods have the advantage of simplicity of implementation, and simplicity of explanation. However, when null and alternative hypotheses manifest themselves in subtle differences in patterns in the data, binned analysis methods may be insensitive to these differences, and researchers may erroneously fail to reject the null hypothesis when in fact more sensitive statistical analysis methods might produce a different result when the null hypothesis is actually false. Here, with a focus on two recent conflicting studies of contagion in mass killings as instructive examples, we discuss how the use of unbinned likelihood methods makes optimal use of the information in the data; a fact that has been long known in statistical theory, but perhaps is not as widely appreciated amongst general researchers in the life and social sciences. In 2015, Towers et al published a paper that quantified the long-suspected contagion effect in mass killings. However, in 2017, Lankford & Tomek subsequently published a paper, based upon the same data, that claimed to contradict the results of the earlier study. The former used unbinned likelihood methods, and the latter used binned methods, and comparison of distribution moments. Using these analyses, we also discuss how visualization of the data can aid in determination of the most appropriate statistical analysis methods to distinguish between a null and alternate hypothesis. We also discuss the importance of assessment of the robustness of analysis results to methodological assumptions made (for example, arbitrary choices of number of bins and bin widths when using binned methods); an issue that is widely overlooked in the literature, but is critical
Maximum likelihood estimation of the parameters of nonminimum phase and noncausal ARMA models
DEFF Research Database (Denmark)
Rasmussen, Klaus Bolding
1994-01-01
The well-known prediction-error-based maximum likelihood (PEML) method can only handle minimum phase ARMA models. This paper presents a new method known as the back-filtering-based maximum likelihood (BFML) method, which can handle nonminimum phase and noncausal ARMA models. The BFML method...... is identical to the PEML method in the case of a minimum phase ARMA model, and it turns out that the BFML method incorporates a noncausal ARMA filter with poles outside the unit circle for estimation of the parameters of a causal, nonminimum phase ARMA model...
Planck 2015 results: XI. CMB power spectra, likelihoods, and robustness of parameters
DEFF Research Database (Denmark)
Aghanim, N.; Arnaud, M.; Ashdown, M.
2016-01-01
on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (ℓ data and of Planck polarization......This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based...... information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck...
Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting
Institute of Scientific and Technical Information of China (English)
WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng
2003-01-01
To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.
Camilo, Daniela Castro
2017-10-02
In order to model the complex non-stationary dependence structure of precipitation extremes over the entire contiguous U.S., we propose a flexible local approach based on factor copula models. Our sub-asymptotic spatial modeling framework yields non-trivial tail dependence structures, with a weakening dependence strength as events become more extreme, a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity. This allows us to gain in flexibility, while making inference for such a large and complex dataset feasible. Adopting a local censored likelihood approach, inference is made on a fine spatial grid, and local estimation is performed taking advantage of distributed computing resources and of the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. An extensive simulation study shows that our approach is able to adequately capture complex, non-stationary dependencies, while our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events. A comparison between past and current data suggests that extremes in certain areas might be slightly wider in extent nowadays than during the first half of the twentieth century.
Camilo, Daniela Castro; Huser, Raphaë l
2017-01-01
In order to model the complex non-stationary dependence structure of precipitation extremes over the entire contiguous U.S., we propose a flexible local approach based on factor copula models. Our sub-asymptotic spatial modeling framework yields non-trivial tail dependence structures, with a weakening dependence strength as events become more extreme, a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity. This allows us to gain in flexibility, while making inference for such a large and complex dataset feasible. Adopting a local censored likelihood approach, inference is made on a fine spatial grid, and local estimation is performed taking advantage of distributed computing resources and of the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. An extensive simulation study shows that our approach is able to adequately capture complex, non-stationary dependencies, while our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events. A comparison between past and current data suggests that extremes in certain areas might be slightly wider in extent nowadays than during the first half of the twentieth century.
Parallelization of maximum likelihood fits with OpenMP and CUDA
Jarp, S; Leduc, J; Nowak, A; Pantaleo, F
2011-01-01
Data analyses based on maximum likelihood fits are commonly used in the high energy physics community for fitting statistical models to data samples. This technique requires the numerical minimization of the negative log-likelihood function. MINUIT is the most common package used for this purpose in the high energy physics community. The main algorithm in this package, MIGRAD, searches the minimum by using the gradient information. The procedure requires several evaluations of the function, depending on the number of free parameters and their initial values. The whole procedure can be very CPU-time consuming in case of complex functions, with several free parameters, many independent variables and large data samples. Therefore, it becomes particularly important to speed-up the evaluation of the negative log-likelihood function. In this paper we present an algorithm and its implementation which benefits from data vectorization and parallelization (based on OpenMP) and which was also ported to Graphics Processi...
Maximum likelihood estimation for Cox's regression model under nested case-control sampling
DEFF Research Database (Denmark)
Scheike, Thomas Harder; Juul, Anders
2004-01-01
-like growth factor I was associated with ischemic heart disease. The study was based on a population of 3784 Danes and 231 cases of ischemic heart disease where controls were matched on age and gender. We illustrate the use of the MLE for these data and show how the maximum likelihood framework can be used......Nested case-control sampling is designed to reduce the costs of large cohort studies. It is important to estimate the parameters of interest as efficiently as possible. We present a new maximum likelihood estimator (MLE) for nested case-control sampling in the context of Cox's proportional hazards...... model. The MLE is computed by the EM-algorithm, which is easy to implement in the proportional hazards setting. Standard errors are estimated by a numerical profile likelihood approach based on EM aided differentiation. The work was motivated by a nested case-control study that hypothesized that insulin...
Elaboration likelihood and the perceived value of labels
DEFF Research Database (Denmark)
Poulsen, Carsten Stig; Juhl, Hans Jørn
2001-01-01
In this paper the increasingly popular method of choice based on conjoint analysis is used and data are collected by pairwise comparisons. A latent class model is formulated allowing that the resulting data can be analyzed with segmentation in mind. The empirical study is on food labeling...
Term Based Comparison Metrics for Controlled and Uncontrolled Indexing Languages
Good, B. M.; Tennis, J. T.
2009-01-01
Introduction: We define a collection of metrics for describing and comparing sets of terms in controlled and uncontrolled indexing languages and then show how these metrics can be used to characterize a set of languages spanning folksonomies, ontologies and thesauri. Method: Metrics for term set characterization and comparison were identified and…
Directory of Open Access Journals (Sweden)
César da Silva Chagas
2013-04-01
Full Text Available Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI, derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs was greater than of the classic Maximum Likelihood Classifier (MLC. Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 % was superior to the MLC map (57.94 %. The main errors when using the two classifiers were caused by: a the geological heterogeneity of the area coupled with problems related to the geological map; b the depth of lithic contact and/or rock exposure, and c problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.O levantamento de solos é a principal fonte de informação espacial sobre solos para diferentes usos
Maximum Likelihood Learning of Conditional MTE Distributions
DEFF Research Database (Denmark)
Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael
2009-01-01
We describe a procedure for inducing conditional densities within the mixtures of truncated exponentials (MTE) framework. We analyse possible conditional MTE speciﬁcations and propose a model selection scheme, based on the BIC score, for partitioning the domain of the conditioning variables....... Finally, experimental results demonstrate the applicability of the learning procedure as well as the expressive power of the conditional MTE distribution....
Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation
Pan, Bing
2015-02-12
Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.
Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation
Pan, Bing; Wang, B.; Lubineau, Gilles; Moussawi, Ali
2015-01-01
Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.
Competency-based models of learning for engineers: a comparison
Lunev, Alexander; Petrova, Irina; Zaripova, Viktoria
2013-10-01
One of the goals of higher professional education is to develop generic student competencies across a variety of disciplines that play a crucial role in education and that provide wider opportunities for graduates in finding good jobs and more chance of promotion. In this article a list of generic competencies developed in Russian universities is compared with a similar list developed by a consortium of Russian and European universities (project TUNING-RUSSIA). Then there is a second comparison with a list of competencies taken from the CDIO Syllabus. This comparison indicates the degree of similarity among the lists and the possible convergence among universities all over the world. The results are taken from a survey carried out among Russian employers, academics, and graduates. The survey asked to rate each listed competence by its importance and the degree of achieving goals in the process of the education.
Design of Simplified Maximum-Likelihood Receivers for Multiuser CPM Systems
Directory of Open Access Journals (Sweden)
Li Bing
2014-01-01
Full Text Available A class of simplified maximum-likelihood receivers designed for continuous phase modulation based multiuser systems is proposed. The presented receiver is built upon a front end employing mismatched filters and a maximum-likelihood detector defined in a low-dimensional signal space. The performance of the proposed receivers is analyzed and compared to some existing receivers. Some schemes are designed to implement the proposed receivers and to reveal the roles of different system parameters. Analysis and numerical results show that the proposed receivers can approach the optimum multiuser receivers with significantly (even exponentially in some cases reduced complexity and marginal performance degradation.
Design of simplified maximum-likelihood receivers for multiuser CPM systems.
Bing, Li; Bai, Baoming
2014-01-01
A class of simplified maximum-likelihood receivers designed for continuous phase modulation based multiuser systems is proposed. The presented receiver is built upon a front end employing mismatched filters and a maximum-likelihood detector defined in a low-dimensional signal space. The performance of the proposed receivers is analyzed and compared to some existing receivers. Some schemes are designed to implement the proposed receivers and to reveal the roles of different system parameters. Analysis and numerical results show that the proposed receivers can approach the optimum multiuser receivers with significantly (even exponentially in some cases) reduced complexity and marginal performance degradation.
Kinnear, John; Jackson, Ruth
2017-07-01
Although physicians are highly trained in the application of evidence-based medicine, and are assumed to make rational decisions, there is evidence that their decision making is prone to biases. One of the biases that has been shown to affect accuracy of judgements is that of representativeness and base-rate neglect, where the saliency of a person's features leads to overestimation of their likelihood of belonging to a group. This results in the substitution of 'subjective' probability for statistical probability. This study examines clinicians' propensity to make estimations of subjective probability when presented with clinical information that is considered typical of a medical condition. The strength of the representativeness bias is tested by presenting choices in textual and graphic form. Understanding of statistical probability is also tested by omitting all clinical information. For the questions that included clinical information, 46.7% and 45.5% of clinicians made judgements of statistical probability, respectively. Where the question omitted clinical information, 79.9% of clinicians made a judgement consistent with statistical probability. There was a statistically significant difference in responses to the questions with and without representativeness information (χ2 (1, n=254)=54.45, pprobability. One of the causes for this representativeness bias may be the way clinical medicine is taught where stereotypic presentations are emphasised in diagnostic decision making. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Ning, Jing; Chen, Yong; Piao, Jin
2017-07-01
Publication bias occurs when the published research results are systematically unrepresentative of the population of studies that have been conducted, and is a potential threat to meaningful meta-analysis. The Copas selection model provides a flexible framework for correcting estimates and offers considerable insight into the publication bias. However, maximizing the observed likelihood under the Copas selection model is challenging because the observed data contain very little information on the latent variable. In this article, we study a Copas-like selection model and propose an expectation-maximization (EM) algorithm for estimation based on the full likelihood. Empirical simulation studies show that the EM algorithm and its associated inferential procedure performs well and avoids the non-convergence problem when maximizing the observed likelihood. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Maximum likelihood positioning for gamma-ray imaging detectors with depth of interaction measurement
International Nuclear Information System (INIS)
Lerche, Ch.W.; Ros, A.; Monzo, J.M.; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Esteve, R.; Gadea, R.; Colom, R.J.; Toledo, J.; Mateo, F.; Sebastia, A.; Sanchez, F.; Benlloch, J.M.
2009-01-01
The center of gravity algorithm leads to strong artifacts for gamma-ray imaging detectors that are based on monolithic scintillation crystals and position sensitive photo-detectors. This is a consequence of using the centroids as position estimates. The fact that charge division circuits can also be used to compute the standard deviation of the scintillation light distribution opens a way out of this drawback. We studied the feasibility of maximum likelihood estimation for computing the true gamma-ray photo-conversion position from the centroids and the standard deviation of the light distribution. The method was evaluated on a test detector that consists of the position sensitive photomultiplier tube H8500 and a monolithic LSO crystal (42mmx42mmx10mm). Spatial resolution was measured for the centroids and the maximum likelihood estimates. The results suggest that the maximum likelihood positioning is feasible and partially removes the strong artifacts of the center of gravity algorithm.
Maximum likelihood positioning for gamma-ray imaging detectors with depth of interaction measurement
Energy Technology Data Exchange (ETDEWEB)
Lerche, Ch.W. [Grupo de Sistemas Digitales, ITACA, Universidad Politecnica de Valencia, 46022 Valencia (Spain)], E-mail: lerche@ific.uv.es; Ros, A. [Grupo de Fisica Medica Nuclear, IFIC, Universidad de Valencia-Consejo Superior de Investigaciones Cientificas, 46980 Paterna (Spain); Monzo, J.M.; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Esteve, R.; Gadea, R.; Colom, R.J.; Toledo, J.; Mateo, F.; Sebastia, A. [Grupo de Sistemas Digitales, ITACA, Universidad Politecnica de Valencia, 46022 Valencia (Spain); Sanchez, F.; Benlloch, J.M. [Grupo de Fisica Medica Nuclear, IFIC, Universidad de Valencia-Consejo Superior de Investigaciones Cientificas, 46980 Paterna (Spain)
2009-06-01
The center of gravity algorithm leads to strong artifacts for gamma-ray imaging detectors that are based on monolithic scintillation crystals and position sensitive photo-detectors. This is a consequence of using the centroids as position estimates. The fact that charge division circuits can also be used to compute the standard deviation of the scintillation light distribution opens a way out of this drawback. We studied the feasibility of maximum likelihood estimation for computing the true gamma-ray photo-conversion position from the centroids and the standard deviation of the light distribution. The method was evaluated on a test detector that consists of the position sensitive photomultiplier tube H8500 and a monolithic LSO crystal (42mmx42mmx10mm). Spatial resolution was measured for the centroids and the maximum likelihood estimates. The results suggest that the maximum likelihood positioning is feasible and partially removes the strong artifacts of the center of gravity algorithm.
Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems
Directory of Open Access Journals (Sweden)
Hakan A. Çırpan
2002-05-01
Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.
Uncertainty about the true source. A note on the likelihood ratio at the activity level.
Taroni, Franco; Biedermann, Alex; Bozza, Silvia; Comte, Jennifer; Garbolino, Paolo
2012-07-10
This paper focuses on likelihood ratio based evaluations of fibre evidence in cases in which there is uncertainty about whether or not the reference item available for analysis - that is, an item typically taken from the suspect or seized at his home - is the item actually worn at the time of the offence. A likelihood ratio approach is proposed that, for situations in which certain categorical assumptions can be made about additionally introduced parameters, converges to formula described in existing literature. The properties of the proposed likelihood ratio approach are analysed through sensitivity analyses and discussed with respect to possible argumentative implications that arise in practice. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Daniel L. Rabosky
2006-01-01
Full Text Available Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximum likelihood methods based on the birth-death process to test whether diversification rates have changed over time. LASER contrasts the likelihood of phylogenetic data under models where diversification rates have changed over time to alternative models where rates have remained constant over time. Major strengths of the package include the ability to detect temporal increases in diversification rates and the inference of diversification parameters under multiple rate-variable models of diversification. The program and associated documentation are freely available from the R package archive at http://cran.r-project.org.
Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways
Directory of Open Access Journals (Sweden)
Brunekreef Bert
2009-07-01
Full Text Available Abstract Background Exposure to fine ambient particulate matter (PM has consistently been associated with increased morbidity and mortality. The relationship between exposure to ultrafine particles (UFP and health effects is less firmly established. If UFP cause health effects independently from coarser fractions, this could affect health impact assessment of air pollution, which would possibly lead to alternative policy options to be considered to reduce the disease burden of PM. Therefore, we organized an expert elicitation workshop to assess the evidence for a causal relationship between exposure to UFP and health endpoints. Methods An expert elicitation on the health effects of ambient ultrafine particle exposure was carried out, focusing on: 1 the likelihood of causal relationships with key health endpoints, and 2 the likelihood of potential causal pathways for cardiac events. Based on a systematic peer-nomination procedure, fourteen European experts (epidemiologists, toxicologists and clinicians were selected, of whom twelve attended. They were provided with a briefing book containing key literature. After a group discussion, individual expert judgments in the form of ratings of the likelihood of causal relationships and pathways were obtained using a confidence scheme adapted from the one used by the Intergovernmental Panel on Climate Change. Results The likelihood of an independent causal relationship between increased short-term UFP exposure and increased all-cause mortality, hospital admissions for cardiovascular and respiratory diseases, aggravation of asthma symptoms and lung function decrements was rated medium to high by most experts. The likelihood for long-term UFP exposure to be causally related to all cause mortality, cardiovascular and respiratory morbidity and lung cancer was rated slightly lower, mostly medium. The experts rated the likelihood of each of the six identified possible causal pathways separately. Out of these
Brief communication: Drought likelihood for East Africa
Yang, Hui; Huntingford, Chris
2018-02-01
The East Africa drought in autumn of year 2016 caused malnutrition, illness and death. Close to 16 million people across Somalia, Ethiopia and Kenya needed food, water and medical assistance. Many factors influence drought stress and response. However, inevitably the following question is asked: are elevated greenhouse gas concentrations altering extreme rainfall deficit frequency? We investigate this with general circulation models (GCMs). After GCM bias correction to match the climatological mean of the CHIRPS data-based rainfall product, climate models project small decreases in probability of drought with the same (or worse) severity as 2016 ASO (August to October) East African event. This is by the end of the 21st century compared to the probabilities for present day. However, when further adjusting the climatological variability of GCMs to also match CHIRPS data, by additionally bias-correcting for variance, then the probability of drought occurrence will increase slightly over the same period.
Brief communication: Drought likelihood for East Africa
Directory of Open Access Journals (Sweden)
H. Yang
2018-02-01
Full Text Available The East Africa drought in autumn of year 2016 caused malnutrition, illness and death. Close to 16 million people across Somalia, Ethiopia and Kenya needed food, water and medical assistance. Many factors influence drought stress and response. However, inevitably the following question is asked: are elevated greenhouse gas concentrations altering extreme rainfall deficit frequency? We investigate this with general circulation models (GCMs. After GCM bias correction to match the climatological mean of the CHIRPS data-based rainfall product, climate models project small decreases in probability of drought with the same (or worse severity as 2016 ASO (August to October East African event. This is by the end of the 21st century compared to the probabilities for present day. However, when further adjusting the climatological variability of GCMs to also match CHIRPS data, by additionally bias-correcting for variance, then the probability of drought occurrence will increase slightly over the same period.
Posterior distributions for likelihood ratios in forensic science.
van den Hout, Ardo; Alberink, Ivo
2016-09-01
Evaluation of evidence in forensic science is discussed using posterior distributions for likelihood ratios. Instead of eliminating the uncertainty by integrating (Bayes factor) or by conditioning on parameter values, uncertainty in the likelihood ratio is retained by parameter uncertainty derived from posterior distributions. A posterior distribution for a likelihood ratio can be summarised by the median and credible intervals. Using the posterior mean of the distribution is not recommended. An analysis of forensic data for body height estimation is undertaken. The posterior likelihood approach has been criticised both theoretically and with respect to applicability. This paper addresses the latter and illustrates an interesting application area. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Maximum likelihood estimation of finite mixture model for economic data
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-06-01
Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.
Attitude towards, and likelihood of, complaining in the banking ...
African Journals Online (AJOL)
aims to determine customers' attitudes towards complaining as well as their likelihood of voicing a .... is particularly powerful and impacts greatly on customer satisfaction and retention. ...... 'Cross-national analysis of hotel customers' attitudes ...
Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach
Sohail, Muhammad Sadiq; Al-Naffouri, Tareq Y.; Al-Ghadhban, Samir N.
2012-01-01
This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous
Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography
International Nuclear Information System (INIS)
Brendel, Bernhard; Teuffenbach, Maximilian von; Noël, Peter B.; Pfeiffer, Franz; Koehler, Thomas
2016-01-01
Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penalty comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts
Comparison of the Clock Test and a questionnaire-based test for ...
African Journals Online (AJOL)
Comparison of the Clock Test and a questionnaire-based test for screening for cognitive impairment in Nigerians. D J VanderJagt, S Ganga, M O Obadofin, P Stanley, M Zimmerman, B J Skipper, R H Glew ...
Baartman, Liesbeth; Bastiaens, Theo; Kirschner, Paul A.; Van der Vleuten, Cees
2009-01-01
Baartman, L. K. J., Bastiaens, T. J., Kirschner, P. A., & Van der Vleuten, C. P. M. (2007). Evaluation assessment quality in competence-based education: A qualitative comparison of two frameworks. Educational Research Review, 2, 114-129.
Diagonal Likelihood Ratio Test for Equality of Mean Vectors in High-Dimensional Data
Hu, Zongliang; Tong, Tiejun; Genton, Marc G.
2017-01-01
We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assumption that the covariance matrices follow a diagonal matrix structure. In comparison with the diagonal Hotelling's tests, our proposed test statistics display some interesting characteristics. In particular, they are a summation of the log-transformed squared t-statistics rather than a direct summation of those components. More importantly, to derive the asymptotic normality of our test statistics under the null and local alternative hypotheses, we do not require the assumption that the covariance matrix follows a diagonal matrix structure. As a consequence, our proposed test methods are very flexible and can be widely applied in practice. Finally, simulation studies and a real data analysis are also conducted to demonstrate the advantages of our likelihood ratio test method.
Aquilino, William S.
1990-01-01
Estimated influence of child, parent, and family structural characteristics on likelihood of parents having coresident adult child, based on national sample of 4,893 parents. Results indicated most parents maintained own households and most parents and adult children who coresided lived in parents' home. Family structure was found to exert strong…
Kuhnt, S.
2004-01-01
Observed cell counts in contingency tables are perceived as outliers if they have low probability under an anticipated loglinear Poisson model. New procedures for the identification of such outliers are derived using the classical maximum likelihood estimator and an estimator based on the L1 norm.
Estimation of stochastic frontier models with fixed-effects through Monte Carlo Maximum Likelihood
Emvalomatis, G.; Stefanou, S.E.; Oude Lansink, A.G.J.M.
2011-01-01
Estimation of nonlinear fixed-effects models is plagued by the incidental parameters problem. This paper proposes a procedure for choosing appropriate densities for integrating the incidental parameters from the likelihood function in a general context. The densities are based on priors that are
Petty, Richard E.; And Others
1987-01-01
Answers James Stiff's criticism of the Elaboration Likelihood Model (ELM) of persuasion. Corrects certain misperceptions of the ELM and criticizes Stiff's meta-analysis that compares ELM predictions with those derived from Kahneman's elastic capacity model. Argues that Stiff's presentation of the ELM and the conclusions he draws based on the data…
On the likelihood function of Gaussian max-stable processes
Genton, M. G.; Ma, Y.; Sang, H.
2011-01-01
We derive a closed form expression for the likelihood function of a Gaussian max-stable process indexed by ℝd at p≤d+1 sites, d≥1. We demonstrate the gain in efficiency in the maximum composite likelihood estimators of the covariance matrix from p=2 to p=3 sites in ℝ2 by means of a Monte Carlo simulation study. © 2011 Biometrika Trust.
Incorporating Nuisance Parameters in Likelihoods for Multisource Spectra
Conway, J.S.
2011-01-01
We describe here the general mathematical approach to constructing likelihoods for fitting observed spectra in one or more dimensions with multiple sources, including the effects of systematic uncertainties represented as nuisance parameters, when the likelihood is to be maximized with respect to these parameters. We consider three types of nuisance parameters: simple multiplicative factors, source spectra "morphing" parameters, and parameters representing statistical uncertainties in the predicted source spectra.
On the likelihood function of Gaussian max-stable processes
Genton, M. G.
2011-05-24
We derive a closed form expression for the likelihood function of a Gaussian max-stable process indexed by ℝd at p≤d+1 sites, d≥1. We demonstrate the gain in efficiency in the maximum composite likelihood estimators of the covariance matrix from p=2 to p=3 sites in ℝ2 by means of a Monte Carlo simulation study. © 2011 Biometrika Trust.
GPU accelerated likelihoods for stereo-based articulated tracking
DEFF Research Database (Denmark)
Friborg, Rune Møllegaard; Hauberg, Søren; Erleben, Kenny
2010-01-01
than a traditional CPU implementation. We explain the non-intuitive steps required to attain an optimized GPU implementation, where the dominant part is to hide the memory latency effectively. Benchmarks show that computations which previously required several minutes, are now performed in few seconds....
Likelihood-Based Clustering of Meta-Analytic SROC Curves
Holling, Heinz; Bohning, Walailuck; Bohning, Dankmar
2012-01-01
Meta-analysis of diagnostic studies experience the common problem that different studies might not be comparable since they have been using a different cut-off value for the continuous or ordered categorical diagnostic test value defining different regions for which the diagnostic test is defined to be positive. Hence specificities and…
The Likelihood of Recent Record Warmth.
Mann, Michael E; Rahmstorf, Stefan; Steinman, Byron A; Tingley, Martin; Miller, Sonya K
2016-01-25
2014 was nominally the warmest year on record for both the globe and northern hemisphere based on historical records spanning the past one and a half centuries. It was the latest in a recent run of record temperatures spanning the past decade and a half. Press accounts reported odds as low as one-in-650 million that the observed run of global temperature records would be expected to occur in the absence of human-caused global warming. Press reports notwithstanding, the question of how likely observed temperature records may have have been both with and without human influence is interesting in its own right. Here we attempt to address that question using a semi-empirical approach that combines the latest (CMIP5) climate model simulations with observations of global and hemispheric mean temperature. We find that individual record years and the observed runs of record-setting temperatures were extremely unlikely to have occurred in the absence of human-caused climate change, though not nearly as unlikely as press reports have suggested. These same record temperatures were, by contrast, quite likely to have occurred in the presence of anthropogenic climate forcing.
A Comparison of the Plastic Flow Response of a Powder Metallurgy Nickel Base Superalloy (Postprint)
2017-04-01
AFRL-RX-WP-JA-2017-0225 A COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) S.L...COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT...behavior at hot-working temperatures and strain rates of the powder- metallurgy superalloy LSHR was determined under nominally-isothermal and transient
Dissociating response conflict and error likelihood in anterior cingulate cortex.
Yeung, Nick; Nieuwenhuis, Sander
2009-11-18
Neuroimaging studies consistently report activity in anterior cingulate cortex (ACC) in conditions of high cognitive demand, leading to the view that ACC plays a crucial role in the control of cognitive processes. According to one prominent theory, the sensitivity of ACC to task difficulty reflects its role in monitoring for the occurrence of competition, or "conflict," between responses to signal the need for increased cognitive control. However, a contrasting theory proposes that ACC is the recipient rather than source of monitoring signals, and that ACC activity observed in relation to task demand reflects the role of this region in learning about the likelihood of errors. Response conflict and error likelihood are typically confounded, making the theories difficult to distinguish empirically. The present research therefore used detailed computational simulations to derive contrasting predictions regarding ACC activity and error rate as a function of response speed. The simulations demonstrated a clear dissociation between conflict and error likelihood: fast response trials are associated with low conflict but high error likelihood, whereas slow response trials show the opposite pattern. Using the N2 component as an index of ACC activity, an EEG study demonstrated that when conflict and error likelihood are dissociated in this way, ACC activity tracks conflict and is negatively correlated with error likelihood. These findings support the conflict-monitoring theory and suggest that, in speeded decision tasks, ACC activity reflects current task demands rather than the retrospective coding of past performance.
Operator Performance Comparison of two VDT-based Alarm Systems
International Nuclear Information System (INIS)
Lee, Hyun-Chul; Oh, In-Suk; Sim, Bong-Shick; Koo, In-Soo; Kim, Jeong-Taek; Lee, Ki-Young; Park, Jong-Kyun
1998-01-01
This study is carried out to investigate performance differences between two alarm presentation methods from the viewpoint of human factors and to provide items to be improved. One of the alarm display methods considered in this study displays alarm lists on VDT combined with hardwired alarm panels. The other method displays alarms on plant mimic diagrams of VDT. This alarm display method has other features for operator aid with which operator can get detailed information on the activated alarm in the mimic diagrams, and the capability for alarm processing such as alarm reduction and prioritization. To compare the two display methods, a human factor experiment was performed with a plant simulator in the ITF (Integrated Test Facility) that plant operators run for 4 event scenarios. During the experiment, physiological measurements, system and operator action log, and audio/video recordings were collected. Operators subjective opinion was collected as well after the experiment. Time, error rate and situation awareness were major human factor criteria used for the comparison during the analysis stage of the experiment. No statistical significance was found in the results of our statistical comparison analysis. Several findings were identified, however, through the analysis of subjective opinions. (authors)
Efficient algorithms for maximum likelihood decoding in the surface code
Bravyi, Sergey; Suchara, Martin; Vargo, Alexander
2014-09-01
We describe two implementations of the optimal error correction algorithm known as the maximum likelihood decoder (MLD) for the two-dimensional surface code with a noiseless syndrome extraction. First, we show how to implement MLD exactly in time O (n2), where n is the number of code qubits. Our implementation uses a reduction from MLD to simulation of matchgate quantum circuits. This reduction however requires a special noise model with independent bit-flip and phase-flip errors. Secondly, we show how to implement MLD approximately for more general noise models using matrix product states (MPS). Our implementation has running time O (nχ3), where χ is a parameter that controls the approximation precision. The key step of our algorithm, borrowed from the density matrix renormalization-group method, is a subroutine for contracting a tensor network on the two-dimensional grid. The subroutine uses MPS with a bond dimension χ to approximate the sequence of tensors arising in the course of contraction. We benchmark the MPS-based decoder against the standard minimum weight matching decoder observing a significant reduction of the logical error probability for χ ≥4.
Quantifying uncertainty, variability and likelihood for ordinary differential equation models
LENUS (Irish Health Repository)
Weisse, Andrea Y
2010-10-28
Abstract Background In many applications, ordinary differential equation (ODE) models are subject to uncertainty or variability in initial conditions and parameters. Both, uncertainty and variability can be quantified in terms of a probability density function on the state and parameter space. Results The partial differential equation that describes the evolution of this probability density function has a form that is particularly amenable to application of the well-known method of characteristics. The value of the density at some point in time is directly accessible by the solution of the original ODE extended by a single extra dimension (for the value of the density). This leads to simple methods for studying uncertainty, variability and likelihood, with significant advantages over more traditional Monte Carlo and related approaches especially when studying regions with low probability. Conclusions While such approaches based on the method of characteristics are common practice in other disciplines, their advantages for the study of biological systems have so far remained unrecognized. Several examples illustrate performance and accuracy of the approach and its limitations.
DEFF Research Database (Denmark)
Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris
2008-01-01
Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....
A risk based approach for SSTO/TSTO comparisons
Greenberg, Joel S.
1996-03-01
An approach has been developed for performing early comparisons of transportation architectures explicitly taking into account quantitative measures of uncertainty and resulting risk. Risk considerations are necessary since the transportation systems are likely to have significantly different levels of risk, both because of differing degrees of freedom in achieving desired performance levels and their different states of development and utilization. The approach considers the uncertainty of achievement of technology goals, effect that the achieved technology level will have on transportation system performance and the relationship between system performance/capability and the ability to accommodate variations in payload mass. The consequences of system performance are developed in terms of nonrecurring, recurring, and the present value of transportation system life cycle costs.
COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY.
Villalon, Julio; Joshi, Anand A; Toga, Arthur W; Thompson, Paul M
2011-01-01
Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic "Demons" algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future.
Michalska, Aleksandra; Martyna, Agnieszka; Zadora, Grzegorz
2018-01-01
The main aim of this study was to verify whether selected analytical parameters may affect solving the comparison problem of Raman spectra with the use of the likelihood ratio (LR) approach. Firstly the LR methodologies developed for Raman spectra of blue automotive paints obtained with the use of 785nm laser source (results published by the authors previously) were implemented for good quality spectra recorded for these paints with the use of 514.5nm laser source. For LR models construction two types of variables were used i.e. areas under selected pigments bands and coefficients derived from discrete wavelet transform procedure (DWT). Few experiments were designed for 785nm and 514.5nm Raman spectra databases after constructing well performing LR models (low rates of false positive and false negative answers and acceptable results of empirical cross entropy approach). In order to verify whether objective magnification described by its numerical aperture affects spectra interpretation, three objective magnifications -20×(N.A.=0.4.), 50×(N.A.=0.75) and 100×(N.A.=0.85) within each of the applied laser sources (514.5nm and 785nm) were tested for a group of blue solid and metallic automotive paints having the same sets of pigments depending on the applied laser source. The findings obtained by two types of LR models indicate the importance of this parameter for solving the comparison problem of both solid and metallic automotive paints regardless of the laser source used for measuring Raman signal. Hence, the same objective magnification, preferably 50× (established based on the analysis of within- and between-samples variability and F-factor value), should be used when focusing the laser on samples during Raman measurements. Then the influence of parameters (laser power and time of irradiation) of one of the recommended fluorescence suppression techniques, namely photobleaching, was under investigation. Analysis performed on a group of solid automotive paint
Comparison of nonstationary generalized logistic models based on Monte Carlo simulation
Directory of Open Access Journals (Sweden)
S. Kim
2015-06-01
Full Text Available Recently, the evidences of climate change have been observed in hydrologic data such as rainfall and flow data. The time-dependent characteristics of statistics in hydrologic data are widely defined as nonstationarity. Therefore, various nonstationary GEV and generalized Pareto models have been suggested for frequency analysis of nonstationary annual maximum and POT (peak-over-threshold data, respectively. However, the alternative models are required for nonstatinoary frequency analysis because of analyzing the complex characteristics of nonstationary data based on climate change. This study proposed the nonstationary generalized logistic model including time-dependent parameters. The parameters of proposed model are estimated using the method of maximum likelihood based on the Newton-Raphson method. In addition, the proposed model is compared by Monte Carlo simulation to investigate the characteristics of models and applicability.
Evidence-based clinical guidelines for eating disorders : International comparison
Hilbert, Anja; Hoek, Hans W.; Schmidt, Ricarda
2017-01-01
Purpose of review: The current systematic review sought to compare available evidence-based clinical treatment guidelines for all specific eating disorders. Recent findings: Nine evidence-based clinical treatment guidelines for eating disorders were located through a systematic search. The
A comparison of physically and radiobiologically based optimization for IMRT
International Nuclear Information System (INIS)
Jones, Lois; Hoban, Peter
2002-01-01
Many optimization techniques for intensity modulated radiotherapy have now been developed. The majority of these techniques including all the commercial systems that are available are based on physical dose methods of assessment. Some techniques have also been based on radiobiological models. None of the radiobiological optimization techniques however have assessed the clinically realistic situation of considering both tumor and normal cells within the target volume. This study considers a ratio-based fluence optimizing technique to compare a dose-based optimization method described previously and two biologically based models. The biologically based methods use the values of equivalent uniform dose calculated for the tumor cells and integral biological effective dose for normal cells. The first biologically based method includes only tumor cells in the target volume while the second considers both tumor and normal cells in the target volume. All three methods achieve good conformation to the target volume. The biologically based optimization without the normal tissue in the target volume shows a high dose region in the center of the target volume while this is reduced when the normal tissues are also considered in the target volume. This effect occurs because the normal tissues in the target volume require the optimization to reduce the dose and therefore limit the maximum dose to that volume
International Nuclear Information System (INIS)
Baydush, Alan H.; Marks, Lawrence B.; Das, Shiva K.
2004-01-01
A novel iterative penalized likelihood algorithm with evolutionary components for the optimization of beamlet fluences for intensity modulated radiation therapy (IMRT) is presented. This algorithm is designed to be flexible in terms of the objective function and automatically escalates dose, as long as the objective function increases and all constraints are met. For this study, the objective function employed was the product of target equivalent uniform dose (EUD) and fraction of target tissue within set homogeneity constraints. The likelihood component of the algorithm iteratively attempts to minimize the mean squared error between a homogeneous dose prescription and the actual target dose distribution. The updated beamlet fluences are then adjusted via a quadratic penalty function that is based on the dose-volume histogram (DVH) constraints of the organs at risk. The evolutionary components were included to prevent the algorithm from converging to a local maximum. The algorithm was applied to a prostate cancer dataset, with especially difficult DVH constraints on bladder, rectum, and femoral heads. Dose distributions were generated for manually selected sets of three-, four-, five-, and seven-field treatment plans. Additionally, a global search was performed to find the optimal orientations for an axial three-beam plan. The results from this optimal orientation set were compared to results for manually selected orientation (gantry angle) sets of 3- (0 deg., 90 deg., 270 deg. ), 4- (0 deg., 90 deg., 180 deg., 270 deg. ), 5- (0 deg., 50 deg., 130 deg., 230 deg., 310 deg.), and 7- (0 deg., 40 deg., 90 deg., 140 deg., 230 deg., 270 deg., 320 deg. ) field axial treatment plans. For all the plans generated, all DVH constraints were met and average optimization computation time was approximately 30 seconds. For the manually selected orientations, the algorithm was successful in providing a relatively homogeneous target dose distribution, while simultaneously satisfying
van Vliet, P M; Lincoln, N B; Foxall, A
2005-04-01
Bobath based (BB) and movement science based (MSB) physiotherapy interventions are widely used for patients after stroke. There is little evidence to suggest which is most effective. This single-blind randomised controlled trial evaluated the effect of these treatments on movement abilities and functional independence. A total of 120 patients admitted to a stroke rehabilitation ward were randomised into two treatment groups to receive either BB or MSB treatment. Primary outcome measures were the Rivermead Motor Assessment and the Motor Assessment Scale. Secondary measures assessed functional independence, walking speed, arm function, muscle tone, and sensation. Measures were performed by a blinded assessor at baseline, and then at 1, 3, and 6 months after baseline. Analysis of serial measurements was performed to compare outcomes between the groups by calculating the area under the curve (AUC) and inserting AUC values into Mann-Whitney U tests. Comparison between groups showed no significant difference for any outcome measures. Significance values for the Rivermead Motor Assessment ranged from p = 0.23 to p = 0.97 and for the Motor Assessment Scale from p = 0.29 to p = 0.87. There were no significant differences in movement abilities or functional independence between patients receiving a BB or an MSB intervention. Therefore the study did not show that one approach was more effective than the other in the treatment of stroke patients.
Constraint likelihood analysis for a network of gravitational wave detectors
International Nuclear Information System (INIS)
Klimenko, S.; Rakhmanov, M.; Mitselmakher, G.; Mohanty, S.
2005-01-01
We propose a coherent method for detection and reconstruction of gravitational wave signals with a network of interferometric detectors. The method is derived by using the likelihood ratio functional for unknown signal waveforms. In the likelihood analysis, the global maximum of the likelihood ratio over the space of waveforms is used as the detection statistic. We identify a problem with this approach. In the case of an aligned pair of detectors, the detection statistic depends on the cross correlation between the detectors as expected, but this dependence disappears even for infinitesimally small misalignments. We solve the problem by applying constraints on the likelihood functional and obtain a new class of statistics. The resulting method can be applied to data from a network consisting of any number of detectors with arbitrary detector orientations. The method allows us reconstruction of the source coordinates and the waveforms of two polarization components of a gravitational wave. We study the performance of the method with numerical simulations and find the reconstruction of the source coordinates to be more accurate than in the standard likelihood method
Peyre, Hugo; Leplège, Alain; Coste, Joël
2011-03-01
Missing items are common in quality of life (QoL) questionnaires and present a challenge for research in this field. It remains unclear which of the various methods proposed to deal with missing data performs best in this context. We compared personal mean score, full information maximum likelihood, multiple imputation, and hot deck techniques using various realistic simulation scenarios of item missingness in QoL questionnaires constructed within the framework of classical test theory. Samples of 300 and 1,000 subjects were randomly drawn from the 2003 INSEE Decennial Health Survey (of 23,018 subjects representative of the French population and having completed the SF-36) and various patterns of missing data were generated according to three different item non-response rates (3, 6, and 9%) and three types of missing data (Little and Rubin's "missing completely at random," "missing at random," and "missing not at random"). The missing data methods were evaluated in terms of accuracy and precision for the analysis of one descriptive and one association parameter for three different scales of the SF-36. For all item non-response rates and types of missing data, multiple imputation and full information maximum likelihood appeared superior to the personal mean score and especially to hot deck in terms of accuracy and precision; however, the use of personal mean score was associated with insignificant bias (relative bias personal mean score appears nonetheless appropriate for dealing with items missing from completed SF-36 questionnaires in most situations of routine use. These results can reasonably be extended to other questionnaires constructed according to classical test theory.
PSA data base, comparison of the German and French approach
International Nuclear Information System (INIS)
Kreuser, A.; Tirira, J.
2001-01-01
The results of probabilistic safety assessments (PSA) of nuclear power plants strongly depend on the reliability data used. This report describes coarsely the general process to generate reliability data for components and resumes the differences between the German and French approaches. As has been shown in former studies which compared international PSA data, PSA data are closely related to the model definitions of the PSA. Therefore single PSA data cannot be compared directly without regard e.g. to the corresponding fault trees. These findings are confirmed by this study. The comparison of German and French methods shows a lot of differences concerning various details of the data generation process. Some differences between single reliability data should be eliminated when taking into account the complete fault tree analysis. But there are some other differences which have a direct impact on the obtained results of a PSA. In view of the all differences between both approaches concerning the definition of data and the data collection process, it is not possible to compare directly German and French PSA data. However, the database differences give no indication on the influence on the PSA results. Therefore, it is a need to perform a common IPSN/GRS assessment on how the different databases impact the PSA results. (orig.)
Comparison of features response in texture-based iris segmentation
CSIR Research Space (South Africa)
Bachoo, A
2009-03-01
Full Text Available the Fisher linear discriminant and the iris region of interest is extracted. Four texture description methods are compared for segmenting iris texture using a region based pattern classification approach: Grey Level Co-occurrence Matrix (GLCM), Discrete...
COSMIC MICROWAVE BACKGROUND LIKELIHOOD APPROXIMATION BY A GAUSSIANIZED BLACKWELL-RAO ESTIMATOR
International Nuclear Information System (INIS)
Rudjord, Oe.; Groeneboom, N. E.; Eriksen, H. K.; Huey, Greg; Gorski, K. M.; Jewell, J. B.
2009-01-01
We introduce a new cosmic microwave background (CMB) temperature likelihood approximation called the Gaussianized Blackwell-Rao estimator. This estimator is derived by transforming the observed marginal power spectrum distributions obtained by the CMB Gibbs sampler into standard univariate Gaussians, and then approximating their joint transformed distribution by a multivariate Gaussian. The method is exact for full-sky coverage and uniform noise and an excellent approximation for sky cuts and scanning patterns relevant for modern satellite experiments such as the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck. The result is a stable, accurate, and computationally very efficient CMB temperature likelihood representation that allows the user to exploit the unique error propagation capabilities of the Gibbs sampler to high ls. A single evaluation of this estimator between l = 2 and 200 takes ∼0.2 CPU milliseconds, while for comparison, a singe pixel space likelihood evaluation between l = 2 and 30 for a map with ∼2500 pixels requires ∼20 s. We apply this tool to the five-year WMAP temperature data, and re-estimate the angular temperature power spectrum, C l , and likelihood, L(C l ), for l ≤ 200, and derive new cosmological parameters for the standard six-parameter ΛCDM model. Our spectrum is in excellent agreement with the official WMAP spectrum, but we find slight differences in the derived cosmological parameters. Most importantly, the spectral index of scalar perturbations is n s = 0.973 ± 0.014, 1.9σ away from unity and 0.6σ higher than the official WMAP result, n s = 0.965 ± 0.014. This suggests that an exact likelihood treatment is required to higher ls than previously believed, reinforcing and extending our conclusions from the three-year WMAP analysis. In that case, we found that the suboptimal likelihood approximation adopted between l = 12 and 30 by the WMAP team biased n s low by 0.4σ, while here we find that the same approximation
Comparison of Traditional Versus Evidence-Based Journal Club Formats
Directory of Open Access Journals (Sweden)
Kathleen Packard, PharmD, MS, BCPS
2011-01-01
Full Text Available AbstractPurpose: The objective of the study was to compare a traditionally structured journal club with an evidence based structured journal club during an advanced clinical pharmacy rotation and to determine the best utilization that aligns with recent changes to the pharmacy school accreditation standards.Methods: The study included 21 students who completed journal club utilizing the traditional journal club format and 24 students who utilized an evidence based journal club format. Background characteristics, student reported beliefs, and mean critical evaluation skills scores were evaluated and compared in each group.Results: There were no statistically significant differences between the two cohorts in mean overall percentage grade for the activity. Students in the traditional cohort received significantly higher grades for the Study Analysis and Critique section (90.97 + 12.18 versus 81.25 + 11.18, P=0.01 as well as for the Preparedness section (96.11 + 8.03 versus 85.0 + 17.13, P=0.002. Students in the evidence based cohort received statistically superior grades for the Presentation Skills section (96.43 + 6.39 versus 82.47 + 14.12, P=0.0004.Conclusion: An evidence based journal club is a reasonable and effective alternative to the traditionally structured journal club when the primary objective is to assist students in understanding evidence based concepts and to apply current literature to clinical practice.
International Nuclear Information System (INIS)
Stsepankou, D; Arns, A; Hesser, J; Ng, S K; Zygmanski, P
2012-01-01
The objective of this paper is to evaluate an iterative maximum likelihood (ML) cone–beam computed tomography (CBCT) reconstruction with total variation (TV) regularization with respect to the robustness of the algorithm due to data inconsistencies. Three different and (for clinical application) typical classes of errors are considered for simulated phantom and measured projection data: quantum noise, defect detector pixels and projection matrix errors. To quantify those errors we apply error measures like mean square error, signal-to-noise ratio, contrast-to-noise ratio and streak indicator. These measures are derived from linear signal theory and generalized and applied for nonlinear signal reconstruction. For quality check, we focus on resolution and CT-number linearity based on a Catphan phantom. All comparisons are made versus the clinical standard, the filtered backprojection algorithm (FBP). In our results, we confirm and substantially extend previous results on iterative reconstruction such as massive undersampling of the number of projections. Errors of projection matrix parameters of up to 1° projection angle deviations are still in the tolerance level. Single defect pixels exhibit ring artifacts for each method. However using defect pixel compensation, allows up to 40% of defect pixels for passing the standard clinical quality check. Further, the iterative algorithm is extraordinarily robust in the low photon regime (down to 0.05 mAs) when compared to FPB, allowing for extremely low-dose image acquisitions, a substantial issue when considering daily CBCT imaging for position correction in radiotherapy. We conclude that the ML method studied herein is robust under clinical quality assurance conditions. Consequently, low-dose regime imaging, especially for daily patient localization in radiation therapy is possible without change of the current hardware of the imaging system. (paper)
Unbinned likelihood maximisation framework for neutrino clustering in Python
Energy Technology Data Exchange (ETDEWEB)
Coenders, Stefan [Technische Universitaet Muenchen, Boltzmannstr. 2, 85748 Garching (Germany)
2016-07-01
Albeit having detected an astrophysical neutrino flux with IceCube, sources of astrophysical neutrinos remain hidden up to now. A detection of a neutrino point source is a smoking gun for hadronic processes and acceleration of cosmic rays. The search for neutrino sources has many degrees of freedom, for example steady versus transient, point-like versus extended sources, et cetera. Here, we introduce a Python framework designed for unbinned likelihood maximisations as used in searches for neutrino point sources by IceCube. Implementing source scenarios in a modular way, likelihood searches on various kinds can be implemented in a user-friendly way, without sacrificing speed and memory management.
Nearly Efficient Likelihood Ratio Tests of the Unit Root Hypothesis
DEFF Research Database (Denmark)
Jansson, Michael; Nielsen, Morten Ørregaard
Seemingly absent from the arsenal of currently available "nearly efficient" testing procedures for the unit root hypothesis, i.e. tests whose local asymptotic power functions are indistinguishable from the Gaussian power envelope, is a test admitting a (quasi-)likelihood ratio interpretation. We...... show that the likelihood ratio unit root test derived in a Gaussian AR(1) model with standard normal innovations is nearly efficient in that model. Moreover, these desirable properties carry over to more complicated models allowing for serially correlated and/or non-Gaussian innovations....
A note on estimating errors from the likelihood function
International Nuclear Information System (INIS)
Barlow, Roger
2005-01-01
The points at which the log likelihood falls by 12 from its maximum value are often used to give the 'errors' on a result, i.e. the 68% central confidence interval. The validity of this is examined for two simple cases: a lifetime measurement and a Poisson measurement. Results are compared with the exact Neyman construction and with the simple Bartlett approximation. It is shown that the accuracy of the log likelihood method is poor, and the Bartlett construction explains why it is flawed
Likelihood ratio decisions in memory: three implied regularities.
Glanzer, Murray; Hilford, Andrew; Maloney, Laurence T
2009-06-01
We analyze four general signal detection models for recognition memory that differ in their distributional assumptions. Our analyses show that a basic assumption of signal detection theory, the likelihood ratio decision axis, implies three regularities in recognition memory: (1) the mirror effect, (2) the variance effect, and (3) the z-ROC length effect. For each model, we present the equations that produce the three regularities and show, in computed examples, how they do so. We then show that the regularities appear in data from a range of recognition studies. The analyses and data in our study support the following generalization: Individuals make efficient recognition decisions on the basis of likelihood ratios.
Analysis of Minute Features in Speckled Imagery with Maximum Likelihood Estimation
Directory of Open Access Journals (Sweden)
Alejandro C. Frery
2004-12-01
Full Text Available This paper deals with numerical problems arising when performing maximum likelihood parameter estimation in speckled imagery using small samples. The noise that appears in images obtained with coherent illumination, as is the case of sonar, laser, ultrasound-B, and synthetic aperture radar, is called speckle, and it can neither be assumed Gaussian nor additive. The properties of speckle noise are well described by the multiplicative model, a statistical framework from which stem several important distributions. Amongst these distributions, one is regarded as the universal model for speckled data, namely, the Ã°ÂÂ’Â¢0 law. This paper deals with amplitude data, so the Ã°ÂÂ’Â¢A0 distribution will be used. The literature reports that techniques for obtaining estimates (maximum likelihood, based on moments and on order statistics of the parameters of the Ã°ÂÂ’Â¢A0 distribution require samples of hundreds, even thousands, of observations in order to obtain sensible values. This is verified for maximum likelihood estimation, and a proposal based on alternate optimization is made to alleviate this situation. The proposal is assessed with real and simulated data, showing that the convergence problems are no longer present. A Monte Carlo experiment is devised to estimate the quality of maximum likelihood estimators in small samples, and real data is successfully analyzed with the proposed alternated procedure. Stylized empirical influence functions are computed and used to choose a strategy for computing maximum likelihood estimates that is resistant to outliers.
McGuire, Connor; Kristman, Vicki L; Shaw, William; Williams-Whitt, Kelly; Reguly, Paula; Soklaridis, Sophie
2015-09-01
To determine the association between supervisors' leadership style and autonomy and supervisors' likelihood of supporting job accommodations for back-injured workers. A cross-sectional study of supervisors from Canadian and US employers was conducted using a web-based, self-report questionnaire that included a case vignette of a back-injured worker. Autonomy and two dimensions of leadership style (considerate and initiating structure) were included as exposures. The outcome, supervisors' likeliness to support job accommodation, was measured with the Job Accommodation Scale (JAS). We conducted univariate analyses of all variables and bivariate analyses of the JAS score with each exposure and potential confounding factor. We used multivariable generalized linear models to control for confounding factors. A total of 796 supervisors participated. Considerate leadership style (β = .012; 95% CI .009-.016) and autonomy (β = .066; 95% CI .025-.11) were positively associated with supervisors' likelihood to accommodate after adjusting for appropriate confounding factors. An initiating structure leadership style was not significantly associated with supervisors' likelihood to accommodate (β = .0018; 95% CI -.0026 to .0061) after adjusting for appropriate confounders. Autonomy and a considerate leadership style were positively associated with supervisors' likelihood to accommodate a back-injured worker. Providing supervisors with more autonomy over decisions of accommodation and developing their considerate leadership style may aid in increasing work accommodation for back-injured workers and preventing prolonged work disability.
McGuire, Connor; Kristman, Vicki L; Williams-Whitt, Kelly; Reguly, Paula; Shaw, William; Soklaridis, Sophie
2015-01-01
PURPOSE To determine the association between supervisors’ leadership style and autonomy and supervisors’ likelihood of supporting job accommodations for back-injured workers. METHODS A cross-sectional study of supervisors from Canadian and US employers was conducted using a web-based, self-report questionnaire that included a case vignette of a back-injured worker. Autonomy and two dimensions of leadership style (considerate and initiating structure) were included as exposures. The outcome, supervisors’ likeliness to support job accommodation, was measured with the Job Accommodation Scale. We conducted univariate analyses of all variables and bivariate analyses of the JAS score with each exposure and potential confounding factor. We used multivariable generalized linear models to control for confounding factors. RESULTS A total of 796 supervisors participated. Considerate leadership style (β= .012; 95% CI: .009–.016) and autonomy (β= .066; 95% CI: .025–.11) were positively associated with supervisors’ likelihood to accommodate after adjusting for appropriate confounding factors. An initiating structure leadership style was not significantly associated with supervisors’ likelihood to accommodate (β = .0018; 95% CI: −.0026–.0061) after adjusting for appropriate confounders. CONCLUSIONS Autonomy and a considerate leadership style were positively associated with supervisors’ likelihood to accommodate a back-injured worker. Providing supervisors with more autonomy over decisions of accommodation and developing their considerate leadership style may aid in increasing work accommodation for back-injured workers and preventing prolonged work disability. PMID:25595332
Fast maximum likelihood estimation of mutation rates using a birth-death process.
Wu, Xiaowei; Zhu, Hongxiao
2015-02-07
Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.
Comparison of four support-vector based function approximators
de Kruif, B.J.; de Vries, Theodorus J.A.
2004-01-01
One of the uses of the support vector machine (SVM), as introduced in V.N. Vapnik (2000), is as a function approximator. The SVM and approximators based on it, approximate a relation in data by applying interpolation between so-called support vectors, being a limited number of samples that have been
Qualitative Comparison of Contraction-Based Curve Skeletonization Methods
Sobiecki, André; Yasan, Haluk C.; Jalba, Andrei C.; Telea, Alexandru C.
2013-01-01
In recent years, many new methods have been proposed for extracting curve skeletons of 3D shapes, using a mesh-contraction principle. However, it is still unclear how these methods perform with respect to each other, and with respect to earlier voxel-based skeletonization methods, from the viewpoint
Particle filter based MAP state estimation: A comparison
Saha, S.; Boers, Y.; Driessen, J.N.; Mandal, Pranab K.; Bagchi, Arunabha
2009-01-01
MAP estimation is a good alternative to MMSE for certain applications involving nonlinear non Gaussian systems. Recently a new particle filter based MAP estimator has been derived. This new method extracts the MAP directly from the output of a running particle filter. In the recent past, a Viterbi
Quantitative Comparison of Tolerance-Based Feature Transforms
Reniers, Dennie; Telea, Alexandru
2006-01-01
Tolerance-based feature transforms (TFTs) assign to each pixel in an image not only the nearest feature pixels on the boundary (origins), but all origins from the minimum distance up to a user-defined tolerance. In this paper, we compare four simple-to-implement methods for computing TFTs for binary
Estimating likelihood of future crashes for crash-prone drivers
Directory of Open Access Journals (Sweden)
Subasish Das
2015-06-01
Full Text Available At-fault crash-prone drivers are usually considered as the high risk group for possible future incidents or crashes. In Louisiana, 34% of crashes are repeatedly committed by the at-fault crash-prone drivers who represent only 5% of the total licensed drivers in the state. This research has conducted an exploratory data analysis based on the driver faultiness and proneness. The objective of this study is to develop a crash prediction model to estimate the likelihood of future crashes for the at-fault drivers. The logistic regression method is used by employing eight years' traffic crash data (2004–2011 in Louisiana. Crash predictors such as the driver's crash involvement, crash and road characteristics, human factors, collision type, and environmental factors are considered in the model. The at-fault and not-at-fault status of the crashes are used as the response variable. The developed model has identified a few important variables, and is used to correctly classify at-fault crashes up to 62.40% with a specificity of 77.25%. This model can identify as many as 62.40% of the crash incidence of at-fault drivers in the upcoming year. Traffic agencies can use the model for monitoring the performance of an at-fault crash-prone drivers and making roadway improvements meant to reduce crash proneness. From the findings, it is recommended that crash-prone drivers should be targeted for special safety programs regularly through education and regulations.
Smoking increases the likelihood of Helicobacter pylori treatment failure.
Itskoviz, David; Boltin, Doron; Leibovitzh, Haim; Tsadok Perets, Tsachi; Comaneshter, Doron; Cohen, Arnon; Niv, Yaron; Levi, Zohar
2017-07-01
Data regarding the impact of smoking on the success of Helicobacter pylori (H. pylori) eradication are conflicting, partially due to the fact that sociodemographic status is associated with both smoking and H. pylori treatment success. We aimed to assess the effect of smoking on H. pylori eradication rates after controlling for sociodemographic confounders. Included were subjects aged 15 years or older, with a first time positive C 13 -urea breath test (C 13 -UBT) between 2007 to 2014, who underwent a second C 13 -UBT after receiving clarithromycin-based triple therapy. Data regarding age, gender, socioeconomic status (SES), smoking (current smokers or "never smoked"), and drug use were extracted from the Clalit health maintenance organization database. Out of 120,914 subjects with a positive first time C 13 -UBT, 50,836 (42.0%) underwent a second C 13 -UBT test. After excluding former smokers, 48,130 remained who were eligible for analysis. The mean age was 44.3±18.2years, 69.2% were females, 87.8% were Jewish and 12.2% Arabs, 25.5% were current smokers. The overall eradication failure rates were 33.3%: 34.8% in current smokers and 32.8% in subjects who never smoked. In a multivariate analysis, eradication failure was positively associated with current smoking (Odds Ratio {OR} 1.15, 95% CI 1.10-1.20, psmoking was found to significantly increase the likelihood of unsuccessful first-line treatment for H. pylori infection. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn
2013-04-01
SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.
Knowledge-based biomedical word sense disambiguation: comparison of approaches
Directory of Open Access Journals (Sweden)
Aronson Alan R
2010-11-01
Full Text Available Abstract Background Word sense disambiguation (WSD algorithms attempt to select the proper sense of ambiguous terms in text. Resources like the UMLS provide a reference thesaurus to be used to annotate the biomedical literature. Statistical learning approaches have produced good results, but the size of the UMLS makes the production of training data infeasible to cover all the domain. Methods We present research on existing WSD approaches based on knowledge bases, which complement the studies performed on statistical learning. We compare four approaches which rely on the UMLS Metathesaurus as the source of knowledge. The first approach compares the overlap of the context of the ambiguous word to the candidate senses based on a representation built out of the definitions, synonyms and related terms. The second approach collects training data for each of the candidate senses to perform WSD based on queries built using monosemous synonyms and related terms. These queries are used to retrieve MEDLINE citations. Then, a machine learning approach is trained on this corpus. The third approach is a graph-based method which exploits the structure of the Metathesaurus network of relations to perform unsupervised WSD. This approach ranks nodes in the graph according to their relative structural importance. The last approach uses the semantic types assigned to the concepts in the Metathesaurus to perform WSD. The context of the ambiguous word and semantic types of the candidate concepts are mapped to Journal Descriptors. These mappings are compared to decide among the candidate concepts. Results are provided estimating accuracy of the different methods on the WSD test collection available from the NLM. Conclusions We have found that the last approach achieves better results compared to the other methods. The graph-based approach, using the structure of the Metathesaurus network to estimate the relevance of the Metathesaurus concepts, does not perform well
Comparison of GPU-Based Numerous Particles Simulation and Experiment
International Nuclear Information System (INIS)
Park, Sang Wook; Jun, Chul Woong; Sohn, Jeong Hyun; Lee, Jae Wook
2014-01-01
The dynamic behavior of numerous grains interacting with each other can be easily observed. In this study, this dynamic behavior was analyzed based on the contact between numerous grains. The discrete element method was used for analyzing the dynamic behavior of each particle and the neighboring-cell algorithm was employed for detecting their contact. The Hertzian and tangential sliding friction contact models were used for calculating the contact force acting between the particles. A GPU-based parallel program was developed for conducting the computer simulation and calculating the numerous contacts. The dam break experiment was performed to verify the simulation results. The reliability of the program was verified by comparing the results of the simulation with those of the experiment
Quantitative Comparison of Tolerance-Based Feature Transforms
Reniers, Dennie; Telea, Alexandru
2006-01-01
Tolerance-based feature transforms (TFTs) assign to each pixel in an image not only the nearest feature pixels on the boundary (origins), but all origins from the minimum distance up to a user-defined tolerance. In this paper, we compare four simple-to-implement methods for computing TFTs for binary images. Of these, two are novel methods and two extend existing distance transform algorithms. We quantitatively and qualitatively compare all algorithms on speed and accuracy of both distance and...
Comparison of Ring-Buffer-Based Packet Capture Solutions
Energy Technology Data Exchange (ETDEWEB)
Barker, Steven Andrew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2015-10-01
Traditional packet-capture solutions using commodity hardware incur a large amount of overhead as packets are copied multiple times by the operating system. This overhead slows sensor systems to a point where they are unable to keep up with high bandwidth traffic, resulting in dropped packets. Incomplete packet capture files hinder network monitoring and incident response efforts. While costly commercial hardware exists to capture high bandwidth traffic, several software-based approaches exist to improve packet capture performance using commodity hardware.
COMPARISON AND EVALUATION OF CLUSTER BASED IMAGE SEGMENTATION TECHNIQUES
Hetangi D. Mehta*, Daxa Vekariya, Pratixa Badelia
2017-01-01
Image segmentation is the classification of an image into different groups. Numerous algorithms using different approaches have been proposed for image segmentation. A major challenge in segmentation evaluation comes from the fundamental conflict between generality and objectivity. A review is done on different types of clustering methods used for image segmentation. Also a methodology is proposed to classify and quantify different clustering algorithms based on their consistency in different...
Comparison of physically based catchment models for estimating Phosphorus losses
Nasr, Ahmed Elssidig; Bruen, Michael
2003-01-01
As part of a large EPA-funded research project, coordinated by TEAGASC, the Centre for Water Resources Research at UCD reviewed the available distributed physically based catchment models with a potential for use in estimating phosphorous losses for use in implementing the Water Framework Directive. Three models, representative of different levels of approach and complexity, were chosen and were implemented for a number of Irish catchments. This paper reports on (i) the lessons and experience...
Understanding the properties of diagnostic tests - Part 2: Likelihood ratios.
Ranganathan, Priya; Aggarwal, Rakesh
2018-01-01
Diagnostic tests are used to identify subjects with and without disease. In a previous article in this series, we examined some attributes of diagnostic tests - sensitivity, specificity, and predictive values. In this second article, we look at likelihood ratios, which are useful for the interpretation of diagnostic test results in everyday clinical practice.
Maximum likelihood estimation of the attenuated ultrasound pulse
DEFF Research Database (Denmark)
Rasmussen, Klaus Bolding
1994-01-01
The attenuated ultrasound pulse is divided into two parts: a stationary basic pulse and a nonstationary attenuation pulse. A standard ARMA model is used for the basic pulse, and a nonstandard ARMA model is derived for the attenuation pulse. The maximum likelihood estimator of the attenuated...
Robust Gaussian Process Regression with a Student-t Likelihood
Jylänki, P.P.; Vanhatalo, J.; Vehtari, A.
2011-01-01
This paper considers the robust and efficient implementation of Gaussian process regression with a Student-t observation model, which has a non-log-concave likelihood. The challenge with the Student-t model is the analytically intractable inference which is why several approximative methods have
MAXIMUM-LIKELIHOOD-ESTIMATION OF THE ENTROPY OF AN ATTRACTOR
SCHOUTEN, JC; TAKENS, F; VANDENBLEEK, CM
In this paper, a maximum-likelihood estimate of the (Kolmogorov) entropy of an attractor is proposed that can be obtained directly from a time series. Also, the relative standard deviation of the entropy estimate is derived; it is dependent on the entropy and on the number of samples used in the
A simplification of the likelihood ratio test statistic for testing ...
African Journals Online (AJOL)
The traditional likelihood ratio test statistic for testing hypothesis about goodness of fit of multinomial probabilities in one, two and multi – dimensional contingency table was simplified. Advantageously, using the simplified version of the statistic to test the null hypothesis is easier and faster because calculating the expected ...
Adaptive Unscented Kalman Filter using Maximum Likelihood Estimation
DEFF Research Database (Denmark)
Mahmoudi, Zeinab; Poulsen, Niels Kjølstad; Madsen, Henrik
2017-01-01
The purpose of this study is to develop an adaptive unscented Kalman filter (UKF) by tuning the measurement noise covariance. We use the maximum likelihood estimation (MLE) and the covariance matching (CM) method to estimate the noise covariance. The multi-step prediction errors generated...
LIKELIHOOD ESTIMATION OF PARAMETERS USING SIMULTANEOUSLY MONITORED PROCESSES
DEFF Research Database (Denmark)
Friis-Hansen, Peter; Ditlevsen, Ove Dalager
2004-01-01
The topic is maximum likelihood inference from several simultaneously monitored response processes of a structure to obtain knowledge about the parameters of other not monitored but important response processes when the structure is subject to some Gaussian load field in space and time. The consi....... The considered example is a ship sailing with a given speed through a Gaussian wave field....
Reconceptualizing Social Influence in Counseling: The Elaboration Likelihood Model.
McNeill, Brian W.; Stoltenberg, Cal D.
1989-01-01
Presents Elaboration Likelihood Model (ELM) of persuasion (a reconceptualization of the social influence process) as alternative model of attitude change. Contends ELM unifies conflicting social psychology results and can potentially account for inconsistent research findings in counseling psychology. Provides guidelines on integrating…
Counseling Pretreatment and the Elaboration Likelihood Model of Attitude Change.
Heesacker, Martin
1986-01-01
Results of the application of the Elaboration Likelihood Model (ELM) to a counseling context revealed that more favorable attitudes toward counseling occurred as subjects' ego involvement increased and as intervention quality improved. Counselor credibility affected the degree to which subjects' attitudes reflected argument quality differences.…
Cases in which ancestral maximum likelihood will be confusingly misleading.
Handelman, Tomer; Chor, Benny
2017-05-07
Ancestral maximum likelihood (AML) is a phylogenetic tree reconstruction criteria that "lies between" maximum parsimony (MP) and maximum likelihood (ML). ML has long been known to be statistically consistent. On the other hand, Felsenstein (1978) showed that MP is statistically inconsistent, and even positively misleading: There are cases where the parsimony criteria, applied to data generated according to one tree topology, will be optimized on a different tree topology. The question of weather AML is statistically consistent or not has been open for a long time. Mossel et al. (2009) have shown that AML can "shrink" short tree edges, resulting in a star tree with no internal resolution, which yields a better AML score than the original (resolved) model. This result implies that AML is statistically inconsistent, but not that it is positively misleading, because the star tree is compatible with any other topology. We show that AML is confusingly misleading: For some simple, four taxa (resolved) tree, the ancestral likelihood optimization criteria is maximized on an incorrect (resolved) tree topology, as well as on a star tree (both with specific edge lengths), while the tree with the original, correct topology, has strictly lower ancestral likelihood. Interestingly, the two short edges in the incorrect, resolved tree topology are of length zero, and are not adjacent, so this resolved tree is in fact a simple path. While for MP, the underlying phenomenon can be described as long edge attraction, it turns out that here we have long edge repulsion. Copyright © 2017. Published by Elsevier Ltd.
Multilevel maximum likelihood estimation with application to covariance matrices
Czech Academy of Sciences Publication Activity Database
Turčičová, Marie; Mandel, J.; Eben, Kryštof
Published online: 23 January ( 2018 ) ISSN 0361-0926 R&D Projects: GA ČR GA13-34856S Institutional support: RVO:67985807 Keywords : Fisher information * High dimension * Hierarchical maximum likelihood * Nested parameter spaces * Spectral diagonal covariance model * Sparse inverse covariance model Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.311, year: 2016
Pendeteksian Outlier pada Regresi Nonlinier dengan Metode statistik Likelihood Displacement
Directory of Open Access Journals (Sweden)
Siti Tabi'atul Hasanah
2012-11-01
Full Text Available Outlier is an observation that much different (extreme from the other observational data, or data can be interpreted that do not follow the general pattern of the model. Sometimes outliers provide information that can not be provided by other data. That's why outliers should not just be eliminated. Outliers can also be an influential observation. There are many methods that can be used to detect of outliers. In previous studies done on outlier detection of linear regression. Next will be developed detection of outliers in nonlinear regression. Nonlinear regression here is devoted to multiplicative nonlinear regression. To detect is use of statistical method likelihood displacement. Statistical methods abbreviated likelihood displacement (LD is a method to detect outliers by removing the suspected outlier data. To estimate the parameters are used to the maximum likelihood method, so we get the estimate of the maximum. By using LD method is obtained i.e likelihood displacement is thought to contain outliers. Further accuracy of LD method in detecting the outliers are shown by comparing the MSE of LD with the MSE from the regression in general. Statistic test used is Λ. Initial hypothesis was rejected when proved so is an outlier.
Comparison of microtweezers based on three lateral thermal actuator configurations
Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.
2005-06-01
Thermal actuator-based microtweezers with three different driving configurations have been designed, fabricated and characterized. Finite element analysis has been used to model the device performance. It was found that one configuration of microtweezer, based on two lateral bimorph thermal actuators, has a small displacement (tip opening of the tweezers) and a very limited operating power range. An alternative configuration consisting of two horizontal hot bars with separated beams as the arms can deliver a larger displacement with a much-extended operating power range. This structure can withstand a higher temperature due to the wider beams used, and has flexible arms for increased displacement. Microtweezers driven by a number of chevron structures in parallel have similar maximum displacements but at a cost of higher power consumption. The measured temperature of the devices confirms that the device with the chevron structure can deliver the largest displacement for a given working temperature, while the bimorph thermal actuator design has the highest operating temperature at the same power due to its thin hot arm, and is prone to structural failure.
Comparison of Two Independent LIDAR-Based Pitch Control Designs
Energy Technology Data Exchange (ETDEWEB)
Dunne, F.; Schlipf, D.; Pao, L. Y.
2012-08-01
Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.
Comparison of Simple Versus Performance-Based Fall Prediction Models
Directory of Open Access Journals (Sweden)
Shekhar K. Gadkaree BS
2015-05-01
Full Text Available Objective: To compare the predictive ability of standard falls prediction models based on physical performance assessments with more parsimonious prediction models based on self-reported data. Design: We developed a series of fall prediction models progressing in complexity and compared area under the receiver operating characteristic curve (AUC across models. Setting: National Health and Aging Trends Study (NHATS, which surveyed a nationally representative sample of Medicare enrollees (age ≥65 at baseline (Round 1: 2011-2012 and 1-year follow-up (Round 2: 2012-2013. Participants: In all, 6,056 community-dwelling individuals participated in Rounds 1 and 2 of NHATS. Measurements: Primary outcomes were 1-year incidence of “ any fall ” and “ recurrent falls .” Prediction models were compared and validated in development and validation sets, respectively. Results: A prediction model that included demographic information, self-reported problems with balance and coordination, and previous fall history was the most parsimonious model that optimized AUC for both any fall (AUC = 0.69, 95% confidence interval [CI] = [0.67, 0.71] and recurrent falls (AUC = 0.77, 95% CI = [0.74, 0.79] in the development set. Physical performance testing provided a marginal additional predictive value. Conclusion: A simple clinical prediction model that does not include physical performance testing could facilitate routine, widespread falls risk screening in the ambulatory care setting.
Is there pre-attentive memory-based comparison of pitch?
Jacobsen, T; Schröger, E
2001-07-01
The brain's responsiveness to changes in sound frequency has been demonstrated by an overwhelming number of studies. Change detection occurs unintentionally and automatically. It is generally assumed that this brain response, the so-called mismatch negativity (MMN) of the event-related brain potential or evoked magnetic field, is based on the outcome of a memory-comparison mechanism rather than being due to a differential state of refractoriness of tonotopically organized cortical neurons. To the authors' knowledge, however, there is no entirely compelling evidence for this belief. An experimental protocol controlling for refractoriness effects was developed and a true memory-comparison-based brain response to pitch change was demonstrated.
Powdered alcohol: Awareness and likelihood of use among a sample of college students.
Vail-Smith, Karen; Chaney, Beth H; Martin, Ryan J; Don Chaney, J
2016-01-01
In March 2015, the Alcohol and Tobacco Tax and Trade Bureau approved the sale of Palcohol, the first powdered alcohol product to be marketed and sold in the U.S. Powdered alcohol is freeze-dried, and one individual-serving size packet added to 6 ounces of liquid is equivalent to a standard drink. This study assessed awareness of powered alcohol and likelihood to use and/or misuse powdered alcohol among college students. Surveys were administered to a convenience sample of 1,841 undergraduate students. Only 16.4% of respondents had heard of powdered alcohol. After being provided a brief description of powdered alcohol, 23% indicated that they would use the product if available, and of those, 62.1% also indicated likelihood of misusing the product (eg, snorting it, mixing it with alcohol). Caucasian students (OR = 1.5) and hazardous drinkers (based on AUDIT-C scores; OR = 4.7) were significantly more likely to indicate likelihood of use. Hazardous drinkers were also six times more likely to indicate likelihood to misuse the product. These findings can inform upstream prevention efforts in states debating bans on powdered alcohol. In states where powdered alcohol will soon be available, alcohol education initiatives should be updated to include information on the potential risks of use and be targeted to those populations most likely to misuse. This is the first peer-reviewed study to assess the awareness of and likelihood to use and/or misuse powdered alcohol, a potentially emerging form of alcohol. © American Academy of Addiction Psychiatry.
Exclusion probabilities and likelihood ratios with applications to mixtures.
Slooten, Klaas-Jan; Egeland, Thore
2016-01-01
The statistical evidence obtained from mixed DNA profiles can be summarised in several ways in forensic casework including the likelihood ratio (LR) and the Random Man Not Excluded (RMNE) probability. The literature has seen a discussion of the advantages and disadvantages of likelihood ratios and exclusion probabilities, and part of our aim is to bring some clarification to this debate. In a previous paper, we proved that there is a general mathematical relationship between these statistics: RMNE can be expressed as a certain average of the LR, implying that the expected value of the LR, when applied to an actual contributor to the mixture, is at least equal to the inverse of the RMNE. While the mentioned paper presented applications for kinship problems, the current paper demonstrates the relevance for mixture cases, and for this purpose, we prove some new general properties. We also demonstrate how to use the distribution of the likelihood ratio for donors of a mixture, to obtain estimates for exceedance probabilities of the LR for non-donors, of which the RMNE is a special case corresponding to L R>0. In order to derive these results, we need to view the likelihood ratio as a random variable. In this paper, we describe how such a randomization can be achieved. The RMNE is usually invoked only for mixtures without dropout. In mixtures, artefacts like dropout and drop-in are commonly encountered and we address this situation too, illustrating our results with a basic but widely implemented model, a so-called binary model. The precise definitions, modelling and interpretation of the required concepts of dropout and drop-in are not entirely obvious, and we attempt to clarify them here in a general likelihood framework for a binary model.
A Comparison of Electrolytic Capacitors and Supercapacitors for Piezo-Based Energy Harvesting
2013-07-01
A Comparison of Electrolytic Capacitors and Supercapacitors for Piezo-Based Energy Harvesting by Matthew H. Ervin, Carlos M. Pereira, John R...Capacitors and Supercapacitors for Piezo-Based Energy Harvesting Matthew H. Ervin Sensors and Electronic Devices Directorate, ARL Carlos M. Pereira... Supercapacitors for Piezo-Based Energy Harvesting 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew H
Intellectual wellness in medical university teachers: Gender based comparison.
Syed, Sadiqa; Rehman, Rehana; Hussain, Mehwish; Shaikh, Saifullah
2017-05-01
A cross section, questionnaire based study was carried out from January 2012 till December 2014 to compare intellectual wellness (IW) awareness on the basis of gender in teachers of basic sciences at medical universities of Karachi, Pakistan. Data was collected from 3 public and 5 private medical universities of Karachi, Pakistan. Questionnaire was tailored from "Wellness Wheel" and responses were aggregated for eight questions in the dimension of IW to obtain aggregate IW score. Reliability of the questionnaire was measured using Cronbach's alpha. The average intellectual score was 24.99 ± 3.93 with a minimum score of 8 and maximum 32.The frequency of keeping informed about research updates was significantly higher in males (p = 0.043) that emphasized significantly better IW awareness of male medical teachers involved in teaching of medical sciences in both public and private medical universities of Pakistan.
Comparison of luminance based metrics in different lighting conditions
DEFF Research Database (Denmark)
Wienold, J.; Kuhn, T.E.; Christoffersen, J.
In this study, we evaluate established and newly developed metrics for predicting glare using data from three different research studies. The evaluation covers two different targets: 1. How well the user’s perception of glare magnitude correlates to the prediction of the glare metrics? 2. How well...... do the glare metrics describe the subjects’ disturbance by glare? We applied Spearman correlations, logistic regressions and an accuracy evaluation, based on an ROC-analysis. The results show that five of the twelve investigated metrics are failing at least one of the statistical tests. The other...... seven metrics CGI, modified DGI, DGP, Ev, average Luminance of the image Lavg, UGP and UGR are passing all statistical tests. DGP, CGI, DGI_mod and UGP have largest AUC and might be slightly more robust. The accuracy of the predictions of afore mentioned seven metrics for the disturbance by glare lies...
Laccase-based biocathodes: Comparison of chitosan and Nafion.
El Ichi-Ribault, S; Zebda, A; Laaroussi, A; Reverdy-Bruas, N; Chaussy, D; Belgacem, M N; Suherman, A L; Cinquin, P; Martin, D K
2016-09-21
Chitosan and Nafion(®) are both reported as interesting polymers to be integrated into the structure of 3D electrodes for biofuel cells. Their advantage is mainly related to their chemical properties, which have a positive impact on the stability of electrodes such as the laccase-based biocathode. For optimal function in implantable applications the biocathode requires coating with a biocompatible semi-permeable membrane that is designed to prevent the loss of enzyme activity and to protect the structure of the biocathode. Since such membranes are integrated into the electrodes ultimately implanted, they must be fully characterized to demonstrate that there is no interference with the performance of the electrode. In the present study, we demonstrate that chitosan provides superior stability compared with Nafion(®) and should be considered as an optimum solution to enhance the biocompatibility and the stability of 3D bioelectrodes. Copyright © 2016 Elsevier B.V. All rights reserved.
Thompson, William C; Newman, Eryn J
2015-08-01
Forensic scientists have come under increasing pressure to quantify the strength of their evidence, but it is not clear which of several possible formats for presenting quantitative conclusions will be easiest for lay people, such as jurors, to understand. This experiment examined the way that people recruited from Amazon's Mechanical Turk (n = 541) responded to 2 types of forensic evidence--a DNA comparison and a shoeprint comparison--when an expert explained the strength of this evidence 3 different ways: using random match probabilities (RMPs), likelihood ratios (LRs), or verbal equivalents of likelihood ratios (VEs). We found that verdicts were sensitive to the strength of DNA evidence regardless of how the expert explained it, but verdicts were sensitive to the strength of shoeprint evidence only when the expert used RMPs. The weight given to DNA evidence was consistent with the predictions of a Bayesian network model that incorporated the perceived risk of a false match from 3 causes (coincidence, a laboratory error, and a frame-up), but shoeprint evidence was undervalued relative to the same Bayesian model. Fallacious interpretations of the expert's testimony (consistent with the source probability error and the defense attorney's fallacy) were common and were associated with the weight given to the evidence and verdicts. The findings indicate that perceptions of forensic science evidence are shaped by prior beliefs and expectations as well as expert testimony and consequently that the best way to characterize and explain forensic evidence may vary across forensic disciplines. (c) 2015 APA, all rights reserved).
Multimodal Personal Verification Using Likelihood Ratio for the Match Score Fusion
Directory of Open Access Journals (Sweden)
Long Binh Tran
2017-01-01
Full Text Available In this paper, the authors present a novel personal verification system based on the likelihood ratio test for fusion of match scores from multiple biometric matchers (face, fingerprint, hand shape, and palm print. In the proposed system, multimodal features are extracted by Zernike Moment (ZM. After matching, the match scores from multiple biometric matchers are fused based on the likelihood ratio test. A finite Gaussian mixture model (GMM is used for estimating the genuine and impostor densities of match scores for personal verification. Our approach is also compared to some different famous approaches such as the support vector machine and the sum rule with min-max. The experimental results have confirmed that the proposed system can achieve excellent identification performance for its higher level in accuracy than different famous approaches and thus can be utilized for more application related to person verification.
Model Comparison for Breast Cancer Prognosis Based on Clinical Data.
Directory of Open Access Journals (Sweden)
Sabri Boughorbel
Full Text Available We compared the performance of several prediction techniques for breast cancer prognosis, based on AU-ROC performance (Area Under ROC for different prognosis periods. The analyzed dataset contained 1,981 patients and from an initial 25 variables, the 11 most common clinical predictors were retained. We compared eight models from a wide spectrum of predictive models, namely; Generalized Linear Model (GLM, GLM-Net, Partial Least Square (PLS, Support Vector Machines (SVM, Random Forests (RF, Neural Networks, k-Nearest Neighbors (k-NN and Boosted Trees. In order to compare these models, paired t-test was applied on the model performance differences obtained from data resampling. Random Forests, Boosted Trees, Partial Least Square and GLMNet have superior overall performance, however they are only slightly higher than the other models. The comparative analysis also allowed us to define a relative variable importance as the average of variable importance from the different models. Two sets of variables are identified from this analysis. The first includes number of positive lymph nodes, tumor size, cancer grade and estrogen receptor, all has an important influence on model predictability. The second set incudes variables related to histological parameters and treatment types. The short term vs long term contribution of the clinical variables are also analyzed from the comparative models. From the various cancer treatment plans, the combination of Chemo/Radio therapy leads to the largest impact on cancer prognosis.
FEATURES BASED ON NEIGHBORHOOD PIXELS DENSITY - A STUDY AND COMPARISON
Directory of Open Access Journals (Sweden)
Satish Kumar
2016-02-01
Full Text Available In optical character recognition applications, the feature extraction method(s used to recognize document images play an important role. The features are the properties of the pattern that can be statistical, structural and/or transforms or series expansion. The structural features are difficult to compute particularly from hand-printed images. The structure of the strokes present inside the hand-printed images can be estimated using statistical means. In this paper three features have been purposed, those are based on the distribution of B/W pixels on the neighborhood of a pixel in an image. We name these features as Spiral Neighbor Density, Layer Pixel Density and Ray Density. The recognition performance of these features has been compared with two more features Neighborhood Pixels Weight and Total Distances in Four Directions already studied in our work. We have used more than 20000 Devanagari handwritten character images for conducting experiments. The experiments are conducted with two classifiers i.e. PNN and k-NN.
Comparison Of Power Quality Disturbances Classification Based On Neural Network
Directory of Open Access Journals (Sweden)
Nway Nway Kyaw Win
2015-07-01
Full Text Available Abstract Power quality disturbances PQDs result serious problems in the reliability safety and economy of power system network. In order to improve electric power quality events the detection and classification of PQDs must be made type of transient fault. Software analysis of wavelet transform with multiresolution analysis MRA algorithm and feed forward neural network probabilistic and multilayer feed forward neural network based methodology for automatic classification of eight types of PQ signals flicker harmonics sag swell impulse fluctuation notch and oscillatory will be presented. The wavelet family Db4 is chosen in this system to calculate the values of detailed energy distributions as input features for classification because it can perform well in detecting and localizing various types of PQ disturbances. This technique classifies the types of PQDs problem sevents.The classifiers classify and identify the disturbance type according to the energy distribution. The results show that the PNN can analyze different power disturbance types efficiently. Therefore it can be seen that PNN has better classification accuracy than MLFF.
Comparisons of Faulting-Based Pavement Performance Prediction Models
Directory of Open Access Journals (Sweden)
Weina Wang
2017-01-01
Full Text Available Faulting prediction is the core of concrete pavement maintenance and design. Highway agencies are always faced with the problem of lower accuracy for the prediction which causes costly maintenance. Although many researchers have developed some performance prediction models, the accuracy of prediction has remained a challenge. This paper reviews performance prediction models and JPCP faulting models that have been used in past research. Then three models including multivariate nonlinear regression (MNLR model, artificial neural network (ANN model, and Markov Chain (MC model are tested and compared using a set of actual pavement survey data taken on interstate highway with varying design features, traffic, and climate data. It is found that MNLR model needs further recalibration, while the ANN model needs more data for training the network. MC model seems a good tool for pavement performance prediction when the data is limited, but it is based on visual inspections and not explicitly related to quantitative physical parameters. This paper then suggests that the further direction for developing the performance prediction model is incorporating the advantages and disadvantages of different models to obtain better accuracy.
Comparison and Characterization of Android-Based Fall Detection Systems
Directory of Open Access Journals (Sweden)
Rafael Luque
2014-10-01
Full Text Available Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones’ potential (and in particular, the Android Operating System can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed and false positives (conventional movements that are erroneously classified as falls. In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems.
Comparison and characterization of Android-based fall detection systems.
Luque, Rafael; Casilari, Eduardo; Morón, María-José; Redondo, Gema
2014-10-08
Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones' potential (and in particular, the Android Operating System) can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed) and false positives (conventional movements that are erroneously classified as falls). In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems.
Comparison of 3 tall fescue-based stocker systems.
Bailey, N J; Kallenbach, R L
2010-05-01
A 2-yr production study was conducted to evaluate 3 systems of growing stocker calves under rotational stocking. One group of steers was stocked on pasture from early April to mid August (spring-stocked steers = SSS), and another group of steers was stocked from early July to late October (fall-stocked steers = FSS). Steers were stratified by BW (n = 72, BW = 229 +/- 11 kg for SSS; n = 72, BW = 248 +/- 18 kg for FSS) and randomly assigned to 1 of 3 treatments. The 3 treatments were 1) rotationally stocked only (control; CON), steers rotated to a new paddock as forage availability dropped below acceptable levels in the occupied paddock; 2) rotationally stocked with distillers grains (DIST); this was the same as CON except steers were supplemented with varying amounts of distillers dried grains with solubles (DDGS) based on forage nutritive value; and 3) rotationally stocked with round-bale silage (SIL); excess forage in spring was harvested and stored as round-bale silage and fed back as needed. Total BW gain/ha over the entire grazing season did not differ between DIST and SIL (P = 0.09) steers, but both were greater than CON (P forage nutritive value resulted in consistent BW gains throughout the grazing study, whereas steers in the SIL and CON treatments gained less BW during the latter portion of the season. Controlling forage maturity by removal in the SIL treatment resulted in total BW gains/ha that were not different than the DIST treatment.
Comparison and Characterization of Android-Based Fall Detection Systems
Luque, Rafael; Casilari, Eduardo; Morón, María-José; Redondo, Gema
2014-01-01
Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones' potential (and in particular, the Android Operating System) can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed) and false positives (conventional movements that are erroneously classified as falls). In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems. PMID:25299953
A review of studies on persuasion from the viewpoint of the Elaboration Likelihood Model (1)
Fukada, Hiromi; Kimura, Kenichi; Makino, Koshi; Higuchi, Masataka
2000-01-01
The purpose of this paper was to review studies on persuasion from the viewpoint of the Elaboration Likelihood Model based on Petty & Wegener (1998). The paper consists of the following four parts. 1. Introduction. 2. Multiple roles for persuasion variables. 3. Source variables: (1) credibility (expertise, trustworthiness), (2) attractiveness/likableness, (3) power, (4) additional source factors related to credibility, liking and power (speed of speech, demographic variables, majority/minorit...
Maximum likelihood unit rooting test in the presence GARCH: A new test with increased power
Cook , Steve
2008-01-01
Abstract The literature on testing the unit root hypothesis in the presence of GARCH errors is extended. A new test based upon the combination of local-to-unity detrending and joint maximum likelihood estimation of the autoregressive parameter and GARCH process is presented. The finite sample distribution of the test is derived under alternative decisions regarding the deterministic terms employed. Using Monte Carlo simulation, the newly proposed ML t-test is shown to exhibit incre...
An efficient binomial model-based measure for sequence comparison and its application.
Liu, Xiaoqing; Dai, Qi; Li, Lihua; He, Zerong
2011-04-01
Sequence comparison is one of the major tasks in bioinformatics, which could serve as evidence of structural and functional conservation, as well as of evolutionary relations. There are several similarity/dissimilarity measures for sequence comparison, but challenges remains. This paper presented a binomial model-based measure to analyze biological sequences. With help of a random indicator, the occurrence of a word at any position of sequence can be regarded as a random Bernoulli variable, and the distribution of a sum of the word occurrence is well known to be a binomial one. By using a recursive formula, we computed the binomial probability of the word count and proposed a binomial model-based measure based on the relative entropy. The proposed measure was tested by extensive experiments including classification of HEV genotypes and phylogenetic analysis, and further compared with alignment-based and alignment-free measures. The results demonstrate that the proposed measure based on binomial model is more efficient.
Revision of Begomovirus taxonomy based on pairwise sequence comparisons
Brown, Judith K.
2015-04-18
Viruses of the genus Begomovirus (family Geminiviridae) are emergent pathogens of crops throughout the tropical and subtropical regions of the world. By virtue of having a small DNA genome that is easily cloned, and due to the recent innovations in cloning and low-cost sequencing, there has been a dramatic increase in the number of available begomovirus genome sequences. Even so, most of the available sequences have been obtained from cultivated plants and are likely a small and phylogenetically unrepresentative sample of begomovirus diversity, a factor constraining taxonomic decisions such as the establishment of operationally useful species demarcation criteria. In addition, problems in assigning new viruses to established species have highlighted shortcomings in the previously recommended mechanism of species demarcation. Based on the analysis of 3,123 full-length begomovirus genome (or DNA-A component) sequences available in public databases as of December 2012, a set of revised guidelines for the classification and nomenclature of begomoviruses are proposed. The guidelines primarily consider a) genus-level biological characteristics and b) results obtained using a standardized classification tool, Sequence Demarcation Tool, which performs pairwise sequence alignments and identity calculations. These guidelines are consistent with the recently published recommendations for the genera Mastrevirus and Curtovirus of the family Geminiviridae. Genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomoviruses belonging to different species and strains, respectively. Procedures and guidelines are outlined for resolving conflicts that may arise when assigning species and strains to categories wherever the pairwise identity falls on or very near the demarcation threshold value.
Revision of Begomovirus taxonomy based on pairwise sequence comparisons
Brown, Judith K.; Zerbini, F. Murilo; Navas-Castillo, Jesú s; Moriones, Enrique; Ramos-Sobrinho, Roberto; Silva, José C. F.; Fiallo-Olivé , Elvira; Briddon, Rob W.; Herná ndez-Zepeda, Cecilia; Idris, Ali; Malathi, V. G.; Martin, Darren P.; Rivera-Bustamante, Rafael; Ueda, Shigenori; Varsani, Arvind
2015-01-01
Viruses of the genus Begomovirus (family Geminiviridae) are emergent pathogens of crops throughout the tropical and subtropical regions of the world. By virtue of having a small DNA genome that is easily cloned, and due to the recent innovations in cloning and low-cost sequencing, there has been a dramatic increase in the number of available begomovirus genome sequences. Even so, most of the available sequences have been obtained from cultivated plants and are likely a small and phylogenetically unrepresentative sample of begomovirus diversity, a factor constraining taxonomic decisions such as the establishment of operationally useful species demarcation criteria. In addition, problems in assigning new viruses to established species have highlighted shortcomings in the previously recommended mechanism of species demarcation. Based on the analysis of 3,123 full-length begomovirus genome (or DNA-A component) sequences available in public databases as of December 2012, a set of revised guidelines for the classification and nomenclature of begomoviruses are proposed. The guidelines primarily consider a) genus-level biological characteristics and b) results obtained using a standardized classification tool, Sequence Demarcation Tool, which performs pairwise sequence alignments and identity calculations. These guidelines are consistent with the recently published recommendations for the genera Mastrevirus and Curtovirus of the family Geminiviridae. Genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomoviruses belonging to different species and strains, respectively. Procedures and guidelines are outlined for resolving conflicts that may arise when assigning species and strains to categories wherever the pairwise identity falls on or very near the demarcation threshold value.
Empirical comparison of web-based antimicrobial peptide prediction tools.
Gabere, Musa Nur; Noble, William Stafford
2017-07-01
Antimicrobial peptides (AMPs) are innate immune molecules that exhibit activities against a range of microbes, including bacteria, fungi, viruses and protozoa. Recent increases in microbial resistance against current drugs has led to a concomitant increase in the need for novel antimicrobial agents. Over the last decade, a number of AMP prediction tools have been designed and made freely available online. These AMP prediction tools show potential to discriminate AMPs from non-AMPs, but the relative quality of the predictions produced by the various tools is difficult to quantify. We compiled two sets of AMP and non-AMP peptides, separated into three categories-antimicrobial, antibacterial and bacteriocins. Using these benchmark data sets, we carried out a systematic evaluation of ten publicly available AMP prediction methods. Among the six general AMP prediction tools-ADAM, CAMPR3(RF), CAMPR3(SVM), MLAMP, DBAASP and MLAMP-we find that CAMPR3(RF) provides a statistically significant improvement in performance, as measured by the area under the receiver operating characteristic (ROC) curve, relative to the other five methods. Surprisingly, for antibacterial prediction, the original AntiBP method significantly outperforms its successor, AntiBP2 based on one benchmark dataset. The two bacteriocin prediction tools, BAGEL3 and BACTIBASE, both provide very good performance and BAGEL3 outperforms its predecessor, BACTIBASE, on the larger of the two benchmarks. gaberemu@ngha.med.sa or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Comparison between two photovoltaic module models based on transistors
Saint-Eve, Frédéric; Sawicki, Jean-Paul; Petit, Pierre; Maufay, Fabrice; Aillerie, Michel
2018-05-01
The main objective of this paper is to verify the possibility to reduce to a simple electronic circuit with very few components the behavior simulation of an un-shaded photovoltaic (PV) module. Particularly, two models based on well-tried elementary structures, i.e., the Darlington structure in first model and the voltage regulation with programmable Zener diode in the second are analyzed. Specifications extracted from the behavior of a real I-V characteristic of a panel are considered and the principal electrical variables are deduced. The two models are expected to match with open circuit voltage, maximum power point (MPP) and short circuit current, without forgetting realistic current slopes on the both sides of MPP. The robustness is mentioned when irradiance varies and is considered as an additional fundamental property. For both models, two simulations are done to identify influence of some parameters. In the first model, a parameter allowing to adjust current slope on left side of MPP proves to be also important for the calculation of open circuit voltage. Besides this model does not authorize an entirely adjustment of I-V characteristic and MPP moves significantly away from real value when irradiance increases. On the contrary, the second model seems to have only qualities: open circuit voltage is easy to calculate, current slopes are realistic and there is perhaps a good robustness when irradiance variations are simulated by adjusting short circuit current of PV module. We have shown that these two simplified models are expected to make reliable and easier simulations of complex PV architecture integrating many different devices like PV modules or other renewable energy sources and storage capacities coupled in parallel association.
Munteanu, Cristian Robert
2014-01-01
Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices, German Conference on Bioinformatics (GCB), Potsdam, Germany (September, 2007)
International Nuclear Information System (INIS)
Tanaka, Osamu; Hayashi, Shinya; Matsuo, Masayuki; Sakurai, Kota; Nakano, Masahiro; Maeda, Sunaho; Kajita, Kimihiro R.T.; Deguchi, Takashi; Hoshi, Hiroaki
2006-01-01
Purpose: The aim of this study was to compare the outcomes between magnetic resonance imaging (MRI)-based and computed tomography (CT)/MRI fusion-based postimplant dosimetry methods in permanent prostate brachytherapy. Methods and Materials: Between October 2004 and March 2006, a total of 52 consecutive patients with prostate cancer were treated by brachytherapy, and postimplant dosimetry was performed using CT/MRI fusion. The accuracy and reproducibility were prospectively compared between MRI-based dosimetry and CT/MRI fusion-based dosimetry based on the dose-volume histogram (DVH) related parameters as recommended by the American Brachytherapy Society. Results: The prostate volume was 15.97 ± 6.17 cc (mean ± SD) in MRI-based dosimetry, and 15.97 ± 6.02 cc in CT/MRI fusion-based dosimetry without statistical difference. The prostate V100 was 94.5% and 93.0% in MRI-based and CT/MRI fusion-based dosimetry, respectively, and the difference was statistically significant (p = 0.002). The prostate D90 was 119.4% and 114.4% in MRI-based and CT/MRI fusion-based dosimetry, respectively, and the difference was statistically significant (p = 0.004). Conclusion: Our current results suggested that, as with fusion images, MR images allowed accurate contouring of the organs, but they tended to overestimate the analysis of postimplant dosimetry in comparison to CT/MRI fusion images. Although this MRI-based dosimetric discrepancy was negligible, MRI-based dosimetry was acceptable and reproducible in comparison to CT-based dosimetry, because the difference between MRI-based and CT/MRI fusion-based results was smaller than that between CT-based and CT/MRI fusion-based results as previously reported
International Nuclear Information System (INIS)
Song, N; Frey, E C; He, B; Wahl, R L
2011-01-01
Optimizing targeted radionuclide therapy requires patient-specific estimation of organ doses. The organ doses are estimated from quantitative nuclear medicine imaging studies, many of which involve planar whole body scans. We have previously developed the quantitative planar (QPlanar) processing method and demonstrated its ability to provide more accurate activity estimates than conventional geometric-mean-based planar (CPlanar) processing methods using physical phantom and simulation studies. The QPlanar method uses the maximum likelihood-expectation maximization algorithm, 3D organ volume of interests (VOIs), and rigorous models of physical image degrading factors to estimate organ activities. However, the QPlanar method requires alignment between the 3D organ VOIs and the 2D planar projections and assumes uniform activity distribution in each VOI. This makes application to patients challenging. As a result, in this paper we propose an extended QPlanar (EQPlanar) method that provides independent-organ rigid registration and includes multiple background regions. We have validated this method using both Monte Carlo simulation and patient data. In the simulation study, we evaluated the precision and accuracy of the method in comparison to the original QPlanar method. For the patient studies, we compared organ activity estimates at 24 h after injection with those from conventional geometric mean-based planar quantification using a 24 h post-injection quantitative SPECT reconstruction as the gold standard. We also compared the goodness of fit of the measured and estimated projections obtained from the EQPlanar method to those from the original method at four other time points where gold standard data were not available. In the simulation study, more accurate activity estimates were provided by the EQPlanar method for all the organs at all the time points compared with the QPlanar method. Based on the patient data, we concluded that the EQPlanar method provided a
Comparison of ompP5 sequence-based typing and pulsed-filed gel ...
African Journals Online (AJOL)
In this study, comparison of the outer membrane protein P5 gene (ompP5) sequence-based typing with pulsed-field gel electrophoresis (PFGE) for the genotyping of Haemophilus parasuis, the 15 serovar reference strains and 43 isolates were investigated. When comparing the two methods, 31 ompP5 sequence types ...
A composite likelihood approach for spatially correlated survival data
Paik, Jane; Ying, Zhiliang
2013-01-01
The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450
A composite likelihood approach for spatially correlated survival data.
Paik, Jane; Ying, Zhiliang
2013-01-01
The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.
GENERALIZATION OF RAYLEIGH MAXIMUM LIKELIHOOD DESPECKLING FILTER USING QUADRILATERAL KERNELS
Directory of Open Access Journals (Sweden)
S. Sridevi
2013-02-01
Full Text Available Speckle noise is the most prevalent noise in clinical ultrasound images. It visibly looks like light and dark spots and deduce the pixel intensity as murkiest. Gazing at fetal ultrasound images, the impact of edge and local fine details are more palpable for obstetricians and gynecologists to carry out prenatal diagnosis of congenital heart disease. A robust despeckling filter has to be contrived to proficiently suppress speckle noise and simultaneously preserve the features. The proposed filter is the generalization of Rayleigh maximum likelihood filter by the exploitation of statistical tools as tuning parameters and use different shapes of quadrilateral kernels to estimate the noise free pixel from neighborhood. The performance of various filters namely Median, Kuwahura, Frost, Homogenous mask filter and Rayleigh maximum likelihood filter are compared with the proposed filter in terms PSNR and image profile. Comparatively the proposed filters surpass the conventional filters.
Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager
Energy Technology Data Exchange (ETDEWEB)
Lowell, A. W.; Boggs, S. E; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C. [Space Sciences Laboratory, University of California, Berkeley (United States); Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y. [Institute of Astronomy, National Tsing Hua University, Taiwan (China); Jean, P.; Ballmoos, P. von [IRAP Toulouse (France); Lin, C.-H. [Institute of Physics, Academia Sinica, Taiwan (China); Amman, M. [Lawrence Berkeley National Laboratory (United States)
2017-10-20
Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ∼21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. We find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.
Physical constraints on the likelihood of life on exoplanets
Lingam, Manasvi; Loeb, Abraham
2018-04-01
One of the most fundamental questions in exoplanetology is to determine whether a given planet is habitable. We estimate the relative likelihood of a planet's propensity towards habitability by considering key physical characteristics such as the role of temperature on ecological and evolutionary processes, and atmospheric losses via hydrodynamic escape and stellar wind erosion. From our analysis, we demonstrate that Earth-sized exoplanets in the habitable zone around M-dwarfs seemingly display much lower prospects of being habitable relative to Earth, owing to the higher incident ultraviolet fluxes and closer distances to the host star. We illustrate our results by specifically computing the likelihood (of supporting life) for the recently discovered exoplanets, Proxima b and TRAPPIST-1e, which we find to be several orders of magnitude smaller than that of Earth.
Bayesian interpretation of Generalized empirical likelihood by maximum entropy
Rochet , Paul
2011-01-01
We study a parametric estimation problem related to moment condition models. As an alternative to the generalized empirical likelihood (GEL) and the generalized method of moments (GMM), a Bayesian approach to the problem can be adopted, extending the MEM procedure to parametric moment conditions. We show in particular that a large number of GEL estimators can be interpreted as a maximum entropy solution. Moreover, we provide a more general field of applications by proving the method to be rob...
Menyoal Elaboration Likelihood Model (ELM) dan Teori Retorika
Yudi Perbawaningsih
2012-01-01
Abstract: Persuasion is a communication process to establish or change attitudes, which can be understood through theory of Rhetoric and theory of Elaboration Likelihood Model (ELM). This study elaborates these theories in a Public Lecture series which to persuade the students in choosing their concentration of study. The result shows that in term of persuasion effectiveness it is not quite relevant to separate the message and its source. The quality of source is determined by the quality of ...
Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation
Rajiv D. Banker
1993-01-01
This paper provides a formal statistical basis for the efficiency evaluation techniques of data envelopment analysis (DEA). DEA estimators of the best practice monotone increasing and concave production function are shown to be also maximum likelihood estimators if the deviation of actual output from the efficient output is regarded as a stochastic variable with a monotone decreasing probability density function. While the best practice frontier estimator is biased below the theoretical front...
Multiple Improvements of Multiple Imputation Likelihood Ratio Tests
Chan, Kin Wai; Meng, Xiao-Li
2017-01-01
Multiple imputation (MI) inference handles missing data by first properly imputing the missing values $m$ times, and then combining the $m$ analysis results from applying a complete-data procedure to each of the completed datasets. However, the existing method for combining likelihood ratio tests has multiple defects: (i) the combined test statistic can be negative in practice when the reference null distribution is a standard $F$ distribution; (ii) it is not invariant to re-parametrization; ...
Maximum likelihood convolutional decoding (MCD) performance due to system losses
Webster, L.
1976-01-01
A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.
Menyoal Elaboration Likelihood Model (ELM) Dan Teori Retorika
Perbawaningsih, Yudi
2012-01-01
: Persuasion is a communication process to establish or change attitudes, which can be understood through theory of Rhetoric and theory of Elaboration Likelihood Model (ELM). This study elaborates these theories in a Public Lecture series which to persuade the students in choosing their concentration of study. The result shows that in term of persuasion effectiveness it is not quite relevant to separate the message and its source. The quality of source is determined by the quality of the mess...
Penggunaan Elaboration Likelihood Model dalam Menganalisis Penerimaan Teknologi Informasi
vitrian, vitrian2
2010-01-01
This article discusses some technology acceptance models in an organization. Thorough analysis of how technology is acceptable help managers make any planning to implement new teachnology and make sure that new technology could enhance organization's performance. Elaboration Likelihood Model (ELM) is the one which sheds light on some behavioral factors in acceptance of information technology. The basic tenet of ELM states that human behavior in principle can be influenced through central r...
Statistical Bias in Maximum Likelihood Estimators of Item Parameters.
1982-04-01
34 a> E r’r~e r ,C Ie I# ne,..,.rVi rnd Id.,flfv b1 - bindk numb.r) I; ,t-i i-cd I ’ tiie bias in the maximum likelihood ,st i- i;, ’ t iIeiIrs in...NTC, IL 60088 Psychometric Laboratory University of North Carolina I ERIC Facility-Acquisitions Davie Hall 013A 4833 Rugby Avenue Chapel Hill, NC
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
Xie, Yanmei; Zhang, Biao
2017-04-20
Missing covariate data occurs often in regression analysis, which frequently arises in the health and social sciences as well as in survey sampling. We study methods for the analysis of a nonignorable covariate-missing data problem in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Bartlett et al. (Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 2014;15:719-30) on regression analyses with nonignorable missing covariates, in which they have introduced the use of two working models, the working probability model of missingness and the working conditional score model. In this paper, we study an empirical likelihood approach to nonignorable covariate-missing data problems with the objective of effectively utilizing the two working models in the analysis of covariate-missing data. We propose a unified approach to constructing a system of unbiased estimating equations, where there are more equations than unknown parameters of interest. One useful feature of these unbiased estimating equations is that they naturally incorporate the incomplete data into the data analysis, making it possible to seek efficient estimation of the parameter of interest even when the working regression function is not specified to be the optimal regression function. We apply the general methodology of empirical likelihood to optimally combine these unbiased estimating equations. We propose three maximum empirical likelihood estimators of the underlying regression parameters and compare their efficiencies with other existing competitors. We present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification. The proposed empirical likelihood method is also illustrated by an analysis of a data set from the US National Health and
Democracy, Autocracy and the Likelihood of International Conflict
Tangerås, Thomas
2008-01-01
This is a game-theoretic analysis of the link between regime type and international conflict. The democratic electorate can credibly punish the leader for bad conflict outcomes, whereas the autocratic selectorate cannot. For the fear of being thrown out of office, democratic leaders are (i) more selective about the wars they initiate and (ii) on average win more of the wars they start. Foreign policy behaviour is found to display strategic complementarities. The likelihood of interstate war, ...
Maximum likelihood pixel labeling using a spatially variant finite mixture model
International Nuclear Information System (INIS)
Gopal, S.S.; Hebert, T.J.
1996-01-01
We propose a spatially-variant mixture model for pixel labeling. Based on this spatially-variant mixture model we derive an expectation maximization algorithm for maximum likelihood estimation of the pixel labels. While most algorithms using mixture models entail the subsequent use of a Bayes classifier for pixel labeling, the proposed algorithm yields maximum likelihood estimates of the labels themselves and results in unambiguous pixel labels. The proposed algorithm is fast, robust, easy to implement, flexible in that it can be applied to any arbitrary image data where the number of classes is known and, most importantly, obviates the need for an explicit labeling rule. The algorithm is evaluated both quantitatively and qualitatively on simulated data and on clinical magnetic resonance images of the human brain
On Bayesian Testing of Additive Conjoint Measurement Axioms Using Synthetic Likelihood.
Karabatsos, George
2018-06-01
This article introduces a Bayesian method for testing the axioms of additive conjoint measurement. The method is based on an importance sampling algorithm that performs likelihood-free, approximate Bayesian inference using a synthetic likelihood to overcome the analytical intractability of this testing problem. This new method improves upon previous methods because it provides an omnibus test of the entire hierarchy of cancellation axioms, beyond double cancellation. It does so while accounting for the posterior uncertainty that is inherent in the empirical orderings that are implied by these axioms, together. The new method is illustrated through a test of the cancellation axioms on a classic survey data set, and through the analysis of simulated data.
Energy Technology Data Exchange (ETDEWEB)
Singh, Harpreet; Arvind; Dorai, Kavita, E-mail: kavita@iisermohali.ac.in
2016-09-07
Estimation of quantum states is an important step in any quantum information processing experiment. A naive reconstruction of the density matrix from experimental measurements can often give density matrices which are not positive, and hence not physically acceptable. How do we ensure that at all stages of reconstruction, we keep the density matrix positive? Recently a method has been suggested based on maximum likelihood estimation, wherein the density matrix is guaranteed to be positive definite. We experimentally implement this protocol on an NMR quantum information processor. We discuss several examples and compare with the standard method of state estimation. - Highlights: • State estimation using maximum likelihood method was performed on an NMR quantum information processor. • Physically valid density matrices were obtained every time in contrast to standard quantum state tomography. • Density matrices of several different entangled and separable states were reconstructed for two and three qubits.
Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters
Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Combet, C.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Di Valentino, E.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Giard, M.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Holmes, W.A.; Hornstrup, A.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Lilley, M.; Linden-Vornle, M.; Lindholm, V.; Lopez-Caniego, M.; Macias-Perez, J.F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Meinhold, P.R.; Melchiorri, A.; Migliaccio, M.; Millea, M.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J.A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G.W.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rubino-Martin, J.A.; Rusholme, B.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Serra, P.; Spencer, L.D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-01-01
This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of CMB temperature and polarization. They use the hybrid approach employed previously: pixel-based at low multipoles, $\\ell$, and a Gaussian approximation to the distribution of cross-power spectra at higher $\\ell$. The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models. More than doubling the data allows further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction, contributing to enhanced precision. Improvements in processing and instrumental models further reduce uncertainties. Extensive tests establish robustness and accuracy, from temperature, from polarization, and from their combination, and show that the {\\Lambda}CDM model continues to offer a very good fit. We further validate the likelihood against specific extensions to this baseline, suc...
Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains
Energy Technology Data Exchange (ETDEWEB)
Bouland, Adam; Easther, Richard; Rosenfeld, Katherine, E-mail: adam.bouland@aya.yale.edu, E-mail: richard.easther@yale.edu, E-mail: krosenfeld@cfa.harvard.edu [Department of Physics, Yale University, New Haven CT 06520 (United States)
2011-05-01
We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a ''proof of concept'', and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user.
Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains
International Nuclear Information System (INIS)
Bouland, Adam; Easther, Richard; Rosenfeld, Katherine
2011-01-01
We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a ''proof of concept'', and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user
Directory of Open Access Journals (Sweden)
Dongming Li
2017-04-01
Full Text Available An adaptive optics (AO system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.
International Nuclear Information System (INIS)
Brouwer, Derk H.; Duuren-Stuurman, Birgit van; Berges, Markus; Bard, Delphine; Jankowska, Elzbieta; Moehlmann, Carsten; Pelzer, Johannes; Mark, Dave
2013-01-01
Manufactured nano-objects, agglomerates, and aggregates (NOAA) may have adverse effect on human health, but little is known about occupational risks since actual estimates of exposure are lacking. In a large-scale workplace air-monitoring campaign, 19 enterprises were visited and 120 potential exposure scenarios were measured. A multi-metric exposure assessment approach was followed and a decision logic was developed to afford analysis of all results in concert. The overall evaluation was classified by categories of likelihood of exposure. At task level about 53 % showed increased particle number or surface area concentration compared to “background” level, whereas 72 % of the TEM samples revealed an indication that NOAA were present in the workplace. For 54 out of the 120 task-based exposure scenarios, an overall evaluation could be made based on all parameters of the decision logic. For only 1 exposure scenario (approximately 2 %), the highest level of potential likelihood was assigned, whereas in total in 56 % of the exposure scenarios the overall evaluation revealed the lowest level of likelihood. However, for the remaining 42 % exposure to NOAA could not be excluded
Analysis and Comparison of Information Theory-based Distances for Genomic Strings
Balzano, Walter; Cicalese, Ferdinando; Del Sorbo, Maria Rosaria; Vaccaro, Ugo
2008-07-01
Genomic string comparison via alignment are widely applied for mining and retrieval of information in biological databases. In some situation, the effectiveness of such alignment based comparison is still unclear, e.g., for sequences with non-uniform length and with significant shuffling of identical substrings. An alternative approach is the one based on information theory distances. Biological data information content is stored in very long strings of only four characters. In last ten years, several entropic measures have been proposed for genomic string analysis. Notwithstanding their individual merit and experimental validation, to the nest of our knowledge, there is no direct comparison of these different metrics. We shall present four of the most representative alignment-free distance measures, based on mutual information. Each one has a different origin and expression. Our comparison involves a sort of arrangement, to reduce different concepts to a unique formalism, so as it has been possible to construct a phylogenetic tree for each of them. The trees produced via these metrics are compared to the ones widely accepted as biologically validated. In general the results provided more evidence of the reliability of the alignment-free distance models. Also, we observe that one of the metrics appeared to be more robust than the other three. We believe that this result can be object of further researches and observations. Many of the results of experimentation, the graphics and the table are available at the following URL: http://people.na.infn.it/˜wbalzano/BIO
L.U.St: a tool for approximated maximum likelihood supertree reconstruction.
Akanni, Wasiu A; Creevey, Christopher J; Wilkinson, Mark; Pisani, Davide
2014-06-12
Supertrees combine disparate, partially overlapping trees to generate a synthesis that provides a high level perspective that cannot be attained from the inspection of individual phylogenies. Supertrees can be seen as meta-analytical tools that can be used to make inferences based on results of previous scientific studies. Their meta-analytical application has increased in popularity since it was realised that the power of statistical tests for the study of evolutionary trends critically depends on the use of taxon-dense phylogenies. Further to that, supertrees have found applications in phylogenomics where they are used to combine gene trees and recover species phylogenies based on genome-scale data sets. Here, we present the L.U.St package, a python tool for approximate maximum likelihood supertree inference and illustrate its application using a genomic data set for the placental mammals. L.U.St allows the calculation of the approximate likelihood of a supertree, given a set of input trees, performs heuristic searches to look for the supertree of highest likelihood, and performs statistical tests of two or more supertrees. To this end, L.U.St implements a winning sites test allowing ranking of a collection of a-priori selected hypotheses, given as a collection of input supertree topologies. It also outputs a file of input-tree-wise likelihood scores that can be used as input to CONSEL for calculation of standard tests of two trees (e.g. Kishino-Hasegawa, Shimidoara-Hasegawa and Approximately Unbiased tests). This is the first fully parametric implementation of a supertree method, it has clearly understood properties, and provides several advantages over currently available supertree approaches. It is easy to implement and works on any platform that has python installed. bitBucket page - https://afro-juju@bitbucket.org/afro-juju/l.u.st.git. Davide.Pisani@bristol.ac.uk.
Cosmic shear measurement with maximum likelihood and maximum a posteriori inference
Hall, Alex; Taylor, Andy
2017-06-01
We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.
Communicating likelihoods and probabilities in forecasts of volcanic eruptions
Doyle, Emma E. H.; McClure, John; Johnston, David M.; Paton, Douglas
2014-02-01
The issuing of forecasts and warnings of natural hazard events, such as volcanic eruptions, earthquake aftershock sequences and extreme weather often involves the use of probabilistic terms, particularly when communicated by scientific advisory groups to key decision-makers, who can differ greatly in relative expertise and function in the decision making process. Recipients may also differ in their perception of relative importance of political and economic influences on interpretation. Consequently, the interpretation of these probabilistic terms can vary greatly due to the framing of the statements, and whether verbal or numerical terms are used. We present a review from the psychology literature on how the framing of information influences communication of these probability terms. It is also unclear as to how people rate their perception of an event's likelihood throughout a time frame when a forecast time window is stated. Previous research has identified that, when presented with a 10-year time window forecast, participants viewed the likelihood of an event occurring ‘today’ as being of less than that in year 10. Here we show that this skew in perception also occurs for short-term time windows (under one week) that are of most relevance for emergency warnings. In addition, unlike the long-time window statements, the use of the phrasing “within the next…” instead of “in the next…” does not mitigate this skew, nor do we observe significant differences between the perceived likelihoods of scientists and non-scientists. This finding suggests that effects occurring due to the shorter time window may be ‘masking’ any differences in perception due to wording or career background observed for long-time window forecasts. These results have implications for scientific advice, warning forecasts, emergency management decision-making, and public information as any skew in perceived event likelihood towards the end of a forecast time window may result in
Beauducel, Andre; Herzberg, Philipp Yorck
2006-01-01
This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…
Craciunescu, Teddy; Peluso, Emmanuele; Murari, Andrea; Gelfusa, Michela; JET Contributors
2018-05-01
The total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated tomographic inversion methods. On the Joint European Torus, the coverage of the bolometric diagnostic, due to the availability of basically only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem. A new approach, based on the maximum likelihood, has therefore been developed and implemented to alleviate one of the major weaknesses of traditional tomographic techniques: the difficulty to determine routinely the confidence intervals in the results. The method has been validated by numerical simulations with phantoms to assess the quality of the results and to optimise the configuration of the parameters for the main types of emissivity encountered experimentally. The typical levels of statistical errors, which may significantly influence the quality of the reconstructions, have been identified. The systematic tests with phantoms indicate that the errors in the reconstructions are quite limited and their effect on the total radiated power remains well below 10%. A comparison with other approaches to the inversion and to the regularization has also been performed.
DarkBit. A GAMBIT module for computing dark matter observables and likelihoods
Energy Technology Data Exchange (ETDEWEB)
Bringmann, Torsten; Dal, Lars A. [University of Oslo, Department of Physics, Oslo (Norway); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Kahlhoefer, Felix; Wild, Sebastian [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Scott, Pat [Blackett Laboratory, Imperial College London, Department of Physics, London (United Kingdom); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); White, Martin [University of Adelaide, Department of Physics, Adelaide, SA (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Parkville (Australia); Collaboration: The GAMBIT Dark Matter Workgroup
2017-12-15
We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments (gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments (DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool (GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes (DarkSUSY and micrOMEGAs), and application of DarkBit's advanced direct and indirect detection routines to a simple effective dark matter model. (orig.)
Directory of Open Access Journals (Sweden)
Salces Judit
2011-08-01
Full Text Available Abstract Background Reference genes with stable expression are required to normalize expression differences of target genes in qPCR experiments. Several procedures and companion software have been proposed to find the most stable genes. Model based procedures are attractive because they provide a solid statistical framework. NormFinder, a widely used software, uses a model based method. The pairwise comparison procedure implemented in GeNorm is a simpler procedure but one of the most extensively used. In the present work a statistical approach based in Maximum Likelihood estimation under mixed models was tested and compared with NormFinder and geNorm softwares. Sixteen candidate genes were tested in whole blood samples from control and heat stressed sheep. Results A model including gene and treatment as fixed effects, sample (animal, gene by treatment, gene by sample and treatment by sample interactions as random effects with heteroskedastic residual variance in gene by treatment levels was selected using goodness of fit and predictive ability criteria among a variety of models. Mean Square Error obtained under the selected model was used as indicator of gene expression stability. Genes top and bottom ranked by the three approaches were similar; however, notable differences for the best pair of genes selected for each method and the remaining genes of the rankings were shown. Differences among the expression values of normalized targets for each statistical approach were also found. Conclusions Optimal statistical properties of Maximum Likelihood estimation joined to mixed model flexibility allow for more accurate estimation of expression stability of genes under many different situations. Accurate selection of reference genes has a direct impact over the normalized expression values of a given target gene. This may be critical when the aim of the study is to compare expression rate differences among samples under different environmental
Consumer Decision-Making Styles Extension to Trust-Based Product Comparison Site Usage Model
Directory of Open Access Journals (Sweden)
Radoslaw Macik
2016-09-01
Full Text Available The paper describes an implementation of extended consumer decision-making styles concept in explaining consumer choices made in product comparison site environment in the context of trust-based information technology acceptance model. Previous research proved that trust-based acceptance model is useful in explaining purchase intention and anticipated satisfaction in product comparison site environment, as an example of online decision shopping aids. Trust to such aids is important in explaining their usage by consumers. The connections between consumer decision-making styles, product and sellers opinions usage, cognitive and affective trust toward online product comparison site, as well as choice outcomes (purchase intention and brand choice are explored trough structural equation models using PLS-SEM approach, using a sample of 461 young consumers. Research confirmed the validity of research model in explaining product comparison usage, and some consumer decision-making styles influenced consumers’ choices and purchase intention. Product and sellers reviews usage were partially mediating mentioned relationships.
Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs.
Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang
2015-01-01
Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n (2)), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k (2) n (2)) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.
Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs
Directory of Open Access Journals (Sweden)
Chun-Yuan Lin
2015-01-01
Full Text Available Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n2, where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC. The intrinsic time complexity of MCC problem is O(k2n2 with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.
Directory of Open Access Journals (Sweden)
K. Yao
2007-12-01
Full Text Available We investigate the maximum likelihood (ML direction-of-arrival (DOA estimation of multiple wideband sources in the presence of unknown nonuniform sensor noise. New closed-form expression for the direction estimation CramÃƒÂ©r-Rao-Bound (CRB has been derived. The performance of the conventional wideband uniform ML estimator under nonuniform noise has been studied. In order to mitigate the performance degradation caused by the nonuniformity of the noise, a new deterministic wideband nonuniform ML DOA estimator is derived and two associated processing algorithms are proposed. The first algorithm is based on an iterative procedure which stepwise concentrates the log-likelihood function with respect to the DOAs and the noise nuisance parameters, while the second is a noniterative algorithm that maximizes the derived approximately concentrated log-likelihood function. The performance of the proposed algorithms is tested through extensive computer simulations. Simulation results show the stepwise-concentrated ML algorithm (SC-ML requires only a few iterations to converge and both the SC-ML and the approximately-concentrated ML algorithm (AC-ML attain a solution close to the derived CRB at high signal-to-noise ratio.
Directory of Open Access Journals (Sweden)
Yuejiao Fu
2018-04-01
Full Text Available The Sharpe ratio is a widely used risk-adjusted performance measurement in economics and finance. Most of the known statistical inferential methods devoted to the Sharpe ratio are based on the assumption that the data are normally distributed. In this article, without making any distributional assumption on the data, we develop the adjusted empirical likelihood method to obtain inference for a parameter of interest in the presence of nuisance parameters. We show that the log adjusted empirical likelihood ratio statistic is asymptotically distributed as the chi-square distribution. The proposed method is applied to obtain inference for the Sharpe ratio. Simulation results illustrate that the proposed method is comparable to Jobson and Korkie’s method (1981 and outperforms the empirical likelihood method when the data are from a symmetric distribution. In addition, when the data are from a skewed distribution, the proposed method significantly outperforms all other existing methods. A real-data example is analyzed to exemplify the application of the proposed method.
Computation of the Likelihood in Biallelic Diffusion Models Using Orthogonal Polynomials
Directory of Open Access Journals (Sweden)
Claus Vogl
2014-11-01
Full Text Available In population genetics, parameters describing forces such as mutation, migration and drift are generally inferred from molecular data. Lately, approximate methods based on simulations and summary statistics have been widely applied for such inference, even though these methods waste information. In contrast, probabilistic methods of inference can be shown to be optimal, if their assumptions are met. In genomic regions where recombination rates are high relative to mutation rates, polymorphic nucleotide sites can be assumed to evolve independently from each other. The distribution of allele frequencies at a large number of such sites has been called “allele-frequency spectrum” or “site-frequency spectrum” (SFS. Conditional on the allelic proportions, the likelihoods of such data can be modeled as binomial. A simple model representing the evolution of allelic proportions is the biallelic mutation-drift or mutation-directional selection-drift diffusion model. With series of orthogonal polynomials, specifically Jacobi and Gegenbauer polynomials, or the related spheroidal wave function, the diffusion equations can be solved efficiently. In the neutral case, the product of the binomial likelihoods with the sum of such polynomials leads to finite series of polynomials, i.e., relatively simple equations, from which the exact likelihoods can be calculated. In this article, the use of orthogonal polynomials for inferring population genetic parameters is investigated.
On the application of the expected log-likelihood gain to decision making in molecular replacement.
Oeffner, Robert D; Afonine, Pavel V; Millán, Claudia; Sammito, Massimo; Usón, Isabel; Read, Randy J; McCoy, Airlie J
2018-04-01
Molecular-replacement phasing of macromolecular crystal structures is often fast, but if a molecular-replacement solution is not immediately obtained the crystallographer must judge whether to pursue molecular replacement or to attempt experimental phasing as the quickest path to structure solution. The introduction of the expected log-likelihood gain [eLLG; McCoy et al. (2017), Proc. Natl Acad. Sci. USA, 114, 3637-3641] has given the crystallographer a powerful new tool to aid in making this decision. The eLLG is the log-likelihood gain on intensity [LLGI; Read & McCoy (2016), Acta Cryst. D72, 375-387] expected from a correctly placed model. It is calculated as a sum over the reflections of a function dependent on the fraction of the scattering for which the model accounts, the estimated model coordinate error and the measurement errors in the data. It is shown how the eLLG may be used to answer the question `can I solve my structure by molecular replacement?'. However, this is only the most obvious of the applications of the eLLG. It is also discussed how the eLLG may be used to determine the search order and minimal data requirements for obtaining a molecular-replacement solution using a given model, and for decision making in fragment-based molecular replacement, single-atom molecular replacement and likelihood-guided model pruning.
An Investigation of Referral- and Comparison-based Social Influence on Social Networking Sites
DEFF Research Database (Denmark)
Tussyadiah, Iis; Kausar, Devi; Soesilo, Primidya K. M.
between SNS engagement and both referral-based and comparison-based social influence for restaurant selection. Further, it was also identified that the relationships between SNS engagement and social influence are moderated by the different dimensions of consumers’ susceptibility to global influence......This study explored social influence resulting from two distinct social reference processes on social networking sites (SNS). A web-based survey was conducted among consumers in the USA and Indonesia using restaurant consumption as a research context. The study identified the positive relationships...
Shang, X.; Veldhuis, Raymond N.J.
2008-01-01
In our biometric verification system of a smart gun, the rightful user of a gun is authenticated by grip-pattern recognition. In this work verification will be done using two types of comparison methods, respectively. One is mean-template comparison, where the matching score between a test image and
Diagonal Likelihood Ratio Test for Equality of Mean Vectors in High-Dimensional Data
Hu, Zongliang
2017-10-27
We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assumption that the covariance matrices follow a diagonal matrix structure. In comparison with the diagonal Hotelling\\'s tests, our proposed test statistics display some interesting characteristics. In particular, they are a summation of the log-transformed squared t-statistics rather than a direct summation of those components. More importantly, to derive the asymptotic normality of our test statistics under the null and local alternative hypotheses, we do not require the assumption that the covariance matrix follows a diagonal matrix structure. As a consequence, our proposed test methods are very flexible and can be widely applied in practice. Finally, simulation studies and a real data analysis are also conducted to demonstrate the advantages of our likelihood ratio test method.
Elomaa, Antti-Pekka; Niskanen, Leo; Herzig, Karl-Heinz; Viinamäki, Heimo; Hintikka, Jukka; Koivumaa-Honkanen, Heli; Honkalampi, Kirsi; Valkonen-Korhonen, Minna; Harvima, Ilkka T; Lehto, Soili M
2012-01-09
Inflammatory mediators in both the peripheral circulation and central nervous system (CNS) are dysregulated in major depressive disorder (MDD). Nevertheless, relatively little is known about the role of the T-helper (Th)-2 effector cytokines interleukin (IL)-5 and IL-13 in MDD. We examined the serum levels of these cytokines and a Th-1 comparison cytokine, interferon (IFN)-γ, in 116 individuals (MDD, n = 58; controls, n = 58). In our basic multivariate model controlling for the effects of potential confounders on the associations between MDD and the examined cytokines, each 1-unit increase in the serum IL-5 level increased the likelihood of belonging to the MDD group by 76% (OR 1.76, 95% CI 1.03-2.99, p = 0.04; model covariates: age, gender, marital status, daily smoking and alcohol use). The likelihood further increased in models additionally controlling for the effects of the use of antidepressants and NSAIDS, and a diagnosis of asthma. No such associations were detected with regard to IL-13 (OR 1.08, 95% CI 0.96-1.22, p = 0.22) or IFN-γ (OR 1.02, 95% CI 0.99-1.05, p = 0.23). Elevated levels of IL-5, which uses the neural plasticity-related RAS GTPase-extracellular signal-regulated kinase (Ras-ERK) pathway to mediate its actions in the central nervous system (CNS), could be one of the factors underlying the depression-related changes in CNS plasticity.
Extending the Applicability of the Generalized Likelihood Function for Zero-Inflated Data Series
Oliveira, Debora Y.; Chaffe, Pedro L. B.; Sá, João. H. M.
2018-03-01
Proper uncertainty estimation for data series with a high proportion of zero and near zero observations has been a challenge in hydrologic studies. This technical note proposes a modification to the Generalized Likelihood function that accounts for zero inflation of the error distribution (ZI-GL). We compare the performance of the proposed ZI-GL with the original Generalized Likelihood function using the entire data series (GL) and by simply suppressing zero observations (GLy>0). These approaches were applied to two interception modeling examples characterized by data series with a significant number of zeros. The ZI-GL produced better uncertainty ranges than the GL as measured by the precision, reliability and volumetric bias metrics. The comparison between ZI-GL and GLy>0 highlights the need for further improvement in the treatment of residuals from near zero simulations when a linear heteroscedastic error model is considered. Aside from the interception modeling examples illustrated herein, the proposed ZI-GL may be useful for other hydrologic studies, such as for the modeling of the runoff generation in hillslopes and ephemeral catchments.
Yu, Kevin K; Cheung, Charlton; Chua, Siew E; McAlonan, Gráinne M
2011-11-01
The question of whether Asperger syndrome can be distinguished from autism has attracted much debate and may even incur delay in diagnosis and intervention. Accordingly, there has been a proposal for Asperger syndrome to be subsumed under autism in the forthcoming Diagnostic and Statistical Manual of Mental Disorders, fifth edition, in 2013. One approach to resolve this question has been to adopt the criterion of absence of clinically significant language or cognitive delay--essentially, the "absence of language delay." To our knowledge, this is the first meta-analysis of magnetic resonance imaging (MRI) studies of people with autism to compare absence with presence of language delay. It capitalizes on the voxel-based morphometry (VBM) approach to systematically explore the whole brain for anatomic correlates of delay and no delay in language acquisition in people with autism spectrum disorders. We conducted a systematic search for VBM MRI studies of grey matter volume in people with autism. Studies with a majority (at least 70%) of participants with autism diagnoses and a history of language delay were assigned to the autism group (n = 151, control n = 190). Those with a majority (at least 70%) of individuals with autism diagnoses and no language delay were assigned to the Asperger syndrome group (n = 149, control n = 214). We entered study coordinates into anatomic likelihood estimation meta-analysis software with sampling size weighting to compare grey matter summary maps driven by Asperger syndrome or autism. The summary autism grey matter map showed lower volumes in the cerebellum, right uncus, dorsal hippocampus and middle temporal gyrus compared with controls; grey matter volumes were greater in the bilateral caudate, prefrontal lobe and ventral temporal lobe. The summary Asperger syndrome map indicated lower grey matter volumes in the bilateral amygdala/hippocampal gyrus and prefrontal lobe, left occipital gyrus, right cerebellum, putamen and precuneus
de Queiroz, Kevin; Poe, Steven
2003-06-01
Kluge's (2001, Syst. Biol. 50:322-330) continued arguments that phylogenetic methods based on the statistical principle of likelihood are incompatible with the philosophy of science described by Karl Popper are based on false premises related to Kluge's misrepresentations of Popper's philosophy. Contrary to Kluge's conjectures, likelihood methods are not inherently verificationist; they do not treat every instance of a hypothesis as confirmation of that hypothesis. The historical nature of phylogeny does not preclude phylogenetic hypotheses from being evaluated using the probability of evidence. The low absolute probabilities of hypotheses are irrelevant to the correct interpretation of Popper's concept termed degree of corroboration, which is defined entirely in terms of relative probabilities. Popper did not advocate minimizing background knowledge; in any case, the background knowledge of both parsimony and likelihood methods consists of the general assumption of descent with modification and additional assumptions that are deterministic, concerning which tree is considered most highly corroborated. Although parsimony methods do not assume (in the sense of entailing) that homoplasy is rare, they do assume (in the sense of requiring to obtain a correct phylogenetic inference) certain things about patterns of homoplasy. Both parsimony and likelihood methods assume (in the sense of implying by the manner in which they operate) various things about evolutionary processes, although violation of those assumptions does not always cause the methods to yield incorrect phylogenetic inferences. Test severity is increased by sampling additional relevant characters rather than by character reanalysis, although either interpretation is compatible with the use of phylogenetic likelihood methods. Neither parsimony nor likelihood methods assess test severity (critical evidence) when used to identify a most highly corroborated tree(s) based on a single method or model and a
FPGA Acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods
Directory of Open Access Journals (Sweden)
Bakos Jason D
2010-04-01
Full Text Available Abstract Background Likelihood (ML-based phylogenetic inference has become a popular method for estimating the evolutionary relationships among species based on genomic sequence data. This method is used in applications such as RAxML, GARLI, MrBayes, PAML, and PAUP. The Phylogenetic Likelihood Function (PLF is an important kernel computation for this method. The PLF consists of a loop with no conditional behavior or dependencies between iterations. As such it contains a high potential for exploiting parallelism using micro-architectural techniques. In this paper, we describe a technique for mapping the PLF and supporting logic onto a Field Programmable Gate Array (FPGA-based co-processor. By leveraging the FPGA's on-chip DSP modules and the high-bandwidth local memory attached to the FPGA, the resultant co-processor can accelerate ML-based methods and outperform state-of-the-art multi-core processors. Results We use the MrBayes 3 tool as a framework for designing our co-processor. For large datasets, we estimate that our accelerated MrBayes, if run on a current-generation FPGA, achieves a 10× speedup relative to software running on a state-of-the-art server-class microprocessor. The FPGA-based implementation achieves its performance by deeply pipelining the likelihood computations, performing multiple floating-point operations in parallel, and through a natural log approximation that is chosen specifically to leverage a deeply pipelined custom architecture. Conclusions Heterogeneous computing, which combines general-purpose processors with special-purpose co-processors such as FPGAs and GPUs, is a promising approach for high-performance phylogeny inference as shown by the growing body of literature in this field. FPGAs in particular are well-suited for this task because of their low power consumption as compared to many-core processors and Graphics Processor Units (GPUs 1.
Australian food life style segments and elaboration likelihood differences
DEFF Research Database (Denmark)
Brunsø, Karen; Reid, Mike
As the global food marketing environment becomes more competitive, the international and comparative perspective of consumers' attitudes and behaviours becomes more important for both practitioners and academics. This research employs the Food-Related Life Style (FRL) instrument in Australia...... in order to 1) determine Australian Life Style Segments and compare these with their European counterparts, and to 2) explore differences in elaboration likelihood among the Australian segments, e.g. consumers' interest and motivation to perceive product related communication. The results provide new...
Maximum-likelihood method for numerical inversion of Mellin transform
International Nuclear Information System (INIS)
Iqbal, M.
1997-01-01
A method is described for inverting the Mellin transform which uses an expansion in Laguerre polynomials and converts the Mellin transform to Laplace transform, then the maximum-likelihood regularization method is used to recover the original function of the Mellin transform. The performance of the method is illustrated by the inversion of the test functions available in the literature (J. Inst. Math. Appl., 20 (1977) 73; Math. Comput., 53 (1989) 589). Effectiveness of the method is shown by results obtained through demonstration by means of tables and diagrams
How to Improve the Likelihood of CDM Approval?
DEFF Research Database (Denmark)
Brandt, Urs Steiner; Svendsen, Gert Tinggaard
2014-01-01
How can the likelihood of Clean Development Mechanism (CDM) approval be improved in the face of institutional shortcomings? To answer this question, we focus on the three institutional shortcomings of income sharing, risk sharing and corruption prevention concerning afforestation/reforestation (A....../R). Furthermore, three main stakeholders are identified, namely investors, governments and agents in a principal-agent model regarding monitoring and enforcement capacity. Developing countries such as West Africa have, despite huge potentials, not been integrated in A/R CDM projects yet. Remote sensing, however...
Elemental composition of cosmic rays using a maximum likelihood method
International Nuclear Information System (INIS)
Ruddick, K.
1996-01-01
We present a progress report on our attempts to determine the composition of cosmic rays in the knee region of the energy spectrum. We have used three different devices to measure properties of the extensive air showers produced by primary cosmic rays: the Soudan 2 underground detector measures the muon flux deep underground, a proportional tube array samples shower density at the surface of the earth, and a Cherenkov array observes light produced high in the atmosphere. We have begun maximum likelihood fits to these measurements with the hope of determining the nuclear mass number A on an event by event basis. (orig.)
Process criticality accident likelihoods, consequences and emergency planning
International Nuclear Information System (INIS)
McLaughlin, T.P.
1992-01-01
Evaluation of criticality accident risks in the processing of significant quantities of fissile materials is both complex and subjective, largely due to the lack of accident statistics. Thus, complying with national and international standards and regulations which require an evaluation of the net benefit of a criticality accident alarm system, is also subjective. A review of guidance found in the literature on potential accident magnitudes is presented for different material forms and arrangements. Reasoned arguments are also presented concerning accident prevention and accident likelihoods for these material forms and arrangements. (Author)
Likelihood Estimation of Gamma Ray Bursts Duration Distribution
Horvath, Istvan
2005-01-01
Two classes of Gamma Ray Bursts have been identified so far, characterized by T90 durations shorter and longer than approximately 2 seconds. It was shown that the BATSE 3B data allow a good fit with three Gaussian distributions in log T90. In the same Volume in ApJ. another paper suggested that the third class of GRBs is may exist. Using the full BATSE catalog here we present the maximum likelihood estimation, which gives us 0.5% probability to having only two subclasses. The MC simulation co...
Process criticality accident likelihoods, consequences, and emergency planning
Energy Technology Data Exchange (ETDEWEB)
McLaughlin, T.P.
1991-01-01
Evaluation of criticality accident risks in the processing of significant quantities of fissile materials is both complex and subjective, largely due to the lack of accident statistics. Thus, complying with standards such as ISO 7753 which mandates that the need for an alarm system be evaluated, is also subjective. A review of guidance found in the literature on potential accident magnitudes is presented for different material forms and arrangements. Reasoned arguments are also presented concerning accident prevention and accident likelihoods for these material forms and arrangements. 13 refs., 1 fig., 1 tab.
Maximum Likelihood Joint Tracking and Association in Strong Clutter
Directory of Open Access Journals (Sweden)
Leonid I. Perlovsky
2013-01-01
Full Text Available We have developed a maximum likelihood formulation for a joint detection, tracking and association problem. An efficient non-combinatorial algorithm for this problem is developed in case of strong clutter for radar data. By using an iterative procedure of the dynamic logic process “from vague-to-crisp” explained in the paper, the new tracker overcomes the combinatorial complexity of tracking in highly-cluttered scenarios and results in an orders-of-magnitude improvement in signal-to-clutter ratio.
Directory of Open Access Journals (Sweden)
Leszek Klukowski
2012-01-01
Full Text Available This paper presents a review of results of the author in the area of estimation of the relations of equivalence, tolerance and preference within a finite set based on multiple, independent (in a stochastic way pairwise comparisons with random errors, in binary and multivalent forms. These estimators require weaker assumptions than those used in the literature on the subject. Estimates of the relations are obtained based on solutions to problems from discrete optimization. They allow application of both types of comparisons - binary and multivalent (this fact relates to the tolerance and preference relations. The estimates can be verified in a statistical way; in particular, it is possible to verify the type of the relation. The estimates have been applied by the author to problems regarding forecasting, financial engineering and bio-cybernetics. (original abstract
Clinical usefulness of normal data bases comparisons for the SPECT diagnosis of Alzheimer's disease
International Nuclear Information System (INIS)
Darcourt, J.; Koulibaly, P.M.; Migneco, O.; Dygai, I.; Robert, P.H.; Nobili, F.; Ebmeir, K.
2002-01-01
Aim. The possible added value of voxel by voxel comparisons to normal data bases has not been evaluated for the diagnosis of Alzheimer's disease (AD). We conducted a prospective comparison of the diagnostic performances of 2 software packages: Statistical Parametric Mapping (SPM) (Friston et al.) and NeuroGam (NGam) (Segami Corporation). Materials and methods. A total of 152 subjects (age ≥ 50 years) were included: 93 AD, 28 depressed patients and 31 normal controls (NC). They were studied in 4 centers as part of a European project 'SPECT in dementia' BMH4-98-3130. NC were used to build the normal data bases and the total population was submitted to the readers for the diagnosis of AD. AD final diagnosis was based on NINCDS/ADRDA criteria for probable AD and DSM-IV criteria for dementia of AD type. SPECT scans were obtained in each center with dedicated cameras 30 to 90 min after i.v. injection of 250 to 925 MBq of 99mTc-HMPAO. All data were reconstructed on the same workstation by filtered backprojection with attenuation correction. The 4.7 mm thick cuts (CUTS) were displayed in the transverse, sagittal and coronal planes with the same color scale. They also were submitted to the 2 packages tested. For SPM, we used SPM'96 for Windows'95. For each individual scan we computed the corresponding z-map by comparison to the NC data base. We used p<0.01 to threshold the t-maps and a p corrected value <0.01 on intensity for cluster selection. For NGam, the same NC were used to build the normal data base. Each individual scan was then compared to this base and the results consisted in a 3D parametric image of voxel by voxel standard deviations form the normal mean value. 4 expert readers (more than 3 years experience; more than 5 SPECT per week) were asked to class the scans as AD or not with a 4 degree of confidence. They reviewed the CUTS alone, CUTS+SPM and CUTS+NGam. ROC analysis was performed and the areas under curves (AUC) statistically compared. Results. Average
Dhitareka, P. H.; Firman, H.; Rusyati, L.
2018-05-01
This research is comparing science virtual and paper-based test in measuring grade 7 students’ critical thinking based on Multiple Intelligences and gender. Quasi experimental method with within-subjects design is conducted in this research in order to obtain the data. The population of this research was all seventh grade students in ten classes of one public secondary school in Bandung. There were 71 students within two classes taken randomly became the sample in this research. The data are obtained through 28 questions with a topic of living things and environmental sustainability constructed based on eight critical thinking elements proposed by Inch then the questions provided in science virtual and paper-based test. The data was analysed by using paired-samples t test when the data are parametric and Wilcoxon signed ranks test when the data are non-parametric. In general comparison, the p-value of the comparison between science virtual and paper-based tests’ score is 0.506, indicated that there are no significance difference between science virtual and paper-based test based on the tests’ score. The results are furthermore supported by the students’ attitude result which is 3.15 from the scale from 1 to 4, indicated that they have positive attitudes towards Science Virtual Test.
From Ambiguities to Insights: Query-based Comparisons of High-Dimensional Data
Kowalski, Jeanne; Talbot, Conover; Tsai, Hua L.; Prasad, Nijaguna; Umbricht, Christopher; Zeiger, Martha A.
2007-11-01
Genomic technologies will revolutionize drag discovery and development; that much is universally agreed upon. The high dimension of data from such technologies has challenged available data analytic methods; that much is apparent. To date, large-scale data repositories have not been utilized in ways that permit their wealth of information to be efficiently processed for knowledge, presumably due in large part to inadequate analytical tools to address numerous comparisons of high-dimensional data. In candidate gene discovery, expression comparisons are often made between two features (e.g., cancerous versus normal), such that the enumeration of outcomes is manageable. With multiple features, the setting becomes more complex, in terms of comparing expression levels of tens of thousands transcripts across hundreds of features. In this case, the number of outcomes, while enumerable, become rapidly large and unmanageable, and scientific inquiries become more abstract, such as "which one of these (compounds, stimuli, etc.) is not like the others?" We develop analytical tools that promote more extensive, efficient, and rigorous utilization of the public data resources generated by the massive support of genomic studies. Our work innovates by enabling access to such metadata with logically formulated scientific inquires that define, compare and integrate query-comparison pair relations for analysis. We demonstrate our computational tool's potential to address an outstanding biomedical informatics issue of identifying reliable molecular markers in thyroid cancer. Our proposed query-based comparison (QBC) facilitates access to and efficient utilization of metadata through logically formed inquires expressed as query-based comparisons by organizing and comparing results from biotechnologies to address applications in biomedicine.
Fatemeh Ghorbanalizadeh Ghaziani; Mohsen Moadi; Siavash Khodaparast Sareshkeh
2013-01-01
The purpose of study was comparison of conflict management strategies of physical education office managers based on their some demographic characteristics. All of managers of physical education office of Mazandaran (n = 15) and Guilan (n = 16) province and their assistant [(n = 15) and (n =16) respectively] response to Putnam and Wilson’s “organizational communication conflict instrument (OCCI)”.Analysis showed that Mazandaran’s and Guilan’s managers and their assistant hadn’t differences to...
Ahmad N. A. A; Junita M. N; Aljunid Syed Alwi; Che Beson Mohd Rashidi; Endut Rosdisham
2017-01-01
This paper demonstrates the comparison between conventional OCDMA system and subcarrier multiplexing (SCM) SAC-OCDMA system by applying Recursive Combinatorial (RC) code based on single photodiode detection (SPD). SPD is used in the receiver part to reduce the effect of multiple access interference (MAI) which contributes as a dominant noise in incoherent SAC-OCDMA systems. From this analysis, the performance of SCM OCDMA network could be improved by using lower data rates and higher received...
Fan, Jihong; Liang, Ru-Ze
2016-01-01
Dictionary plays an important role in multi-instance data representation. It maps bags of instances to histograms. Earth mover's distance (EMD) is the most effective histogram distance metric for the application of multi-instance retrieval. However, up to now, there is no existing multi-instance dictionary learning methods designed for EMD based histogram comparison. To fill this gap, we develop the first EMD-optimal dictionary learning method using stochastic optimization method. In the stoc...
Optimal Time-Space Trade-Offs for Non-Comparison-Based Sorting
DEFF Research Database (Denmark)
Pagh, Rasmus; Pagter, Jacob Illeborg
2002-01-01
We study the problem of sorting n integers of w bits on a unit-cost RAM with word size w, and in particular consider the time-space trade-off (product of time and space in bits) for this problem. For comparison-based algorithms, the time-space complexity is known to be Θ(n2). A result of Beame...... shows that the lower bound also holds for non-comparison-based algorithms, but no algorithm has met this for time below the comparison-based Ω(nlgn) lower bound.We show that if sorting within some time bound &Ttilde; is possible, then time T = O(&Ttilde; + nlg* n) can be achieved with high probability...... using space S = O(n2/T + w), which is optimal. Given a deterministic priority queue using amortized time t(n) per operation and space nO(1), we provide a deterministic algorithm sorting in time T = O(n(t(n) + lg* n)) with S = O(n2/T + w). Both results require that w ≤ n1-Ω(1). Using existing priority...
Hamilton, Jane E; Desai, Pratikkumar V; Hoot, Nathan R; Gearing, Robin E; Jeong, Shin; Meyer, Thomas D; Soares, Jair C; Begley, Charles E
2016-11-01
Behavioral health-related emergency department (ED) visits have been linked with ED overcrowding, an increased demand on limited resources, and a longer length of stay (LOS) due in part to patients being admitted to the hospital but waiting for an inpatient bed. This study examines factors associated with the likelihood of hospital admission for ED patients with behavioral health conditions at 16 hospital-based EDs in a large urban area in the southern United States. Using Andersen's Behavioral Model of Health Service Use for guidance, the study examined the relationship between predisposing (characteristics of the individual, i.e., age, sex, race/ethnicity), enabling (system or structural factors affecting healthcare access), and need (clinical) factors and the likelihood of hospitalization following ED visits for behavioral health conditions (n = 28,716 ED visits). In the adjusted analysis, a logistic fixed-effects model with blockwise entry was used to estimate the relative importance of predisposing, enabling, and need variables added separately as blocks while controlling for variation in unobserved hospital-specific practices across hospitals and time in years. Significant predisposing factors associated with an increased likelihood of hospitalization following an ED visit included increasing age, while African American race was associated with a lower likelihood of hospitalization. Among enabling factors, arrival by emergency transport and a longer ED LOS were associated with a greater likelihood of hospitalization while being uninsured and the availability of community-based behavioral health services within 5 miles of the ED were associated with lower odds. Among need factors, having a discharge diagnosis of schizophrenia/psychotic spectrum disorder, an affective disorder, a personality disorder, dementia, or an impulse control disorder as well as secondary diagnoses of suicidal ideation and/or suicidal behavior increased the likelihood of hospitalization
Research on the comparison of performance-based concept and force-based concept
Wu, Zeyu; Wang, Dongwei
2011-03-01
There are two ideologies about structure design: force-based concept and performance-based concept. Generally, if the structure operates during elastic stage, the two philosophies usually attain the same results. But beyond that stage, the shortage of force-based method is exposed, and the merit of performance-based is displayed. Pros and cons of each strategy are listed herein, and then which structure is best suitable to each method analyzed. At last, a real structure is evaluated by adaptive pushover method to verify that performance-based method is better than force-based method.
Likelihood Approximation With Parallel Hierarchical Matrices For Large Spatial Datasets
Litvinenko, Alexander
2017-11-01
The main goal of this article is to introduce the parallel hierarchical matrix library HLIBpro to the statistical community. We describe the HLIBCov package, which is an extension of the HLIBpro library for approximating large covariance matrices and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters such as the covariance length, variance and smoothness parameter of a Matérn covariance function by maximizing the joint Gaussian log-likelihood function. The computational bottleneck here is expensive linear algebra arithmetics due to large and dense covariance matrices. Therefore covariance matrices are approximated in the hierarchical ($\\\\H$-) matrix format with computational cost $\\\\mathcal{O}(k^2n \\\\log^2 n/p)$ and storage $\\\\mathcal{O}(kn \\\\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p$ the number of cores and $n$ the number of locations on a fairly general mesh. We demonstrate a synthetic example, where the true values of known parameters are known. For reproducibility we provide the C++ code, the documentation, and the synthetic data.
Likelihood Approximation With Parallel Hierarchical Matrices For Large Spatial Datasets
Litvinenko, Alexander; Sun, Ying; Genton, Marc G.; Keyes, David E.
2017-01-01
The main goal of this article is to introduce the parallel hierarchical matrix library HLIBpro to the statistical community. We describe the HLIBCov package, which is an extension of the HLIBpro library for approximating large covariance matrices and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters such as the covariance length, variance and smoothness parameter of a Matérn covariance function by maximizing the joint Gaussian log-likelihood function. The computational bottleneck here is expensive linear algebra arithmetics due to large and dense covariance matrices. Therefore covariance matrices are approximated in the hierarchical ($\\H$-) matrix format with computational cost $\\mathcal{O}(k^2n \\log^2 n/p)$ and storage $\\mathcal{O}(kn \\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p$ the number of cores and $n$ the number of locations on a fairly general mesh. We demonstrate a synthetic example, where the true values of known parameters are known. For reproducibility we provide the C++ code, the documentation, and the synthetic data.
Superfast maximum-likelihood reconstruction for quantum tomography
Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon
2017-06-01
Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.
Risk factors and likelihood of Campylobacter colonization in broiler flocks
Directory of Open Access Journals (Sweden)
SL Kuana
2007-09-01
Full Text Available Campylobacter was investigated in cecal droppings, feces, and cloacal swabs of 22 flocks of 3 to 5 week-old broilers. Risk factors and the likelihood of the presence of this agent in these flocks were determined. Management practices, such as cleaning and disinfection, feeding, drinkers, and litter treatments, were assessed. Results were evaluated using Odds Ratio (OR test, and their significance was tested by Fisher's test (p<0.05. A Campylobacter prevalence of 81.8% was found in the broiler flocks (18/22, and within positive flocks, it varied between 85 and 100%. Campylobacter incidence among sample types was homogenous, being 81.8% in cecal droppings, 80.9% in feces, and 80.4% in cloacal swabs (230. Flocks fed by automatic feeding systems presented higher incidence of Campylobacter as compared to those fed by tube feeders. Litter was reused in 63.6% of the farm, and, despite the lack of statistical significance, there was higher likelihood of Campylobacter incidence when litter was reused. Foot bath was not used in 45.5% of the flocks, whereas the use of foot bath associated to deficient lime management increased the number of positive flocks, although with no statiscal significance. The evaluated parameters were not significantly associated with Campylobacter colonization in the assessed broiler flocks.
Menyoal Elaboration Likelihood Model (ELM dan Teori Retorika
Directory of Open Access Journals (Sweden)
Yudi Perbawaningsih
2012-06-01
Full Text Available Abstract: Persuasion is a communication process to establish or change attitudes, which can be understood through theory of Rhetoric and theory of Elaboration Likelihood Model (ELM. This study elaborates these theories in a Public Lecture series which to persuade the students in choosing their concentration of study. The result shows that in term of persuasion effectiveness it is not quite relevant to separate the message and its source. The quality of source is determined by the quality of the message, and vice versa. Separating the two routes of the persuasion process as described in the ELM theory would not be relevant. Abstrak: Persuasi adalah proses komunikasi untuk membentuk atau mengubah sikap, yang dapat dipahami dengan teori Retorika dan teori Elaboration Likelihood Model (ELM. Penelitian ini mengelaborasi teori tersebut dalam Kuliah Umum sebagai sarana mempersuasi mahasiswa untuk memilih konsentrasi studi studi yang didasarkan pada proses pengolahan informasi. Menggunakan metode survey, didapatkan hasil yaitu tidaklah cukup relevan memisahkan pesan dan narasumber dalam melihat efektivitas persuasi. Keduanya menyatu yang berarti bahwa kualitas narasumber ditentukan oleh kualitas pesan yang disampaikannya, dan sebaliknya. Memisahkan proses persuasi dalam dua lajur seperti yang dijelaskan dalam ELM teori menjadi tidak relevan.
Gauging the likelihood of stable cavitation from ultrasound contrast agents.
Bader, Kenneth B; Holland, Christy K
2013-01-07
The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form I(CAV) = P(r)/f (where P(r) is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs.
Likelihood of cesarean delivery after applying leading active labor diagnostic guidelines.
Neal, Jeremy L; Lowe, Nancy K; Phillippi, Julia C; Ryan, Sharon L; Knupp, Amy M; Dietrich, Mary S; Thung, Stephen F
2017-06-01
Friedman, the United Kingdom's National Institute for Health and Care Excellence (NICE), and the American College of Obstetricians and Gynecologists/Society for Maternal-Fetal Medicine (ACOG/SMFM) support different active labor diagnostic guidelines. Our aims were to compare likelihoods for cesarean delivery among women admitted before vs in active labor by diagnostic guideline (within-guideline comparisons) and between women admitted in active labor per one or more of the guidelines (between-guideline comparisons). Active labor diagnostic guidelines were retrospectively applied to cervical examination data from nulliparous women with spontaneous labor onset (n = 2573). Generalized linear models were used to determine outcome likelihoods within- and between-guideline groups. At admission, 15.7%, 48.3%, and 10.1% of nulliparous women were in active labor per Friedman, NICE, and ACOG/SMFM diagnostic guidelines, respectively. Cesarean delivery was more likely among women admitted before vs in active labor per the Friedman (AOR 1.75 [95% CI 1.08-2.82] or NICE guideline (AOR 2.55 [95% CI 1.84-3.53]). Between guidelines, cesarean delivery was less likely among women admitted in active labor per the NICE guideline, as compared with the ACOG/SMFM guideline (AOR 0.55 [95% CI 0.35-0.88]). Many nulliparous women are admitted to the hospital before active labor onset. These women are significantly more likely to have a cesarean delivery. Diagnosing active labor before admission or before intervention to speed labor may be one component of a multi-faceted approach to decreasing the primary cesarean rate in the United States. The NICE diagnostic guideline is more inclusive than Friedman or ACOG/SMFM guidelines and its use may be the most clinically useful for safely lowering cesarean rates. © 2017 Wiley Periodicals, Inc.
PIRPLE: a penalized-likelihood framework for incorporation of prior images in CT reconstruction
International Nuclear Information System (INIS)
Stayman, J Webster; Dang, Hao; Ding, Yifu; Siewerdsen, Jeffrey H
2013-01-01
Over the course of diagnosis and treatment, it is common for a number of imaging studies to be acquired. Such imaging sequences can provide substantial patient-specific prior knowledge about the anatomy that can be incorporated into a prior-image-based tomographic reconstruction for improved image quality and better dose utilization. We present a general methodology using a model-based reconstruction approach including formulations of the measurement noise that also integrates prior images. This penalized-likelihood technique adopts a sparsity enforcing penalty that incorporates prior information yet allows for change between the current reconstruction and the prior image. Moreover, since prior images are generally not registered with the current image volume, we present a modified model-based approach that seeks a joint registration of the prior image in addition to the reconstruction of projection data. We demonstrate that the combined prior-image- and model-based technique outperforms methods that ignore the prior data or lack a noise model. Moreover, we demonstrate the importance of registration for prior-image-based reconstruction methods and show that the prior-image-registered penalized-likelihood estimation (PIRPLE) approach can maintain a high level of image quality in the presence of noisy and undersampled projection data. (paper)
Borodinov, A. A.; Myasnikov, V. V.
2018-04-01
The present work is devoted to comparing the accuracy of the known qualification algorithms in the task of recognizing local objects on radar images for various image preprocessing methods. Preprocessing involves speckle noise filtering and normalization of the object orientation in the image by the method of image moments and by a method based on the Hough transform. In comparison, the following classification algorithms are used: Decision tree; Support vector machine, AdaBoost, Random forest. The principal component analysis is used to reduce the dimension. The research is carried out on the objects from the base of radar images MSTAR. The paper presents the results of the conducted studies.
Bergboer, N.H.; Verdult, V.; Verhaegen, M.H.G.
2002-01-01
We present a numerically efficient implementation of the nonlinear least squares and maximum likelihood identification of multivariable linear time-invariant (LTI) state-space models. This implementation is based on a local parameterization of the system and a gradient search in the resulting
SciDB versus Spark: A Preliminary Comparison Based on an Earth Science Use Case
Clune, T.; Kuo, K. S.; Doan, K.; Oloso, A.
2015-12-01
We compare two Big Data technologies, SciDB and Spark, for performance, usability, and extensibility, when applied to a representative Earth science use case. SciDB is a new-generation parallel distributed database management system (DBMS) based on the array data model that is capable of handling multidimensional arrays efficiently but requires lengthy data ingest prior to analysis, whereas Spark is a fast and general engine for large scale data processing that can immediately process raw data files and thereby avoid the ingest process. Once data have been ingested, SciDB is very efficient in database operations such as subsetting. Spark, on the other hand, provides greater flexibility by supporting a wide variety of high-level tools including DBMS's. For the performance aspect of this preliminary comparison, we configure Spark to operate directly on text or binary data files and thereby limit the need for additional tools. Arguably, a more appropriate comparison would involve exploring other configurations of Spark which exploit supported high-level tools, but that is beyond our current resources. To make the comparison as "fair" as possible, we export the arrays produced by SciDB into text files (or converting them to binary files) for the intake by Spark and thereby avoid any additional file processing penalties. The Earth science use case selected for this comparison is the identification and tracking of snowstorms in the NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) reanalysis data. The identification portion of the use case is to flag all grid cells of the MERRA high-resolution hourly data that satisfies our criteria for snowstorm, whereas the tracking portion connects flagged cells adjacent in time and space to form a snowstorm episode. We will report the results of our comparisons at this presentation.
Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach
Energy Technology Data Exchange (ETDEWEB)
Hehn, L. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Armengaud, E.; Boissiere, T. de; Gros, M.; Navick, X.F.; Nones, C.; Paul, B. [CEA Saclay, DSM/IRFU, Gif-sur-Yvette Cedex (France); Arnaud, Q. [Univ Lyon, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Lyon (France); Queen' s University, Kingston (Canada); Augier, C.; Billard, J.; Cazes, A.; Charlieux, F.; Jesus, M. de; Gascon, J.; Juillard, A.; Queguiner, E.; Sanglard, V.; Vagneron, L. [Univ Lyon, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Lyon (France); Benoit, A.; Camus, P. [Institut Neel, CNRS/UJF, Grenoble (France); Berge, L.; Chapellier, M.; Dumoulin, L.; Giuliani, A.; Le-Sueur, H.; Marnieros, S.; Olivieri, E.; Poda, D. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Bluemer, J. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Broniatowski, A. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Eitel, K.; Kozlov, V.; Siebenborn, B. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Foerster, N.; Heuermann, G.; Scorza, S. [Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Jin, Y. [Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, Marcoussis (France); Kefelian, C. [Univ Lyon, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Lyon (France); Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Kleifges, M.; Tcherniakhovski, D.; Weber, M. [Karlsruher Institut fuer Technologie, Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruhe (Germany); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Kudryavtsev, V.A. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Pari, P. [CEA Saclay, DSM/IRAMIS, Gif-sur-Yvette (France); Piro, M.C. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Rensselaer Polytechnic Institute, Troy, NY (United States); Rozov, S.; Yakushev, E. [JINR, Laboratory of Nuclear Problems, Dubna, Moscow Region (Russian Federation); Schmidt, B. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
2016-10-15
We report on a dark matter search for a Weakly Interacting Massive Particle (WIMP) in the mass range m{sub χ} element of [4, 30] GeV/c{sup 2} with the EDELWEISS-III experiment. A 2D profile likelihood analysis is performed on data from eight selected detectors with the lowest energy thresholds leading to a combined fiducial exposure of 496 kg-days. External backgrounds from γ- and β-radiation, recoils from {sup 206}Pb and neutrons as well as detector intrinsic backgrounds were modelled from data outside the region of interest and constrained in the analysis. The basic data selection and most of the background models are the same as those used in a previously published analysis based on boosted decision trees (BDT) [1]. For the likelihood approach applied in the analysis presented here, a larger signal efficiency and a subtraction of the expected background lead to a higher sensitivity, especially for the lowest WIMP masses probed. No statistically significant signal was found and upper limits on the spin-independent WIMP-nucleon scattering cross section can be set with a hypothesis test based on the profile likelihood test statistics. The 90 % C.L. exclusion limit set for WIMPs with m{sub χ} = 4 GeV/c{sup 2} is 1.6 x 10{sup -39} cm{sup 2}, which is an improvement of a factor of seven with respect to the BDT-based analysis. For WIMP masses above 15 GeV/c{sup 2} the exclusion limits found with both analyses are in good agreement. (orig.)
Directory of Open Access Journals (Sweden)
Fonseca Carlos M
2010-10-01
Full Text Available Abstract Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the
Model-based comparison of strategies for reduction of stormwater micropollutant emissions
DEFF Research Database (Denmark)
Vezzaro, Luca; Sharma, Anitha Kumari; Mikkelsen, Peter Steen
to improve the recipient quality by reducing the fluxes of heavy metals (copper, zinc) and organic compounds (fluoranthene) to natural waters. MP sources were identified by using GIS land usage data. When comparing the different control strategies, the integrated model showed the greater benefits......Strategies for reduction of micropollutant (MP) emissions from stormwater systems require the comparison of different scenarios including source control, end-of-pipe treatment, or their combination. Dynamic integrated models can be important tools for this comparison, as they can integrate...... the limited data provided by monitoring campaigns and evaluate the performance of different strategies based on model simulation results. This study presents an example where an integrated dynamic model, in combination with stormwater quality measurements, was used to evaluate 6 different strategies...
Yield estimation based on calculated comparisons to particle velocity data recorded at low stress
International Nuclear Information System (INIS)
Rambo, J.
1993-01-01
This paper deals with the problem of optimizing the yield estimation process if some of the material properties are known from geophysical measurements and others are inferred from in-situ dynamic measurements. The material models and 2-D simulations of the event are combined to determine the yield. Other methods of yield determination from peak particle velocity data have mostly been based on comparisons of nearby events in similar media at NTS. These methods are largely empirical and are subject to additional error when a new event has different properties than the population being used for a basis of comparison. The effect of material variations can be examined using LLNL's KDYNA computer code. The data from an NTS event provide the instructive example for simulation
International Nuclear Information System (INIS)
Croce, R P; Demma, Th; Longo, M; Marano, S; Matta, V; Pierro, V; Pinto, I M
2003-01-01
The cumulative distribution of the supremum of a set (bank) of correlators is investigated in the context of maximum likelihood detection of gravitational wave chirps from coalescing binaries with unknown parameters. Accurate (lower-bound) approximants are introduced based on a suitable generalization of previous results by Mohanty. Asymptotic properties (in the limit where the number of correlators goes to infinity) are highlighted. The validity of numerical simulations made on small-size banks is extended to banks of any size, via a Gaussian correlation inequality
CSIR Research Space (South Africa)
Kok, S
2012-07-01
Full Text Available continuously as the correlation function hyper-parameters approach zero. Since the global minimizer of the maximum likelihood function is an asymptote in this case, it is unclear if maximum likelihood estimation (MLE) remains valid. Numerical ill...
Neutron spectra unfolding with maximum entropy and maximum likelihood
International Nuclear Information System (INIS)
Itoh, Shikoh; Tsunoda, Toshiharu
1989-01-01
A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)
Preliminary attempt on maximum likelihood tomosynthesis reconstruction of DEI data
International Nuclear Information System (INIS)
Wang Zhentian; Huang Zhifeng; Zhang Li; Kang Kejun; Chen Zhiqiang; Zhu Peiping
2009-01-01
Tomosynthesis is a three-dimension reconstruction method that can remove the effect of superimposition with limited angle projections. It is especially promising in mammography where radiation dose is concerned. In this paper, we propose a maximum likelihood tomosynthesis reconstruction algorithm (ML-TS) on the apparent absorption data of diffraction enhanced imaging (DEI). The motivation of this contribution is to develop a tomosynthesis algorithm in low-dose or noisy circumstances and make DEI get closer to clinic application. The theoretical statistical models of DEI data in physics are analyzed and the proposed algorithm is validated with the experimental data at the Beijing Synchrotron Radiation Facility (BSRF). The results of ML-TS have better contrast compared with the well known 'shift-and-add' algorithm and FBP algorithm. (authors)
Likelihood Approximation With Hierarchical Matrices For Large Spatial Datasets
Litvinenko, Alexander
2017-09-03
We use available measurements to estimate the unknown parameters (variance, smoothness parameter, and covariance length) of a covariance function by maximizing the joint Gaussian log-likelihood function. To overcome cubic complexity in the linear algebra, we approximate the discretized covariance function in the hierarchical (H-) matrix format. The H-matrix format has a log-linear computational cost and storage O(kn log n), where the rank k is a small integer and n is the number of locations. The H-matrix technique allows us to work with general covariance matrices in an efficient way, since H-matrices can approximate inhomogeneous covariance functions, with a fairly general mesh that is not necessarily axes-parallel, and neither the covariance matrix itself nor its inverse have to be sparse. We demonstrate our method with Monte Carlo simulations and an application to soil moisture data. The C, C++ codes and data are freely available.
Marginal Maximum Likelihood Estimation of Item Response Models in R
Directory of Open Access Journals (Sweden)
Matthew S. Johnson
2007-02-01
Full Text Available Item response theory (IRT models are a class of statistical models used by researchers to describe the response behaviors of individuals to a set of categorically scored items. The most common IRT models can be classified as generalized linear fixed- and/or mixed-effect models. Although IRT models appear most often in the psychological testing literature, researchers in other fields have successfully utilized IRT-like models in a wide variety of applications. This paper discusses the three major methods of estimation in IRT and develops R functions utilizing the built-in capabilities of the R environment to find the marginal maximum likelihood estimates of the generalized partial credit model. The currently available R packages ltm is also discussed.
Maximum likelihood estimation of phase-type distributions
DEFF Research Database (Denmark)
Esparza, Luz Judith R
for both univariate and multivariate cases. Methods like the EM algorithm and Markov chain Monte Carlo are applied for this purpose. Furthermore, this thesis provides explicit formulae for computing the Fisher information matrix for discrete and continuous phase-type distributions, which is needed to find......This work is concerned with the statistical inference of phase-type distributions and the analysis of distributions with rational Laplace transform, known as matrix-exponential distributions. The thesis is focused on the estimation of the maximum likelihood parameters of phase-type distributions...... confidence regions for their estimated parameters. Finally, a new general class of distributions, called bilateral matrix-exponential distributions, is defined. These distributions have the entire real line as domain and can be used, for instance, for modelling. In addition, this class of distributions...
The elaboration likelihood model and communication about food risks.
Frewer, L J; Howard, C; Hedderley, D; Shepherd, R
1997-12-01
Factors such as hazard type and source credibility have been identified as important in the establishment of effective strategies for risk communication. The elaboration likelihood model was adapted to investigate the potential impact of hazard type, information source, and persuasive content of information on individual engagement in elaborative, or thoughtful, cognitions about risk messages. One hundred sixty respondents were allocated to one of eight experimental groups, and the effects of source credibility, persuasive content of information and hazard type were systematically varied. The impact of the different factors on beliefs about the information and elaborative processing examined. Low credibility was particularly important in reducing risk perceptions, although persuasive content and hazard type were also influential in determining whether elaborative processing occurred.
Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics
DEFF Research Database (Denmark)
Schlaikjer, Malene; Jensen, Jørgen Arendt
2004-01-01
)-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...... has been compared to the cross-correlation (CC) estimator and the previously developed maximum likelihood estimator (MLE). The results show that the CMLE can handle a larger velocity search range and is capable of estimating even low velocity levels from tissue motion. The CC and the MLE produce...... for the CC and the MLE. When the velocity search range is set to twice the limit of the CC and the MLE, the number of incorrect velocity estimates are 0, 19.1, and 7.2% for the CMLE, CC, and MLE, respectively. The ability to handle a larger search range and estimating low velocity levels was confirmed...
Likelihood of illegal alcohol sales at professional sport stadiums.
Toomey, Traci L; Erickson, Darin J; Lenk, Kathleen M; Kilian, Gunna R
2008-11-01
Several studies have assessed the propensity for illegal alcohol sales at licensed alcohol establishments and community festivals, but no previous studies examined the propensity for these sales at professional sport stadiums. In this study, we assessed the likelihood of alcohol sales to both underage youth and obviously intoxicated patrons at professional sports stadiums across the United States, and assessed the factors related to likelihood of both types of alcohol sales. We conducted pseudo-underage (i.e., persons age 21 or older who appear under 21) and pseudo-intoxicated (i.e., persons feigning intoxication) alcohol purchase attempts at stadiums that house professional hockey, basketball, baseball, and football teams. We conducted the purchase attempts at 16 sport stadiums located in 5 states. We measured 2 outcome variables: pseudo-underage sale (yes, no) and pseudo-intoxicated sale (yes, no), and 3 types of independent variables: (1) seller characteristics, (2) purchase attempt characteristics, and (3) event characteristics. Following univariate and bivariate analyses, we a separate series of logistic generalized mixed regression models for each outcome variable. The overall sales rates to the pseudo-underage and pseudo-intoxicated buyers were 18% and 74%, respectively. In the multivariate logistic analyses, we found that the odds of a sale to a pseudo-underage buyer in the stands was 2.9 as large as the odds of a sale at the concession booths (30% vs. 13%; p = 0.01). The odds of a sale to an obviously intoxicated buyer in the stands was 2.9 as large as the odds of a sale at the concession booths (89% vs. 73%; p = 0.02). Similar to studies assessing illegal alcohol sales at licensed alcohol establishments and community festivals, findings from this study shows the need for interventions specifically focused on illegal alcohol sales at professional sporting events.
Directory of Open Access Journals (Sweden)
Chan Koon H
2010-09-01
Full Text Available Abstract Background Neuromyelitis optica spectrum disorders (NMOSD are severe central nervous system inflammatory demyelinating disorders (CNS IDD characterized by monophasic or relapsing, longitudinally extensive transverse myelitis (LETM and/or optic neuritis (ON. A significant proportion of NMOSD patients are seropositive for aquaporin-4 (AQP4 autoantibodies. We compared the AQP4 autoantibody detection rates of tissue-based indirect immunofluorescence assay (IIFA and cell-based IIFA. Methods Serum of Chinese CNS IDD patients were assayed for AQP4 autoantibodies by tissue-based IIFA using monkey cerebellum and cell-based IIFA using transfected HEK293 cells which express human AQP4 on their cell membranes. Results In total, 128 CNS IDD patients were studied. We found that 78% of NMO patients were seropositive for AQP4 autoantibodies by cell-based IIFA versus 61% by tissue-based IFA (p = 0.250, 75% of patients having relapsing myelitis (RM with LETM were seropositive by cell-based IIFA versus 50% by tissue-based IIFA (p = 0.250, and 33% of relapsing ON patients were seropositive by cell-based IIFA versus 22% by tissue-based IIFA (p = 1.000; however the differences were not statistically significant. All patients seropositive by tissue-based IIFA were also seropositive for AQP4 autoantibodies by cell-based IIFA. Among 29 NMOSD patients seropositive for AQP4 autoantibodies by cell-based IIFA, 20 (69% were seropositive by tissue-based IIFA. The 9 patients seropositive by cell-based IIFA while seronegative by tissue-based IIFA had NMO (3, RM with LETM (3, a single attack of LETM (1, relapsing ON (1 and a single ON attack (1. Among 23 NMO or RM patients seropositive for AQP4 autoantibodies by cell-based IIFA, comparison between those seropositive (n = 17 and seronegative (n = 6 by tissue-based IIFA revealed no differences in clinical and neuroradiological characteristics between the two groups. Conclusion Cell-based IIFA is slightly more sensitive
Maximum-likelihood estimation of the hyperbolic parameters from grouped observations
DEFF Research Database (Denmark)
Jensen, Jens Ledet
1988-01-01
a least-squares problem. The second procedure Hypesti first approaches the maximum-likelihood estimate by iterating in the profile-log likelihood function for the scale parameter. Close to the maximum of the likelihood function, the estimation is brought to an end by iteration, using all four parameters...
A short proof that phylogenetic tree reconstruction by maximum likelihood is hard.
Roch, Sebastien
2006-01-01
Maximum likelihood is one of the most widely used techniques to infer evolutionary histories. Although it is thought to be intractable, a proof of its hardness has been lacking. Here, we give a short proof that computing the maximum likelihood tree is NP-hard by exploiting a connection between likelihood and parsimony observed by Tuffley and Steel.
A Short Proof that Phylogenetic Tree Reconstruction by Maximum Likelihood is Hard
Roch, S.
2005-01-01
Maximum likelihood is one of the most widely used techniques to infer evolutionary histories. Although it is thought to be intractable, a proof of its hardness has been lacking. Here, we give a short proof that computing the maximum likelihood tree is NP-hard by exploiting a connection between likelihood and parsimony observed by Tuffley and Steel.
National Research Council Canada - National Science Library
Woolston, Donald
1949-01-01
The present paper reports the results of a series of flutter studies including comparisons of experimental results with calculations based on a Rayleigh type analysis, in which chosen modes are assumed...
Comparison between MRI-based attenuation correction methods for brain PET in dementia patients
International Nuclear Information System (INIS)
Cabello, Jorge; Lukas, Mathias; Pyka, Thomas; Nekolla, Stephan G.; Ziegler, Sibylle I.; Rota Kops, Elena; Shah, N. Jon; Ribeiro, Andre; Yakushev, Igor
2016-01-01
The combination of Positron Emission Tomography (PET) with magnetic resonance imaging (MRI) in hybrid PET/MRI scanners offers a number of advantages in investigating brain structure and function. A critical step of PET data reconstruction is attenuation correction (AC). Accounting for bone in attenuation maps (μ-map) was shown to be important in brain PET studies. While there are a number of MRI-based AC methods, no systematic comparison between them has been performed so far. The aim of this work was to study the different performance obtained by some of the recent methods presented in the literature. To perform such a comparison, we focused on [ 18 F]-Fluorodeoxyglucose-PET/MRI neurodegenerative dementing disorders, which are known to exhibit reduced levels of glucose metabolism in certain brain regions. Four novel methods were used to calculate μ-maps from MRI data of 15 patients with Alzheimer's dementia (AD). The methods cover two atlas-based methods, a segmentation method, and a hybrid template/segmentation method. Additionally, the Dixon-based and a UTE-based method, offered by a vendor, were included in the comparison. Performance was assessed at three levels: tissue identification accuracy in the μ-map, quantitative accuracy of reconstructed PET data in specific brain regions, and precision in diagnostic images at identifying hypometabolic areas. Quantitative regional errors of -20-10 % were obtained using the vendor's AC methods, whereas the novel methods produced errors in a margin of ±5 %. The obtained precision at identifying areas with abnormally low levels of glucose uptake, potentially regions affected by AD, were 62.9 and 79.5 % for the two vendor AC methods, the former ignoring bone and the latter including bone information. The precision increased to 87.5-93.3 % in average for the four new methods, exhibiting similar performances. We confirm that the AC methods based on the Dixon and UTE sequences provided by the vendor are inferior
Comparison between MRI-based attenuation correction methods for brain PET in dementia patients
Energy Technology Data Exchange (ETDEWEB)
Cabello, Jorge; Lukas, Mathias; Pyka, Thomas; Nekolla, Stephan G.; Ziegler, Sibylle I. [Technische Universitaet Muenchen, Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Munich (Germany); Rota Kops, Elena; Shah, N. Jon [Forschungszentrum Juelich GmbH, Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Juelich (Germany); Ribeiro, Andre [Forschungszentrum Juelich GmbH, Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Juelich (Germany); Institute of Biophysics and Biomedical Engineering, Lisbon (Portugal); Yakushev, Igor [Technische Universitaet Muenchen, Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Munich (Germany); Institute TUM Neuroimaging Center (TUM-NIC), Munich (Germany)
2016-11-15
The combination of Positron Emission Tomography (PET) with magnetic resonance imaging (MRI) in hybrid PET/MRI scanners offers a number of advantages in investigating brain structure and function. A critical step of PET data reconstruction is attenuation correction (AC). Accounting for bone in attenuation maps (μ-map) was shown to be important in brain PET studies. While there are a number of MRI-based AC methods, no systematic comparison between them has been performed so far. The aim of this work was to study the different performance obtained by some of the recent methods presented in the literature. To perform such a comparison, we focused on [{sup 18}F]-Fluorodeoxyglucose-PET/MRI neurodegenerative dementing disorders, which are known to exhibit reduced levels of glucose metabolism in certain brain regions. Four novel methods were used to calculate μ-maps from MRI data of 15 patients with Alzheimer's dementia (AD). The methods cover two atlas-based methods, a segmentation method, and a hybrid template/segmentation method. Additionally, the Dixon-based and a UTE-based method, offered by a vendor, were included in the comparison. Performance was assessed at three levels: tissue identification accuracy in the μ-map, quantitative accuracy of reconstructed PET data in specific brain regions, and precision in diagnostic images at identifying hypometabolic areas. Quantitative regional errors of -20-10 % were obtained using the vendor's AC methods, whereas the novel methods produced errors in a margin of ±5 %. The obtained precision at identifying areas with abnormally low levels of glucose uptake, potentially regions affected by AD, were 62.9 and 79.5 % for the two vendor AC methods, the former ignoring bone and the latter including bone information. The precision increased to 87.5-93.3 % in average for the four new methods, exhibiting similar performances. We confirm that the AC methods based on the Dixon and UTE sequences provided by the vendor are
Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement
International Nuclear Information System (INIS)
Joseph Grames; Charles Sinclair; Joseph Mitchell; Eugene Chudakov; Howard Fenker; Arne Freyberger; Douglas Higinbotham; Poelker, B.; Michael Steigerwald; Michael Tiefenback; Christian Cavata; Stephanie Escoffier; Frederic Marie; Thierry Pussieux; Pascal Vernin; Samuel Danagoulian; Kahanawita Dharmawardane; Renee Fatemi; Kyungseon Joo; Markus Zeier; Viktor Gorbenko; Rakhsha Nasseripour; Brian Raue; Riad Suleiman; Benedikt Zihlmann
2004-01-01
Precision measurements of the relative analyzing powers of five electron beam polarimeters, based on Compton, Moller, and Mott scattering, have been performed using the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory). A Wien filter in the 100 keV beamline of the injector was used to vary the electron spin orientation exiting the injector. High statistical precision measurements of the scattering asymmetry as a function of the spin orientation were made with each polarimeter. Since each polarimeter receives beam with the same magnitude of polarization, these asymmetry measurements permit a high statistical precision comparison of the relative analyzing powers of the five polarimeters. This is the first time a precise comparison of the analyzing powers of Compton, Moller, and Mott scattering polarimeters has been made. Statistically significant disagreements among the values of the beam polarization calculated from the asymmetry measurements made with each polarimeter reveal either errors in the values of the analyzing power, or failure to correctly include all systematic effects. The measurements reported here represent a first step toward understanding the systematic effects of these electron polarimeters. Such studies are necessary to realize high absolute accuracy (ca. 1%) electron polarization measurements, as required for some parity violation measurements planned at Jefferson Laboratory. Finally, a comparison of the value of the spin orientation exiting the injector that provides maximum longitudinal polarization in each experimental hall leads to an independent and very precise (better than 10-4) absolute measurement of the final electron beam energy
Directory of Open Access Journals (Sweden)
Ewa Michalska
2012-01-01
Full Text Available There are commonly accepted and objective decision rules, which are consistent with rationality, for example stochastic dominance rules. But, as can be seen in many research studies in behavioral economics, decision makers do not always act rationally. Rules based on cumulative prospect theory or almost stochastic dominance are relatively new tools which model real choices. Both approaches take into account some behavioral factors. The aim of this paper is to check the consistency of orders of the valuations of random alternatives based on these behavioral rules. The order of the alternatives is generated by a preference relation over the decision set. In this paper, we show that the methodology for creating rankings based on total orders can be used for the preference relations considered, because they enable comparison of all the elements in a set of random alternatives. For almost second degree stochastic dominance, this is possible due to its particular properties, which stochastic dominance does not possess. (original abstract
Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices
Directory of Open Access Journals (Sweden)
Suwimon Ruengsri
2014-01-01
Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.
Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T
2016-05-01
Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.
Wavelet Types Comparison for Extracting Iris Feature Based on Energy Compaction
Rizal Isnanto, R.
2015-06-01
Human iris has a very unique pattern which is possible to be used as a biometric recognition. To identify texture in an image, texture analysis method can be used. One of method is wavelet that extract the image feature based on energy. Wavelet transforms used are Haar, Daubechies, Coiflets, Symlets, and Biorthogonal. In the research, iris recognition based on five mentioned wavelets was done and then comparison analysis was conducted for which some conclusions taken. Some steps have to be done in the research. First, the iris image is segmented from eye image then enhanced with histogram equalization. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Comparison analysis is done based on recognition rate percentage with two samples stored in database for reference images. After finding the recognition rate, some tests are conducted using Energy Compaction for all five types of wavelets above. As the result, the highest recognition rate is achieved using Haar, whereas for coefficients cutting for C(i) < 0.1, Haar wavelet has a highest percentage, therefore the retention rate or significan coefficient retained for Haaris lower than other wavelet types (db5, coif3, sym4, and bior2.4)
PERBANDINGAN ESTIMASI KEMAMPUAN LATEN ANTARA METODE MAKSIMUM LIKELIHOOD DAN METODE BAYES
Directory of Open Access Journals (Sweden)
Heri Retnawati
2015-10-01
Full Text Available Studi ini bertujuan untuk membandingkan ketepatan estimasi kemampuan laten (latent trait pada model logistik dengan metode maksimum likelihood (ML gabungan dan bayes. Studi ini menggunakan metode simulasi Monte Carlo, dengan model data ujian nasional matematika SMP. Variabel simulasi adalah panjang tes dan banyaknya peserta. Data dibangkitkan dengan menggunakan SAS/IML dengan replikasi 40 kali, dan tiap data diestimasi dengan ML dan Bayes. Hasil estimasi kemudian dibandingkan dengan kemampuan yang sebenarnya, dengan menghitung mean square of error (MSE dan korelasi antara kemampuan laten yang sebenarnya dan hasil estimasi. Metode yang memiliki MSE lebih kecil dikatakan sebagai metode estimasi yang lebih baik. Hasil studi menunjukkan bahwa pada estimasi kemampuan laten dengan 15, 20, 25, dan 30 butir dengan 500 dan 1.000 peserta, hasil MSE belum stabil, namun ketika peserta menjadi 1.500 orang, diperoleh akurasi estimasi kemampuan yang hampir sama baik estimasi antara metode ML dan metode Bayes. Pada estimasi dengan 15 dan 20 butir dan peserta 500, 1.000, dan 1.500, hasil MSE belum stabil, dan ketika estimasi melibatkan 25 dan 30 butir, baik dengan peserta 500, 1.000, maupun 1.500 akan diperoleh hasil yang lebih akurat dengan metode ML. Kata kunci: estimasi kemampuan, metode maksimum likelihood, metode Bayes THE COMPARISON OF ESTIMATION OF LATENT TRAITS USING MAXIMUM LIKELIHOOD AND BAYES METHODS Abstract This study aimed to compare the accuracy of the estimation of latent ability (latent trait in the logistic model using maximum likelihood (ML and Bayes methods. This study uses a quantitative approach that is the Monte Carlo simulation method using students responses to national examination as data model, and variables are the length of the test and the number of participants. The data were generated using SAS/IML with replication 40 times, and each datum is then estimated by ML and Bayes. The estimation results are then compared with the
International Nuclear Information System (INIS)
Kramer, Daniel P.; McNeil, Dennis C.; Ruhkamp, Joseph D.; Wells, Donna J.; Stringer, Robert L.; Howell, Edwin I.
2002-01-01
Maximizing the thermal to electrical conversion efficiency of a nuclear space power system requires that all of the available thermal energy be utilized in the most efficient manner. Microporous insulations are attractive for application in space power systems due to their very low thermal conductivity. Over the last few years, several new silica-based microporous insulating materials have become commercially available. Property comparisons of the various insulations obtained from company literature and experiments on microporous sample specimens are discussed. The results demonstrate that their machinability and thermal dimensional stability as a function of time at temperature and atmosphere are dependent on the particular material
Muzasti, R. A.; Lubis, H. R.
2018-03-01
Mortality and morbidity rate, especially from cardiovascular disease in hemodialysis patients in Indonesia is still quite high. One of indicator to assess the predictive value of mortality is the phase angle (PhA) of bioimpedance analysis (BIA) scan examination. Determining the comparison of BMI and laboratory data as cardiovascular risk factors in hemodialysis patients based on PhA.A cross-sectional analytical study was done on 155 outpatientsin RasyidaRenal Hospital, Medan in 2016. Patients were two groups, namely PhAcardiovascular risk factors of hemodialysis patients were determined by age, BMI, and hemoglobin.
Comparison of unusual carbon-based working electrodes for electrochemiluminescence sensors.
Noman, Muhammad; Sanginario, Alessandro; Jagadale, Pravin; Demarchi, Danilo; Tagliaferro, Alberto
2017-06-01
In this work, unconventional carbon-based materials were investigated for use in electrochemiluminescence (ECL) working electrodes. Precursors such as bamboo, pistachio shells, kevlar ® fibers and camphor were differently treated and used as working electrodes in ECL experiments. After a proper process they were assembled as electrodes and tested in an electrochemical cell. Comparison among them and with a commercial glassy carbon electrode (GCE) shows a very good response for all of them thus demonstrating their potential use as disposable low-cost electrodes for early detection electrochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
An alternative to γ histograms for ROI-based quantitative dose comparisons
International Nuclear Information System (INIS)
Dvorak, P
2009-01-01
An alternative to gamma (γ) histograms for ROI-based quantitative comparisons of dose distributions using the γ concept is proposed. The method provides minimum values of dose difference and distance-to-agreement such that a pre-set fraction of the region of interest passes the γ test. Compared to standard γ histograms, the method provides more information in terms of pass rate per γ calculation. This is achieved at negligible additional calculation cost and without loss of accuracy. The presented method is proposed as a useful and complementary alternative to standard γ histograms, increasing both the quantity and quality of information for use in acceptance or rejection decisions. (note)
International Nuclear Information System (INIS)
Palit, Mousumi; Tudu, Bipan; Bhattacharyya, Nabarun; Dutta, Ankur; Dutta, Pallab Kumar; Jana, Arun; Bandyopadhyay, Rajib; Chatterjee, Anutosh
2010-01-01
In an electronic tongue, preprocessing on raw data precedes pattern analysis and choice of the appropriate preprocessing technique is crucial for the performance of the pattern classifier. While attempting to classify different grades of black tea using a voltammetric electronic tongue, different preprocessing techniques have been explored and a comparison of their performances is presented in this paper. The preprocessing techniques are compared first by a quantitative measurement of separability followed by principle component analysis; and then two different supervised pattern recognition models based on neural networks are used to evaluate the performance of the preprocessing techniques.
Pan, B.
2016-03-22
Subset-based local and finite-element-based (FE-based) global digital image correlation (DIC) approaches are the two primary image matching algorithms widely used for full-field displacement mapping. Very recently, the performances of these different DIC approaches have been experimentally investigated using numerical and real-world experimental tests. The results have shown that in typical cases, where the subset (element) size is no less than a few pixels and the local deformation within a subset (element) can be well approximated by the adopted shape functions, the subset-based local DIC outperforms FE-based global DIC approaches because the former provides slightly smaller root-mean-square errors and offers much higher computation efficiency. Here we investigate the theoretical origin and lay a solid theoretical basis for the previous comparison. We assume that systematic errors due to imperfect intensity interpolation and undermatched shape functions are negligibly small, and perform a theoretical analysis of the random errors or standard deviation (SD) errors in the displacements measured by two local DIC approaches (i.e., a subset-based local DIC and an element-based local DIC) and two FE-based global DIC approaches (i.e., Q4-DIC and Q8-DIC). The equations that govern the random errors in the displacements measured by these local and global DIC approaches are theoretically derived. The correctness of the theoretically predicted SD errors is validated through numerical translation tests under various noise levels. We demonstrate that the SD errors induced by the Q4-element-based local DIC, the global Q4-DIC and the global Q8-DIC are 4, 1.8-2.2 and 1.2-1.6 times greater, respectively, than that associated with the subset-based local DIC, which is consistent with our conclusions from previous work. © 2016 Elsevier Ltd. All rights reserved.
Yan, Kang K; Zhao, Hongyu; Pang, Herbert
2017-12-06
High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.
Maola, Joseph; Kane, Gary
1976-01-01
Subjects, who were Occupational Work Experience students, were randomly assigned to individual guidance from either a computerized occupational information system, to a counselor-based information system or to a control group. Results demonstrate a hierarchical learning effect: The computer group learned more than the counseled group, which…
Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva
2018-02-01
Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.
International Nuclear Information System (INIS)
Tamaki, Hitoshi; Yoshida, Kazuo; Kimoto, Tatsuya; Hamaguchi, Yoshikane
2010-01-01
A criticality accident in a MOX fuel fabrication facility may occur depending on several parameters, such as mass inventory and plutonium enrichment. MOX handling units in the facility are designed and operated based on the double contingency principle to prevent criticality accidents. Control failures of at least two parameters are needed for the occurrence of criticality accident. To evaluate the probability of such control failures, the criticality conditions of each parameter for a specific handling unit are necessary for accident scenario analysis to be clarified quantitatively with a criticality analysis computer code. In addition to this issue, a computer-based control system for mass inventory is planned to be installed into MOX handling equipment in a commercial MOX fuel fabrication plant. The reliability analysis is another important issue in evaluating the likelihood of control failure caused by software malfunction. A likelihood estimation method for criticality accident has been developed with these issues been taken into consideration. In this paper, an example of analysis with the proposed method and the applicability of the method are also shown through a trial application to a model MOX fabrication facility. (author)
Efficient simulation and likelihood methods for non-neutral multi-allele models.
Joyce, Paul; Genz, Alan; Buzbas, Erkan Ozge
2012-06-01
Throughout the 1980s, Simon Tavaré made numerous significant contributions to population genetics theory. As genetic data, in particular DNA sequence, became more readily available, a need to connect population-genetic models to data became the central issue. The seminal work of Griffiths and Tavaré (1994a , 1994b , 1994c) was among the first to develop a likelihood method to estimate the population-genetic parameters using full DNA sequences. Now, we are in the genomics era where methods need to scale-up to handle massive data sets, and Tavaré has led the way to new approaches. However, performing statistical inference under non-neutral models has proved elusive. In tribute to Simon Tavaré, we present an article in spirit of his work that provides a computationally tractable method for simulating and analyzing data under a class of non-neutral population-genetic models. Computational methods for approximating likelihood functions and generating samples under a class of allele-frequency based non-neutral parent-independent mutation models were proposed by Donnelly, Nordborg, and Joyce (DNJ) (Donnelly et al., 2001). DNJ (2001) simulated samples of allele frequencies from non-neutral models using neutral models as auxiliary distribution in a rejection algorithm. However, patterns of allele frequencies produced by neutral models are dissimilar to patterns of allele frequencies produced by non-neutral models, making the rejection method inefficient. For example, in some cases the methods in DNJ (2001) require 10(9) rejections before a sample from the non-neutral model is accepted. Our method simulates samples directly from the distribution of non-neutral models, making simulation methods a practical tool to study the behavior of the likelihood and to perform inference on the strength of selection.
A score to estimate the likelihood of detecting advanced colorectal neoplasia at colonoscopy.
Kaminski, Michal F; Polkowski, Marcin; Kraszewska, Ewa; Rupinski, Maciej; Butruk, Eugeniusz; Regula, Jaroslaw
2014-07-01
This study aimed to develop and validate a model to estimate the likelihood of detecting advanced colorectal neoplasia in Caucasian patients. We performed a cross-sectional analysis of database records for 40-year-old to 66-year-old patients who entered a national primary colonoscopy-based screening programme for colorectal cancer in 73 centres in Poland in the year 2007. We used multivariate logistic regression to investigate the associations between clinical variables and the presence of advanced neoplasia in a randomly selected test set, and confirmed the associations in a validation set. We used model coefficients to develop a risk score for detection of advanced colorectal neoplasia. Advanced colorectal neoplasia was detected in 2544 of the 35,918 included participants (7.1%). In the test set, a logistic-regression model showed that independent risk factors for advanced colorectal neoplasia were: age, sex, family history of colorectal cancer, cigarette smoking (padvanced neoplasia: 1.00 (95% CI 0.95 to 1.06)) and had moderate discriminatory power (c-statistic 0.62). We developed a score that estimated the likelihood of detecting advanced neoplasia in the validation set, from 1.32% for patients scoring 0, to 19.12% for patients scoring 7-8. Developed and internally validated score consisting of simple clinical factors successfully estimates the likelihood of detecting advanced colorectal neoplasia in asymptomatic Caucasian patients. Once externally validated, it may be useful for counselling or designing primary prevention studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Ha, Seung-Ryong; Yang, Jae-Ho; Lee, Jai-Bong; Han, Jung-Suk; Kim, Sung-Hun
2010-03-01
The purpose of this study was to investigate the diametral tensile strength of polymer-based temporary crown and fixed partial denture (FPD) materials, and the change of the diametral tensile strength with time. One monomethacrylate-based temporary crown and FPD material (Trim) and three dimethacrylate-based ones (Protemp 3 Garant, Temphase, Luxtemp) were investigated. 20 specimens (ø 4 mm × 6 mm) were fabricated and randomly divided into two groups (Group I: Immediately, Group II: 1 hour) according to the measurement time after completion of mixing. Universal Testing Machine was used to load the specimens at a cross-head speed of 0.5 mm/min. The data were analyzed using one-way ANOVA, the multiple comparison Scheffe test and independent sample t test (α = 0.05). Trim showed severe permanent deformation without an obvious fracture during loading at both times. There were statistically significant differences among the dimethacrylate-based materials. The dimethacrylate-based materials presented an increase in strength from 5 minutes to 1 hour and were as follows: Protemp 3 Garant (23.16 - 37.6 MPa), Temphase (22.27 - 28.08 MPa), Luxatemp (14.46 - 20.59 MPa). Protemp 3 Garant showed the highest value. The dimethacrylate-based temporary materials tested were stronger in diametral tensile strength than the monomethacrylate-based one. The diametral tensile strength of the materials investigated increased with time.
Directory of Open Access Journals (Sweden)
D. Kostal
2017-03-01
Full Text Available This paper deals with the experimental study of an elastohydrodynamic contact under conditions of insufficient lubricant supply. Starvation level of this type of the contact may be experimentally determined based on the position of the meniscus, but this way can't determine all levels of starvation. Consequent development in the field of tribology achieved theoretical model that can determine all levels of starvation by dependency on the thickness of the lubricant film entering the contact, but it is difficult for experimental verification. The main goal of this work is an experimental study and description of the behavior of the elastohydrodynamic contact with controlled thickness of the lubricant film at the contact input. Contact was lubricated by the base oil and the grease and compared. Results were surprising because the only differences between oil and grease were observed for more viscous lubricants at thicker film layer entering to the contact.
Comparison of stress-based and strain-based creep failure criteria for severe accident analysis
International Nuclear Information System (INIS)
Chavez, S.A.; Kelly, D.L.; Witt, R.J.; Stirn, D.P.
1995-01-01
We conducted a parametic analysis of stress-based and strain-based creep failure criteria to determine if there is a significant difference between the two criteria for SA533B vessel steel under severe accident conditions. Parametric variables include debris composition, system pressure, and creep strain histories derived from different testing programs and mathematically fit, with and without tertiary creep. Results indicate significant differences between the two criteria. Stress gradient plays an important role in determining which criterion will predict failure first. Creep failure was not very sensitive to different creep strain histories, except near the transition temperature of the vessel steel (900K to 1000K). Statistical analyses of creep failure data of four independent sources indicate that these data may be pooled, with a spline point at 1000K. We found the Manson-Haferd parameter to have better failure predictive capability than the Larson-Miller parameter for the data studied. (orig.)
Planck 2013 results. XV. CMB power spectra and likelihood
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ℓs. For ℓ impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-ℓ cross-spectra with residuals below a few μK2 at ℓ ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at ℓ ≲ 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4σ deviation from scale invariance, ns = 1. Increasing the multipole range beyond ℓ ≃ 1500 does not increase our accuracy for the ΛCDM parameters, but instead allows us to study extensions beyond the standard model. We find no indication of significant departures from the ΛCDM framework. Finally, we report a tension between the Planck best-fit ΛCDM model and the low-ℓ spectrum in the form of a power deficit of 5-10% at ℓ ≲ 40, with a statistical significance of 2.5-3σ. Without a theoretically motivated model for
Likelihood ratio model for classification of forensic evidence
Energy Technology Data Exchange (ETDEWEB)
Zadora, G., E-mail: gzadora@ies.krakow.pl [Institute of Forensic Research, Westerplatte 9, 31-033 Krakow (Poland); Neocleous, T., E-mail: tereza@stats.gla.ac.uk [University of Glasgow, Department of Statistics, 15 University Gardens, Glasgow G12 8QW (United Kingdom)
2009-05-29
One of the problems of analysis of forensic evidence such as glass fragments, is the determination of their use-type category, e.g. does a glass fragment originate from an unknown window or container? Very small glass fragments arise during various accidents and criminal offences, and could be carried on the clothes, shoes and hair of participants. It is therefore necessary to obtain information on their physicochemical composition in order to solve the classification problem. Scanning Electron Microscopy coupled with an Energy Dispersive X-ray Spectrometer and the Glass Refractive Index Measurement method are routinely used in many forensic institutes for the investigation of glass. A natural form of glass evidence evaluation for forensic purposes is the likelihood ratio-LR = p(E|H{sub 1})/p(E|H{sub 2}). The main aim of this paper was to study the performance of LR models for glass object classification which considered one or two sources of data variability, i.e. between-glass-object variability and(or) within-glass-object variability. Within the proposed model a multivariate kernel density approach was adopted for modelling the between-object distribution and a multivariate normal distribution was adopted for modelling within-object distributions. Moreover, a graphical method of estimating the dependence structure was employed to reduce the highly multivariate problem to several lower-dimensional problems. The performed analysis showed that the best likelihood model was the one which allows to include information about between and within-object variability, and with variables derived from elemental compositions measured by SEM-EDX, and refractive values determined before (RI{sub b}) and after (RI{sub a}) the annealing process, in the form of dRI = log{sub 10}|RI{sub a} - RI{sub b}|. This model gave better results than the model with only between-object variability considered. In addition, when dRI and variables derived from elemental compositions were used, this
Likelihood ratio model for classification of forensic evidence
International Nuclear Information System (INIS)
Zadora, G.; Neocleous, T.
2009-01-01
One of the problems of analysis of forensic evidence such as glass fragments, is the determination of their use-type category, e.g. does a glass fragment originate from an unknown window or container? Very small glass fragments arise during various accidents and criminal offences, and could be carried on the clothes, shoes and hair of participants. It is therefore necessary to obtain information on their physicochemical composition in order to solve the classification problem. Scanning Electron Microscopy coupled with an Energy Dispersive X-ray Spectrometer and the Glass Refractive Index Measurement method are routinely used in many forensic institutes for the investigation of glass. A natural form of glass evidence evaluation for forensic purposes is the likelihood ratio-LR = p(E|H 1 )/p(E|H 2 ). The main aim of this paper was to study the performance of LR models for glass object classification which considered one or two sources of data variability, i.e. between-glass-object variability and(or) within-glass-object variability. Within the proposed model a multivariate kernel density approach was adopted for modelling the between-object distribution and a multivariate normal distribution was adopted for modelling within-object distributions. Moreover, a graphical method of estimating the dependence structure was employed to reduce the highly multivariate problem to several lower-dimensional problems. The performed analysis showed that the best likelihood model was the one which allows to include information about between and within-object variability, and with variables derived from elemental compositions measured by SEM-EDX, and refractive values determined before (RI b ) and after (RI a ) the annealing process, in the form of dRI = log 10 |RI a - RI b |. This model gave better results than the model with only between-object variability considered. In addition, when dRI and variables derived from elemental compositions were used, this model outperformed two other
Directory of Open Access Journals (Sweden)
Elomaa Antti-Pekka
2012-01-01
Full Text Available Abstract Background Inflammatory mediators in both the peripheral circulation and central nervous system (CNS are dysregulated in major depressive disorder (MDD. Nevertheless, relatively little is known about the role of the T-helper (Th-2 effector cytokines interleukin (IL-5 and IL-13 in MDD. Methods We examined the serum levels of these cytokines and a Th-1 comparison cytokine, interferon (IFN-γ, in 116 individuals (MDD, n = 58; controls, n = 58. Results In our basic multivariate model controlling for the effects of potential confounders on the associations between MDD and the examined cytokines, each 1-unit increase in the serum IL-5 level increased the likelihood of belonging to the MDD group by 76% (OR 1.76, 95% CI 1.03-2.99, p = 0.04; model covariates: age, gender, marital status, daily smoking and alcohol use. The likelihood further increased in models additionally controlling for the effects of the use of antidepressants and NSAIDS, and a diagnosis of asthma. No such associations were detected with regard to IL-13 (OR 1.08, 95% CI 0.96-1.22, p = 0.22 or IFN-γ (OR 1.02, 95% CI 0.99-1.05, p = 0.23. Conclusions Elevated levels of IL-5, which uses the neural plasticity-related RAS GTPase-extracellular signal-regulated kinase (Ras-ERK pathway to mediate its actions in the central nervous system (CNS, could be one of the factors underlying the depression-related changes in CNS plasticity.
Likelihood ratio data to report the validation of a forensic fingerprint evaluation method
Directory of Open Access Journals (Sweden)
Daniel Ramos
2017-02-01
Full Text Available Data to which the authors refer to throughout this article are likelihood ratios (LR computed from the comparison of 5–12 minutiae fingermarks with fingerprints. These LRs data are used for the validation of a likelihood ratio (LR method in forensic evidence evaluation. These data present a necessary asset for conducting validation experiments when validating LR methods used in forensic evidence evaluation and set up validation reports. These data can be also used as a baseline for comparing the fingermark evidence in the same minutiae configuration as presented in (D. Meuwly, D. Ramos, R. Haraksim, [1], although the reader should keep in mind that different feature extraction algorithms and different AFIS systems used may produce different LRs values. Moreover, these data may serve as a reproducibility exercise, in order to train the generation of validation reports of forensic methods, according to [1]. Alongside the data, a justification and motivation for the use of methods is given. These methods calculate LRs from the fingerprint/mark data and are subject to a validation procedure. The choice of using real forensic fingerprint in the validation and simulated data in the development is described and justified. Validation criteria are set for the purpose of validation of the LR methods, which are used to calculate the LR values from the data and the validation report. For privacy and data protection reasons, the original fingerprint/mark images cannot be shared. But these images do not constitute the core data for the validation, contrarily to the LRs that are shared.
Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses
Energy Technology Data Exchange (ETDEWEB)
Krause, E.; et al.
2017-06-28
We present the methodology for and detail the implementation of the Dark Energy Survey (DES) 3x2pt DES Year 1 (Y1) analysis, which combines configuration-space two-point statistics from three different cosmological probes: cosmic shear, galaxy-galaxy lensing, and galaxy clustering, using data from the first year of DES observations. We have developed two independent modeling pipelines and describe the code validation process. We derive expressions for analytical real-space multi-probe covariances, and describe their validation with numerical simulations. We stress-test the inference pipelines in simulated likelihood analyses that vary 6-7 cosmology parameters plus 20 nuisance parameters and precisely resemble the analysis to be presented in the DES 3x2pt analysis paper, using a variety of simulated input data vectors with varying assumptions. We find that any disagreement between pipelines leads to changes in assigned likelihood $\\Delta \\chi^2 \\le 0.045$ with respect to the statistical error of the DES Y1 data vector. We also find that angular binning and survey mask do not impact our analytic covariance at a significant level. We determine lower bounds on scales used for analysis of galaxy clustering (8 Mpc$~h^{-1}$) and galaxy-galaxy lensing (12 Mpc$~h^{-1}$) such that the impact of modeling uncertainties in the non-linear regime is well below statistical errors, and show that our analysis choices are robust against a variety of systematics. These tests demonstrate that we have a robust analysis pipeline that yields unbiased cosmological parameter inferences for the flagship 3x2pt DES Y1 analysis. We emphasize that the level of independent code development and subsequent code comparison as demonstrated in this paper is necessary to produce credible constraints from increasingly complex multi-probe analyses of current data.