WorldWideScience

Sample records for lightweight masonry block

  1. Experimental Study on the Compression Behavior of Lightweight Concrete Block Masonry%轻质混凝土砌块砌体受压性能试验研究

    Institute of Scientific and Technical Information of China (English)

    夏多田; 何明胜; 唐艳娟; 曾晓云

    2013-01-01

    An experimental study on the compression behavior of lightweight concrete small hollow block masonry is presented,considering the different grades of mortar strength effect on the compressive properties.The failure characteristics,the relationship between stress and strain and compressive strength of masonry are analyzed.The results show that the compression properties of lightweight concrete small hollow block masonry is similar to the ordinary concrete hollow block masonry,which was destroyed after the main crack forms and penetrates the specimen.Through the analysis of test data,the calculation formula of average compressive strength of the block masonry and the stress-strain relationships at the rise stage of the block masonry are suggested.%对轻质混凝土小型空心砌块砌体进行了抗压性能试验,主要研究不同砂浆强度等级对其抗压性能的影响,分析了砌体的破坏特征、抗压强度和应力与应变之间的关系.研究结果表明:轻质混凝土小型空心砌块砌体的抗压性能和普通混凝土砌块砌体的抗压性能基本相似,极限破坏状态为砌体被贯通裂缝分隔成小立柱后破坏.通过对试验数据的整理分析,给出了砌块砌体抗压强度平均值的计算公式和上升阶段的应力-应变关系式.

  2. Development of Alkali Activated Geopolymer Masonry Blocks

    Science.gov (United States)

    Venugopal, K.; Radhakrishna; Sasalatti, Vinod

    2016-09-01

    Cement masonry units are not considered as sustainable since their production involves consumption of fuel, cement and natural resources and therefore it is essential to find alternatives. This paper reports on making of geopolymer solid & hollow blocks and masonry prisms using non conventional materials like fly ash, ground granulated blast furnace slag (GGBFS) and manufactured sand and curing at ambient temperature. They were tested for water absorption, initial rate of water absorption, dry density, dimensionality, compressive, flexural and bond-strength which were tested for bond strength with and without lateral confinement, modulus of elasticity, alternative drying & wetting and masonry efficiency. The properties of geopolymer blocks were found superior to traditional masonry blocks and the masonry efficiency was found to increase with decrease in thickness of cement mortar joints. There was marginal difference in strength between rendered and unrendered geopolymer masonry blocks. The percentage weight gain after 7 cycles was less than 6% and the percentage reduction in strength of geopolymer solid blocks and hollow blocks were 26% and 28% respectively. Since the properties of geopolymer blocks are comparatively better than the traditional masonry they can be strongly recommended for structural masonry.

  3. PROPERTIES OF LIGHTWEIGHT MASONRY MORTARS WITH HOLLOW GLASS MICROSPHERES FOR WINTER CONDITIONS

    OpenAIRE

    Semenov Vyacheslav Sergeevich; Oreshkin Dmitriy Vladimirovich; Rozovskaya Tamara Alekseevna

    2012-01-01

    The authors provide their research findings concerning lightweight masonry mortars with hollow glass microspheres and antifreeze admixtures. These mortars are used in the construction of filler structures at negative temperatures. The application of multilayer filler structures causes reduction of their thermal homogeneity factor. Therefore, single-layer filler structures have the strongest potential. There is a need to employ lightweight masonry mortars to ensure the thermal homogeneity of s...

  4. Linear Shrinkage Behaviour of Compacted Loam Masonry Blocks

    Directory of Open Access Journals (Sweden)

    NAWAB ALI LAKHO

    2017-04-01

    Full Text Available Walls of wet loam, used in earthen houses, generally experience more shrinkage which results in cracks and less compressive strength. This paper presents a technique of producing loam masonry blocks that are compacted in drained state during casting process in order to minimize shrinkage. For this purpose, loam masonry blocks were cast and compacted at a pressure of 6 MPa and then dried in shade by covering them in plastic sheet. The results show that linear shrinkage of 2% occurred which is smaller when compared to un-compacted wet loam walls. This implies that the loam masonry blocks compacted in drained state is expected to perform better than un-compacted wet loam walls.

  5. Lightweight concrete masonry units based on processed granulate of corn cob as aggregate

    Directory of Open Access Journals (Sweden)

    Faustino, J.

    2015-06-01

    Full Text Available A research work was performed in order to assess the potential application of processed granulate of corn cob (PCC as an alternative lightweight aggregate for the manufacturing process of lightweight concrete masonry units (CMU. Therefore, CMU-PCC were prepared in a factory using a typical lightweight concrete mixture for non-structural purposes. Additionally, lightweight concrete masonry units based on a currently applied lightweight aggregate such as expanded clay (CMU-EC were also manufactured. An experimental work allowed achieving a set of results that suggest that the proposed building product presents interesting material properties within the masonry wall context. Therefore, this unit is promising for both interior and exterior applications. This conclusion is even more relevant considering that corn cob is an agricultural waste product.En este trabajo de investigación se evaluó la posible aplicación de granulado procesado de la mazorca de maiz como un árido ligero alternativo en el proceso de fabricación de unidades de mampostería de hormigón ligero. Con esta finalidad, se prepararon en una fábrica diversas unidades de mampostería no estructural con granulado procesado de la mazorca de maiz. Además, se fabricaran unidades de mampostería estándar de peso ligero basado en agregados de arcilla expandida. Este trabajo experimental permitió lograr un conjunto de resultados que sugieren que el producto de construcción propuesto presenta interesantes propiedades materiales en el contexto de la pared de mampostería. Por lo tanto, esta solución es prometedora tanto para aplicaciones interiores y exteriores. Esta conclusión es aún más relevante teniendo en cuenta que la mazorca de maíz es un producto de desecho agrícola.

  6. Experimental study on the compressive strength of grouted concrete block masonry based on nondestructive detection methods

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong-bin; LI Long-fei

    2009-01-01

    Existing nondestructive detection methods were adopted to test the compressive strength of grouted concrete block masonry, i.e. the rebound method, pulling-out method and core drilling method were employed to test the strength of block, mortar and grouted concrete, respectively. The suitability of these methods for the testing of strength of grouted concrete block masonry was discussed, and the comprehensive strength of block masonry was appraised by combining existing nondestructive or micro-destructive detection methods. The nondestructive detection test on 25 grouted concrete block masonry specimens was carried out. Experimental results show that these methods mentioned above are applicable for the strength detection of grouted concrete block masonry. Moreover, the formulas of compressive strength, detection methods and proposals are given as well.

  7. Exploring Energy Efficiency of Lightweight Block Ciphers

    DEFF Research Database (Denmark)

    Banik, Subhadeep; Bogdanov, Andrey; Regazzoni, Francesco

    2016-01-01

    lightweight block ciphers, and thereby try to predict the optimal value of r at which an r-round unrolled architecture for a cipher is likely to be most energy efficient. We also try to relate our results to some physical design parameters like the signal delay across a round and algorithmic parameters like......In the last few years, the field of lightweight cryptography has seen an influx in the number of block ciphers and hash functions being proposed. One of the metrics that define a good lightweight design is the energy consumed per unit operation of the algorithm. For block ciphers, this operation...... is the encryption of one plaintext. By studying the energy consumption model of a CMOS gate, we arrive at the conclusion that the energy consumed per cycle during the encryption operation of an r-round unrolled architecture of any block cipher is a quadratic function in r. We then apply our model to 9 well known...

  8. Experimental Evaluation of Lightweight AAC Masonry Wall Prisms with Ferrocement Layers in Compression and Flexure

    KAUST Repository

    Abdel Mooty, Mohamed

    2012-05-01

    An experimental program is designed to evaluate the performance of lightweight autoclaved aerated concrete masonry wall strengthened using ferrocement layers, in a sandwich structure, under in-plane compression and out-of-plane bending. The 25 mm thick ferrocement mortar is reinforced with steel welded wire mesh of 1 mm diameters at 15 mm spacing. Different types of shear connectors are used to evaluate their effect on failure loads. The effect of different design parameters on the wall strength are considered including wall thickness, mortar strength, and type and distribution of shear connectors. A total of 20 prisms are tested in compression and 5 prisms are tested under bending. The proposed ferrocement strengthening technique is easy to apply on existing wall system and results in significant strength and stiffness enhancement of the tested wall specimens. © (2012) Trans Tech Publications.

  9. PROPERTIES OF LIGHTWEIGHT MASONRY MORTARS WITH HOLLOW GLASS MICROSPHERES FOR WINTER CONDITIONS

    Directory of Open Access Journals (Sweden)

    Semenov Vyacheslav Sergeevich

    2012-10-01

    reduction fillers (such as inflated pearlite, vermiculite etc. demonstrate low strength properties, as such fillers have a high water content. Hollow glass (or ceramic microspheres are known as efficient fillers for lightweight mortars. Multiple research undertakings contain information on the masonry mortar that has the following properties: average density of dry mortar - 450 kg/m3, thermal conductivity factor - 0.17 W/(m·°C, compressive strength at the age of 28 days - 3.2 MPa, water retention rate - over 90 %. The climatic conditions of Russia determine the need to perform masonry works at negative temperatures. Adding antifreeze admixtures is an easy and cheap method that guarantees hydration of the Portland-cement at negative temperatures. The subject of this research covers masonry mortars that have a 15 % hollow glass microsphere content and antifreeze admixtures. Contemporary antifreeze admixtures are multifunctional. Therefore, traditional antifreeze admixtures such as sodium chloride, calcium chloride, sodium nitrite, sodium nitrate, sodium formate, potash were used in the research. The per-cent content of antifreeze admixtures was calculated. The following properties of masonry mortars with a 15 % content of hollow glass microspheres and antifreeze admixtures were identified: average mortar and mortar mixture density, setting time, water retention, compressive and bending strength, and water absorption. Standard research methods were employed. Every mortar has an 8 cm mobility. The benchmark mixture has an average density of 1.085 kg/ m3, average cement stone density of 980 kg/m3, compressive strength at the age of 28 days - 19.8 MPa, water retention rate - 97 %, setting time - 4.5 hours. The attention was driven to the strength analysis of mortars with hollow glass microspheres and antifreeze admixtures at positive and negative temperatures. The authors proved that antifreeze admixtures demonstrated a negative influence on the strength and setting

  10. Preparation and characterization of masonry units, lightweight concrete based and agro-industrial wastes: a review

    Science.gov (United States)

    Díaz-Fuentes, C. X.

    2013-11-01

    Discussion about the new composite materials that integrate agro industrial residues for the masonry unit's production, which are directed towards its implementation in projects of affordable housing, is a subject of interest to the public and productive sector of the country. For this reason, it presents a descriptive review of primary and secondary sources, which support the project under study. The methodology consisted in finding research articles in databases supported by the scientific community, which are ordered, integrated and prioritized, creating a matrix synthesis, which condensed the objectives, type of material, studied properties and main results found. It was found that the composite materials for masonry use mainly clay or cement as matrix and as reinforcement, agro waste like paper fibers, bamboo, rice husks, among others are used. Moreover, the properties that determine its potential use are low density, stress resistance and low thermal conductivity. Comparing the results with traditional specimens as the block of clay, concrete, adobe vs. experimental models made of the compounds analyzed, favorable results were obtained in the case of integrating waste materials into its composition, optimized their properties. Thus, science and architecture converge through recognition of the properties of materials that expand the alternatives of building spaces, economic and environmentally sustainable.

  11. The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading

    Science.gov (United States)

    Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila

    2017-08-01

    Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.

  12. EXPERIMENTAL STUDY OF COMPRESSIVE STRENGTH OF THE NEW COMPOSITE BLOCK MASONRY%新型复合砌块砌体结构抗压强度试验研究

    Institute of Scientific and Technical Information of China (English)

    夏多田; 何明胜; 唐艳娟; 付小建; 石磊巍

    2014-01-01

    保温砌模轻质混凝土空心砌块混合生土复合墙体结构是由聚苯乙烯颗粒( EPS)混合土为内芯、轻质陶粒混凝土砌块为外模组成的一种新型复合砌块砌体结构形式,具有保温、抗震和整体好的特性,非常适合村镇低层建筑。考虑不同的内芯材料强度和不同的砌筑砂浆强度,对9组复合砌块砌体抗压试件进行试验研究,分析内芯强度和砂浆强度对复合砌块砌体抗压强度的影响。试验结果表明:内芯材料强度对复合砌体抗压强度贡献最大,影响显著;砂浆强度对复合砌体抗压强度影响较小;空心砌块砌体的抗压强度明显低于复合砌块砌体的抗压强度。%The composite masonry of thermal-insulating lightweight concrete hollow block is a new type of structure with composite polystyrene ( EPS) soil as its inner core and the lightweight ceramsite concrete block as its external mould, because it makes the heat preservation and anti-seismic and integrity as a whole , suitable for buildings in village and town .Considering the different strength of filling materials and different strength of masonry mortar , compressive strength of 9 group specimens of composite block masonry was tested , analyzed the effects of different inner core strength and different mortar strength on the compressive strength of composite block masonry .The test results show that the inner core strength has the largest contribution to the compressive strength of composite masonry , whose influence is significant; mortar strength has weak effect on compressive strength of composite masonry; the compressive strength of hollow block masonry is markedly lower than that of composite block masonry .

  13. Numerical simulations of tests masonry walls from ceramic block using a detailed finite element model

    Directory of Open Access Journals (Sweden)

    V. Salajka

    2017-01-01

    Full Text Available This article deals with an analysis of the behaviour of brick ceramic walls. The behaviour of the walls was analysed experimentally in order to obtain their bearing capacity under static loading and their seismic resistance. Simultaneously, numerical simulations of the experiments were carried out in order to obtain additional information on the behaviour of masonry walls made of ceramic blocks. The results of the geometrically and materially nonlinear computations were compared to the results of the performed tests.

  14. Moisture and Thermal Conductivity of Lightweight Block Walls

    Science.gov (United States)

    Joosep, R.

    2015-11-01

    This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.

  15. A completely transparent, adhesively bonded soda-lime glass block masonry system

    Directory of Open Access Journals (Sweden)

    F. Oikonomopoulou

    2015-01-01

    Full Text Available A pioneering, all transparent, self-supporting glass block facade is presented in this paper. Previously realized examples utilize embedded metal components in order to obtain the desired structural performance despite the fact that these elements greatly affect the facade’s overall transparency level. Undeniably, the oxymoron ‘transparency and strength’ remains the prime concern in such applications. In this paper, a new, innovative structural system for glass block facades is described, which demonstrably meets both criteria. The structure is exclusively constructed by monolithic glass blocks, bonded with a colourless, UV-curing adhesive, obtaining thus a maximum transparency. In addition, the desired structural performance is achieved solely through the masonry system, without any opaque substructure. Differing from previous realized projects, solid soda-lime glass blocks are used rather than borosilicate ones. This article provides an overview of the integrated architectural and structural design and discusses the choice of materials. The structural verification of the system is demonstrated. The results show that the adhesively bonded glass block structure has the required self-structural behaviour, but only if strict tolerances are met in the geometry of the glass blocks.

  16. Efficient Hardware Implementation of the Lightweight Block Encryption Algorithm LEA

    Directory of Open Access Journals (Sweden)

    Donggeon Lee

    2014-01-01

    Full Text Available Recently, due to the advent of resource-constrained trends, such as smartphones and smart devices, the computing environment is changing. Because our daily life is deeply intertwined with ubiquitous networks, the importance of security is growing. A lightweight encryption algorithm is essential for secure communication between these kinds of resource-constrained devices, and many researchers have been investigating this field. Recently, a lightweight block cipher called LEA was proposed. LEA was originally targeted for efficient implementation on microprocessors, as it is fast when implemented in software and furthermore, it has a small memory footprint. To reflect on recent technology, all required calculations utilize 32-bit wide operations. In addition, the algorithm is comprised of not complex S-Box-like structures but simple Addition, Rotation, and XOR operations. To the best of our knowledge, this paper is the first report on a comprehensive hardware implementation of LEA. We present various hardware structures and their implementation results according to key sizes. Even though LEA was originally targeted at software efficiency, it also shows high efficiency when implemented as hardware.

  17. The Construction Technique of Autoclaved Lightweight Concrete (NALC)Masonry Free Plastering%轻质蒸压加气混凝土(NALC)砌块免抹灰式施工技术

    Institute of Scientific and Technical Information of China (English)

    孙国芳

    2011-01-01

    介绍了轻质蒸压加气混凝土(NALC)砌块的适用范围,论述了NALC砌块免抹灰施工的工艺流程及操作特点,质量标准及保证措施.%It introduces the applicable scope, and the process principle ot Autoclaved Lightweight Concrete( N ALC)Masonry.It tells the process and the operating characteristics of NALC Masonry Free Plastering, and the assurance measures.

  18. APPLICATION OF MIKRODUR IN MASONRY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Makarenkova Yuliya Viktorovna

    2012-10-01

    Full Text Available The author describes the problem of production of the ultra lightweight masonry mortar and methods of its solution. Conditions of optimization of the masonry mortar structure are considered in the article. Presently, Microdur is widely used in construction and repair of subsurface structures, tunnels, oil and gas wells. The use of Mikrodur may substantially improve the properties of the masonry mortar (ρр = 941.17 kg/m3, = 11.00 MPa, av = 66.25 kN, compression = 26.50 MPa, ρрstone = 570.47 kg/m3, per unit compression = 46.45 PMa/kg·103, per unit = 19.28 PMa/kg·103, λ = 0.190 Wt/m°С. The thermal conductivity of both bearing and thermal insulation porous concrete blocks is equal to 0.18…0.21 Wt/m°С. Thus, the new envelope structure of homogeneous thermal conductivity has a value of thermotechnical homogeneity ratio = 0.98.

  19. Lightweight concrete blocks with EVA recycled aggregate: a contribution to the thermal efficiency of building external walls

    Directory of Open Access Journals (Sweden)

    De Melo, A. B.

    2013-12-01

    Full Text Available The regions with lots of shoe production suffer environmental impacts from waste generation during manufacturing of insoles and outsoles. Research conducted in Brazil has demonstrated the technical feasibility to recycle these wastes, especially Ethylene Vinyl Acetate (EVA, as lightweight aggregate, in the production of non-structural cement blocks. This article presents an evaluation of thermal performance with measurements of temperature variation in mini walls (1 m2 built with different materials, including various kinds of EVA block and ceramic bricks. Tests have shown efficient thermal performance for masonry blocks with EVA. These results and supplementary estimates contribute to add value to the EVA block, considering that there are good expectations that the component, with the new geometry proposed, can contribute to the energy efficiency of buildings, highlighting its suitability to most Brazilian bioclimatic regions.Las regiones con una gran producción de calzado sufren impactos ambientales derivados de la generación de residuos durante la producción de plantillas y suelas. Investigaciones realizadas en Brasil han demostrado la viabilidad técnica para el reciclaje de estos residuos, especialmente el Etileno Vinil Acetato (EVA, como agregado ligero en la fabricación de bloques de hormigón no estructurales. Este trabajo presenta una evaluación del rendimiento térmico, con mediciones de la variación de la temperatura en pequeñas paredes (1 m2 construidas con diversos materiales, incluyendo algunos tipos de bloques EVA y ladrillos de cerámica. Las pruebas demostraron actuaciones térmicas eficientes para las muestras con bloques EVA. Estos resultados y cálculos adicionales contribuyen con un aporte de valor añadido al bloque EVA, considerando que existen buenas expectativas del componente, con una nueva propuesta de geometría, pudiendo contribuir a la eficiencia energética de edificios, especialmente por su adecuación a la

  20. Analysis of the influence of the block in the dynamic properties of domestic buildings with masonry structure

    OpenAIRE

    Vázquez Vicente, Enrique; Sánchez Sánchez, José; Rodríguez León, María Teresa

    2015-01-01

    Congreso celebrado en la Escuela de Arquitectura de la Universidad de Sevilla desde el 24 hasta el 26 de junio de 2015. The modal analysis of a building, performed by finite element method, is usually made in a building isolated model. In the case of traditional buildings with masonry structure, this simplification can be very unrealistic, particularly in the case of buildings with shared party walls. The influence of the adjacent buildings, in the modal results of domestic masonry buildin...

  1. Superalloy Lattice Block Developed for Use in Lightweight, High-Temperature Structures

    Science.gov (United States)

    Hebsur, Mohan G.; Whittenberger, J. Daniel; Krause, David L.

    2003-01-01

    Successful development of advanced gas turbine engines for aircraft will require lightweight, high-temperature components. Currently titanium-aluminum- (TiAl) based alloys are envisioned for such applications because of their lower density (4 g/cm3) in comparison to superalloys (8.5 g/cm3), which have been utilized for hot turbine engine parts for over 50 years. However, a recently developed concept (lattice block) by JAMCORP, Inc., of Willmington, Massachusetts, would allow lightweight, high-temperature structures to be directly fabricated from superalloys and, thus, take advantage of their well-known, characterized properties. In its simplest state, lattice block is composed of thin ligaments arranged in a three dimensional triangulated trusslike configuration that forms a structurally rigid panel. Because lattice block can be fabricated by casting, correctly sized hardware is produced with little or no machining; thus very low cost manufacturing is possible. Together, the NASA Glenn Research Center and JAMCORP have extended their lattice block methodology for lower melting materials, such as Al alloys, to demonstrate that investment casting of superalloy lattice block is possible. This effort required advances in lattice block pattern design and assembly, higher temperature mold materials and mold fabrication technology, and foundry practice suitable for superalloys (ref. 1). Lattice block panels have been cast from two different Ni-base superalloys: IN 718, which is the most commonly utilized superalloy and retains its strength up to 650 C; and MAR M247, which possesses excellent mechanical properties to at least 1100 C. In addition to the open-cell lattice block geometry, same-sized lattice block panels containing a thin (1-mm-thick) solid face on one side have also been cast from both superalloys. The elevated-temperature mechanical properties of the open cell and face-sheeted superalloy lattice block panels are currently being examined, and the

  2. MECHANICAL MODEL AND ELASTIC MODULUS OF GROUTED CONCRETE BLOCK MASONRY IN COMPRESSION%灌孔混凝土砌块砌体受压力学模型及其弹性模量

    Institute of Scientific and Technical Information of China (English)

    梁建国; 龙腾

    2012-01-01

    灌孔混凝土砌块砌体是由砌体和灌孔混凝土两部分组合而成,为了得到竖向压力作用下两种材料的相互作用机理,该文基于最小势能原理推导了砌体对灌孔混凝土的套箍系数以及灌孔混凝土砌块砌体内的应力分布,得到了灌孔混凝土砌块砌体的弹性模量可近似按材料力学组合截面公式进行计算,其计算结果与收集的全国65组281个试件试验结果符合良好,并通过试验结果统计得到了灌孔混凝土砌块砌体弹性模量的建议公式。理论分析和试验结果表明,我国现行规范中灌孔混凝土砌块砌体弹性模量取值偏低,将使配筋砌块砌体结构的设计计算结果偏于不安全。%In order to obtain the interaction mechanism between the grout and masonry in grouted concrete block masonry structures under vertical load, the hooping factor which denotes the hooping action of the masonry to the grouted concrete and the stress distribution in the grouted concrete block masonry is studied based on the minimum potential energy principle. The elastic modulus of grouted concrete block masonry can be approximately calculated according to the assembled section formula in material mechanics, and the calculation results of this formula agree well with the test results of 281 specimens in 65 groups. Another proposed formula to calculate the elastic modulus of the grouted concrete block is derived base on the test results by regression analysis method. Theoretical analysis and test results show that the value of elastic modulus of grouted concrete block masonry in our current code is low, indicating it is unsafe to guide the design of reinforced concrete block masonry structures.

  3. Multidimensional zero-correlation attacks on lightweight block cipher HIGHT: Improved cryptanalysis of an ISO standard

    DEFF Research Database (Denmark)

    Wen, Long; Wang, Meiqin; Bogdanov, Andrey

    2014-01-01

    HIGHT is a block cipher designed in Korea with the involvement of Korea Information Security Agency. It was proposed at CHES 2006 for usage in lightweight applications such as sensor networks and RFID tags. Lately, it has been adopted as ISO standard. Though there is a great deal of cryptanalytic...... results on HIGHT, its security evaluation against the recent zero-correlation linear attacks is still lacking. At the same time, the Feistel-type structure of HIGHT suggests that it might be susceptible to this type of cryptanalysis. In this paper, we aim to bridge this gap. We identify zero......-correlation linear approximations over 16 rounds of HIGHT. Based upon those, we attack 27-round HIGHT (round 4 to round 30) with improved time complexity and practical memory requirements. This attack of ours is the best result on HIGHT to date in the classical single-key setting. We also provide the first attack...

  4. A FEM comparative analysis of the thermal efficiency among floors made up of clay, concrete and lightweight concrete hollow blocks

    OpenAIRE

    Del Coz Díaz, J. J.; Nieto, P.J.García; Hernández, J. Domínguez; Álvarez Rabanal, F.P.

    2010-01-01

    Abstract This paper presents a comparative nonlinear thermal analysis for a total of eighteen different in situ cast floors varying both the constituent materials of the hollow blocks (clay, concrete and lightweight concrete) and the shape and number of recesses (six different block types) using the finite element method (FEM). Based on the non-linear thermal analysis of the different configurations by FEM and considering both upward and downward heat flows, it is possible to choos...

  5. 承重型组合竹砌块及其砌体抗压性能的初步试验研究%Tentative experiment on bearing bamboo block and the masonry compressive resistance

    Institute of Scientific and Technical Information of China (English)

    甘立刚; 肖承波; 侯汝欣

    2012-01-01

    This article have experimented on bearing bamboo block which appears in the recent years and the masonry compressive resistance. The experimental results show that, bamboo block and the masonry have high compressive strength, if used for the construction of 1~2 storey huts of farmers,the wall have high security of the axial bearing capacity.%对近年出现的新型墙体材料——承重型组合竹砌块及其砌体的抗压性能进行了探索性试验,试验结果表明,竹砌块抗压强度和竹砌块砌体抗压强度较高,若用于建设l~2层农房,墙体的轴向承载力具有较高的安全性.

  6. Ambient Cured Alkali Activated Flyash Masonry Units

    Science.gov (United States)

    Venugopal, K.; Radhakrishna; Sasalatti, Vinod M.

    2016-09-01

    Geopolymers belong to a category of non-conventional and non-Portland cement based cementitious binders which are produced using industrial by products like fly ash and ground granulated blast furnace slag (GGBFS). This paper reports on the development of geopolymer mortars for production of masonry units. The geopolymer mortars were prepared by mixing various by products with manufactured sand and a liquid mixture of sodium silicate and sodium hydroxide solutions. After curing at ambient conditions, the masonry units were tested for strength properties such as water absorption, initial rate of absorption, compression, shear- bond, and stress-strain behaviour etc. It was observed that the flexural strength of the blocks is more than 2 MPa and shear bond strength is more than 0.4MPa. It was found that the properties of geopolymer blocks were superior to the traditional masonry units. Hence they can be recommended for structural masonry.

  7. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    Energy Technology Data Exchange (ETDEWEB)

    Vas Choudhry; Stephen Kwan; Steven R. Hadley

    2001-07-01

    The objective of the project entitled ''Utilization of Lightweight Materials Made from Coal Gasification Slags'' was to demonstrate the technical and economic viability of manufacturing low-unit-weight products from coal gasification slags which can be used as substitutes for conventional lightweight and ultra-lightweight aggregates. In Phase I, the technology developed by Praxis to produce lightweight aggregates from slag (termed SLA) was applied to produce a large batch (10 tons) of expanded slag using pilot direct-fired rotary kilns and a fluidized bed calciner. The expanded products were characterized using basic characterization and application-oriented tests. Phase II involved the demonstration and evaluation of the use of expanded slag aggregates to produce a number of end-use applications including lightweight roof tiles, lightweight precast products (e.g., masonry blocks), structural concrete, insulating concrete, loose fill insulation, and as a substitute for expanded perlite and vermiculite in horticultural applications. Prototypes of these end-use applications were made and tested with the assistance of commercial manufacturers. Finally, the economics of expanded slag production was determined and compared with the alternative of slag disposal. Production of value-added products from SLA has a significant potential to enhance the overall gasification process economics, especially when the avoided costs of disposal are considered.

  8. Masonry macro-block analysis

    OpenAIRE

    Mendes, N

    2015-01-01

    The structural analysis involves the definition of the model and selection of the analysis type. The model should represent the stiffness, the mass and the loads of the structure. The structures can be represented using simplified models, such as the lumped mass models, and advanced models resorting the Finite Element Method (FEM) and Discrete Element Method (DEM). Depending on the characteristics of the structure, different types of analysis can be used such as limit analysis, linear and non...

  9. Laterally loaded masonry

    DEFF Research Database (Denmark)

    Raun Gottfredsen, F.

    In this thesis results from experiments on mortar joints and masonry as well as methods of calculation of strength and deformation of laterally loaded masonry are presented. The strength and deformation capacity of mortar joints have been determined from experiments involving a constant compressive...... stress and increasing shear. The results show a transition to pure friction as the cohesion is gradually destroyed. An interface model of a mortar joint that can take into account this aspect has been developed. Laterally loaded masonry panels have also been tested and it is found to be characteristic...

  10. A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight Block Cipher KTANTAN

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Rechberger, Christian

    2011-01-01

    In this paper we describe a variant of existing meet-in-the-middle attacks on block ciphers. As an application, we propose meet-in-the-middle attacks that are applicable to the KTANTAN family of block ciphers accepting a key of 80 bits. The attacks are due to sonic weaknesses in its bitwise key s...... requirements, these attacks are valid even in RFID-like environments where only a very limited amount of text material may be available to an attacker....

  11. Studies and mechanical properties of a new type of 'hybrid' ceramic block for buildings in structural masonry; Estudos e propriedades mecanicas de um novo tipo de bloco ceramico 'hibrido' para edificacoes em alvenarias estruturais

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Cassio Freire; Gomes, Uilame Umbelino, E-mail: cfcamara@infra.ufrn.br, E-mail: umbelino@dfte.ufrn.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Ciencias e Engenharia de Materiais

    2012-07-01

    This paper presents the development of a hybrid ceramic block to the use of resides in the buildings executed with structural masonry. This work seeking new materials and / or products with the purpose of increasing the compressive strength of the ceramic blocks, without neglecting other properties (water absorption and linear shrinkage). After the obtained material (clay powder and crushed), the packaging (in percentages ranging from 0%, 5%, 10% and 15% substitution of crushed clay powder), the identification and measuring (weights and lengths) of the bodies of the test piece, was performed on the approach characterized by fluorescence, mineralogy and SEM of these materials as well as the characterization (SEM) of ceramic blocks after the sintering (temperature of the 900 deg C, 1000 deg C, and 1100 deg C rate with heating tax of 5{sup o}C/minute and soak for 1 hour). Then the samples were subjected to the tests (compressive strength and water absorption) and the respective calculated linear shrinkage. After conducting the analysis of the results of these tests (according to the criteria and parameters required by the ABNT NBR 15270) was found that the 'hybrid' block with the addition of 10% crushed powder obtained the best results, increasing the compressive strength at 16 % without compromising the other parameters required by the Standard. (author)

  12. Cylinder block made of cast iron - A low-noise, low-cost lightweight; Gusseisenzylinderkurbelgehaeuse - Leicht, Leise, Kostenguenstig

    Energy Technology Data Exchange (ETDEWEB)

    Junk, H.; Blum, D. [Halberg Guss GmbH, Saarbruecken-Brebach (Germany)

    1999-07-01

    The innovative casting process, the design and the cast iron materials properties of the novel, lightweight cylinder block of the Halberg Guss company are explained. The improvements are: Further reduced weight due to novel cast iron material with lamellar graphite; higher strength and stiffness of the material; good acoustic properties; significant cost reduction. The cost advantage as compared to aluminium alloys is expected to last well into the forseeable future. (orig./MM) [German] Mit neuen Designkonzepten und Fertigungstechnologien in der Giesserei ist es gelungen, die Vorteile von Leichtbau in Gusseisen eindrucksvoll zu demonstrieren. Zusaetzlich zu der Gewichtsreduktion konnten weitere Funktionen, wie z.B. Oelruecklaeufe und Entlueftung, in das Kurbelgehaeuse integriert und damit dessen Steifigkeit erhoeht werden. Das von Halberg Guss vorgestellte Bogendesign ermoeglicht eine Kombination von guten akustischen Eigenschaften mit einem geringen Gewicht. Dies gilt sowohl fuer Ausfuehrungen von ZKG mit Deep Skirt, als auch mit Bedplate. Der groesste Vorteil von Gusseisen gegenueber Aluminium ist in den deutlich geringeren Kosten zu sehen. Diese Kostendifferenz wird sich auch auf absehbare Zeit nicht aendern. (orig.)

  13. Failure Criterion for Brick Masonry: A Micro-Mechanics Approach

    Directory of Open Access Journals (Sweden)

    Kawa Marek

    2015-02-01

    Full Text Available The paper deals with the formulation of failure criterion for an in-plane loaded masonry. Using micro-mechanics approach the strength estimation for masonry microstructure with constituents obeying the Drucker-Prager criterion is determined numerically. The procedure invokes lower bound analysis: for assumed stress fields constructed within masonry periodic cell critical load is obtained as a solution of constrained optimization problem. The analysis is carried out for many different loading conditions at different orientations of bed joints. The performance of the approach is verified against solutions obtained for corresponding layered and block microstructures, which provides the upper and lower strength bounds for masonry microstructure, respectively. Subsequently, a phenomenological anisotropic strength criterion for masonry microstructure is proposed. The criterion has a form of conjunction of Jaeger critical plane condition and Tsai-Wu criterion. The model proposed is identified based on the fitting of numerical results obtained from the microstructural analysis. Identified criterion is then verified against results obtained for different loading orientations. It appears that strength of masonry microstructure can be satisfactorily described by the criterion proposed.

  14. Cola à base de PVA e argamassa de solo-cimento como alternativas para o assentamento de alvenaria de tijolos maciços de solo-cimento PVA glue and cement soil mortars as alternatives for laying cement soil blocks masonry

    Directory of Open Access Journals (Sweden)

    Gisleiva C. dos S. Ferreira

    2011-04-01

    Full Text Available Neste trabalho, foi analisada a viabilidade de emprego de cola à base de PVA e argamassa de solo-cimento no assentamento de paredes de alvenaria de tijolos maciços de solo-cimento, em substituição à argamassa usual (cimento, cal e areia. Pequenos prismas, executados com quatro tijolos maciços de solo-cimento e assentados com as argamassas e a cola de PVA, foram ensaiados à compressão e à flexão. Os resultados dos ensaios dos prismas executados com a argamassa de assentamento usual foram tomados como padrão esperado de comportamento para os outros prismas executados com argamassa de solo-cimento e com cola de PVA. Os resultados obtidos nos ensaios dos prismas indicaram que tanto cola à base de PVA quanto argamassa de solo-cimento podem ser empregadas, satisfatoriamente, no assentamento de painéis de alvenaria de tijolos maciços de solo-cimento.This study presents the results of an experimental investigation in characterizing the properties of cement soil block masonry using cement-soil mortars and PVA glue. The study deals with the scantily explored area of tensile bond strength of soil-cement block masonry using cement-soil mortars and PVA glue. Flexural bond strength of masonry has been determined by testing stack-bonded prisms using a bond wrench test set-up. The study clearly demonstrates the superiority of cement-soil mortar over other conventional mortar such as cement mortar. The results of this study can be conveniently used to select a proportion for cement-soil mortar or PVA glue proportion for cement soil block masonry structures.

  15. EVALUATION OF CONCRETE BLOCKS FOR MASONRY WITH ADDITION OF TIRE RUBBER RESIDUES = AVALIAÇÃO DE BLOCOS DE CONCRETO PARA ALVENARIA COM ADIÇÃO DE RESÍDUOS DE BORRACHA DE PNEUS

    Directory of Open Access Journals (Sweden)

    Catiane Sebben Selung

    2013-01-01

    Full Text Available The steady growth in the number of freight and passenger vehicles in circulation causes an increased amount of tires requiring retreading or become useless. In order to contribute to a better utilization of tire rubber residues generated in the retreading process, this paper was conducted with the aim of evaluating the absorption and compressive strength of concrete blocks for masonry, with residues and aggregates found in the western region of Santa Catarina State. Thus, concrete blocks were prepared with partial replacement of coarse aggregate for rubber residues in proportions of 15%, 25% and 35%, in mass, which were compared with blocks of a reference mix without residue. The test results confirmed a tendency to increase the absorption and reduction of the compressive strength of the blocks with the increase of the amount of residues tire rubber in the concrete mix. However, the mixture with 15% residue satisfies the minimum value of 3.0 MPa for the characteristic compressive strength and a 10% maximal absorption for hollow concrete blocks with structural function for use in masonry elements above the ground level. = O constante crescimento do número de veículos de cargas e passageiros em circulação acarreta aumento da quantidade de pneus com necessidade de recapagem ou que se tornam inservíveis. No intuito de contribuir com o melhor aproveitamento dos resíduos de borracha de pneus gerados no processo de recapagem, este estudo foi desenvolvido com o objetivo de avaliar a absorção e resistência à compressão de blocos de concreto para alvenaria, confeccionados com resíduos e agregados encontrados na região oeste do Estado de Santa Catarina. Assim, foram confeccionados blocos de concreto com a substituição parcial de brita por resíduos de borracha nas proporções de 15%, 25% e 35%, em massa, os quais foram comparados com blocos de um traço de referência sem o resíduo. Os resultados dos ensaios confirmaram uma tendência de

  16. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    Energy Technology Data Exchange (ETDEWEB)

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  17. Masonry building envelope analysis

    Science.gov (United States)

    McMullan, Phillip C.

    1993-04-01

    Over the past five years, infrared thermography has proven an effective tool to assist in required inspections on new masonry construction. However, with more thermographers providing this inspection service, establishing a standard for conducting these inspections is imperative. To attempt to standardize these inspections, it is important to understand the nature of the inspection as well as the context in which the inspection is typically conducted. The inspection focuses on evaluating masonry construction for compliance with the design specifications with regard to structural components and thermal performance of the building envelope. The thermal performance of the building includes both the thermal resistance of the material as well as infiltration/exfiltration characteristics. Given that the inspections occur in the 'field' rather than the controlled environment of a laboratory, there are numerous variables to be considered when undertaking this type of inspection. Both weather and site conditions at the time of the inspection can vary greatly. In this paper we will look at the variables encountered during recent inspections. Additionally, the author will present the standard which was employed in collecting this field data. This method is being incorporated into a new standard to be included in the revised version of 'Guidelines for Specifying and Performing Infrared Inspections' developed by the Infraspection Institute.

  18. Statics of Historic Masonry Constructions

    CERN Document Server

    Como, Mario

    2013-01-01

    Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of much of these constructions, the demand for safety assessments and restoration projects is pressing and constant. This book aims to help fill this demand presenting a comprehensive new statics of masonry constructions. The book, result of thirty years of research and professional experience, gives the fundamentals of statics of the masonry solid, then applied to the study of statics of arches, piers and vaults. Further, combining engineering and architecture and through an interdisciplinary approach, the book investigates the statical behaviour of many historic monuments, as the Pantheon, the Colosseum,  the domes of S. Maria del Fiore in Florence and of St. Peter in Rome, the Tower of Pisa, the Gothic Cathedrals and the Masonry Buildings under seismic actions.

  19. Statics of historic masonry constructions

    CERN Document Server

    Como, Mario

    2016-01-01

    This successful book, which is now appearing in its second edition, presents a comprehensive new Statics of Masonry Constructions. Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant. The book you hold in hands contributes to fill this demand. The second edition integrates the original text of the first edition with new developments, widening and revisions, due to recent research studies achievements. The result is a book that gives a complete picture of the behaviour of the Masonry Constructions. First of all, it gives the fundamentals of its Statics, based on the no-tension assumption, and then it develops the Limit Analysis for the Masonry Constructions. In this framework, through an interdisciplinary approach combining Engineering and Architecture, the book also investigates the sta...

  20. On the Construction of 20×20 and 24×24 Binary Matrices with Good Implementation Properties for Lightweight Block Ciphers and Hash Functions

    Directory of Open Access Journals (Sweden)

    Muharrem Tolga Sakallı

    2014-01-01

    Full Text Available We present an algebraic construction based on state transform matrix (companion matrix for n×n (where n≠2k, k being a positive integer binary matrices with high branch number and low number of fixed points. We also provide examples for 20×20 and 24×24 binary matrices having advantages on implementation issues in lightweight block ciphers and hash functions. The powers of the companion matrix for an irreducible polynomial over GF(2 with degree 5 and 4 are used in finite field Hadamard or circulant manner to construct 20×20 and 24×24 binary matrices, respectively. Moreover, the binary matrices are constructed to have good software and hardware implementation properties. To the best of our knowledge, this is the first study for n×n (where n≠2k, k being a positive integer binary matrices with high branch number and low number of fixed points.

  1. 砌块用轻集料混凝土的性能研究%Study the properties of lightweight aggregate for make the block

    Institute of Scientific and Technical Information of China (English)

    陈益兰; 潘荣伟; 唐国武; 徐伟

    2012-01-01

    利用多微孔轻集料、建筑固体废弃物作集料,水泥和粉煤灰、脱硫石膏、电石渣等工业废渣作复合胶凝材料制备轻集料混凝土,对其力学性能、抗冻和耐高温性能进行研究.实验结果表明:轻集料混凝土密度等级为1500 kg/m3时,强度等级达到LC20,抗冻标号均达到F15,符合非采暖地区抗冻要求;显示出良好的耐高温性能,在400℃时实验样品的抗压强度没有下降,甚至略高于标准养护条件下28 d抗压强度值.在此基础上制备了具有自保温功能的轻集料混凝土小型空心砌块,其体积密度为940 kg/m3,抗压强度为5.4 MPa,砌筑墙体传热系数为1.26 W/(m2·K).%In this paper, the multi-porous lightweight aggregate and construction of solid waste were used as aggregate, cement and fly ash,gypsum, calcium carbide slag and other industrial waste were used as composite cementitious material, to make lightweight aggregate concrete. And study its mechanical properties,its frost resistance and high temperature performance. The results show that the lightweight aggregate concrete's compressive strength level up to LC20,when the density level keep in 1500 kg/m3;the antifreeze experimental results show that the antifreeze label reach F15,in line with the non-heating area antifreeze requirements; The lightweight aggregate concrete shows good resistance to high temperature. The high temperature performance experimental results show that the compressive strength of lightweight aggregate concrete after high temperature of 400 ℃ is not drop, some of the samples is still higher than the 28 d compressive strength under the standard conditions of curing. On this basis, lightweight aggregate concrete small hollow block with insulation function is made,its density is 940 kg/m3, the compressive strength is 5.4 MPa,when laying into wall the heat transfer coefficient is 1.26 W/(m2·K).

  2. Properties of dry masonry mixtures based on hollow aluminosilicate microspheres

    Directory of Open Access Journals (Sweden)

    Semenov Vyacheslav

    2017-01-01

    Full Text Available At present, there is a steady increase in the volume of housing construction in the Russian Federation. The modern trends in the field of energy and resource saving determine the need of the use of efficient building materials that ensure the safety, comfort and minimum cost of housing construction. Among the materials, often used for erecting of fencing structures, it is possible to note effective small-piece elements (ceramic and light-weight concrete units, etc.. To ensure the solidity of such structures, it is necessary to use the masonry mortars whose properties correspond to those of the main wall material. The existing dry mixes for obtaining of such mortars are expensive and often do not meet the minimum physical-and-mechanical and exploitation requirements. The solution of this problem is the usage of the hollow ceramics (aluminosilicate microspheres as a filler for such mixes. The article presents the results of studies of the main physical-and-mechanical and exploitation characteristics of dry masonry mixes with hollow ceramics microspheres modified with various chemical additives. The effect of the compounding factors on the average density and strength of dry masonry mixes was studied. The compositions have been optimized by the methods of mathematical planning.

  3. Statics of historic masonry constructions

    CERN Document Server

    Como, Mario

    2017-01-01

    Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments of its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant; still within the broad studies in the subject it is not yet recognised, in particular within the seismic area, a unitary approach to deal with Masonry structures. This successful book contributes to clarify the issues with a rigorous approach offering a comprehensive new Statics of Masonry Constructions. This third edition has been driven by some recent developments of the research in the field, and it gives the fundamentals of Statics with an original and rigorous mathematical formulation, further in-depth inquired in this new version. With many refinements and improvements, the book investigates the static behaviour of many historic monuments, such as the Gothic Cathedrals, the Mycenaean Tholoi, the Pantheon, the Colosseum, the dome...

  4. 低强度砂浆灌孔砌块砌体抗压性能试验研究%EXPERIMENTAL RESEARCH ON COMPRESSIVE BEHAVIORS OF GROUTED BLOCK MASONRY WITH LOW-STRENGTH MORTAR

    Institute of Scientific and Technical Information of China (English)

    黄靓; 王辉; 陈胜云

    2012-01-01

    In order to study the effect of mortar strength on compressive behaviors of grouted concrete masonry,nine specimens using lime mortar were analyzed.According to failure pattern,cracking load,ultimate capacity and deformation capacity,a formula was provided to calculate the compressive capacity of grouted concrete masonry when the mortar strength is very low.The ratio of cracking load to ultimate load is very small,which affects the durability of masonry building.Therefore,this paper states that the mortar strength should be higher than a critical value when designing and constructing grouted concrete masonry.%为了研究低强度砂浆对灌孔砌块砌体抗压性能的影响,该文通过9个采用石灰砂浆砌筑的灌孔砌块砌体的抗压试验,对其抗压破坏形态、开裂荷载、极限荷载及变形能力进行了分析,提出了适用于砂浆强度很低的灌孔砌块砌体的抗压强度计算公式。分析表明:低强度砂浆砌块砌体的初裂荷载与极限荷载之比较小,而开裂荷载过低将会对砌体房屋的耐久性产生不利影响,因此,该文认为在进行灌孔砌块砌体的设计和施工时,砂浆的强度应得到保证,不能过低。

  5. Water absorption in brick masonry

    NARCIS (Netherlands)

    Brocken, H.J.P.; Smolders, H.R.

    1996-01-01

    The water absorption in brick, mortar that was cured separately, and masonry samples was studied using NMR. Models of the moisture transport are usually formulated on the basis of a diffusion equation. In the case of water absorption in separate brick and mortar samples, the moisture diffusivity in

  6. Infinte Periodic Structure of Lightweight Elements

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Andersen, Lars Vabbersgaard; Sorokin, Sergey

    2013-01-01

    Lightweight wooden structures have become more popular as a sustainable, environmental- friendly and cost-effective alternative to concrete, steel and masonry buildings. However, there are certain drawbacks regarding noise and vibration due to the smaller weight and stiffness of wooden buildings...... for proper dynamic assessment of lightweight buildings. Instead, this paper discusses and compares the use of finite element analysis and a wave approach based on Floquet theory. The present analysis has focus on the effect of periodicity on vibration transmission within semi-infinite beam structures. Two....... Furthermore, lightweight building elements are typically periodic structures that behave as filters for sound propagation within certain frequency ranges (stop bands), thus only allowing transmission within the pass bands. Hence, traditional methods based on statistical energy analysis cannot be used...

  7. Rilem TC 203-RHM: Repair mortars for historic masonry. Requirements for repointing mortars for historic masonry

    NARCIS (Netherlands)

    Hees, R.P.J. van; Groot, C.; Hughes, J.J.; Balen, K. van; Bicer-Simsir, B.; Binda, L.; Elsen, J.; Konow, T. von; Lindqvist, J.E.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.E.; Thompson, B.

    2012-01-01

    This paper gives a summary of functional and performance requirements for repointing mortars for historic masonry (design, execution and maintenance). Successful performance of repair and conservation of mortar in historic masonry requires more care with design and execution than with modern masonry

  8. Experimental investigations on dry stone masonry walls

    OpenAIRE

    2006-01-01

    Brick unreinforced masonry walls have been widely studied both from experimental and numerical point of view, but scarce experimental information is available for dry stone masonry walls that constitute the material more frequently used in the construction of ancient historical constructions. Therefore, the present work aims at increasing the insight about the behavior of typical ancient masonry walls under cyclic loading. To attain such goal, different experimental approaches are consi...

  9. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ece Erdogmus

    2015-02-01

    Full Text Available The use of fiber reinforcement in traditional concrete mixes has been extensively studied and has been slowly finding its regular use in practice. In contrast, opportunities for the use of fibers in masonry applications and structural rehabilitation projects (masonry and concrete structures have not been as deeply investigated, where the base matrix may be a weaker cementitious mixture. This paper will summarize the findings of the author’s research over the past 10 years in these particular applications of fiber reinforced cements (FRC. For masonry, considering both mortar and mortar-unit bond characteristics, a 0.5% volume fraction of micro fibers in type N Portland cement lime mortar appear to be a viable recipe for most masonry joint applications both for clay and concrete units. In general, clay units perform better with high water content fiber reinforced mortar (FRM while concrete masonry units (CMUs perform better with drier mixtures, so 130% and 110% flow rates should be targeted, respectively. For earth block masonry applications, fibers’ benefits are observed in improving local damage and water pressure resistance. The FRC retrofit technique proposed for the rehabilitation of reinforced concrete two-way slabs has exceeded expectations in terms of capacity increase for a relatively low cost in comparison to the common but expensive fiber reinforced polymer applications. For all of these applications of fiber-reinforced cements, further research with larger data pools would lead to further optimization of fiber type, size, and amount.

  10. Masonry constructions mechanical models and numerical applications

    CERN Document Server

    Lucchesi, Massimiliano; Padovani, Cristina

    2008-01-01

    Numerical methods for the structural analysis of masonry constructions can be of great value in assessing the safety of artistically important masonry buildings and optimizing potential operations of maintenance and strengthening in terms of their cost-effectiveness, architectural impact and static effectiveness. This monograph firstly provides a detailed description of the constitutive equation of masonry-like materials, clearly setting out its most important features. It then goes on to provide a numerical procedure to solve the equilibrium problem of masonry solids. A large portion of the w

  11. Mechanical Behaviour of the Wood Masonry

    Directory of Open Access Journals (Sweden)

    Fazia FOUCHAL

    2011-09-01

    Full Text Available In this paper we study the walls wood masonry behaviour. First, we propose a regulatory validation of the walls wood masonry behaviour subjected to vertical and horizontal loads according to Eurocode 5. Then we present the numerical application on the wall wood supported two floors level.

  12. Non Linear Seismic Analysis of Masonry Structures

    Directory of Open Access Journals (Sweden)

    Sirajuddin, M

    2011-12-01

    Full Text Available Nowadays, even though many new construction techniques have been introduced, masonry has got its own importance in building industry. Masonry structures fail miserably under lateral loading conditions like earth quakes and impact loads. The occurrence of recent earthquakes in India and in different parts of the world have highlighted that most of the loss of human lives and damage to property have been due to the collapse of masonry structures. Though an earthquake could not be prevented, the loss of life and property could be minimized, if necessary steps could be taken to reduce the damages on the existing masonry structures. This paper investigates the application ofNonlinear Seismic Analysis of a masonry building using ANSYS software and check the efficacy of retrofit measuresto protect the existing building.

  13. Lightweight Structures.

    Science.gov (United States)

    Shaver and Co., Michigan City, IN.

    One of the newest and most promising developments in architecture has been the use of lightweight structures for encapsulating space. Using this new technology, builders can enclose large and small areas at a fraction of the cost of conventional construction and at the same time provide interior space that is totally flexible. This brochure shows…

  14. Collapse Mechanisms Of Masonry Structures

    Science.gov (United States)

    Zuccaro, G.; Rauci, M.

    2008-07-01

    The paper outlines a possible approach to typology recognition, safety check analyses and/or damage measuring taking advantage by a multimedia tool (MEDEA), tracing a guided procedure useful for seismic safety check evaluation and post event macroseismic assessment. A list of the possible collapse mechanisms observed in the post event surveys on masonry structures and a complete abacus of the damages are provided in MEDEA. In this tool a possible combination between a set of damage typologies and each collapse mechanism is supplied in order to improve the homogeneity of the damages interpretation. On the other hand recent researches of one of the author have selected a number of possible typological vulnerability factors of masonry buildings, these are listed in the paper and combined with potential collapse mechanisms to be activated under seismic excitation. The procedure takes place from simple structural behavior models, derived from the Umbria-Marche earthquake observations, and tested after the San Giuliano di Puglia event; it provides the basis either for safety check analyses of the existing buildings or for post-event structural safety assessment and economic damage evaluation. In the paper taking advantage of MEDEA mechanisms analysis, mainly developed for the post event safety check surveyors training, a simple logic path is traced in order to approach the evaluation of the masonry building safety check. The procedure starts from the identification of the typological vulnerability factors to derive the potential collapse mechanisms and their collapse multipliers and finally addresses the simplest and cheapest strengthening techniques to reduce the original vulnerability. The procedure has been introduced in the Guide Lines of the Regione Campania for the professionals in charge of the safety check analyses and the buildings strengthening in application of the national mitigation campaign introduced by the Ordinance of the Central Government n. 3362

  15. Damage to historic brick masonry structures. Masonry damage diagnostic system and damage atlas for evaluation of deterioration

    NARCIS (Netherlands)

    Balen, K. van; Binda, L.; Hees, R.P.J. van; Franke, L.

    1996-01-01

    The aim of the research on brick masonry degradation supported by the D.G. XII is presented. The project is delivering the following: ► Damage Atlas of ancient brick masonry, a book with a description of the types of damage, and their possible causes, in ancient brick masonry structures; ► Masonry D

  16. Rubble masonry response under cyclic actions: The experience of L’Aquila city (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Fonti, Roberta, E-mail: roberta.fonti@tum.de; Barthel, Rainer, E-mail: r.barthel@lrz.tu-muenchen.de [TUM University, Chair of Structural Design, Arcisstraße 21, 80333 Munich (Germany); Formisano, Antonio, E-mail: antoform@unina.it [University of Naples “Federico II”, DIST Department, P.le V. Tecchio, 80, 80125 Naples (Italy); Borri, Antonio, E-mail: antonio.borri@unipg.it [University of Perugia, Department of Engineering, Via G. Duranti 95, 06125 Perugia (Italy); Candela, Michele, E-mail: ing.mcandela@libero.it [University of Reggio Calabria, PAU Department, Salita Melissari 1, 89124 Reggio Calabria (Italy)

    2015-12-31

    Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local response of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different “modes of damage” of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L’Aquila district is discussed.

  17. Rubble masonry response under cyclic actions: The experience of L'Aquila city (Italy)

    Science.gov (United States)

    Fonti, Roberta; Barthel, Rainer; Formisano, Antonio; Borri, Antonio; Candela, Michele

    2015-12-01

    Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local response of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different "modes of damage" of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L'Aquila district is discussed.

  18. Experimental study on perforation resistance of composite targets composed by granite block masonry and reinforced concrete plates%有限厚块石砌体钢筋混凝土结构板抗贯穿性能的实验研究

    Institute of Scientific and Technical Information of China (English)

    吴飚; 杨建超; 刘瑞朝

    2013-01-01

    Four kinds of finite thickness target plates were prepared, including granite (G) plates, steel wire-mesh reinforced concrete (RC) plates, composite GRC targets composed by granite (G) plates and steel wire-mesh reinforced concrete (RC) plates, and composite GBRC targets composed by granite block (GB)masonry and steel wire-mesh reinforced concrete (RC) plates. By using a 30-mm-caliber gun to accelerate two kinds of projectiles of the same shape which differ in material strength, penetration experiments were carried out for these prepared target plates, respectively. The damage effects of the target plates subjected to projectile penetration were compared. The results show that the well-designed GBRC targets have the best resistance to perforation. And the perforation resistance of the GBRC targets is closely related with the following factors: block stone size, strength, masonry way, and reinforced concrete structure.%用花岗岩和混凝土制备出了花岗岩板、钢丝网混凝土板、花岗岩与钢丝网混凝土组合板、花岗岩块石砌体钢筋混凝土结构板4种类型的有限厚靶板.采用口径为30 mm的火炮作为发射装置,利用形状相同、材料强度不同的2种弹体对上述靶板进行了侵彻贯穿实验,比较了各类靶板抗侵彻贯穿破坏现象.结果表明,设计良好的块石砌体钢筋混凝土结构板具有优良的抗贯穿性能,且其抗贯穿性能与块石粒径、块石强度、块石砌筑方式、粘结强度和钢筋混凝土结构形式密切相关.

  19. Uncertainty in Seismic Capacity of Masonry Buildings

    Directory of Open Access Journals (Sweden)

    Nicola Augenti

    2012-07-01

    Full Text Available Seismic assessment of masonry structures is plagued by both inherent randomness and model uncertainty. The former is referred to as aleatory uncertainty, the latter as epistemic uncertainty because it depends on the knowledge level. Pioneering studies on reinforced concrete buildings have revealed a significant influence of modeling parameters on seismic vulnerability. However, confidence in mechanical properties of existing masonry buildings is much lower than in the case of reinforcing steel and concrete. This paper is aimed at assessing whether and how uncertainty propagates from material properties to seismic capacity of an entire masonry structure. A typical two-story unreinforced masonry building is analyzed. Based on previous statistical characterization of mechanical properties of existing masonry types, the following random variables have been considered in this study: unit weight, uniaxial compressive strength, shear strength at zero confining stress, Young’s modulus, shear modulus, and available ductility in shear. Probability density functions were implemented to generate a significant number of realizations and static pushover analysis of the case-study building was performed for each vector of realizations, load combination and lateral load pattern. Analysis results show a large dispersion in displacement capacity and lower dispersion in spectral acceleration capacity. This can directly affect decision-making because both design and retrofit solutions depend on seismic capacity predictions. Therefore, engineering judgment should always be used when assessing structural safety of existing masonry constructions against design earthquakes, based on a series of seismic analyses under uncertain parameters.

  20. Strengthening masonry infill panels using engineered cementitious composites

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Fischer, Gregor; Nateghi Alahi, Fariborz

    2015-01-01

    This comprehensive experimental study aims at investigating the behavior of masonry infill panels strengthened by fiber reinforced engineered cementitious composites (ECC). The experimental program included testing of materials, masonry elements and panels. Material tests were carried out first f...

  1. Assessment of Historic Concrete and Masonry by Broadband Vibration Testing

    Science.gov (United States)

    2010-08-01

    reinforcement Voids Reinforcement corrosion 3 Beams: Voids Areas of segregation (in concrete placed without proper controls, the cement paste...of bond between wythes cracking environmental deterioration of masonry units. Brick masonry ( veneer ): Most problems visible to inspection

  2. Comparative study of ceramic blocks for masonry produced in Paraiba and Rio Grande do Norte; Estudo comparativo de blocos ceramicos para alvenaria produzidos na Paraiba e no Rio Grande do Norte (Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.C. dos; Melo, O.B. de; Macedo, R.S. de; Silva, B.J. da; Goncalves, W.P.; Santana, L.N.L., E-mail: renato.materiais@gmail.com [Universidade Federal de Campina Grande (CCT/UAEMa/UFCG), Campina Grande, PB (Brazil). Unidade Acadamica de Engenharia de Materiais. Centro de Ciencias e Tecnologia

    2011-07-01

    The aim of this study to analyze the properties of ceramic blocks produced by the states of Paraiba and Rio Grande do Norte. For this, the raw materials used in the fabrication of these blocks were characterized using the techniques of chemical, granulometry and mineralogical analysis and determination of the plasticity index of mixture ceramic. The properties of the ceramic blocks were determined by evaluating the geometric and visual characteristics and determining the water absorption and compressive strength, according to technical recommendations ABNT NBR 15270. It can be observed that samples have chemical compositions with a predominance of SiO{sub 2} and Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} and they are composed of mica, kaolinite, quartz, feldspar and goethite. It was also noted that all blocks showed compressive strength less than 1.5 MPa. (author)

  3. STRUCTURAL VULNERABILITY ASSESSMENT OF MASONRY BUILDINGS IN TURKEY

    OpenAIRE

    KORKMAZ, Kasım Armagan; CARHOGLU, Asuman Isıl

    2011-01-01

    Turkey is located in an active seismic zone. Mid to high rise R/C building and low rise masonry buildings are very common construction type in Turkey. In recent earthquakes, lots of existing buildings got damage including masonry buildings. Masonry building history in Turkey goes long years back. For sure, it is an important structure type for Turkey. Therefore, earthquake behavior and structural vulnerability of masonry buildings are crucial issues for Turkey as a earthquake prone country. I...

  4. SCIENTIFIC AND TECHNICAL PRECONDITIONS FOR EXTRUDED LIGHTWEIGHT CEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Oreshkin Dmitriy Vladimirovich

    2012-10-01

    The paper also presents the results of the research of the microstructure of spilt Portland cement and hollow glass spheres, their mineral and chemical analyses, as well as the properties of masonry mortars. The paper presents a conclusion that their high process-dependent parameters and superior operating performance are attainable through the introduction of effective hollow glass spheres into masonry mortars and the application of the extrusion method. The aforementioned novelties may reduce the water consumption rate, improve the strength, freeze resistance and durability of cement mortars. The preparation of this paper involved the study of nine reference books. This paper is the first one of a series of papers covering the method of extrusion of lightweight cement mortars.

  5. Retrofitting Masonry Walls with Carbon Mesh

    Directory of Open Access Journals (Sweden)

    Patrick Bischof

    2014-01-01

    Full Text Available Static-cyclic shear load tests and tensile tests on retrofitted masonry walls were conducted at UAS Fribourg for an evaluation of the newly developed retrofitting system, the S&P ARMO-System. This retrofitting system consists of a composite of carbon mesh embedded in a specially adapted high quality spray mortar. It can be applied with established construction techniques using traditional construction materials. The experimental study has shown that masonry walls reinforced by this retrofitting system reach a similar strength and a higher ductility than retrofits by means of bonded carbon fiber reinforced polymer sheets. Hence, the retrofitting system using carbon fiber meshes embedded in a high quality mortar constitutes a good option for static or seismic retrofits or reinforcements for masonry walls. However, the experimental studies also revealed that the mechanical anchorage of carbon mesh may be delicate depending on its design.

  6. Masonry structures between mechanics and architecture

    CERN Document Server

    Pedemonte, Orietta; Williams, Kim

    2015-01-01

    This book provides an overview of state of the art research in the mechanics of masonry structures. It continues the series Between Mechanics and Architecture, initially launched in 1995 from the collaboration of several renowned scholars, including Edoardo Benvenuto and Patricia Radelet-de Grave.   The contributions in this volume represent the main approaches to the complex topic of masonry structures. In addition to historical studies, the mechanical behavior of masonry arches and structures is studied using different approaches (structural analysis, limit analysis, elastic analysis, plasticity, mathematical approaches, etc.), at times difficult to reconcile, at others intertwined and complementary.   Readers will have the opportunity to compare different theoretical lines of inquiry and thus explore new horizons of research.   Contributions by: Danila Aita Andrea Bacigalupo Riccardo Barsotti Stefano Bennati Antonio Brencich Mario Como Salvatore D’Agostino Luigi Gambarotta Jacques Heyman Santiago Huer...

  7. The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes

    Science.gov (United States)

    Güney, D.; Aydin, E.; Öztürk, B.

    2015-07-01

    On March 8th, 2010 Karakocan-Elazig earthquake of magnitude 6.0 occurred at a region where masonry and adobe construction is very common. Karakocan-Elazig is located in a high seismicity region on Eastern Anatolian Fault System (EAFS). Due to the earthquake, 42 people were killed and 14’113 buildings were damaged. Another city, Van located at South east of Turkey is hit by earthquakes with M = 7.2 occurred on October 23rd, 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanli village) and M = 5.6 on November 9th, 2011 with an epicenter near the town of Edremit, south of Van and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 10’000 buildings were seriously damaged. There are many traditional types of structures existing in the region hit by earthquakes (both Van and Elazig). These buildings were built as adobe, unreinforced masonry or mixed type. These types of buildings are very common in rural areas (especially south and east) of Turkey because of easy workmanship and cheap construction cost. Many of those traditional type structures experienced serious damages. The use of masonry is very common in some of the world's most hazard-prone regions, such as in Latin America, Africa, the Indian subcontinent and other parts of Asia, the Middle East, and southern Europe. Based on damage and failure mechanism of those buildings, the parameters affecting the seismic performance of those traditional buildings are analyzed in this paper. The foundation type, soil conditions, production method of the masonry blocks, construction method, the geometry of the masonry walls, workmanship quality, existence of wooden beams, type of roof, mortar between adobe blocks are studied in order to understand the reason of damage for these types of buildings.

  8. Lightweight Structures

    Science.gov (United States)

    Whittenberger, J. Daniel

    2001-01-01

    Present structural concepts for hot static structures are conventional "sheet & stringer" or truss core construction. More weight-efficient concepts such as honeycomb and lattice block are being investigated, in combination with both conventional superalloys and TiAl. Development efforts for components made from TiAl sheet are centered on lower cost methods for sheet and foil production, plus alloy development for higher temperature capability. A low-cost casting technology recently developed for aluminum and steel lattice blocks has demonstrated the required higher strength and stiffness, with weight efficiency approach- ing honeycombs. The current effort is based on extending the temperature capability by developing lattice block materials made from IN-718 and Mar-M247.

  9. PIXE, PIGE and NMR study of the masonry of the pyramid of Cheops at Giza

    Energy Technology Data Exchange (ETDEWEB)

    Demortier, Guy E-mail: guy.demortier@fundp.ac.be

    2004-11-01

    The mystery of the construction of the great pyramids of Egypt could be elucidated by physico-chemical measurements on small pieces of the material. In this paper, we give several arguments against the present point of view of most Egyptologists who do not admit another method than hewn blocks. We give several pieces of evidence that the masonry was entirely built by a moulding procedure involving the use of ingredients that were all available in the region of Cairo.

  10. Electrokinetic removal of salt from brick masonry

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Rörig-Dalgaard, Inge

    2006-01-01

    A method to effectively remove salts from masonry is lacking. The present study aims at determining the removal efficiency of salts from bricks in an applied low current electric DC field. At first an investigation on removal of NaCl and Na(NO3)2 from spiked bricks in laboratory scale was conducted...

  11. Analysis of Joint Masonry Moisture Content Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States)

    2015-10-01

    Adding insulation to the interior side of walls of masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw, have known solutions, but wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated versus non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  12. Electrokinetic removal of salt from brick masonry

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Rörig-Dalgaard, Inge

    2006-01-01

    A method to effectively remove salts from masonry is lacking. The present study aims at determining the removal efficiency of salts from bricks in an applied low current electric DC field. At first an investigation on removal of NaCl and Na(NO3)2 from spiked bricks in laboratory scale was conducted...

  13. Performance Evaluation of Different Masonry Infill Walls with Structural Fuse Elements Based on In-Plane Cyclic Load Testing

    Directory of Open Access Journals (Sweden)

    Andrew Kauffman

    2014-09-01

    Full Text Available This paper discusses the performance of a structural fuse concept developed for use as a seismic isolation system in the design and retrofit of masonry infill walls. An experimental program was developed and executed to study the behavior of the structural fuse system under cyclic loads, and to evaluate the performance of the system with various masonry materials. Cyclic tests were performed by applying displacement controlled loads at the first, second, and third stories of a two-bay, three-story steel test frame with brick infill walls; using a quasi-static loading protocol to create a first mode response in the structural system. A parametric study was also completed by replacing the brick infill panels with infill walls constructed of concrete masonry units and autoclaved aerated concrete blocks, and applying monotonically increasing, displacement controlled loads at the top story of the test frame.

  14. Analysis of Joist Masonry Moisture Content Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States)

    2015-10-08

    There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  15. Mechanical Properties of Unreinforced Brick Masonry, Section1

    Energy Technology Data Exchange (ETDEWEB)

    Mosalam, K; Glascoe, L; Bernier, J

    2009-10-02

    Before the advent of concrete and steel, masonry helped build civilizations. From Egypt in Africa, Rome in Europe, Maya in the America to China in Asia, masonry was exploited to construct the most significant, magnificent and long lasting structures on the Earth. Looking at the Egyptian pyramids, Mayan temples, Roman coliseum and Chinese Great Wall, one cannot stop wondering about the significance and popularity that masonry has had through out history. Lourenco et al (1989) summed up the reasons for the popularity of masonry in the following, 'The most important characteristic of masonry construction is its simplicity. Laying pieces of stone or bricks on top of each other, either with or without cohesion via mortar, is a simple, though adequate, technique that has been successful ever since remote ages. Other important characteristics are the aesthetics, solidity, durability, low maintenance, versatility, sound absorption and fire protection' Despite these advantages, masonry is no longer preferred structural material in many parts of the developed world, especially in seismically active parts of the world. Partly, masonry and especially unreinforced masonry (URM) has mechanical properties such as strength and ductility inferior to those of reinforced concrete and steel. Moreover, masonry structures were traditionally built based on rules of thumb acquired over many years of practice and/or empirical data from testing. Accordingly, we do not have a rigorous and uniform method of analysis and design for masonry. Nevertheless, the world still possesses numerous historic and ordinary masonry structures, which require maintenance and strengthening to combat the assault of time and nature. Hence, it is important to study fundamental properties of masonry so that new masonry structures can be effectively designed and built, and the cost for servicing old structures and for building new ones will be less expensive.

  16. On the automobile lightweight

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; Yi Hongliang; Lu Hongzhou; Wan Xinming

    2012-01-01

    The significance, description parameters, evaluation method, implement way and design for lightweight of au- tomobile are comprehensively reviewed. The relationship among the performances of auto parts & components, the prop- erties of materials and application of advanced technologies is also elaborated. According to recently related progress of lightweight and authors' research and developing work, lightweight of automobile is comprehensively and systematically overviewed.

  17. Assessment of Structural Strength of Commercial Sandcrete Blocks ...

    African Journals Online (AJOL)

    makorede

    construction of residential, industrial and commercial buildings ... (i.e. 460 mm thick blocks) or as partition walls (the 150 mm .... Compressive strength for sandcrete /masonry is presented ... strength, even if the materials are of the required.

  18. 节能烧结砌块砌体热桥保温处理与传热模型计算%Study on heat bridge insulation treatment and heat transfer calculation model for energy saving fired block masonry

    Institute of Scientific and Technical Information of China (English)

    蹇守卫; 孙孟琪; 陈鹏; 马保国

    2015-01-01

    热桥是节能烧结砌块使用过程中最容易出现的问题,保温材料常用于热桥部位的处理以减少热损失,为研究保温材料种类和厚度对节能烧结砌块热桥的影响规律,采用Ansys软件定量计算了聚氨酯(PU)、模塑聚苯板(EPS)和保温抹面砂浆在10 mm~40 mm范围内对模型温度分布、热量传递的变化规律,结果表明:不对热桥进行处理时,在内墙与构造柱相交的地方,热流量最大,随着保温材料导热系数的增加,保温层与热桥柱接触的温度逐渐增加,随保温材料厚度的增加,保温层和热桥柱接触点的温度逐渐下降,但下降幅度逐渐减小,其综合平衡厚度为20 mm。%Heat bridge is a difficult problem in the use of fired brick, heat insulating materials are usually used in the thermal bridge to reduce heat loss. The influence of heat insulating material’s type and thickness on the energy saving fired block thermal bridge is studied by Analyst software. The results show that the heat flow at the intersection of inner wall and constructional column without heat bridge treatment is maximum. With increasing the insulating material’s conductivity, the temperature of the contact point between the insulating layer and the thermal bridge column gradually increases; With increasing the thickness of heat insulating material, the temperature gradually decreases, but the decline rate gradually reduces, the overall balance of the thickness is 20 mm.

  19. 采煤工作面轻型架间挡矸装置研究%Research on lightweight device for blocking gangue between hydraulic supports in steeply inclined coal face

    Institute of Scientific and Technical Information of China (English)

    曹树刚; 李毅; 雷才国; 刘富安

    2013-01-01

    The device for blocking gangue between hydralic supports is the important guarantee to avoid the situation that coal and gangue slide down to hurt people and destroy equipment, when assigning fully-mechanized longwall face on the strike with true-inclined or false-inclined layout in the steeply inclined coal seam. In this paper, based on assive investigation and plan comparison, a light-weight device for blocking gangue with metal net and four-door combination has been developed. The device increases the adaptability to the changes of dip angle and mining height of coal seam, and can change the advance directions of working face, by using the sliding system of ball bearing type, symmetric design and changeable size of doorframe. The numerical simulation results show that the device can meet the needs to prevent coal and gangue, the sliding system composed of guide rails, rollers and limit rails presents high flexibility, and can avoid the problem that the device for blocking gangue may fail to work under hydraulic control, after adoring manual control to close sliding door. In addition, when using metal-net frame structure in the hanging door and sliding door, can reduce the local ventilation resistance of working face, and is helpful to the ventilation stability of working face. Field tests indicate that the weight of light-weight device for blocking gangue between supports is reduced two thirds of that of the previous planer device for blocking gangue, and it is convenient to transport, install and maintain.%在大倾角、急斜煤层真倾斜或伪倾斜布置走向长壁综合机械化开采工作面,架间挡矸装置是防止顺工作面煤、矸飞窜伤人和毁坏设备的重要保证.通过大量的调查研究和方案比较,研制了带金属网的四门组合的轻型架间挡矸装置.该装置采用滚珠式滑动系统、对称式设计和变化门框尺寸,增大了对煤层倾角变化和采高变化的适应性,能满足工作面推进方向换

  20. Experimental Measurements of Prestressed Masonry with using Sliding Joint

    Directory of Open Access Journals (Sweden)

    Stara Marie

    2014-06-01

    Full Text Available Contribution deals with experimental measurements of deformations in the place exposed to local load caused by additional pre-stressing. The measurements are made at the masonry corner built in the laboratory equipment. The laboratory equipment was designed at Faculty of Civil Engineering VŠB-Technical University of Ostrava for measurement tri-axial stress-strain conditions in masonry. In this masonry corner two pre-stressing bars are placed. These bars are in different height and are anchored to the anchor plates, which transfer pre-stressing forces to the masonry. The specimen for laboratory testing is performed in the proportion to the reality of 1:1. In the bottom part masonry is inserted asphalt strip. It operates in the masonry like a sliding joint and reduces the shear stress at interface between concrete and masonry structures. The results are compared with the results of masonry without the use of sliding joints, including comment on the effect of sliding joints on the pre-stressing masonry structures.

  1. Compressive strength of brick masonry made with weak mortars

    DEFF Research Database (Denmark)

    Pedersen, Erik Steen; Hansen, Klavs Feilberg

    2013-01-01

    The use of weak mortar has a number of advantages (e.g. prevention of expansion joints, environmental issues). However, according to EC6, the strength of masonry vanishes when the compressive strength of the mortar approaches zero. In reality the presence of even unhardened mortar kept in place...... (fm≈6 N/mm2) compression tests of masonry with perforated bricks show that the EC6 expression is not always safe for Danish masonry. This is probably because the tensile strength of the bricks also has an effect on the compressive strength of masonry when the mortar is stronger than weak lime mortar...

  2. Measure Guideline. Internal Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Straube, J. F. [Building Science Corporation (BSC), Somerville, MA (United States); Ueno, K. [Building Science Corporation (BSC), Somerville, MA (United States); Schumacher, C. J. [Building Science Corporation (BSC), Somerville, MA (United States)

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  3. Measure Guideline: Internal Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  4. Multisurface interface model for analysis of masonry structures

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.

    1997-01-01

    The performance of an interface elastoplastic constitutive model for the analysis of unreinforced masonry structures is evaluated. Both masonry components are discretized aiming at a rational unit-joint model able to describe cracking, slip, and crushing of the material. The model is formulated in t

  5. Cryptanalysis of Some Lightweight Symmetric Ciphers

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed Awadelkareem Mohamed Ahmed

    on a variant of PRESENT with identical round keys. We propose a new attack named the Invariant Subspace Attack that was specifically mounted against the lightweight block cipher PRINTcipher. Furthermore, we mount several attacks on a recently proposed stream cipher called A2U2....

  6. Drying brick masonry by electro-osmosis

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    2006-01-01

    When a fine grained, porous medium is applied an electric DC field, transport of matter occurs, and the transport mechanism in focus of the present study is electro-osmosis, which is transport of water. In laboratory it was shown possible to transport water inside a brick and brick/mortar system...... movement of water towards the cathode was seen. Thus the basis for utilizing the electro-osmotic effect for drying brick masonry is present, but proper electrodes still needs to be developed....

  7. Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures

    Science.gov (United States)

    Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.

    2012-04-01

    Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both

  8. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  9. A MAC Mode for Lightweight Block Ciphers

    DEFF Research Database (Denmark)

    Luykx, Atul; Preneel, Bart; Tischhauser, Elmar Wolfgang;

    2016-01-01

    , but also allows high-performance parallel implementations. We highlight this in a comprehensive implementation study, instantiating LightMAC with PRESENT and the AES. Moreover, LightMAC allows flexible trade-offs between rate and maximum message length. Unlike PMAC and its many derivatives, Light...

  10. Lightweight Robotic Excavation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Robust, lightweight, power-efficient excavation robots are mission enablers for lunar outposts and surface systems. Lunar excavators of this type cost-effectively...

  11. Lightweight Robotic Excavation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight robotic excavators address the need for machines that dig, collect, transport and dump lunar soil. Robust and productive small robots enable mining rich...

  12. Lightweight Metal Mirrors

    Science.gov (United States)

    Gossett, E.; Winslow, P.

    1984-01-01

    Two "eggcrate" halves brazed together. Lightweight flat mirrors fabricated by machining pockets in two plates of beryllium and brazing machined halves together. Mirror less than half weight of same mirror made by previous design.

  13. Timbered masonry for earthquake resistance in Europe

    Directory of Open Access Journals (Sweden)

    Dutu, A.

    2012-12-01

    Full Text Available Europe is a continent that is subject to significant seismic activity. Thus, the buildings’ seismic behaviour must be analysed, including not only the new structures, designed under more rigorous codes, but also older ones. This article examines a traditional type of building that uses timber frame/masonry, which is found in Portugal, Turkey, France, England, Greece, Romania, Italy, Spain, Germany and Scandinavia. Although the structures differ in terms of construction details, their structural system is basically the same: the wooden structural system bears mainly the horizontal loads while the masonry supports the gravity loads. The study includes a brief report on the seismicity of each country where this traditional type of building made of timbered framed masonry is found, together with the description of these buildings’ constructive systems.

    Europa es un continente que está sujeto a una significativa actividad sísmica. Por esta razón, se debe analizar el comportamiento sísmico, no sólo de las nuevas estructuras, diseñadas sobre la base de códigos más exigentes, sino también de los diversos tipos de estructuras antiguas. En este artículo se analizan las estructuras constituidas por mampostería y madera, que se pueden encontrar en Portugal, Turquía, Francia, Inglaterra, Grecia, Rumania, Italia, España, Alemania y Escandinavia. Aunque estas estructuras presentan diferencias en cuanto a detalles constructivos, su sistema estructural es idéntico: el sistema estructural de madera absorbe principalmente las cargas horizontales, mientras que la mampostería garantiza la resistencia a la acción de la gravedad. El estudio presentado incluye un breve informe acerca de la sismicidad de los países en que existe el tipo de construcción mencionado, conjuntamente con la descripción de los sistemas constructivos específicos de cada país.

  14. Manufacturing of Lightweight Mirror

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fabrication of the lightweight mirror is one of the key techniques for many large optical systems. CAD,CAM and CNC technologies are adopted in designing and manufacturing such mirrors in CIOMP. Better working efficiency and higher lightweight grade have been achieved. The results show that mirrors up to 70% weight reduction and 0.02λ(rms.) surface accuracy or better can be obtained.

  15. Compressive strength of brick masonry made with weak mortars

    DEFF Research Database (Denmark)

    Pedersen, Erik Steen; Hansen, Klavs Feilberg

    2013-01-01

    The use of weak mortar has a number of advantages (e.g. prevention of expansion joints, environmental issues). However, according to EC6, the strength of masonry vanishes when the compressive strength of the mortar approaches zero. In reality the presence of even unhardened mortar kept in place...... in the joint will ensure a certain level of load-carrying capacity. This is due to the interaction between compression in the weak mortar and tension in the adjacent bricks. This paper proposes an expression for the compressive strength of masonry made with weak lime mortars (fm... of masonry depends only on the strength of the bricks. A compression failure in masonry made with weak mortars occurs as a tension failure in the bricks, as they seek to prevent the mortar from being pressed out of the joints. The expression is derived by assuming hydrostatic pressure in the mortar joints...

  16. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  17. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Nateghi-Alahi, Fariborz; Fischer, Gregor

    2015-01-01

    The results of the second part of a comprehensive experimental program, aimed at investigating the behavior of masonry infilled reinforced concrete (RC) frames strengthened with fiber reinforced engineered cementitious composites (ECC) used as an overlay on the masonry wall, are presented in this...... and energy absorption capacity of the infilled frame, prevent brittle failure modes in the infill wall, and provide a reasonable system overstrength....

  18. Aspects of blast resistant masonry design

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, D.E.

    1989-01-01

    Blast resistant design should be examined for building code incorporation, due to the potential of explosions occurring in an industrial society. Specifically, public and commercial structures of concrete masonry construction need additional building code criteria, since these buildings have high density populations to protect. Presently, blast resistant design is accomplished by using government published manuals, but these do not address industry standard construction. A design air blast load of 4.54 kg (10 lbs) of TNT, located 0.91 m (3 ft) above ground surface and 30.48 m (100 ft) from a structure should be considered standard criteria. This loading would be sufficient to protect against blast, resist progressive failure, and yet not be an economic impediment. Design details and adequate inspection must be observed to ensure blast resistant integrity. 10 refs., 3 figs., 1 tab.

  19. Drying brick masonry by electro-osmosis

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    2006-01-01

    When a fine grained, porous medium is applied an electric DC field, transport of matter occurs, and the transport mechanism in focus of the present study is electro-osmosis, which is transport of water. In laboratory it was shown possible to transport water inside a brick and brick/mortar system...... in an applied electric field. Electrodes have been constructed and placed inside an old house with moisture problems from capillary rise of water. The water content of the experimental wall was about 14%(weight). The electro-osmotic effect was even more pronounced here than in the in the laboratory, and a clear...... movement of water towards the cathode was seen. Thus the basis for utilizing the electro-osmotic effect for drying brick masonry is present, but proper electrodes still needs to be developed....

  20. Behaviour of masonry structures during the Bhuj earthquake of January 2001

    Indian Academy of Sciences (India)

    K S Jagadish; S Raghunath; K S Nanjunda Rao

    2003-09-01

    A variety of masonry structures suffered damage during the recent Bhuj earthquake. Some of the traditional masonry structures had no earthquake resistant features and suffered considerable damage. This paper attempts to evaluate the behaviour of masonry structures based on the type of masonry used in places like Bhuj, Anjar, Bhachau, Morbi, Samakhyali and several other places. Quite a few masonry buildings had used earthquake resistant features like lintel bands and corner reinforcements. The cracking and failure patterns of such buildings have also been examined. The paper concludes with a discussion on the relevance of the current codal provisions for earthquake resistance of masonry structures and the direction of further research in the area.

  1. Seismic performance of masonry-infilled RC frames

    Directory of Open Access Journals (Sweden)

    Mircea Bârnaure

    2016-09-01

    Full Text Available The masonry infill of RC frames structures is generally considered as non-structural. The design of the concrete frames is often made by ignoring the influence of the masonry infill, which is only accounted for its mass. The experience on buildings submitted to earthquakes shows that masonry infill walls completely change the behaviour of bare frames due to increased initial stiffness and low deformability. The way in which masonry infills affect the RC frames members is difficult to predict, as different failure modes can occur either in the masonry or in the surrounding frame. In addition to local effects, the position of the masonry infills at different levels can lead to structural irregularity, with a strong influence on the global seismic response of the building. Less infilled stories, also called soft stories, have a particularly unfavourable behaviour under seismic loads, as frame members at these levels are more susceptible to failure. This paper analyses the differences in the behaviour of bare and infilled frames through numerical modelling. Nonlinear push-over analyses of infilled frames are carried out under in-plane vertical and lateral loading. The infill panels are modelled as equivalent single diagonal struts. Several force-displacements laws are considered for these diagonals.

  2. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-04-15

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

  3. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  4. THE EVOLUTION OF THE DESIGN AND CONSTRUCTION OF MASONRY BUILDINGS IN THE UNITED STATES

    Directory of Open Access Journals (Sweden)

    Richard E. Klingner

    2012-12-01

    Full Text Available In this paper, the process used to develop building codes in the United States of America (USA is summarized, with emphasis on masonry. Masonry materials used in the USA are discussed. Types of masonry construction in the USA are reviewed, addressing historical as well as modern masonry. Current non-structural and structural applications of masonry in the USA are reviewed. Historical development of masonry codes in the USA is summarized, with emphasis on the current Masonry Standards Joint Committee (MSJC Code and Specification. Future trends in that document are predicted. The paper closes with a list of challenges to the masonry industry, and a list of focused research topics intended to meet those challenges.

  5. Measure Guideline: Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Musunuru, S. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-04-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits has the potential to adversely affect the durability of the wall; this document includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  6. Measure Guideline. Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Musunuru, S. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-04-30

    This Measure Guideline describes a deep energy enclosure retrofit solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits might adversely affect the durability of the wall. This guideline includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  7. Axial compression behavior of concrete masonry wallettes strengthened with cement mortar overlays

    Directory of Open Access Journals (Sweden)

    F. L. De Oliveira

    Full Text Available This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a the application of mortar overlays increases the wall strength, but not in a uniform manner; b the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.

  8. 75 FR 60480 - Concrete and Masonry Construction; Extension of the Office of Management and Budget's (OMB...

    Science.gov (United States)

    2010-09-30

    ... Occupational Safety and Health Administration Concrete and Masonry Construction; Extension of the Office of...) approval of the information collection requirements specified in the Standard on Concrete and Masonry...., compressors, mixers, screens or pumps used for concrete and masonry construction) specified by paragraphs 1926...

  9. Possibilities of modeling masonry as a composite softening material: Interface modeling and anisotropic continuum modeling

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.

    1998-01-01

    Results of using recently developed material models for the analysis of masonry structures are shown. Both interface modeling, in which masonry components (units and joints) are represented, as continuum modeling, in which masonry is represented as a homogeneous continuum, are addressed. It is shown

  10. Basic Hand Tools for Bricklaying and Cement Masonry [and] Basic Hand Tools of the Carpenter.

    Science.gov (United States)

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Intended for student use, this unit discusses and illustrates the tools used in brick and masonry and carpentry. Contents of the brick and masonry section include informative materials on bricklaying tools (brick trowels, joint tools, levels, squares, line and accessories, rules, hammers and chisels, tool kits) and cement masonry tools (tampers,…

  11. Mitigation of Blast Effects on Aluminum Foam Protected Masonry Walls

    Institute of Scientific and Technical Information of China (English)

    SU Yu; WU Chengqing; GRIFFITH Mike

    2008-01-01

    Terrorist attacks using improvised explosive devices (lED) can result in unreinforced masonry (URM) wall collapse.Protecting URM wall from lED attack is very complicated.An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy.However,mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world.In this palaer,numerical models are used to simulate the performance of aluminum foam protected URM walls subjected to blast loads.A distinctive model,in which mortar and brick units of masonry are discritized individually,is used to model the performance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model.The aluminum foam is modelled by a nonlinear elastoplastic material model.The material models for masonry,aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads.Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.

  12. Calibration under uncertainty for finite element models of masonry monuments

    Energy Technology Data Exchange (ETDEWEB)

    Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin

    2010-02-01

    Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, and there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.

  13. Lightweight Composite Intertank Structure

    Science.gov (United States)

    Mehle, Greg V.

    1995-01-01

    Report presents results of study for proposed lightweight composite material alternative to present semimonocoque aluminum intertank structure for advanced launch vehicles. Proposed structure integrated assembly of sandwich panels made of laminated epoxy-matrix/carbon-fiber skins, and aluminum honeycomb core.

  14. Lightweight Electric Power Cable.

    Science.gov (United States)

    1982-09-01

    8I~ .4 111 162 MICROCi Pi RL’ LUHION TESI CHARI "LIGHTWEIGHT ELECTRIC POWER CABLE" FINAL TECHNICAL REPORT SEPTEMBER 30, 1981 to SEPTEMBER 30, 1982... Vulcanized by heat to crosslink. TPE (Thermoplastic Elastomer) - Polymers having elastomeric proper- ties. Used as thermoplastics - melt formed by

  15. Lightweight incremental application upgrade

    NARCIS (Netherlands)

    T. van der Storm (Tijs)

    2006-01-01

    textabstractI present a lightweight approach to incremental application upgrade in the context of component-based software development. The approach can be used to efficiently implement an automated update feature in a platform and programming language agnostic way. A formal release model is present

  16. Hybrid Reinforced Concrete Frame Building with Pumice Brick Masonry Infill under Static Lateral Loading

    Directory of Open Access Journals (Sweden)

    Akmaluddin

    2012-08-01

    Full Text Available The purpose of this study is to investigate the behaviour of hybrid reinforced concrete frame with pumice brick masonry infill under static lateral loading. The term hybrid herein is referred to the frame composed of precast block masonry unit and cast in-place reinforced concrete beams. Parameters considered in this study were frame opening representing doors and windows commonly used in the wall system. Six types of frame namely FS, FB, FDE, FDC, FWE and FWC designation for solid frame, bare frame, frame with door opening at edge, frame with door opening at centre, frame with window opening at edge and frame with window opening at centre respectively were considered. Test results indicated that the FS has a maximum lateral strength greater than that of FB. The lateral strength of FS was about 3.68 of FB. The frames with various openings have lateral strength nearly 2.3 of lateral strength of the bare frame, FB. Ductility factor of the frames varied from 2.4 to 4.92. The residual strength of the frame with openings were varies between 2.33 and 3.35 of the bare frame. The stiffness of the infilled frames with opening were varied from 3.56 to 3.67 of the bare frame. The presence of openings in the infilled frame did not affect the frame stiffness considerably.

  17. Salt Induced Decay of Masonry and Electrokinetic Repair

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    from brick masonry and also how much the removal rate can be increased by application of the electric field compared to diffusion alone. Some main differences occur between electrokinetic remediation of heavy metal polluted soil and electrokinetic removal of salts from brick masonry. The ions...... of interest in the brick are not adsorbed to a high extent, as it is often the case with heavy metals in soils. Bricks are made from baked clay, however during the baking process the cation exchange capacity of the clay is strongly decreased which affect the electric conductivity. The electric conductivity...... in brick depending on its water content and salts may be precipitated on the outer wall or concentrated under paint layers covering the surface of the brick. Different types of damage may appear in masonry walls due to these concentrating phenomena. Bricks themselves can be destroyed and the mortar can...

  18. Humidity control in the inspection of masonry structures

    Directory of Open Access Journals (Sweden)

    A.V. Ulybin

    2013-11-01

    Full Text Available The problems of wetting of masonry structures were considered: its causes, consequences and methods of humidity control. The classification of destructions that occur in the masonry as a result of its moistening was given. Destruction processes under wetting of different origin were briefly described. The experimentally ascertained impact of humidity on the strength of different kinds of brick was presented. The influence of this factor is often missed in the material testing and analysis of structures. The comparison between different methods of moisture control was given. A technique for measuring the moisture using the calcium carbide method was pictured; this method is little known in Russia. The advantages and disadvantages of non-destructive methods were discussed. Special attention was paid to the definition of errors in electrical control methods, occurring due to existence of salts in the masonry. The recommendations for combined use of different methods of humidity control were given.

  19. Basic Deformation Parameters of Solid Clay Bricks and Small Masonry Walls

    Directory of Open Access Journals (Sweden)

    P. Bouška

    2000-01-01

    Full Text Available The basic mechanical properties of clay brick masonry and its components were experimentally investigated in the laboratories of the Klokner Institute. The test specimens of masonry materials and the relevant mechanical properties have been identified in solid clay bricks and cement-lime mortar. The aim of the research activity was to study both the deformability of the prevailing type of clay masonry in the existing buildings, i.e. the masonry made from the solid clay units and the lime-cement mortar, and the most important mechanical properties of masonry components.

  20. Initiation of Failure for Masonry Subject to In-Plane Loads through Micromechanics

    Directory of Open Access Journals (Sweden)

    V. P. Berardi

    2016-01-01

    Full Text Available A micromechanical procedure is used in order to evaluate the initiation of damage and failure of masonry with in-plane loads. Masonry material is viewed as a composite with periodic microstructure and, therefore, a unit cell with suitable boundary conditions is assumed as a representative volume element of the masonry. The finite element method is used to determine the average stress on the unit cell corresponding to a given average strain prescribed on the unit cell. Finally, critical curves representing the initiation of damage and failure in both clay brick masonry and adobe masonry are provided.

  1. Thin, Lightweight Solar Cell

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Weinberg, Irving

    1991-01-01

    Improved design for thin, lightweight solar photovoltaic cells with front contacts reduces degradation of electrical output under exposure to energetic charged particles (protons and electrons). Increases ability of cells to maintain structural integrity under exposure to ultraviolet radiation by eliminating ultraviolet-degradable adhesives used to retain cover glasses. Interdigitated front contacts and front junctions formed on semiconductor substrate. Mating contacts formed on back surface of cover glass. Cover glass and substrate electrostatically bonded together.

  2. Lightweight bipolar storage battery

    Science.gov (United States)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  3. Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick facades

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2016-01-01

    The use of internal insulation is investigated in a heritage building block with wooden beam construction and masonry brick walls as part of an energy renovation. Measurements were carried out and compared to results from a hygrothermal simulation model. The risk of mould growth in the wooden beams...... and in the interface between the insulation and the brick wall was evaluated. Three different insulation strategies for applying internal insulation were investigated: 1) insulation applied on the entire interior facade; 2) 200 mm gap in the insulation above the floor; and 3) 200 mm gap in the insulation both above...

  4. Improving Resistance of Masonry Structures to Tsunami Loading

    Science.gov (United States)

    Revanth, D.; Akshay, Baheti; Nayak, Sanket; Dutta, Sekhar Chandra

    2016-06-01

    The Asian tsunami of 26th December, 2004 took the lives of 2,20,000 people and devastated coastal structures, including many thousands of brick-built homes. Many economically backward people who have made their homes in non-engineered masonry lost their shelters. Though very high waves of tsunami cannot be resisted, waves comparable to the height of the masonry structures can be tolerated by these structures by implementing simple design techniques which are cost effective and can be implemented without any modern equipment. The present study throws light on the issues related to effect of brick orientation, number of openings, orientation and shape of the structures with respect to possible direction of wave movement and effect of support conditions upon the performance of masonry structures subjected to tsunami loading. It has also been noticed that boundary walls acts as a barrier to reduce the effect on the actual structures. In this context, this study may be helpful in framing design guidelines for improving the performance of non-engineered masonry structures under tsunami loading.

  5. Cement treated recycled crushed concrete and masonry aggregates for pavements

    NARCIS (Netherlands)

    Xuan, D.X.

    2012-01-01

    This research is focusing on the characterization of the mechanical and deformation properties of cement treated mixtures made of recycled concrete and masonry aggregates (CTMiGr) in relation to their mixture variables. An extensive laboratory investigation was carried out, in which the mechanical p

  6. Confusing cracks and difficult deformations: Interpreting structural damage in masonry

    NARCIS (Netherlands)

    De Vent, I.; Rots, J.G.; Van Hees, R.P.J.; Hobbelman, G.J.

    2012-01-01

    Cracks and deformatiçns in masonry are common phenomena in historical buildings. If they are interpreted correctly, they can be an extremely valuable source çf informatiçn on the load history of the premises. Nevertheless, this interpretation is not always as obvious as one may think. In the framewo

  7. Resistance of Membrane Retrofit Concrete Masonry Walls to Lateral Pressure

    Science.gov (United States)

    2008-04-01

    determined to be as effective as steel jackets in improving deformation capacity levels of columns subjected to seismic loading. Experimental testing of...for seismic loading were later investigated for their use in strengthening concrete masonry structures against blast. For instance, column- jacketing ... Seismic Investigations ...............................................................................................................6 2.2 Blast Load

  8. Thermal performance of concrete masonry unit wall systems

    Energy Technology Data Exchange (ETDEWEB)

    Kosny, J.

    1995-12-31

    New materials, modern building wall technologies now available in the building marketplace, and unique, more accurate, methods of thermal analysis of wall systems create an opportunity to design and erect buildings where thermal envelopes that use masonry wall systems can be more efficient. Thermal performance of the six masonry wall systems is analyzed. Most existing masonry systems are modifications of technologies presented in this paper. Finite difference two-dimensional and three-dimensional computer modeling and unique methods of the clear wall and overall thermal analysis were used. In the design of thermally efficient masonry wall systems is t to know how effectively the insulation material is used and how the insulation shape and its location affect the wall thermal performance. Due to the incorrect shape of the insulation or structural components, hidden thermal shorts cause additional heat losses. In this study, the thermal analysis of the clear wall was enriched with the examination of the thermal properties of the wall details and the study of a quantity defined herein the Thermal Efficiency of the insulation material.

  9. Image-Based Delineation and Classification of Built Heritage Masonry

    Directory of Open Access Journals (Sweden)

    Noelia Oses

    2014-02-01

    Full Text Available Fundación Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.

  10. New Frontiers on Seismic Modeling of Masonry Structures

    Directory of Open Access Journals (Sweden)

    Salvatore Caddemi

    2017-07-01

    Full Text Available An accurate evaluation of the non-linear behavior of masonry structural elements in existing buildings still represents a complex issue that rigorously requires non-linear finite element strategies difficult to apply to real large structures. Nevertheless, for the static and seismic assessment of existing structures, involving the contribution of masonry materials, engineers need reliable and efficient numerical tools, whose complexity and computational demand should be suitable for practical purposes. For these reasons, the formulation and the validation of simplified numerical strategies represent a very important issue in masonry computational research. In this paper, an innovative macroelement approach, developed by the authors in the last decade, is presented. The proposed macroelement formulation is based on different, plane and spatial, macroelements for the simulation of both the in-plane and out-of-plane behavior of masonry structures also in presence of masonry elements with curved geometry. The mechanical response of the adopted macroelement is governed by non-linear zero-thickness interfaces, whose calibration follows a straightforward fiber discretization, and the non-linear internal shear deformability is ruled by equivalence with a corresponding geometrically consistent homogenized medium. The approach can be considered as “parsimonious” since the kinematics of the adopted elements is controlled by very few degrees of freedom, if compared to a corresponding discretization performed by using non-linear finite element method strategies. This innovative discrete element strategy has been implemented in two user-oriented software codes 3DMacro (Caliò et al., 2012b and HiStrA (Historical Structures Analysis (Caliò et al., 2015, which simplify the modeling of buildings and historical structures by means of several wizard generation tools and input/output facilities. The proposed approach, that represents a powerful tool for the

  11. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  12. Lightweight enterprise architectures

    CERN Document Server

    Theuerkorn, Fenix

    2004-01-01

    STATE OF ARCHITECTUREArchitectural ChaosRelation of Technology and Architecture The Many Faces of Architecture The Scope of Enterprise Architecture The Need for Enterprise ArchitectureThe History of Architecture The Current Environment Standardization Barriers The Need for Lightweight Architecture in the EnterpriseThe Cost of TechnologyThe Benefits of Enterprise Architecture The Domains of Architecture The Gap between Business and ITWhere Does LEA Fit? LEA's FrameworkFrameworks, Methodologies, and Approaches The Framework of LEATypes of Methodologies Types of ApproachesActual System Environmen

  13. Southern Regional Center for Lightweight Innovative Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Paul T. [Mississippi State Univ., Mississippi State, MS (United States)

    2012-12-01

    The Southern Regional Center for Lightweight Innovative Design (SRCLID) has developed an experimentally validated cradle-to-grave modeling and simulation effort to optimize automotive components in order to decrease weight and cost, yet increase performance and safety in crash scenarios. In summary, the three major objectives of this project are accomplished: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantify microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios. In this final report, we divided the content into two parts: the first part contains the development of building blocks for the project, including materials and process models, process-structure-property (PSP) relationship, and experimental validation capabilities; the second part presents the demonstration task for Mg front-end work associated with USAMP projects.

  14. Southern Regional Center for Lightweight Innovative Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-08-24

    The Southern Regional Center for Lightweight Innovative Design (SRCLID) has developed an experimentally validated cradle-to-grave modeling and simulation effort to optimize automotive components in order to decrease weight and cost, yet increase performance and safety in crash scenarios. In summary, the three major objectives of this project are accomplished: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantify microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios. In this final report, we divided the content into two parts: the first part contains the development of building blocks for the project, including materials and process models, process-structure-property (PSP) relationship, and experimental validation capabilities; the second part presents the demonstration task for Mg front-end work associated with USAMP projects.

  15. Rilem TC 203-RHM. Repair mortars for historic masonry. The role of mortar in masonry: an introduction to requirements for the design of repair mortars

    NARCIS (Netherlands)

    Hees, R.P.J. van; Groot, C.; Balen, K. van; Bicer-Simsir, B.; Binda, L.; Elsen, J.; Konow, T. von; Lindqvist, J.E.; Maurenbrecher, P.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.E.; Thompson, M.

    2012-01-01

    Mortar has been in use for many thousands of years and is integral to most masonry construction. Its use is widespread in every culture where masonry is constructed. It is present in the majority of the global built cultural heritage, and is therefore a major consideration in building conservation.

  16. THE EVOLUTION OF THE DESIGN AND CONSTRUCTION OF MASONRY BUILDINGS IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Márcio R. S. Corrêa

    2012-12-01

    Full Text Available This paper presents an overview of the use of masonry in Brazil. Some historical remarks are presented showing how masonry was introduced and has been developed in the country. A brief on the Brazilian Universities is also reviewed, showing the extensive efforts made to improve the educational system and to insert Brazil into the international masonry research environment. Current materials are shown, focusing on the use of structural and non-structural masonry. The paper points out the development of Codes, considering the most important regulated characteristics of masonry in order to be used in Brazilian constructions. The building situation is addressed, stressing the large housing demands and how the masonry industry can help to partly solve the problem. Finally, present and future challenges are discussed, showing Brazil’s constructions needs, as an emerging country.

  17. The Influence of Pier Stiffness Ratio on the Failure Modes of Masonry Structures

    Directory of Open Access Journals (Sweden)

    Yanru Wang

    2015-01-01

    Full Text Available Masonry structure is the main form of Chinese urban and rural housing construction structure. And heavy casualties and huge economic losses are caused by the damages of masonry structures in the previous destructive earthquake. So the failure modes of masonry structures are analyzed in the paper. ABAQUS software was used; and the Xuankou High School Student Dormitory of masonry structure in Yingxiu town, severely damaged under the Wenchuan earthquake, was taken for example. The influence of the stiffness ratio of pier between windows and spandrel on the failure modes of masonry structures is discussed. The results show that the failure modes in the earthquake could be changed by controlling the stiffness ratio. Suitable stiffness ratio helps proper design of masonry structures.

  18. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  19. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2016-04-01

    Full Text Available The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cracks accompanied by an increase in horizontal masonry strain. During the appearance of micro and hairline cracks (10−3 to 10−1 mm, the effect of non-pre-stressed wrapping composite is very small. The favorable effect of passive wrapping is only intensively manifested after the appearance of cracks (10−1 mm and bigger at higher loading levels. In the case of “optimum” reinforcement of a masonry column, the experimental research showed an increase in vertical displacements δy (up to 247%, horizontal displacements δx (up to 742% and ultimate load-bearing capacity (up to 136% compared to the values reached in unreinforced masonry columns. In the case of masonry structures in which no intensive “bed joint filler–masonry unit” interaction occurs, e.g., in regular coursed masonry with little differences in the mechanical characteristics of masonry units and the binder, the reinforcing effect of the fabric applies only partially.

  20. “ Study of Sesmic Analysis of Masonry Wall Structure”

    Directory of Open Access Journals (Sweden)

    Ms. Deshpande M. S

    2017-03-01

    Full Text Available Earthquakes are natural trouble under which disasters are mainly caused by damage or collapse of the structure and other man-made structures. When an earthquake occurs natural period of vibration is more on heavy loaded building and less in light loaded building. If the building is light weighted, i.e. steel is less then economy of structure is also achieved. Hence it is necessary to find out natural/fundamental time period when mass changes with different type of brick masonry and concrete masonry.This is necessary because IS 1893:2002 does not incorporate the effect of mass in a formula which they have mentioned for brick masonary structure. Thedesign will also analyze with ETAB software.

  1. Shaking Table Tests Validating Two Strengthening Interventions on Masonry Buildings

    Science.gov (United States)

    De Canio, Gerardo; Muscolino, Giuseppe; Palmeri, Alessandro; Poggi, Massimo; Clemente, Paolo

    2008-07-01

    Masonry buildings constitute quite often a precious cultural heritage for our cities. In order to future generations can enjoy this heritage, thence, effective projects of protection should be developed against all the anthropical and natural actions which may irreparably damage old masonry buildings. However, the strengthening interventions on these constructions have to respect their authenticity, without altering the original conception, not only functionally and aesthetically of course, but also statically. These issues are of central interests in the Messina area, where the seismic protection of new and existing constructions is a primary demand. It is well known, in fact, that the city of Messina lies in a highly seismic zone, and has been subjected to two destructive earthquakes in slightly more than one century, the 1783 Calabria earthquake and the more famous 1908 Messina-Reggio Calabria earthquake. It follows that the retrofitting projects on buildings which survived these two events should be designed with the aim to save the life of occupants operating with "light" techniques, i.e. respecting the original structural scheme. On the other hand, recent earthquakes, and in particular the 1997 Umbria-Marche sequence, unequivocally demonstrated that some of the most popular retrofitting interventions adopted in the second half the last century are absolutely ineffective, or even unsafe. Over these years, in fact, a number of "heavy" techniques proliferated, and therefore old masonry buildings suffered, among others, the substitution of existing timber slabs with more ponderous concrete slabs and/or the insertion of RC and steel members coupled with the original masonry elements (walls, arches, vaults). As a result, these buildings have been transformed by unwise engineers into hybrid structures, having a mixed behaviour (which frequently proved to be also unpredictable) between those of historic masonry and new members. Starting from these considerations, a

  2. Lightweight flywheel containment

    Science.gov (United States)

    Smith, James R.

    2004-06-29

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  3. Lightweight Trauma Module - LTM

    Science.gov (United States)

    Hatfield, Thomas

    2008-01-01

    Current patient movement items (PMI) supporting the military's Critical Care Air Transport Team (CCATT) mission as well as the Crew Health Care System for space (CHeCS) have significant limitations: size, weight, battery duration, and dated clinical technology. The LTM is a small, 20 lb., system integrating diagnostic and therapeutic clinical capabilities along with onboard data management, communication services and automated care algorithms to meet new Aeromedical Evacuation requirements. The Lightweight Trauma Module is an Impact Instrumentation, Inc. project with strong Industry, DoD, NASA, and Academia partnerships aimed at developing the next generation of smart and rugged critical care tools for hazardous environments ranging from the battlefield to space exploration. The LTM is a combination ventilator/critical care monitor/therapeutic system with integrated automatic control systems. Additional capabilities are provided with small external modules.

  4. Seismic Assessment and Retrofit of Historical Masonry Structures

    OpenAIRE

    2009-01-01

    The Italian building heritage is composed mainly of masonry structures, which over the years have acquired historic significance and artistic values in the national culture. These buildings are particularly vulnerable to the seismic actions, because they were design for gravitational loads without considering seismic actions applied on them. Thus, the constructive details are not compliant with the present design code provisions (e.g. in plan or elevation structural regularity) and to avoid c...

  5. Lightweight Inflatable Cryogenic Tank Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an inflatable and lightweight polymer-fabric structured pressure vessel designed for the containment of cryogenic fluids....

  6. High Efficency Lightweight Radiators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — XC Associates proposes to build on prior work to develop and characterize a very high efficiency, lightweight radiator constructed from high thermal conductivity...

  7. Results of lichenometric dating of masonry in the outskirts of Kandalaksha city (Russia, Murmansk region

    Directory of Open Access Journals (Sweden)

    Melekhin Alexey

    2014-11-01

    Full Text Available The lichenometric dating of masonry in the area of Kandalaksha city was carried out. For more accurate dating, the reference sites with known age (70 years were laid in Pechenga district (Murmansk region. According to our calculations, the age of masonry was in the range of 60 to 80 years, that is consistent with dendrochronology data (75 years.

  8. Update to UFC 3-340-02 for Blast Resistant Design of Masonry Components

    Science.gov (United States)

    2010-07-01

    shear force resisted by masonry (lb) Vso = out-of-plane shear force resisted by shear reinforcement (lb) Vmi = in-plane shear force resisted by...plane shear force resisted by masonry (lb) Vso = out-of-plane shear force resisted by shear reinforcement (lb) Vmi = in-plane shear force

  9. Resistance of Membrane Retrofit Concrete Masonry Walls to Lateral Pressure (POSTPRINT)

    Science.gov (United States)

    2008-04-01

    The earliest in-depth investigation of the arching action theory of unreinforced masonry walls was carried out by McDowell et al. (1956). It...Sevin, E. (1956), "Arching Action Theory of Masonry Walls", Journal of Structural Division, Proceedings ofASCE, ST 2, Paper 915, PP 1-18. Paulay

  10. Grouting of Multiple Leaf-Masonry Walls: Application on Some Islamic Historical Monuments in Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    Sayed HEMEDA

    2012-12-01

    Full Text Available Present study summarizes an overview on the available experimental and practical data and results from laboratory testing (ungrouted and grouted three leaf masonry wallettes in compression and in diagonal compression. On the basis of the experimental results, (A the structural behavior of the multiple leaf-masonry walls studied in details (b the parameters that affect the behavior of ungrouted masonry are detected and commented upon, and (c the behavior of grouted masonry studied in details. Particularly attention to be paid to large walls whose construction may comprise different kinds of materials. Such walls include cavity walls; rubble filled masonry walls and veneered brick walls which have poor quality core. Not only may the interior of the wall be less capable of carrying load but movement of the core material may also be a source of new stresses. As the experimental results show that the key parameter for the improvement of the mechanical properties of masonry is not the compressive strength of the injected grout, emphasis is given to ternary, as well as to hydraulic lime based grouts: those materials are expected to ensure durable interventions, they lead to a significant enhancement of the mechanical properties of masonry. On the basis of the experimental data on wallettes, as well as based on recent data from tests on grouted cylinders made of filling materials, simple formulae are drived, allowing for the strength of masonry to be calculated, and scientifically interventions processes and techniques had been applied to selected historical monuments in Cairo.

  11. A purely flexible lightweight membrane-type acoustic metamaterial

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Zhang, Weiquan; Zhang, Siwen

    2015-05-01

    This paper proposes a purely flexible lightweight membrane-type acoustic structure, wherein one kind of flexible lightweight rubber material takes the roles of mass and stiffness and another type of lightweight flexible EVA (ethylene-vinyl acetate copolymer) or plastic material functions as the localized stiffness for each unit. Because both the scatterers and base are constituted by the same material, this type of structure breaks the limitation that the metamaterials and phononic crystals need different materials with relatively large density and elasticity modulus ratios to play the roles of the scatterers and base respectively. Based on the band structures with different units, mass block shapes and size parameters, it is suggested that the shapes of the mass block can significantly affect the band structure. In addition, this type of structure could not only open a full band gap in the low-frequency range below 500 Hz, but also obtain an ultra-low-frequency bending wave band gap in the range below 100 Hz. Finally, we take into account the semi-infinite medium as a component, and calculate the sound transmission loss (STL) to evaluate the interaction between the structure and air. An experimental validation employing the cylindrical mass structure was developed to directly support the simulation results. Since the structures proposed in this study have achieved a purely flexible lightweight design, there exists an important promotion effect to realize the engineering applications of the acoustic metamaterials in practice.

  12. Influence of structural parameters of the masonry on effective elastic properties and strength

    Directory of Open Access Journals (Sweden)

    А.I. Grishchenko

    2014-08-01

    Full Text Available Two phase masonry model, which contains elastic mortar and elastic bricks, is analyzed numerically in order to evaluate sensitivity of effective elastic moduli and strength properties to a deviation in the masonry structural parameters. Different methods of masonry homogenization are studied. Effective elastic moduli of the masonry representative volume element are obtained by means of direct finite element simulation and homogenization procedure. Influence of variation in the heterogeneous material microstructure characteristics (influence of brick aspect ratio and orientation angle on the local stress-strain state and mechanical properties of the representative volume element of the composite considered is analyzed. Mechanical properties obtained by direct finite element modeling and other methods in various literary sources are compared. These studies are relevant for the design of composite materials with a structure similar to masonry.

  13. Assessment of the mechanical properties of brick masonry by a flat-jack method

    Directory of Open Access Journals (Sweden)

    S.V. Zubkov

    2015-12-01

    Full Text Available The modern Russian methods for defining the mechanical characteristics of brick masonry are based on finding the strength of masonry components (brick and mortar. After getting the results of laboratory tests of components, mechanical characteristics of masonry are calculated using empirical formulae. Those formulae, however, cannot take into consideration the presence of damages and other factors. Obtaining the characteristics (strength and deformation by a direct flat-jack test of masonry fragments on-site looks promising. A widespread use of FEM requires setting accurate deformation features for modeling domes, arches and thin brick outside layer in multilayer walls. Also accurate deformation characteristics are used for calculating temperature loads. The paper gives the results of practical use for the masonry deformation research by the flat-jack test method. The correlation factors are defined and rigidness coefficients of flat-jacks are obtained in the study.

  14. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  15. A Specialized Lightweight Metamorphic Function for KASUMI Metamorphic Cipher and Its FPGA Implementation

    Directory of Open Access Journals (Sweden)

    Rabie A. Mahmoud

    2016-08-01

    Full Text Available To enhance the performance of the KASUMI Metamorphic Cipher, we apply a lightweight Metamorphic Structure. The proposed structure uses four lightweight bit-balanced operations in the function Meta-FO of the KASUMI Metamorphic Cipher. These operations are: XOR, INV, XNOR, and NOP for bitwise XOR, invert, XNOR, and no operation respectively building blocks of the Specialized Crypto Logic Unit (SCLU. In this work, we present a lightweight KASUMI Specialized-Metamorphic Cipher. In addition, we provide a Field Programmable Gate Array (FPGA implementation of the proposed algorithm modification.

  16. Development of Electrode Units for Electrokinetic Desalination of Masonry and Pilot Scale Test at Three locations for Removal of Chlorides

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Skibsted, Gry

    2010-01-01

    Electrode units for electrokinetic desalination of masonry has been developed and tested in pilot scale at three different locations. The units are formed as casings with a metallic mesh electrode, and carbonate rich clay to buffer the acid produced at the anode. The case has an extra loose bottom...... which allows continuous pressure between clay and masonry so good electrical contact is remained. The electrode units were tested at three different locations, two on baked brick masonry (inside in a heated room and outside on a masonry with severe plaster peeling) and the third pilot scale experiment...... was conducted outside on a limestone masonry. The duration of the experiments was 4-8 month. Chloride concentrations were measured in drilling powder from the masonry before and after experiments. In all three masonries, the average concentrations decreased. The transport numbers for chloride was between 0...

  17. Performance of masonry enclosure walls: lessons learned from recent earthquakes

    Science.gov (United States)

    Vicente, Romeu Silva; Rodrigues, Hugo; Varum, Humberto; Costa, Aníbal; Mendes da Silva, José António Raimundo

    2012-03-01

    This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.

  18. Retrofit of a Multifamily Mass Masonry Building in New England

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

  19. Seismic capacity evaluation of unreinforced masonry residential buildings in Albania

    Directory of Open Access Journals (Sweden)

    H. Bilgin

    2012-12-01

    Full Text Available This study evaluates seismic capacity of the unreinforced masonry buildings with the selected template designs constructed per pre-modern code in Albania considering nonlinear behaviour of masonry. Three residential buildings with template designs were selected to represent an important percentage of residential buildings in medium-size cities located in seismic regions of Albania. Selection of template designed buildings and material properties were based on archive and site survey in several cities of Albania. Capacity curves of investigated buildings were determined by pushover analyses conducted in two principal directions. The seismic performances of these buildings have been determined for various earthquake levels. Seismic capacity evaluation was carried out in accordance with FEMA (Federal Emergency Management Agency 440 guidelines. Reasons for building damages in past earthquakes are examined using the results of capacity assessment of investigated buildings. It is concluded that of the residential buildings with the template design, with the exception of one, are far from satisfying required performance criteria. Furthermore, deficiencies and possible solutions to improve the capacity of investigated buildings are discussed.

  20. Properties of wastepaper sludge in geopolymer mortars for masonry applications.

    Science.gov (United States)

    Yan, Shiqin; Sagoe-Crentsil, Kwesi

    2012-12-15

    This paper presents the results of an investigation into the use of wastepaper sludge in geopolymer mortar systems for manufacturing construction products. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. Both fresh and hardened geopolymer mortar properties are evaluated for samples incorporating dry wastepaper sludge, and the results indicate potential end-use benefits in building product manufacture. Addition of wastepaper sludge to geopolymer mortar reduces flow properties, primarily due to dry sludge absorbing water from the binder mix. The average 91-day compressive strength of mortar samples incorporating 2.5 wt% and 10 wt% wastepaper sludge respectively retained 92% and 52% of the reference mortar strength. However, contrary to the normal trend of increasing drying shrinkage with increasing paper sludge addition to Portland cement matrices, the corresponding geopolymer drying shrinkage decreased by 34% and 64%. Equally important, the water absorption of hardened geopolymer mortar decreased with increasing paper sludge content at ambient temperatures, providing good prospects of overall potential for wastepaper sludge incorporation in the production of building and masonry elements. The results indicate that, despite its high moisture absorbance due to the organic matter and residual cellulose fibre content, wastepaper sludge appears compatible with geopolymer chemistry, and hence serves as a potential supplementary additive to geopolymer cementitious masonry products.

  1. a Procedural Solution to Model Roman Masonry Structures

    Science.gov (United States)

    Cappellini, V.; Saleri, R.; Stefani, C.; Nony, N.; De Luca, L.

    2013-07-01

    The paper will describe a new approach based on the development of a procedural modelling methodology for archaeological data representation. This is a custom-designed solution based on the recognition of the rules belonging to the construction methods used in roman times. We have conceived a tool for 3D reconstruction of masonry structures starting from photogrammetric surveying. Our protocol considers different steps. Firstly we have focused on the classification of opus based on the basic interconnections that can lead to a descriptive system used for their unequivocal identification and design. Secondly, we have chosen an automatic, accurate, flexible and open-source photogrammetric pipeline named Pastis Apero Micmac - PAM, developed by IGN (Paris). We have employed it to generate ortho-images from non-oriented images, using a user-friendly interface implemented by CNRS Marseille (France). Thirdly, the masonry elements are created in parametric and interactive way, and finally they are adapted to the photogrammetric data. The presented application, currently under construction, is developed with an open source programming language called Processing, useful for visual, animated or static, 2D or 3D, interactive creations. Using this computer language, a Java environment has been developed. Therefore, even if the procedural modelling reveals an accuracy level inferior to the one obtained by manual modelling (brick by brick), this method can be useful when taking into account the static evaluation on buildings (requiring quantitative aspects) and metric measures for restoration purposes.

  2. 配筋砌体墙混凝土框架内力分析与裂缝模拟%Internal force analysis and fracture simulation of RC frame with hybrid masonry wall

    Institute of Scientific and Technical Information of China (English)

    姜俊铭

    2014-01-01

    利用有限元方法,对空框架、空心砌体墙框架、实心砌体墙框架、配筋砌体墙框架四种有限元模型进行对比分析,结果显示:空心砌块、实心砌块、配筋砌块的加入显著提高了混凝土框架结构的极限承载力,而降低了结构的延性,改变了结构的破坏形式。%In this paper,four finite element models are analyzed in contrast by using the finite element method,which include the empty frame, hollow masonry wall frame,solid masonry wall frame,and reinforced masonry wall frame. The results show that the hollow block,solid block and reinforced block can significantly improve the ultimate bearing capacity of reinforced concrete frame,while the ductility of the structure can be re-duced,and the failure form structure can be changed.

  3. Numerical and experimental analysis of an in-scale masonry cross-vault prototype up to failure

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Michela; Calderini, Chiara; Lagomarsino, Sergio [Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Montallegro 1, Genoa (Italy); Milani, Gabriele [Department of Architecture, Built Environment and Construction Engineering, Milan Polytechnic University, Piazza Leonardo da Vinci 32, Milan (Italy)

    2015-12-31

    A heterogeneous full 3D non-linear FE approach is validated against experimental results obtained on an in-scale masonry cross vault assembled with dry joints, and subjected to various loading conditions consisting on imposed displacement combinations to the abutments. The FE model relies into a discretization of the blocks by means of few rigid-infinitely resistant parallelepiped elements interacting by means of planar four-noded interfaces, where all the deformation (elastic and inelastic) occurs. The investigated response mechanisms of vault are the shear in-plane distortion and the longitudinal opening and closing mechanism at the abutments. After the validation of the approach on the experimentally tested cross-vault, a sensitivity analysis is conducted on the same geometry, but in real scale, varying mortar joints mechanical properties, in order to furnish useful hints for safety assessment, especially in presence of seismic action.

  4. Experimental studies on behavior of fully grouted reinforced-concrete masonry shear walls

    Science.gov (United States)

    Zhao, Yan; Wang, Fenglai

    2015-12-01

    An experimental study is conducted on fully grouted reinforced masonry shear walls (RMSWs) made from concrete blocks with a new configuration. Ten RMSWs are tested under reversed cyclic lateral load to investigate the influence of different reinforcements and applied axial stress values on their seismic behavior. The results show that flexural strength increases with the applied axial stress, and shear strength dominated by diagonal cracking increases with both the amount of horizontal reinforcement and applied axial stress. Yield displacement, ductility, and energy dissipation capability can be improved substantially by increasing the amount of horizontal reinforcement. The critical parameters for the walls are derived from the experiment: displacement ductility values corresponding to 15% strength degradation of the walls reach up to 2.6 and 4.5 in the shear and flexure failure modes, respectively; stiffness values of flexure- and shear-dominated walls rapidly degrade to 17%-19% and 48%-57% of initial stiffness at 0.50 D max (displacement at peak load). The experiment suggests that RMSWs could be assigned a higher damping ratio (˜14%) for collapse prevention design and a lower damping value (˜7%) for a fully operational limit state or serviceability limit state.

  5. Nonlinear Modeling of Autoclaved Aerated Concrete Masonry Wall Strengthened using Ferrocement Sandwich Structure

    KAUST Repository

    M., Abdel-Mooty

    2011-01-01

    Autoclaved Aerated Concrete (AAC) block are used mainly as non-load-bearing walls that provide heat insulation. This results in considerable saving in cooling energy particularly in hot desert environment with large variation of daily and seasonal temperatures. However, due to the relatively low strength there use load bearing walls is limited to single storey and low-rise construction. A system to enhance the strength of the AAC masonry wall in resisting both inplane vertical and combined vertical and lateral loads using ferrocement technology is proposed in this research. The proposed system significantly enhances the load carrying capacity and stiffness of the AAC wall without affecting its insulation characteristics. Ferrocement is made of cement mortar reinforced with closely spaced wire mesh. Full scale wall specimens with height of 2100mm and width of 1820mm were tested with different configuration of ferrocement. A finite elementmodel is developed and verified against the experimentalwork. The results of the finite element model correlates well with the experimental results.

  6. Finite element analyses of continuous filament ties for masonry applications : final report for the Arquin Corporation.

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, Armando, Sr. (Arquin Corporation, La Luz, NM); Bibeau, Tiffany A.; Ho, Clifford Kuofei

    2008-08-01

    Finite-element analyses were performed to simulate the response of a hypothetical vertical masonry wall subject to different lateral loads with and without continuous horizontal filament ties laid between rows of concrete blocks. A static loading analysis and cost comparison were also performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Simulations of vertical walls subject to static loads representing 100 mph winds (0.2 psi) and a seismic event (0.66 psi) showed that the simulated walls performed similarly and adequately when subject to these loads with and without the ties. Additional simulations and tests are required to assess the performance of actual walls with and without the ties under greater loads and more realistic conditions (e.g., cracks, non-linear response).

  7. Lightweight cryptography for constrained devices

    DEFF Research Database (Denmark)

    Alippi, Cesare; Bogdanov, Andrey; Regazzoni, Francesco

    2014-01-01

    Lightweight cryptography is a rapidly evolving research field that responds to the request for security in resource constrained devices. This need arises from crucial pervasive IT applications, such as those based on RFID tags where cost and energy constraints drastically limit the solution...

  8. Lightweight, Wearable, Metal Rubber Sensor

    Science.gov (United States)

    Hill, Andrea

    2015-01-01

    For autonomous health monitoring. NanoSonic, Inc., has developed comfortable garments with multiple integrated sensors designed to monitor astronaut health throughout long-duration space missions. The combined high electrical conductivity, low mechanical modulus, and environmental robustness of the sensors make them an effective, lightweight, and comfortable alternative to conventional use of metal wiring and cabling.

  9. Superalloy Lattice Block Structures

    Science.gov (United States)

    Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.

    2004-01-01

    Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.

  10. Experimental study of masonry wall exposed to blast loading

    Directory of Open Access Journals (Sweden)

    Ahmad, S.

    2014-03-01

    Full Text Available The challenge of protecting the nation against the attack of terrorism has raised the importance to explore the understanding of building materials against the explosion. Unlike most of the building materials, brick masonry materials offer relatively small resistance against blast loading. In this research, a brick masonry wall was exposed to varying blast load at different scaled distances. Six tests with different amounts of explosives at various distances were carried out. Pressure time history, acceleration time history and strain at specific location were measured. The parameters measured from experimental pressure time history and acceleration time history is compared with those determined by ConWep to establish the correlations between experimental determined records and ConWep values. The experimental results were also compared with some researchers. These correlations may assist in understanding the behaviour of masonry structures subjected to explosive loading.Con el reto que supone proteger a la nación contra atentados terroristas se ha visto acrecentada la importancia de conocer el comportamiento de materiales de construcción cuando se someten a una carga explosiva. Al contrario de la mayoría de los materiales, las fábricas de ladrillo ofrecen poca resistencia a dichas cargas. En el presente trabajo, se estudió el comportamiento de una fábrica de ladrillo ante cargas explosivas colocadas a diferentes distancias del muro. Se realizaron seis pruebas con explosivos de potencias distintas y a diferentes distancias. Se trazaron las curvas presión-tiempo y aceleración-tiempo, midiéndose asimismo la deformación en un punto concreto. Los valores experimentales de las curvas presión-tiempo y aceleración-tiempo se compararon con los que se calcularon con la ayuda de la aplicación informática ConWep a fin de establecer las correlaciones entre ambos conjuntos de resultados. También se compararon los resultados experimentales

  11. Technology Solutions Case Study: Retrofit Measures for Embedded Wood Members in Insulated Mass Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    K. Ueno

    2015-10-01

    In this project, the Building Science Corporation team studied a historic brick building in Lawrence, Massachusetts, which is being renovated into 10 condominium units and adding insulation to the interior side of walls of such masonry buildings.

  12. Calibration of brick masonry partial safety factors for the South African Code

    CSIR Research Space (South Africa)

    Mahachi, J

    2007-09-01

    Full Text Available The current South African Code of Practice for structural use of masonry uses four partial safety factors gm, for materials depending on construction control and quality control. With the boom in the construction industry, new entrants...

  13. Performance of masonry buildings during the 20 and 27 December 2007 Bala (Ankara earthquakes in Turkey

    Directory of Open Access Journals (Sweden)

    S. Adanur

    2010-12-01

    Full Text Available This paper evaluates the performance of masonry buildings during the 20 and 27 December 2007 Bala (Ankara earthquakes. Bala is a township located 50 km southeast from Ankara city in Turkey. The majority of the buildings in the affected region are built in masonry. Most of masonry buildings were formed with random or coursed stone and mud brick walls without any reinforcement. Many of these buildings were damaged or had collapsed. The cracking and failure patterns of the buildings are examined and interpreted according to current provisions for earthquake resistance of masonry structures. The damages are due to several reasons such as poor construction quality and poor workmanship of the buildings. In addition to these reasons, the two earthquakes hit the buildings within seven days, causing progressive damage.

  14. Investigation of interior post-insulated masonry walls with wooden beam ends

    DEFF Research Database (Denmark)

    Morelli, Martin; Svendsen, Svend

    2013-01-01

    investigated using both thermal and hygrothermal simulation software. The results show that the risk to incurring moisture problems at the wooden beam ends can be resolved by not insulating that portion of the wall directly above and below the floor division. Additionally, this proposed retrofit measure would......The preponderant number of multistorey buildings constructed in Denmark in the period between 1850 and 1930 were built with masonry walls incorporating wooden floor beams. Given the nature of this construction, it is supposed that significant energy savings could be achieved by simply insulating...... of the wall, and this in turn may lead to increased freeze–thaw damages and moisture problems at the beam ends embedded in the masonry, when the masonry facade is subjected to driving rain. This article presents a method to investigate retrofit measures of interior-insulated masonry walls having wooden floor...

  15. Features of the Masonry Structure Calculation with Vertical Ring Beams based on the European Standards

    Directory of Open Access Journals (Sweden)

    Zejak Danijela

    2016-01-01

    Full Text Available The design of masonry structures should remain a combination of traditional and modern knowledge. The Eurocodes in the field of the design of earthquake-resistant masonry structures, carry mostly acceptable and expected recommendations and requirements. This paper shows that they contain less acceptable principles, which require further experimental and analytical studies. Particularly it should be noted that Eurocode knows only a shearing mechanism by the horizontal coupling, although during the seismic load, the fracture usually occurs due to exceeding the main tensile stress, which manifests by opening diagonal cracks. The mechanism of the horizontal shearing by Eurocode is treated as critical for the seismic resistance of most masonry buildings, thus the masonry structure is attributed as sufficiently secure, although its actual seismic resistance would be far below from the required.

  16. Earthqueake - Integral Masonry System tested in Lima: Buildings performances of Adobe & Hollow Brick

    OpenAIRE

    2010-01-01

    This paper presents an adaptation of the Integral Masonry System (IMS) developed in Europe under the trade name of the “AllWall System”, for adobe without mortar or hollow clay masonry walls with mortar, in order to allow the construction of housing in developing seismic areas. The prefabricated galvanized electrowelded wire truss-reinforcement is employed in the IMS. This truss-reinforcement may intersect in the three spatial directions and allows the construction of reinforced walls an...

  17. Blast Design of Reinforced Concrete and Masonry Components Retrofitted with FRP

    Science.gov (United States)

    2010-07-01

    ultimate flexural and shear resistance of the upgraded walls. The methodology for estimating the flexural resistance of concrete and masonry components...recommended value not including any environmental effects or debonding The FRP reinforcement is typically applied to a concrete or masonry wall...have enough tensile and shear strength to transfer the force and develop the strength of the bonded FRP reinforcement . The durability of the

  18. Comparative study on diagonal equivalent methods of masonry infill panel

    Science.gov (United States)

    Amalia, Aniendhita Rizki; Iranata, Data

    2017-06-01

    Infrastructure construction in earthquake prone area needs good design process, including modeling a structure in a correct way to reduce damages caused by an earthquake. Earthquakes cause many damages e.g. collapsed buildings that are dangerous. An incorrect modeling in design process certainly affects the structure's ability in responding to load, i.e. an earthquake load, and it needs to be paid attention to in order to reduce damages and fatalities. A correct modeling considers every aspect that affects the strength of a building, including stiffness of resisting lateral loads caused by an earthquake. Most of structural analyses still use open frame method that does not consider the effect of stiffness of masonry panel to the stiffness and strength of the whole structure. Effect of masonry panel is usually not included in design process, but the presence of this panel greatly affects behavior of the building in responding to an earthquake. In worst case scenario, it can even cause the building to collapse as what has been reported after great earthquakes worldwide. Modeling a structure with masonry panel as consideration can be performed by designing the panel as compression brace or shell element. In designing masonry panel as a compression brace, there are fourteen methods popular to be used by structure designers formulated by Saneinejad-Hobbs, Holmes, Stafford-Smith, Mainstones, Mainstones-Weeks, Bazan-Meli, Liauw Kwan, Paulay and Priestley, FEMA 356, Durani Luo, Hendry, Al-Chaar, Papia and Chen-Iranata. Every method has its own equation and parameters to use, therefore the model of every method was compared to results of experimental test to see which one gives closer values. Moreover, those methods also need to be compared to the open frame to see if they can result values within limits. Experimental test that was used in comparing all methods was taken from Mehrabi's research (Fig. 1), which was a prototype of a frame in a structure with 0.5 scale and the

  19. Suitable Friction Sliding Materials for Base Isolation of Masonry Buildings

    Directory of Open Access Journals (Sweden)

    Radhikesh P. Nanda

    2012-01-01

    Full Text Available A feasibility study of friction base isolation system for seismic protection has been performed. Four different sliding interfaces, namely, green marble/High Density Poly Ethylene (HDPE, green marble/green marble, green marble/geosynthetic, and green marble/ rubber layers have been studied through experimental and analytical investigations. The experimental investigations show that the coefficient of friction values of these interfaces lies in the desirable range for seismic protection, i.e., 0.05 to 0.15. The analytical investigation reveals that most of these sliding interfaces are effective in reducing spectral accelerations up to 50% and the sliding displacement is restricted within plinth projection of 75 mm (3 in. Green marble and geosynthetic are found to be better alternatives for use in friction isolation system with equal effectiveness of energy dissipation and limiting the earthquake energy transmission to super structure during strong earthquake leading to a low cost, durable solution for earthquake protection of masonry buildings.

  20. Electrochemical removal of salts from masonry - Experiences from pilot scale

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge; Villumsen, Arne

    2008-01-01

    A pilot experiment with newly developed electrodes was tested for removal of contaminating salts from brick masonry where plaster peeling was a problem. A high concentration of sulfate was found at the height where the paint peeling was most pronounced. The concentrations of chloride and nitrate...... were smaller, though in dangerous concentrations at some points. In the applied electric field, chloride and nitrate were efficiently removed. Sulfate, on the other hand, was less mobile, due to lower solubility of sulphate salts and thus lower percentage in ionic form and mobile for electromigration....... The mean concentration of sulfate was decreased from 0.68 wt% to 0.46 wt% during the approx. 4 months of treatment. The removal rate for sulphate did not decrease significantly during the treatment period and it is expected that reduction in sulphate concentration could continue over longer duration...

  1. Strengthening of Unreinforced Masonry Walls with Composite Materials

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available Unreinforced masonry (URM is considered one of the oldest construction materials being until the end of XIXth century, the basic material for: foundations, walls, columns, volts, staircases, floor joints, roofs, retaining walls, drainage channels, barrages, etc. Construction with URM elements posses a series of advantages such as: fire resistance, thermal an acoustic insulations between interior and outside spaces, humidity resistance. However the URM elements have some significant inconveniences such as: large self weight (heaviness causes cracks in the other elements of structures, reduced mechanical strengths in comparison with other traditional materials (steel and concrete, low tenacity, great manual labor consumptions, and vulnerability to earthquakes. Various factors cause deteriorations which must be overcome by strengthening solutions. Some strengthening solutions based on fiber reinforced polymers (FRP products applied directly on URM brick walls are presented in the paper.

  2. Static analysis of masonry kilns built with fictile tubules bricks

    Science.gov (United States)

    Olivito, Renato S.; Scuro, Carmelo; Codispoti, Rosamaria

    2016-12-01

    Industrial archeology is a branch that studies all the testimony (tangible and intangible, direct and indirect) related to the process of industrialization since its origins. This technical field is based on an interdisciplinary approach, it has the task of deepening the story, understanding the technological development made by man over the centuries. The present work focused attention on the study and analysis of a masonry kiln, built with the technique of hollow clay fictile tubules. The study, in particular, has been carried out analyzing the stress state caused by the wind on the structure. The kiln is constituted by a particular geometric configuration that develops in height due to the presence of chimney over the dome.

  3. Testing of the masonry arches of the Brooklyn Bridge approaches

    Science.gov (United States)

    Limaye, Hemant S.

    1996-11-01

    Diagnostic procedures play an important role in performing a condition survey of a structure. Specialized tests are used during a field survey to supplement visual observations. The tests provide valuable information regarding the internal condition of the structure and quality of the construction materials. The tests also help in determining the extent of damage, if any. Recently, a team of consulting engineers performed a study to determine the remaining capacity of the Brooklyn Bridge approaches for the Department of Transportation, City of New York. Using advanced diagnostic procedures such as impact-echo and flatjack testing, additional information was gathered to assist in the study. Impact-echo testing was helpful in identifying the condition of the brick soffits which were covered with pneumatically- applied concrete, and flatjack testing was useful in determining in-situ compressive strength and compression modulus of the brick masonry. The paper describes the work and the testing results.

  4. Stereovision vibration measurement test of a masonry building model

    Science.gov (United States)

    Shan, Baohua; Gao, Yunli; Shen, Yu

    2016-04-01

    To monitor 3D deformations of structural vibration response, a stereovision-based 3D deformation measurement method is proposed in paper. The world coordinate system is established on structural surface, and 3D displacement equations of structural vibration response are acquired through coordinate transformation. The algorithms of edge detection, center fitting and matching constraint are developed for circular target. A shaking table test of a masonry building model under Taft and El Centro earthquake at different acceleration peak is performed in lab, 3D displacement time histories of the model are acquired by the integrated stereovision measurement system. In-plane displacement curves obtained by two methods show good agreement, this suggests that the proposed method is reliable for monitoring structural vibration response. Out-of-plane displacement curves indicate that the proposed method is feasible and useful for monitoring 3D deformations of vibration response.

  5. Hummingbird: Ultra-Lightweight Cryptography for Resource-Constrained Devices

    Science.gov (United States)

    Engels, Daniel; Fan, Xinxin; Gong, Guang; Hu, Honggang; Smith, Eric M.

    Due to the tight cost and constrained resources of high-volume consumer devices such as RFID tags, smart cards and wireless sensor nodes, it is desirable to employ lightweight and specialized cryptographic primitives for many security applications. Motivated by the design of the well-known Enigma machine, we present a novel ultra-lightweight cryptographic algorithm, referred to as Hummingbird, for resource-constrained devices in this paper. Hummingbird can provide the designed security with small block size and is resistant to the most common attacks such as linear and differential cryptanalysis. Furthermore, we also present efficient software implementation of Hummingbird on the 8-bit microcontroller ATmega128L from Atmel and the 16-bit microcontroller MSP430 from Texas Instruments, respectively. Our experimental results show that after a system initialization phase Hummingbird can achieve up to 147 and 4.7 times faster throughput for a size-optimized and a speed-optimized implementations, respectively, when compared to the state-of-the-art ultra-lightweight block cipher PRESENT[10] on the similar platforms.

  6. Aspects of alteration of masonry historical buildings without ring beam of floor slabs

    Directory of Open Access Journals (Sweden)

    Ryszard Chmielewski

    2016-12-01

    Full Text Available Some problems of alteration for building structures of a conventional masonry for which working lifetime is approaching or has exceeded the expected design life are presented. In the course of these works, non-bearing masonry walls are often removed and as a result significant damages to supporting structures are often made, and in extreme cases even building collapses. Building surveyors who prepare a structural appraisal for technical reports of damaged masonry structures, as a solution to the problem, recommend sometimes to make only surface reinforcement of damaged walls. The question of significant change in the load distribution in alteration for buildings of conventional design is complex and in some cases above the recommended surface repairs may not be sufficient to ensure structural reliability or the safety of buildings exploitation. The paper proposes a scope of evaluation and structural analysis of a building, which allows to properly determine the range of the existing threats, and on this basis to carry out adequate repair of damaged masonry structures, including structural strengthening.[b]Keywords:[/b] masonry structures, buildings without ring beam of floor slabs, damages of masonry walls, structural failures and collapses

  7. Lightweight Space Tug body structure

    Science.gov (United States)

    Lager, J. R.

    1976-01-01

    Lightweight honeycomb sandwich construction using a wide variety of metal and fibrous composite faceskins was used in the design of a typical Space Tug skirt structure. Relatively low magnitude combined loading of axial compression and torsion resulted in designs using ultrathin faceskins, lightweight honeycomb cores, and thin faceskin/core adhesive bond layers. Two of the designs with metal faceskins (aluminum and titanium) and four with fibrous composite faceskins (using combinations of fiberglass, boron, and graphite) were evaluated through the fabrication and structural test of a series of small development panels. The two most promising concepts with aluminum and graphite/epoxy faceskins, were further evaluated through the fabrication and structural test of larger compression and shear panels. All panels tested exceeded design ultimate load levels, thereby, verifying the structural integrity of the selected designs. Projected skirt structural weights for the graphite/epoxy and aluminum concepts fall within original weight guidelines established for the Space Tug vehicle.

  8. Field documentation and client presentation of IR inspections on new masonry structures

    Science.gov (United States)

    McMullan, Phillip C.

    1991-03-01

    With the adoption of American Concrete Institute's Design Standard 530 (ACI 530-88/ASCE 5-88) and Specifications (ACI 530.1-88/ASCE 6-88) by more governing bodies throughout the United States, the level and method of inspecting masonry structures is rapidly changing. These new standards set forth inspection criteria such that the Professional of Record (i.e., Architect), can determine the level of inspection based on the type and complexity of the structure being built. For example, a hospital would require considerably more inspection than a Seven-Eleven mini-market. However, the standards require that all new masonry buildings must be inspected. Infrared thermography has proven to be an effective tool to assist in the required inspections. These inspections focus on evaluating masonry for compliance with the design specifications with regard to material, structural strength and thermal performance, the use of video infrared thermography provides a thorough systematic method for inspection of structural solids and thermal integrity of masonry structures. In conducting masonry inspections, the creation of a permanent, well-documented record is valuable in avoiding potential controversy over the inspection findings. Therefore, the inspection method, verification of findings, and presentation of the inspection data are key to the successful use of infrared thermography as an inspection tool. This paper will focus on the method of inspection which TSI employs in conducting new masonry inspections. Additionally, an important component of any work is the presentation of the data. We will look at the information which is generated during this type of inspection and how that data can be converted into a usable report for the various parties involved in construction of a new masonry building.

  9. Making Lightweight Structures By Vapor Deposition

    Science.gov (United States)

    Goela, Jitendra S.; Pickering, Michael A.; Taylor, Raymond L.

    1990-01-01

    Technique developed for fabrication of stiff, strong, lightweight structures of silicon carbide or other materials by any of several deposition processes. Structures made by method can have complicated shapes. Ability to manufacture complex shape from pure deposited SiC useful and leads to new products in several fields. These lightweight structures used as backup structures for optical components, as structural components in automotive, aerospace, and outer space applications, and as lightweight parts of furniture for outer space.

  10. Lightweight and Energy Efficient Heat Pump Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future Spacecraft from the JPL will require increasingly sophisticated thermal control technology. A need exists for efficient, lightweight Vapor Compression Cycle...

  11. Modular Self-Rigidizing Lightweight Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative structures concept has been developed that uses space qualified flexible thin film polyimide to produce ultra-lightweight inflation deployed...

  12. Spongent: A lightweight hash function

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Knežević, Miroslav; Leander, Gregor

    2011-01-01

    This paper proposes spongent - a family of lightweight hash functions with hash sizes of 88 (for preimage resistance only), 128, 160, 224, and 256 bits based on a sponge construction instantiated with a present-type permutation, following the hermetic sponge strategy. Its smallest implementations...... of serialization degree and speed. We explore some of its numerous implementation trade-offs. We furthermore present a security analysis of spongent. Basing the design on a present-type primitive provides confidence in its security with respect to the most important attacks. Several dedicated attack approaches...

  13. Manufacturing Precise, Lightweight Paraboloidal Mirrors

    Science.gov (United States)

    Hermann, Frederick Thomas

    2006-01-01

    A process for fabricating a precise, diffraction- limited, ultra-lightweight, composite- material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production. Other processes that have been investigated for fabrication of precise composite-material lightweight mirrors have resulted in print-through of fiber patterns onto reflecting surfaces, and have not provided adequate structural support for maintenance of stable, diffraction-limited surface figures. In contrast, this process does not result in print-through of the fiber pattern onto the reflecting surface and does provide a lightweight, rigid structure capable of maintaining a diffraction-limited surface figure in the face of changing temperature, humidity, and air pressure. The process consists mainly of the following steps: 1. A precise glass mandrel is fabricated by conventional optical grinding and polishing. 2. The mandrel is coated with a release agent and covered with layers of a carbon- fiber composite material. 3. The outer surface of the outer layer of the carbon-fiber composite material is coated with a surfactant chosen to provide for the proper flow of an epoxy resin to be applied subsequently. 4. The mandrel as thus covered is mounted on a temperature-controlled spin table. 5. The table is heated to a suitable temperature and spun at a suitable speed as the epoxy resin is poured onto the coated carbon-fiber composite material. 6. The surface figure of the optic is monitored and adjusted by use of traditional Ronchi, Focault, and interferometric optical measurement techniques while the speed of rotation and the temperature are adjusted to obtain the desired figure. The proper selection of surfactant, speed or rotation

  14. Experimental and Numerical Studies on Ultimate Load Behaviour of Brick Masonry

    Science.gov (United States)

    Srinivas, Voggu; Sasmal, Saptarshi

    2016-06-01

    The present work brings out the studies on ultimate load behavior of brick masonry subjected to compression and shear-loading. The work composed of both the experimental and numerical investigations, aimed at contributing to the better understanding of the knowledge on the behavior of brick masonry structures under monotonic loading. Two brick masonry specimens have been tested up to ultimate load and the structural response in terms of the load, deflections and strains has been investigated. Due to the complexity, time and expense involved in the experimental investigations on brick masonry, limited number of experimental studies have been conducted and further, numerical studies have been carried out to simulate the experimental tests by suitably adopting the appropriate constitute models for the materials used. The responses and the failure load behaviour obtained from nonlinear numerical models developed are found to be in good agreement with the experimentally obtained results. The proposed numerical models can easily be adopted for further studies on the structural component made using brick masonry considering various geometric configurations, material disposition, loading conditions etc.

  15. Numerical Derivation of Strain Rate Effects on Material Properties of Masonry with Solid Clay Bricks

    Institute of Scientific and Technical Information of China (English)

    WEI Xueying; HAO Hong

    2006-01-01

    In this paper,numerical method is used to study the strain rate effect on masonry materials.A typical unit of masonry is selected to serve as a representative volume element (RVE).Numerical model of RVE is established with detailed distinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests.The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials.Dynamic loads of different loading rates are applied to RVE.The equivalent homogenized uniaxial compressive strength,threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE.The strain rate effect on the masonry material with clay brick and mortar,such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.

  16. Experimental evaluation of the prevention methods for the interface between masonry infill walls and concrete columns

    Directory of Open Access Journals (Sweden)

    A. P. Tramontin

    Full Text Available Cracks that form at the interfaces between masonry structures are common uncontrolled occurrences in buildings. Numerous methods have been proposed by the construction industry to address this problem. Cracks continuously form in the joints between concrete columns and masonry infill walls. In this study, the most common methods for preventing these types of cracks were evaluated in laboratory experiments. Column masonry models were constructed using different types of joints between concrete columns and masonry infill walls, such as steel bars and steel mesh. The efficiency of each type of joint method was evaluated by performing direct tensile tests (pullout tests on the models and monitoring the evolution of the crack opening in the joint between the column and wall, as a function of load applied to the model. The results from this study indicate that the model composed of "electrowelded wire mesh without steel angles" is the best model for controlling cracking in the joints between concrete columns and masonry infill walls.

  17. The effects of operating conditions on emissions from masonry heaters and sauna stoves

    Energy Technology Data Exchange (ETDEWEB)

    Tissari, Jarkko; Hytoenen, Kati; Sippula, Olli [Fine Particle and Aerosol Technology Laboratory, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland); Jokiniemi, Jorma [Fine Particle and Aerosol Technology Laboratory, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland)]|[VTT, Technical Research Centre of Finland, Fine Particles, PO Box 1000, 02044 VTT, Espoo (Finland)

    2009-03-15

    Emissions from masonry heaters and sauna stoves were studied. In the sauna stove the production of organic gaseous carbon (OGC) at 10 gC kg{sup -1} (per kilogram of fuel), carbon monoxide (CO) at 55 g kg{sup -1}, fine particle mass (PM{sub 1}) at 5 g kg{sup -1} and number emissions (N) at 1.8 x 10{sup 15} kg{sup -1} was higher than in other measured appliances. In a modern technology masonry heater with a unique grate, the emissions were very low: 0.4 gC kg{sup -1} OGC, 14 g kg{sup -1} CO and 0.7 g kg{sup -1} PM{sub 1}. Conventional masonry heaters, using small logs, clearly produced higher emissions when compared to using large logs. Doubling the fuel load caused emission factors to increase by up to 4- times (OGC), except for the number emission, which decreased from 4.0 x 10{sup 14} to 2.0 x 10{sup 14} kg{sup -1}. From the conventional masonry heater 90% of the PM was emitted during the firing phase. Its combustion process is different to that in stoves or conventional open fireplaces. The insufficient supply of air, due to too fast pyrolysis, and increased ash release, due to the high combustion temperature, are the main parameters which cause high particle and gas emissions in masonry heaters and sauna stoves. (author)

  18. Development of digital image correlation method to analyse crack variations of masonry wall

    Indian Academy of Sciences (India)

    Shih-Heng Tung; Ming-Hsiang Shih; Wen-Pei Sung

    2008-12-01

    The detection of crack development in a masonry wall forms an important study for investigating the earthquake resistance capability of the masonry structures. Traditionally, inspecting the structure and documenting the findings were done manually. The procedures are time-consuming, and the results are sometimes inaccurate. Therefore, the digital image correlation (DIC) technique is developed to identify the strain and crack variations. This technique is non-destructive for inspecting the whole displacement and strain field. Tests on two masonry wall samples were performed to verify the performance of the digital image correlation method. The phenomena of micro cracks, strain concentration situation and nonuniform deformation distribution which could not have been observed preciously by manual inspection are successfully identified using DIC. The crack formation tendencies on masonry wall can be observed at an earlier stage by this proposed method. These results show a great application potential of the DIC technique for various situations such as inspecting shrinkage-induced cracks in fresh concrete, masonry and reinforced concrete structures, and safety of bridges.

  19. Next-Generation MKIII Lightweight HUT/Hatch Assembly

    Science.gov (United States)

    McCarthy, Mike; Toscano, Ralph

    2013-01-01

    The MK III (H-1) carbon-graphite/ epoxy Hard Upper Torso (HUT)/Hatch assembly was designed, fabricated, and tested in the early 1990s. The spacesuit represented an 8.3 psi (˜58 kPa) technology demonstrator model of a zero prebreathe suit. The basic torso shell, brief, and hip areas of the suit were composed of a carbon-graphite/epoxy composite lay-up. In its current configuration, the suit weighs approximately 120 lb (˜54 kg). However, since future planetary suits will be designed to operate at 0.26 bar (˜26 kPa), it was felt that the suit's re-designed weight could be reduced to 79 lb (˜35 kg) with the incorporation of lightweight structural materials. Many robust, lightweight structures based on the technologies of advanced honeycomb materials, revolutionary new composite laminates, metal matrix composites, and recent breakthroughs in fullerene fillers and nanotechnology lend themselves well to applications requiring materials that are both light and strong. The major problem involves the reduction in weight of the HUT/ Hatch assembly for use in lunar and/or planetary applications, while at the same time maintaining a robust structural design. The technical objective is to research, design, and develop manufacturing methods that support fa b rica - tion of a lightweight HUT/Hatch assembly using advanced material and geometric redesign as necessary. Additionally, the lightweight HUT/Hatch assembly will interface directly with current MK III hardware. Using the new operating pressure and current MK III (H-1) interfaces as a starting block, it is planned to maximize HUT/Hatch assembly weight reduction through material selection and geometric redesign. A hard upper torso shell structure with rear-entry closure and corresponding hatch will be fabricated. The lightweight HUT/Hatch assembly will retrofit and interface with existing MK III (H-1) hardware elements, providing NASA with immediate "plug-andplay" capability. NASA crewmembers will have a lightweight

  20. Characterization and Degradation of Masonry Mortar in Historic Brick Structures

    Directory of Open Access Journals (Sweden)

    Denis A. Brosnan

    2014-01-01

    Full Text Available This study characterized mortars from a masonry fortification in Charleston, South Carolina (USA, harbor where construction was during the period 1839–1860. This location for analysis was interesting because of the sea water impingement on the structure. The study was included as part of an overall structural assessment with restoration as an objective. The mortars were found to be cement, lime, and sand mixtures in proportions similar to ones expected from the historic literature, that is, one part binder to two parts of sand. The binder was found to be American natural cement, a substance analogous to the European Roman cement. The results suggest that the thermal history of the cement during manufacturing affected setting rate explaining why the cements were considered as variable during the mid-to-late 1800s. Fine pores were found in mortars exposed to sea water resulting from corrosion. Contemporary natural cement was shown to release calcium in aqueous solution. While this release of calcium is necessary for setting in natural and Portland cements, excessive calcium solution, as exacerbated by sea water contact and repointing with Portland cement mortars, was shown to result in brick scaling or decay through cryptoflorescence.

  1. CH of masonry materials via meshless meso-modeling

    Directory of Open Access Journals (Sweden)

    Giuseppe Giambanco

    2014-07-01

    Full Text Available In the present study a multi-scale computational strategy for the analysis of masonry structures is presented. The structural macroscopic behaviour is obtained making use of the Computational Homogenization (CH technique based on the solution of the boundary value problem (BVP of a detailed Unit Cell (UC chosen at the meso-scale and representative of the heterogeneous material. The smallest UC is composed by a brick and half of its surrounding joints, the former assumed to behave elastically while the latter considered with an elastoplastic softening response. The governing equations at the macroscopic level are formulated in the framework of finite element method while the Meshless Method (MM is adopted to solve the BVP at the mesoscopic level. The work focuses on the BVP solution. The consistent tangent stiffness matrix at a macroscopic quadrature point is evaluated on the base of BVP results for the UC together with a localisation procedure. Validation of the MM procedure at the meso-scale level is demonstrated by numerical examples that show the results of the BVP for the simple cases of normal and shear loading of the UC.

  2. Development of the lined masonry chimney oil appliance

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.; Strasser, J. [Brookhaven National Lab., Upton, NY (United States)

    1996-07-01

    This paper describes the development of the lined masonry chimney venting tables form the output of the Oil Heat Analysis Program 9OHVAP. These new tables are different from the prior format, offered in the Proceedings of the 1995 Oil Heat Technology Conference and Workshop, paper No. 95-4. Issues expressed by representatives of the oil heat industry at last years conference during the Venting Technology Workshop resulted in subsequent discussions. A full day meeting was held, co-sponsored by BNL and the Oilheat Manufacturers Association (OMA), to address revision of the format of the venting tables prior to submission to the National Fire Protection Association (NFPA) Standard 31 Technical Committee. The resulting tables and text were submitted to NFPA during the first week of October, 1995. Since then minor changes were made reflecting the addition of data obtained by including intermediate firing rates (0.4, 0.65, and 0.85 gph) not included in the original tables which were developed in increments of 0.25 gph. The new tables address the specific question; {open_quotes}If remediation is required, what is the recommendation for the sizing of a metal liner and the appropriate firing rate range to be used with that liner?{close_quotes}

  3. Properties of Hydrophilic Mineral Wool for Desalination of Historical Masonry

    Directory of Open Access Journals (Sweden)

    Iñigo ANTEPARA

    2016-05-01

    Full Text Available Hydrophilic mineral wool (HMW is considered as a possible alternative to the commonly used cellulose in desalination of historical masonry. HMW also allows water and salt solutions transport along the hydrophilic fibres, which is the necessary condition for its possible application for desalination measures, but contrary to cellulose it is inorganic material, which reduces maintenance of the poultice. On this account, the hygric transport and storage properties of newly developed HMW is determined in the paper. In order to get detailed information on HMW performance, its thermal properties are measured as well. For its basic characterization, bulk density, matrix density, saturation moisture and salt content, and apparent total open porosity are accessed. The results are in good agreement with those published in literature for similar types of HMW. The process of drying of three different types of sandstone, as typical materials frequently used in historical buildings, using HMW board is monitored to analyse the practical applicability of the proposed desalination treatment. The obtained results show that HMW slows the drying process. However, the final level of drying is the same as without the HMW, which indicates the possible applicability of studied HMW for desalination purposes.

  4. Fire behaviour of EPS ETICS on concrete or masonry facades

    Directory of Open Access Journals (Sweden)

    Afipeb

    2016-01-01

    Full Text Available In France, fire safety of facades for establishments open to the public has been governed by the Technical Instruction n∘249 since 1982; its current version was made regulatory on May 24th, 2010. Considering this revision, the Ministry of Interior requested industrials firms to revalidate the fire behaviour of their external insulation systems through testing. AFIPEB, SIPEV and SNMI decided therefore to launch a test campaign. After a preliminary analysis of Single Burning Item (SBI data related to EPS ETICS and some full-scale orientation tests, the polyvalent, representative and reliable LEPIR 2 test protocol was implemented. Three EPS ETICS configurations under various renders were tested: one under thick hydraulic renders, another under thin mixed renders and a third under thin organic renders. These tests were successful. For the first 30 minutes of each test: there was no ignition nor vertical spread of fire to the facade at its second level, there was also no lateral spread of fire along the facade width. Moreover, after 60 minutes, the outer skin above the horizontal line at 5.2 m was not damaged. The campaign confirms that EPS ETICS under thin, thick or mixed renders perfectly comply with fire safety regulations. AFIPEB, SIPEV and SNMI wrote a recommendation guide based on approved laboratories assessment. It describes construction solutions limiting fire propagation on a concrete or masonry facade insulated by EPS ETICS. This guide currently supplements IT 249 (2010.

  5. Relationships between evaporation and moisture content in historical masonry

    Science.gov (United States)

    López-González, Laura; Ortiz de Cosca, Raquel Otero; García-Morales, Soledad; Gomez-Heras, Miguel

    2016-04-01

    The "materiaĺs evaporative behaviour" describe how on site materials evaporate in real conditions, not only due to indoor conditions (air temperature and humidity ratio, etc), but also because it is influenced by multiple factors (building systems, materials, environmental conditions, etc), some of which can difficult the evaporation process, such as as hygroscopic salts presence. This evaporative behaviour may or may not have a direct relation to the actual moisture within the walls. This paper presents thermohygrometric data and a electrical resistivity survey from a half-buried wall of the Hermit of Humilladero (Ávila, Spain 16th century), a building that displays intense moisture-related decay in that wall. Thermohygrometric data allowed characterising the evaporative behaviour while the resistivity survey allowed inferring the moisture in the masonry. Salt's presence was also mapped. These sets of data were statistically analysed to observe the significance of the correlation, if any and characterise the evaporative behaviour by discerning the different information obtained from each technique. The different measurements obtained by these techniques were combined using GIS software. This allowed obtaining maps that combine evaporation and moisture data represented by "factors" (i.e. a global value obtained as a sum of different properties). The combination of these tests allowed a better characterization and understanding of wetting and drying cycles aiming to develop a correct diagnosis system. Research funded by Madrid's Regional Government project Geomateriales 2 S2013/MIT-2914

  6. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  7. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  8. Small and lightweight power amplifiers

    Science.gov (United States)

    Shams, Qamar A.; Barnes, Kevin N.; Fox, Robert L.; Moses, Robert W.; Bryant, Robert G.; Robinson, Paul C.; Shirvani, Mir

    2002-07-01

    The control of u wanted structural vibration is implicit in most of NASA's programs. Currently several approaches to control vibrations in large, lightweight, deployable structures and twin tail aircraft at high angles of attack are being evaluated. The Air Force has been examining a vertical tail buffet load alleviation system that can be integrated onboard an F/A-18 and flown. Previous wind tunnel and full-scale ground tests using distributed actuators have shown that the concept works; however, there is insufficient rom available onboard an F/A-18 to store current state-of- the-art system components such as amplifiers, DC-to-DC converter and a computer for performing vibration suppression. Sensor processing, power electronics, DC-to-DC converters, and control electronics that may be collocated with distributed actuators, are particularly desirable. Such electronic system would obviate the need for complex, centralized, control processing and power distribution components that will eliminate the weight associated with lengthy wiring and cabling networks. Several small and lightweight power amplifiers ranging from 300V pp to 650V pp have been designed using off the shelf components for different applications. In this paper, the design and testing of these amplifiers will be presented under various electrical loads.

  9. Damage propagation in a masonry arch subjected to slow cyclic and dynamic loadings

    Directory of Open Access Journals (Sweden)

    J. Toti

    2014-07-01

    Full Text Available In the present work, the damage propagation of a masonry arch induced by slow cyclic and dynamic loadings is studied. A two-dimensional model of the arch is proposed. A nonlocal damage-plastic constitutive law is adopted to reproduce the hysteretic characteristics of the masonry material, subjected to cyclic static loadings or to harmonic dynamic excitations. In particular, the adopted cohesive model is able to take into account different softening laws in tension and in compression, plastic strains, stiffness recovery and loss due to crack closure and reopening. The latter effect is an unavoidable feature for realistically reproducing hysteretic cycles. In the studied case, an inverse procedure is used to calibrate the model parameters. Then, nonlinear static and dynamic responses of the masonry arch are described together with damage propagation paths.

  10. Lightweight, Self-Deploying Foam Antenna Structures

    Science.gov (United States)

    Sokolowski, Witold; Levin, Steven; Rand, Peter

    2004-01-01

    Lightweight, deployable antennas for a variety of outer-space and terrestrial applications would be designed and fabricated according to the concept of cold hibernated elastic memory (CHEM) structures, according to a proposal. Mechanically deployable antennas now in use are heavy, complex, and unreliable, and they utilize packaging volume inefficiently. The proposed CHEM antenna structures would be simple and would deploy themselves without need for any mechanisms and, therefore, would be more reliable. The proposed CHEM antenna structures would also weigh less, could be packaged in smaller volumes, and would cost less, relative to mechanically deployable antennas. The CHEM concept was described in two prior NASA Tech Briefs articles: "Cold Hibernated Elastic Memory (CHEM) Expandable Structures" (NPO-20394), Vol. 23, No. 2 (February 1999), page 56; and "Solar Heating for Deployment of Foam Structures" (NPO-20961), Vol. 25, No. 10 (October 2001), page 36. To recapitulate from the cited prior articles: The CHEM concept is one of utilizing opencell foams of shape-memory polymers (SMPs) to make lightweight, reliable, simple, and inexpensive structures that can be alternately (1) compressed and stowed compactly or (2) expanded, then rigidified for use. A CHEM structure is fabricated at full size from a block of SMP foam in its glassy state [at a temperature below the glass-transition temperature (Tg) of the SMP]. The structure is heated to the rubbery state of the SMP (that is, to a temperature above Tg) and compacted to a small volume. After compaction, the structure is cooled to the glassy state of the SMP. The compacting force can then be released and the structure remains compact as long as the temperature is kept below Tg. Upon subsequent heating of the structure above Tg, the simultaneous elastic recovery of the foam and its shape-memory effect cause the structure to expand to its original size and shape. Once thus deployed, the structure can be rigidified by

  11. Tests and Analysis of the Compressive Performance of an Integrated Masonry Structure of a Brick-Stem-Insulating Layer

    Directory of Open Access Journals (Sweden)

    Suizi Jia

    2016-05-01

    Full Text Available This paper proposes, for low buildings, an integrated wall structure of a brick-stem-insulating layer, which plays a major part in both heat preservation and force bearing. The research team has tested the thermal performance of the structure, the results of which are satisfying. To further study the force-bearing performance, the paper carries out compressive tests of specimens of different structural design, with two types of bricks, i.e., clay and recycled concrete bricks; three types of stems, i.e., square-shaped wood, square-shaped steel pipe and circular steel pipe; and one type of insulating layer, i.e., fly ash masonry blocks. Afterward, the force bearing performance, damage that occurred, compressive deformation and ductility of all of the specimens are compared. On the sideline, the structure is applied in the construction of a pilot residence project, yielding favorable outcomes. The results indicate that in comparison with a brick wall with an insulating layer sandwiched in between, the integrated wall structure of bricks and fly ash blocks is a more preferable choice in terms of compressive performance and ductility. The integrated wall structure of brick-stem-fly ash blocks delivers much better performance to this end. Note that regarding the stem’s contribution to compressive strength, circular steel pipe is highest, followed by square-shaped steel pipe and then square-shaped wood. The compressive performance of the sandwiched blocks surpasses that of the two brick wall pieces combined by a large margin.

  12. Two-dimensional analysis of coupled heat and moisture transport in masonry structures

    Science.gov (United States)

    Krejčí, Tomáš

    2016-06-01

    Reconstruction and maintenance of historical buildings and bridges require good knowledge of temperature and moisture distribution. Sharp changes in the temperature and moisture can lead to damage. This paper describes analysis of coupled heat and moisture transfer in masonry based on two-level approach. Macro-scale level describes the whole structure while meso-scale level takes into account detailed composition of the masonry. The two-level approach is very computationally demanding and it was implemented in parallel. The two-level approach was used in analysis of temperature and moisture distribution in Charles bridge in Prague, Czech Republic.

  13. An experimental study on the influence of composite materials used to reinforce masonry ring beams

    OpenAIRE

    Sisti, Romina; Corradi, Marco; Borri, Antonio

    2016-01-01

    For historic masonry constructions the out-of-plane wall behavior is critical to seismic performance. Because the main cause of out-of-plane collapses is the wall-to-wall level of connection, the application of a reinforced concrete (RC) ring beam at the eaves level of historic masonry buildings is an effective method to prevent an out-of-plane mechanism of a wall panel. However this effective reinforcing method presents some drawbacks. In order to address this, this paper describes the probl...

  14. Cut-HDMR-based fully equivalent operational model for analysis of unreinforced masonry structures

    Indian Academy of Sciences (India)

    D Mukherjee; B N Rao; A M Prasad

    2012-10-01

    Mesoscale models are highly competent for understanding behaviour of unreinforced masonry structures. Their only limitation is large computational expense. Fully Equivalent Operational Model forms an equivalent mathematical model to represent a particular phenomenon where explicit relationship between inputs and outputs are unknown. This paper explores the ability of a major variant of High Dimensional Model Representation (HDMR) technique, namely Cut-HDMR, to construct the most efficient Fully Equivalent Operational Model for nonlinear finite element analysis of mesoscale model of an unreinforced masonry structure. Conclusions are reached on various aspects such as, suitability of interpolation schemes and order of Cut-HDMR approximation.

  15. RFID security a lightweight paradigm

    CERN Document Server

    Khattab, Ahmed; Amini, Esmaeil; Bayoumi, Magdy

    2017-01-01

    This book provides a comprehensive treatment of security in the widely adopted, Radio Frequency Identification (RFID) technology. The authors present the fundamental principles of RFID cryptography in a manner accessible to a broad range of readers, enabling them to improve their RFID security design. This book also offers the reader a range of interesting topics portraying the current state-of-the-art in RFID technology and how it can be integrated with today’s Internet of Things (IoT) vision. The authors describe a first-of-its-kind, lightweight symmetric authenticated encryption cipher called Redundant Bit Security (RBS), which enables significant, multi-faceted performance improvements compared to existing cryptosystems. This book is a must-read for anyone aiming to overcome the constraints of practical implementation in RFID security technologies.

  16. An Ultra-Lightweight Encryption Scheme in Underwater Acoustic Networks

    Directory of Open Access Journals (Sweden)

    Chunyan Peng

    2016-01-01

    Full Text Available We tackle a fundamental security problem in underwater acoustic networks (UANs. The S-box in the existing block encryption algorithm is more energy consuming and unsuitable for resources-constrained UANs. In this paper, instead of S-box, we present a lightweight, 8-round iteration block cipher algorithm for UANs communication based on chaotic theory and increase the key space by changing the number of iteration round. We further propose secure network architecture of UANs. By analysis, our algorithm can resist brute-force searches and adversarial attacks. Simulation results show that, compared with traditional AES-128 and PRESENT algorithms, our cryptographic algorithm can make a good trade-off between security and overhead, has better energy efficiency, and applies to UANs.

  17. Site investigation of masonry buildings damaged during the 23 October and 9 November 2011 Van Earthquakes in Turkey

    Science.gov (United States)

    Piroglu, F.; Ozakgul, K.

    2013-03-01

    The purpose of this study is to scrutinize and interpret the damages to masonry buildings after a series of earthquakes that occurred in Van, which is an eastern city of Turkey, within 17 days in 2011, i.e., the first earthquake hit on 23 October having the magnitude 7.1, and the second on 9 November with the magnitude 5.6 on the Richter scale. These consecutive earthquakes and their aftershocks caused extensive damage and the collapse of buildings in the city of Van and its villages and especially its near town, namely Ercis. For the investigation of masonry buildings, Hacibekir district, which is one of the regions comprising the highest density of masonry buildings in the city of Van, was selected and the seismic performance of these buildings was observed, tested in the field, and interpreted according to the Turkish earthquake-resistant design codes. In this region, masonry buildings were classified as adobe, unreinforced and confined masonry buildings. As a result of this field study, it was observed that whereas the confined masonry buildings had usually shown good performance during the earthquakes, the adobe and the unreinforced masonry buildings were seriously damaged and some of them were partially collapsed.

  18. Site investigation of masonry buildings damaged during the 23 October and 9 November 2011 Van Earthquakes in Turkey

    Directory of Open Access Journals (Sweden)

    F. Piroglu

    2013-03-01

    Full Text Available The purpose of this study is to scrutinize and interpret the damages to masonry buildings after a series of earthquakes that occurred in Van, which is an eastern city of Turkey, within 17 days in 2011, i.e., the first earthquake hit on 23 October having the magnitude 7.1, and the second on 9 November with the magnitude 5.6 on the Richter scale. These consecutive earthquakes and their aftershocks caused extensive damage and the collapse of buildings in the city of Van and its villages and especially its near town, namely Ercis. For the investigation of masonry buildings, Hacibekir district, which is one of the regions comprising the highest density of masonry buildings in the city of Van, was selected and the seismic performance of these buildings was observed, tested in the field, and interpreted according to the Turkish earthquake-resistant design codes. In this region, masonry buildings were classified as adobe, unreinforced and confined masonry buildings. As a result of this field study, it was observed that whereas the confined masonry buildings had usually shown good performance during the earthquakes, the adobe and the unreinforced masonry buildings were seriously damaged and some of them were partially collapsed.

  19. Self healing phenomena in concretes and masonry mortars: A microscopic study

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.; Hees, R.P.J. van; Lubelli, B.A.; Rooij, M.R. de

    2007-01-01

    A microscopic survey of over 1000 of samples of concrete and masonry mortars from structures in the Netherlands shows that, in practice, self healing occurs in historic lime and lime – puzzolana mortars, in contrast to modern cement bound concretes and mortars. Self healing may be effected by the fo

  20. Determination of shear parameters of concrete filled head-straight masonry brick walls

    Directory of Open Access Journals (Sweden)

    Reza Amiraslanzadeh

    2015-03-01

    Full Text Available The aim of present study was determination of shear parameters of reinforced and unreinforced masonry brick walls assembled with Head-straight texture order. Experimental tests carried out on triplets in order to define shear parameters of brick mortar interface, and diagonal compression test in order to define shear strength of masonry panels. According to various interpretations on evaluation of shear strength using diagonal compression test, comparison between mentioned values and those obtained by laboratory tests on shear triplets are presented. The results showed that, although the generated internal columns have not been tied together on top and bottom sides, they contributed to a significant improvement on shear resistance of the masonry panels. Referring to the interpretations on test outcomes, it was perceived that the formula which was obtained by adopting the Turnašek- Cacovic criterion is the most suitable and reliable one. It was concluded that filling the voids of Head-straight texture masonry walls using steel fiber concrete, significantly increase these walls shear parameters.

  1. Determination of moisture content in masonry materials. Calibration of some direct methods

    NARCIS (Netherlands)

    Binda, L.; Squarcina, T.; Hees, R.P.J. van

    1996-01-01

    The presence of moisture in masonry wails is always a direct or indirect source of damace: the aesthetics of the building, the performance of the materials and the in-door hvgrothermic conditions can heavily change when the moisture content exceeds the normal hygroscopic value. The determination of

  2. The influence of water flow (reversal) on bond strength development in young masonry

    NARCIS (Netherlands)

    Groot, C.; Larbi, J.

    1999-01-01

    Water loss from the fresh mortar is believed to be related to mortar-brick bond strength development in masonry. Recent research on mortar-brick bond has shown that, particularly, effects of water flow on the composition and the hydration conditions of the mortar-brick interface have to be taken int

  3. Desalination of masonry structures: Fine tuning of pore size distribution of poultices to substrate properties

    NARCIS (Netherlands)

    Lubelli, B.A.; Hees, R.P.J. van

    2010-01-01

    Desalination is a relatively new intervention in the field of conservation of architectural heritage. Especially the desalination of immovable objects, such as masonry structures, is still a trial-error practice. In the field, different desalination materials and methods are used, sometimes with

  4. Sequestering Lead in Paint by Utilizing Deconstructed Masonry Materials as Recycled Aggregate in Concrete. Revision 1

    Science.gov (United States)

    2008-05-27

    at Holcim Ltd. donated masonry materials and cement, respectively, to the project. ix EXECUTIVE SUMMARY A systematic study has been conducted to... Holcim Type I ordinary portland cement (which meets the requirements of ASTM [American Society for Testing and Materials] C150) and Polar Bear CSAcement

  5. Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Van Straaten, R.

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  6. Investigation on the behaviour of a restoration plaster applied on heavy salt loaded masonry

    NARCIS (Netherlands)

    Lubelli, B.; Hees, R.P.J. van; Groot, C.W.P.

    2006-01-01

    The present paper reports the results of a series of investigations and monitoring performed, during a period of more than three years, on an ancient church flooded by the sea 50 years ago. This building can be considered representative for many other brick-masonry monuments in the flooded areas in

  7. Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale

    Science.gov (United States)

    Mebarki, A.; Valencia, N.; Salagnac, J. L.; Barroca, B.

    2012-05-01

    This paper deals with the failure risk of masonry constructions under the effect of floods. It is developed within a probabilistic framework, with loads and resistances considered as random variables. Two complementary approaches have been investigated for this purpose: - a global approach based on combined effects of several governing parameters with individual weighted contribution (material quality and geometry, presence and distance between columns, beams, openings, resistance of the soil and its slope. . .), - and a reliability method using the failure mechanism of masonry walls standing out-plane pressure. The evolution of the probability of failure of masonry constructions according to the flood water level is analysed. The analysis of different failure probability scenarios for masonry walls is conducted to calibrate the influence of each "vulnerability governing parameter" in the global approach that is widely used in risk assessment at the urban or regional scale. The global methodology is implemented in a GIS that provides the spatial distribution of damage risk for different flood scenarios. A real case is considered for the simulations, i.e. Cheffes sur Sarthe (France), for which the observed river discharge, the hydraulic load according to the Digital Terrain Model, and the structural resistance are considered as random variables. The damage probability values provided by both approaches are compared. Discussions are also developed about reduction and mitigation of the flood disaster at various scales (set of structures, city, region) as well as resilience.

  8. Self healing phenomena in concretes and masonry mortars: A microscopic study

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.; Hees, R.P.J. van; Lubelli, B.A.; Rooij, M.R. de

    2007-01-01

    A microscopic survey of over 1000 of samples of concrete and masonry mortars from structures in the Netherlands shows that, in practice, self healing occurs in historic lime and lime – puzzolana mortars, in contrast to modern cement bound concretes and mortars. Self healing may be effected by the

  9. Experimental and analytical investigation of the lateral load response of confined masonry walls

    Directory of Open Access Journals (Sweden)

    Hussein Okail

    2016-04-01

    Full Text Available This paper investigates the behavior of confined masonry walls subjected to lateral loads. Six full-scale wall assembles, consisting of a clay masonry panel, two confining columns and a tie beam, were tested under a combination of vertical load and monotonic pushover up to failure. Wall panels had various configurations, namely, solid and perforated walls with window and door openings, variable longitudinal and transverse reinforcement ratios for the confining elements and different brick types, namely, cored clay and solid concrete masonry units. Key experimental results showed that the walls in general experienced a shear failure at the end of the lightly reinforced confining elements after the failure of the diagonal struts formed in the brick wall due to transversal diagonal tension. Stepped bed joint cracks formed in the masonry panel either diagonally or around the perforations. A numerical model was built using the finite element method and was validated in light of the experimental results. The model showed acceptable correlation and was used to conduct a thorough parametric study on various design configurations. The conducted parametric study involved the assessment of the load/displacement response for walls with different aspect ratios, axial load ratios, number of confining elements as well as the size and orientation of perforations. It was found that the strength of the bricks and the number of confining elements play a significant role in increasing the walls’ ultimate resistance and displacement ductility.

  10. 29 CFR 1926.854 - Removal of walls, masonry sections, and chimneys.

    Science.gov (United States)

    2010-07-01

    ... to work on the top of a wall when weather conditions constitute a hazard. (d) Structural or load... 29 Labor 8 2010-07-01 2010-07-01 false Removal of walls, masonry sections, and chimneys. 1926.854... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926...

  11. Damage functions for the vulnerability assessment of masonry buildings subjected to tunneling

    NARCIS (Netherlands)

    Giardina, C.; Hendriks, M.A.N.; Rots, J.G.

    2015-01-01

    This paper describes a new framework for the assessment of potential damage caused by tunneling-induced settlement to surface masonry buildings. Finite element models in two and three dimensions, validated through comparison with experimental results and field observations, are used to investigate

  12. Desalination of masonry structures: Fine tuning of pore size distribution of poultices to substrate properties

    NARCIS (Netherlands)

    Lubelli, B.A.; Hees, R.P.J. van

    2010-01-01

    Desalination is a relatively new intervention in the field of conservation of architectural heritage. Especially the desalination of immovable objects, such as masonry structures, is still a trial-error practice. In the field, different desalination materials and methods are used, sometimes with uns

  13. Prototype of a diagnostic decision support tool for structural damage in masonry

    NARCIS (Netherlands)

    De Vent, I.A.E.

    2011-01-01

    This prototype of a diagnostic decision support tool for structural damage in traditional masonry is the result of a PhD research project. The research project has aimed to improve and facilitate the diagnostic process by offering support in the initial phase in which hypotheses are generated. The m

  14. Expert Meeting Report. Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Van Straaten, R. [Building Science Corporation, Somerville, MA (United States)

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  15. 神经阻滞与轻比重麻醉在高龄患者单侧下肢创伤手术麻醉中的安全性与有效性比较%Comparison of Safety and Effectiveness of Nerve Block Anesthesia and Light-weight Anesthesia in Elderly Patients Undergoing Unilateral Lower Limb Trauma Operation

    Institute of Scientific and Technical Information of China (English)

    梁萌; 唐娟

    2016-01-01

    .88%(2/41) vs 28.21%(11/39)](P <0.01).Conclusion Compared with the light-weight anesthesia,the nerve block anesthesia has smaller influence on hemodynamics in elderly patients with lower limb operation and fewer complications,and has significant effect,long duration of action,therefore can be promoted in the clinical.%目的:比较神经阻滞与轻比重麻醉在高龄患者单侧下肢创伤手术麻醉中的安全性和有效性。方法选取2011年5月至2014年4月来桂林医学院附属医院行下肢创伤手术的高龄(>80岁)患者80例作为研究对象,按照随机数字表法分为研究组(41例)和对照组(39例)。研究组行腰丛或者坐骨神经阻滞麻醉,先给1%利多卡因10 mL,然后注入0.4%~0.5%罗哌卡因20 mL,每给5 mL药物回抽无血液再继续注入药液,直到全量;对照组行轻比重蛛网膜下腔麻醉,以1%罗哌卡因1 mL+无菌注射用水1 mL混合注入后继续侧卧10 min调节麻醉平面。记录两组患者注药前、注药后15 min、注药后30 min、注药后60 min、术毕时收缩压( SBP)、舒张压( DBP)、心率、脉搏血氧饱和度( SpO2)变化和麻醉起效时间、阻滞完善时间及麻醉药用量,采用Bromage评分比较两组间麻醉效果。结果两组患者注药后15 min、30 min、60 min的SBP、DBP及心率呈下降趋势,术毕均恢复至注药前水平,差异均有统计学意义(P<0.05);两组患者注药后15 min、30 min、60 min SpO2水平呈上升趋势,术毕均恢复至注药前水平,差异均有统计学意义( P <0.05)。研究组麻醉药用量多于对照组、麻醉起效时间、阻滞完善时间均显著长于对照组[(125.4±30.1) mg 比(10.6±2.5) mg,(14.3±3.1) min比(7.0±2.5) min;(20±7) min比(12±5) min,P<0.01];研究组术中低血压发生率显著低于对照组[4.88%(2/41)比28.21%(11/39)](P<0.01)。结论与轻比重麻醉比

  16. EVOLUTION OF LIGHTWEIGHT WOOD COMPOSITES

    Directory of Open Access Journals (Sweden)

    Marius C. BARBU

    2016-01-01

    Full Text Available Lightweight boards and beams in the wood-based construction and furniture industry are not a new topic. The density reduction of panels using sandwich structure with light cores was confirmed by users like doors or mobile homes more than three decades ago. Today many ways to attain a lighter wooden structure are on offer, partially in industrial application. The first one is the use of light-weight wood species like balsa, lime, pine from southern hemisphere plantations etc. limited by the availability, strength properties, gluability and so on. A second one is the sandwich structure made from hard faces like thick veneer, thin plywood, particleboard or high density thin fiberboard and cores made from honeycomb paper, very light wood species or foams like the polystyrene one. A third way to produce a light structure is to reduce the core drastically, using predesigned skeletons with special shapes and connections to the faces. The engines for these developments are on the one hand the fast growing market of knockdown furniture and on the other hand the increasing costs for energy and raw materials. Additional factors that make weight saving a primary economical objective for most producers are transportation costs, easier handling and higher acceptance among the end users. Moreover, customers demand more for ergonomical solutions regarding packaging. Many patents were generated by researchers and developers for new one-stage production processes for sandwich panels with wood- and impregnated paper-based facings made from veneers, particles or fibres and a core consisting of expandable foams, particles or embedded hard skeletons. These ideas or prototypes could be integrated in existing continuous pressing lines for wood based panels keeping some of the advantages of the continuous production technique in matters of efficiency. Some of the challenges of the light weight wooden structure are the connection in half or final parts, resistance to

  17. Jobs masonry in LHCb with elastic Grid Jobs

    Science.gov (United States)

    Stagni, F.; Charpentier, Ph

    2015-12-01

    the available resources, and that it can easily use new types of resources. An example is represented by resources provided by batch queues, where low-priority MC jobs can be used as "masonry" jobs in multi-jobs pilots. A second example is represented by opportunistic resources with limited available time.

  18. Monte Carlo homogenized limit analysis model for randomly assembled blocks in-plane loaded

    Science.gov (United States)

    Milani, Gabriele; Lourenço, Paulo B.

    2010-11-01

    A simple rigid-plastic homogenization model for the limit analysis of masonry walls in-plane loaded and constituted by the random assemblage of blocks with variable dimensions is proposed. In the model, blocks constituting a masonry wall are supposed infinitely resistant with a Gaussian distribution of height and length, whereas joints are reduced to interfaces with frictional behavior and limited tensile and compressive strength. Block by block, a representative element of volume (REV) is considered, constituted by a central block interconnected with its neighbors by means of rigid-plastic interfaces. The model is characterized by a few material parameters, is numerically inexpensive and very stable. A sub-class of elementary deformation modes is a-priori chosen in the REV, mimicking typical failures due to joints cracking and crushing. Masonry strength domains are obtained equating the power dissipated in the heterogeneous model with the power dissipated by a fictitious homogeneous macroscopic plate. Due to the inexpensiveness of the approach proposed, Monte Carlo simulations can be repeated on the REV in order to have a stochastic estimation of in-plane masonry strength at different orientations of the bed joints with respect to external loads accounting for the geometrical statistical variability of blocks dimensions. Two cases are discussed, the former consisting on full stochastic REV assemblages (obtained considering a random variability of both blocks height an length) and the latter assuming the presence of a horizontal alignment along bed joints, i.e. allowing blocks height variability only row by row. The case of deterministic blocks height (quasi-periodic texture) can be obtained as a subclass of this latter case. Masonry homogenized failure surfaces are finally implemented in an upper bound FE limit analysis code for the analysis at collapse of entire walls in-plane loaded. Two cases of engineering practice, consisting on the prediction of the failure

  19. Lightweight composite mirrors for telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, steady and stiff mirrors are necessary to decrease cost of telescopes such as IXO and GenX used in special NASA missions. Low-density materials are...

  20. Vibro-acoustics of lightweight sandwich structures

    CERN Document Server

    Lu, Tianjian

    2014-01-01

    Vibro-Acoustics of Lightweight Sandwich Structures introduces the study of the coupled vibration and acoustic behavior of lightweight sandwich structures in response to harmonic force and sound pressure. This book focuses on the theoretical modeling and experimental investigation of lightweight sandwich structures in order to provide a predictive framework for vibro-acoustic characteristics of typical engineering structures. Furthermore, by developing solution tools, it concentrates on the influence of key systematic parameters leading to effective guidance for optimal structure design toward lightweight, high-stiffness and superior sound insulation capability. This book is intended for researchers, scientists, engineers and graduate students in mechanical engineering especially in structural mechanics, mechanics and acoustics. Fengxian Xin and Tianjian Lu both work at the School of Aerospace, Xi’an Jiaotong University.

  1. Lightweight Composite Materials for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  2. Lightweight, High-Temperature Radiator Panels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  3. Novel Lightweight Magnets for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TYRC of Tallahassee, Florida will design, fabricate and test a novel magnet for space applications. This lightweight magnet will be designed to operate at higher...

  4. Aluminum-CNF Lightweight Radiator Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal relates to a new materials concept for an aluminum-carbon nanofiber composite, high thermal conductivity ultra lightweight material that will form the...

  5. Lightweight, High-Temperature Radiator Panels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  6. Damage detection of concrete masonry structures by enhancing deformation measurement using DIC

    Science.gov (United States)

    Bolhassani, Mohammad; Rajaram, Satish; Hamid, Ahmad A.; Kontsos, Antonios; Bartoli, Ivan

    2016-04-01

    This study focuses on deformability and damage detection of a concrete masonry wall. It employed point-to-point traditional strain gages and full-field measurement technique using digital image correlation (DIC) to investigate the damage and deformability of a partially grouted (PG) reinforced masonry wall. A set of ungrouted and grouted assemblages and full-scale concrete masonry shear wall were constructed and tested under displacement control loading. The wall was constructed according with masonry standards joint committee (MSJC 2013) and tested under constant vertical compression load and horizontal lateral load using quasi-static displacement procedure. The DIC method was used to determine non-uniform strain contours on the assemblages. This method was verified by comparing strains along the selected directions with traditional TML gage results. After a successful comparison, the method was used to investigate the state of damage and deformability of the wall specimen. Panel deformation, crack pattern, displacement at the top, and the base strain of the wall were captured using full-field measurement and results were in a good agreement with traditional strain gages. It is concluded that full-filed measurements using DIC is promising especially when the test specimens experience inelastic deformation and high degree of damage. The ability to characterize and anticipate failure mechanisms of concrete masonry systems by depicting strain distribution, categorizing structural cracks and investigating their effects on the behavior of the wall were also shown using DIC. In addition to monitoring strains across the gage length, the DIC method provided full-field strain behavior of the test specimens and revealed strain hotspots at locations that corresponded to failure.

  7. ATTENUATION AND FLANKING TRANSMISSION IN LIGHTWEIGHT STRUCTURES

    DEFF Research Database (Denmark)

    Brunskog, Jonas; Lhomond, Alice; Ohlrich, Mogens

    2007-01-01

    In this paper the attenuation and flanking transmissions of impact noise in lightweight building structures is studied using a modal approach. The structural field is mainly analysed, putting the main attention to the parts being important in the modelling. The amount of attenuation produced...... by the periodically reinforcing beams used in lightweight building structures is analysed. The consequence of these factors in modelling flanking transmission is also discussed....

  8. Rock blocks

    OpenAIRE

    Turner, W.

    2007-01-01

    Consider representation theory associated to symmetric groups, or to Hecke algebras in type A, or to q-Schur algebras, or to finite general linear groups in non-describing characteristic. Rock blocks are certain combinatorially defined blocks appearing in such a representation theory, first observed by R. Rouquier. Rock blocks are much more symmetric than general blocks, and every block is derived equivalent to a Rock block. Motivated by a theorem of J. Chuang and R. Kessar in the case of sym...

  9. Effect of Axial Pre-Compression on Lateral Performance of Masonry Under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Syed HassanFarooq

    2011-10-01

    Full Text Available Strengthening of masonry against seismic events is very essential and getting maximum attention of researchers around the globe. An extensive experimental program was carried out to study the in-plane lateral performance of un-reinforced masonry, strengthened and retrofitted masonry wall panels under lateral cyclic loading. Twenty tests were carried out; four tests under monotonic lateral loading, twelve tests under static cyclic loading and four tests under pure compression. The test results were analyzed in five groups and this paper presents the analysis of group 4, which deals with effect of axial pre-compression on masonry seismic performance. Three single leaf panels with aspect ratio of 0.67 having size 1.65x1.1m were constructed using same material and workmanship. All the three un-reinforced walls were tested under 0, 0.5 and 1.0MPa vertical pre-compression and displacement controlled static cyclic loading. The wall tested under 0.5MPa pre-compression was reference specimen. The key parameters studied were hysterics behavior, peak lateral load, ultimate lateral displacement, energy dissipation, ductility, response factor and damping ratio. It was observed that level of axial pre-compression has significant effect on lateral capacity, failure mode and performance of masonry. In case of zero pre-compression the lateral capacity was very less and wall went into rocking failure at early stages of loading. Increase in pre-compression to 1.0MPa enhanced the lateral capacity by a factor of 1.92 times. After analysis of test results, it is found that pre-compression has significant effect on lateral capacity, failure mode and performance of masonry. In case of zero pre-compression the lateral capacity was very less and wall went into rocking failure at early stages of loading. Increase in pre-compression to 1.0MPa enhanced the lateral capacity by a factor of 1.92 times. After analysis of test results, it is found that pre-compression has very

  10. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Huelman, P. [NorthernSTAR, St. Paul, MN (United States); Goldberg, L. [NorthernSTAR, St. Paul, MN (United States); Jacobson, R. [NorthernSTAR, St. Paul, MN (United States)

    2015-05-01

    Basements in climates 6 and 7 can account for a fraction of a home's total heat loss when fully conditioned. Such foundations are a source of moisture, with convection in open block cavities redistributing water from the wall base, usually when heating. Even when block cavities are capped, the cold foundation concrete can act as a moisture source for wood rim joist components that are in contact with it. Because below-grade basements are increasingly used for habitable space, cold foundation walls pose challenges for moisture contribution, energy use, and occupant comfort.

  11. A Grassroots Remote Sensing Toolkit Using Live Coding, Smartphones, Kites and Lightweight Drones

    OpenAIRE

    Anderson, K.; Griffiths, D; DeBell, L; Hancock, S.; Duffy, J. P.; Shutler, J. D.; Reinhardt, W. J.; Griffiths, A.

    2016-01-01

    This manuscript describes the development of an android-based smartphone application for capturing aerial photographs and spatial metadata automatically, for use in grassroots mapping applications. The aim of the project was to exploit the plethora of on-board sensors within modern smartphones (accelerometer, GPS, compass, camera) to generate ready-to-use spatial data from lightweight aerial platforms such as drones or kites. A visual coding 'scheme blocks' framework was used to build the app...

  12. Geopolymerization of lightweight aggregate waste

    Directory of Open Access Journals (Sweden)

    Labrincha, J. A.

    2008-09-01

    Full Text Available Geopolymerization is a viable way to process and re-use alumino-silicate industrial waste while producing highstrength, high chemical inertia materials that can effectively immobilize other industrial by-products, and even hazardous waste. In this study industrial waste from different stages of the manufacture of lightweight expanded clay aggregate was characterized for its possible transformation, via alkali activation, to geopolymers. The ultimate aim was to assess the possibility of using such geopolymers to develop thermal and acoustic insulation panels. The containment of hazardous materials is another important application for these new materials. Geopolymers were prepared for this study with different particles size distributions and activator concentrations. Their mechanical properties, composition and microstructure were characterized and a material with promising insulating properties was produced. A preliminary analysis was conducted of the salt formation observed in these geopolymers, the chief drawback to their use.La geopolimerización es una manera viable para procesar y agregar valor a los residuos industriales de alumino-silicato dando lugar a materiales con elevadas resistencias mecánmicas, alta inercia química y que permiten encapsular otros residuos, incluso peligrosos. Los residuos industriales que proceden de diversos tipos de arcillas para la fabricación de áridos ligeros se han caracterizado para la producción de geopolímeros mediante el proceso de ataque alcalino. Su incorporación en una matriz geopolimérica permite la posibilidad de desarrollo de paneles de aislamiento (térmico y acústico. Además, la inmovilización de materiales peligrosos es un logro adicional importante. Los geopolímeros se han producido con fórmulas diferentes y se han caracterizado sus propiedades mecánicas, composición y microestructura, para dar lugar a una composición interesante con propiedades aislantes. Se ha llevado a cabo

  13. In Plan Shear Retrofit of Masonry Walls with Fibre Reinforced Polymer Composites Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Tamás Nagy-György

    2006-01-01

    Full Text Available The paper presents the results from tests on clay brick masonry walls strengthened using fiber reinforced polymer (FRP composites. Five 1.50x1.50 m wall specimens have been subjected to pure in plan shear loads up to failure and then retrofitted on one side, with different types, percentages and lay-ups of the fiber sheets. Based on the experi¬mental results, it was proven the effectiveness of using externally bonded composites for retrofitting brick masonry walls, with less disruption during strengthening, and in this way with reduced costs compared with other conventional repairing and strengthening tech¬niques. Performances of the different strengthening configurations were compared in terms of ultimate load, strain in composite and failure mechanism.

  14. Novel Predictive Model of the Debonding Strength for Masonry Members Retrofitted with FRP

    Directory of Open Access Journals (Sweden)

    Iman Mansouri

    2016-11-01

    Full Text Available Strengthening of masonry members using externally bonded (EB fiber-reinforced polymer (FRP composites has become a famous structural strengthening method over the past decade due to the popular advantages of FRP composites, including their high strength-to-weight ratio and excellent corrosion resistance. In this study, gene expression programming (GEP, as a novel tool, has been used to predict the debonding strength of retrofitted masonry members. The predictions of the new debonding resistance model, as well as several other models, are evaluated by comparing their estimates with experimental results of a large test database. The results indicate that the new model has the best efficiency among the models examined and represents an improvement to other models. The root mean square errors (RMSE of the best empirical Kashyap model in training and test data were, respectively, reduced by 51.7% and 41.3% using the GEP model in estimating debonding strength.

  15. The influence of local mechanisms on large scale seismic vulnerability estimation of masonry building aggregates

    Science.gov (United States)

    Formisano, Antonio; Chieffo, Nicola; Milo, Bartolomeo; Fabbrocino, Francesco

    2016-12-01

    The current paper deals with the seismic vulnerability evaluation of masonry constructions grouped in aggregates through an "ad hoc" quick vulnerability form based on new assessment parameters considering local collapse mechanisms. First, a parametric kinematic analysis on masonry walls with different height (h) / thickness (t) ratios has been developed with the purpose of identifying the collapse load multiplier for activation of the main four first-order failure mechanisms. Subsequently, a form initially conceived for building aggregates suffering second-mode collapse mechanisms, has been expanded on the basis of the achieved results. Tre proposed quick vulnerability technique has been applied to one case study within the territory of Arsita (Teramo, Italy) and, finally, it has been also validated by the comparison of results with those deriving from application of the well-known FaMIVE procedure.

  16. Blast Protection of Unreinforced Masonry Walls: A State-of-the-Art Review

    Directory of Open Access Journals (Sweden)

    Lucas Lantz

    2016-01-01

    Full Text Available The recent rise of terrorist attacks has reinforced the need for mitigation of damage caused by blast loading on unreinforced masonry walls. The primary goal of the techniques is to prevent the loss of life while simultaneously preserving the integrity of the structure. This paper presents a compilation of recently available literature on blast protection of unreinforced masonry walls. It seeks to present the state of the art in this field, including mitigation techniques considered as well as testing methods selected. Fiber reinforced polymers and polyurea are the two dominant retrofitting techniques being assessed in the field. Other techniques include but are not limited to polyurethane, steel sheets, and aluminum foam. Since there is no widely implemented standard for blast loading test procedures, direct comparisons between the efficiencies of the mitigation techniques proposed are not always feasible. Although fragmentation is an indicator of the efficiency of retrofits, it is currently measured by subjective observation of postblast debris.

  17. Van earthquakes (23 October 2011 and 9 November 2011) and performance of masonry and adobe structures

    Science.gov (United States)

    Güney, D.

    2012-11-01

    Earthquakes, which are unavoidable natural phenomena in Turkey, have often produced economic and social disaster. The latest destructive earthquakes happened in Van city. Van, Turkey, earthquakes with M = 7.2 occurred on 23 October 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanlı village) and M = 5.6 on 9 November 2011 epicentered near the town of Edremit south of Van in eastern Turkey and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 4000 buildings collapsed or were seriously damaged. The majority of the damaged structures were seismically insufficient, unreinforced masonry and adobe buildings in rural areas. In this paper, site surveys of the damaged masonry and adobe buildings are presented and the reasons for the caused damages are discussed in detail.

  18. DECISION ANALYSIS AND TECHNOLOGY ASSESSMENTS FOR METAL AND MASONRY DECONTAMINATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    The purpose of this investigation was to conduct a comparative analysis of innovative technologies for the non-aggressive removal of coatings from metal and masonry surfaces and the aggressive removal of one-quarter to one-inch thickness of surface from structural masonry. The technologies tested should be capable of being used in nuclear facilities. Innovative decontamination technologies are being evaluated under standard, non-nuclear conditions at the FIU-HCET technology assessment site in Miami, Florida. This study is being performed to support the OST, the Deactivation and Decommissioning (D&D) Focus Area, and the environmental restoration of DOE facilities throughout the DOE complex by providing objective evaluations of currently available decontamination technologies.

  19. Image-based method for monitoring of crack opening on masonry and concrete using Mobile Platform

    Directory of Open Access Journals (Sweden)

    A. P. Martins

    Full Text Available This paper proposes an automatic method based on the computing vision, implemented in a mobile platform, to inspect cracks in masonry and concrete. The developed algorithm for image processing performs this task from images of the cracks evolution. The contribution of this paper is the development of a mobile tool with quick response aiming to assist technicians in periodic visits when monitoring the crack opening in masonry and concrete. The obtained results show, successfully, the dimensional alterations of cracks detected by mobile phone in a faster and accurate way compared with the conventional measurement technique. Regardless the irregular shape of the cracks, the proposed method has the advantage of producing results statistically significant in measurement repetition by decreasing the subjectivity inherent to manual measurement technique.

  20. Seismic performance evaluation of multi-span existing masonry arch bridge

    Science.gov (United States)

    Laterza, Michelangelo; D'Amato, Michele; Casamassima, Vito Michele

    2017-07-01

    Existing old masonry arch bridges represent an architectural and cultural heritage of inestimable value, assuming nowadays an important strategic role since most of them are still in service and link roads of primary importance for vehicular traffic. They were mostly built in the last century without considering any horizontal action, and nowadays are serving roads characterized by a transit loads certainly heavier and more frequent than the ones of past. Moreover, very often due to absence of maintenance and to weathering conditions, the elements deteriorate more and more with a consequent loss of integrity and reduction of their carrying capacity. In this paper the seismic assessment of an old multi span masonry arch bridge still in service is illustrated. Pushover analyses are performed with the aim to investigate the numerical model sensitivity and the influence on the global nonlinear response of the bridge components.

  1. Collapse Modeling of a Masonry Arch Dam Using the Cohesive Interface Elements

    Directory of Open Access Journals (Sweden)

    Jianwen Pan

    2015-01-01

    Full Text Available A finite element (FE approach with zero-thickness cohesive interface elements is presented to simulate collapse of continuum structures. The element removal technique merged with the general contact algorithm is adapted in the FE approach to achieve modeling for a transition from continua to discontinua, that is, fracture, fragmentation, and collapse. Collapse process of Meihua masonry arch dam, which is a famous disaster in dam engineering in China, is simulated and the failure mechanism is studied. The collapse process obtained from the presented procedure coincides with the field observation after the dam failure. The failure of Meihua arch dam can be attributed to reducing shear strength of the peripheral joint between the dam body and the concrete pedestal by daubing a layer of asphalt there. With low sliding resistance strength, the masonry dam body may slide upwards along the peripheral joint under hydrostatic pressure, leading to weakening of the arch action, fracturing, and final collapse of the dam.

  2. Internal Insulation of Masonry Walls with Wooden Floor Beams in Northern Humid Climate

    DEFF Research Database (Denmark)

    Morelli, Martin; Scheffler, Gregor Albrecht; Nielsen, Toke Rammer

    2010-01-01

    Multi-story buildings in Denmark from 1850–1950 are built with masonry walls and wooden floor beams. Large energy savings can be achieved by insulating the facades. Often interior insulation is the only possibility in order to keep the appearance of the external facade. The internal insulation...... reduces the drying potential of the wall, which might lead to moisture problems in the beam ends embedded in the masonry due to absorption of driving rain. This paper describes a solution to avoid the moisture problems and still achieve large energy savings. The thermal analyses are made in thermal...... simulation programs for two dimensions and three dimensions. The moisture analyses are made by a twodimensional simulation of the coupled heat, air, and moisture transport. The results show that leaving an uninsulated part of the wall above and below the floor division could solve the moisture problem...

  3. 3D homogenised strength criterion for masonry: Application to drystone retaining walls

    Science.gov (United States)

    Le, Hong Hanh; Garnier, Denis; Colas, Anne-Sophie; Terrade, Benjamin; Morel, Jean-Claude

    2016-10-01

    A 3D strength criterion for masonry is constructed based on yield design theory. Yield design homogenisation provides a rigorous theoretical framework to determine the yield strength properties of a periodic medium, based on the properties of its constituent materials. First, theoretical basis of 2D homogenisation of periodic media, and more particularly its application in the framework of yield design, will be retrieved. Then, 2D principles are extended to exhibit a 3D domain of running-bond masonry. This criterion is finally used to assess the stability of a drystone retaining wall loaded by an axle load, and theoretical results are compared to experimental data. Perspectives on this work are given as a conclusion.

  4. The Design of a Lightweight RFID Middleware

    Directory of Open Access Journals (Sweden)

    Fengqun Lin

    2009-10-01

    Full Text Available Radio Frequency Identification (RFID middleware is often regarded as the central nervous system of RFID systems. In this paper, a lightweight RFID middleware is designed and implemented without the need of an Application Level Events (ALE structure, and its implementation process is described using a typical commerical enterprise. A short review of the current RFID middleware research and development is also included. The characteristics of RFID middleware are presented with a two-centric framework. The senarios of RFID data integration based on the simplified structure are provided to illuminats the design and implementation of the lightweight middleware structure and its development process. The lightweight middleware is easy to maintain and extend because of the simplified and streamlined structure and the short development cycle.

  5. A lightweight shape-memory magnesium alloy.

    Science.gov (United States)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-22

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  6. LIGHT-WEIGHT LOAD-BEARING STRUCTURE

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure (1) with optimized compression zone (2), where along one or more compression zones (2) in the structure (1) to be cast a core (3) of strong concrete is provided, which core (3) is surrounded by concrete of less strength (4) compared...... to the core (3) of strong concrete. The invention also relates to a method of casting of light-weight load-bearing structures (1) with optimized compression zone (2) where one or more channels, grooves, ducts, pipes and/or hoses (5) formed in the load-bearing structure (1) serves as moulds for moulding one...... or more cores (3) of strong concrete in the light-weight load-bearing structure (1)....

  7. Full-scale Blast Test Response of Partially Grouted Masonry Walls

    Science.gov (United States)

    2011-01-01

    collaborative research program among the Air Force Research Laboratory (AFRL), the Portland Cement Association (PCA), and the National Concrete Masonry... veneer with 2-inch thick extruded polystyrene rigid board insulation and a 1-inch air gap between the structural wythe and the veneer . The test program...collaborative research program between the Air Force Research Laboratory (AFRL), the Portland Cement Association (PCA), and the National Concrete

  8. Experimental evaluation of the structural behaviour of adobe masonry structural elements

    OpenAIRE

    Varum, H.; Costa, A.; Pereira, H.; Almeida, J.; Rodrigues, H.; D. Silveira

    2007-01-01

    Rehabilitation and strengthening of existing adobe masonry constructions have been neglected during the last decades. In Aveiro, Portugal, many adobe buildings present an important level of structural damage and, in many cases, are even near to ruin, having the majority a high vulnerability to seismic actions. To face the lack of information concerning the mechanical properties and structural behaviour of adobe elements, it was developed an experimental campaign. The composition and mechanica...

  9. FUZZY MATHEMATICAL EVALUATION FOR MASONRY STRUCTURE BUILDINGS' DAMAGE GRADE CAUSED BY COAL MINING

    Institute of Scientific and Technical Information of China (English)

    连传杰; 刘立民; 高闯

    1999-01-01

    Coal mining under buildings certainly causes surface movement and deformation, therefore, it brings about deformation even fracture for buildings. It is an important task to evaluate correctly the buildings' damage grade caused by coal mining. Fuzzy comprehensive evaluation, considering some factors of buildings' fracture, has been applied to analyze the masonry structure buildings' damage grade after coal mining in this paper. It provides a scientific basis for buildings' reinforcement before mining and maintenance or compensation after mining.

  10. A joint fatigue - creep deterioration model for masonry with acoustic emission based damage assessment

    OpenAIRE

    Tomor, Adrienn K.; Verstrynge, Els

    2013-01-01

    The paper investigates the long-term fatigue and creep deterioration processes in historical brick masonry. Based on two independent laboratory test series, the relationship between stress level and life expectancy was considered for fatigue and creep loading in the form of SN type models. The process of deterioration was investigated with the help of acoustic emission technique to identify stages and characteristics of the damage accumulation process. Based on the test data and acoustic emis...

  11. A Study of Potential Load Bearing Masonry (LBM) System in Malaysia Construction Industry

    OpenAIRE

    2014-01-01

    To overcome the problems in increasing of material prices, land prices, shortage of skilled workers, equipping low cost housing demands and maintained the cost of the constructing at an affordable price, there is a need to find the alternative solution for constructing method. The use of the load bearing masonry system (LBM) has been identified as a sustainable and an effective alternative method for the construction industry. The system offers several advantages in term of cost and speed of ...

  12. Southern Regional Center for Lightweight Innovative Design

    Energy Technology Data Exchange (ETDEWEB)

    Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States); Wang, Paul [Mississippi State Univ., Mississippi State, MS (United States)

    2011-12-27

    The three major objectives of this Phase III project are: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantify microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios.

  13. Environmental assessment of lightweight electric vehicles

    CERN Document Server

    Egede, Patricia

    2017-01-01

    This monograph adresses the challenge of the environmental assessment of leightweight electric vehicles. It poses the question whether the use of lightweight materials in electric vehicles can reduce the vehicles’ environmental impact and compares the environmental performance of a lightweight electric vehicle (LEV) to other types of vehicles. The topical approach focuses on methods from life cycle assessment (LCA), and the book concludes with a comprehensive concept on the environmental assessment of LEVs. The target audience primarily comprises LCA practitioners from research institutes and industry, but it may also be beneficial for graduate students specializing in the field of environmental assessment.

  14. Photoelasticity and DIC as optical techniques for monitoring masonry specimens under mechanical loads

    Science.gov (United States)

    Colla, C.; Gabrielli, E.

    2017-01-01

    To evaluate the complex behaviour of masonry structures under mechanical loads, numerical models are developed and continuously implemented at diverse scales, whilst, from an experimental viewpoint, laboratory standard mechanical tests are usually carried out by instrumenting the specimens via traditional measuring devices. Extracted values collected in the few points where the tools were installed are assumed to represent the behaviour of the whole specimen but this may be quite optimistic or approximate. Optical monitoring techniques may help in overcoming some of these limitations by providing full-field visualization of mechanical parameters. Photoelasticity and the more recent DIC, employed to monitor masonry columns during compression tests are here presented and a lab case study is compared listing procedures, data acquisitions, advantages and limitations. It is shown that the information recorded by traditional measuring tools must be considered limited to the specific instrumented points. Instead, DIC in particular among the optical techniques, is proving both a very precise global and local picture of the masonry performance, opening new horizons towards a deeper knowledge of this complex construction material. The applicability of an innovative DIC procedure to cultural heritage constructions is also discussed.

  15. Summary of Large-and Small-Scale Unreinforced Masonry Test Program

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K.E.

    2002-06-28

    A five-year, large- and small-scale, static and dynamic experimental research program, in which more than 700 tests were conducted, has demonstrated that unreinforced masonry infills are more ductile and resist lateral loads more effectively than anticipated by conventional code procedures. The tests were conducted both in the laboratory and on existing structures at the Department of Energy's Y-12 National Security Complex. The experimental data indicate that the combination of a steel frame and infill material efficiently resists lateral loads--the infilling provides significant lateral stiffness while the surrounding frame adds ductility and confinement to the overall system. The results from approximately 25 moderate- and full-scale tests on infills showed that with simulated seismic loads, the frames confined the masonry, and the load-carrying capacity of the infill was considerably above the load that caused initial cracking. This finding was a significant departure from classical code approaches that assumed first cracking to be failure of an unreinforced masonry wall. The experimental program, performed for the US Department of Energy, consisted of the following large-scale tests on infills: in situ airbag pressure testing, shake-table tests, and the application of quasi-static in-plane and out-of-plane drift loads. This paper provides a summary of the overall experimental methodology and results.

  16. In-Plane Behaviour of a Reinforcement Concrete Frame with a Dry Stack Masonry Panel

    Directory of Open Access Journals (Sweden)

    Kun Lin

    2016-02-01

    Full Text Available In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP semi-interlocking masonry (SIM infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality.

  17. Role of the masonry in paintings during a seismic event analyzed by infrared vision

    Science.gov (United States)

    López, F.; Sfarra, S.; Ibarra-Castanedo, C.; Ambrosini, D.; Maldague, X. P. V.

    2015-06-01

    In this work, pulsed phase thermography (PPT), principal component thermography (PCT), and partial least squares thermography (PLST) techniques were applied in order to detect the masonry texture, as well as to map the subsurface damages formed beneath three different mural paintings. The latter were inspected after the 2009 earthquake, i.e., the seismic event that devastated L'Aquila City (Italy) and its surroundings. The mural supports explored by infrared thermography (IRT) are constituted by a single leaf, and the sides of the inspected paintings are confined by marble frames or by buried horizontal and vertical structures. Hence, the analyzed objects can be considered as monolithic structures. IRT can help to understand the masonry morphology, e.g. if there exist structural continuity between the arriccio layer (the first coat of plaster) and the support. In the present case, the heating phase was provided by lamps or propane gas and feature detection was enhanced by advanced signal processing. A comparison among the results is presented. Two of the three objects analyzed, painted by the art masters Serbucci and Avicola, are preserved inside Santa Maria della Croce di Roio Church in Roio Poggio (L'Aquila, Italy); they were executed on two masonries built in different periods. The last one was realized in Montorio al Vomano (Teramo, Italy) on the internal cloister of the Zoccolanti's Church (undated). The villages are separated by 50 km as the crow flies. Finally, near-infrared reflectography (NIRR) technique was also used to investigate the condition of the painting layer.

  18. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  19. Population Blocks.

    Science.gov (United States)

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  20. Population Blocks.

    Science.gov (United States)

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  1. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction.

    Science.gov (United States)

    Yang, Fuwei; Zhang, Bingjian; Ma, Qinglin

    2010-06-15

    Replacing or repairing masonry mortar is usually necessary in the restoration of historical constructions, but the selection of a proper mortar is often problematic. An inappropriate choice can lead to failure of the restoration work, and perhaps even further damage. Thus, a thorough understanding of the original mortar technology and the fabrication of appropriate replacement materials are important research goals. Many kinds of materials have been used over the years in masonry mortars, and the technology has gradually evolved from the single-component mortar of ancient times to hybrid versions containing several ingredients. Beginning in 2450 BCE, lime was used as masonry mortar in Europe. In the Roman era, ground volcanic ash, brick powder, and ceramic chip were added to lime mortar, greatly improving performance. Because of its superior properties, the use of this hydraulic (that is, capable of setting underwater) mortar spread, and it was adopted throughout Europe and western Asia. Perhaps because of the absence of natural materials such as volcanic ash, hydraulic mortar technology was not developed in ancient China. However, a special inorganic-organic composite building material, sticky rice-lime mortar, was developed. This technology was extensively used in important buildings, such as tombs, in urban constructions, and even in water conservancy facilities. It may be the first widespread inorganic-organic composite mortar technology in China, or even in the world. In this Account, we discuss the origins, analysis, performance, and utility in historic preservation of sticky rice-lime mortar. Mortar samples from ancient constructions were analyzed by both chemical methods (including the iodine starch test and the acid attack experiment) and instrumental methods (including thermogravimetric differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, and scanning electron microscopy). These analytical results show that the ancient masonry

  2. Paper Sludge Reuse in Lightweight Aggregates Manufacturing.

    Science.gov (United States)

    Chen, How-Ji; Hsueh, Ying-Chih; Peng, Ching-Fang; Tang, Chao-Wei

    2016-10-27

    The lightweight aggregates used by the civil engineering market are sintered at a high temperature, about 1200 °C. In times of high energy prices and regulation of carbon dioxide emissions, lightweight aggregate products of the high-temperature process in sales marketing are not readily accepted. This study developed a sintered-type paper sludge lightweight aggregate. In order to reduce energy consumption, substitution of some reservoir sediment clay in paper sludge substitutes is to be expected. The study used two types of paper sludge (green clay paper sludge and paper pulp sludge). The sintering temperature was reduced effectively as the green clay paper sludge was substituted for some of the reservoir sediment clay, and the optimum substitute ranges of green clay paper sludge were 10%-50%. The optimum substitute ranges of the paper pulp sludge were 10%-40%. Test results show that the properties of aggregates have a particle density of 0.66-1.69 g/cm³, a water absorption of 5%-30%, and a loss on ignition of 10%-43%. The loss on ignition of aggregate became greater with the increase in paper sludge content. This means that the calorific value provided by the paper sludge will increase as paper sludge content increases. Paper sludge can therefore be considered a good material to provide heat energy for sintering lightweight aggregate.

  3. Lightweight solar concentrator structures, phase 2

    Science.gov (United States)

    Williams, Brian E.; Kaplan, Richard B.

    1993-01-01

    This report summarizes the results of the program conducted by Ultramet under SBIR Phase 2 Contract NAS3-25418. The objective of this program was to develop lightweight materials and processes for advanced high accuracy Space Solar Concentrators using rigidized foam for the substrate structure with an integral optical surface.

  4. Method of fabricating lightweight honeycomb structures

    Science.gov (United States)

    Goela, Jitendra S. (Inventor); Pickering, Michael (Inventor); Taylor, Raymond L. (Inventor)

    1992-01-01

    A process is disclosed for fabricating lightweight honeycomb type structures out of material such as silicon carbide (SiC) and silicon (S). The lightweight structure consists of a core to define the shape and size of the structure. The core is coated with an appropriate deposit such as SiC or Si to give the lightweight structure strength and stiffness and for bonding the lightweight structure to another surface. The core is fabricated from extremely thin ribs of appropriately stiff and strong material such as graphite. First, a graphite core consisting of an outer hexagonal cell with six inner triangular cells is constructed from the graphite ribs. The graphite core may be placed on the back-up side of a SiC faceplate and then coated with SiC to produce a monolithic structure without the use of any bonding agent. Cores and methods for the fabrication thereof in which the six inner triangular cells are further divided into a plurality of cells are also disclosed.

  5. A Lightweight Mobile RSVP for Unicast

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen; LEI Fei-yu; CHEN Xi; WANG Wei-nong

    2005-01-01

    This paper presents a lighter protocol, and it removes the multicast burdens from RSVP to adapt to unicast applications. At the same time, when RSVP is used in wireless networks, some issues about mobility raise popular concerns. The proposed protocol a lightweight mobile RSVP protocol, solves the problems by the following mechanisms:changeless flow identifier, a new state management and "refresh" mechanism.

  6. Lightweight concrete with enhanced neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2016-09-13

    A lightweight concrete containing polyethylene terephthalate in an amount of 20% by total volume. The concrete is enriched with hydrogen and is therefore highly effective at thermalizing neutrons. The concrete can be used independently or as a component of an advanced neutron radiation shielding system.

  7. FY 2012 Lightweight Materials Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-15

    The FY 2012 Annual Progress Report for Lightweight Materials provides a detailed description of the activities and technical accomplishments which focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  8. Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, Anthony [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hannibal, Ted [Idaho National Lab. (INL), Idaho Falls, ID (United States); Raghunathan, Anand [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ivanic, Ziga [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. The strategic targets were a 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. The baseline vehicle was an average of several available vehicles in this class. Mass and cost breakdowns from several sources were used, including original equipment manufacturers’ (OEMs’) input through U.S. Department of Energy’s Vehicle Technologies Office programs and public presentations, A2Mac1 LLC’s teardown information, Lotus Engineering Limited and FEV, Inc. breakdowns in their respective lightweighting studies, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses. Information on lightweighting strategies in this analysis came from these same sources and the ongoing U.S. Department of Energy-funded Vehma International of America, Inc. /Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, and many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs.

  9. Building Blocks Incorporating Waste Materials Bound with Bitumen

    Directory of Open Access Journals (Sweden)

    Thanaya I.N.A.

    2010-01-01

    Full Text Available This paper described an investigation and evaluation which was carried out in the United Kingdom-UK, on the properties of masonry building block materials that incorporate waste materials, namely: steel slag, crushed glass, coal fly ash, rice husk ash (RHA, incinerator sewage sludge ash (ISSA, municipal solid waste incinerator bottom ash (MSWIBA or shortened as IBA, bound with bitumen or asphalt, named as Bitublock. The binder used was 50 pen bitumen. The properties of the blocks evaluated were: compressive strength, density, porosity, initial rate of suction (IRS, creep, and volume stability. It was found that the Bitublock performance can be improved by optimizing porosity and curing regime. Compaction level of 2 MPa and curing regime of 200°C for 24 hours gave satisfactory bitublock performances that at least comparable to concrete block found in the United Kingdom (UK. The Volume stability (expansion of the unit is affected by environment relative humidity.

  10. Laboratory evaluation to reduce respirable crystalline silica dust when cutting concrete roofing tiles using a masonry saw.

    Science.gov (United States)

    Carlo, Rebecca V; Sheehy, John; Feng, H Amy; Sieber, William K

    2010-04-01

    Respirable crystalline silica dust exposure in residential roofers is a recognized hazard resulting from cutting concrete roofing tiles. Roofers cutting tiles using masonry saws can be exposed to high concentrations of respirable dust. Silica exposures remain a serious threat for nearly two million U.S. construction workers. Although it is well established that respiratory diseases associated with exposure to silica dust are preventable, they continue to occur and cause disability or death. The effectiveness of both a commercially available local exhaust ventilation (LEV) system and a water suppression system in reducing silica dust was evaluated separately. The LEV system exhausted 0.24, 0.13, or 0.12 m(3)/sec of dust laden air, while the water suppression system supplied 0.13, 0.06, 0.03, or 0.02 L/sec of water to the saw blade. Using a randomized block design, implemented under laboratory conditions, the aforementioned conditions were evaluated independently on two types of concrete roofing tiles (s-shape and flat) using the same saw and blade. Each engineering control (LEV or water suppression) was replicated eight times, or four times for each type of tile. Analysis of variance was performed by comparing the mean airborne respirable dust concentrations generated during each run and engineering control treatment. The use of water controls and ventilation controls compared with the "no control" treatment resulted in a statistically significant (p capture velocity, additional weight of the saw with the LEV system, electricity connections, and cost of air handling unit.

  11. Experimental Study on the Force-Bearing Performance of Masonry Structures with a Marble-Graphite Slide Seismic Isolator at the Foundation

    Directory of Open Access Journals (Sweden)

    Suizi Jia

    2016-11-01

    Full Text Available As part of the search for a seismic isolator for low-rise buildings, this paper proposes a marble-graphite slide seismic isolation system composed of marble-graphite slides, an upper foundation beam, the lower counterpart of the upper beam, and the corresponding stop blocks, with the stop blocks consisting of restrictive screws, positioning plates, nut connectors and stop holes linking the two foundation beams. To provide the desired isolation performance, plain mortar bars can be included at the beam interface to better control the initiating loads for foundation slippage. Tests of low-reversed cyclic loading were performed on four different masonry specimens: a recycled brick wall, a clay brick wall, an integrated recycled brick wall with flay ash blocks sandwiched between, and its clay brick counterpart. The four specimens were provided with marble-graphite slide isolators placed at the foundations. The isolator thickness was 20 mm, and the graphite and the marble served as a lubricant and a bearing, respectively. This paper then analyses all of the specimens in terms of the damage that occurred, the initiating load for slippage, the hysteretic performance, the bearing capacity and the performance of the stop blocks. The results indicate that mortar bars embedded in the marble-graphite slide isolator offer effective control of the initiating load, and the isolation system delivers good hysteretic performance. The stop blocks are capable of withstanding a large-magnitude earthquake and are a good choice for constraining the slippage displacement. Damage or failure of the specimens occurs only when the low-reversed cyclic loading continues after slippage takes place. The design is shown to be an outstanding and flexible seismic scheme for use in low-rise buildings.

  12. Experimental Study on a Self-Centering Earthquake-Resistant Masonry Pier with a Structural Concrete Column

    Directory of Open Access Journals (Sweden)

    Lijun Niu

    2017-01-01

    Full Text Available This paper proposes a slotting construction strategy to avoid shear behavior of multistory masonry buildings. The aspect ratio of masonry piers increases via slotting between spandrels and piers, so that the limit state of piers under an earthquake may be altered from shear to rocking. Rocking piers with a structural concrete column (SCC form a self-centering earthquake-resistant system. The in-plane lateral rocking behavior of masonry piers subjected to an axial force is predicted, and an experimental study is conducted on two full-scale masonry piers with an SCC, which consist of a slotting pier and an original pier. Meanwhile, a comparison of the rocking modes of masonry piers with an SCC and without an SCC was conducted in the paper. Experimental verification indicates that the slotting strategy achieves a change of failure modes from shear to rocking, and this resistant system with an SCC incorporates the self-centering and high energy dissipation properties. For the slotting pier, a lateral story drift ratio of 2.5% and a high displacement ductility of approximately 9.7 are obtained in the test, although the lateral strength decreased by 22.3% after slotting. The predicted lateral strength of the rocking pier with an SCC has a margin of error of 5.3%.

  13. Shaking table tests and dynamic analyses of masonry wall buildings with flame-shear walls at lower stories

    Institute of Scientific and Technical Information of China (English)

    Xiong Lihong; David Xiong; Wu Ruifeng; Xia Jingqian

    2008-01-01

    This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test results of damage characteristics and seismic responses are provided and compared. Then, nonlinear response analyses are conducted to examine the reliability of the dynamic analysis. Finally, many nonlinear response analyses are performed and it is concluded that for relatively hard sites under a certain lateral stiffness ratio (I.e., the ratio of the stiffness of the lowest upper masonry story to that of the frame-shear wall story), the masonry structure with one-story frame-shear wall at the bottom performs better than a structure built entirely of masonry, and a masonry structure with frame-shear wall of two stories performs better than with one-story frame-shear wall. In relatively soft soil conditions, all three structures have similar performane. In addition, some suggestions that could be helpful for design ofmasomy structures with ground story of frame-shear wall structure in seismic intensity region VII, such as the appropriate lateral stiffness ratio, shear force increase factor of the frame-shear wall story, and permissible maximum height of the building, are proposed.

  14. Experimental Analysis of Repaired Masonry Elements with Flax-FRCM and PBO-FRCM Composites Subjected to Axial Bending Loads

    Directory of Open Access Journals (Sweden)

    Oscar A. Cevallos

    2015-11-01

    Full Text Available In the construction industry, the use of natural fabrics as a reinforcement for cement-based composites has shown great potential. The use of these sustainable composites to provide strengthening or repair old masonry structures that exhibit structural problems mainly due to a poor tensile strength of the mortar/brick joints is revealed to be a promising area of research. One of the most significant load conditions affecting the mechanical response of masonry structures occurs when axial bending loads are applied on the resistant cross-section. In this study, three different types of masonry elements were built using clay bricks and a lime-based mortar. After 28 days, the samples were subjected to concentric and eccentric compressive loads. In order to produce significant bending effects, the compressive loads were applied with large eccentricity, and a sudden failure characterized the behavior of the unreinforced masonry (URM elements. The tested masonry specimens were repaired using fabric-reinforced cementitious matrix (FRCM composites produced using bi-directional flax and polyparaphenylene benzobisoxazole (PBO fabrics. The mechanical behavior of the URM and repaired samples was compared in terms of load-displacement and moment-curvature responses. Furthermore, the results achieved using flax-FRCM composites were compared with those of using PBO-FRCM composites.

  15. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Goldberg, L. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Jacobson, R. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2015-05-06

    This study was designed to test a new approach for foundation insulation retrofits, with the goal of demonstrating improved moisture control, improved occupant comfort, and reduced heat loss. Because conducting experimental research on existing below-grade assemblies is very difficult, most of the results are based on simulations. The retrofit approach consists of filling open concrete block cores with an insulating material and adding R-10 exterior insulation that extends 1 ft below grade. The core fill is designed to improve the R-value of the foundation wall and increase the interior wall surface temperature, but more importantly to block convection currents that could otherwise increase moisture loads on the foundation wall and interior space. The exterior insulation significantly reduces heat loss through the most exposed part of the foundation and further increases the interior wall surface temperature. This improves occupant comfort and decreases the risk of condensation. Such an insulation package avoids the full-depth excavation necessary for exterior insulation retrofits, reduces costs, and eliminates the moisture and indoor air quality risks associated with interior insulation retrofits. Retrofit costs for the proposed approach were estimated at roughly half those of a full-depth exterior insulation retrofit.

  16. Utilización del software ArcoTSAM para el aprendizaje del comportamiento de las estructuras de fábrica = Using ArcoTSAM software as a learning tool in behavior of masonry structures

    Directory of Open Access Journals (Sweden)

    Fernando Magdalena Layos

    2017-08-01

    TSAM software is presented in this work. It has been developed by teachers form the department of Structures and Physics (DEFE of the Technical School of Architecture (ETSAM. The software tool ArcoTSAM is able to analyze masonry structures, considering the structure as an assembly of several rigid blocks, and it depends on a set of libraries that have been defined in Maple language. This work shows how this software tool can be powerfully useful to enhance the learning of masonry structures both in degree courses and post-degree master, and also can be applied as a research tool.

  17. Lightweight Proofs of Retrievability for Electronic Evidence in Cloud

    Directory of Open Access Journals (Sweden)

    Hongyao Deng

    2013-07-01

    Full Text Available Proofs of Retrievability (PoR is one of the basic functions of electronic evidence preservation center in cloud. This paper proposes two PoR schemes to execute the workflow of evidence preservation center, which are named Finer Grained Proofs of Retrievability (FG-PoR and More Lightweight Proofs of Retrievability (ML-PoR. The two PoR schemes do not use multi-replication technology or erasure code technology, but employ the verification tags and signatures to implement provable data possession and data recovery dual functions. When some data blocks have been lost in Archive Storage Area (ASA, FG-PoR can recover each data block of evidence matrix, but ML-PoR can only recover a column of evidence matrix. The analysis results show our two PoR schemes do not only provide the integrity verification guarantee but also have robust recovery guarantee to electronic evidence in cloud. The two schemes can allow for lower computation and storage costs than other similar schemes; moreover, ML-PoR can provide lower costs than FG-PoR.

  18. Zitongdong Block

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ The Zitongdong Block (Eastern Zitong Block) is located in the northwest of the Sichuan Basin. Tectonically, it is situated in the east part of Zitong Depression, southeast of mid-Longmenshan folded and faulted belt( as shown on Fig. 8 ), covering an area of 1 730 km2. The traffic is very convenient, the No. 108 national highway passes through the north of the block. Topographically, the area belongs to low hilly land at the elevation of 500-700 m.

  19. Computational and experimental study of atmospheric moisture in ceramic blocks filled with waste fibres in winter season

    Science.gov (United States)

    Stastnik, S.

    2016-06-01

    Development of materials for vertical outer building structures tends to application of hollow clay blocks filled with some appropriate insulation material. Ceramic fittings provide high thermal resistance, but the walls built from them suffer from condensation of air humidity in winter season frequently. The paper presents the computational simulation and experimental laboratory validation of moisture behaviour of such masonry with insulation prepared from waste fibres under the Central European climatic conditions.

  20. An Experimental Investigation of Mechanical Properties in Clay Brick Masonry by Partial Replacement of Fine Aggregate with Clay Brick Waste

    Science.gov (United States)

    Kumavat, Hemraj Ramdas

    2016-09-01

    The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.

  1. Organisational and methodological aspects of experimental training programs for athletes lightweights in academic rowing

    Directory of Open Access Journals (Sweden)

    Omelchenko E.S.

    2014-03-01

    Full Text Available Purpose: develop an experimental training program for lightweight rowers in academic rowing. Material: the study involved 27 qualified athletes who are engaged in academic rowing over 6 years, age 19-22 years, with sports qualifications KMS and MS. To better design the training program was conducted to study this physical condition of athletes also took into account the opinion of the leading coaches in academic rowing that are engaged with lightweight rowers. Results: as a result of an experimental study was designed training program in academic rowing. Conclusions: Experimental training program rowing provided its use for a year and was designed in the form of blocks and aims to developing and improving endurance (speed and power, strength and maximum strength. The experimental technique that was used in the training process, was designed with the preparation phase and plan on mesocycles and microcycle.

  2. Cryostable lightweight frit bonded silicon mirror

    Science.gov (United States)

    Anthony, F.; McCarter, D.; Tangedahl, M.; Content, D.

    The excellent polishability, low density and relatively high stiffness of silicon make it an attractive candidate for optical applications that require superior performance. Assembly of silicon details by means of glass frit bonding permits significant light weighting thus enhancing the benefit of silicon mirrors. To demonstrate the performance potential, a small lightweight glass frit bonded silicon mirror was fabricated and tested for cryoability. The test mirror was 12.5cm in diameter with a 60cm spherical radius and a maximum thickness, at the perimeter, of 2.5cm. A machined silicon core was used to stiffen the two face sheets of the silicon sandwich. These three elements were assembled, by glass frit bonding, to form the substrate that was polished. The experimental evaluation in a liquid nitrogen cryostat, demonstrated cryostability performance significantly better than required by the mirror specification. Key WordsCryostable, Lightweight, Silicon, Frit Bond, Spherical, Mirror

  3. Lightweight composite fighting cover prototype development program

    Energy Technology Data Exchange (ETDEWEB)

    Wrenn, G.E. Jr.; Frame, B.J.; Gwaltney, R.C.; Akerman, M.A.

    1996-07-01

    The U.S. Army Field Assistance Science and Technology Program requested Oak Ridge National Laboratory (ORNL) to demonstrate the use of lightweight composite materials in construction of overhead covers for reinforced infantry fighting positions. In recent years, ORNL researchers have designed and tested several concepts for lightweight ballistic protection structures, and they have developed numerous prototype composite structures for military and civilian applications. In the current program, composite panel designs and materials are tested and optimized to meet anticipated static and dynamic load conditions for the overhead cover structure. Ten prototype composite covers were built at ORNL for use in Army field tests. Each composite cover has a nominal surface area of 12 ft[sup 2] and a nominal weight of 8 lb. Four of the prototypes are made with folding sections to improve their handling characteristics. The composite covers exhibit equivalent performance in Army field tests to covers made with conventional materials that weigh four times as much.

  4. Lightweight Service Oriented Architecture for Pervasive Computing

    CERN Document Server

    Tigli, Jean-Yves; Rey, Gaetan; Hourdin, Vincent; Riveill, Michel

    2011-01-01

    Pervasive computing appears like a new computing era based on networks of objects and devices evolving in a real world, radically different from distributed computing, based on networks of computers and data storages. Contrary to most context-aware approaches, we work on the assumption that pervasive software must be able to deal with a dynamic software environment before processing contextual data. After demonstrating that SOA (Service oriented Architecture) and its numerous principles are well adapted for pervasive computing, we present our extended SOA model for pervasive computing, called Service Lightweight Component Architecture (SLCA). SLCA presents various additional principles to meet completely pervasive software constraints: software infrastructure based on services for devices, local orchestrations based on lightweight component architecture and finally encapsulation of those orchestrations into composite services to address distributed composition of services. We present a sample application of t...

  5. Round Gating for Low Energy Block Ciphers

    DEFF Research Database (Denmark)

    Banik, Subhadeep; Bogdanov, Andrey; Regazzoni, Francesco;

    2016-01-01

    Pushed by the pervasive diffusion of devices operated by battery or by the energy harvested, energy has become one of the most important parameter to be optimized for embedded systems. Particularly relevant would be to optimize the energy consumption of security primitives. In this paper we explore...... design techniques for implementing block ciphers in a low energy fashion. We concentrate on round based implementation and we discuss how gating, applied at round level can affect and improve the energy consumption of the most common lightweight block cipher currently used in the internet of things...

  6. Lightweight Protective Coatings For Titanium Alloys

    Science.gov (United States)

    Wiedemann, Karl E.; Taylor, Patrick J.; Clark, Ronald K.

    1992-01-01

    Lightweight coating developed to protect titanium and titanium aluminide alloys and titanium-matrix composite materials from attack by environment when used at high temperatures. Applied by sol-gel methods, and thickness less than 5 micrometers. Reaction-barrier and self-healing diffusion-barrier layers combine to protect titanium alloy against chemical attack by oxygen and nitrogen at high temperatures with very promising results. Can be extended to protection of other environmentally sensitive materials.

  7. Aladin Lite: Lightweight sky atlas for browsers

    Science.gov (United States)

    Boch, Thomas

    2014-02-01

    Aladin Lite is a lightweight version of the Aladin tool, running in the browser and geared towards simple visualization of a sky region. It allows visualization of image surveys (JPEG multi-resolution HEALPix all-sky surveys) and permits superimposing tabular (VOTable) and footprints (STC-S) data. Aladin Lite is powered by HTML5 canvas technology and is easily embeddable on any web page and can also be controlled through a Javacript API.

  8. LUCA:Lightweight Ubiquitous Computing Architecture

    Institute of Scientific and Technical Information of China (English)

    SUN Dao-qing; CAO Qi-ying

    2009-01-01

    Lightweight ubiquitous computing security architecture was presented. Lots of our recent researches have been integrated in this architecture. And the main current researches in the related area have also been absorbed. The main attention of this paper was providing a compact and realizable method to apply ubiquitous computing into our daily lives under sufficient secure guarantee. At last, the personal intelligent assistant system was presented to show that this architecture was a suitable and realizable security mechanism in solving the ubiquitous computing problems.

  9. Study of the brickwork masonry cracking with a cohesive fracture model

    Directory of Open Access Journals (Sweden)

    Reyes, E.

    2011-09-01

    Full Text Available This paper presents a numerical procedure to simulate the cracking process of the brickwork masonry under tensile/shear loading. The model is an extension of the cohesive model prepared by the authors for concrete, and takes into account the anisotropy of the material. The numerical procedure includes two steps: 1 calculation of the crack path with a linear elastic fracture model, 2 after the crack path is obtained, an interface finite element (using the cohesive fracture model is incorporated into the trajectory. Such a model is then implemented into a commercial code by means of a user subroutine, consequently being contrasted with experimental results. Fracture properties of masonry are independently measured for two directions on the composed masonry, and then input in the numerical model. This numerical procedure accurately predicts the experimental mixed mode fracture records for different orientations of the brick layers on masonry panels.

    Este artículo presenta un modelo de cálculo que permite simular el comportamiento en rotura de la fábrica de ladrillo bajo solicitaciones de tracción y cortante. El modelo extiende el modelo cohesivo formulado por los autores para hormigón, considerando la anisotropía del material. El procedimiento de cálculo consta de dos fases: 1 obtención de la trayectoria de grieta mediante un cálculo elástico lineal, 2 incorporación del modelo cohesivo en la misma mediante elementos de intercara. El modelo se ha implementado en un programa de elementos finitos comercial con una subrutina de usuario y se ha contrastado con los resultados experimentales de los ensayos a escala. Las propiedades mecánicas de la fábrica, en especial las de fractura, se miden con ensayos de caracterización en dos direcciones. Éstas se incorporan al modelo de cálculo para simular los ensayos de fractura en modo mixto, prediciendo los resultados adecuadamente para distintas orientaciones de los tendeles.

  10. Experimental Investigation on Flexural Performance of Masonry Walls Reinforced with GFRP

    Institute of Scientific and Technical Information of China (English)

    LIU Jifu; LIU Ming; SONG Yupu

    2007-01-01

    This paper presents the results of a test program for flexure reinforcing characteristics of gless fiber-rein forced polymer(GFRP) sheets bonded to masonry beams. A total of eight specimens subjected to monotonic four-point bending were tested up to failure. These specimens were constructed with two different bond patterns. Six of these specimens were reinforced by using GFRP sheets prior to testing, and the remaining two were not reinforced. The test results indicate a significant increase in both load-bearing capacity and ductile performance of the reinforced walls over the unreinforced ones.

  11. Engineering properties of high strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The strength to weight ratio of high strength lightweight concrete is not its only advantage. The artificial lightweight aggregate combines physically and, to a lesser extent, chemically with the surrounding cement matrix to produce an impermeable and durable concrete. The engineering properties of the concrete are sensitive to the proportions and nature of its constituents, and to its production methods. Supplementary cementing materials and chemical admixtures are used to develop the increased strength and durability. Thermal movements, shrinkage and creep are within workable limits. Fatigue resistance is probably at least as good as that achieved by equivalent strength normal density concretes but there is limited data on this topic. Deleterious effects of admixtures supplied in high dosages have not been identified but neither have they been investigated. The relationship between the tensile strength of the material and its uniaxial compressive strength is not robust. The shear capacity of structural elements is not adequately covered by most existing design codes. In common with all concretes, the stability of high strength lightweight concrete is reduced when water retained within it freezes or vaporises. A satisfactory freeze thaw behaviour can be readily achieved but, under fire conditions, the impermeability of the cement matrix limits the venting of water vapour at the concrete surface. Explosive failures can result. (Author)

  12. Zitongxi Block

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ Zitongxi Block (Western Zitong Block), is located in Zitong County, northwest of Sichuan Province (as shown on Fig. 8 ). Geologically. it is situated in the Zitong Depression, southwest of the middle Longmenshan faulted and folded belt, covering an area of 1 830 km2. Transportation is very convenient. A crisscross network of highways run through the block and the Baocheng railway is nearby. The climate is moderate. Most area belongs to hilly land with the elevation of 500-600 m.The Tongjiang River runs across the area.

  13. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  14. Chengzikou Block

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ Chengzikou Block is located in the north of Hekou district, Dongying City, Shandong Province, adjacent to Bohai Bay. It can be geographically divided into three units: onshore, transitional zone and offshore ultrashallow zone, totally covering an area of 470 km2. The southern onshore area is low and gentle in topography;the northern shallow sea is at water depths of 2-8 m below sea level, and the transitional zone occupies more than 60% of the whole block. The climate belongs to temperate zone with seasonal wind. Highways are welldeveloped here, and the traffic is very convenient. The Chengzikou Block is about 80 km away from Dongying City and 290 km from Jinan City in the south. The northern offshore area of the block is 160 km away from Longkou port in the east and only 38 km away in the west from Zhuangxi port.

  15. Evaluation of the behavior of brick tile masonry and mortar due to capillary rise of moisture

    Directory of Open Access Journals (Sweden)

    Camino, M. S.

    2014-06-01

    Full Text Available For a better understanding of the behaviour of old brick masonry in facing the rising damp problem, multiple tests were made in the laboratory: water absorption, moisture content, apparent porosity, temperature and thermal camera imaging on brick masonry and its components: brick and mortar. This has allowed us to determine which of the previous tests is the best in predicting the behaviour of a real wall. In addition, the tests have also helped in defining a process to evaluate the moisture content of walls in a buildings, which is important for heritage restoration projects.Para un mejor conocimiento del comportamiento de las fábricas antiguas de ladrillo frente a la ascensión capilar de agua, se han realizado en laboratorio ensayos de absorción de agua, de contenido de humedad, de porosidad aparente, de temperatura e imágenes con cámara termográfica sobre muros de fábrica y sus materiales componentes: ladrillo y argamasa. Ello ha permitido inferir cuál es el ensayo realizado a los ladrillos que mejor predice el comportamiento del muro real. También ha permitido definir un procedimiento para evaluar el contenido de humedad de fábricas existentes, importante para los proyectos de restauración del patrimonio construido.

  16. Combined Effects of Non-Conforming Fly Ash and Recycled Masonry Aggregates on Mortar Properties

    Directory of Open Access Journals (Sweden)

    Ana Isabel Torres-Gómez

    2016-08-01

    Full Text Available This work evaluates the effects of using non-conforming fly ash (Nc-FA generated in a thermoelectric power plant as filler material for mortars made with natural sand (NA and recycled sand from masonry waste (FRMA. The incorporation of powdered recycled masonry filler (R-MF is also tested as an alternative to siliceous filler (Si-F. Three families of mortars were designed to study: the effect of replacing Si-F with Nc-FA on mortars made with NA; the effect of replacing Si-F with Nc-FA on mortars made with 50% of NA and 50% of FRMA; and the effect of replacing Si-F with R-MF on mortars made with NA and FRMA. Replacing Si-F with Nc-FA is a viable alternative that increases the mechanical strength, the workability and durability properties and decreases the shrinkage. The use of FRMA and Nc-FA improved the mechanical strength of mortars, and it slightly increased the shrinkage. The replacement of Si-F with R-MF on mortars made with FRMA is not a good alternative, because it has a negative impact on all of the properties tested. This work can help both to reduce cement and natural resources’ consumption and to increase the recycling rate of Nc-FA and FRMA.

  17. Seismic vulnerability of the Himalayan half-dressed rubble stone masonry structures, experimental and analytical studies

    Directory of Open Access Journals (Sweden)

    N. Ahmad

    2012-11-01

    Full Text Available Half-Dressed rubble stone (DS masonry structures as found in the Himalayan region are investigated using experimental and analytical studies. The experimental study included a shake table test on a one-third scaled structural model, a representative of DS masonry structure employed for public critical facilities, e.g. school buildings, offices, health care units, etc. The aim of the experimental study was to understand the damage mechanism of the model, develop damage scale towards deformation-based assessment and retrieve the lateral force-deformation response of the model besides its elastic dynamic properties, i.e. fundamental vibration period and elastic damping. The analytical study included fragility analysis of building prototypes using a fully probabilistic nonlinear dynamic method. The prototypes are designed as SDOF systems assigned with lateral, force-deformation constitutive law (obtained experimentally. Uncertainties in the constitutive law, i.e. lateral stiffness, strength and deformation limits, are considered through random Monte Carlo simulation. Fifty prototype buildings are analyzed using a suite of ten natural accelerograms and an incremental dynamic analysis technique. Fragility and vulnerability functions are derived for the damageability assessment of structures, economic loss and casualty estimation during an earthquake given the ground shaking intensity, essential within the context of risk assessment of existing stock aiming towards risk mitigation and disaster risk reduction.

  18. Retrofit of a MultiFamily Mass Masonry Building in New England

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Kerrigan, P. [Building Science Corporation, Somerville, MA (United States); Wytrykowska, H. [Building Science Corporation, Somerville, MA (United States); Van Straaten, R. [Building Science Corporation, Somerville, MA (United States)

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

  19. Seismic Analysis of Historic Masonry Buildings: The Vicarious Palace in Pescia (Italy

    Directory of Open Access Journals (Sweden)

    Luciano Galano

    2012-04-01

    Full Text Available Recent Italian earthquakes have underlined the need for wide monitoring and safety assessment of architectonical heritage. This has emerged also from requirements of the new Italian Technical Recommendations for buildings. Within this subject the paper investigates the seismic vulnerability of a specific monumental masonry building: the Vicarious Palace (Palazzo del Vicario in Pescia, a small town near Florence. The structural behavior of the Palace was investigated using a finite element model in which the non-linearities of the masonry were considered by proper constitutive assumptions. The seismic behavior was evaluated by the pushover method, according to the Italian Technical Recommendations. The results were compared with the ones obtained by a simplified approach based on the kinematic theorem of limit analysis. Comparisons of the expected seismic demand vs the seismic capacity of the Palace confirm the weakness of this type of building to suffer extensive damage under earthquakes, as frequently observed in similar construction typologies. Additionally, the comprehension of the structural behavior under seismic loading allows the identification of a proper retrofitting strategy.

  20. The application of masonry chimney venting tables for oil-fired appliances

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F.; Strasser, J. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    This paper presents an overview of the results of work in developing a set of rational guidelines for the venting of modern oil-fired appliances. The activities included the continued development and completion of the Oil-Heat Vent Analysis Program (OHVAP), Version 1.0 and the interpretation of nearly 2,000 runs in preparing recommendations for presentation in table form. These results are presented in the form of venting tables for the installation of chimney vent systems for mid- and high-efficiency oil-fired heating appliances using masonry chimneys. A brief description of OHVAP is given as well as a discussion of what the program does. Recommendations based on the results of OHVAP are presented in the form of five tables spanning oil-fired appliance Steady state Efficiencies (Eff{sub ss}) of 80% to 88%. The assumptions used in the calculations and examples of the computed results are presented as well as a discussion of the rationale for masonry chimney system treatment. Working examples are given with suggested diagnostic approaches for application of the table recommendations.

  1. Comparison between TRM and FRP strengthening systems at preventing buckling failure of brick masonry walls

    Directory of Open Access Journals (Sweden)

    Bernat-Maso, E.

    2016-09-01

    Full Text Available Fibre Reinforced Polymer (FRP and Textile Reinforced Mortar (TRM have been studied, compared and applied to strengthen brick masonry walls. The comparison of their performance against second order bending effects is addressed in this paper for the first time. Experimental and analytical data from previous researches and new analytical data for TRM cases are summarised, ordered and systematically compared to analyse the structural response of strengthened brick masonry walls. The results show a similar performance for both systems in terms of load bearing capacity and in-plane response. However, TRM strengthened cases showed greater lateral deformation than FRP ones.Materiales tipo Fibre Reinforced Polymer (FRP y Textile Reinforced Mortar (TRM han sido estudiados, comparados y aplicados para reforzar muros de fábrica de ladrillo. La comparación de su comportamiento frente a efectos de flexión de segundo orden se abordada en este artículo por primera vez. Datos experimentales y analíticos de investigaciones previas y nuevos datos analíticos para los casos de TRM son resumidos, ordenados y sistemáticamente comparados para analizar la respuesta estructural de los muros de fábrica de ladrillo reforzados. Los resultados muestran un comportamiento similar de los dos sistemas respecto su capacidad de carga y su respuesta en el plano. Los casos reforzados con TRM mostraron desplazamientos laterales superiores a los reforzados con FRP.

  2. Ethical Guidelines for Structural Interventions to Small-Scale Historic Stone Masonry Buildings.

    Science.gov (United States)

    Hurol, Yonca; Yüceer, Hülya; Başarır, Hacer

    2015-12-01

    Structural interventions to historic stone masonry buildings require that both structural and heritage values be considered simultaneously. The absence of one of these value systems in implementation can be regarded as an unethical professional action. The research objective of this article is to prepare a guideline for ensuring ethical structural interventions to small-scale stone historic masonry buildings in the conservation areas of Northern Cyprus. The methodology covers an analysis of internationally accepted conservation documents and national laws related to the conservation of historic buildings, an analysis of building codes, especially Turkish building codes, which have been used in Northern Cyprus, and an analysis of the structural interventions introduced to a significant historic building in a semi-intact state in the walled city of Famagusta. This guideline covers issues related to whether buildings are intact or ruined, the presence of earthquake risk, the types of structural decisions in an architectural conservation project, and the values to consider during the decision making phase.

  3. Fiber Reinfoced Polymer Used for Flooding Protection of Engineering Structures Made of RC and Brick Masonry

    Directory of Open Access Journals (Sweden)

    Gabriel Oprişan

    2008-01-01

    Full Text Available Urban and rural floods are becoming nowadays a frequent problem to be dealt with, by both the population and the authorities. Floods and flood related natural disasters act against the civil, industrial and agricultural structures by the hydrostatic and hydrodynamic pressures of water. A set of protective solutions based on Fiber Reinforced Polymer (FRP composite materials, for structural elements of buildings subjected to flood loadings, is proposed and analysed. These solutions are achieved by using the hand lay-up forming technique utilizing glass, carbon or aramid fibers fabrics pre-impregnated with thermosetting epoxy, polyester or vynilester resins. The application of these FRP composites is carried out on reinforced concrete columns and beams as well as on brick masonry works aiming to increase in the overall load bearing capacity, especially against horizontal loads. An improved protection against excessive humidity is also envisaged. The Finite Elements Method based LUSAS software was used to simulate a partially flooded structure. The numerical modeling was carried out in both the un-strengthened and strengthened conditions of the structure in order to assess the increasing in load and deformation capacities of the structural elements. Volumetric finite elements were used for modeling the concrete and masonry members.

  4. SSI on the Dynamic Behaviour of a Historical Masonry Building: Experimental versus Numerical Results

    Directory of Open Access Journals (Sweden)

    Francesca Ceroni

    2014-11-01

    Full Text Available A reliable procedure to identify the dynamic behaviour of existing masonry buildings is described in the paper, referring to a representative case study: a historical masonry palace located in Benevento (Italy. Since the building has been equipped with a permanent dynamic monitoring system by the Department of Civil Protection, some of the recorded data, acquired in various operating conditions, have been analysed with basic instruments of the Operational Modal Analysis in order to identify the main eigenfrequencies and vibration modes of the structure. The obtained experimental results have been compared to the numerical outcomes provided by three detailed Finite Element (FE models of the building. The influence of Soil-Structure Interaction (SSI has been also introduced in the FE model by a sub-structure approach where concentrated springs were placed at the base of the building to simulate the effect of soil and foundation on the global dynamic behaviour of the structure. The obtained results evidence that subsoil cannot a priori be disregarded in identifying the dynamic response of the building.

  5. Longmenshan Block

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ Longmenshan Block is located in Jiange County of Jiangyou City in the northwest of Sichuan Basin. covering an area of 2 628 km2. Geologically, it is situated in the Mid-Longmenshan fault and fold belt, neighbouring Zitong Depression in its southeast. There are mountains surrounding its northwest , the rest area being hilly land,with the elevation of 500-700 m. The BaoCheng railway and the No. 108 highway run through the block, the traffic is very convenient.

  6. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future astrophysics missions will require lightweight, thermally stable, submillimeter reflectors in sizes of 4m and greater. To date, graphite fiber reinforced...

  7. Laser Additive Manufacturing and Bionics: Redefining Lightweight Design

    Science.gov (United States)

    Emmelmann, C.; Sander, P.; Kranz, J.; Wycisk, E.

    New layer wise manufacturing technologies such as Laser Additive Manufacturing (LAM) allow innovative approaches to product design. Especially for lightweight design in aircraft applications LAM offers new possibilities for load-adapted structures. However, to fully capture lightweight potential of LAM technologies new design guidelines and processes have to be developed. A novel approach to extreme lightweight design is realized by incorporating structural optimization tools, bionic structures and LAM guidelines into one design process. By consequently following this design process designers can achieve lightweight savings in designing new aircraft structures.

  8. Lightweight Rubbery Aerogel Composites for High Performance Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aspen Aerogels Inc. (AAI) and the Man Vehicle Laboratory (MVL) at the Massachusetts Institute of Technology propose to develop nanostructured, lightweight, rubbery...

  9. Refiring bricks at 540ºC: hot masonry and magnetic separation close the brick recycling process

    NARCIS (Netherlands)

    Van der Graaf, A.

    2004-01-01

    For many decades, stony debris from building and demolition sites was reused as road building material. Until recently there was no need to look for other uses for this mixture of concrete and masonry rubble. However, now that our supplies of marl and gravel (two of the three ingredients of mortar a

  10. Development of Electrode Units for Electrokinetic Desalination of Masonry and Pilot Scale Test at Three locations for Removal of Chlorides

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Skibsted, Gry

    2010-01-01

    Electrode units for electrokinetic desalination of masonry has been developed and tested in pilot scale at three different locations. The units are formed as casings with a metallic mesh electrode, and carbonate rich clay to buffer the acid produced at the anode. The case has an extra loose bottom...

  11. Type Classes for Lightweight Substructural Types

    Directory of Open Access Journals (Sweden)

    Edward Gan

    2015-02-01

    Full Text Available Linear and substructural types are powerful tools, but adding them to standard functional programming languages often means introducing extra annotations and typing machinery. We propose a lightweight substructural type system design that recasts the structural rules of weakening and contraction as type classes; we demonstrate this design in a prototype language, Clamp. Clamp supports polymorphic substructural types as well as an expressive system of mutable references. At the same time, it adds little additional overhead to a standard Damas-Hindley-Milner type system enriched with type classes. We have established type safety for the core model and implemented a type checker with type inference in Haskell.

  12. Longbow: A Lightweight Remote Job Submission Tool

    Directory of Open Access Journals (Sweden)

    James Gebbie-Rayet

    2016-01-01

    Full Text Available We present Longbow, a lightweight console-based remote job submission tool and library. Longbow allows the user to quickly and simply run jobs on high performance computing facilities without leaving their familiar desktop environment. Not only does Longbow greatly simplify the management of compute- intensive jobs for experienced researchers, it also lowers the technical barriers surrounding high perfor-mance computation for the next generation of scientists and engineers. Longbow has already been used to remotely submit jobs in a number of projects and has the potential to redefine the manner in which high performance computers are used.

  13. Lightweight Cryptography for Passive RFID Tags

    DEFF Research Database (Denmark)

    David, Mathieu

    2012-01-01

    among the smallest in the published literature and aims at being implemented on printed electronics RFID tags. Then, we compare different cryptographic primitives based on their key parameters: throughput, area, power consumption and level of security. Our main concern is the integrability...... of an integrator for a particular application. Finally, we conclude that the research for finding robust cryptographic primitive in the branch of lightweight cryptography still has some nice days ahead, and that providing a secure cryptosystem for printed electronics RFID tags remains an open research topic....

  14. Material Characteristic of Lightweight Concretes With Waste PVC Additive and Their Possible Utilization in Agricultural Structures

    Directory of Open Access Journals (Sweden)

    I. Orung

    2007-05-01

    Full Text Available In this study, characteristics of lightweight concretes prepared adding waste PVC materials at different rates into natural lightweight aggregates of Van Ercis region were investigated. The aims of the study were to propose and produce a construction material with low unit weight, sufficient pressure resistance and low water absorption capacity. The unit weight of leight weight material produced was ranged from 760 to 883 kg/m3, compressive strenght was ranged from 21.4 to 37.7 kgf/cm2, and water absorption values were changed between 23.4 % and 32.3 %. The bulk density and compressive strength of samples were increasing with increasing waste PVC mixture, whereas, water absorbtion was decreased with the same amount of additions. The results of the study indicated that produced lightweight material could safely be used in agricultural structures, especially in animal housing facilities with sensitive environmental conditions, in storage facilities and houses as wall block materials. Introducing a material produced with waste PVC material into the construction market will provide several benefits to economy, and environment.

  15. PICO : An Ultra Lightweight and Low Power Encryption Design for Ubiquitous Computing

    Directory of Open Access Journals (Sweden)

    Gaurav Bansod

    2016-04-01

    Full Text Available An ultra-lightweight, a very compact block cipher ‘PICO’ is proposed. PICO is a substitution and permutation based network, which operates on a 64 bit plain text and supports a key length of 128 bits. It has a compact structure and requires 1877 GEs. Its innovative design helps to generate a large number of active S - boxes in fewer rounds which can thwart the linear and differential attacks on the cipher. PICO shows good performance on both the hardware and the software platforms. PICO consumes only 2504 bytes of Flash memory which is less than the ultra-lightweight cipher PRESENT. PICO has a very strong substitution layer (S-box which not only makes the design robust but also introduces a great avalanche effect. PICO has a strong and compact key scheduling which is motivated by the latest cipher SPECK designed by NSA. PICO consumes 28 mW of dynamic power which is less than the PRESENT cipher (38 mW. The security analysis of PICO and its performance as an ultra-lightweight cipher are presented. 

  16. Super flame-retardant lightweight rime-like carbon-phenolic nanofoam

    Science.gov (United States)

    Cheng, Haiming; Hong, Changqing; Zhang, Xinghong; Xue, Huafei; Meng, Songhe; Han, Jiecai

    2016-09-01

    The desire for lightweight nanoporous materials with high-performance thermal insulation and efficient anti-ablation resistance for energy conservation and thermal protection/insulation has greatly motivated research and development recently. The main challenge to synthesize such lightweight materials is how to balance the relationship of low thermal conductivity and flame retardancy. Herein, we propose a new concept of lightweight “rime-like” structured carbon-phenolic nanocomposites to solve this problem, where the 3D chopped network-structured carbon fiber (NCF) monoliths are incorporated with nanoporous phenolic aerogel to retain structural and functional integrity. The nanometer-scaled porous phenolic (NP) was synthesized through polymerization-induced phase separation and ambient pressure drying using phenolic resin (PR) solution as reaction source, ethylene glycol (EG) as solvent and hexamethylenetetramine (HMTA) as catalyst. We demonstrate that the as-prepared NCF-NP nanocomposite exhibits with a low density of 0.25–0.35 g/cm3, low thermal conductivity of 0.125 Wm‑1K‑1 and outstanding flame retardancy exceeding 2000 °C under arc-jet wind tunnel simulation environment. Our results show that the synthesis strategy is a promising approach for producing nanocomposites with excellent high-temperature heat blocking property.

  17. Building America Case Study: Retrofit Measure for Embedded Wood Members in Insulated Mass Masonry Walls, Lawrence, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2015-10-01

    ?There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content and relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100 percent RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15 percent) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  18. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    Science.gov (United States)

    Masera, D.; Bocca, P.; Grazzini, A.

    2011-07-01

    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a "damage-gauge" for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  19. SIT: A Lightweight Encryption Algorithm for Secure Internet of Things

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2017-01-01

    Full Text Available The Internet of Things (IoT being a promising technology of the future is expected to connect billions of devices. The increased number of communication is expected to generate mountains of data and the security of data can be a threat. The devices in the architecture are essentially smaller in size and low powered. Conventional encryption algorithms are generally computationally expensive due to their complexity and requires many rounds to encrypt, essentially wasting the constrained energy of the gadgets. Less complex algorithm, however, may compromise the desired integrity. In this paper we propose a lightweight encryption algorithm named as Secure IoT (SIT. It is a 64-bit block cipher and requires 64-bit key to encrypt the data. The architecture of the algorithm is a mixture of feistel and a uniform substitution-permutation network. Simulations result shows the algorithm provides substantial security in just five encryption rounds. The hardware implementation of the algorithm is done on a low cost 8-bit micro-controller and the results of code size, memory utilization and encryption/decryption execution cycles are compared with benchmark encryption algo-rithms. The MATLAB code for relevant simulations is available online at https://goo.gl/Uw7E0W.

  20. 76 FR 42137 - Certain Lightweight Thermal Paper From Germany; Remand Proceedings

    Science.gov (United States)

    2011-07-18

    ... COMMISSION Certain Lightweight Thermal Paper From Germany; Remand Proceedings AGENCY: United States...-1127 concerning certain lightweight thermal paper (``LWTP'') from Germany. For further information... certain lightweight thermal paper from Germany that the Department of Commerce found were sold at...

  1. Chadong Block

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ The Chadong Block, located in the east of Qaidam Basin, Qinghai Province, covers an area of 12 452 km2. It is bounded by Kunlum Mountains in the south and the northwest is closely adjacent to Aimunike Mountain.Rivers are widely distributed, which always run in NWSE direction, including the Sulunguole, Qaidam and Haluwusu Rivers. The traffic condition is good, the Qinghai-Tibet highway stretching through the whole area and the Lan-Qing railway, 20-50 km away from the block, passing from north to west. A lot of Mongolia minority people have settled there, of which herdsmen always live nearby the Qaidam River drainage area.

  2. Lightweight design of automotive front crossbeam assembly

    Institute of Scientific and Technical Information of China (English)

    Yao Zaiqi; Liu Qiang; Ma Fangwu; Zhao Fuquan; Liu Zongwei; Wang Guan; Wan Yinhui; Li Luoxing

    2012-01-01

    This paper reviews the development course of the front crossbeam assembly for a self-owned brand vehicle model based on lightweight and passive safety performance. Combining with an A00 model variant, the paper details the design of extruded aluminum-alloy front crossbeam assembly from the perspectives of optimal design, performance verifi- cation, lightweight effect and cost control. The following results in the technical and engineering applications have been achieved. The weight of the developed aluminum-alloy crossbeam can be reduced by 51%. The simulated analysis of the collision rigid wall, the 40 % offset hammering as well as the static crush test of energy-absorbing box show that af- ter reasonable materials matching and size optimization of the crossbeam and the energy-absorbing boxes, the level of crash safety can be improved. The price of aluminum-alloy front crossbeam can be lowered by using the extruding die in- stead of the stamping die to reduce the die cost-sharing.

  3. Advances in very lightweight composite mirror technology

    Science.gov (United States)

    Chen, Peter C.; Bowers, Charles W.; Content, David A.; Marzouk, Marzouk; Romeo, Robert C.

    2000-09-01

    We report progress in the development of very lightweight (roll off and several waves (rms optical) of astigmatism, coma, and third-order spherical aberration. These are indications of thermal contraction in an inhomogeneous medium. This inhomogeneity is due to a systematic radial variation in density and fiber/resin ratio induced in composite plies when draped around a small and highly curved mandrel. The figure accuracy is expected to improve with larger size optics and in mirrors with longer radii of curvature. Nevertheless, the present accuracy figure is sufficient for using postfiguring techniques such as ion milling to achieve diffraction-limited performances at optical and UV wavelengths. We demonstrate active figure control using a simple apparatus of low-mass, low-force actuators to correct astigmatism. The optimized replication technique is applied to the fabrication of a 0.6-m-diam mirror with an areal density of 3.2 kg/m2. Our result demonstrates that the very lightweight, large-aperture construction used in radio telescopes can now be applied to optical telescopes.

  4. Experimental scale model study of cracking in brick masonry under tensile and shear stress

    Directory of Open Access Journals (Sweden)

    Gálvez Ruiz, J. C.

    2008-09-01

    Full Text Available This article discusses the results of research conducted on the failure behaviour of brick masonry under tensile and shear stress. The study was designed to develop test models and generate experimental results able to provide greater insight into tensile and shear stresses cracking in brick masonry. The results of a campaign conducted with two types of specimens are discussed: 1 double-edge notched specimens under non-symmetrical compression stress, and 2 three point bending specimens under nonsymmetrical loading. Tests were run on specimens of similar size (similarity rate 2 and different bed joint orientation to determine how bed joint orientation affects crack propagation. The tests were conducted on scale models (1/4 of a single wythe, stretcher bond brickwork masonry wall one half foot thick.Este artículo presenta los resultados de la investigación realizada sobre el comportamiento en rotura de la fábrica de ladrillo bajo solicitaciones de tracción y cortante. La investigación está encaminada a proporcionar modelos de ensayo y resultados experimentales que permitan conocer mejor los procesos de agrietamiento de la fábrica de ladrillo bajo tensiones normales de tracción y tangenciales. Se presentan los resultados de una campaña experimental desarrollada con dos tipos de probeta: 1 la probeta compacta con doble entalla solicitada a compresión asimétrica, y 2 la probeta de flexión con entalla solicitada bajo carga asimétrica aplicada en tres puntos. Se han ensayado probetas de dos tamaños semejantes (razón de semejanza 2 y varias orientaciones de los tendeles, con el fin de ver cómo afecta la orientación de los tendeles en la propagación de las grietas. Los ensayos se han realizado con probetas a escala 1/4 de un muro de fábrica de ladrillo de una hoja a soga de medio pie de espesor.

  5. Young modulus variation of a brickwork masonry element submitted to high temperatures

    Directory of Open Access Journals (Sweden)

    Maciá, M. E.

    2013-03-01

    Full Text Available In order to understand the thermal behavior of the masonry elements submitted to high temperatures we need to know the variation of their thermal properties with regard to the temperature. Submitted to high temperatures clay brick masonry presents thermomechanical effects (as the variation of Young's modulus, the thermal expansion of the unit and the mortar, spalling, losses of resistance … as well as variation of the properties of the material as result of its degradation. In this article the variation of the module of elasticity of the unit and the mortar is described with regard to high temperatures according to the state of the knowledge. In this article is also exposed the results obtained from the experimental program carried out on elements of clay brick masonry submitted to high temperatures in order to observe the variation of Young's module related to temperature.

    La definición del comportamiento térmico de los elementos de fábrica sometidos a la acción del fuego requiere del conocimiento de la variación de sus propiedades termomecánicas con respecto a la temperatura. Ante las altas temperaturas la fábrica cerámica presenta efectos termomecánicos, como la variación del módulo de Young entre otros, así como la variación de las propiedades del material debidas a la degradación del mismo. En este artículo se describe la variación del módulo de elasticidad de la pieza y el mortero con respecto a altas temperaturas según el estado del conocimiento y se exponen los resultados obtenidos del programa experimental llevado a cabo sobre elementos de fábrica sometidos a altas temperaturas con el fin de observar la variación del módulo de Young con respecto a la temperatura.

  6. FY2014 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles.

  7. Adaptive Backstepping Control of Lightweight Tower Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Borup, Kasper Trolle; Niemann, Hans Henrik;

    2015-01-01

    This paper investigates the feasibility of operating a wind turbine with lightweight tower in the full load region exploiting an adaptive nonlinear controller that allows the turbine to dynamically lean against the wind while maintaining nominal power output. The use of lightweight structures...

  8. Anchorage of Main Reinforcement in Lightweight Aggregate Concrete Beams

    DEFF Research Database (Denmark)

    Larsen, Henning

    1999-01-01

    The paper deals with the anchorage of reinforcement bars at end supports in beam component made of lightweight aggregate concrete with open structure.......The paper deals with the anchorage of reinforcement bars at end supports in beam component made of lightweight aggregate concrete with open structure....

  9. Uncertainty and Variation of Vibration in Lightweight Structures

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens

    2012-01-01

    Multi-family dwellings and offices build from lightweight materials are becoming a cost efficient and environmentally friendly alternative to traditional heavy structures.......Multi-family dwellings and offices build from lightweight materials are becoming a cost efficient and environmentally friendly alternative to traditional heavy structures....

  10. Adaptive Backstepping Control of Lightweight Tower Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Borup, Kasper Trolle; Niemann, Hans Henrik

    2015-01-01

    This paper investigates the feasibility of operating a wind turbine with lightweight tower in the full load region exploiting an adaptive nonlinear controller that allows the turbine to dynamically lean against the wind while maintaining nominal power output. The use of lightweight structures for...

  11. 46 CFR 30.10-38 - Lightweight-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Lightweight-TB/ALL. 30.10-38 Section 30.10-38 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-38 Lightweight—TB/ALL. The term lightweight means the displacement of a vessel in metric tons without cargo, oil...

  12. Lightweight Concrete Produced Using a Two-Stage Casting Process

    Directory of Open Access Journals (Sweden)

    Jin Young Yoon

    2015-03-01

    Full Text Available The type of lightweight aggregate and its volume fraction in a mix determine the density of lightweight concrete. Minimizing the density obviously requires a higher volume fraction, but this usually causes aggregates segregation in a conventional mixing process. This paper proposes a two-stage casting process to produce a lightweight concrete. This process involves placing lightweight aggregates in a frame and then filling in the remaining interstitial voids with cementitious grout. The casting process results in the lowest density of lightweight concrete, which consequently has low compressive strength. The irregularly shaped aggregates compensate for the weak point in terms of strength while the round-shape aggregates provide a strength of 20 MPa. Therefore, the proposed casting process can be applied for manufacturing non-structural elements and structural composites requiring a very low density and a strength of at most 20 MPa.

  13. Lightweight design for servo frame based on lattice material

    Science.gov (United States)

    Jin, Xin; Li, Guoxi; Liu, Encai; Gong, Jingzhong

    2017-06-01

    Lattice material infilling is an important way to achieve lightweight. Focusing on the problems of non-uniform arrangement and the finite element analysis (FEA) of lattice material in the parts, a lightweight design method based on lattice material is proposed with the spacecraft servo frame as the design object. Modal analysis and topology optimization are carried out according to the boundary conditions. The optimized density results are used to guide the design of lattice material parameters and arrangement. The equivalent mechanical properties of lattice material are obtained through the standard specimens experiments. The equivalent material FEA model of the lightweight servo frame is established, and the performance of the lightweight structure is tested by FEA simulation and experiment. The results show that under the impact condition, the lightweight servo frame meets the performance requirements and the simulation method through the equivalent material model is validated.

  14. Utilization of ground waste seashells in cement mortars for masonry and plastering.

    Science.gov (United States)

    Lertwattanaruk, Pusit; Makul, Natt; Siripattarapravat, Chalothorn

    2012-11-30

    In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar.

  15. Monitoring historical masonry structures with operational modal analysis: Two case studies

    Science.gov (United States)

    Ramos, L. F.; Marques, L.; Lourenço, P. B.; De Roeck, G.; Campos-Costa, A.; Roque, J.

    2010-07-01

    The paper addresses two complex case studies of modal and structural identification of monuments in Portugal: the Clock Tower of Mogadouro and the Church of Jerónimos Monastery, in Lisbon. These are being monitored by University of Minho with vibration, temperature and relative air humidity sensors. Operational modal analysis is being used to estimate the modal parameters, followed by statistical analysis to evaluate the environmental effects on the dynamic response. The aim is to explore damage assessment in masonry structures at an early stage by vibration signatures, as a part of a health monitoring process that helps in the preservation of historical constructions. The paper presents the necessary preliminary dynamic analysis steps before the monitoring task, which includes installation of the monitoring system, system identification and subsequent FE model updating analysis, automatic modal identification and investigation of the influence of the environment on the identified modal parameters.

  16. Twin lintel belt in steel for seismic strengthening of brick masonry buildings

    Institute of Scientific and Technical Information of China (English)

    C.V.R.Murty; Jayanta Dutta; S.K.Agrawal

    2004-01-01

    A single-room, single-storey full-scale brick masonry building with precast RC roofing system was tested thrice under displacement controlled lateral cyclic loading, to assess the effectiveness of the basic repair and seismic strengthening techniques. Initially, the virgin building specimen was loaded laterally to failure. In the second stage, the damaged building was repaired by stitching across the cracks, and tested under the same lateral loading. In the third stage, the twice-damaged structure was repaired once more by stitching and strengthened by twin lintel belt in steel and vertical comer reinforcement,and re-tested. The building strengthened by twin lintel belt in steel showed about 28% higher strength under lateral loading than the virgin building.

  17. A Study of Potential Load Bearing Masonry (LBM System in Malaysia Construction Industry

    Directory of Open Access Journals (Sweden)

    Ramli N.A.

    2014-01-01

    Full Text Available To overcome the problems in increasing of material prices, land prices, shortage of skilled workers, equipping low cost housing demands and maintained the cost of the constructing at an affordable price, there is a need to find the alternative solution for constructing method. The use of the load bearing masonry system (LBM has been identified as a sustainable and an effective alternative method for the construction industry. The system offers several advantages in term of cost and speed of the construction, durability, strength, environmentally friendly practices and aesthetic qualities. Despite these advantages, unfortunately, this system has not been widely used in Malaysia compared to reinforced concrete (RC frame construction. Therefore, this paper aims to discuss the advantages and potential of the system implementation to Malaysia construction industry in the future.

  18. A vibration-based health monitoring program for a large and seismically vulnerable masonry dome

    Science.gov (United States)

    Pecorelli, M. L.; Ceravolo, R.; De Lucia, G.; Epicoco, R.

    2017-05-01

    Vibration-based health monitoring of monumental structures must rely on efficient and, as far as possible, automatic modal analysis procedures. Relatively low excitation energy provided by traffic, wind and other sources is usually sufficient to detect structural changes, as those produced by earthquakes and extreme events. Above all, in-operation modal analysis is a non-invasive diagnostic technique that can support optimal strategies for the preservation of architectural heritage, especially if complemented by model-driven procedures. In this paper, the preliminary steps towards a fully automated vibration-based monitoring of the world’s largest masonry oval dome (internal axes of 37.23 by 24.89 m) are presented. More specifically, the paper reports on signal treatment operations conducted to set up the permanent dynamic monitoring system of the dome and to realise a robust automatic identification procedure. Preliminary considerations on the effects of temperature on dynamic parameters are finally reported.

  19. Technical Note: Alterations in the stone masonry of the Capitol Room of Sevilla City Hall

    Directory of Open Access Journals (Sweden)

    García Navarro, J.

    2006-12-01

    Full Text Available The main aim of this work has been to determine the causes of stone loss (small particles and one larger piece and mortar loss in the coffered vault of the Capitol Room in the City Hall of Seville. The analyses and assays carried out during the course of this research have revealed that this masonry comprises a covering of oil paints over mortar-stucco of calcite, quartz, gypsum,and lead white with linseed oil when the walls were not covered. In addition, it was confirmed that the installation of air-conditioning caused a change in the humidity and temperature in the vault, aggravated by the elimination of the cross-ventilation that the structure had since it was built. The combination of these two circumstances likely triggered the pathology in the masonry.Este trabajo ha tenido como objetivo principal determinarlas causas que han originado desprendimientos de partículas y un fragmento importante de las piedras y del mortero que conforman la bóveda-artesonado de la Sala Capitular del Ayuntamiento de Sevilla. Los diferentes análisis y ensayos realizados evidencian que estas fábricas tienen un revestimiento realizado a base de pinturas al óleo sobre estuco-mortero de calcita, cuarzo, yeso y presencia de blanco de plomo con impregnación de aceite de linaza, en tanto que las fábricas de los muros no tienen revestimiento alguno. Igualmente se ha constatado el cambio de la humedad-temperatura ambiental en la bóveda, generado por la implantación de aire acondicionado y la eliminación de la ventilación cruzada natural que tenía desde su construcción. La conjunción de ambas acciones parece ser el desencadenante de las anomalías reseñadas.

  20. Simplified Assessment of R3 Nominal Assurance Degree to Seismic Action of the Existing Masonry Dwellings

    Directory of Open Access Journals (Sweden)

    Teodor Broşteanu

    2008-01-01

    Full Text Available This paper refers to the assessment of the performance level of a building for a given seismic hazard level. Building performance level describes the expected seismic performance given by the computation of R3 Nominal Assurance Degree to Seismic Action of the Existing Masonry Dwellings and Monumental Buildings according to the Romanian Norm P100:1992 [1], modified on 1996 with the chapters 11 and 12, until the Part 3 of P100-1:2006 [2], will be performed for the Assessment and Strengthening Structural Design of the Seismic Vulnerable, Existing Buildings, in the frame of SR EN 1998-1:2004 EC8 [3]. The framing of damages into the potential risk degrees has a social and economic impact. Assessment and retrofitting of the existing buildings have represented a huge engineering challenge as a distinct problem versus a new building design. The performance level of a vulnerable existing building shows us the expected seismic performance level due to the classified damages, the pattern of cracks, the interruption of function, the economic losses and the needed interventions, all in function of the importance class of building on next life span of use. On recommends the computation of R (R3 Nominal Assurance Degree to Seismic Action of the Vulnerable Dwellings for the assessing and strengthening design, in comparison to both norms because of the bearing conventional seismic load computed by [1], will result less than the value which will be computed by the Part 3 of P100-1:2006, i.e. the norm P100:1992 is more severe. In the case of the breakable fracture probability of the existing structural masonry members, one recommends a bigger value of ? – reduction factor unless the given values by [1] for a new structure with a high ductility, especially for the deflections calibration on the same limit state.

  1. Advanced casting technologies for lightweight automotive applications

    Directory of Open Access Journals (Sweden)

    Alan A. Luo

    2010-11-01

    Full Text Available This paper provides an overview of alloy and process developments in aluminum and magnesium castings for lightweight automotive applications. Wear-resistant aluminum alloys, creep-resistant and high strength/ductility magnesium alloys have been developed for automotive applications. On the process front, vacuum-assisted die casting and high vacuum die casting technologies have been developed for high-integrity body and chassis applications. Thin-wall and hollow casting components are being produced by low-pressure die casting processes for structural applications. Overcasting technology is gaining traction and has enabled mixed material designs for automotive sub-systems such as engine cradles and instrument panel beams. Simulation tools developed to predict the interfacial interactions of the dissimilar components and the structural integrity of the overcast systems are being validated in the casting trials.

  2. Performance of a New Lightweight Reciprocating Pump

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C

    2005-06-09

    A new four-chamber piston pump design has been fabricated and tested. The small-scale propellant pump is intended to be powered by gas at elevated temperatures, e.g. in a gas-generator cycle rocket propulsion system. Two key features are combined for the first time: leak-tight liquid-cooled seals, and a high throughput per unit hardware mass. Measured performance curves quantify flows, pressures, leakage, volumetric efficiency, and tank pressure requirements. A pair of 300-gram pumps operating with significant margin could deliver fuel and oxidizer at 5 MPa to a compact lightweight 1000-N engine, while tank pressure remains at 0.35 MPa. Pump weight is well below one percent of thrust, as is typical for launch vehicle engines. Applications include small upper stages, aggressive maneuvers in space, and miniature launch vehicles for Mars ascent.

  3. Lightweight, low-cost solar energy collector

    Science.gov (United States)

    Hochberg, Eric B. (Inventor); Costen, Michael K. (Inventor)

    2006-01-01

    A lightweight solar concentrator of the reflecting parabolic or trough type is realized via a thin reflecting film, an inflatable structural housing and tensioned fibers. The reflector element itself is a thin, flexible, specularly-reflecting sheet or film. The film is maintained in the parabolic trough shape by means of a plurality of identical tensioned fibers arranged to be parallel to the longitudinal axis of the parabola. Fiber ends are terminated in two identical spaced anchorplates, each containing a plurality of holes which lie on the desired parabolic contour. In a preferred embodiment, these fibers are arrayed in pairs with one fiber contacting the front side of the reflecting film and the other contacting the back side of the reflecting film. The reflective surface is thereby slidably captured between arrays of fibers which control the shape and position of the reflective film. Gas pressure in the inflatable housing generates fiber tension to achieve a truer parabolic shape.

  4. Utilization of Bamboo as Lightweight Sandwich Panels

    Directory of Open Access Journals (Sweden)

    Suthon SRIVARO

    2016-05-01

    Full Text Available Lightweight sandwich panels consisting of bamboo faces and oil palm trunk core were manufactured using melamine urea formaldehyde with the resin content of 250 g/m2 (solid basis. The parameters examined were node and density of bamboo faces. Physical (board density, thickness swelling and water absorption and mechanical (modulus of elasticity and modulus of rupture properties of the sandwich board obtained were investigated and compared with other bamboo products and commercial wood based products. Result showed that this panel had better dimensional stability than those of other bamboo products but lower bending strength. Node of bamboo had no significant effect on any board properties examined. Most of board properties were influenced by bamboo face density. Comparing the properties to commercial wood based products, this panel could be used as wall/floor applications.

  5. Development of a lightweight fuel cell vehicle

    Science.gov (United States)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  6. Utilization of Bamboo as Lightweight Sandwich Panels

    Directory of Open Access Journals (Sweden)

    Suthon SRIVARO

    2016-05-01

    Full Text Available Lightweight sandwich panels consisting of bamboo faces and oil palm trunk core were manufactured using melamine urea formaldehyde with the resin content of 250 g/m2 (solid basis. The parameters examined were node and density of bamboo faces. Physical (board density, thickness swelling and water absorption and mechanical (modulus of elasticity and modulus of rupture properties of the sandwich board obtained were investigated and compared with other bamboo products and commercial wood based products. Result showed that this panel had better dimensional stability than those of other bamboo products but lower bending strength. Node of bamboo had no significant effect on any board properties examined. Most of board properties were influenced by bamboo face density. Comparing the properties to commercial wood based products, this panel could be used as wall/floor applications.

  7. Lightweight ceramic filter components: Evaluation and application

    Energy Technology Data Exchange (ETDEWEB)

    Eggerstedt, P.M.

    1995-11-01

    Ceramic candle filtration is an attractive technology for particulate removal at high temperatures. The primary objective of this SBIR research program is to increase the performance, durability, and corrosion resistance of lightweight filter candles and filter tubesheet components (Fibrosic{trademark}), fabricated from vacuum formed chopped ceramic fiber (VFCCF), for use in advanced coal utilization applications. Phase 1 results proved that significant gains in material strength and particle retentivity are possible by treatment of VFCCF materials with colloidal ceramic oxides. Phase 2 effort will show how these treated materials tolerate high temperature and vapor-phase alkali species, on a long-term basis. With good durability and corrosion resistance, high temperature capability, and a low installed and replacement cost, these novel materials will help promote commercial acceptance of ceramic candle filter technology, as well as increase the efficiency and reliability of coal utilization processes in general.

  8. Lightweight MIPv6 with IPSec Support

    Directory of Open Access Journals (Sweden)

    Antonio J. Jara

    2014-01-01

    Full Text Available Mobility management is a desired feature for the emerging Internet of Things (IoT. Mobility aware solutions increase the connectivity and enhance adaptability to changes of the location and infrastructure. IoT is enabling a new generation of dynamic ecosystems in environments such as smart cities and hospitals. Dynamic ecosystems require ubiquitous access to Internet, seamless handover, flexible roaming policies, and an interoperable mobility protocol with existing Internet infrastructure. These features are challenges for IoT devices, which are usually constrained devices with low memory, processing, communication and energy capabilities. This work presents an analysis of the requirements and desirable features for the mobility support in the IoT, and proposes an efficient solution for constrained environments based on Mobile IPv6 and IPSec. Compatibility with IPv6-existing protocols has been considered a major requirement in order to offer scalable and inter-domain solutions that were not limited to specific application domains in order to enable a new generation of application and services over Internet-enabled dynamic ecosystems, and security support based on IPSec has been also considered, since dynamic ecosystems present several challenges in terms of security and privacy. This work has, on the one hand, analysed suitability of Mobile IPv6 and IPSec for constrained devices, and on the other hand, analysed, designed, developed and evaluated a lightweight version of Mobile IPv6 and IPSec. The proposed solution of lightweight Mobile IPv6 with IPSec is aware of the requirements of the IoT and presents the best solution for dynamic ecosystems in terms of efficiency and security adapted to IoT-devices capabilities. This presents concerns in terms of higher overhead and memory requirements. But, it is proofed and concluded that even when higher memory is required and major overhead is presented, the integration of Mobile IPv6 and IPSec for

  9. Vehicular hydrogen storage using lightweight tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Weisberg, A H; Myers, B

    2000-07-22

    Lightweight hydrogen storage for vehicles is enabled by adopting and adapting aerospace tankage technology. The weight, volume, and cost are already acceptable and improving. Prototype tankage was demonstrated with 11.3% hydrogen by weight, 1.74 million inch (44.3 km) burst performance factor (P{sub b}V/W), and 3.77 kWh/kg specific energy for the tank and hydrogen (LHV). DOE cannot afford full scale aerospace development costs. For example, it costs many tens of $M to develop a rocket motor casing with a safety factor (SF) of 1.25. Large teams of experts are required to design, develop, and test new processes. Car companies are buying existing technology with only modest investments in research and development (R&D). The Lawrence Livermore National Laboratory (LLNL) team is maximizing the leverage from DOE funding by joining with industry to solve technical risks at the component level. LLNL is developing fabrication processes with IMPCO Technologies, Thiokol Propulsion, and Aero Tec Laboratories (ATL). LLNL is creating commercial products that are close to adoption under DOE solicitation. LLNL is breaking ground to achieve greater than 10% hydrogen by weight tankage with safety that exceeds the requirements of NGV2 standards modified for hydrogen. Risk reduction is proceeding along three axes: (1) Commercializable products will be available next year with {approx}90% confidence; (2) R&D progress is pushing the envelope in lightweight tankage for vehicles; and (3) Integration challenges are being met with partners in industry and DOE demo programs. This project is a key part of LLNL's effort to develop high cycle life energy storage systems with >600 Wh/kg specific energy for various applications, including: high altitude long endurance solar rechargeable aircraft, zero emission vehicles, hybrid energy storage/propulsion systems for spacecraft, energy storage for premium power, remote power sources, and peak shaving.

  10. Lightweight males of Podisus nigrispinus (Heteroptera: Pentatomidae neglect lightweight females due low reproductive fitness

    Directory of Open Access Journals (Sweden)

    A. I. A. Pereira

    Full Text Available Abstract Sexual choice by male stink bugs is important because females that experience food shortages lay fewer eggs with lower viability compared with well-fed females. In this study, we investigated whether Podisus nigrispinus (Dallas (Heteroptera: Pentatomidae males fed with a low-quality diet during its nymphal stage show selectivity for sexual partners resulting in high-quality progeny. Lightweight males and females were obtained from nymphs fed weekly with Tenebrio molitor L. (Coleoptera: Tenebrionidae pupae. By contrast, heavyweight males and females were fed three times a week and received an extra nutritional source: cotton leaves, Gossypium hirsutum L. (Malvaceae. Lightweight males preferred to mate with heavy females (77.78 ± 14.69%, whereas heavyweight males did not discriminated between light or heavyweight females. Females mated with lightweight males showed similar levels of reproduction to those mated with heavyweight males. The results provide an indication of the importance of male and female body weight for sexual selection in Asopinae stink bugs.

  11. Behavior of Reinforced Concrete Frames In-Filled with Lightweight Materials Under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Iswandi Imran

    2009-01-01

    Full Text Available This paper presents an experimental and analytical research conducted to study the in-plane behavior of reinforced concrete (R/C frames in-filled with lightweight materials. The tests were performed on two single bay, single story in-filled frame specimens with ½ scale models. One of the test specimens was in-filled with lightweight materials, i.e. autoclaved aerated concrete (AAC blocks, and the other, used as the comparison, was in-filled with clay brick materials. The loading used in the tests was in the form of cyclic in-plane lateral loads, simulating earthquake forces. Behavior of the frame structures was evaluated through the observed strength and deformation characteristics, the measured hysteretic energy dissipation capacity and the measured ductility. The experimental results show that the R/C frame in-filled with AAC blocks exhibited better performance under in-plane lateral loads than that in-filled with conventional clay bricks. In the analytical work, the performance of some analytical models available in the literature was evaluated in simulating the experimental results

  12. Vehicle Lightweighting: Mass Reduction Spectrum Analysis and Process Cost Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, Anthony [IBIS Associates, Inc., Waltham, MA (United States); Hannibal, Ted [IBIS Associates, Inc., Waltham, MA (United States); Raghunathan, Anand [Energetics Inc., Columbia, MD (United States); Ivanic, Ziga [Energetics Inc., Columbia, MD (United States); Clark, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. In the first two phases of this effort examined combinations of strategies aimed at achieving strategic targets of 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. These results have been reported in the Idaho National Laboratory report INL/EXT-14-33863 entitled Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting published in March 2015. The data for these strategies were drawn from many sources, including Lotus Engineering Limited and FEV, Inc. lightweighting studies, U.S. Department of Energy-funded Vehma International of America, Inc./Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses.

  13. Security Isolation Strategy Mechanism for Lightweight Virtualization Environment

    Directory of Open Access Journals (Sweden)

    Liu Qian

    2017-01-01

    Full Text Available For cloud service providers, lightweight virtualization is a more economical way of virtualization. While the user is worried about the safety of applications and data of the container, due to the container sharing the underlying interface and the kernel, therefore the security and trusted degree of lightweight virtualization container isolation mechanism is critical for the promotion of lightweight virtualization service. Because the user cannot directly participate in the process of the construction and management of container isolation mechanism, it is difficult for them to establish confidence in the security and trusted degree of container isolation mechanism. Based on the research and analysis of system credible and virtualization isolation mechanism, this paper puts forward a set of lightweight virtualization security isolation strategy mechanism, divides lightweight virtualization container storage address space into several parts, puts forward the definition of lightweight virtualization security isolation, gives the formal description and proof of container security isolation strategy, and combines with related technology to verify the feasibility of lightweight virtualization security isolation strategy mechanism. The mechanism has important guiding significance for cloud services providers to deploy container security isolation.

  14. Load-bearing masonry system adoption and performance: A case study of construction company in a developing country

    Science.gov (United States)

    Ramli, Nor Azlinda; Abdullah, Che Sobry; Nawi, Mohd Nasrun Mohd; Bahaudin, Ahmad Yusni

    2016-08-01

    This study addresses the factors that influence the adoption of load-bearing masonry (LBM) system. A case study of the load-bearing masonry (LBM) system adoption is conducted through an interview to explore the situation of the technology adoption in a construction company. The finding indicates the factors influence the adoption of LBM system for the construction company are: organizational resources, usefulness, less maintenance, reduce construction time and cost. From the findings, these factors consistent with previous literature. Furthermore, the performance of the company was measured by looking into the financial and non-financial aspects. The LBM system brings good performance as it increased the profits of the company, a good quality of product and attracts more demand from customers. Thus, these factors should be considered for the other companies that are interested in implementing the LBM system in their projects.

  15. Effect of lightweight aggregate intrinsic Strength on lightweight concrete compressive strength and modulus of elasticity

    Directory of Open Access Journals (Sweden)

    Videla, C.

    2002-03-01

    Full Text Available The study of Structural Lightweight Concrete (SLC, which is a material generally composed of cement, water and lightweight aggregate, has been mainly focused on developing particular cases. Then, the main objective of this research was to generalise the knowledge of this type of material. Particularly, the effect of replacing conventional coarse aggregate by lightweight aggregate on mechanical properties of concrete was studied. SLC may be conceived as a two -phase material. The first phase, composed of cement, water and siliceous natural sand, is called the "resistant phase", and contributes to the structural strength. The second phase is the lightweight phase, comprised of coarse lightweight aggregate, and it is meant to decrease the concrete density. In this way it would be possible to describe the mechanical behaviour of concrete, based on lightweight aggregate and the cement mortar parameters. The obtained results allow for the proposition of relationships between mechanical properties of SLC (such as compressive strength and modulus of elasticity and the constituent materials properties and amount. At the same time, an easily measured index representing the structural capability of lightweight aggregate is also proposed, this index allows to estimate the potential mechanical properties of concrete which could be obtained by using a particular aggregate.

    El estudio del Hormigón Ligero Estructural (HLE, material compuesto generalmente por cemento, agua y árido ligero, ha estado enfocado principalmente al desarrollo de casos particulares. Por lo anterior, el objetivo principal de esta investigación fue generalizar el conocimiento sobre este material. En particular, la meta de este trabajo fue estudiar el efecto que tiene el reemplazo de árido convencional por un árido ligero, en las propiedades mecánicas del hormigón. El modelo aplicado conceptualiza al HLE como un material de dos fases, una denominada "soportante", constituida

  16. Integrated Control with Structural Feedback to Enable Lightweight Aircraft

    Science.gov (United States)

    Taylor, Brian R.

    2011-01-01

    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  17. Lightweight Phase-Change Material For Solar Power

    Science.gov (United States)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  18. The influence of self-compacting steel fibre reinforced concrete infill on the flexure strength and ductility of masonry walls

    OpenAIRE

    Oliveira, Luiz António Pereira de; Bernardo, Luís Filipe Almeida

    2010-01-01

    This paper presents an experimental study on the influence of longitudinal reinforcement ratio and steel fibre volume in self-compacting concrete infill on the strength and ductility of reinforced masonry walls subjected to flexure. Flexure tests were performed as four-point bending tests on twelve walls. The analysis of the concrete infill contribution to the walls capacity is made considering recent recommendations for steel fibre reinforced concrete design. A ductility...

  19. Thermal properties of masonry materials for passive-solar design: A state-of-the-art review

    Science.gov (United States)

    Vangeem, M. G.; Fiorato, A. E.

    1983-04-01

    Available test data are summarized, test methods are evaluated and values are recommended for thermal properties of masonry to be used in passive solar design. Values of specific heat, conductivity, and diffusivity are given for concrete and clay brick. Variations of these values with other physical properties such as density, moisture content, and temperature are shown. Variations of data due to different test methods are analyzed. Values of absorptivity and emissivity for concrete and clay brick, and associated test methods are discussed.

  20. Safety assessment of historical masonry churches based on pre-assigned kinematic limit analysis, FE limit and pushover analyses

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it; Valente, Marco, E-mail: milani@stru.polimi.it [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2014-10-06

    This study presents some results of a comprehensive numerical analysis on three masonry churches damaged by the recent Emilia-Romagna (Italy) seismic events occurred in May 2012. The numerical study comprises: (a) pushover analyses conducted with a commercial code, standard nonlinear material models and two different horizontal load distributions; (b) FE kinematic limit analyses performed using a non-commercial software based on a preliminary homogenization of the masonry materials and a subsequent limit analysis with triangular elements and interfaces; (c) kinematic limit analyses conducted in agreement with the Italian code and based on the a-priori assumption of preassigned failure mechanisms, where the masonry material is considered unable to withstand tensile stresses. All models are capable of giving information on the active failure mechanism and the base shear at failure, which, if properly made non-dimensional with the weight of the structure, gives also an indication of the horizontal peak ground acceleration causing the collapse of the church. The results obtained from all three models indicate that the collapse is usually due to the activation of partial mechanisms (apse, façade, lateral walls, etc.). Moreover the horizontal peak ground acceleration associated to the collapse is largely lower than that required in that seismic zone by the Italian code for ordinary buildings. These outcomes highlight that structural upgrading interventions would be extremely beneficial for the considerable reduction of the seismic vulnerability of such kind of historical structures.

  1. Long-Term Dynamic Monitoring of the Historical Masonry FAÇADE: the Case of Palazzo Ducale in Venice, Italy

    Science.gov (United States)

    Noh, J.; Russo, S.

    2017-08-01

    Long-term dynamic monitoring of the masonry façade of Palazzo Ducale known as Doge's palace in Venice, Italy was performed from September 2010 to October 2012. This article demonstrates the results of preliminary analysis on the data set of the first 12-month long monitoring campaign for out-of-plumb dynamic responses of the medieval façade of the monument. The aim of the analysis of the dynamic signals is to validate the data set and investigate dynamic characteristics of the vibration signature of the historical masonry wall in the long-term. Palazzo Ducale is a heavily visited heritage due to its high cultural importance and architectural value. Nevertheless, little is known about the dynamic behaviour of the double-leaf masonry façade. In this study, the dynamic properties of the structure are presented by dynamic identification carried out with the effect of the ambient vibration measured at four different locations on the façade and portico level. The trend and intensity of the vibration at each measurement locations are identified over the year. In addition, the issue on eliminating the noise blended in the signals for reliable analysis are also discussed.

  2. Ultra-Lightweight Large Aperture Support Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-lightweight membranes may prove to be very attractive for large aperture systems, but their value will be fully realized only if they are mated with equally...

  3. Lightweight Metal RubberTM Sensors and Interconnects Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed program is to develop lightweight and highly elastic electrically conducting interconnects and strain sensor arrays for next generation...

  4. study of the strength characteristics of protein-based lightweight ...

    African Journals Online (AJOL)

    user

    Compressive strength test was carried out on the protein-based lightweight foamed concrete produced ... 150 mm were produced using ordinary Portland cement (OPC), fine aggregate, ..... values obtained for the loss on ignition (LOI) and SO3.

  5. Low Cost, Lightweight, Multifunctional Structural Shielding Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR involves the development of a lightweight innovative material for use as structure and radiation shielding in one. APS has assembled a uniquely qualified...

  6. Lightweight IMM Multi-Junction Photovoltaic Flexible Blanket Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems (DSS) and EMCORE as a key subcontractor will focus the proposed SBIR program on the creation and optimization of a lightweight ~33%...

  7. Lightweight InP Solar Cells for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this Phase II SBIR is the development of a technology which will enable the manufacture of a lightweight, low cost, high radiation resistance InP...

  8. Next Generation MK III Lightweight HUT/Hatch Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A prototype Next Generation MK III Lightweight HUT/Hatch Assembly will be fabricated and delivered during Phase II. Maximum weight reduction for the Hard Upper...

  9. Next Generation MK III Lightweight HUT/Hatch Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Next Generation MK III Lightweight HUT/Hatch Assembly will maximize the Hard Upper Torso - Hatch assembly weight reduction through the combination of innovative...

  10. Lightweight landscape enhancing design through minimal mass structures

    CERN Document Server

    Spinelli, Luigi; Monticelli, Carol; Pedrali, Paolo

    2016-01-01

    This book explains how lightweight materials and structures can be deployed in buildings to meet high environmental and aesthetic standards and emphasizes how the concept of lightness in building technology and design dovetails with the desire to enhance landscape. The first part of the book, on lightweight construction, aims to foster the use of membranes within the specific climatic context and in particular considers how lightweight materials and innovative technologies can enrich the quality of temporary spaces. The second part focuses exclusively on landscape, presenting novel approaches in the search for visual lightness and the quest to improve urban spaces. Particular attention is paid to the Italian experience, where the traditional appreciation of brick and stone has limited the scope for use of lightweight structures and membrane materials, often relegating them to a secondary or inappropriate role. The reader will come to appreciate how this attitude demeans a very advanced productive sector and n...

  11. Lightweight InP Solar Cells for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this Phase I SBIR is the development of a technology which will enable the manufacture of a lightweight, low cost, InP based compound semiconductor...

  12. Shape Optimization of Hollow Concrete Blocks Using the Lattice Discrete Particle Model

    Directory of Open Access Journals (Sweden)

    Fatemeh Javidan

    2013-01-01

    Full Text Available Hollow concrete blocks are one of the widely used building elements of masonry structures in whichthey are normally loaded under combined action of shear and compression. Accordingly and due to theirstructural importance, the present study intends to numerically search for an optimum shape of such blocks.The optimality index is selected to be the ratio of block’s failure strength to its weight, a non-dimensionalparameter, which needs to be maximized. The nonlinear analysis has been done using a homemade code writtenbased on the recently developed Lattice Discrete Particle Model (LDPM for the meso-scale simulation ofconcrete. This numerical approach accounts for the different aspects of concrete’s complex behavior such astensile fracturing, cohesive and frictional shearing and also its nonlinear compressive response. The modelparameters were calibrated against previously reported experimental data. Various two-core configurations forthe hollow blocks are examined, compared and discussed.

  13. Study on Performance and Processability of Sirofil Lightweight Worsted Fabric

    Institute of Scientific and Technical Information of China (English)

    李明菊; 范德炘; 葛惠萍; 侯祖龄

    2001-01-01

    The lightweight worsted fabric made of Sirofil yarn was developed and its textile performance was studied. By means of conventional testing, KES and FAST, it is concluded that with the coordination of proper fabric design and processing technique, the performance of this innovative fabric is superior to that of the conventional lightweight fabric Furthermore, it is predicted from the relevant parameters that its processability in the following suit manufacture is very desirable.

  14. Lightweight Aggregate Concrete Beams. Load-bearing Capacity

    DEFF Research Database (Denmark)

    Larsen, Henning; Goltermann, Per; Ingholt, N.U.

    1997-01-01

    This paper deals with the load-bearing capacity of reinforced beams made of lightweight aggregate concrete with open structure and documents formulas for the moment capacity as well as the shear force capacity.......This paper deals with the load-bearing capacity of reinforced beams made of lightweight aggregate concrete with open structure and documents formulas for the moment capacity as well as the shear force capacity....

  15. Lightweight Aggregate Concrete Components. Load-bearing Capacity

    DEFF Research Database (Denmark)

    Larsen, Henning; Ingholt, N.U.; Goltermann, Per

    1996-01-01

    The project presented here deals with the load-bearing capacity of reinforced beams made of lightweight aggregate concrete with open structure and documents expressions for the moment capacity as well as the shear force capacity......The project presented here deals with the load-bearing capacity of reinforced beams made of lightweight aggregate concrete with open structure and documents expressions for the moment capacity as well as the shear force capacity...

  16. Lightweight Absorption and Barrier Systems Comprising N-Layer Microperforates

    OpenAIRE

    Kim, Nicholas N; Bolton, J. Stuart

    2017-01-01

    Since the concept of microperforated panels (MPPs) was introduced by Maa, there have been continuing efforts to apply MPPs, primarily as fiber-free sound absorbing materials, typically wall-mounted. The objective of the present work was to demonstrate that multi-layer MPPs can also be effective functional absorbers and lightweight barrier systems. The acoustical properties of lightweight MPPs depend on hole diameter, thickness, porosity, mass per unit area, and air cavity depth. In the case o...

  17. Design and performance of masonry mortars made with recycled concrete aggregates

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2009-07-01

    Full Text Available The present paper discusses the technical feasibility ofusing the fine fraction of recycled aggregate fromconcrete rubble to manufacture cement mortar andpossible conditions.An initial study of the chemical and physical-mechanicalcharacteristics of fines recycled from selected concreteshowed that their high absorptivity and high sulfatecontent compared to natural limestone sands were thelimiting factors to their in masonry mortars.As in the caseof structural concrete, a blend of recycled and naturalaggregate would appear to be suitable for masonrymortars.A study of the mix proportions and characteristics ofmortars made with recycled concrete aggregate showedthat up to 25% recycled aggregate can be used incement-based masonry mortars with no significant declinein performance and no new admixtures or higher cementcontent requires.El presente trabajo presenta y discute las condiciones de viabilidad técnica para la utilización de la fracción fina de áridos reciclados, procedentes de escombro de hormigón, en la fabricación de morteros de albañilería utilizando cemento como conglomerante.Inicialmente, se estudian las características químicas y físico- mecánicas de los áridos reciclados finos procedentes de hormigón seleccionado. Se concluye que las características limitantes del árido reciclado para su uso en morteros de albañilería resultan ser la alta absorción y el elevado contenido en sulfatos, en comparación con las arenas naturales de naturaleza caliza. De forma análoga a lo recomendado en el hormigón estructural, se apunta hacia la utilización de mezclas de áridos reciclados y naturales en la fabricación de morteros de albañilería.Del estudio de dosificaciones y caracterización de morteros, elaborados con áridos reciclados de hormigón, se establece que los morteros de albañilería base cemento pueden incorporar un 25% como máximo de árido reciclado sin evidenciar pérdidas significativas de prestaciones. Y, no

  18. Advanced steel body concepts for automotive lightweight design

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H.G. [DaimlerChrysler AG, Stuttgart (Germany). Research Body and Powertrain

    2005-07-01

    Lightweight design is a must for future vehicle concepts due to the self-commitment on the reduction of fleet consumption. Body concepts for mid- and high-volume vehicles demand smart lightweight solutions without increasing costs and without sacrificing the high level of safety (e.g. future passive safety standards). Furthermore, all lightweight activities have to comply with requirements in terms of reliability (no additional efforts for maintenance), NVH (no additional weight for e.g. damping) and future stricter recycling quotas. Successful lightweight design solutions are determined by the best relation between weight-saving and additional costs as a function of the annual production volume. Using advanced high-strength steels (TWIP-steels) seems to be a very promising approach for cost-optimized lightweight design of body structures. In addition, by applying bionic optimization, the weight of body-structures can be significantly reduced. As a consequence, only a holistic approach for lightweight design combining the three areas materials, design and manufacturing is needed in order to use the full potential of cost-optimized weight-reduction. (orig.)

  19. Lightweight, highly compressible, noncrystalline cellulose capsules.

    Science.gov (United States)

    Carrick, Christopher; Lindström, Stefan B; Larsson, Per Tomas; Wågberg, Lars

    2014-07-08

    We demonstrate how to prepare extraordinarily deformable, gas-filled, spherical capsules from nonmodified cellulose. These capsules have a low nominal density, ranging from 7.6 to 14.2 kg/m(3), and can be deformed elastically to 70% deformation at 50% relative humidity. No compressive strain-at-break could be detected for these dry cellulose capsules, since they did not rupture even when compressed into a disk with pockets of highly compressed air. A quantitative constitutive model for the large deformation compression of these capsules is derived, including their high-frequency mechanical response and their low-frequency force relaxation, where the latter is governed by the gas barrier properties of the dry capsule. Mechanical testing corroborated these models with good accuracy. Force relaxation measurements at a constant compression rendered an estimate for the gas permeability of air through the capsule wall, calculated to 0.4 mL μm/m(2) days kPa at 50% relative humidity. These properties taken together open up a large application area for the capsules, and they could most likely be used for applications in compressible, lightweight materials and also constitute excellent model materials for adsorption and adhesion studies.

  20. Abstracting audit data for lightweight intrusion detection

    KAUST Repository

    Wang, Wei

    2010-01-01

    High speed of processing massive audit data is crucial for an anomaly Intrusion Detection System (IDS) to achieve real-time performance during the detection. Abstracting audit data is a potential solution to improve the efficiency of data processing. In this work, we propose two strategies of data abstraction in order to build a lightweight detection model. The first strategy is exemplar extraction and the second is attribute abstraction. Two clustering algorithms, Affinity Propagation (AP) as well as traditional k-means, are employed to extract the exemplars, and Principal Component Analysis (PCA) is employed to abstract important attributes (a.k.a. features) from the audit data. Real HTTP traffic data collected in our institute as well as KDD 1999 data are used to validate the two strategies of data abstraction. The extensive test results show that the process of exemplar extraction significantly improves the detection efficiency and has a better detection performance than PCA in data abstraction. © 2010 Springer-Verlag.

  1. Lightweight Thermoformed Structural Components and Optics

    Science.gov (United States)

    Zeiders, Glenn W.; Bradford, Larry J.

    2004-01-01

    A technique that involves the use of thermoformed plastics has been developed to enable the design and fabrication of ultra-lightweight structural components and mirrors for use in outer space. The technique could also be used to produce items for special terrestrial uses in which minimization of weight is a primary design consideration. Although the inherent strengths of thermoplastics are clearly inferior to those of metals and composite materials, thermoplastics offer a distinct advantage in that they can be shaped, at elevated temperatures, to replicate surfaces (e.g., prescribed mirror surfaces) precisely. Furthermore, multiple elements can be bonded into structures of homogeneous design that display minimal thermal deformation aside from simple expansion. The design aspect of the present technique is based on the principle that the deflection of a plate that has internal structure depends far more on the overall thickness than on the internal details; thus, a very stiff, light structure can be made from thin plastic that is heatformed to produce a sufficiently high moment of inertia. General examples of such structures include I beams and eggcrates.

  2. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  3. Parallel Array Classes and Lightweight Sharing Mechanisms

    Directory of Open Access Journals (Sweden)

    Steve W. Otto

    1993-01-01

    Full Text Available We discuss a set of parallel array classes, MetaMP, for distributed-memory architectures. The classes are implemented in C++ and interface to the PVM or Intel NX message-passing systems. An array class implements a partitioned array as a set of objects distributed across the nodes – a "collective" object. Object methods hide the low-level message-passing and implement meaningful array operations. These include transparent guard strips (or sharing regions that support finite-difference stencils, reductions and multibroadcasts for support of pivoting and row operations, and interpolation/contraction operations for support of multigrid algorithms. The concept of guard strips is generalized to an object implementation of lightweight sharing mechanisms for finite element method (FEM and particle-in-cell (PIC algorithms. The sharing is accomplished through the mechanism of weak memory coherence and can be efficiently implemented. The price of the efficient implementation is memory usage and the need to explicitly specify the coherence operations. An intriguing feature of this programming model is that it maps well to both distributed-memory and shared-memory architectures.

  4. Lightweight Solar Power for Small Satellites

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.

  5. Novel hyperspectral imager for lightweight UAVs

    Science.gov (United States)

    Saari, Heikki; Aallos, Ville-Veikko; Holmlund, Christer; Mäkynen, Jussi; Delauré, Bavo; Nackaerts, Kris; Michiels, Bart

    2010-04-01

    VTT Technical Research Centre of Finland has developed a new miniaturized staring hyperspectral imager with a weight of 350 g making the system compatible with lightweight UAS platforms. The instrument is able to record 2D spatial images at the selected wavelength bands simultaneously. The concept of the hyperspectral imager has been published in the SPIE Proc. 74741. The operational wavelength range of the imager can be tuned in the range 400 - 1100 nm and spectral resolution is in the range 5 - 10 nm @ FWHM. Presently the spatial resolution is 480 × 750 pixels but it can be increased simply by changing the image sensor. The field of view of the system is 20 × 30 degrees and ground pixel size at 100 m flying altitude is around 7.5 cm. The system contains batteries, image acquisition control system and memory for the image data. It can operate autonomously recording hyperspectral data cubes continuously or controlled by the autopilot system of the UAS. The new hyperspectral imager prototype was first tried in co-operation with the Flemish Institute for Technological Research (VITO) on their UAS helicopter. The instrument was configured for the spectral range 500 - 900 nm selected for the vegetation and natural water monitoring applications. The design of the UAS hyperspectral imager and its characterization results together with the analysis of the spectral data from first test flights will be presented.

  6. Lightweight autonomous chemical identification system (LACIS)

    Science.gov (United States)

    Lozos, George; Lin, Hai; Burch, Timothy

    2012-06-01

    Smiths Detection and Intelligent Optical Systems have developed prototypes for the Lightweight Autonomous Chemical Identification System (LACIS) for the US Department of Homeland Security. LACIS is to be a handheld detection system for Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs). LACIS is designed to have a low limit of detection and rapid response time for use by emergency responders and could allow determination of areas having dangerous concentration levels and if protective garments will be required. Procedures for protection of responders from hazardous materials incidents require the use of protective equipment until such time as the hazard can be assessed. Such accurate analysis can accelerate operations and increase effectiveness. LACIS is to be an improved point detector employing novel CBRNE detection modalities that includes a militaryproven ruggedized ion mobility spectrometer (IMS) with an array of electro-resistive sensors to extend the range of chemical threats detected in a single device. It uses a novel sensor data fusion and threat classification architecture to interpret the independent sensor responses and provide robust detection at low levels in complex backgrounds with minimal false alarms. The performance of LACIS prototypes have been characterized in independent third party laboratory tests at the Battelle Memorial Institute (BMI, Columbus, OH) and indoor and outdoor field tests at the Nevada National Security Site (NNSS). LACIS prototypes will be entering operational assessment by key government emergency response groups to determine its capabilities versus requirements.

  7. Testnodes: a Lightweight Node-Testing Infrastructure

    Science.gov (United States)

    Fay, R.; Bland, J.

    2014-06-01

    A key aspect of ensuring optimum cluster reliability and productivity lies in keeping worker nodes in a healthy state. Testnodes is a lightweight node testing solution developed at Liverpool. While Nagios has been used locally for general monitoring of hosts and services, Testnodes is optimised to answer one question: is there any reason this node should not be accepting jobs? This tight focus enables Testnodes to inspect nodes frequently with minimal impact and provide a comprehensive and easily extended check with each inspection. On the server side, Testnodes, implemented in python, interoperates with the Torque batch server to control the nodes production status. Testnodes remotely and in parallel executes client-side test scripts and processes the return codes and output, adjusting the node's online/offline status accordingly to preserve the integrity of the overall batch system. Testnodes reports via log, email and Nagios, allowing a quick overview of node status to be reviewed and specific node issues to be identified and resolved quickly. This presentation will cover testnodes design and implementation, together with the results of its use in production at Liverpool, and future development plans.

  8. 多层砌体结构墙体的抗震剪切强度研究%Study on seismic shear strength of wall for multi-story masonry structures

    Institute of Scientific and Technical Information of China (English)

    刘西光; 王庆霖

    2012-01-01

    Tests show that in the masonry walls of autoclaved flyash-lime brick,sutolaved aerated concrete block and concrete perforated brick under the shear-compression action,the diagonal splitting and crushing failure mode of units usually occurreds.Seismic shear strength in the Code for seismic design of buildings(GB 50011—2010) depends only on the mortar strength,therefore the shear capacity of the above-mentioned masonry walls can not be estimated correctly.Aiming at the diagonal splitting and crushing failure mode of units under the shear-compression action,according to maximum principal stress failure criterion,the relevant formula for determination shear strength was established.The formula shows a good agreement with the experimental results.The ultimate shear strength of diagonal splitting and crushing failure of units not only depends on normal stress to compression strength ratio of masonry,but also depends on the axial tension strength to compression strength ratio.In order to define the axial tension strength of masonry,the diagonal tension(shear) test according to the code ASTM-E519 is suggested.%试验表明蒸压粉煤灰砖、加气混凝土砌块、混凝土多孔砖等新型砌体在剪压复合受力下往往发生块体斜向劈裂或斜压破坏,《建筑抗震设计规范》(GB 50011—2010)中砌体的抗震剪切强度仅与砂浆强度有关,已不能正确计算这类砌体的抗震剪切强度。针对剪压复合受力下块体劈裂(斜压)破坏,依据最大主应力破坏准则给出了砌体剪压抗剪强度计算公式。计算公式与试验结果吻合良好。剪压复合受力下块体劈裂(斜压)破坏强度不仅与砌体的正应力和砌体轴心抗压强度比有关,也与砌体的轴心抗拉、抗压强度比有关,为确定砌体的轴心抗拉强度,建议参照美国ASTM-E519标准进行对角加载砌体劈裂试验。

  9. Non-linear homogenized and heterogeneous FE models for FRCM reinforced masonry walls in diagonal compression

    Science.gov (United States)

    Bertolesi, Elisa; Milani, Gabriele; Poggi, Carlo

    2016-12-01

    Two FE modeling techniques are presented and critically discussed for the non-linear analysis of tuff masonry panels reinforced with FRCM and subjected to standard diagonal compression tests. The specimens, tested at the University of Naples (Italy), are unreinforced and FRCM retrofitted walls. The extensive characterization of the constituent materials allowed adopting here very sophisticated numerical modeling techniques. In particular, here the results obtained by means of a micro-modeling strategy and homogenization approach are compared. The first modeling technique is a tridimensional heterogeneous micro-modeling where constituent materials (bricks, joints, reinforcing mortar and reinforcing grid) are modeled separately. The second approach is based on a two-step homogenization procedure, previously developed by the authors, where the elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. The non-linear structural analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM). All the simulations here presented are performed using the commercial software Abaqus. Pros and cons of the two approaches are herein discussed with reference to their reliability in reproducing global force-displacement curves and crack patterns, as well as to the rather different computational effort required by the two strategies.

  10. Shear Strength of Unreinforced Masonry Wall Retrofitted with Fiber Reinforced Polymer and Hybrid Sheet

    Directory of Open Access Journals (Sweden)

    Yun-Cheul Choi

    2015-01-01

    Full Text Available Unreinforced masonry (URM structures represent a significant portion of existing historical structures around the world. Recent earthquakes have shown the need for seismic retrofitting for URM structures. Various types of strengthening methods have been used for URM structures. In particular, a strengthening technique using externally bonded (EB fiber reinforced polymer (FRP composites has attracted engineers since EB FRP materials effectively enhance the shear strength of URM walls with negligible change to cross-sectional area and weight of the walls. Research has been extensively conducted to determine characteristics of URM walls strengthened with EB FRP materials. However, it is still difficult to determine an appropriate retrofitting level due to the complexity of mechanical behavior of strengthened URM walls. In this study, in-plane behavior under lateral loading was, therefore, investigated on a full-scale nonstrengthened URM wall and URM walls retrofitted with two different FRP materials: carbon (CFRP and hybrid (HFRP sheets. The test results indicated that both FRP composites were effective in increasing shear strength in comparison with the control specimen. However, better performance was obtained with HFRP compared to CFRP. In addition, an equation for estimating effective strain was proposed, and the theoretical results were in good agreement with the experimental ones.

  11. Excavation-caused extra deformation of existing masonry residence in soft soil region

    Science.gov (United States)

    Tang, Y.; Franceschelli, S.

    2017-04-01

    Growing need for construction of infrastructures and buildings in fast urbanization process creates challenges of interaction between buildings under construction and adjacent existing buildings. This paper presents the mitigation of contradiction between two parties who are involved the interaction using civil engineering techniques. Through the in-depth analysis of the results of monitoring surveys and enhanced accuracy and reliability of surveys, a better understanding of the behavior of deformable buildings is achieved. Combination with the original construction documents, the two parties agree that both of them are responsible for building damages and a better understanding for the rehabilitation of the existing buildings is focused on. Two cases studies are used to demonstrate and describe the importance of better understanding of the behavior of existing buildings and their rehabilitations. The objective of this study is to insight into mechanisms of soil-structure interaction for buildings adjacent to deep excavations, which can result in a damage in existing masonry residence, and to take the optimized measures to make deep excavations safety and economic and adjacent buildings keep good serviceability in urban areas with soft soil conditions.

  12. Computational homogenization of non-stationary transport processes in masonry structures

    CERN Document Server

    Sykora, J; Kruis, J; Sejnoha, M

    2011-01-01

    A fully coupled transient heat and moisture transport in a masonry structure is examined in this paper. Supported by several successful applications in civil engineering the nonlinear diffusion model proposed by K\\"{u}nzel is adopted in the present study. A strong material heterogeneity together with a significant dependence of the model parameters on initial conditions as well as the gradients of heat and moisture fields vindicates the use of a hierarchical modeling strategy to solve the problem of this kind. Attention is limited to the classical first order homogenization in a spatial domain developed here in the framework of a two step (meso-macro) multi-scale computational scheme (FE^2 problem). Several illustrative examples are presented to investigate the influence of transient flow at the level of constituents (meso-scale) on the macroscopic response including the effect of macro-scale boundary conditions. A two-dimensional section of Charles Bridge subjected to actual climatic conditions is analyzed n...

  13. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    Science.gov (United States)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  14. Effect of Firing Temperature on Mechanical Properties of Fired Masonry Bricks Produced from Ipetumodu Clay

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2012-12-01

    Full Text Available The effect of varied firing temperature on the mechanical properties of fired masonry bricks samples produced from Ipetumodu clay was investigated. The clay sample was characterized using scanning electron microscopy (SEM for the evaluation of the morphology of the sample using secondary electron imaging; and the phases/compositions of the samples using energy-dispersive X-ray (EDX analysis, X-ray diffractometer (XRD, X-ray fluorescence (XRF and atomic absorption spectroscopy (AAS. The brick samples of standard dimensions were prepared from the clay slurry. The prepared samples were sun dried for 72 hours and then fired at varied temperature (held for an hour and then allowed to cool to room temperature in the furnace. The mechanical properties (compression strength, shear strength, modulus of rupture, density and hardness of the samples were then investigated. It was observed that the mechanical properties of the fired brick samples varied with varying firing temperature due to phase changes/chemical reaction between the phases in the clay sample. It was concluded that the optimum mechanical property for brick samples within the temperature range considered is obtained at 950oC.

  15. Damage Identification and Seismic Vulnerability Assessment of a Historic Masonry Chimney

    Directory of Open Access Journals (Sweden)

    Maria-Giovanna Masciotta

    2017-07-01

    Full Text Available The present paper deals with the dynamic characterisation of a historical masonry chimney aimed at identifying the structural damage and assessing its seismic performance. The structure was severely damaged by a lightning accident and in-depth repair works were executed to re-instate its sound configuration. The case study is fully detailed, including the aspects of survey, inspection, diagnosis, and evolution of the dynamic properties of the system throughout the structural intervention. Considering the explicit dependence of the power spectral densities of measured nodal processes on their frequency content, a spectrum-driven algorithm is used to detect and locate the damage. The paper shows that the eigenparameters obtained from the decomposition of the response power spectrum matrix are sensitive to system’s changes caused by evolutionary damage scenarios, thereby resulting excellent indicators for assessing both the presence and position of structural vulnerabilities. The results are compared with the ones from other modal-based damage identification methods and the strengths/limitations of the tools currently available in literature are extensively discussed. Finally, based on the crack pattern surveyed before the repair works, the weakest links of the chimney are identified and the most meaningful collapse mechanisms are analysed to verify the seismic capacity of the structure. According to the results of the kinematic analysis, the chimney does withstand the maximum site peak ground acceleration.

  16. An Inquiry into the Life Cycle of Systems of Inner Walls: Comparison of Masonry and Drywall

    Directory of Open Access Journals (Sweden)

    Karina Condeixa

    2015-06-01

    Full Text Available Life Cycle Assessment is a methodology that investigates impacts linked to a product or service during its entire life cycle. Life Cycle Assessment studies investigate processes and sub-processes in a fragmented way to ascertain their inputs, outputs and emissions and get an overview of the generating sources of their environmental loads. The lifecycle concept involves all direct and indirect processes of the studied object. This article aims to model the material flows in the masonry and drywall systems and internal walls in a Brazilian scenario, and calculate the climate change impacts generated by the transport of the component materials of the systems. Internal walls of a residential dwelling in Rio de Janeiro are analyzed from a qualitative inventory of all life cycles with an analysis of material flows, based on technical and academic literature. All Life Cycle Impact Assessment of the systems is carried out with international data from the database, and using the IPCC2013 method for climate change impacts. This study disregards the refurbishment and possible extensions within the use phase. Thus, the inventory identifies weaknesses of the systems while the impact assessment validates the results. This study allows us a complete understanding about the inner walls systems in the Brazilian scenario, evidencing its main weaknesses and subsidizes decision-making for the industry and for planning of the new buildings.

  17. The vapor diffusion resistance and air permeance of masonry and roofing systems

    Energy Technology Data Exchange (ETDEWEB)

    Hens, Hugo S.L.C. [Laboratory of Building Physics, Department of Civil Engineering, University of Leuven, Kasteelpark Arenberg, 51, 3001 Leuven (Belgium)

    2006-06-15

    Several building parts contain layers composed of separate elements that are mortared together or simply interlock or overlap. Typical examples are masonry walls, brick veneers, tiled roofing systems and slated roofing systems. The mortar joints, the interlocks and overlaps should affect the water vapor diffusion resistance and the air permeance of the composite layer, at least in comparison with the vapor and air flow properties of the pure elements. However, little information is found in literature that allows a quantification of the differences. The article describes a purpose designed test method for measuring the water vapor diffusion resistance of composite layers. It comments on the results and also gives data for the air permeances, measured with a pressure box. From the results and data, it is clear that mortared joints, interlocks and overlaps decrease the water vapor diffusion resistance and increase the air permeance of a composite layer compared to the pure material. In fact, mortared joints, interlocks and overlaps act as preferential paths for water vapor and air mitigation. As a consequence, using composite layers as outside finish in thermally insulated building parts, as done in pitched roofs and cavity walls, diminishes the interstitial condensation risk, accelerates drying of the cladding when wetted by wind-driven rain and affects the effectiveness of outside air cross ventilation below or behind the finish. (author)

  18. Concrete blocks. Analysis of UNE, ISO en standards and comparison with other international standards

    Directory of Open Access Journals (Sweden)

    Álvarez Alonso, Marina

    1990-12-01

    Full Text Available This paper attempts to describe the recently approved UNE standards through a systematic analysis of the main specifications therein contained and the values considered for each of them, as well as the drafts for ISO and EN concrete block standards. Furthermore, the study tries to place the set of ISO standards in the international environment through a comparative analysis against a representative sample of the standards prevailing in various geographical regions of the globe to determine the analogies and differences among them. PALABRAS CLAVE: albañilería, análisis de sistemas, bloque de hormigón, muros de fábrica, normativa KEY WORDS: masonry, system analysis, concrete blocks, masonry walls, standards

    En este trabajo se pretende describir la reciente aprobada normativa UNE, analizando sistemáticamente las principales prescripciones contempladas y los valores considerados para cada una de ellas, así como los proyectos de Norma ISO, y EN sobre bloques de hormigón. Asimismo se intenta situar la normativa UNE en al ámbito internacional, haciendo un análisis comparativo con una representación de Normas de distintas regiones geográficas del mundo, determinando sus analogías y diferencias.

  19. Next Generation Lightweight Mirror Modeling Software

    Science.gov (United States)

    Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, H. Philip

    2013-01-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.

  20. Next-Generation Lightweight Mirror Modeling Software

    Science.gov (United States)

    Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, Phil

    2013-01-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible

  1. Lightweight composites for modular panelized construction

    Science.gov (United States)

    Vaidya, Amol S.

    Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction

  2. Characterization of Polyimide Foams for Ultra-Lightweight Space Structures

    Science.gov (United States)

    Meador, Michael (Technical Monitor); Hillman, Keithan; Veazie, David R.

    2003-01-01

    Ultra-lightweight materials have played a significant role in nearly every area of human activity ranging from magnetic tapes and artificial organs to atmospheric balloons and space inflatables. The application range of ultra-lightweight materials in past decades has expanded dramatically due to their unsurpassed efficiency in terms of low weight and high compliance properties. A new generation of ultra-lightweight materials involving advanced polymeric materials, such as TEEK (TM) polyimide foams, is beginning to emerge to produce novel performance from ultra-lightweight systems for space applications. As a result, they require that special conditions be fulfilled to ensure adequate structural performance, shape retention, and thermal stability. It is therefore important and essential to develop methodologies for predicting the complex properties of ultra-lightweight foams. To support NASA programs such as the Reusable Launch Vehicle (RLV), Clark Atlanta University, along with SORDAL, Inc., has initiated projects for commercial process development of polyimide foams for the proposed cryogenic tank integrated structure (see figure 1). Fabrication and characterization of high temperature, advanced aerospace-grade polyimide foams and filled foam sandwich composites for specified lifetimes in NASA space applications, as well as quantifying the lifetime of components, are immensely attractive goals. In order to improve the development, durability, safety, and life cycle performance of ultra-lightweight polymeric foams, test methods for the properties are constant concerns in terms of timeliness, reliability, and cost. A major challenge is to identify the mechanisms of failures (i.e., core failure, interfacial debonding, and crack development) that are reflected in the measured properties. The long-term goal of the this research is to develop the tools and capabilities necessary to successfully engineer ultra-lightweight polymeric foams. The desire is to reduce density

  3. How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks

    Directory of Open Access Journals (Sweden)

    Younoussa Millogo

    2015-04-01

    Full Text Available Physicochemical characteristics of Hibiscus cannabinus (kenaf fibers from Burkina Faso were studied using X-ray diffraction (XRD, infrared spectroscopy, thermal gravimetric analysis (TGA, chemical analysis and video microscopy. Kenaf fibers (3 cm long were used to reinforce earth blocks, and the mechanical properties of reinforced blocks, with fiber contents ranging from 0.2 to 0.8 wt%, were investigated. The fibers were mainly composed of cellulose type I (70.4 wt%, hemicelluloses (18.9 wt% and lignin (3 wt% and were characterized by high tensile strength (1 ± 0.25 GPa and Young’s modulus (136 ± 25 GPa, linked to their high cellulose content. The incorporation of short fibers of kenaf reduced the propagation of cracks in the blocks, through the good adherence of fibers to the clay matrix, and therefore improved their mechanical properties. Fiber incorporation was particularly beneficial for the bending strength of earth blocks because it reinforces these blocks after the failure of soil matrix observed for unreinforced blocks. Blocks reinforced with such fibers had a ductile tensile behavior that made them better building materials for masonry structures than unreinforced blocks.

  4. Analysis of Seismic Performance of Rock Block Structures with STAAD Pro

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-12-01

    Full Text Available From olden days until now in our construction filed unreinforced masonry blocks of rocks is used as foundation and super structure wall as load bearing structure. In which blocks are stacked, sometimes being mortared with various cements. Ancient civilizations used locally available rocks and cements to construct rock block columns, walls and edifices for residences, temples, fortifications and infrastructure. Monuments still exist as testaments to the high quality construction by historic cultures, despite the seismic and other potentially damaging geo-mechanical disturbances that threaten them. Conceptual failure modes under seismic conditions of rock block structures, observed in the field or the laboratory, are presented. Our proposed work is analytically is carried out with rock block of 1m by 1m with 200 mm rock block under seismic loading to find out the damaged caused by the Mw 6.7 and 6.0 earthquakes on that block subject to dynamic load. Finally graphical output has generated and suggested for safe construction with more seismic load on rock blocks.

  5. The use of polyurethane foam to provide a watertight concrete masonry wall and a sealed connection of the wall to the foundation

    Energy Technology Data Exchange (ETDEWEB)

    Janopaul, P. Jr.

    1999-07-01

    This paper outlines a construction procedure used to insure a watertight masonry wall and a sealed connection, of this same wall, to the foundation. This procedure was discovered as the byproduct of using an insulted dual cavity concrete masonry unit that is foamed in the field. This insulated concrete masonry system has been developed in the past 12 years, and has been utilized in almost 100 buildings (in Arizona, California, Nevada, Oregon, and Utah) with climates that range from hot desert to Sierra Nevada snow country to the Pacific Northwest rainfall. The critical elements in perfecting this procedure are the detailing of the base of the wall, with a continuous exterior first course foam side cleanout, then following this detailing in the field construction of the wall, and properly foaming the constructed wall with polyurethane foam. The polyurethane foam must be poured into the foam cavity after the face shells have been replace at the first course cleanout.

  6. Lightweight design of the rectangular mirror using topology optimization

    Science.gov (United States)

    Xiang, Meng; Li, Fu

    2014-09-01

    That minimizing the mass of space optical remote sensor at the same time guaranteeing of structural rigidity and surface shape accuracy, became a new critical research topic. This paper achieves detailed design of meniscus rectangular lens body structure by taking the choice of materials, design of supporting structure and lightweight form of mirror into account. And we established lightweight concrete of the mirror under self-weight by the method of topological optimization design. For the optimization, we used a 3-D model of the rectangular mirror and calculated based on that making minimum weight of the mirror as an objective function constrained by the displacement of the mirror surface. Finally finite element analysis method was adopted to get the optimization results analyzed and compared with the traditional triangular lightweight model. Analysis results prove that: the new mirror is superior to the traditional model in surface accuracy and structural rigidity, PV value, RMS value and the lightweight rate. With enough high dynamic-static stiffness and thermal stability, this kind of mirror can meet the demand under the self-weight and the random vibration environment respectively. So this article puts forward a new idea in the lightweight design of rectangular mirror.

  7. The use of ultrasonic pulse velocity tests for the diagnosis of ancient masonries: the influence of the applied load

    Science.gov (United States)

    Leucci, Giovanni; Vasanelli, Emilia; Calia, Angela; Micelli, Francesco; Aiello, Maria Antonietta

    2014-05-01

    Sophisticated non destructive techniques for the diagnosis of existing masonry structures have been developed and improved throughout the years, such as ground penetrating radar, thermography, sonic and ultrasonic tomography, laser scanner survey, etc.: by using an integrated approach it is possible to reconstruct the morphology of the masonry walls, to detect the presence of cracks and voids, achieving an accurate and reliable diagnosis of the construction, which is the basis for the restoration design. The ultrasonic pulse velocity (UPV) method can be conveniently used to check the quality of stones, but it can be used also for material characterization. Both the intrinsic characteristic of the stone (porosity, grain size, anisotropy, etc.) and the external factors (humidity, stress, temperature, presence of cracks) may affect the elastic wave propagation, thus in order to correctly estimate the ultrasonic behaviour of the material investigated it is important to know in what manner and how much the variation of the experimental conditions may modify the characteristics of the waves being measured. This aspect is of crucial importance when in situ measurements are made. In this work the influence of the applied load on UPV results has been investigated. In particular, the research has been carried out on ashlars and on sample masonry panels made of lime mortar joints and Lecce stone, a soft calcarenitic stone traditionally used in the Lecce district, South of Italy. The presence of load strongly influenced the UPV measures, due to the particular microstructural characteristic of the stone. The work aim at quantify this influence in order to correctly interpret in situ measurements.

  8. Optimum Design of Lightweight Silicon Carbide Mirror Assembly

    Institute of Scientific and Technical Information of China (English)

    HAN Yuanyuan; ZHANG Yumin; HAN Jiecai; ZHANG Jianhan; YAO Wang; ZHOU Yufeng

    2008-01-01

    According to the design requirement and on the basis of the principle that the thermal expansion coefficient of the support structure should match with that of the mirror, a lightweight silicon carbide primary mirror assembly was designed. Finite element analysis combined with the parameter-optimized method was used during the design. Lightweight cell and rigid rib structure were used for the mirror assembly. The static, dynamic and thermal properties of the primary mirror assembly were analyzed. It is shown that after optimization, the lightweight ratio of the silicon carbide mirror is 52.5%, and the rigidity of the silicon carbide structure is high enough to support the required mirror. When temperature changes, the deformation of the mirror surface is in proportion to the temperature difference.

  9. Second law evaluation of a lightweight cooling unit

    Directory of Open Access Journals (Sweden)

    Guilherme B. Ribeiro

    2016-03-01

    Full Text Available The analysis based on the second law of thermodynamics of a lightweight vapor compression refrigeration system is presented. A small-scale linear compressor was applied in a DC-powered portable cooler for vehicles and for the medical field, using finned-tube heat exchangers and R600-a (Isobutane as the working fluid. The cooler was tested in an environmental chamber (with controlled temperature and humidity under three different ambient temperatures (21, 25 and 32 °C in order to measure key parameters of the system, such as cooling capacity, power consumption and internal air temperature. For the comparison of thermodynamic irreversibilities, a conventional vapor compression refrigerating system was also tested under the same ambient conditions. Results indicated that the system with the proposed lightweight system kept the lowest internal air temperature with higher coefficients of performance, showing how a lightweight cooling unit can enlarge the use of refrigerating systems due to its attributes.

  10. Bond Strength Degradation of Corrosive Reinforced Lightweight Concrete

    Institute of Scientific and Technical Information of China (English)

    CHEN Yueshun; LU Yiyan; LI Houxiang; ZENG Sanhai

    2007-01-01

    The influence of reinforced bar corrosion on the bond degradation in lightweight concrete was studied. Accelerated constant current corrosion tests were performed on lightweight reinforced concrete samples, and the influential factors, such as protective layer thickness, reinforced bar diameter and corrosive level were investigated. The constant current step method was used to measure the electric resistance of the concrete protective cover, which was used to characterize the corrosion level of the rebar. Experimental results indicated that the corrosive resistance increased with increasing the cover dimension and decreasing the reinforced bar diameter, and the rate of decrease in the specimen impedance after cracking depended on the cover dimension. A new medium was offered for the further research on the performance degradation of corrosion lightweight concrete.

  11. Physique characteristics of Pan American Games lightweight rowers.

    Science.gov (United States)

    DeRose, E H; Crawford, S M; Kerr, D A; Ward, R; Ross, W D

    1989-08-01

    The emergence of lightweight rowing as an international sport has made the optimization of physique within the weight restrictions a matter of primary importance in selection and training of the participants. The occasion of the Xth Pan American Games provided opportunity to obtain comprehensive anthropometric data on 20 male and 13 female lightweight rower finalists including most of the medal winners. Anthropometric characteristics, somatotype, and proportionality profiles showed the male rowers to be similar in most aspects to a student control sample, with the exception of short sitting height and large transverse chest breadth. The females, on the other hand, appeared to be very different from the control sample, having a number of characteristics similar to those of Olympic rowers. The female lightweight rowers also uniquely demonstrated two distinct physique prototypes.

  12. Autogenous Shrinkage of High Strength Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    DING Qingjun; TIAN Yaogang; WANG Fazhou; ZHANG Feng; HU Shuguang

    2005-01-01

    The characteristic of autogenous shrinkage ( AS ) and its effect on high strength lightweight aggregate concrete (HSLAC) were studied. The experimental results show that the main shrinkage of high strength concrete is AS and the amount of cement can affect the AS of HSLAC remarkably. At the early stage the AS of HSLAC is lower than that of high strength normal concrete, but it has a large growth at the later stage. The AS of high strength normal concrete becomes stable at 90d age, but HSLAC still has a high AS growth. It is found that adjusting the volume rate of lightweight aggregate, mixing with a proper dosage of fly ash and raising the water saturation degree of lightweight aggregate can markedly reduce the AS rate of HSLAC.

  13. Seismic damage diagnosis of a masonry building using short-term damping measurements

    Science.gov (United States)

    Kouris, Leonidas Alexandros S.; Penna, Andrea; Magenes, Guido

    2017-04-01

    It is of considerable importance to perform dynamic identification and detect damage in existing structures. This paper describes a new and practical method for damage diagnosis of masonry buildings requiring minimum computational effort. The method is based on the relative variation of modal damping and validated against experimental data from a full scale two storey shake table test. The experiment involves a building subjected to uniaxial vibrations of progressively increasing intensity at the facilities of EUCENTRE laboratory (Pavia, Italy) up to a near collapse damage state. Five time-histories are applied scaling the Montenegro (1979) accelerogram. These strong motion tests are preceded by random vibration tests (RVT's) which are used to perform modal analysis. Two deterministic methods are applied: the single degree of freedom (SDOF) assumption together with the peak-picking method in the discrete frequency domain and the Eigen realisation algorithm with data correlations (ERA-DC) in the discrete time domain. Regarding the former procedure, some improvements are incorporated to locate rigorously the natural frequencies and estimate the modal damping. The progressive evolution of the modal damping is used as a key indicator to characterise damage on the building. Modal damping is connected to the structural mass and stiffness. A square integrated but only with two components expression for proportional (classical) damping is proposed to fit better with the experimental measurements of modal damping ratios. Using this Rayleigh order formulation the contribution of each of the damping components is evaluated. The stiffness component coefficient is proposed as an effective index to detect damage and quantify its intensity.

  14. Studying boundary elements’ behaviour using masonry walls built with high-resistance bricks

    Directory of Open Access Journals (Sweden)

    Juan Carlos Restrepo Mejía

    2010-04-01

    Full Text Available This research was aimed at studying the behaviour of masonry walls built with and without boundary elements at both ends when sublected to monotonic and cyclic lateral loads. The walls were designed to have the greatest resistance, following NSR-98 recommendations (normas Colombianas de diseno y construcción sismo resistente, except for shear reinforcement. XTRACT software was used for finding axial load cf bending moment and curvature cf bending moment curves. One monotonic test and two cyclic tests were performed for each type of wall. Experimental results from the walls’ lateral load cf displacement curves were used for determining their ability to dissipate energy on an inelastic range (“R” force-reduction factor for seismic loads and displacement and curvature malleability. It was found that walls built without boundary elements suffered shear failure with cracks in a stepped configuration along the bricks’ edge. The type of failure for walls built with boundary elements was shear failure in the central panel with cracks in a stepped configuration, in addition to compression failure at the edge of the boundary elements with vertical cracks on the lower part of the wall and at the contact between the wall and the boundary element. Comparison with two other studies carried out at the Universidad Nacional showed similar cyclic behaviour, regardless of the clay brick’s strength. The “R” values obtained for both types of walls were lower than the recommended values given by NSR-98. It was determined that walls having boundary element have greater displacement malleability than walls without boundary elements.

  15. The lightweight structure design of a CFRP mirror

    Science.gov (United States)

    Ding, Jiaoteng; Xu, Liang; Ma, Zhen; Xie, Yongjie; Luo, Yao; Wang, Yongjie; Pang, Zhihai

    2016-10-01

    The advantage of Carbon Fiber Reinforced Polymer (CFRP) is obvious as a common space material for low density, low thermal expansion coefficient and high specific stiffness characteristics, it is the ideal material choice for space optical reflector. Mirror structure with honeycomb can achieve high rates of lightweight, as well as high specific stiffness. For Φ300mm CFRP mirror, accounting of the actual process properties of CFRP, mirror panels laminated based on thermal stability design, honeycomb fabricated using one innovative inlaying-grafting design method. Finally, lightweight structure design of the CFRP primary mirror completed, the thermal stability result of the Φ300mm CFRP mirror achieved is 10nm°C.

  16. Overview of Lightweight Structures for Rotorcraft Engines and Drivetrains

    Science.gov (United States)

    Roberts, Gary D.

    2011-01-01

    This is an overview presentation of research being performed in the Advanced Materials Task within the NASA Subsonic Rotary Wing Project. This research is focused on technology areas that address both national goals and project goals for advanced rotorcraft. Specific technology areas discussed are: (1) high temperature materials for advanced turbines in turboshaft engines; (2) polymer matrix composites for lightweight drive system components; (3) lightweight structure approaches for noise and vibration control; and (4) an advanced metal alloy for lighter weight bearings and more reliable mechanical components. An overview of the technology in each area is discussed, and recent accomplishments are presented.

  17. Ground Fluidization Promotes Rapid Running of a Lightweight Robot

    Science.gov (United States)

    2013-01-01

    Ground fluidization promotes rapid running of a lightweight robot The International Journal of Robotics Research 32(7) 859–869 © The Author(s) 2013...continuously fluidized , and the robot “swam” forward slowly (∼ 0.01 body length/s) using drag on the legs to overcome belly drag. In contrast, a variety of...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Ground fluidization promotes rapid running of a lightweight robot 5a. CONTRACT NUMBER 5b

  18. Development of light-weight spherical mirrors for RICH detectors

    CERN Document Server

    Metlica, Fabio

    2007-01-01

    Glass-coated beryllium and carbon-fiber light-weight spherical mirrors, with radii of curvature of $\\sim$ 2700mm, have been successfully developed and tested as part of the LHCb RICH experimental programme. The low mass mirror is necessary to minimize the amount of material within the LHCb spectrometer acceptance, with a requirement of less than 2% of a radiation length. Both technologies are suitable for light-weight mirror applications. The R&D and characterization of the mirrors are reported.

  19. Prediction of Noise Transmission in Lightweight Building Structures

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens

    tool to predict the flanking transmission of air-borne and structure borne sound already at the design stage. However, lightweight building structures typically do not meet the requirements for ideal SEA subsystems and, therefore, applying the EN 12354 standard to lightweight building structures may...... papers are carried out as parametric studies in the commercial FE package ABAQUS. Finally, an experimental part, that focuses on the uncertainty and variation in wooden junctions, is included. Ten nominally identical plate/beam T-junctions are tested using experimental modal analysis, and the results...

  20. Evaluation and comparison of a lightweight bamboo composite

    Science.gov (United States)

    Loth, Andreas; Berwing, Michael; Förster, Ralf

    2016-10-01

    The demand for fast changing production lines and other facilities needs new lightweight and stable systems for partitioning walls. There is also a need for ecological products for this application. The wood like grass bamboo provides a wide potential to substitute conventional wood. A composite lightweight honeycomb like bamboo board was developed and compared with reinforced and unreinforced plywood specimen. The acquired mechanical properties gave a promising result for the usability of bamboo as basis material for wide span boards. It can be manufactured with minimal technical investments, that suits also well for regions with little industry. The ecological assessment of the structure is very positive.

  1. Reflective Coating for Lightweight X-Ray Optics

    Science.gov (United States)

    Chan, Kai-Wing; Zhang, William W.; Windt, David; Hong, Mao-Ling; Saha, Timo; McClelland, Ryan; Sharpe, Marton; Dwivedi, Vivek H.

    2012-01-01

    X-ray reflective coating for next generation's lightweight, high resolution, optics for astronomy requires thin-film deposition that is precisely fine-tuned so that it will not distort the thin sub-mm substrates. Film of very low stress is required. Alternatively, mirror distortion can be cancelled by precisely balancing the deformation from multiple films. We will present results on metallic film deposition for the lightweight optics under development. These efforts include: low-stress deposition by magnetron sputtering and atomic layer deposition of the metals, balancing of gross deformation with two-layer depositions of opposite stresses and with depositions on both sides of the thin mirrors.

  2. Lightweight High Temperature Non-Eroding Throat Materials for Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this proposed effort is the development of lightweight, non-eroding nozzle materials for use in propulsion systems. Lightweight structures are...

  3. Strength properties of cement slurries with lightweights applied in oil and gas wells

    Science.gov (United States)

    Bubnov, A. S.; Boyko, I. A.; Khorev, V. S.

    2015-02-01

    The article is focused on the cement stone strength properties resulted from lightweight cement slurries that meet GOST-1581-96 (state Standards) requirements. Exfoliated vermiculite, hollow aluminosilicate microspheres (HAMs), diatomite and perlite were used as lightweighting additives.

  4. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2013-09-01

    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  5. Performance Testing of a Lightweight, High Efficiency 95 K Cryocooler

    Science.gov (United States)

    Salerno, Lou; Kittel, P.; Kashani, A.; Helvensteijn, B. P. M.; Tward, E.; Arnold, Jim A. (Technical Monitor)

    2001-01-01

    Performance data are presented for a flight-like, lightweight, high efficiency pulse tube cryogenic cooler. The cooler has a mass of less than 4.0 kg, and an efficiency of 12 W/W, which is 18% of Carnot at 95 K, nearly double the efficiency of previous cooler designs, The mass of the cooler has been reduced by approximately a factor of three. The design point cooling power is 10 watts at 95 K at a heat rejection temperature of 300 K. The no-load temperature is 45 K. The compressor is built by Hymatic Engineering, UK, and is of a horizontally opposed piston design using flexure bearings. The vertical pulse tube is built by TRW with the heat exchanger or cold block located approximately mid-way along the tube. The final assembly and integration is also performed by TRW. The inertance tube and dead volume are contained within one of the compressor end caps. The cooler was developed by TRW under a joint NASA-DOD program, and has a goal of 10 yr operating lifetime. Potential NASA applications will focus on using coolers of this type in Zero boil off (ZBO) cryogen storage topologies for next generation launch vehicles. Zero boil off systems will feature significant reductions in tank size and Initial Mass to Low Earth Orbit (IMLEO), thereby significantly reducing the cost of access to space, and enabling future missions. The coolers can be used directly in liquid oxygen (LOx) or liquid methane ZBO systems, as shield coolers in liquid hydrogen tanks, or as first stage coolers in two-stage liquid hydrogen (LH2) ZBO cooler systems. Finally, the coolers could find applications in exploration missions where either propellants or breathable oxygen are extracted from the planetary atmosphere using a Sabatier or similar process. The gases could then be liquefied for storage either directly in return vehicle propellant tanks or on the planetary surface. Data presented were taken with the cooler operating in a vacuum of 10 (exp -5) torr, at controlled rejection temperatures from

  6. Experimental study on the effect of volcanic residue on the performance of recycled lightweight aggregate concrete

    Science.gov (United States)

    Xiao, Li-guang; Li, Ji-heng; Liu, Qing-shun

    2017-08-01

    Recycled lightweight aggregate concrete prepared with waste brick recycled light aggregate has high water absorption, large apparent density and poor frost resistance. The technical measures of regen-erating lightweight aggregate concrete with modified waste bricks from volcanic slag are put forward. The effects of volcanic slag on the properties of waste lightweight aggregate concrete were studied. The experi-mental results show that volcanic slag can significantly reduce the apparent density of recycled lightweight aggregate concrete and improve its frost resistance.

  7. On the reading of the structural behavior of old masonry: The issue of the seismic assessment of archeological ruins

    Science.gov (United States)

    Fonti, Roberta

    2016-12-01

    This paper addresses the problem of assessing the resistance of ancient Roman structures to normal lateral forces. This subject was examined by applying theoretical models, especially for historical masonry. Procedure Guidelines for the Assessment and Reduction of Seismic Risk of Cultural Heritage [1] were followed here. A lack of information exists within the models for seismic safety assessment. They are restricted to four main categories, which do not mention structures that lack integrity (FIGURE 1, a). Archeological findings, such as masonry elements, often lack integrity and suffer from instability of isolated parties under seismic actions. Nevertheless, a realistic assessment of their safety level is crucial for their survival, especially in regions prone to earthquakes. The attainment of the necessary safety targets is difficult to achieve without reinforcement. The practice of strengthening archeological assets avoids possible collapses. Contrarily, it is responsible for irreversible changes to their historical features regardless of their historical value. However, selecting an appropriate level of building knowledge and design life can avoid the usage of extensive strengthening techniques. An illustrative example is reported in this paper.

  8. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico diMilano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Olivito, Renato S. [Dipartimento di Ingegneria Civile - Università della Calabria Via P Bucci 39 B - 87036 RENDE (CS) (Italy); Tralli, Antonio [Department of Engineering, University of Ferrara, Via Saragat 1, 44100 Ferrara (Italy)

    2014-10-06

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.

  9. Evaluation of Flanking Noise Transmission within Periodically Distributed Lightweight Beam Elements

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Andersen, Lars Vabbersgaard; Sorokin, Sergey

    2012-01-01

    Wooden frame structures are highly preferred as lightweight building systems nowadays. Lightweight building structures have gained more interest due to lower cost of production. However, there is a growing concern regarding noise and vibration issues within lightweight structures. Sound may pass...

  10. Effect of Commercial Synthappret BAP Treatment on the Tailorabilitv of Light-Weight Worsted Wool Fabrics

    Institute of Scientific and Technical Information of China (English)

    Wang Gehui(王革辉); Zhang Weiyuan(张渭源); Postle, R.; Phillips, D.

    2001-01-01

    By means of measurement with the FAST instruments,the effect of commercial Synthappret BAP treatment on the tailorability of light-weight wool worsted fabrics has been investigated. It was found that the commercial Synthappret BAP treatment improved the tailorability of the light-weight wool fabrics mainly by increasing the bending stiffness of the light-weight wool fabrics.

  11. Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium-Air Batteries

    Science.gov (United States)

    2014-11-01

    Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium -Air Batteries by Claire Weiss Brennan, Victoria Blair...Ground, MD 21005-5069 ARL-TR-7145 November 2014 Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium -Air...COVERED (From - To) 1 June–31 August 2014 4. TITLE AND SUBTITLE Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium

  12. Utilization of lightweight materials made from coal gasification slags. Quarterly report, December 1, 1995--February 28, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The project scope consists of collecting a 20-ton sample of slag (primary slag), processing it for chart removal, and subjecting it to pyroprocessing to produce expanded slag aggregates of various size gradations and unit weights, ranging from 12 to 50 lb/fg{sup 3}. A second smaller slag sample will be used for confirmatory testing. The expanded slag aggregates will then be tested for their suitability in manufacturing precast concrete products (e.g., masonry blocks and roof tiles) and insulating concrete, first at the laboratory scale and subsequently in commercial manufacturing plants. These products will be evaluated using ASTM and industry test methods. Technical data generated during production and testing of the products will be used to assess the overall technical viability of expanded slag production. In addition, a market assessment will be made based on an evaluation of both the expanded slag aggregates and the final products, and market prices for these products will be established in order to assess the economic viability of these utilization technologies. Relevant cost data for physical and pyroprocessing of slag to produce expanded slag aggregates will be gathered for comparison with (1) the management and disposal costs for slag or similar wastes and (2) production costs for conventional materials which the slag aggregates would replace. This will form the basis for an overall economic evaluation of expanded slag utilization technologies.

  13. Insulated Masonry Cavity Walls. Proceedings of the Research Correlation Conference by the Building Research Institute, Division of Engineering and Industrial Research. (April 1960).

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC.

    Publication of conference paper texts include --(1) history and development of masonry cavity walls, (2) recent research related to determination of thermal and moisture resistance, (3) wall design and detailing, (4) design for crack prevention, (5) mortar specification characteristics, (6) performance experience with low-rise buildings, (7)…

  14. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K.

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  15. A Lightweight Intelligent Virtual Cinematography System for Machinima Production

    Science.gov (United States)

    2007-01-01

    A Lightweight Intelligent Virtual Cinematography System for Machinima Production David K. Elson1, Mark O. Riedl2 1Columbia University, Computer...However, creating quality cinematic visualizations with existing machinima techniques still requires a high degree of talent and effort. We...produces a cinematic visualization. Unlike other virtual cinematography systems, Cambot favors an offline algorithm coupled with an extensible

  16. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    Science.gov (United States)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  17. FY2010 Annual Progress Report for Lightweighting Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-01-15

    The Lightweight Materials activity (LM) within the Vehicle Technologies Program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  18. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  19. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  20. Design of Light-Weight High-Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Rui Feng

    2016-09-01

    Full Text Available High-entropy alloys (HEAs are a new class of solid-solution alloys that have attracted worldwide attention for their outstanding properties. Owing to the demand from transportation and defense industries, light-weight HEAs have also garnered widespread interest from scientists for use as potential structural materials. Great efforts have been made to study the phase-formation rules of HEAs to accelerate and refine the discovery process. In this paper, many proposed solid-solution phase-formation rules are assessed, based on a series of known and newly-designed light-weight HEAs. The results indicate that these empirical rules work for most compositions but also fail for several alloys. Light-weight HEAs often involve the additions of Al and/or Ti in great amounts, resulting in large negative enthalpies for forming solid-solution phases and/or intermetallic compounds. Accordingly, these empirical rules need to be modified with the new experimental data. In contrast, CALPHAD (acronym of the calculation of phase diagrams method is demonstrated to be an effective approach to predict the phase formation in HEAs as a function of composition and temperature. Future perspectives on the design of light-weight HEAs are discussed in light of CALPHAD modeling and physical metallurgy principles.

  1. Annotating Evidence Based Clinical Guidelines: A Lightweight Ontology

    NARCIS (Netherlands)

    R. Hoekstra; A. de Waard; R. Vdovjak

    2012-01-01

    This paper describes a lightweight ontology for representing annotations of declarative evidence based clinical guidelines. We present the motivation and requirements for this representation, based on an analysis of several guidelines. The ontology provides the means to connect clinical questions an

  2. Closing the innovation cycle in lightweighting compressor pistons technolog

    NARCIS (Netherlands)

    Wentzel, C.; Eijk, A.; Groenewegen, G.; Bergsma, O.

    2016-01-01

    What started out as an exercise in exploring the weight reduction potential of those allegedly “heavy recip crossheads”, turned out to be a fast leap towards implementation of a new hybrid material concept for very lightweight pistons. This was enabled by a next phase in the EFRC R&D group research

  3. SPONGENT: The Design Space of Lightweight Cryptographic Hashing

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Knezevic, Miroslav; Leander, Gregor

    2013-01-01

    The design of secure yet efficiently implementable cryptographic algorithms is a fundamental problem of cryptography. Lately, lightweight cryptography--optimizing the algorithms to fit the most constrained environments--has received a great deal of attention, the recent research being mainly...

  4. Solar cell submodule design facilitates assembly of lightweight arrays

    Science.gov (United States)

    Yasui, R. K.

    1966-01-01

    Solar cell submodules with bus bars that leave tabs along one end of the submodule and wires with raised portions along the other end are assembled by interlocking the tabs and wires of adjacent submodules. This structural design is lightweight and reliable and requires no metallic substructure.

  5. APE: Authenticated Permutation-Based Encryption for Lightweight Cryptography

    NARCIS (Netherlands)

    Andreeva, Elena; Bilgin, Begül; Bogdanov, Andrey; Luykx, Atul; Mennink, Bart; Mouha, Nicky; Yasuda, Kan

    The domain of lightweight cryptography focuses on cryptographic algorithms for extremely constrained devices. It is very costly to avoid nonce reuse in such environments, because this requires either a hardware source of randomness, or non-volatile memory to store a counter. At the same time, a lot

  6. Application of CAE technology for Geely car lightweight

    Institute of Scientific and Technical Information of China (English)

    Men Yongxin; Ma Fangwu; Peng Hong; Li Yongsheng

    2012-01-01

    In order to reduce energy consumption and protect the human survival environment, the lightweight has became the development trend of the world automobile industry. On the premise of ensuring the strength, safety and driving performance of the car, the major car enterprises try to reduce the curb weight of the ear, fuel consumption and emissions. Not only a lot of new technologies and new products have been generated, but also joint vehicle development process and computer aided engineering (CAE) analysis technology have been developed. Since the entry into the "Au- tomobile Lightweight Technology Innovation Strategic Alliance" in Dec. 2007, Geely Group has been focusing on light- weight construction of vehicle and key assemblies in every stage of the vehicle product development. Among vehicles ap- peared on the market and in research, it has presented continuously better performance. The paper describes application examples and successful experience of CAE simulation analysis and performance optimization during the lightweight de- sign and development of a self-developed model of Geely, and looks forward to the prospects for the development of lightweight of Geely vehicle.

  7. Making mundane pleasures visible: mediating daily likings with lightweight technology

    NARCIS (Netherlands)

    Kanis, M.; Brinkman, W.-P.

    2010-01-01

    This article discusses the sharing of daily pleasures with lightweight technology. Two mobile applications called PosiPost Me (Mobile internet edition) and PosiPost Be (Bluetooth edition) were developed to understand the potential of remote and proximity-based sharing of positive messages. These imp

  8. A Light-Weight Statically Scheduled Network-on-Chip

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Bo; Schoeberl, Martin; Sparsø, Jens

    2012-01-01

    This paper investigates how a light-weight, statically scheduled network-on-chip (NoC) for real-time systems can be designed and implemented. The NoC provides communication channels between all cores with equal bandwidth and latency. The design is FPGA-friendly and consumes a minimum of resources...

  9. FY2013 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    As part of the U.S. Department of Energy’s (DOE’s) Vehicle Technologies Program (VTO), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  10. A proposal for the maximum use of recycled concrete sand in masonry mortar design

    Directory of Open Access Journals (Sweden)

    Fernández-Ledesma, E.

    2016-03-01

    Full Text Available Natural sand mining from rivers and seashores is causing serious environmental problems in many parts of the world, whereas the fine fraction from recycling concrete waste is underutilized as a construction material. The aim of this paper is to determine the maximum replacement level of natural sand by recycled sand in the manufacturing of masonry mortar (M-10. For this purpose, five replacement levels were tested: 0%, 25%, 50%, 75% and 100% by volume. The mixes were made using cement CEM II/BL 32.5 N in a volumetric proportion of cement-to-aggregate of 1:5. A commercial admixture was used at a constant content. The amount of water was variable to achieve a consistency of 175±10 mm. The short- and long-term mortar properties were evaluated. The data were analyzed using a one-way ANOVA. In conclusion, a maximum percentage of 50% recycled concrete sand can be used in an indoor environment.La extracción de arena natural de ríos y costas está provocando graves problemas ambientales en muchas partes del mundo, mientras que la fracción fina de los áridos reciclados de residuos de hormigón está infrautilizada como material de construcción. El objetivo de este artículo es determinar el máximo porcentaje de sustitución de arena natural por arena reciclada en la fabricación de morteros M-10. Cinco niveles de sustitución en volumen fueron ensayados: 0%, 25%, 50%, 75% y 100%. Las mezclas fueron hechas con cemento CEM II/BL 32,5 N en una relación volumétrica cemento-árido de 1:5. Se utilizó un aditivo comercial a dosis constante. El agua se ajustó experimentalmente para conseguir una consistencia de 175±10 mm. Se evaluaron las propiedades de los morteros a corto y largo plazo. Los datos se analizaron mediante una ANOVA-simple. En conclusión, un porcentaje máximo del 50% de arena reciclada de hormigón puede usarse en interiores.

  11. Characterization and influence of fine recycled aggregates on masonry mortars properties

    Directory of Open Access Journals (Sweden)

    Saiz-Martínez, P.

    2015-09-01

    Full Text Available This research aims to study mechanical behaviour and relevant properties of masonry mortars fabricated using fine recycled aggregate in different mixture proportions. Fine recycled aggregates samples originated from the ceramic and concrete recycling process and coming from two recycling plants of Madrid region have been used. Tests were performed using 1:3:0.5 volumetric cement-to-aggregate-to-water ratio. Standardized sand with fine recycled aggregate replacement percentages were: 10%, 15%, 25%, 35% and 45%. A continuous size distribution curve can be observed and the main crystalline phases determined have been quartz, calcite and gypsum. Compressive strength, shrinkage and bond strength tests revealed poorer performance of recycled mortars compared to the conventional mortars; however, specific values are within the limits established by the manufacturers and standards. This study shows that cement-based mortars prepared with volumetric ratio 1:3:0.5 may contain up to 45% of fine recycled aggregates, without their properties being affected and without presenting significant losses.Esta investigación estudia el comportamiento mecánico y las propiedades más relevantes de los morteros de albañilería fabricados usando arenas recicladas en diferentes proporciones. Muestras pertenecientes a la línea de reciclaje cerámica y de hormigón proceden de dos centrales de reciclaje de la Comunidad de Madrid. Los ensayos se realizaron con una dosificación 1:3:0,5. Los porcentajes de arena reciclada fueron: 10%, 15%, 25%, 35% y 45%. Se observa una línea granulométrica continua y las principales fases cristalinas encontradas son cuarzo, calcita y yeso. Los ensayos de resistencia a compresión, retracción y adherencia muestran un peor comportamiento en los morteros reciclados frente a los morteros elaborados con arena normalizada, aunque dentro de los límites establecidos por normativas y fabricantes. Se deduce que, los morteros de alba

  12. Alternativa estructural de refuerzo horizontal en muros de mampostería Structural alternative of horizontal reinforcement in masonry walls

    Directory of Open Access Journals (Sweden)

    Diego Fernando Páez Moreno

    2009-01-01

    Full Text Available La implementación de refuerzo horizontal en muros de mampostería con ladrillo macizo de arcilla cocida es una técnica empleada en varios países. En este trabajo se propone un análisis para muros de mampostería representativos de la ciudad de Tunja con la implementación de grafiles de acero como alternativa de refuerzo horizontal. Este estudio involucra la definición de los tipos de materiales a emplear, las características de los muros a ensayar y las variables que se deben aplicar, tanto en los muros como en la ejecución del ensayo de compresión diagonal, que define tipos de muros con características propias de refuerzo. Los resultados del proceso de análisis del comportamiento individual y general de los muros de mampostería sometidos al ensayo de compresión diagonal permiten identificar la variación del esfuerzo cortante representativo para cada tipo de muro, en relación con el refuerzo empleado en los diferentes modelos y la tipología de falla.Implementation of horizontal reinforcement in masonry walls with solid cooked clay bricks is a commonly used technique in several countries. This article is intended to analyze masonry walls representatives of Tunja City, with implementation of small steel bars as an alternative of horizontal reinforcement. This study involves definition of types of materials to be used, characteristics of walls to be tested, and variables which should be applied in both walls and during the execution of the diagonal compression test which defines the types of walls with own characteristics of reinforcement. Results from individual and general behavior analysis process of masonry walls subject to diagonal compression tests allow identifying variation of shear stress for each kind of wall, in relation to reinforcement used in several models and failure typology.

  13. A Grassroots Remote Sensing Toolkit Using Live Coding, Smartphones, Kites and Lightweight Drones.

    Directory of Open Access Journals (Sweden)

    K Anderson

    Full Text Available This manuscript describes the development of an android-based smartphone application for capturing aerial photographs and spatial metadata automatically, for use in grassroots mapping applications. The aim of the project was to exploit the plethora of on-board sensors within modern smartphones (accelerometer, GPS, compass, camera to generate ready-to-use spatial data from lightweight aerial platforms such as drones or kites. A visual coding 'scheme blocks' framework was used to build the application ('app', so that users could customise their own data capture tools in the field. The paper reports on the coding framework, then shows the results of test flights from kites and lightweight drones and finally shows how open-source geospatial toolkits were used to generate geographical information system (GIS-ready GeoTIFF images from the metadata stored by the app. Two Android smartphones were used in testing-a high specification OnePlus One handset and a lower cost Acer Liquid Z3 handset, to test the operational limits of the app on phones with different sensor sets. We demonstrate that best results were obtained when the phone was attached to a stable single line kite or to a gliding drone. Results show that engine or motor vibrations from powered aircraft required dampening to ensure capture of high quality images. We demonstrate how the products generated from the open-source processing workflow are easily used in GIS. The app can be downloaded freely from the Google store by searching for 'UAV toolkit' (UAV toolkit 2016, and used wherever an Android smartphone and aerial platform are available to deliver rapid spatial data (e.g. in supporting decision-making in humanitarian disaster-relief zones, in teaching or for grassroots remote sensing and democratic mapping.

  14. A Grassroots Remote Sensing Toolkit Using Live Coding, Smartphones, Kites and Lightweight Drones.

    Science.gov (United States)

    Anderson, K; Griffiths, D; DeBell, L; Hancock, S; Duffy, J P; Shutler, J D; Reinhardt, W J; Griffiths, A

    2016-01-01

    This manuscript describes the development of an android-based smartphone application for capturing aerial photographs and spatial metadata automatically, for use in grassroots mapping applications. The aim of the project was to exploit the plethora of on-board sensors within modern smartphones (accelerometer, GPS, compass, camera) to generate ready-to-use spatial data from lightweight aerial platforms such as drones or kites. A visual coding 'scheme blocks' framework was used to build the application ('app'), so that users could customise their own data capture tools in the field. The paper reports on the coding framework, then shows the results of test flights from kites and lightweight drones and finally shows how open-source geospatial toolkits were used to generate geographical information system (GIS)-ready GeoTIFF images from the metadata stored by the app. Two Android smartphones were used in testing-a high specification OnePlus One handset and a lower cost Acer Liquid Z3 handset, to test the operational limits of the app on phones with different sensor sets. We demonstrate that best results were obtained when the phone was attached to a stable single line kite or to a gliding drone. Results show that engine or motor vibrations from powered aircraft required dampening to ensure capture of high quality images. We demonstrate how the products generated from the open-source processing workflow are easily used in GIS. The app can be downloaded freely from the Google store by searching for 'UAV toolkit' (UAV toolkit 2016), and used wherever an Android smartphone and aerial platform are available to deliver rapid spatial data (e.g. in supporting decision-making in humanitarian disaster-relief zones, in teaching or for grassroots remote sensing and democratic mapping).

  15. Efficient Integration of Pipelined IP Blocks into Automatically Compiled Datapaths

    Directory of Open Access Journals (Sweden)

    Andreas Koch

    2006-12-01

    Full Text Available Compilers for reconfigurable computers aim to generate problem-specific optimized datapaths for kernels extracted from an input language. In many cases, however, judicious use of preexisting manually optimized IP blocks within these datapaths could improve the compute performance even further. The integration of IP blocks into the compiled datapaths poses a different set of problems than stitching together IPs to form a system-on-chip; though, instead of the loose coupling using standard busses employed by SoCs, the one between datapath and IP block must be much tighter. To this end, we propose a concise language that can be efficiently synthesized using a template-based approach for automatically generating lightweight data and control interfaces at the datapath level.

  16. Efficient Integration of Pipelined IP Blocks into Automatically Compiled Datapaths

    Directory of Open Access Journals (Sweden)

    Koch Andreas

    2007-01-01

    Full Text Available Compilers for reconfigurable computers aim to generate problem-specific optimized datapaths for kernels extracted from an input language. In many cases, however, judicious use of preexisting manually optimized IP blocks within these datapaths could improve the compute performance even further. The integration of IP blocks into the compiled datapaths poses a different set of problems than stitching together IPs to form a system-on-chip; though, instead of the loose coupling using standard busses employed by SoCs, the one between datapath and IP block must be much tighter. To this end, we propose a concise language that can be efficiently synthesized using a template-based approach for automatically generating lightweight data and control interfaces at the datapath level.

  17. Time-History Seismic Analysis of Masonry Buildings: A Comparison between Two Non-Linear Modelling Approaches

    Directory of Open Access Journals (Sweden)

    Michele Betti

    2015-05-01

    Full Text Available The paper presents a comparison between two numerical modelling approaches employed to investigate the seismic behavior of unreinforced masonry buildings with flexible diaphragms. The comparison is performed analyzing a two-story prototype tested on a shaking table at the CNR-ENEA research center of Casaccia (Italy. The first numerical model was built by using the finite element (FE technique, while the second one was built by a simplified macro-element (ME approach. Both models were employed to perform non-linear dynamic analyses, integrating the equations of motion by step-by-step procedures. The shaking table tests were simulated to analyze the behavior of the prototype from the initial elastic state until the development of extensive damage. The main results of the analyses are discussed and critically compared in terms of engineering parameters, such as accelerations, displacements and base shears. The effectiveness of both models within the investigated typology of buildings is then evaluated in depth.

  18. Lightweight autoclavable wide-angle contact lens for vitreous surgery.

    Science.gov (United States)

    Chalam, K V; Gupta, Shailesh K; Agarwal, Swati

    2007-01-01

    The authors describe an autoclavable, self-stabilizing, lightweight wide-angle contact lens for vitrectomy. The lens has two optical pieces with perforated plastic casing to sustain a high temperature (150 degrees C) for autoclaving. The lens has a 106 degrees static and 127 degrees dynamic field of view. The footplates and reduced weight (2.4 grams) due to the plastic casing allow self-stabilization of the lens. The open lens design.with high temperature resistant plastic prevents fogging during autoclaving and surgery. The autoclavable, self-stabilizing, lightweight wide-angle contact lens allows visualization of the peripheral retina during surgery and faster sterilization by autoclaving between surgeries without the disadvantage of lens fogging.

  19. Hot stamping advanced manufacturing technology of lightweight car body

    CERN Document Server

    Hu, Ping; He, Bin

    2017-01-01

    This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool. This book is intended for researchers, engineers...

  20. Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN)

    Science.gov (United States)

    Dorsey, John T.; Doggett, William R.; Komendera, Erik E.

    2015-01-01

    The robotic architecture of State-of-the-Art (SOA) space manipulators, represented by the Shuttle Remote Manipulator System (SRMS), inherently limits their capabilities to extend reach, reduce mass, apply force and package efficiently. TALISMAN uses a new and innovative robotic architecture that incorporates a combination of lightweight truss links, a novel hinge joint, tendon-articulation and passive tension stiffening to achieve revolutionary performance. A TALISMAN with performance similar to the SRMS has 1/10th of its mass and packages in 1/7th of its volume. The TALISMAN architecture allows its reach to be scaled over a large range; from 10 to over 300 meters. In addition, the dexterity (number of degrees-of-freedom) can be easily adjusted without significantly impacting manipulator mass because the joints are very lightweight.

  1. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan

    2015-11-23

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  2. Computational imaging using lightweight diffractive-refractive optics.

    Science.gov (United States)

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-11-30

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  3. Experimental Validation of a Dynamic Model for Lightweight Robots

    Directory of Open Access Journals (Sweden)

    Alessandro Gasparetto

    2013-03-01

    Full Text Available Nowadays, one of the main topics in robotics research is dynamic performance improvement by means of a lightening of the overall system structure. The effective motion and control of these lightweight robotic systems occurs with the use of suitable motion planning and control process. In order to do so, model-based approaches can be adopted by exploiting accurate dynamic models that take into account the inertial and elastic terms that are usually neglected in a heavy rigid link configuration. In this paper, an effective method for modelling spatial lightweight industrial robots based on an Equivalent Rigid Link System approach is considered from an experimental validation perspective. A dynamic simulator implementing the formulation is used and an experimental test-bench is set-up. Experimental tests are carried out with a benchmark L-shape mechanism.

  4. BEHAVIOUR OF LIGHTWEIGHT CONCRETE CONTAINING PERIWINKLE SHELLS AT ELEVATED TEMPERATURE

    Directory of Open Access Journals (Sweden)

    F. FALADE

    2010-12-01

    Full Text Available This study presents the results of the investigation of the response of lightweight concrete to elevated temperature. Available literature indicates that research works have not been carried out in this area. The variables are: mix proportion, water/cement ratio, curing age and temperature. The parameters that were measured are: compressive strength, density and bond characteristics of the concrete matrix. The results showed that the compressive strength of concrete decreased with increase in water/cement ratio and temperature but increased with increase in curing age and cement content while the density decreased with increase in temperature. The bond between the concrete matrix also decreased as the temperature increased. Lightweight concrete containing periwinkle shells is only suitable for structures that will be subjected to temperature less than 300oC.

  5. MODULTEC - Modular technology for lightweight vehicles; MODULTEC - Modultechnologie fuer Leichtmobile

    Energy Technology Data Exchange (ETDEWEB)

    Horlacher, M.; Efler, T.; Wegmann, S.

    2003-07-01

    This final report for the Swiss Federal Office of Energy presents the results of two research projects (MODULTEC I and II) that were carried out between 1995 and 2002. The project's aims were to develop and assess components for light-weight car bodies, study and test novel reinforced plastic materials and to examine the industrial implementation of light-weight vehicles. The report presents details on prototype vehicles and transport systems, as well as crash tests. The development of compound plastics and appropriate adhesives is discussed as is the co-operation with various industrial partners. Various prototype components are described and other associated topics such as recycling, storage of alternative fuels and pedestrian protection issues are discussed.

  6. Cost-effective lightweight mirrors for aerospace and defense

    Science.gov (United States)

    Woodard, Kenneth S.; Comstock, Lovell E.; Wamboldt, Leonard; Roy, Brian P.

    2015-05-01

    The demand for high performance, lightweight mirrors was historically driven by aerospace and defense (A&D) but now we are also seeing similar requirements for commercial applications. These applications range from aerospace-like platforms such as small unmanned aircraft for agricultural, mineral and pollutant aerial mapping to an eye tracking gimbaled mirror for optometry offices. While aerospace and defense businesses can often justify the high cost of exotic, low density materials, commercial products rarely can. Also, to obtain high performance with low overall optical system weight, aspheric surfaces are often prescribed. This may drive the manufacturing process to diamond machining thus requiring the reflective side of the mirror to be a diamond machinable material. This paper summarizes the diamond machined finishing and coating of some high performance, lightweight designs using non-exotic substrates to achieve cost effective mirrors. The results indicate that these processes can meet typical aerospace and defense requirements but may also be competitive in some commercial applications.

  7. High Scale 3d Modelling and Orthophoto of Curved Masonries for a Multipurpose Representation, Analysis and Assessment

    Science.gov (United States)

    Sammartano, G.; Spanò, A.

    2017-05-01

    It is important nowadays to underline some relevant topics concerning the effective contribution of 3D high detailed products derived from innovation and integration of Geomatics technologies, allowing a remarkable development in descriptive metric capabilities, supporting and improving the material recording, representation, analysis and characterization about alteration of the constructive systems. Considering the relevance of the complex interdisciplinary research of these issues that move around the Cultural Heritage safeguard and due to its extreme vulnerability, these models must give a response to different problems. Primarily they has to provide complete models on which to pursue accurate morpho-dimensional documentation, and to base structural assessment, decay investigations, and consequently to underpin restoration practices and support operational workflow in CH assets monitoring. Some peculiarities of new methods for semi-automatic processing algorithms are thus evidenced, advantaging their proficiency to behave as tools for a more sustainable approach in the general process of preservation and protection. Specifically about the ancient masonries documentation, the chance of using digital products derived from very high scale models, as the detailed orthoimages projection and surfaces development offers many opportunities. Here, a late-medieval stratified dovecote tower in Verolengo (TO) with a particular trunk-conical shape had been analysed in order to reconstruct an identity and a historical and architectural framework, de facto not recognized yet. A 3D reconstruction by dense matching techniques will be presented, in the complex context that are the vertical high buildings, presenting one of the highest level of vulnerability. The importance of the 3D model availability, closely connected to dense radiometric information, has been particularly expressed in two main direction for the diagnosis both of volumetric structure assessment and the material

  8. HIGH SCALE 3D MODELLING AND ORTHOPHOTO OF CURVED MASONRIES FOR A MULTIPURPOSE REPRESENTATION, ANALYSIS AND ASSESSMENT

    Directory of Open Access Journals (Sweden)

    G. Sammartano

    2017-05-01

    Full Text Available It is important nowadays to underline some relevant topics concerning the effective contribution of 3D high detailed products derived from innovation and integration of Geomatics technologies, allowing a remarkable development in descriptive metric capabilities, supporting and improving the material recording, representation, analysis and characterization about alteration of the constructive systems. Considering the relevance of the complex interdisciplinary research of these issues that move around the Cultural Heritage safeguard and due to its extreme vulnerability, these models must give a response to different problems. Primarily they has to provide complete models on which to pursue accurate morpho-dimensional documentation, and to base structural assessment, decay investigations, and consequently to underpin restoration practices and support operational workflow in CH assets monitoring. Some peculiarities of new methods for semi-automatic processing algorithms are thus evidenced, advantaging their proficiency to behave as tools for a more sustainable approach in the general process of preservation and protection. Specifically about the ancient masonries documentation, the chance of using digital products derived from very high scale models, as the detailed orthoimages projection and surfaces development offers many opportunities. Here, a late-medieval stratified dovecote tower in Verolengo (TO with a particular trunk-conical shape had been analysed in order to reconstruct an identity and a historical and architectural framework, de facto not recognized yet. A 3D reconstruction by dense matching techniques will be presented, in the complex context that are the vertical high buildings, presenting one of the highest level of vulnerability. The importance of the 3D model availability, closely connected to dense radiometric information, has been particularly expressed in two main direction for the diagnosis both of volumetric structure

  9. Mechanical DT and NDT: characterisation of building stones and research of correlation for in situ analysis of ancient masonries

    Science.gov (United States)

    Vasanelli, E.; Calia, A.; Aiello, M. A.; Sileo, M.; Leucci, G.

    2012-04-01

    Restoration works of the historical-architectural built heritage move from the typological and mechanical qualification of the buildings. Minimum destructive impact is required in preliminary diagnostic studies for the interventions, as it is possible. The use of the undestructive and non-invasive diagnostic techniques has always advantages in the activities on pre-existing buildings, in terms of sustainability; moreover, it is a need with respect to the conservation constraints when we act on the historical-architectural heritage. This work deals with destructive and non-destructive tests for the mechanical characterisation of some traditional soft stones, used as building materials in the Southern Italy; it is a part of a larger activity devoted to set up non-invasive diagnostic procedures for the mechanical analysis and qualification of ancient masonries. The laboratory experimental activity is based on the use of mechanical compressive tests, ultrasonic and Schmidt-Hammer tests, and the research of correlation between the results obtained by these crossed tests. It is aimed to verify the effectiveness and/or to point out critical aspects and limits of the above mentioned non-destructive tests - already applied in the field of the concrete and compact stones - with reference to the characterisation of the soft stones. The research of correlations between the results of destructive and non destructive tests has the final aim to reduce the use of destructive analyses on the masonries, by acquiring substitutive information derivable from performing NDT in laboratory, as well as in situ conditions. Finally, data gathered by the mechanical characterisation give reference values for the evaluation and control of the effectiveness of restoration interventions and their monitoring. This activity is carried out in an interdisciplinary way within the AITECH network (Applied Innovation Technologies for Diagnosis and Conservation of Built Heritage), a regional research

  10. Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.

    Science.gov (United States)

    Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin

    2016-07-01

    Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented.

  11. Lightweight Sandwich Panel in Cold Stores and Refrigerated Warehouses

    OpenAIRE

    Chidom, Charles

    2013-01-01

    The use of sandwich panels has gained considerable recognition in the construction industry and more use of this composite structure is ever increasing. This study highlights and familiarizes the use of lightweight sandwich panel in refrigerated warehouses and cold storage facility and construction and the challenges such construction faces in warm climates considering the effects of thermal load. The study was commissioned by HAMK Sheet Metal Center, the steel research and development ce...

  12. Ultra-lightweight mirror manufacturing and radiation response study

    Science.gov (United States)

    Fitzsimmons, T. C.; Crowe, D. A.

    1981-08-01

    The requirements for making ultra-lightweight mirrors of Ultra-Low Expansion (ULE) fused silica by frit bonding are investigated. A manufacturing assessment of the facilities needed to scale the mirror technology to 4 meters in diameter is included. A front surface flux loading thermal test of a.5M diameter frit bonded ULE mirror is also included. The test was supported by detailed modeling and analysis.

  13. Lightweight shape memory self-deployable structures for Gossamer applications

    Science.gov (United States)

    Sokolowski, Witold

    2004-01-01

    Currently, existing approaches for producing large, ultra-lightweight, deployable structures in space typically rely upon electro-mechanical mechanisms and mechanically expandable that are heavy, not stowage volume efficient, expensive and complex. Therefore, one of the major efforts at NASA and DoD has been to develop expandable structures characterized by low mass and small launch volume. As a result, space inflatable structures have emerged 9-10 years ago.

  14. Magnesium Technology and Manufacturing for Ultra Lightweight Armored Ground Vehicles

    Science.gov (United States)

    2009-02-01

    Bruce Davis and Rick DeLorme Magnesium Elektron North America, Inc. A reprint from the Proceedings of the 2008 Army Science Conference...SUPPLEMENTARY NOTES *Magnesium Elektron North America, Inc., 1001 College St., Madison, IL 62060 A reprint from the Proceedings of the 2008 Army Science...initial emphasis on the Elektron WE43 alloy system for lightweight armored ground vehicle applications. Engineering design factors are reviewed and

  15. Polymer Substrates For Lightweight, Thin-Film Solar Cells

    Science.gov (United States)

    Lewis, Carol R.

    1993-01-01

    Substrates survive high deposition temperatures. High-temperature-resistant polymers candidate materials for use as substrates of lightweight, flexible, radiation-resistant solar photovoltaic cells. According to proposal, thin films of copper indium diselenide or cadmium telluride deposited on substrates to serve as active semiconductor layers of cells, parts of photovoltaic power arrays having exceptionally high power-to-weight ratios. Flexibility of cells exploited to make arrays rolled up for storage.

  16. Light-weight cyptography for resource constrained environments

    Science.gov (United States)

    Baier, Patrick; Szu, Harold

    2006-04-01

    We give a survey of "light-weight" encryption algorithms designed to maximise security within tight resource constraints (limited memory, power consumption, processor speed, chip area, etc.) The target applications of such algorithms are RFIDs, smart cards, mobile phones, etc., which may store, process and transmit sensitive data, but at the same time do not always support conventional strong algorithms. A survey of existing algorithms is given and new proposal is introduced.

  17. Mechanical, Thermal and Functional Properties of Green Lightweight Foamcrete

    OpenAIRE

    Md Azree Othuman Mydin; Norizal Md Noordin

    2012-01-01

    In recent times, the construction industry has revealed noteworthy attention in the use of lightweight foamcrete as a building material due to its many favourable characteristics such as lighter weight, easy to fabricate, durable and cost effective. Foamcrete is a material consisting of Portland cement paste or cement filler matrix (mortar) with a homogeneous pore structure created by introducing air in the form of small bubbles. With a proper control in dosage of foam and m...

  18. Deployment of Lightweight Shock Mitigating Boat Manufacturing Innovation

    Science.gov (United States)

    2012-12-21

    VARTM Hull 1267 760 Deck 702 399 Console 540 350 Total 2509 1509 % Current 100% 60% % Savings - 40% Deployment of Lightweight Shock Mitigating...1430 47 Weight Evaluation- Baseline Boat Weights (lb) Segment Baseline 850 A 850 B 850 B-OM Fabrication Method Open Mold Open Mold VARTM Open...Segment Baseline 850 A 850 B 850 B-OM Fabrication Method Open Mold Open Mold VARTM Open Mold Hull 1115 843 717 789 Deck 665 587 481 529

  19. Characterization of porous acoustic materials applied to lightweight partition walls

    OpenAIRE

    Fangueiro, Raúl; Velosa, J. C.; Macieira, Mónica; Mendonça, Paulo

    2011-01-01

    The increased need to save material and energetic resources, allied with a growing concern on the environmental issues and incertitude on the evolution of the economy, has impelled minimalist-approaches to Architecture and Engineering, reducing to the minimum necessary expression the building elements. The development of new lightweight materials, most of them composites with fibrous reinforcement systems, has interest for building materials and textile industries. However, the...

  20. Analysis of Lightweight Materials for the AM2 System

    Science.gov (United States)

    2014-06-01

    crack propagation. Like most non- ferrous alloys , 6061-T6 alloy does not exhibit an endurance limit and failure can occur up to at least 109 cycles...materials that could replace the 6061-T6 aluminum alloy currently used in the AM2 airfield matting for the purpose of light-weighting the design. An in...operating conditions of the AM2. Newly developed extruded magnesium alloys were identified that could potentially provide weight savings of 30 to 40