WorldWideScience

Sample records for light-cured composite resins

  1. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  2. Qualitative Beam Profiling of Light Curing Units for Resin Based Composites.

    Science.gov (United States)

    Haenel, Thomas; Hausnerová, Berenika; Steinhaus, Johannes; Moeginger, Ing Bernhard

    2016-12-01

    This study investigates two technically simple methods to determine the irradiance distribution of light curing units that governs the performance of a visible-light curing resin-based composites. Insufficient light irradiation leads to under-cured composites with poor mechanical properties and elution of residual monomers. The unknown irradiance distribution and its effect on the final restoration are the main critical issues requiring highly sophisticated experimental equipment. The study shows that irradiance distributions of LCUs can easily be determined qualitatively with generally available equipment. This significantly helps dentists in practices to be informed about the homogeneity of the curing lights. Copyright© 2016 Dennis Barber Ltd.

  3. [Effect of thermal cycling on surface microstructure of different light-curing composite resins].

    Science.gov (United States)

    Lv, Da; Liu, Kai-Lei; Yao, Yao; Zhang, Wei-Sheng; Liao, Chu-Hong; Jiang, Hong

    2015-04-01

    To evaluate the effect of thermal cycling on surface microstructure of different light-curing composite resins. A nanofilled composite (Z350) and 4 microhybrid composites (P60, Z250, Spectrum, and AP-X) were fabricated from lateral to center to form cubic specimens. The lateral surfaces were abrased and polished before water storage and 40 000 thermal cycles (5/55 degrees celsius;). The mean surface roughness (Ra) were measured and compared before and after thermal cycling, and the changes of microstructure were observed under scanning electron microscope (SEM). Significant decreases of Ra were observed in the composites, especially in Spectrum (from 0.164±0.024 µm to 0.140±0.017 µm, Presins, and fissures occurred on Z350 following the thermal cycling. Water storage and thermal cycling may produce polishing effect on composite resins and cause fissures on nanofilled composite resins.

  4. Mechanical properties and polymerization shrinkage of composite resins light-cured using two different lasers.

    Science.gov (United States)

    Kim, Tae-Wan; Lee, Jang-Hoon; Jeong, Seung-Hwa; Ko, Ching-Chang; Kim, Hyung-Il; Kwon, Yong Hoon

    2015-04-01

    The purpose of the present study was to investigate the usefulness of 457 and 473 nm lasers for the curing of composite resins during the restoration of damaged tooth cavity. Monochromaticity and coherence are attractive features of laser compared with most other light sources. Better polymerization of composite resins can be expected. Eight composite resins were light cured using these two lasers and a light-emitting diode (LED) light-curing unit (LCU). To evaluate the degrees of polymerization achieved, polymerization shrinkage and flexural and compressive properties were measured and compared. Polymerization shrinkage values by 457 and 473 nm laser, and LED ranged from 10.9 to 26.8, from 13.2 to 26.1, and from 11.5 to 26.3 μm, respectively. The values by 457 nm laser was significantly different from those by 473 and LED LCU (p0.05). For the tested LCUs, no specific LCU could consistently achieve highest strength and modulus from the specimens tested. Two lasers (457 and 473 nm) can polymerize composite resins to the level that LED LCU can achieve despite inconsistent trends of polymerization shrinkage and flexural and compressive properties of the tested specimens.

  5. Effect of zirconium nanoparticles on the mechanical properties of light-cured resin based dental composites

    International Nuclear Information System (INIS)

    Afza, N.; Anis, I.; Aslam, M.; Shah, M.R.; Hussain, M.T.; Bokhari, T.H.; Hussain, A.; Safdar, M.

    2012-01-01

    The aim of this study was to evaluate the mechanical properties of conventional composite resins (Solare-P) and the modified composite resin having mixed with zirconium nanoparticles. The composite resins are used to replace the missing tooth structure and improve esthetics. In this study, the composite was filled with increments in a mould which was 4 mm in depth and 3 mm in diameter. After filling, it was polymerized with halogen light curing unit for 20 seconds for each increment. In other experiments, the composite was mixed with zirconium nanoparticles and filled in the moulds with increments and polymerized for 20 seconds with halogen light curing unit for each increment. After keeping the moulds at 37 deg. C for 24 hours their mechanical properties including compressive force, %age elongation, compressive strength and hardness were evaluated. It was seen that by adding zirconium nanoparticles, compressive force, %age elongation, compressive strength and hardness increased significantly. Thus it was concluded that the new materials are better than the conventional compomers. (author)

  6. Effect of light-curing units on microleakage under dental composite resins

    Science.gov (United States)

    Queiroz, R. S.; Bandéca, M. C.; Calixto, L. R.; Saade, E. G.; Nadalin, M. R.; Andrade, M. F.; Porto-Neto, S. T.

    2009-09-01

    The aim of this study was to determine the effect of two light-curing units (QTH and LED) on microleakage of Class II composite resin restorations with dentin cavosurface margins. Twenty extracted mandibular first premolars, free of caries and fractures were prepared two vertical “slot” cavities in the occluso-mesial and -destal surfaces (2 mm buccal-lingually, 2 mm proximal-axially and cervical limit in enamel) and divided into 4 equal groups ( n = 8): GI and GII: packable posterior composite light-activated with LED and QTH, respectively; GIII and GIV: micro-hybrid composite resin light-activated with LED and QTH, respectively. The composite resins were applied following the manufacturer’s instructions. After 24 h of water storage specimens were subjected to thermocycling for a total of 500 cycles at 5 and 55°C and the teeth were then sealed with impermeable material. Teeth were immersed in 0.5% Basic fuchsin during 24 h at room temperature, and zero to three levels of penetration score were attributed. The Mann-Whitney and Kruskal-Wallis tests showed significant statistically similar ( P > 0.05) from GI to GII and GIII to GIV, which the GII (2.750) had the highest mean scores and the GIII and GIV (0.875) had lowest mean scores. The use of different light-curing units has no influence on marginal integrity of Class II composite resin restorations and the proprieties of composite resins are important to reduce the microleakage.

  7. Effect of different light curing units on Knoop hardness and temperature of resin composite.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Xediek Consani, Rafael Leonardo; Mendes, Wilson Batista; Lympius, Thais; Coelho Sinhoreti, Mario Alexandre

    2009-01-01

    To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC) lights on Knoop hardness and change in polymerization temperature of resin composite. Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46). A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk of 1.0 mm thickness obtained from bovine tooth. On the acrylic resin base, elastomer mold of 2.0 mm was adapted. The temperature increase was measured after composite light curing. After 24 h, the specimens were submitted to Knoop hardness test (HMV-2000, Shimadzu, Tokyo, Japan). Data were submitted to ANOVA and Tukey's test (alpha = 0.05). For both composites, there were no significant differences (P > 0.05) in the top surface hardness; however, PAC promoted statistically lower (P 0.05). The standardized radiant exposure showed no influence on the temperature increase of the composite, however, showed significant effect on hardness values.

  8. Effect of different light curing units on Knoop hardness and temperature of resin composite

    Directory of Open Access Journals (Sweden)

    Guiraldo Ricardo

    2009-01-01

    Full Text Available Aim: To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC lights on Knoop hardness and change in polymerization temperature of resin composite. Materials and Methods: Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46. A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk of 1.0 mm thickness obtained from bovine tooth. On the acrylic resin base, elastomer mold of 2.0 mm was adapted. The temperature increase was measured after composite light curing. After 24 h, the specimens were submitted to Knoop hardness test (HMV-2000, Shimadzu, Tokyo, Japan. Data were submitted to ANOVA and Tukey′s test (a = 0.05. Results: For both composites, there were no significant differences (P > 0.05 in the top surface hardness; however, PAC promoted statistically lower (P < 0.05 Knoop hardness number values in the bottom. The mean temperature increase showed no significant statistical differences (P > 0.05. Conclusion: The standardized radiant exposure showed no influence on the temperature increase of the composite, however, showed significant effect on hardness values.

  9. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  10. Analysis of gap formation at tooth-composite resin interface: effect of C-factor and light-curing protocol

    Directory of Open Access Journals (Sweden)

    Gustavo Oliveira dos Santos

    2007-08-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effect of C-factor and light-curing protocol on gap formation in composite resin restorations. Material and METHODS: Cylindrical cavities with 5.0 mm diameter and three different depths (A=1.0, B=2.0 and C=3.0 mm were prepared on the occlusal surface of 30 human molars and restored in a single increment with P 60. The composite resin was light-cured according to two protocols: standard - 850 mW/cm² / 20 s and gradual - 100 up to 1000 mW/cm² / 10 s + 1000 mW/cm² / 10 s. After storage in distilled water (37°C/7 days, the restorations were cut into three slices in a buccolingual direction and the gap widths were analyzed using a 3D-scanning system. The data were submitted to ANOVA and Student-Newman-Keuls test (alpha=0.05. RESULTS: ANOVA detected a significant influence for the C-factor and light-curing protocol as independent factors, and for the double interaction C-factor vs. light-curing protocol. Cavities with higher C-factor presented the highest gap formation. The gradual light-curing protocol led to smaller gap formation at cavity interfaces. CONCLUSIONS: The findings of this study suggest that the C-factor played an essential role in gap formation. The gradual light-curing protocol may allow relaxation of composite resin restoration during polymerization reaction.

  11. Effect of various infection-control methods for light-cure units on the cure of composite resins.

    Science.gov (United States)

    Chong, S L; Lam, Y K; Lee, F K; Ramalingam, L; Yeo, A C; Lim, C C

    1998-01-01

    This study (1) compared the curing-light intensity with various barrier infection-control methods used to prevent cross contamination, (2) compared the Knoop hardness value of cured composite resin when various barrier control methods were used, and (3) correlated the hardness of the composite resin with the light-intensity output when different infection-control methods were used. The light-cure unit tips were covered with barriers, such as cellophane wrap, plastic gloves, Steri-shields, and finger cots. The control group had no barrier. Composite resins were then cured for each of the five groups, and their Knoop hardness values recorded. The results showed that there was significant statistical difference in the light-intensity output among the five groups. However, there was no significant statistical difference in the Knoop hardness values among any of the groups. There was also no correlation between the Knoop hardness value of the composite resin with the light-intensity output and the different infection-control methods. Therefore, any of the five infection-control methods could be used as barriers for preventing cross-contamination of the light-cure unit tip, for the light-intensity output for all five groups exceeded the recommended value of 300 W/m2. However, to allow a greater margin of error in clinical situations, the authors recommend that the plastic glove or the cellophane wrap be used to wrap the light-cure tip, since these barriers allowed the highest light-intensity output.

  12. The effect of different light-curing units on fatigue behavior and degree of conversion of a resin composite.

    Science.gov (United States)

    Lohbauer, Ulrich; Rahiotis, Christos; Krämer, Norbert; Petschelt, Anselm; Eliades, George

    2005-07-01

    The aim of this study was to investigate the effect of different light-curing units and irradiation modes on the mechanical fatigue strength and degree of conversion of a restorative resin composite. Conventional halogen, plasma arc and blue LED light-curing units were used for polymerization of a resin composite (Tetric) Ceram, Ivoclar, Vivadent, Liechtenstein). Initial fracture strength (FS) and flexural fatigue limit (FFL) as well as degree of conversion (DC) were measured. The FFL was determined under cyclic loading for 10(5) cycles in terms of a staircase approach. The specimens were stored for 14 days in 37 degrees C distilled water prior to testing. The curing efficiency was observed with Fourier transform infrared micromultiple internal reflectance spectroscopy. The measurements were carried out at 0.5 and 2.5 mm distance from the directly irradiated surface after 14 days storage in dark and dry conditions at 37 degrees C. The highest FS, FFL and DC were observed from high energy curing devices and from extended curing intervals. The conventional halogen light exhibited the most homogenous in-depth curing efficiency along with a low loss of mechanical resistance under cyclic fatigue. Evaluation of flexural fatigue limit and curing efficiency correlate in terms of decreased mechanical strength due to insufficient light-curing intervals or light intensities. Initial promising fracture strengths do not correlate with a clinically more relevant fatigue loading and with the in-depth degree of conversion, both accounting for a significantly reduced strength performance.

  13. Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA).

    Science.gov (United States)

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Großgarten, Mandy; Möginger, Bernhard

    2014-03-01

    During the curing process of light curing dental composites the mobility of molecules and molecule segments is reduced leading to a significant increase of the viscosity as well as the ion viscosity. Thus, the kinetics of the curing behavior of 6 different composites was derived from dielectric analysis (DEA) using especially redesigned flat sensors with interdigit comb electrodes allowing for irradiation at the top side and measuring the ion viscosity at the bottom side. As the ion viscosities of dental composites change 1-3 orders of magnitude during the curing process, DEA provides a sensitive approach to evaluate their curing behavior, especially in the phase of undisturbed chain growth. In order to determine quantitative kinetic parameters a kinetic model is presented and examined for the evaluation of the ion viscosity curves. From the obtained results it is seen that DEA might be employed in the investigation of the primary curing process, the quality assurance of ingredients as well as the control of processing stability of the light curing dental composites. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Influence of Emission Spectrum and Irradiance on Light Curing of Resin-Based Composites.

    Science.gov (United States)

    Shimokawa, Cak; Sullivan, B; Turbino, M L; Soares, C J; Price, R B

    This study examined the influence of different emission spectra (single-peak and broad-spectrum) light-curing units (LCUs) delivering the same radiant exposures at irradiance values of 1200 or 3600 mW/cm 2 on the polymerization and light transmission of four resin-based composites (RBCs). Two prototype LCUs that used the same light tip, but were either a single-peak blue or a broad-spectrum LED, were used to deliver the same radiant exposures to the top surfaces of the RBCs using either standard (1200 mW/cm 2 ) or high irradiance (3600 mW/cm 2 ) settings. The emission spectrum and radiant power from the LCUs were measured with a laboratory-grade integrating sphere coupled to a spectrometer, and the light beam was assessed with a beam profiler camera. Four RBCs (Filtek Supreme Ultra A2, Tetric EvoCeram A2, Tetric EvoCeram T, and TPH Spectra High Viscosity A2) were photoactivated using four different light conditions: single-peak blue/standard irradiance, single-peak blue/high irradiance, broad-spectrum/standard irradiance, and broad-spectrum/high irradiance. The degree of conversion (N=5) and microhardness at the top and bottom of 2.3-mm-diameter by 2.5-mm-thick specimens (N=5) were analyzed with analysis of variance and Tukey tests. The real-time light transmission through the RBCs was also measured. For all light conditions, the 2.3-mm-diameter specimens received a homogeneous irradiance and spectral distribution. Although similar radiant exposures were delivered to the top surfaces of the RBCs, the amount of light energy emitted from the bottom surfaces was different among the four RBCs, and was also greater for the single-peak lights. Very little violet light (wavelengths below 420 nm) reached the bottom of the 2.5-mm-thick specimens. The degree of conversion and microhardness results varied according to the RBC (pspectrum lights, while at the bottom, where little violet light was observed, the results were equal or higher when they were photoactivated with

  15. [Bonding of visible light cured composite resins to glass ionomer and Cermet cements].

    Science.gov (United States)

    Kakaboura, A; Vougiouklakis, G

    1990-04-01

    The "sandwich" technique involves combination of composite resins to etched glassionomer cements, is used today in restorative dentistry. The purpose of this study is to evaluate the bond strength between several composite resins and glass ionomer or cerment cements. Cylindrical specimens of the cements Ketac-Silver, Ionobond and GC-Lining Ce-ment were inserted in a mold and their flat free surfaces were etched for 30". Cylindrical plastic tubes were set upon each one of these surfaces and filled with the Composite resins Durafill, Brilliant Lux, Estilux posterior, Estilux posterior CVS and Herculite XR. Half of the specimens transferred in tap water for 24 hours and the others after thermocycling in the first month, kept for 4 months. Shear bond strengths were determined in Monsanto Testing Machine and some fractured surfaces were examined under SEM. The results of this investigation indicate that this technique produces bond strengths between composite resins and glassioners and the combination type of resin and type of cement, affects the values of the strength. Glass cermeet--small particle resin provides the most effective strength and glass ionomer--microfill resins the least. Storage time and thermocycling don't significantly effect the bond strength. SEM examination showed that all fracture failures were obtained in the cement while the opposite resin surfaces were covered with particles of the cements.

  16. Effect of different light curing units on Knoop hardness and temperature of resin composite

    OpenAIRE

    Guiraldo Ricardo; Consani Simonides; Xediek Consani Rafael; Mendes Wilson; Lympius Thais; Coelho Sinhoreti Mario

    2009-01-01

    Aim: To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC) lights on Knoop hardness and change in polymerization temperature of resin composite. Materials and Methods: Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46). A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk ...

  17. Translucency, opalescence and light transmission characteristics of light-cured resin composites.

    Science.gov (United States)

    Arimoto, Ayako; Nakajima, Masatoshi; Hosaka, Keiichi; Nishimura, Kozo; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji

    2010-11-01

    To evaluate the translucency, opalescence and light transmission characteristics of resin composites with different thicknesses. Disks of three resin composites (Estelite∑, Beautifil II, Clearfil Majesty) of A2 shade were prepared in diameter of 10mm with various thicknesses (0.5mm, 1.0mm and 2.0mm). Color was measured according to CIELAB color scale on a reflection spectrophotometer and a color haze meter, and translucency parameter (TP) and opalescence parameter (OP) were calculated. Using the distribution graphs of transmitted light intensity on a goniophotometer, diffusion factor (DF) as an indicator for a diffuse transmission property and peak gain (G0) for a straight-line transmission property were calculated. The TP and G0 values significantly decreased in the order: 0.5mm>1.0mm>2.0mm thickness (popalescence (OP) of resin composites had a significant correlation with a diffuse transmission property (DF). When more than 1.0mm thickness of resin composites, translucency and opalescence were influenced by the thickness, in which translucency significantly decreased and opalescence significantly increased. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. The effect of different light-curing units on tensile strength and microhardness of a composite resin

    Directory of Open Access Journals (Sweden)

    Eduardo Batista Franco

    2007-12-01

    Full Text Available The aim of this study was to evaluate the influence of different light-curing units on the tensile bond strength and microhardness of a composite resin (Filtek Z250 - 3M/ESPE. Conventional halogen (Curing Light 2500 - 3M/ESPE; CL and two blue light emitting diode curing units (Ultraled - Dabi/Atlante; UL; Ultrablue IS - DMC; UB3 and UB6 were selected for this study. Different light intensities (670, 130, 300, and 600 mW/cm², respectively and different curing times (20s, 40s and 60s were evaluated. Knoop microhardness test was performed in the area corresponding to the fractured region of the specimen. A total of 12 groups (n=10 were established and the specimens were prepared using a stainless steel mold composed by two similar parts that contained a cone-shaped hole with two diameters (8.0 mm and 5.0 mm and thickness of 1.0 mm. Next, the specimens were loaded in tensile strength until fracture in a universal testing machine at a crosshead speed of 0.5 mm/min and a 50 kg load cell. For the microhardness test, the same matrix was used to fabricate the specimens (12 groups; n=5. Microhardness was determined on the surfaces that were not exposed to the light source, using a Shimadzu HMV-2 Microhardness Tester at a static load of 50 g for 30 seconds. Data were analyzed statistically by two-way ANOVA and Tukey's test (p<0.05. Regarding the individual performance of the light-curing units, there was similarity in tensile strength with 20-s and 40-s exposure times and higher tensile strength when a 60-s light-activation time was used. Regarding microhardness, the halogen lamp had higher results when compared to the LED units. For all light-curing units, the variation of light-exposure time did not affect composite microhardness. However, lower irradiances needed longer light-activation times to produce similar effect as that obtained with high-irradiance light-curing sources.

  19. Thermal analysis of bulk filled composite resin polymerization using various light curing modes according to the curing depth and approximation to the cavity wall

    Directory of Open Access Journals (Sweden)

    Hoon-Sang Chang

    2013-07-01

    Full Text Available OBJECTIVE: The purpose of this study was to investigate the polymerization temperature of a bulk filled composite resin light-activated with various light curing modes using infrared thermography according to the curing depth and approximation to the cavity wall. MATERIAL AND METHODS: Composite resin (AeliteFlo, Bisco, Schaumburg, IL, USA was inserted into a Class II cavity prepared in the Teflon blocks and was cured with a LED light curing unit (Dr's Light, GoodDoctors Co., Seoul, Korea using various light curing modes for 20 s. Polymerization temperature was measured with an infrared thermographic camera (Thermovision 900 SW/TE, Agema Infra-red Systems AB, Danderyd, Sweden for 40 s at measurement spots adjacent to the cavity wall and in the middle of the cavity from the surface to a 4 mm depth. Data were analyzed according to the light curing modes with one-way ANOVA, and according to curing depth and approximation to the cavity wall with two-way ANOVA. RESULTS: The peak polymerization temperature of the composite resin was not affected by the light curing modes. According to the curing depth, the peak polymerization temperature at the depth of 1 mm to 3 mm was significantly higher than that at the depth of 4 mm, and on the surface. The peak polymerization temperature of the spots in the middle of the cavity was higher than that measured in spots adjacent to the cavity wall. CONCLUSION: In the photopolymerization of the composite resin, the temperature was higher in the middle of the cavity compared to the outer surface or at the internal walls of the prepared cavity.

  20. Effects of various light curing methods on the leachability of uncured substances and hardness of a composite resin.

    Science.gov (United States)

    Moon, H-J; Lee, Y-K; Lim, B-S; Kim, C-W

    2004-03-01

    The purpose of this study was to evaluate the effect of the various light curing units (plasma arc, halogen and light-emitting diodes) and irradiation methods (one-step, two-step and pulse) using different light energy densities on the leachability of unreacted monomers (Bis-GMA and UDMA) and the surface hardness of a composite resin (Z250, 3M). Leachability of the specimens immersed for 7 days in ethanol was analysed by HPLC. Vicker's hardness number (VHN) was measured immediately after curing (IC) and after immersion in ethanol for 7 days. Various irradiation methods with three curing units resulted in differences in the amount of leached monomers and VHN of IC when light energy density was lower than 17.0 J cm(-2) (P = 0.05). However, regardless of curing units and irradiation methods, these results were not different when the time or light energy density increased. When similar light energy density was irradiated (15.6-17.7 J cm(-2)), the efficiency of irradiation methods was different by the following order: one-step > or = two-step > pulse. These results suggest that the amount of leached monomers and VHN were influenced by forming polymer structure in activation and initiation stages of polymerization process with different light source energies and curing times.

  1. Pulp chamber temperature rise during curing of resin-based composites with different light-curing units.

    Science.gov (United States)

    Durey, Kathryn; Santini, Ario; Miletic, Vesna

    2008-01-01

    The purpose of the present study was to measure the intrapulpal temperature rise occurring during polymerisation of different shades of resin-based composites (RBCs), and two light-emitting diode (LED) units. Seventy non-carious permanent molars, that had been extracted for orthodontic purposes and stored in 2% thymol for not more than four months, were selected. Patient age range was 11-18 years. Standard cavity preparation with standardised remaining dentine thickness and placement of thermocouples (TCs) was prepared using a novel split-tooth technique. Cavities were filled with one of two shades of RBC (A2 and C4, Filtek Z250, 3M ESPE, Seefeld, Germany), and cured with two LED high-intensity units (Elipar Freelight2, 3M ESPE, Seefeld, Germany; Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein) and a conventional halogen light-curing unit (LCU) (Prismetics Lite 2, Dentsply, Weybridge, Surrey, UK) as a control. Pulp temperature rises during bonding [A2 results: H;2.67/0.48:E;5.24/1.32;B;5.99/1.61] were always greater than during RBC curing [A2 results: 2.44/0.63;E3.34/0.70;B3.38/0.60], and these were significant for both LED lights but not for the halogen control, irrespective of shade (Mann-Whitney test: 95% confidence limits). Temperature rises were at times in excess of the values normally quoted as causing irreversible pulp damage. Pulp temperature rises during bonding were higher with the LED lights than with the halogen control. There was no significant difference in temperature rise between the two LED lights when bonding but there was a significant difference between the two LED lights and the halogen control LCUs (Kruskal-Wallis Test: 95% confidence limits). The results support the view that there is a potential risk for heat-induced pulpal injury when light-curing RBCs. The risk is greater during bonding and with high energy, as compared to low-energy output systems. As the extent of tolerable thermal trauma by the pulp tissues is unknown, care and

  2. Composite cements benefit from light-curing.

    Science.gov (United States)

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To investigate the effect of curing of composite cements and a new ceramic silanization pre-treatment on the micro-tensile bond strength (μTBS). Feldspathic ceramic blocks were luted onto dentin using either Optibond XTR/Nexus 3 (XTR/NX3; Kerr), the silane-incorporated 'universal' adhesive Scotchbond Universal/RelyX Ultimate (SBU/RXU; 3M ESPE), or ED Primer II/Panavia F2.0 (ED/PAF; Kuraray Noritake). Besides 'composite cement', experimental variables were 'curing mode' ('AA': complete auto-cure at 21°C; 'AA*': complete auto-cure at 37°C; 'LA': light-curing of adhesive and auto-cure of cement; 'LL': complete light-curing) and 'ceramic surface pre-treatment' ('HF/S/HB': hydrofluoric acid ('HF': IPS Ceramic Etching Gel, Ivoclar-Vivadent), silanization ('S': Monobond Plus, Ivoclar-Vivadent) and application of an adhesive resin ('HB': Heliobond, Ivoclar-Vivadent); 'HF/SBU': 'HF' and application of the 'universal' adhesive Scotchbond Universal ('SBU'; 3M ESPE, only for SBU/RXU)). After water storage (7 days at 37°C), ceramic-dentin sticks were subjected to μTBS testing. Regarding the 'composite cement', the significantly lowest μTBSs were measured for ED/PAF. Regarding 'curing mode', the significantly highest μTBS was recorded when at least the adhesive was light-cured ('LA' and 'LL'). Complete auto-cure ('AA') revealed the significantly lowest μTBS. The higher auto-curing temperature ('AA*') increased the μTBS only for ED/PAF. Regarding 'ceramic surface pre-treatment', only for 'LA' the μTBS was significantly higher for 'HF/S/HB' than for 'HF/SBU'. Complete auto-cure led to inferior μTBS than when either the adhesive (on dentin) or both adhesive and composite cement were light-cured. The use of a silane-incorporated adhesive did not decrease luting effectiveness when also the composite cement was light-cured. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. In vitro comparative study of share bond of light cured composite resins with halogen light and argon laser, using stainless steel brackets on human premolars

    International Nuclear Information System (INIS)

    Carillo, Vitoria Eugenia Bismarck

    2004-01-01

    The aim of this study in vitro was to compare the share bond strength of the light-cured composite resins Transbond XT (Unitek), with halogen light and argon laser. The Adhesive Remmant Index (ARI) was also investigated. The brackets Dyna lock (3M-UNITEK) were bonded to 75 human premolars, divided into 5 groups (15 each) according to time and the polymerization: Group H20, 15 brackets bonded with halogen light for 20s (10s both sides); Group H40, 15 brackets bonded with halogen light for 40s (20s both sides); Group A40, 15 brackets bonded with argon laser for 40s (20s both sides); Group A20, 15 brackets bonded with argon laser for 20s (10s both sides); Group A10, 15 brackets bonded with argon laser for 10s (5s both sides). The pulpal temperature changes were determined during a polymerization, not exceeding 3,5 deg C. After bonding, the teeth were submitted to a thermo cycled of 700 cycles between 5 deg C and 55 deg C, to simulate the consuming that the light cured composite resin would have in a short space of time. The specimens were then placed in PVC ring and embedded in acrylic resin (Aero-Jet). The tensile bond strength test was performed on an Universal Machine set at a crosshead speed of 1,5 mm/min, and for each rupture we registered a graphic and the best load required in Newtons, was converted to MPa and kgf. The share bond strength showed bigger values for the exposure time of 20 seconds, for the Group bonded for halogen light (H20), 7,45 kgf (7,64 MPa) and for argon laser 7,50 kgf (7,69 MPa); lesser values for the exposure time of 40s for the Group with halogen light (H40), 6,15 kgf (6,30 MPa) and argon laser Group (A40), 6,20 kgf (6,35 MPa) 0; and A10, 4,85 kgf (4,97 MPa). In the ARI Index, only A40 Group showed the 1 Index, with statistical results. In this Group, less than half of the remainder adhesive stayed on the surface of the enamel, conferring specimens failed at the enamel-adhesive interface. The results of the in vitro study demonstrate that

  4. Effect of high intensity vs. soft-start halogen irradiation on light-cured resin-based composites. Part I. Temperature rise and polymerization shrinkage.

    Science.gov (United States)

    Hofmann, Norbert; Markert, Tanja; Hugo, Burkard; Klaiber, Bernd

    2003-12-01

    To determine polymerization shrinkage kinetics and temperature rise of light-cured resin-based composites after high intensity vs. soft-start quartz tungsten halogen irradiation. Shrinkage kinetics was evaluated using the "deflecting disk technique", modified for simultaneous measurement of temperature within the resin-based composite using a thermocouple. Additional irradiations after 60 and 65 minutes allowed the determination of temperature rises caused by radiation or by reaction heat. Four hybrids (Filtek Z250, Herculite, Solitaire 2, Tetric Ceram), an inhomogeneously filled hybrid (InTen-S) and a microfill (Filtek A110, formerly Silux Plus) were cured using the quartz tungsten halogen units Astralis 10 and Optilux 501 in the high intensity (A10 HiPo: 10 seconds at 1300 mW/cm2; OL Boost: 10 seconds at 1140 mW/cm2) or soft-start modes (A10 Pulse: increase to 700 mW/cm2 within 10 seconds, three periods of 2 seconds at 1300 mW/cm2 alternating with two periods of 2 seconds at 700 mW/cm2; OL Ramp: exponential increase within 10 seconds, followed by 10 seconds at 1140 mW/cm2). The soft-start protocols produced less contraction, and polymerization shrinkage started later and progressed slower (or: more slowly), compared to high intensity irradiation [correction]. The lowest shrinkage was observed for InTen-S, followed by Filtek Z250 and A110, whereas Solitaire 2, Herculite and Tetric Ceram scored highest for this parameter. Temperature rise was caused more or less equally by radiation and by reaction heat and reached values of up to 28.9 degrees C relative to a baseline of 37 degrees C. For some combinations of curing modes and resin-based composites, less heat was generated by the soft-start protocols and by Optilux 501.

  5. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    Directory of Open Access Journals (Sweden)

    Anne Peutzfeldt

    2016-01-01

    Full Text Available This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM, High Power mode (HPM, or Xtra Power mode (XPM. Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2 (n=17. Vickers hardness (HV and indentation modulus (EIT were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α=0.05. Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p≤0.0001. Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p≤0.0021. However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  6. Bond strength of orthodontic light-cured resin-modified glass ionomer cement.

    Science.gov (United States)

    Cheng, Hsiang Yu; Chen, Chien Hsiu; Li, Chuan Li; Tsai, Hung Huey; Chou, Ta Hsiung; Wang, Wei Nan

    2011-04-01

    The purpose of this study was to compare the bond strengths and debonded interfaces achieved with light-cured resin-modified glass ionomer cement (RMGIC) and conventional light-cured composite resin. In addition, the effects of acid etching and water contamination were examined. One hundred human premolars were randomly divided into five equal groups. The mini Dyna-lock upper premolar bracket was selected for testing. The first four groups were treated with light-cured RMGIC with or without 15 per cent phosphoric acid-etching treatment and with or without water contamination preceding bracket bonding. The control samples were treated with the conventional light-cured Transbond composite resin under acid etching and without water contamination. Subsequently, the brackets were debonded by tensile force using an Instron machine. The modified adhesive remnant index (ARI) scores were assigned to the bracket base of the debonded interfaces using a scanning electron microscope. The bond strength and modified ARI scores were determined and analysed statistically by one-way analysis of variance and chi-square test. Under all four conditions, the bond strength of the light-cure RMGIC was equal to or higher than that of the conventional composite resin. The highest bond strength was achieved when using RMGIC with acid etching but without water contamination. The modified ARI scores were 2 for Fuji Ortho LC and 3 for Transbond. No enamel detachment was found in any group. Fifteen per cent phosphoric acid etching without moistening the enamel of Fuji Ortho LC provided the more favourable bond strength. Enamel surfaces, with or without water contamination and with or without acid etching, had the same or a greater bond strength than Transbond.

  7. Influência do tipo de ponteira condutora de luz na microdureza de uma resina composta Influence of the different light-curing TIPS in the microhardness of a composite resin

    Directory of Open Access Journals (Sweden)

    Máx Dobrovolski

    2010-01-01

    Full Text Available O objetivo desta pesquisa foi avaliar a influência do tipo de ponteira condutora de luz na microdureza de uma resina composta micro-híbrida. Foram confeccionados 14 corpos de prova da resina composta Opallis (FGM com dimensões: 5 x 2 mm, divididos em dois grupos de acordo com a ponteira condutora de luz do aparelho fotoativador de lâmpada halógena Optilight Plus - GNATUS/300 mW.cm-2. GI - ponteira condutora de luz de fibra óptica; GII - ponteira condutora de luz de polímero. Após 24 horas, as medidas de microdureza foram efetuadas com um microdurômetro HMV 2000 (Shimadzu Japão. Cinco penetrações foram efetuadas em cada superfície (topo e base totalizando 10 penetrações para cada corpo de prova. A análise estatística dos resultados realizada por meio do teste de ANOVA não apresentou diferenças significativas entre os tipos de ponta condutora de luz nas superfícies avaliadas. A análise estatística demonstrou diferença significativa nos valores médios de microdureza superficial entre as superfícies de topo e de base, para ambas as ponteiras. Com base nos resultados obtidos, foi possível concluir que as ponteiras de luz não interferem na microdureza da resina composta, e que ambas apresentaram diferenças estatisticamente significativas nos valores de microdureza das superfícies topo e base.The aim of this study is to evaluate the influence of the light-curing tips on the microhardness of a micro-hybrid composite resin. Fourteen samples of Opallis (FGM composite resin with 5 x 2 mm were prepared. The specimens were divided into two groups according to the light-curing tips from a halogen light curing unit (Optilight Plus -GNATUS/300 mW.cm-2: GI - optical fiber light-curing; GII - polymer light-curing. After 24 hours, the microhardness measurements were determined using the HMV 2000 (Shimadzu Japan. Five measurements were made on each surface (top and bottom totalizing 10 indentations for each sample. Statistical analysis

  8. CURING EFFICIENCY OF DUAL-CURE RESIN CEMENT UNDER ZIRCONIA WITH TWO DIFFERENT LIGHT CURING UNITS

    Directory of Open Access Journals (Sweden)

    Pınar GÜLTEKİN

    2015-04-01

    Full Text Available Purpose: Adequate polymerization is a crucial factor in obtaining optimal physical properties and a satisfying clinical performance from composite resin materials. The aim of this study was to evaluate the polymerization efficiency of dual-cure resin cement cured with two different light curing units under zirconia structures having differing thicknesses. Materials and Methods: 4 zirconia discs framework in 4 mm diameter and in 0.5 mm, 1 mm and 1.5 mm thickness were prepared using computer-aided design system. One of the 0.5 mm-thick substructures was left as mono-layered whereas others were layered with feldspathic porcelain of same thickness and ceramic samples with 4 different thicknesses (0.5, 1, 1.5 and 2.0 mm were prepared. For each group (n=12 resin cement was light cured in polytetrafluoroethylene molds using Light Emitting Diode (LED or Quartz-Tungsten Halogen (QHT light curing units under each of 4 zirconia based discs (n=96. The values of depth of cure (in mm and the Vickers Hardness Number values (VHN were evaluated for each specimen. Results: The use of LED curing unit produced a greater depth of cure compared to QTH under ceramic discs with 0.5 and 1 mm thickness (p<0.05.At 100μm and 300 μm depth, the LED unit produced significantly greater VHN values compared to the QTH unit (p<0.05. At 500 μm depth, the difference between the VHN values of LED and QTH groups were not statistically significant. Conclusion: Light curing may not result in adequate resin cement polymerization under thick zirconia structures. LED light sources should be preferred over QTH for curing dual-cure resin cements, especially for those under thicker zirconia restorations.

  9. Effect of light-curing units on the thermal expansion of resin nanocomposites.

    Science.gov (United States)

    Park, Jeong-Kil; Hur, Bock; Ko, Ching-Chang; García-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2010-12-01

    To examine the thermal expansion of resin nanocomposites after light-curing using different light-curing units. Four different resin nanocomposites and four different light-curing units [quartz-tungsten-halogen (QTH), light emitting diode (LED), laser, and plasma arc] were chosen. Metal dies were filled with resin to make specimens and light-cured. The light intensity and light-curing time of the QTH and LED light-curing units were 1000 mW/cm2 and 40 seconds, 700 mW/cm2 and 40 seconds for the laser, and 1600 mW/cm2 and 3 seconds for the plasma arc. The coefficient of thermal expansion (CTE) was evaluated using a thermomechanical analyzer (TMA) at temperatures ranging from 30-80 degrees C. The CTE of the resin nanocomposites tested ranged from 28.5 to 65.8 (x 10(-6)/ degrees C), depending on the product and type of light-curing unit used. Among the specimens, Grandio showed the lowest CTE. The specimens cured using the plasma arc unit (Apollo 95E) showed the highest CTE. There was a linear correlation between the CTE and filler content (vol%) (R: -0.94-0.99 depending on the light-curing unit). The results may suggest a careful selection of the light-curing unit because there was more expansion in the specimens cured using the plasma arc unit than those cured by the other units.

  10. Do light cured ART conventional high-viscosity glass-ionomer sealants perform better than resin-composite sealants: a 4-year randomized clinical trial

    NARCIS (Netherlands)

    Zhang, W.; Chen, X.; Fan, M.W.; Mulder, J.; Huysmans, M.C.D.N.J.M.; Frencken, J.E.F.M.

    2014-01-01

    OBJECTIVE: The hypotheses tested were: the cumulative survival rates of dentin caries lesion-free pits and fissures of ART conventional high-viscosity glass-ionomer sealants with light-curing (high-intensity LED) and glass-carbomer sealants are higher than those of conventional ART sealants and

  11. [Application of individual light-curing resin tray as edge plastic material in complete denture modulo].

    Science.gov (United States)

    Chai, Mei; Tang, Xuyan; Liang, Guangku

    2015-12-01

    To investigate clinical effect of individual light-curing resin tray as edge plastic material in complete denture modulo.
 A total of 30 patients with poor condition for alveolar ridge of mandible were chosen individual tray with individual light-curing resin tray for material edge shaping or traditional individual impression tray for edge shaping cream to produce complete denture. The operability, questionnaire about denture retention, comfort, mucosal cases and chewing function in the process of shaping the edge were investigated three months later after wearing dentures.
 There was no significant difference in retention, comfort, mucosa and the chewing function between the two mandibular denture impression methods. However, the patients with individual light-curing resin tray as edge shaping material felt better in the process than that in the patients with die-cream as the edge shaping material (P<0.05). Furthermore, the manipulation with individual light-curing resin tray as edge shaping material is easy for doctor.
 Although the clinical effect of Individual light-curing resin tray material as the edge shaping material is equal to that of impression cream, it saves time and human resource. Moreover, it is more acceptable for the patients and thus it can be spread in clinics.

  12. Influence of light curing source on microhardness of composite resins of different shades Influência da fonte de luz polimerizadora na microdureza da resina composta de diferentes cores

    Directory of Open Access Journals (Sweden)

    André Luiz Fraga Briso

    2006-01-01

    Full Text Available INTRODUCTION: The evolution of light curing units can be noticed by the different systems recently introduced. The technology of LED units promises longer lifetime, without heating and with production of specific light for activation of camphorquinone. However, further studies are still required to check the real curing effectiveness of these units. PURPOSE: This study evaluated the microhardness of 4 shades (B-0.5, B-1, B-2 and B-3 of composite resin Filtek Z-250 (3M ESPE after light curing with 4 light sources, being one halogen (Ultralux - Dabi Atlante and three LED (Ultraled - Dabi Atlante, Ultrablue - DMC and Elipar Freelight - 3M ESPE. METHODS: 192 specimens were distributed into 16 groups, and materials were inserted in a single increment in cylindrical templates measuring 4mm x 4mm and light cured as recommended by the manufacturer. Then, they were submitted to microhardness test on the top and bottom aspects of the cylinders. RESULTS: The hardness values achieved were submitted to analysis of variance and to Tukey test at 5% confidence level. It was observed that microhardness of specimens varied according to the shade of the material and light sources employed. The LED appliance emitting greater light intensity provided the highest hardness values with shade B-0.5, allowing the best curing. On the other hand, appliances with low light intensity were the least effective. It was also observed that the bottom of specimens was more sensitive to changes in shade. CONCLUSION: Light intensity of LED light curing units is fundamental for their good functioning, especially when applied in resins with darker shades.INTRODUCTION: A evolução dos aparelhos fotopolimerizadores pode ser notada nos diferentes sistemas introduzidos recentemente no mercado. A tecnologia apresentada pelos aparelhos LED promete maior tempo de vida útil, não gerar aquecimento e produzir luz específica para a ativação da canforoquinona. No entanto, ainda são necess

  13. Effect of light-curing method and indirect veneering materials on the Knoop hardness of a resin cement

    Directory of Open Access Journals (Sweden)

    Nelson Tetsu Iriyama

    2009-06-01

    Full Text Available This study evaluated the Knoop hardness of a dual-cured resin cement (Rely-X ARC activated solely by chemical reaction (control group or by chemical / physical mode, light-cured through a 1.5 mm thick ceramic (HeraCeram or composite (Artglass disc. Light curing was carried out using conventional halogen light (XL2500 for 40 s (QTH; light emitting diodes (Ultrablue Is for 40 s (LED; and Xenon plasma arc (Apollo 95E for 3 s (PAC. Bovine incisors had their buccal face flattened and hybridized. On this surface a rubber mold (5 mm in diameter and 1 mm in height was bulk filled with the resin cement. A polyester strip was seated for direct light curing or through the discs of veneering materials. After dry storage in the dark (24 h 37°C, the samples (n = 5 were sectioned for hardness (KHN measurements, taken in a microhardness tester (50 gF load 15 s. The data were statistically analyzed by ANOVA and Tukey's test (α = 0.05. The cement presented higher Knoop hardness values with Artglass for QTH and LED, compared to HeraCeram. The control group and the PAC/Artglass group showed lower hardness values compared to the groups light-cured with QTH and LED. PAC/HeraCeram resulted in the worst combination for cement hardness values.

  14. Applications of Blue Light-curing Acrylic Resin to Forensic Sample Preparation and Microtomy.

    Science.gov (United States)

    Groves, Ethan; Palenik, Christopher S

    2016-03-01

    This study discusses the results of an evaluation of a one-part blue light-curing acrylic resin for embedding trace evidence prior to the preparation of thin sections with a microtome. Through a comparison to several epoxy resins, the physical properties relevant to both trace evidence examination and analytical microscopy in general, including as viscosity, clarity, color, hardness, and cure speed, were explored. Finally, thin sections from paint samples embedded in this acrylic resin were evaluated to determine if, through smearing or impregnation, the resin contributed to the infrared spectra. The results of this study show that blue light-curing acrylic resins provide the desired properties of an embedding medium, generate high-quality thin sections, and can significantly simplify the preparation of paint chips, fibers and a multitude of other types of microscopic samples in the forensic trace evidence laboratory. © 2015 American Academy of Forensic Sciences.

  15. Evaluation of mechanical properties of Z250 composite resin light-cured by different methods Avaliação de propriedades mecânicas da resina composta Z250 fotoativada com diferentes métodos

    Directory of Open Access Journals (Sweden)

    Andresa Carla Obici

    2005-12-01

    Full Text Available This study evaluated some mechanical parameters of Z250 composite resin using different light-curing methods. Ten specimens were prepared for each mechanical test group with different dimensions according to the test. Light-curing was performed by: a. continuous light (800mW/cm²-40s; b. exponential light (0-800mW/cm²-40s; c. intermittent light (2s-600mW/cm²; 2s without light-80s; d. stepped light (10s-150mW/cm²; 30s-650mW/cm²; e. PAC (1320mW/cm²-3s; f. LED (350mW/cm²-40s. After 24 ± 1 h, the specimens were loaded at a crosshead speed of 0.5 mm/min until fracture. The mechanical properties were calculated and analyzed by ANOVA and Tukey test (5%. The results showed that the highest compressive strength values were found for the continuous, exponential, intermittent and stepped light methods, whereas PAC and LED obtained the lowest values. LED, stepped light, PAC, exponential and continuous light presented the highest values for diametral tensile strength. The intermittent light showed the lowest value, which was significantly lower than the value obtained for LED only. Flexural strength results were not significantly different between all light-curing methods. Finally, the highest modulus of elasticity values were obtained for LED, exponential, continuous and intermittent light, whereas PAC and stepped light showed the lowest values. The mechanical properties were affected by light-curing methods employed.Este estudo avaliou algumas propriedades mecânicas da resina composta Z250 usando diferentes métodos de fotoativação. Dez amostras foram preparadas para cada grupo, com diferentes dimensões de acordo com o ensaio. Os métodos de fotoativação foram: a luz contínua (800mW/cm²-40s; b luz exponencial (0-800mW/cm²-40s; c luz intermitente (2s-600mW/cm²; 2s sem luz-80s; d dupla intensidade (10s-150mW/cm²; 30s-650mW/cm²; e PAC (1320mW/cm²-3s; f LED (350mW/cm²-40s. Após 24 ± 1 h, as amostras foram carregadas até fraturar (v=0

  16. Light energy transmission and Vickers hardness ratio of bulk-fill resin based composites at different thicknesses cured by a dual-wave or a single-wave light curing unit.

    Science.gov (United States)

    Santini, Ario; Naaman, Reem Khalil; Aldossary, Mohammed Saeed

    2017-04-01

    To quantify light energy transmission through two bulk-fill resin-based composites and to measure the top to bottom surface Vickers hardness ratio (VHratio) of samples of various incremental thicknesses, using either a single-wave or dual-wave light curing unit (LCU). Tetric EvoCeram Bulk Fill (TECBF) and SonicFill (SF) were studied. Using MARC-RC, the irradiance delivered to the top surface of the samples 2, 3, 4 and 5 mm thick (n= 5 for each thickness) was adjusted to 800 mW/cm2 for 20 seconds (16 J/cm2) using either a single-wave, Bluephase or a dual-wave, Bluephase G2 LCUs. Light energy transmission through to the bottom surface of the specimens was measured at real time using MARC-RC. The Vickers hardness (VH) was determined using Vickers micro hardness tester and the VHratio was calculated. Data were analyzed using a general linear model in Minitab 16; α= 0.05. TECBF was more translucent than SF (Pwave Bluephase G2). SF showed significantly higher VH ratio than TECBF at all different thickness levels (P 0.05). TECBF showed significantly greater VH ratio when cured with the single-wave Bluephase than when using the dual-wave Bluephase G2 (Penergy through to the bottom surface and the VHratio are material dependent. Although TECBF is more translucent than SF, it showed lower VHratio compared to SF when cured with dual-wave Bluephase G2.

  17. Influence of light-curing units and restorative materials on the micro hardness of resin cements

    Directory of Open Access Journals (Sweden)

    Kuguimiya Rosiane

    2010-01-01

    Full Text Available Aim: The aim of this study was to evaluate the effect of indirect restorative materials (IRMs and light-curing units (LCUs on the micro hardness of dual-cured resin cement. Materials and Methods: A total of 36 cylindrical samples (2 mm thick were prepared with dual-cured resin cement (Relyx ARC photo-activated with either a QTH (Optilight Plus for 40s or a LED (Radii light-curing unit for 65s. Photo-activation was performed through the 2-mm- thick IRMs and the samples were divided into six groups (n=6 according to the combination of veneering materials (without, ceramic and indirect resin and LCUs (QTH and LED. In the control group, the samples were light-cured with a QTH unit without the interposition of any restorative material. Vickers micro hardness test was performed on the top and bottom surfaces of each sample (load of 50 g for 15 secs. The data were statistically analyzed using a three-way ANOVA followed by Tukey x s post-hoc test ( P < 0.05. Results: There were no statistically significant differences on the top surface between the light curing-units ( P > 0.05; however, the LED provided greater hardness on the bottom surface when a ceramic material was used ( P < 0.05. The mean hardness in photo-activated samples, in which there was no interposition of indirect materials, was significantly greater ( P < 0.01. Conclusions: It may be concluded that the interposition of the restorative material decreased the micro hardness in the deeper cement layer. Such decrease, however, was lower when the ceramic was interposed and the cement light-cured with LED.

  18. Effects of radiant exposure values using second and third generation light curing units on the degree of conversion of a lucirin-based resin composite.

    Science.gov (United States)

    Cardoso, Kelly Antonieta Oliveira Rodrigues de Faria; Zarpellon, Driellen Christine; Madruga, Camila Ferreira Leite; Rodrigues, José Augusto; Arrais, Cesar Augusto Galvão

    2017-01-01

    Using Fourier transform infrared analysis (FTIR) in vitro, the effects of varying radiant exposure (RE) values generated by second and third generation LED LCUs on the degree of conversion (DC) and maximum rate of polymerization (Rpmax) of an experimental Lucirin TPO-based RC were evaluated. 1 mm or 2 mm thick silicon molds were positioned on a horizontal attenuated total reflectance (ATR) unit attached to an infrared spectroscope. The RC was inserted into the molds and exposed to varying REs (18, 36 and 56 J/cm2) using second (Radii Plus, SDI) and third generation LED LCUs (Bluephase G2/Ivoclar Vivadent) or a quartz tungsten based LCU (Optilux 501/SDS Kerr). FTIR spectra (n=7) were recorded for 10 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm-1) immediately after their application to the ATR. The DC was calculated using standard techniques for observing changes in aliphatic to aromatic peak ratios both prior to, and 10 min after curing, as well as during each 1 second interval. DC and Rpmax data were analyzed using 3-way ANOVA and Tukey's post-hoc test (p=0.05). No significant difference in DC or Rpmax was observed between the 1 mm or 2 mm thick specimens when RE values were delivered by Optilux 501 or when the 1 mm thick composites were exposed to light emitted by Bluephase G2, which in turn promoted a lower DC when 18 J/cm2 (13 s) were delivered to the 2 mm thick specimens. Radii Plus promoted DC and Rpmax values close to zero under most conditions, while the delivery of 56 J/cm2 (40 s) resulted in low DC values. The third generation LCU provided an optimal polymerization of Lucirin TPO-based RC under most tested conditions, whereas the second generation LED-curing unit was useless regardless of the RE.

  19. Effect of different light-curing devices and aging procedures on composite knoop microhardness

    Directory of Open Access Journals (Sweden)

    Fernanda Regina Voltarelli

    2009-12-01

    Full Text Available The aim of this study was to evaluate the effect of light-curing devices (Halogen/HAL, Light Emitting Diodes/LED, Argon Laser/LAS and Plasma Arc/PAC and aging procedures (Mechanical Cycling/MC, Thermal Cycling/TC, Storage/S, MC+TC and MC+TC+S on the micro-hardness of bottom/B and top/T surfaces of 2-mm-high composite resin cylinders. The Knoop microhardness test (25 g, 20 s on both B and T was performed before and after each aging procedure. For B and T, before aging procedures, PAC showed reduced polymerization effectiveness when compared with HAL. In the T, after TC, PAC and LAS had also showed reduced polymerization effectiveness when compared to HAL and LED. For all light-curing devices, MC+TC+S and S affected the Knoop microhardness values. In the B, no difference could be observed among the aging procedures for PAC. From all light-curing units, PAC may have rendered composites of reduced quality and the storage aging procedures were the most harmful to the polymer hardness.

  20. Light curing through glass ceramics: effect of curing mode on micromechanical properties of dual-curing resin cements.

    Science.gov (United States)

    Flury, Simon; Lussi, Adrian; Hickel, Reinhard; Ilie, Nicoleta

    2014-04-01

    The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high

  1. Evaluation of wear rate of dental composites polymerized by halogen or LED light curing units

    Directory of Open Access Journals (Sweden)

    Alaghehmand H.

    2006-08-01

    Full Text Available Background and Aim: Sufficient polymerization is a critical factor to obtain optimum physical properties and clinical efficacy of resin restorations. The aim of this study was to evaluate wear rates of composite resins polymerized by two different systems Light Emitting Diodes (LED to and Halogen lamps. Materials and Methods: In this laboratory study, 20 specimens of A3 Tetric Ceram composite were placed in brass molds of 2*10*10 mm dimensions and cured for 40 seconds with 1 mm distance from surface. 10 specimens were cured with LED and the other 10 were cured with Halogen unit. A device with the ability to apply force was developed in order to test the wear of composites. After storage in distilled water for 10 days, the specimens were placed in the wear testing machine. A chrome cobalt stylus with 1.12 mm diameter was applied against the specimens surfaces with a load of 2 kg. The weight of each samples before and after 5000, 10000, 20000, 40000, 80000 and 120000 cycles was measured using an electronic balance with precision of 10-4 grams. Data were analyzed using t test and paired t test. P0.05. Conclusion: Based on the results of this study, LED and halogen light curing units resulted in a similar wear rate in composite resin restorations.

  2. Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite

    Directory of Open Access Journals (Sweden)

    Theobaldo JD

    2017-05-01

    Full Text Available Jéssica Dias Theobaldo,1 Flávio Henrique Baggio Aguiar,1 Núbia Inocencya Pavesi Pini,2 Débora Alves Nunes Leite Lima,1 Priscila Christiane Suzy Liporoni,3 Anderson Catelan3 1Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, 2Ingá University Center, Maringá, 3Departament of Dentistry, University of Taubaté, Taubaté, Brazil Objective: The aim of this study is to evaluate the effect of composite preheating and polymerization mode on degree of conversion (DC, microhardness (KHN, plasticization (P, and depth of polymerization (DP of a bulk fill composite.Methods: Forty disc-shaped samples (n = 5 of a bulk fill composite were prepared (5 × 4 mm thick and randomly divided into 4 groups according to light-curing unit (quartz–tungsten–halogen [QTH] or light-emitting diode [LED] and preheating temperature (23 or 54 °C. A control group was prepared with a flowable composite at room temperature. DC was determined using a Fourier transform infrared spectrometer, KHN was measured with a Knoop indenter, P was evaluated by percentage reduction of hardness after 24 h of ethanol storage, and DP was obtained by bottom/top ratio. Data were statistically analyzed by analysis of variance and Tukey’s test (α = 0.05.Results: Regardless of light-curing, the highest preheating temperature increased DC compared to room temperature on bottom surface. LED showed a higher DC compared to QTH. Overall, DC was higher on top surface than bottom. KHN, P, and DP were not affected by curing mode and temperature, and flowable composite showed similar KHN, and lower DC and P, compared to bulk fill.Conclusion: Composite preheating increased the polymerization degree of 4-mm-increment bulk fill, but it led to a higher plasticization compared to the conventional flowable composite evaluated. Keywords: composite resins, physicochemical phenomena, polymerization, hardness, heating

  3. Effectiveness of composite resin polymerization using light-emitting diodes (LEDs or halogen-based light-curing units Efetividade de polimerização de uma resina composta fotopolimerizada por diodos emissores de luz (LEDs ou luz halógena

    Directory of Open Access Journals (Sweden)

    Bianca Micali

    2004-09-01

    Full Text Available The clinical performance of composite resins is greatly influenced by the quality of the light-curing unit used. The aim of this study was to compare the efficiency of a commercial light-emitting diode (LED with that of a halogen-based light-curing unit by means of dye penetration of a micro hybrid composite resin. The composite resin evaluated was Filtek Z250 (3M Dental. The composite was filled into acrylic moulds that were randomly polymerized for 40 seconds by each of the light-emitting systems: light-emitting diode Ultraled (Dabi Atlante or halogen light Degulux (Degussa Hüls curing units. Immediately after polymerization, each specimen was individually immersed in 1 ml of 2% methylene blue solution at 37°C ± 2°C. After 24 hours, the specimens were rinsed under running distilled water for 1 minute and stored at 37°C ± 2°C at relative humidity for 24 hours. The composite resins were removed from the moulds and individually triturated before being immersed in new test tubes containing 1 ml of absolute alcohol for 24 hours. The solutions were filtered and centrifuged for 3 minutes at 4,000 rpm and the supernatant was used to determine absorbance in a spectrophotometer at 590 nm. To verify the differences between groups polymerized by LED or halogen light t-test was applied. No significant differences were found between composite resins light-cured by LED or halogen light-curing unit (p > 0.05. The commercially LED-based light-curing unit is as effective to polymerize hybrid composite resins as the halogen-based unit.A longevidade clínica das resinas compostas é grandemente influenciada pela qualidade do aparelho fotopolimerizador utilizado. O objetivo deste trabalho foi comparar a eficácia de um aparelho fotopolimerizador de diodos emissores de luz e a de um de luz halógena através do grau de penetração de um corante em uma resina composta micro-híbrida. A resina composta utilizada (Filtek Z250/3M Dental foi inserida em matrizes

  4. SEM and elemental analysis of composite resins

    International Nuclear Information System (INIS)

    Hosoda, H.; Yamada, T.; Inokoshi, S.

    1990-01-01

    Twenty-four chemically cured, 21 light-cured anterior, three light-cured anterior/posterior, and 18 light-cured posterior composite resins were examined using scanning electron microscopy, and the elemental composition of their filler particles was analyzed with an energy dispersive electron probe microanalyzer. According to the results obtained, the composite resins were divided into five groups (traditional, microfilled type, submicrofilled type, hybrid type, and semihybrid), with two additional hypothetical categories (microfilled and hybrid). Characteristics of each type were described with clinical indications for selective guidance of respective composite resins for clinical use

  5. Effect of light curing tip distance and resin shade on microhardness of a hybrid resin composite Efeito da distância da ponta do aparelho de fotoativação e da cor na microdureza superficial de um compósito híbrido

    Directory of Open Access Journals (Sweden)

    Flávio Henrique Baggio Aguiar

    2005-12-01

    Full Text Available Resin composite shades and resin composite polymerization performed with a distanced light tip are factors that can affect polymerization effectiveness. Thisin vitro study aimed to evaluate the influence of curing tip distance and resin shade on the microhardness of a hybrid resin composite (Z250 - 3M ESPE. Forty-five resin composite specimens were randomly prepared and divided into nine experimental groups (n = 5: three curing tip distances (2 mm, 4 mm, and 8 mm and three resin shades (A1, A3.5, and C2. All samples were polymerized with a continuous output at 550 mW/cm². After 24 hours, Knoop microhardness measurements were obtained on the top and bottom surfaces of the sample, with a load of 25 grams for 10 seconds. Five indentations were performed on each surface of each sample. Results showed that bottom surface samples light-cured at 2 mm and 4 mm presented significantly higher hardness values than samples light-cured at 8 mm. The resin shade A1 presented higher hardness values and was statistically different from C2. The resin shade A3.5 did not present statistical differences from A1 and C2. For the top surface, there were no statistical differences among the curing tip distances. For all experimental conditions, the top surface showed higher hardness values than the bottom surface. It was concluded that light curing tip distance and resin shade are important factors to be considered for obtaining adequate polymerization.A cor do compósito e a polimerização realizada com a ponta do aparelho de fotoativação distante da superfície do compósito são fatores que podem afetar a efetividade de polimerização. Assim, o objetivo deste estudo in vitro foi avaliar a influência desses fatores na microdureza superficial de um compósito híbrido (Z250 - 3M ESPE. Quarenta e cinco espécimes de compósito foram aleatoriamente preparados de acordo com os nove grupos experimentais (n = 5: três distâncias de fotoativação (2 mm, 4 mm e 8 mm e

  6. Shrinkage Characteristics of Experimental Polymer Containing Composites under Controlled Light Curing Modes

    Directory of Open Access Journals (Sweden)

    Alain Pefferkorn

    2012-01-01

    Full Text Available The adsorption of polymethylmethacrylate polymer of different molecular weight at the aerosil/ethyleneglycol- or 1,3 butanediol-dimethacrylate interfaces was determined to provide microstructured networks. Their structural characteristics were determined to be controlled by the amount of polymer initially supplied to the system. The sediment (the settled phase characteristics, determined as a function of the polymer concentration and the rate of the polymerization shrinkage determined for composite resins, obtained by extrusion of the sediment after centrifugation, were found to be correlated. The specific role of the adsorbed polymer was found to be differently perturbed with the supplementary supply of dimethacrylate based monomer additives. Particularly, the bisphenol A dimethacrylate that generated crystals within the sediment was found to impede the shrinkage along the crystal lateral faces and strongly limit the shrinkage along its basal faces. Addition of ethyleneglycol- or polyethylene-glycoldimethacrylate monomers was determined to modify the sedimentation characteristics of the aerosil suspension and the shrinkage properties of the composites. Finally, the effects of stepwise light curing methods with prolonged lighting-off periods were investigated and found to modify the development and the final values of the composite shrinkage.

  7. Palate Fracture Repair With Light-Cured Resin Splint: Technical Note.

    Science.gov (United States)

    Waldrop, Jimmy; Dale, Elizabeth L; Halsey, Jordan; Sargent, Larry A

    2015-10-01

    Palate fractures are rare, and their treatment is a matter of debate. Although some investigators have favored rigid plate fixation, others have reported successful treatment without it. Sagittal split and comminuted fractures can require rigid fixation to reduce the maxillary width; however, additional stabilization is needed. Also, palate repair without a splint is complicated by prolonged intermaxillary fixation (IMF), causing stiffness to the temporomandibular joint. We introduce a technique using a rapid light-cured resin (TRIAD TranSheet) frequently used by orthodontists for making dental retainers. Its use is similar to the splints traditionally created preoperatively, but obviates the need for making impressions, a model, and a molded splint. A series of 13 patients treated with this technique during a 5-year period is presented. The average duration of IMF was 4.7 weeks (range 3 to 6). The average duration of the palate splint was 8.4 weeks (range 5 to 12). One patient had malocclusion, but none had malunion, infection, or oronasal fistula. Our series has demonstrated a simple, cost-effective, and successful technique. It can be used alone or combined with rigid fixation and allows for a shortened duration of maxillomandibular fixation. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Influence of curing time, overlay material and thickness on three light-curing composites used for luting indirect composite restorations.

    Science.gov (United States)

    D'Arcangelo, Camillo; De Angelis, Francesco; Vadini, Mirco; Carluccio, Fabio; Vitalone, Laura Merla; D'Amario, Maurizio

    2012-08-01

    To assess the microhardness of three resin composites employed in the adhesive luting of indirect composite restorations and examine the influence of the overlay material and thickness as well as the curing time on polymerization rate. Three commercially available resin composites were selected: Enamel Plus HRI (Micerium) (ENA), Saremco ELS (Saremco Dental) (SAR), Esthet-X HD (Dentsply/DeTrey) (EST-X). Post-polymerized cylinders of 6 different thicknesses were produced and used as overlays: 2 mm, 3 mm, 3.5 mm, 4 mm, 5 mm, and 6 mm. Two-mm-thick disks were produced and employed as underlays. A standardized amount of composite paste was placed between the underlay and the overlay surfaces which were maintained at a fixed distance of 0.5 mm. Light curing of the luting composite layer was performed through the overlays for 40, 80, or 120 s. For each specimen, the composite to be cured, the cured overlay, and the underlay were made out of the same batch of resin composite. All specimens were assigned to three experimental groups on the basis of the resin composite used, and to subgroups on the basis of the overlay thickness and the curing time, resulting in 54 experimental subgroups (n = 5). Forty-five additional specimens, 15 for each material under investigation, were produced and subjected to 40, 80, or 120 s of light curing using a microscope glass as an overlay; they were assigned to 9 control subgroups (n = 5). Three Vicker's hardness (VH) indentations were performed on each specimen. Means and standard deviations were calculated. Data were statistically analyzed using 3-way ANOVA. Within the same material, VH values lower than 55% of control were not considered acceptable. The used material, the overlay thickness, and the curing time significantly influenced VH values. In the ENA group, acceptable hardness values were achieved with 3.5-mm or thinner overlays after 120 or 80 s curing time (VH 41.75 and 39.32, respectively), and with 2-mm overlays after 40 s (VH 54

  9. Temperature rise during adhesive and composite polymerization with different light-curing sources.

    Science.gov (United States)

    Pereira Da Silva, A; Alves Da Cunha, L; Pagani, C; De Mello Rode, S

    2010-05-01

    This study evaluated the temperature rise of the adhesive system Single Bond (SB) and the composite resins Filtek Z350 flow (Z) and Filtek Supreme (S), when polymerized by light-emitting diode (LED XL 3000) and quartz-tungsten halogen (QTH Biolux). Class V cavities (3 yen2 mm) were prepared in 80 bovine incisors under standardized conditions. The patients were divided as follows: G1: Control; G2: SB; G3: SB + Z; G4: SB + S. The groups were subdivided into two groups for polymerization (A: QTH, B: LED). Light curing was performed for 40 s and measurement of temperature changes during polymerization was performed with a thermocouple positioned inside the pulp chamber. Data were statistically analyzed using ANOVA and Tukey tests. The factors material (P<0.00001) and curing unit (P<0.00001) had significant influence on temperature rise. The lowest temperature increase (0.15 degrees C) was recorded in G2 B and the highest was induced in G1 A (0.75 degrees C, P<0.05). In all groups, lower pulp chamber temperature measurements were obtained when using LED compared to QTH (P<0.05). QTH caused greater increases in tooth temperature than LED. However, both sources did not increase pulpal temperature above the critical value that may cause pulpal damage.

  10. Glass transition and degree of conversion of a light-cured orthodontic composite

    Directory of Open Access Journals (Sweden)

    Michela M. D. S. Sostena

    2009-12-01

    Full Text Available OBJECTIVE: This study evaluated the glass transition temperature (Tg and degree of conversion (DC of a light-cured (Fill Magic versus a chemically cured (Concise orthodontic composite. MATERIAL AND METHODS: Anelastic relaxation spectroscopy was used for the first time to determine the Tg of a dental composite, while the DC was evaluated by infrared spectroscopy. The light-cured composite specimens were irradiated with a commercial LED light-curing unit using different exposure times (40, 90 and 120 s. RESULTS: Fill Magic presented lower Tg than Concise (35-84ºC versus 135ºC, but reached a higher DC. CONCLUSIONS: The results of this study suggest that Fill Magic has lower Tg than Concise due to its higher organic phase content, and that when this light-cured composite is used to bond orthodontic brackets, a minimum energy density of 7.8 J/cm² is necessary to reach adequate conversion level and obtain satisfactory adhesion.

  11. Effect of Light Curing Unit Characteristics on Light Intensity Output ...

    African Journals Online (AJOL)

    Background: Modern dental composite restorations are wholly dependent on the use of Visible Light Curing devices. The characteristics of these devices may influence the quality of composite resin restorations. Objective: To determine the characteristics of light curing units (LCUs) in dental clinics in Nairobi and their effect ...

  12. The Effect of Lithium Disilicate Ceramic Thickness and Translucency on Shear Bond Strength of Light-cured Resin Cement

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Moghaddas

    2017-09-01

    Full Text Available Introduction: To achieve acceptable clinical performance, a ceramic veneer must be bonded to enamel by well-polymerized resin cement. Among different factors, thickness and translucency of the ceramic may affect the resin cement polymerization. Thus, the current study evaluated the effect of the thickness and translucency of lithium disilicate ceramic on light-cured resin cement bond strength to enamel. Methods: In this laboratory study, 208 sound bovine incisors were equally divided into 16 groups (n = 13. The lithium disilicate ceramic cubes in four thicknesses (0.4, 0.6, 0.8 and 1 mm with four translucencies (high and medium opaque, high and low translucent were fabricated and bonded to prepared enamel surfaces using a light-cured translucent resin cement according to manufacturer recommendations. After 5000 cycles of thermocycling, the bonded specimens were placed in a universal testing machine and loaded to the point of fracture. To determine the mode of failure, each sample was observed under a stereomicroscope. Data were recorded and analyzed by Shapiro-Wilk test and two-way analysis of variance (ANOVA. Results: The ceramic thickness and translucency could not significantly affect shear bond strength (SBS of resin cement to enamel (p = 0.17 and p = 0.097, respectively.  The Adhesive and ceramic cohesive failures were reported as the maximum and minimum mode of failure, respectively. Conclusion: The SBS of the light-cured resin cement bonding to enamel and lithium disilicate ceramic was not affected by the translucency of ceramics having a thickness of less than 1 mm.

  13. Comparison between two methods to evaluate temperature changes produced by composite light curing units and polymerization techniques.

    Science.gov (United States)

    Loureiro, F H F; Consani, S; Guiraldo, R D; Consani, R L X; Berger, S B; Carvalho, R V; Correr-Sobrinho, L; Sinhoreti, M A C

    2011-10-01

    This study evaluated the temperature change into the pulp chamber during the light curing of composite resin by direct (bovine tooth) and indirect (matrix) methods. Direct method: fifty standardized cavities (2x2x2 mm) were prepared in bovine incisors, which were randomly assigned to evaluation of the temperature changes in the pulp chamber. Indirect method: temperature changes were evaluated through a dentine slice of 1.0 mm thickness in a elastomer cubic mold (2x2x2 mm). Filtek Z250 composite resin (3M/ESPE) was photo-activated using three light curing units: quartz-tungsten-halogen (QTH) by continuous, soft-start or intermittent light modulations; light emitting diode (LED); and plasma arc-curing (PAC). Ten groups (N.=10) were established according to technique evaluation and photo-activation methods. All experiments were carried out in a controlled environment (37 °C and 50 ± 10% relative humidity). The temperature changes were recorded using a digital thermometer attached to a type-K thermocouple in contact with the dentin slice (indirect method) or in contact with the axial wall (dentin) of pulp chamber (direct method). The results were submitted to ANOVA and Tukey's test (α=0.05). Temperature changes were statistically higher for the matrix indirect method (2.56 ºC) than bovine teeth direct method (1.17ºC). The change temperature was statistically higher for the PAC (1.77 ºC) when compared to other photo-activation modes in bovine teeth direct method. The two methods of temperature evaluation were different, however indirect method detected the higher temperature increase. Higher energy density arising from the light curing units and polymerization techniques promoted higher temperature increase.

  14. Effect of different light curing methods on mechanical and physical properties of resin-cements polymerized through ceramic discs

    Directory of Open Access Journals (Sweden)

    Isil Cekic-nagas

    2011-08-01

    Full Text Available OBJECTIVE: The aim of this study was to compare the polimerization ability of three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc and their exposure modes (high-intensity and soft-start by determination of microhardness, water sorption and solubility, and diametral tensile strength of 5 dual-curing resin cements. Material and methods: A total of 720 disc-shaped samples (1 mm height and 5 mm diameter were prepared from different dual-curing resin cements (Duolink, Nexus, Bifix-QM, Panavia F and RelyX Unicem. Photoactivation was performed by using quartz tungsten halogen (high-power and soft-up modes, light-emitting diode (standard and exponential modes and plasma arc (normal and ramp-curing modes curing units through ceramic discs. Then the samples (n=8/per group were stored dry in the dark at 37°C for 24 h. The Vickers hardness test was performed on the resin cement layer with a microhardness tester (Shimadzu HMV. For sorption and solubility tests; the samples were stored in a desiccator at 37°C and weighed to a constant mass. The samples were weighed both before and after being immersed in deionized water for different periods of time (24 h and 7 days and being desiccated. The diametral tensile strength of the samples was tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by nonparametric Kruskal Wallis and Mann-Whitney U tests at 5% significance level. RESULTS: Resin cement and light-curing unit had significant effects (p0.05 were obtained with different modes of LCUs. Conclusion: The study indicates that polymerization of resin cements with different light-curing units may result in various polymer structures, and consequently different mechanical and physical properties.

  15. In vitro comparative study of share bond of light cured composite resins with halogen light and argon laser, using stainless steel brackets on human premolars; Estudo comparativo in vitro da capacidade adesiva da resina fotoativada pela luz halogena e por laser de argonio, utilizando-se brackets metalicos em pre-molares humanos

    Energy Technology Data Exchange (ETDEWEB)

    Carillo, Vitoria Eugenia Bismarck

    2004-07-01

    The aim of this study in vitro was to compare the share bond strength of the light-cured composite resins Transbond XT (Unitek), with halogen light and argon laser. The Adhesive Remmant Index (ARI) was also investigated. The brackets Dyna lock (3M-UNITEK) were bonded to 75 human premolars, divided into 5 groups (15 each) according to time and the polymerization: Group H20, 15 brackets bonded with halogen light for 20s (10s both sides); Group H40, 15 brackets bonded with halogen light for 40s (20s both sides); Group A40, 15 brackets bonded with argon laser for 40s (20s both sides); Group A20, 15 brackets bonded with argon laser for 20s (10s both sides); Group A10, 15 brackets bonded with argon laser for 10s (5s both sides). The pulpal temperature changes were determined during a polymerization, not exceeding 3,5 deg C. After bonding, the teeth were submitted to a thermo cycled of 700 cycles between 5 deg C and 55 deg C, to simulate the consuming that the light cured composite resin would have in a short space of time. The specimens were then placed in PVC ring and embedded in acrylic resin (Aero-Jet). The tensile bond strength test was performed on an Universal Machine set at a crosshead speed of 1,5 mm/min, and for each rupture we registered a graphic and the best load required in Newtons, was converted to MPa and kgf. The share bond strength showed bigger values for the exposure time of 20 seconds, for the Group bonded for halogen light (H20), 7,45 kgf (7,64 MPa) and for argon laser 7,50 kgf (7,69 MPa); lesser values for the exposure time of 40s for the Group with halogen light (H40), 6,15 kgf (6,30 MPa) and argon laser Group (A40), 6,20 kgf (6,35 MPa) 0; and A10, 4,85 kgf (4,97 MPa). In the ARI Index, only A40 Group showed the 1 Index, with statistical results. In this Group, less than half of the remainder adhesive stayed on the surface of the enamel, conferring specimens failed at the enamel-adhesive interface. The results of the in vitro study demonstrate that

  16. Comparison the effect of two types of light curing units with different modes on microleakage of composite filling in Cl II restorations

    Directory of Open Access Journals (Sweden)

    Esmail Yassini

    2017-12-01

    Conclusion: The results showed that both light curing devices were effective and no significant difference between different modes of LED light curing device on microleakage of class II composite restorations was found.

  17. Influence of light curing unit and ceramic thickness on temperature rise during resin cement photo-activation.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Mastrofrancisco, Sarina; Consani, Rafael Leonardo Xediek; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2008-11-01

    The aim of this study was to determine the effect of different ceramic thickness on heat generation during resin cement photo-activation by QTH (quartz-tungsten-halogen), LED (light emitting diode), and PAC (plasma arc-curing) LCUs (light curing units). The resin cement used was Rely X ARC (3M-ESPE), and the ceramic was IPS Empress Esthetic (Ivoclar-Vivadent), of which 0.7-, 1.4- and 2.0-mm thick disks, 0.8 mm in diameter were made. Temperature increase was recorded with a type-K thermocouple connected to a digital thermometer (Iopetherm 46). An acrylic resin base was built to guide the thermocouple and support the 1.0-mm thick dentin disk. A 0.1-mm thick black adhesive paper matrix with a perforation 6 mm in diameter was placed on the dentin to contain the resin cement and support the ceramic disks of different thicknesses. Three LCUs were used: QTH, LED and PAC. Nine groups were formed (n=10) according to the interaction: 3 ceramic thicknesses, 1 resin cement and 3 photo-activation methods. Temperature increase data were submitted to Tukey's test (5%). For all ceramic thicknesses, a statistically significant difference in temperature increase was observed among the LCUs, with the highest mean value for the QTH LCU (p0.05). The interaction of higher energy density with smaller ceramic thickness showed higher temperature increase values.

  18. A comparison of the accuracy of patterns processed from an inlay casting wax, an auto-polymerized resin and a light-cured resin pattern material.

    Science.gov (United States)

    Rajagopal, Praveen; Chitre, Vidya; Aras, Meena A

    2012-01-01

    Traditionally, inlay casting waxes have been used to fabricate patterns for castings. Newer resin pattern materials offer greater rigidity and strength, allowing easier laboratory and intraoral adjustment without the fear of pattern damage. They also claim to possess a greater dimensional stability when compared to inlay wax. This study attempted to determine and compare the marginal accuracy of patterns fabricated from an inlay casting wax, an autopolymerized pattern resin and a light polymerized pattern resin on storage off the die for varying time intervals. Ten patterns each were fabricated from an inlay casting wax (GC Corp., Tokyo, Japan), an autopolymerized resin pattern material (Pattern resin, GC Corp, Tokyo, Japan) and a light-cured resin pattern material (Palavit GLC, Hereaus Kulzer GmbH, Germany). The completed patterns were stored off the die at room temperature. Marginal gaps were evaluated by reseating the patterns on their respective dies and observing it under a stereomicroscope at 1, 12, and 24 h intervals after pattern fabrication. The results revealed that the inlay wax showed a significantly greater marginal discrepancy at the 12 and 24 h intervals. The autopolymerized resin showed an initial (at 1 h) marginal discrepancy slightly greater than inlay wax, but showed a significantly less marginal gap (as compared to inlay wax) at the other two time intervals. The light-cured resin proved to be significantly more dimensionally stable, and showed minimal change during the storage period. The resin pattern materials studied, undergo a significantly less dimensional change than the inlay waxes on prolonged storage. They would possibly be a better alternative to inlay wax in situations requiring high precision or when delayed investment (more than 1 h) of patterns can be expected.

  19. Effect of light-curing units, post-cured time and shade of resin cement on knoop hardness.

    Science.gov (United States)

    Reges, Rogério Vieira; Costa, Ana Rosa; Correr, Américo Bortolazzo; Piva, Evandro; Puppin-Rontani, Regina Maria; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2009-01-01

    The aim of this study was to evaluate the Knoop hardness after 15 min and 24 h of different shades of a dual-cured resin-based cement after indirect photoactivation (ceramic restoration) with 2 light-curing units (LCUs). The resin cement Variolink II (Ivoclar Vivadent) shade XL, A2, A3 and opaque were mixed with the catalyst paste and inserted into a black Teflon mold (5 mm diameter x 1 mm high). A transparent strip was placed over the mold and a ceramic disc (Duceram Plus, shade A3) was positioned over the resin cement. Light-activation was performed through the ceramic for 40 s using quartz-tungsten-halogen (QTH) (XL 2500; 3M ESPE) or light-emitting diode (LED) (Ultrablue Is, DMC) LCUs with power density of 615 and 610 mW/cm(2), respectively. The Koop hardness was measured using a microhardness tester HMV 2 (Shimadzu) after 15 min or 24 h. Four indentations were made in each specimen. Data were subjected to ANOVA and Tukey's test (alpha=0.05). The QTH LCU provided significantly higher (pcement showed lower Knoop hardness than the other shades for both LCUs and post-cure times.

  20. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

    Directory of Open Access Journals (Sweden)

    Adriano Fonseca Lima

    2016-11-01

    Full Text Available Objectives In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs on the degree of conversion (DC and the mechanical properties of resin cements. Materials and Methods Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG, according to the different radiant exposures (5, 10, and 20 J/cm2 and two LCUs (single-peak and polywave. The specimens were made (7 mm in length × 2 mm in width × 1 mm in height using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA and post hoc Tukey's test were performed. Results No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

  1. EVALUATION OF DIELECTRIC CURING MONITORING INVESTIGATING LIGHT-CURING DENTAL FILLING COMPOSITES

    Directory of Open Access Journals (Sweden)

    Johannes Steinhaus

    2011-05-01

    Full Text Available The aim of this study is the evaluation of a dielectric analysis (DEA method monitoring the curing behaviour of a light curing dental filling material in real-time. The evaluation is to extract the influence of light intensity on the photo-curing process of dental composite filling materials. The intensity change is obtained by measuring the curing process at different sample depth. It could be shown that increasing sample thickness, and therefore exponentially decreasing light intensity, causes a proportional decrease in the initial curing rate. Nevertheless, the results give rise to the assumption that lower illumination intensities over a long period cause higher overall conversion, and thus better mechanical properties. This would allow for predictions of the impact of different curing-rates on the final mechanical properties.

  2. Effect of different photo-initiators and light curing units on degree of conversion of composites.

    Science.gov (United States)

    Brandt, William Cunha; Schneider, Luis Felipe Jochims; Frollini, Elisabete; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to evaluate: (i) the absorption of photo-initiators and emission spectra of light curing units (LCUs); and (ii) the degree of conversion (DC) of experimental composites formulated with different photo-initiators when activated by different LCUs. Blends of BisGMA, UDMA, BisEMA and TEGDMA with camphorquinone (CQ) and/ or 1-phenyl-1,2-propanedione (PPD) were prepared. Dimethylaminoethyl methacrylate (DMAEMA) was used as co-initiator. Each mixture was loaded with 65 wt% of silanated filler particles. One quartz-tungsten-halogen - QTH (XL 2500, 3M/ESPE) and two lightemitting diode (LED) LCUs (UltraBlue IS, DMC and UltraLume LED 5, Ultradent) were used for activation procedures. Irradiance (mW/cm²) was calculated by the ratio of the output power by the area of the tip, and spectral distribution with a spectrometer (USB 2000). The absorption curve of each photo-initiator was determined using a spectrophotometer (Varian Cary 5G). DC was assessed by Fourier transformed infrared spectroscopy. Data were submitted to two-way ANOVA and Tukey's test (5%). No significant difference was found for DC values when using LED LCUs regardless of the photo-initiator type. However, PPD showed significantly lower DC values than composites with CQ when irradiated with QTH. PPD produced DC values similar to those of CQ, but it was dependent on the LCU type.

  3. [Ru(bipy)3]2+ nanoparticle-incorporate dental light cure resin to promote photobiomodulation therapy for enhanced vital pulp tissue repair

    Science.gov (United States)

    Mosca, Rodrigo C.; Young, Nicholas; Zeituni, Carlos A.; Arany, Praveen R.

    2018-02-01

    The use of nanoparticle on dental light cure resin is not new, currently several compounds (nanoadditives) are used to promote better communication between the restorative material and biological tissues. The interest for this application is growing up to enhance mechanical proprieties to dental tissue cells regeneration. Bioactive nanoparticles and complex compounds with multiple functions are the major target for optimizing the restorative materials. In this work, we incorporate [Ru(bipy)3]2+ nanoparticles, that absorbs energy at 450 nm (blue-light) and emits strongly at 620 nm (red-light), in PLGA Microspheres and insert it in Dental Light Cure Resin to promote the Photobiomodulation Therapy (PBM) effects to accelerate dental pulp repair by in vitro using cytotoxicity and proliferation assay.

  4. Effect of the irradiance distribution from light curing units on the local micro-hardness of the surface of dental resins.

    Science.gov (United States)

    Haenel, Thomas; Hausnerová, Berenika; Steinhaus, Johannes; Price, Richard B T; Sullivan, Braden; Moeginger, Bernhard

    2015-02-01

    An inhomogeneous irradiance distribution from a light-curing unit (LCU) can locally cause inhomogeneous curing with locally inadequately cured and/or over-cured areas causing e.g. monomer elution or internal shrinkage stresses, and thus reduce the lifetime of dental resin based composite (RBC) restorations. The aim of the study is to determine both the irradiance distribution of two light curing units (LCUs) and its influence on the local mechanical properties of a RBC. Specimens of Arabesk TOP OA2 were irradiated for 5, 20, and 80s using a Bluephase® 20i LCU in the Low mode (666mW/cm(2)), in the Turbo mode (2222mW/cm(2)) and a Celalux® 2 (1264mW/cm(2)). The degree of conversion (DC) was determined with an ATR-FTIR. The Knoop micro-hardness (average of five specimens) was measured on the specimen surface after 24h of dark and dry storage at room temperature. The irradiance distribution affected the hardness distribution across the surface of the specimens. The hardness distribution corresponded well to the inhomogeneous irradiance distributions of the LCU. The highest reaction rates occurred after approximately 2s light exposure. A DC of 40% was reached after 3.6 or 5.7s, depending on the LCU. The inhomogeneous hardness distribution was still evident after 80s of light exposure. The irradiance distribution from a LCU is reflected in the hardness distribution across the surface. Irradiance level of the LCU and light exposure time do not affect the pattern of the hardness distribution--only the hardness level. In areas of low irradiation this may result in inadequate resin polymerization, poor physical properties, and hence premature failure of the restorations as they are usually much smaller than the investigated specimens. It has to be stressed that inhomogeneous does not necessarily mean poor if in all areas of the restoration enough light intensity is introduced to achieve a high degree of cure. Copyright © 2014 Academy of Dental Materials. Published by

  5. Effect of Rebonding on the Bond Strength of Orthodontic Tubes: A Comparison of Light Cure Adhesive and Resin-Modified Glass Ionomer Cement In Vitro

    Directory of Open Access Journals (Sweden)

    Monika Aleksiejunaite

    2017-01-01

    Full Text Available The purpose of this study was to determine the impact of different enamel preparation procedures and compare light cure composite (LCC and resin-modified glass ionomer (RMGI on the bond strength of orthodontic metal tubes rebonded to the enamel. Twenty human molars were divided into two groups (n=10. Tubes were bonded using LCC (Transbond XT in group 1 and RMGI (Fuji Ortho LC in group 2. The tubes in each group were bonded following manufacturers’ instructions (experiment I and then debonded using testing machine. Then, the same brackets were sandblasted and rebonded twice. Before the first rebonding, the enamel was cleaned using carbide bur (experiment II and before second rebonding, it was cleaned using carbide bur and soda blasted (experiment III. Mann–Whitney and Wilcoxon signed-rank tests showed no significant difference between RMGI and LCC bond strengths in case of normal bonding and rebonding, when enamel was cleaned using carbide bur before rebonding. Enamel soda blasting before rebonding significantly increased RMGI tensile bond strength value compared to LLC (p<0.05. LCC and RMGI (especially RMGI provide sufficient bond strengths for rebonding of molar tubes, when residual adhesive from previous bonding is removed and enamel soda blasted.

  6. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  7. A comparative evaluation of the marginal adaptation of a thermoplastic resin, a light cured wax and an inlay casting wax on stone dies: An in vitro study.

    Science.gov (United States)

    Gopalan, Reji P; Nair, Vivek V; Harshakumar, K; Ravichandran, R; Lylajam, S; Viswambaran, Prasanth

    2018-01-01

    Different pattern materials do not produce copings with satisfactory, marginal accuracy when used on stone dies at varying time intervals. The purpose of this study was to evaluate and compare the vertical marginal accuracy of patterns formed from three materials, namely, thermoplastic resin, light cured wax and inlay casting wax at three-time intervals of 1, 12, and 24 h. A master die (zirconia abutment mimicking a prepared permanent maxillary central incisor) and metal sleeve (direct metal laser sintering crown #11) were fabricated. A total of 30 stone dies were obtained from the master die. Ten patterns were made each from the three materials and stored off the die at room temperature. The vertical marginal gaps were measured using digital microscope at 1, 12, and 24 h after reseating with gentle finger pressure. The results revealed a significant statistical difference in the marginal adaptation of three materials at all the three-time intervals. Light cured wax was found to be most accurate at all time intervals, followed by thermoplastic resin and inlay casting wax. Furthermore, there was a significant difference between all pairs of materials. The change in vertical marginal gap from 1 to 24 h between thermoplastic resin and light cured wax was not statistically significant. The marginal adaptation of all the three materials used, was well within the acceptable range of 25-70 μm. The resin pattern materials studied revealed significantly less dimensional change than inlay casting wax on storage at 1, 12, and 24 h time intervals. They may be employed in situations where high precision and delayed investing is expected.

  8. Factors affecting marginal integrity of class II bulk-fill composite resin restorations

    Science.gov (United States)

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Jafari Navimipour, Elmira; Ajami, Amir Ahmad; Ghiasvand, Negar; Savadi Oskoee, Ayda

    2017-01-01

    Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH) light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (Pcomposite resin type and margin location (Pcomposite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04) Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins. PMID:28748051

  9. The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stress

    Directory of Open Access Journals (Sweden)

    Kinga Bociong

    2017-09-01

    Full Text Available The contraction stress generated during the photopolymerization of resin dental composites is the major disadvantage. The water sorption in the oral environment should counteract the contraction stress. The purpose was to evaluate the influence of the water sorption of composite materials on polymerization shrinkage stress generated at the restoration-tooth interface. The following materials were tested: Filtek Ultimate, Gradia Direct LoFlo, Heliomolar Flow, Tetric EvoCeram, Tetric EvoCeram Bulk Fill, Tetric EvoFlow, Tetric EvoFlow Bulk Fill, X-tra Base, Venus BulkFil, and Ceram.X One. The shrinkage stress was measured immediately after curing and after: 0.5 h, 24 h, 72 h, 96 h, 168 h, 240 h, 336 h, 504 h, 672 h, and 1344 h by means of photoelastic study. Moreover, water sorption and solubility were evaluated. Material samples were weighted on scale in time intervals to measure the water absorbency and the dynamic of this process. The tested materials during polymerization generated shrinkage stresses ranging from 6.3 MPa to 12.5 MPa. Upon water conditioning (56 days, the decrease in shrinkage strain (not less than 48% was observed. The decrease in value stress in time is material-dependent.

  10. Efficiency of light curing units in a government dental school.

    Science.gov (United States)

    Nassar, Hani M; Ajaj, Reem; Hasanain, Fatin

    2018-01-01

    The light intensity of a light-curing unit is a crucial factor that affects the clinical longevity of resin composites. This study aimed to investigate the efficiency of light-curing units in use at a local governmental dental school for curing conventional and bulk-fill resin materials. A total of 166 light-curing units at three locations were examined, and the brand, type, clinic location, diameter of curing tip, tip cleanliness (using a visual score), and the output (in mW/cm 2 using a digital radiometer) were recorded. Only 23.5% of the units examined had clean tips, with the graduate student clinical area containing the highest percentage of clean tips. Further, tips with poor cleanliness score values were associated with significantly lower output intensities. A small percentage (9.4%) of units was capable of producing intensities higher than 1,200 mW/cm 2 and lower than 600 mW/cm 2 (7.6%). The majority of the low intensity units were located in the undergraduate student area, which also contained the highest number of units with intensities between 900 and 1,200 mW/cm 2 . The output of all the units in service was satisfactory for curing conventional resin composites, and most units were capable of curing bulk-fill resin materials.

  11. Comparison of silorane and methacrylate-based composites on the polymerization heat generated with different light-curing units and dentin thicknesses.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Consani, Rafael Leonardo Xediek; Berger, Sandrine Bittencourt; Correr, Américo Bortolazzo; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2013-01-01

    This study evaluated the temperature variation in the pulp chamber during photoactivation of two restorative composite resins (Filtek P90 silorane-based composite and Heliomolar methacrylate-based composite) with either a quartz-tungsten-halogen (QTH) or light-emitting diodes (LED) light-curing unit (LCU) and using dentin thicknesses (0.5 and 1.0 mm). Standardized cavities (2x2x2 mm) were prepared in 80 bovine incisors, which were randomly assigned to 8 groups according to the photoactivation method and dentin thickness. Filtek P90 and Heliomolar (both in shade A3) were used with their respective adhesive systems (P90 self-etch primer / P90 adhesive bond and Excite adhesive). All experiments were carried out in a controlled environment (37°C). The temperature variations (°C) were recorded using a digital thermometer attached to a K-type thermocouple. The results were analyzed statistically by ANOVA and Tukey's test (α=0.05). For composite/dentin thickness interaction, temperature increase was significantly higher in 0.5 mm dentin thickness (40.07°C) compared with 1.0 mm dentin thickness (39.61°C) for Filtek P90. For composite/LCU interaction, the temperature increase was significantly higher for Filtek P90 (39.21°C - QTH and 40.47°C - LED) compared with Heliomolar (38.40°C - QTH and 39.30°C - LED). The silorane-based composite promoted higher temperature increase in the pulp chamber than the methacrylate-based composite.

  12. In vitro analysis of shear bond strength and adhesive remnant index comparing light curing and self-curing composites

    Directory of Open Access Journals (Sweden)

    Murilo Gaby Neves

    2013-06-01

    Full Text Available OBJECTIVE: To evaluate, in vitro, the shear bond strength of self-curing (ConciseTM - 3M and Alpha Plast - DFL and light-curing composites (TransbondTM XT - 3M and Natural Ortho - DFL used in orthodontics bonding, associated to Morelli metal brackets, with further analysis of adhesive remnant index (ARI and enamel condition in scanning electron microscopy (SEM. METHODS: Forty human premolars, just extracted and stored in physiologic solution 0.9 % were used. Randomly, these samples were divided in four groups: G1 group, the brackets were bonded with ConciseTM - 3M composite; in G2 group, Alpha Plast - DFL composite was used; in G3 group, TransbondTM XT - 3M was used; in G4 group, Natural Ortho - DFL composite was used. These groups were submitted to shear strength tests in universal testing machine, at 0.5 mm per minute speed. RESULTS: Statistical difference between G3 and G4 groups was recorded, as G4 showing higher strength resistance than G3. In the other hand, there were no statistical differences between G1, G2 and G3 and G1, G2 and G4 groups. ARI analysis showed that there was no statistical difference between the groups, and low scores were recorded among then. The scanning electron microscopy (SEM analysis revealed the debonding spots and the enamel surface integrity. CONCLUSIONS: Shear bond strength was satisfactory and similar between the composites, however Natural Ortho - DFL revealed best comparing to TransbondTM XT - 3M.

  13. Degree of conversion of resin-based materials cured with dual-peak or single-peak LED light-curing units.

    Science.gov (United States)

    Lucey, Siobhan M; Santini, Ario; Roebuck, Elizabeth M

    2015-03-01

    There is a lack of data on polymerization of resin-based materials (RBMs) used in paediatric dentistry, using dual-peak light-emitting diode (LED) light-curing units (LCUs). To evaluate the degree of conversion (DC) of RBMs cured with dual-peak or single-peak LED LCUs. Samples of Vit-l-escence (Ultradent) and Herculite XRV Ultra (Kerr) and fissure sealants Delton Clear and Delton Opaque (Dentsply) were prepared (n = 3 per group) and cured with either one of two dual-peak LCUs (bluephase(®) G2; Ivoclar Vivadent or Valo; Ultradent) or a single-peak (bluephase(®) ; Ivoclar Vivadent). High-performance liquid chromatography and nuclear magnetic resonance spectroscopy were used to confirm the presence or absence of initiators other than camphorquinone. The DC was determined using micro-Raman spectroscopy. Data were analysed using general linear model anova; α = 0.05. With Herculite XRV Ultra, the single-peak LCU gave higher DC values than either of the two dual-peak LCUs (P < 0.05). Both fissure sealants showed higher DC compared with the two RBMs (P < 0.05); the DC at the bottom of the clear sealant was greater than the opaque sealant, (P < 0.05). 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin(®) TPO) was found only in Vit-l-escence. Dual-peak LED LCUs may not be best suited for curing non-Lucirin(®) TPO-containing materials. A clear sealant showed a better cure throughout the material and may be more appropriate than opaque versions in deep fissures. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Does the light source affect the repairability of composite resins?

    Science.gov (United States)

    Karaman, Emel; Gönülol, Nihan

    2014-01-01

    The aim of this study was to examine the effect of the light source on the microshear bond strength of different composite resins repaired with the same substrate. Thirty cylindrical specimens of each composite resin--Filtek Silorane, Filtek Z550 (3M ESPE), Gradia Direct Anterior (GC), and Aelite Posterior (BISCO)--were prepared and light-cured with a QTH light curing unit (LCU). The specimens were aged by thermal cycling and divided into three subgroups according to the light source used--QTH, LED, or PAC (n = 10). They were repaired with the same substrate and a Clearfil Repair Kit (Kuraray). The specimens were light-cured and aged for 1 week in distilled water at 37 °C. The microshear bond strength and failure modes were assessed. There was no significant difference in the microshear bond strength values among the composite resins, except for the Filtek Silorane group that showed significantly lower bond strength values when polymerized with the PAC unit compared to the QTH or LED unit. In conclusion, previously placed dimethacrylate-based composites can be repaired with different light sources; however, if the composite to be repaired is silorane-based, then using a QTH or LED device may be the best option.

  15. Cytotoxicity and cytokine expression induced by silorane and methacrylate-based composite resins.

    Science.gov (United States)

    Longo, Daniele Lucca; Paula-Silva, Francisco Wanderley Garcia; Faccioli, Lucia Helena; Gatón-Hernández, Patrícia Maria; Queiroz, Alexandra Mussolino de; Silva, Léa Assed Bezerra da

    2016-01-01

    The aim of this study was to evaluate cytotoxicity and cytokine production induced by light-cured or non-light-cured methacrylate-based and silorane composite resins in RAW 264.7 macrophages. Cells were stimulated with the extracts from light-cured or non-light-cured composite resins. After incubation for 24 h, cytotoxicity was assessed with the lactate dehydrogenase (LDH) and methyl thiazolyl tetrazolium (MTT) assays, and total protein was quantified using the Lowry method. TNF-α detection was examined with an enzyme-linked immunosorbent assay (ELISA) conducted with cell supernatants after cell stimulation for 6, 12, and 24 h. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's post hoc test (α=0.05). KaloreTM and FiltekTM Silorane were cytotoxic with or without light curing (p0.05). However, after 24 h FiltekTM Silorane inhibited the production of TNF-α (p<0.05). KaloreTM and FiltekTM Silorane were cytotoxic regardless of light curing. The extract obtained from KaloreTM after 15 days of incubation stimulated the production of TNF-α, unlike that obtained from FiltekTM Silorane.

  16. Degree of conversion of resin-based orthodontic bonding materials cured with single-wave or dual-wave LED light-curing units.

    Science.gov (United States)

    Santini, Ario; McGuinness, Niall; Nor, Noor Azreen Md

    2014-12-01

    To evaluate the degree of conversion (DC) of orthodontic adhesives (RBOAs) cured with dual peak or single peak light-emitting diode (LED) light-curing units (LCUs). Standardized samples of RBOAs, APCPlus, Opal® Bond® and LightBond(TM) were prepared (n = 3) and cured with one of two dual peak LCUs (bluephase® G2-Ivoclar-Vivadent or Valo-Ultradent) or a single peak control (bluephase® Ivoclar-Vivadent). The DC was determined using micro-Raman spectroscopy. The presence or absence of initiators other than camphorquinone was confirmed by high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. Data were analysed using general linear model in Minitab 15 (Minitab Inc., State College, PA, USA). There was no significant difference in DC between APCPlus, and Opal® Bond (confidence interval: -3.89- to 2.48); significant difference between APCPlus and LightBond(TM) (-18.55 to -12.18) and Opal® Bond and Lightbond(TM) (-17.85 to -11.48); no significant difference between bluephase (single peak) and dual peak LCUs, bluephase G2 (-4.896 to 1.476) and Valo (-3.935 to 2.437) and between bluephase G2 and Valo (-2.225 to 4.147). APCPlus and Opal® Bond showed higher DC values than LightBond(TM) (P<0.05). Lucirin® TPO was found only in Vit-l-escence. Lucirin® TPO was not identified in the three orthodontic adhesives. All three LCUs performed similarly with the orthodontic adhesives: orthodontic adhesive make had a greater effect on DC than the LCUs. It is strongly suggested that manufacturers of resin-based orthodontic materials test report whether or not dual peak LCUs should be used with their materials. Dual peak LED LCUs, though suitable in the majority of cases, may not be recommended for certain non Lucirin® TPO-containing materials. © 2014 British Orthodontic Society.

  17. Influence of surface roughness on streptococcal adhesion forces to composite resins

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Ren, Yijin

    OBJECTIVE: To determine streptococcal adhesion forces with composite resins with different surface roughness. METHODS: Polishing and grinding were applied to obtain smooth (roughness 20 nm), moderately rough (150 nm) and rough (350 nm) surfaces of two orthodontic, light-cured composites. Adhesion

  18. Short communication: pre- and co-curing effect of adhesives on shear bond strengths of composite resins to primary enamel and dentine: an in vitro study.

    Science.gov (United States)

    Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V

    2011-12-01

    To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (padhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.

  19. Assessing the irradiance delivered from light-curing units in private dental offices in Jordan.

    Science.gov (United States)

    Maghaireh, Ghada A; Alzraikat, Hanan; Taha, Nessrin A

    2013-08-01

    The authors conducted a study to examine the irradiance from light-curing units (LCUs) used in dental offices in Jordan. Two of the authors visited 295 private dental offices (15 percent) in Jordan and collected the following information about the LCUs: age, type (quartz-tungsten-halogen or light-emitting diode), date of last maintenance, type of maintenance, last date of use, number of times used during the day, availability of a radiometer, exposure time for each resin-based composite increment, size of light-curing tips and presence of resin-based composite on the tips. The authors used a radiometer to measure the irradiance from the LCUs. They used linear regression with stepwise correlation for the statistical analysis. The authors set the minimum acceptable irradiance at 300 milliwatts/square centimeter. The mean irradiance of the 295 LCUs examined was 361 mW/cm(2), and 136 LCUs (46.1 percent) delivered an irradiance of less than 300 mW/cm(2). The unit's age, type and presence of resin-based composite on the light-curing tips had a significant effect on the irradiance (P ≤ .001). Only 37 of the 141 quartz-tungsten-halogen units (26.2 percent) and 122 of the 154 light-emitting diode units (79.2 percent) delivered at least 300 mW/cm(2). Resin contamination on the light-curing tips had a significant effect on the irradiance delivered. The irradiance from the LCUs decreased with use. Practical Implications. The irradiance from many of the units in this study was less than 300 mW/cm(2), which may affect the quality of resin-based composite restorations. Dentists should monitor the performance of the LCUs in their offices weekly.

  20. Relationship between Color and Translucency of Multishaded Dental Composite Resins

    Directory of Open Access Journals (Sweden)

    Homan Naeimi Akbar

    2012-01-01

    Full Text Available The aim of the present study was to compare the translucency of different shades of two highly aesthetic multilayered restorative composite resins. In total nine shades from Esthet.X and ten shades from Filtek Supreme composite resins were chosen. Discs of each shade were prepared (N=3 and light-cured. Total and diffuse transmittance values for each sample were measured. Statistical analysis showed that the opaque dentine shades of both composites were the least translucent and the enamel shades had the highest translucency. There was a significant decrease in translucency from A2 to C2 of regular body shades and also from A4 to C4 of opaque dentine shades of Esthet.X composite resin. Grey enamel shade had a significantly higher diffuse translucency compared to clear and yellow enamel shades. There was a significant decrease in translucency from A2B to D2B and also in diffuse translucency from A4D to C6D shades of Filtek Supreme composite resin. It can be concluded that the color of the composite resins tested in this study had a significant effect on their translucency. Information on the translucency of different shades of composite resins can be very useful for the clinicians in achieving optimal esthetic restorative outcome.

  1. Effect of LED and Argon Laser on Degree of Conversion and Temperature Rise of Hybrid and Low Shrinkage Composite Resins.

    Science.gov (United States)

    Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara

    2016-01-01

    Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively.

  2. Evaluation of effect of different disposable infection control barriers on light intensity of light-curing unit and microhardness of composite - An in vitro study.

    Science.gov (United States)

    Khode, Rajiv Tarachand; Shenoi, Pratima Ramakrishna; Kubde, Rajesh R; Makade, Chetana S; Wadekar, Kanchan D; Khode, Priyanka Tarachand

    2017-01-01

    This study evaluated effect of infection control barriers on light intensity (LI) of light-curing unit (LCU) and microhardness of composite. Four different disposable barriers ( n = 30) were tested against the control. LI for each barrier was measured with Lux meter. One hundred and fifty Teflon molds were equally divided into five groups of thirty each. Composite was filled in bulk in these molds and cured without and with barrier. Microhardness was evaluated on top and bottom surface of composite specimen with microhardness testing machine and hardness ratio (HR) was derived. One-way analysis of variance, Tukey's honestly significant difference test, and paired t -test using SPSS version 18 software. All barriers had significantly reduced the baseline LI of LCU ( P glove pieces (LCGP) significantly reduced the microhardness of the composite ( P < 0.05). However, HR determined inadequate curing only with LCGP. Although entire tested barrier significantly reduced the LI; none, except LCGP markedly affected the degree of cure of the composite.

  3. Battery Charge Affects the Stability of Light Intensity from Light-emitting Diode Light-curing Units.

    Science.gov (United States)

    Tongtaksin, A; Leevailoj, C

    This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was

  4. Cytotoxicity of Light-Cured Dental Materials according to Different Sample Preparation Methods

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lee

    2017-03-01

    Full Text Available Dental light-cured resins can undergo different degrees of polymerization when applied in vivo. When polymerization is incomplete, toxic monomers may be released into the oral cavity. The present study assessed the cytotoxicity of different materials, using sample preparation methods that mirror clinical conditions. Composite and bonding resins were used and divided into four groups according to sample preparation method: uncured; directly cured samples, which were cured after being placed on solidified agar; post-cured samples were polymerized before being placed on agar; and “removed unreacted layer” samples had their oxygen-inhibition layer removed after polymerization. Cytotoxicity was evaluated using an agar diffusion test, MTT assay, and confocal microscopy. Uncured samples were the most cytotoxic, while removed unreacted layer samples were the least cytotoxic (p < 0.05. In the MTT assay, cell viability increased significantly in every group as the concentration of the extracts decreased (p < 0.05. Extracts from post-cured and removed unreacted layer samples of bonding resin were less toxic than post-cured and removed unreacted layer samples of composite resin. Removal of the oxygen-inhibition layer resulted in the lowest cytotoxicity. Clinicians should remove unreacted monomers on the resin surface immediately after restoring teeth with light-curing resin to improve the restoration biocompatibility.

  5. Nanomechanical properties of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Akhtar, R; Silikas, N; Watts, D C

    2012-12-01

    To determine by nanoindentation the hardness and elastic modulus of resin-composites, including a series with systematically varied filler loading, plus other representative materials that fall into the categories of flowable, bulk-fill and conventional nano-hybrid types. Ten dental resin-composites: three flowable, three bulk-fill and four conventional were investigated using nanoindentation. Disc specimens (15mm×2mm) were prepared from each material using a metallic mold. Specimens were irradiated in the mold at top and bottom surfaces in multiple overlapping points (40s each) with light curing unit at 650mW/cm(2). Specimens were then mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. After grinding and polishing, specimens were stored in distilled water at 37°C for 7 days. Specimens were investigated using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius). Each specimen was loaded at one loading rate and three different unloading rates (at room temperature) with thirty indentations, per unloading rate. The maximum load applied by the nanoindenter to examine the specimens was 10mN. Dependent on the type of the resin-composite material, the mean values ranged from 0.73GPa to 1.60GPa for nanohardness and from 14.44GPa to 24.07GPa for elastic modulus. There was a significant positive non-linear correlation between elastic modulus and nanohardness (r(2)=0.88). Nonlinear regression revealed a significant positive correlation (r(2)=0.62) between elastic moduli and filler loading and a non-significant correlation (r(2)=0.50) between nanohardness and filler loading of the studied materials. Varying the unloading rates showed no consistent effect on the elastic modulus and nanohardness of the studied materials. For a specific resin matrix, both elastic moduli and nanohardness correlated positively with filler loading. For the resin-composites investigated, the group-average elastic

  6. A comparative evaluation of the marginal adaptation of a thermoplastic resin, a light cured wax and an inlay casting wax on stone dies: An in vitro study

    Directory of Open Access Journals (Sweden)

    Reji P Gopalan

    2018-01-01

    Conclusion: The marginal adaptation of all the three materials used, was well within the acceptable range of 25–70 μm. The resin pattern materials studied revealed significantly less dimensional change than inlay casting wax on storage at 1, 12, and 24 h time intervals. They may be employed in situations where high precision and delayed investing is expected.

  7. Influence of irradiance on Knoop hardness, degree of conversion, and polymerization shrinkage of nanofilled and microhybrid composite resins.

    Science.gov (United States)

    Fugolin, Ana Paula Piovezan; Correr-Sobrinho, Lourenço; Correr, Américo Bortolazzo; Sinhoreti, Mário Alexandre Coelho; Guiraldo, Ricardo Danil; Consani, Simonides

    2016-01-01

    The purpose of this study was to investigate the influence of the irradiance emitted by a light-curing unit on microhardness, degree of conversion (DC), and gaps resulting from shrinkage of 2 dental composite resins. Cylinders of nanofilled and microhybrid composites were fabricated and light cured. After 24 hours, the tops and bottoms of the specimens were evaluated via indentation testing and Fourier transform infrared spectroscopy to determine Knoop hardness number (KHN) and DC, respectively. Gap width (representing polymerization shrinkage) was measured under a scanning electron microscope. The nanofilled composite specimens presented significantly greater KHNs than did the microhybrid specimens (P composite resin exhibited significantly greater DC and gap width than the nanofilled material (P composite resins.

  8. Effect of bench time polymerization on depth of cure of dental composite resin

    Science.gov (United States)

    Harahap, K.; Yudhit, A.; Sari, F.

    2017-07-01

    The aim of this research was to investigate the effect of bench time before light cured polymerization on the depth of cure of dental composite resin. Nanofiller composite resin (Filtek Z350 XT,3M, ESPE,China) was used in this study. Sixty samples of nanofiller composite resin were made and divided into control and test groups with bench time for 0, 15, 30, 45, and 60 min. For the test group, composite resins were stored in refrigerator with 4°C temperatures. Meanwhile, for the control groups, the composite resin was stored at room temperature. The samples were prepared using metal mould with size diameter of 6 mm and 4 mm in thickness. Samples were cured for 20 s by using visible blue light curing unit. Part of samples that unpolymerized were removed by using a plastic spatula. The remaining parts of samples were measured by digital caliper and noted as depth of cure (mm). Data were analyzed to one-way ANOVA and LSD tests (p≤0.05). Results showed there was no significance differences between test groups (p=0.5). A 60 minutes bench time group showed the highest depth of cure value among test group, and it was almost similar with control group value. It can be concluded that longer bench time can increase the depth of cure of composite resin.

  9. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Pooran Samimi

    2016-01-01

    Full Text Available Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB and Prompt L-Pop (PLP adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1 Immediate light-curing, (2 delayed light-curing after 20 min, and (3 self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P 0.05. PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.

  10. Adhesion of resin composite core materials to dentin.

    Science.gov (United States)

    O'Keefe, K L; Powers, J M

    2001-01-01

    This study determined (1) the effect of polymerization mode of resin composite core materials and dental adhesives on the bond strength to dentin, and (2) if dental adhesives perform as well to dentin etched with phosphoric acid as to dentin etched with self-etching primer. Human third molars were sectioned 2 mm from the highest pulp horn and polished. Three core materials (Fluorocore [dual cured], Core Paste [self-cured], and Clearfil Photo Core [light cured]) and two adhesives (Prime & Bond NT Dual Cure and Clearfil SE Bond [light cured]) were bonded to dentin using two dentin etching conditions. After storage, specimens were debonded in microtension and bond strengths were calculated. Scanning electron micrographs of representative bonding interfaces were analyzed. Analysis showed differences among core materials, adhesives, and etching conditions. Among core materials, dual-cured Fluorocore had the highest bond strengths. There were incompatibilities between self-cured Core Paste and Prime & Bond NT in both etched (0 MPa) and nonetched (3.0 MPa) dentin. Among adhesives, in most cases Clearfil SE Bond had higher bond strengths than Prime & Bond NT and bond strengths were higher to self-etched than to phosphoric acid-etched dentin. Scanning electron micrographs did not show a relationship between resin tags and bond strengths. There were incompatibilities between a self-cured core material and a dual-cured adhesive. All other combinations of core materials and adhesives produced strong in vitro bond strengths both in the self-etched and phosphoric acid-etched conditions.

  11. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: effects of composite resin

    Directory of Open Access Journals (Sweden)

    Andrea Mello de Andrade

    2010-12-01

    Full Text Available OBJECTIVES: The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350 and adhesive system [(Solobond Plus, Futurabond NR (VOCO and Adper Single Bond (3M ESPE] on the microtensile (μTBS and microshear bond strength (μSBS tests on enamel, and to correlate the bond strength means between them. MATERIAL AND METHODS: Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for μTBS and the other one for μSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37(0C/24 h specimens were stressed (0.5 mm/min. Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05. RESULTS: The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05. For both tests only the main factor resin composite was statistically significant (p<0.05. The correlation test detected a positive (r=0.91 and significant (p=0.01 correlation between the tests. CONCLUSIONS: The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions.

  12. Influence of curing rate on softening in ethanol, degree of conversion, and wear of resin composite

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Asmussen, Erik

    2011-01-01

    PURPOSE: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. METHOD: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus......, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared...... exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (Pconversion (P

  13. Effect of Sandblasting on Shear Bond Strength Composite Resin Veneer

    Directory of Open Access Journals (Sweden)

    Octarina Octarina

    2013-07-01

    Full Text Available Attachment between restoration and enamel surface in indirect resin composite veneer restoration (IRCV is obtained using multi-step (MS resin cement. Recently, a one step self-adhesive dual-cured resin cement (SADRC was introduced. Objective: To determine the effect of sandblasting on shear bond strength (SBS of IRCV to enamel using MS resin cement and SADRC. Methods: Forty specimens of buccal surface of enamel human were light-cured in Solidilite chamber and were divided into two groups: IRCV without sandblasting (n=20 and with sandblasting for 10 seconds (n=20 and then bonded to enamel using MS (n=10 and SADRC (n=10, respectively. After 24h SBS of specimens were tested using a Universal Testing Machine. Data were analyzed statistically by one-way ANOVA. Results: The average SBS value of IRCV without SB and bonded with MS was 18.95+7.80MPa and MS with SB was 19.30+ SB (4.85+2.12MPa and SADRC with SB (9.57+3.45MPa(p<0.05. Conclusion: increased SBS VIRK to enamel using MS resin cement than SADRC.  

  14. Comparison of stabilities in translucency, fluorescence and opalescence of direct and indirect composite resins.

    Science.gov (United States)

    Yu, Bin; Lee, Young-Keun

    2013-01-01

    To evaluate translucency, fluorescence and opalescence stabilities of direct and indirect composite resins after aging. One direct (16 shades) and two indirect composite resins (16 and 26 shades) were investigated. Resins were filled in a mold (1 mm thick) and light cured; post-curings were performed for indirect resins. Color was measured before and after 5,000 cycles of thermocycling on a reflection spectrophotometer in reflectance and transmittance modes to calculate parameters for translucency (TP), fluorescence (FL) and opalescence (OP). Differences in the changes of TP, FL and OP after aging by the type of resin were determined by t test, and those were also determined by one-way ANOVA with the factor of the brand or the shade group (P resins; and were -2.0 to 1.8, -0.9 to 0.4 and -2.9 to 3.7, respectively, for indirect resins. Changes in TP were not significantly different by the type of resin, but those in FL and OP were different (P = 0.05). Changes in optical parameters were influenced by the brand or the shade group of the resins (P resins varied depending on type, brand or shade group. Aging significantly affected fluorescence and opalescence, but not translucency, of indirect resins compared to those of direct resins.

  15. Radiopacity of 28 Composite Resins for Teeth Restorations.

    Science.gov (United States)

    Raitz, Ricardo; Moruzzi, Patrizia Dubinskas; Vieira, Glauco; Fenyo-Pereira, Marlene

    2016-02-01

    Radiopacity is a fundamental requisite to check marginal adaptation of restorations. Our objective was to assess the radiopacity of 28 brands of light-cured composite resins and compare their radiopacity with that of enamel, dentin, and aluminum of equivalent thickness. Composite resin disks (0.2, 0.5, and 1 mm) were radiographed by the digital method, together with an aluminum penetrometer and a human tooth equivalent tooth section. The degree of radiopacity of each image was quantified using digital image processing. Wilcoxon nonparametric test was used for comparison of the mean thickness of each material. All of the materials tested had an equal or greater radiopacity than that of aluminum of equivalent thickness. Similar results for enamel were found with the exception of Durafill, which was less radiopaque than enamel (p composite resins comply with specification #27 of the American Dental Association. The radiopacity of Amelogen Plus, Aph, Brilhiante, Charisma, Concept Advanced, Evolux X, Exthet X, Inten S, Llis, Master Fill, Natural Look, Opallis, P60, Tetric, Tph, Z100, and Z250 was significantly higher than that of enamel (p composites, it is possible to observe the boundaries between restoration and tooth structure, thus allowing clinicians to establish the presence of microleakage or restoration gap. Suitable radiopacity is an essential requisite for good-quality esthetic restorative materials. We demonstrate that only some composites have the sufficient radiopacity to observe the boundaries between restoration and tooth structure, which is the main cause of restoration failure.

  16. Comparison of Mechanical Properties of Resin Composites with Resin Modified Glass Ionomers

    Directory of Open Access Journals (Sweden)

    Taha NA

    2015-06-01

    Full Text Available Statement of Problem: There are controversial reports regarding physical and mechanical properties of resin composites and glass ionomer cements. Some revealed higher strength and hardness for resin composites while others showed a comparable value for glass ionomer cements. Evaluation of mechanical properties of different types of resin composites in comparison with resin modified glass ionomers is not widely studied. Objectives: To measure and compare the flexural strength and Vickers hardness of three resin composites and two resins modified glass ionomer cements before and after ageing. Materials and Methods: Three resin composites, i.e. Filtek Supreme XTE (3M ESPE, Ice (SDI, Gradia (GC, and two resins modified glass ionomers, i.e. Fuji II LC (GC and Riva Light Cure (SDI, were selected. Ten barshaped specimens were prepared for each material and cured using LED curing light. After 24 hours storage in distilled water at 37oC, the specimens were randomly divided into two equal groups (n=5. The first group was tested as a baseline and the second group was restored at 37oC for another 29 days. Flexural strength was performed by four-point bending test using universal testing machine at crosshead speed of 0.5mm/min, and the maximum load at failure was recorded. The specimen’s halves were used for evaluating Vickers hardness, using a Digital Hardness Tester (300 g/15 sec and the Vickers hardness number (VHN was recorded. Data were analyzed using one-way analysis of variance (ANOVA, Tukey’s and student’s t-test. Results: After 24 hours of immersion, the highest hardness number was found for Filtek Supreme and Ice and the highest flexural strength was obtained for Gradia. After 30 days of storage, hardness of Fuji II LC and Gradia showed a significant decrease; flexural strength of Ice and Fuji II LC revealed a significant increase while Gradia and Filtek Supreme showed a significant decrease. Conclusions: Resin modified glass ionomers showed

  17. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: effects of composite resin

    Science.gov (United States)

    de ANDRADE, Andrea Mello; MOURA, Sandra Kiss; REIS, Alessandra; LOGUERCIO, Alessandro Dourado; GARCIA, Eugenio Jose; GRANDE, Rosa Helena Miranda

    2010-01-01

    Objectives The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (µTBS) and microshear bond strength (µSBS) tests on enamel, and to correlate the bond strength means between them. Material and methods Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for µTBS and the other one for µSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37ºC/24 h) specimens were stressed (0.5 mm/ min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05). Results The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (padhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions. PMID:21308290

  18. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  19. Influence of curing rate of resin composite on the bond strength to dentin

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, E; Peutzfeldt, A

    2007-01-01

    @ 1000 mW/cm2) for all groups. A split Teflon mold was clamped to the treated dentin surface and filled with resin composite. The rate of cure was varied, using one of four LED-curing units of different power densities. The rate of cure was also varied using the continuous or pulse-delay mode....... In continuous curing mode, in order to give an energy density totaling 16 J/cm2, the power densities (1000, 720, 550, 200 mW/cm2) emitted by the various curing units were compensated for by the light curing period (16, 22, 29 or 80 seconds). In the pulse-delay curing mode, two seconds of light curing at one...... of the four power densities was followed by a one-minute interval, after which light cure was completed (14, 29, 27 or 78 seconds), likewise, giving a total energy density of 16 J/cm2. The specimens produced for each of the eight curing protocols and two resin composites (Tetric EvoCeram, Ivoclar Vivadent...

  20. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  1. Distance and protective barrier effects on the composite resin degree of conversion

    Science.gov (United States)

    Coutinho, Margareth; Trevizam, Natália Carvalho; Takayassu, Renata Nakase; Leme, Ariene Arcas; Soares, Giulliana Panfiglio

    2013-01-01

    Context: The food wrap films are used to cover the tip of curing light units in order to avoid contamination and prevent damage to the light guide. However, their effects on resin polymerization are not fully known. Aims: We investigated the effects on restoration efficiency of a food wrap protective barrier used on the tip of curing light units. Materials and Methods: For each treatment, five replications were performed, a total of 60 bovine incisor. The degree of conversion (%DC) of restorations with the composite resin Opallis EA2 was evaluated using 3 curing light devices (Optilux 501, Optilight and Ultra LED) and 2 curing distances (0 and 5 mm). The composite resin was tested for restoration of cavities in bovine crowns. %DC values were measured by the Fourier transform infrared spectroscopy-attenuated total reflectance technique. Statistical Analysis Used: The data were analyzed using 3-way ANOVA and Tukey's test. Results: Use of the protective film lowered %DC (F = 4.13; P = 0.05), and the effects of curing distance were associated to the curing light device (F = 3.61; P = 0.03). Conclusions: The distance from the light curing tip and use of a translucent protective barrier on the light-cure device can both impair composite resin %DC. PMID:24015001

  2. Effects of 35% Carbamide Peroxide Gel on Surface Roughness and Hardness of Composite Resins

    Directory of Open Access Journals (Sweden)

    F. Sharafeddin

    2010-03-01

    Full Text Available Objective: Bleaching agents may not be safe for dental materials. The purpose of this invitro study was to evaluate the effects of Opalescent Quick "in-office bleaching gel" containing 35% carbamide peroxide on the surface roughness and hardness of microfilled(Heliomolar and hybride (Spectrum TPH composite resins.Materials and Methods: Twenty specimens of Spectrum TPH composite resins and twenty Heliomolar composite resins were fabricated using a metallic ring (6.5 mm diameter and 2.5 mm thickness and light cured, then their surfaces were polished. Specimens of each composite resin were divided into two equal groups. Ten specimens of each type of composite were stored in water at 37°C as the control groups and 35% carbamide peroxide gel (Opalescence Quick as the other group for 30 minutes a week for 3 weeks. Then the specimens were subject to roughness and hardness tests.Results: This study revealed that using 35% carbamide peroxide bleaching gels had no significant effect on the surface roughness of Spectrum TPH "hybrid" and Heliomolar "microfilled" composite resins. The surface hardness of Spectrum TPH composite treated with the subject gel significantly increased compared to heliomolar, which had no significant change after treatment with this bleaching gel.Conclusion: If tooth color matching of the composite had been satisfactory after office bleaching with 35% carbamide peroxide gel, this material would have been acceptable because it has no adverse effect on Heliomolar and Spectrum TPH composite resins.

  3. Interaction of LED light with coinitiator-containing composite resins: effect of dual peaks.

    Science.gov (United States)

    Sim, Jae-Seong; Seol, Hyo-Joung; Park, Jeong-Kil; Garcia-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2012-10-01

    Recently the colour stability of composite resins has been an issue due to the emphasis on the aesthetics of restored teeth. The purpose of the present study was to investigate how dual-peak LED units affect the polymerization of coinitiator-containing composite resins. Five composite resins [coinitiator-containing: Aelite LS Posterior (AL), Tetric EvoCeram (TE), and Vit-l-escence (VI); only CQ-containing: Grandio (GD) and Filtek Z350 (Z3)] were light cured using four different light-curing units (LCUs). Among them, Bluephase G2 (BP) and G-light (GL) were dual-peak LED LCUs. Microhardness, polymerization shrinkage, flexural, and compressive properties were measured. BP and GL had no consistent effect on the microhardness of AL, TE, and VI on the top and bottom surfaces of resin specimens. Among the specimens, AL and VI showed the least (9.86-10.41 μm) and greatest (17.58-19.21 μm) polymerization shrinkage, respectively. However, the effect of BP and GL on the shrinkage of specimens was not consistent. Among the specimens, GD showed the greatest flexural properties [strength (FS) and modulus (FM)] and TE showed the lowest flexural and compressive properties [strength (CS) and modulus (CM)]. In same resin product, maximum FS and CS differences due to the different LCUs were 10.3-21.0% and 3.6-9.2%, respectively. Furthermore, the influences of BP and GL on FS and CS were not consistent. The tested dual-peak LED LCUs had no consistent synergic effect on the polymerization of coinitiator-containing composite resins as compared with QTH and single-peak LED LCUs. The dual-peak LED LCUs achieve a similar degree of polymerization in coinitiator-composite resins as QTH and single-peak LED LCUs did. Choice of LCU does not appear to be a determinant of the light curing of coinitiator-composite resins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

    Directory of Open Access Journals (Sweden)

    Tahereh-Sadat Jafarzadeh

    2015-12-01

    Full Text Available Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm. Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan was performed at the top and bottom (depth=2 mm surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  5. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test.

    Science.gov (United States)

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  6. Influence of staining solutions and whitening procedures on discoloration of hybrid composite resins.

    Science.gov (United States)

    Garoushi, Sufyan; Lassila, Lippo; Hatem, Marwa; Shembesh, Muneim; Baady, Lugane; Salim, Ziad; Vallittu, Pekka

    2013-01-01

    The aim was to evaluate the color stability and water uptake of two hybrid composite resins polymerized in two different conditions after exposure to commonly consumed beverages. In addition, the effect of repolishing and bleaching on the stained composite was evaluated. Eighty specimens (12 mm × 12 mm × 3 mm) were made from two hybrid composite resins of shade A2. Forty specimens of each composite were divided into two groups (n = 20 per each) according to the curing method used (hand light cure HLC or oven light cure OLC). Then each group (HLC or OLC) was sub-divided randomly into four sub-groups (n = 5), which were immersed for 60 days in different beverages (distal water, coffee, tea and pepsi) and incubated at 37°C. Water uptake was measured during this time and followed by measurement of color difference (ΔE) by using a spectrophotometer. After complete staining, repolishing (grit 4000 FEPA at 300 rpm under water) and bleaching (40% hydrogen peroxide bleaching gel) were conducted. The repolished and bleached specimens were submitted to new color measurements. Color value of the specimens immersed in tea displayed the highest statistically significant (p pepsi was significantly lower than the others. After staining of the composite resins, both the bleaching and repolishing were able to reduce the ΔE value. All beverages used affected the color stability of tested composite resins. The effect of beverages on color change of composites depends on type of beverage and water uptake value of resins used. A superior whitening effect was obtained with repolishing technique compared to bleaching.

  7. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  8. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Science.gov (United States)

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  9. Effect of dual-cure composite resin as restorative material on marginal adaptation of class 2 restorations.

    Science.gov (United States)

    Bortolotto, Tissiana; Melian, Karla; Krejci, Ivo

    2013-10-01

    The present study attempted to find a simple direct adhesive restorative technique for the restoration of Class 2 cavities. A self-etch adhesive system with a dual-cured core buildup composite resin (paste 1 + paste 2) was evaluated in its ability to restore proximo-occlusal cavities with margins located on enamel and dentin. The groups were: A, cavity filling (cf) with paste 1 (light-curing component) by using a layering technique; B, cf by mixing both pastes, bulk insertion, and dual curing; and C, cf by mixing both pastes, bulk insertion, and chemical curing. Two control groups (D, negative, bulk; and E, positive, layering technique) were included by restoring cavities with a classic three-step etch-and-rinse adhesive and a universal restorative composite resin. SEM margin analysis was performed before and after thermomechanical loading in a chewing simulator. Percentages (mean ± SD) of "continuous margins" were improved by applying the material in bulk and letting it self cure (54 ± 6) or dual cure (59 ± 9), and no significant differences were observed between these two groups and the positive control (44 ± 19). The present study showed that the dual-cured composite resin tested has the potential to be used as bulk filling material for Class 2 restorations. When used as filling materials, dual-cure composite resins placed in bulk can provide marginal adaptation similar to light-cured composites applied with a complex stratification technique.

  10. Effect of gingival fluid on marginal adaptation of Class II resin-based composite restorations.

    Science.gov (United States)

    Spahr, A; Schön, F; Haller, B

    2000-10-01

    To evaluate in vitro the marginal quality of Class II composite restorations at the gingival enamel margins as affected by contamination of the cavities with gingival fluid (GF) during different steps of resin bonding procedures. 70 Class II cavities were prepared in extracted human molars and restored with composite using a multi-component bonding system (OptiBond FL/Herculite XRV; OPTI) or a single-bottle adhesive (Syntac Sprint/Tetric Ceram; SYN). The cavities were contaminated with human GF: C1 after acid etching, C2 after application of the primer (OPTI) or light-curing of the primer-adhesive (SYN), and C3 after light-curing of the resin adhesive (OPTI). Uncontaminated cavities were used as the control (C0). The restored teeth were subjected to thermocycling (TC) and replicated for SEM analysis of marginal gap formation. Microleakage at the gingival margins was determined by dye penetration with basic fuchsin. non-parametric tests (Kruskal-Wallis test, Mann-Whitney test with Bonferroni correction). In both bonding systems, contamination with GF after acid etching (C1) did not impair the marginal quality; the mean percentages of continuous margin/mean depths of dye penetration were: OPTI: C0: 88.5%/0.10 mm, C1: 95.6%/0.04 mm; SYN: C0: 90.9%/0.08 mm, C1: 97.0%/0.05 mm. Marginal adaptation was adversely affected when GF contamination was performed after

  11. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  12. Preparation of low viscosity epoxy acrylic acid photopolymer prepolymer in light curing system

    Science.gov (United States)

    Li, P.; Huang, J. Y.; Liu, G. Z.

    2018-01-01

    With the integration and development of materials engineering, applied mechanics, automatic control and bionics, light cured composite has become one of the most favourite research topics in the field of materials and engineering at home and abroad. In the UV curing system, the prepolymer and the reactive diluent form the backbone of the cured material together. And they account for more than 90% of the total mass. The basic properties of the cured product are mainly determined by the prepolymer. A low viscosity epoxy acrylate photosensitive prepolymer with a viscosity of 6800 mPa • s (25 °C ) was obtained by esterification of 5 hours with bisphenol A epoxy resin with high epoxy value and low viscosity.

  13. COMPOSITE RESIN BOND STRENGTH TO ETCHED DENTINWITH ONE SELF PRIMING ADHESIVE

    Directory of Open Access Journals (Sweden)

    P SAMIMI

    2002-09-01

    Full Text Available Introduction. The purpose of this study was to compare shear bond strength of composite resins to etched dentin in both dry and wet dentin surface with active and inactive application of a single-bottle adhesive resin (Single Bond, 3M Dental products. Methods. Fourthy four intact human extracted molars and premolars teeth were selected. The facial surfaces of the teeth were grounded with diamond bur to expose dentin. Then specimens were divided into four groups of 11 numbers (9 Molars and 2 Premolars. All the samples were etched with Phosphoric Acid Gel 35% and then rinsed for 10 seconds. The following stages were carried out for each group: Group I (Active-Dry: After rinsing, air drying of dentin surface for 15 seconds, active priming of adhesive resin for 15 seconds, air drying for 5 seconds, the adhesive resin layer was light cured for 10 seconds. Group III (Inactive-Dry:After rinsing, air drying of dentin surface for 15 seconds, adhesive resin was applied and air dryied for 5 seconds, the adhesive layer was light cured for 10 seconds. Group III (Active-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, active priming of adhesive resin for 15 seconds and air drying for 5 seconds, the adhesive layer was light cured for 10 seconds. Group IV (Inactive-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, the adhesive resin was applied and air dryied for 5 seconds and then cured for 10 seconds. After adhesive resin application, composite resin (Z250, 3M Dental products was applied on prepared surface with cylindrical molds (with internal diameter of 2.8mm, & height of 5mm and light-cured for 100 seconds (5x20s. The samples were then thermocycled. They were located in 6±3c water .temperature for 10 seconds and then 15 seconds in inviromental temperature, 10s in 55±3c water temperature and then were located at room temperature for 15s. This test was repeated for 100s. All of the specimens

  14. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  15. Evaluation of temperature rise with different curing methods and units in two composite resins

    Directory of Open Access Journals (Sweden)

    Tabatabaei M

    2006-01-01

    Full Text Available Background and Aim: The majority of commercial curing units in dentistry are of halogen lamp type. The new polymerizing units such as blue LED are introduced in recent years. One of the important side effects of light curing is the temperature rise in composite resin polymerization which can affect the vitality of tooth pulp. The purpose of this study was to evaluate the temperature rise in two different composite resins during polymerization with halogen lamps and blue LED. Materials and Methods: This experimental study investigated the temperature rise in two different composites (Hybrid, Tetric Ceram/Nanofilled, Filteke Supreme of A2 shade polymerized with two halogen lamps (Coltolux 50, 350 mW/cm2 and Optilux 501 in standard, 820 mW/cm2 and Ramp, 100-1030 mW/cm2 operating modes and one blue LED with the intensity of 620 mW/cm2. Five samples for each group were prepared and temperature rise was monitored using a k-type thermocouple. Data were analyzed by one-way ANOVA, two-way ANOVA and Tukey HSD tests with P<0.05 as the limit of significance. Results: Light curing units and composite resins had statistically significant influence on the temperature rise (p<0.05. Significantly, lower temperature rise occurred in case of illumination with Coltolux 50.There was no significant difference between Optilux 501 in standard curing mode and LED. Tetric Ceram showed higher temperature rise. Conclusion: According to the results of this study the high power halogen lamp and LED could produce significant heat which may be harmful to the dental pulp.

  16. FT-Raman spectroscopy study of organic matrix degradation in nanofilled resin composite.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Nahórny, Sídnei; Martin, Airton Abrahão

    2013-04-01

    This in vitro study evaluated the effect of light curing unit (LCU) type, mouthwashes, and soft drink on chemical degradation of a nanofilled resin composite. Samples (80) were divided into eight groups: halogen LCU, HS--saliva (control); HPT--Pepsi Twist®; HLC--Listerine®; HCP--Colgate Plax®; LED LCU, LS--saliva (control); LPT--Pepsi Twist®; LLC--Listerine®; LCP--Colgate Plax®. The degree of conversion analysis and the measure of the peak area at 2,930 cm-1 (organic matrix) of resin composite were done by Fourier-transform Raman spectroscopy (baseline, after 7 and 14 days). The data were subjected to multifactor analysis of variance (ANOVA) at a 95% confidence followed by Tukey's HSD post-hoc test. The DC ranged from 58.0% (Halogen) to 59.3% (LED) without significance. Differences in the peak area between LCUs were found after 7 days of storage in S and PT. A marked increase in the peak intensity of HLC and LLC groups was found. The soft-start light-activation may influence the chemical degradation of organic matrix in resin composite. Ethanol contained in Listerine® Cool Mint mouthwash had the most significant degradation effect. Raman spectroscopy is shown to be a useful tool to investigate resin composite degradation.

  17. Effect of water storage on the translucency of silorane-based and dimethacrylate-based composite resins with fibres.

    Science.gov (United States)

    Ozakar Ilday, Nurcan; Celik, Neslihan; Bayindir, Yusuf Ziya; Seven, Nilgün

    2014-06-01

    The purposes of this study were (1) to determine the translucency of silorane and dimethacrylate-based composite resins and (2) to evaluate the effect of water storage and reinforcement with fibre on the translucency of composite resins. Two light-cured composite resins (A2 shade), Filtek Silorane (silorane-based composite) and Valux Plus (dimethacrylate-based composite), were used in this study. The first group was used as the control with no reinforcements, the second was reinforced with polyethylene (Ribbond THM) and the third was reinforced with a glass fibre (Everstick Net) for each composite resin. Colour measurements were measured against white and black backgrounds with a Shadepilot (Degu Dent Gmbh, Hanau, Germany) spectrophotometer and recorded under a D65 light source, which reflects daylight. CIELAB parameters of each specimen were recorded at baseline and at 24 h, 168 h and 504 h. Translucency of materials was calculated using the translucency parameter (TP) formula. Data were analyzed using repeated measures ANOVA and LSD post hoc tests (α=0.05). The highest baseline TP value was in the Valux Plus/non-fibre reinforced group (14.06±1) and the lowest in the Filtek Silorane/Ribond THM group (8.98±1.11). Repeated measures ANOVA revealed significant effects from the factors storage time, composite resin, composite resin×storage time and fibre×time (p=0.047; p=0.001; p=0.013; p=0.022, respectively). Within the limitations of the study, we concluded that inclusion of polyethylene and glass fibres did not alter the translucency of the different-based composite resins. The longest storage time resulted in the greatest change in translucency values of Filtek Silorane composite resins. Considering the translucencies of composites with different formulations in the selection of composite resins for aesthetic restorations is important in terms of obtaining optimal aesthetic outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Temperature-dependence of creep behaviour of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Watts, D C

    2013-04-01

    To determine the effect of temperature, over a clinically relevant range, on the creep behaviour of a set of conventional and flowable resin-composites including two subgroups having the same resin matrix and varied filler loading. Eight dental resin-composites: four flowable and four conventional were investigated. Stainless steel split moulds (4 mm × 6 mm) were used to prepare cylindrical specimens for creep examination. Specimens were irradiated in the moulds in layers of 2mm thickness (40s each), as well as from the radial direction after removal from the moulds, using a light-curing unit with irradiance of 650 mW/cm(2). A total of 15 specimens from each material were prepared and divided into three groups (n=5) according to the temperature; Group I: (23°C), Group II: (37°C) and Group III: (45°C). Each specimen was loaded (20 MPa) for 2h and unloaded for 2h. Creep was measured continuously over the loading and unloading periods. At higher temperatures greater creep and permanent set were recorded. The lowest mean creep occurred with GS and GH resin-composites. Percentage of creep recovery decreased at higher temperatures. At 23°C, the materials exhibited comparable creep. At 37°C and 45°C, however, there was a greater variation between materials. For all resin-composites, there was a strong linear correlation with temperature for both creep and permanent set. Creep parameters of resin-composites are sensitive to temperature increase from 23 to 45°C, as can occur intra-orally. For a given resin matrix, creep decreased with higher filler loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Measurement of opalescence of resin composites.

    Science.gov (United States)

    Lee, Yong-Keun; Lu, Huan; Powers, John M

    2005-11-01

    Opalescence is an optical property, where there is light scattering of the shorter wavelengths of the visible spectrum, giving the material a bluish appearance under reflected light and an orange/brown appearance under transmitted light. The objective of this study was to determine the opalescence of resin composites with a color measuring spectrophotometer. Colors of A2 and enamel or translucent shades of four resin composites and of an unfilled resin measured in the reflectance and transmittance modes were compared, and the opalescence parameter (OP) was calculated as the difference in blue-yellow coordinate (Deltab*) and red-green parameter (Deltaa*) between the reflected and transmitted colors of 1-mm thick specimens. The masking effect was calculated as the color difference between the color of a black background and the color of specimen over the black background. The range of OP in resin composites was 5.7-23.7, which was higher than that of the unfilled resin. However, there were significant differences among the brands and shades of the resin composites. Opalescence varied by brand and shade of the resin composites, and contributed to the masking of background color along with translucency parameter. Some of the resin composites actually displayed opalescence.

  20. The influence of "C-factor" and light activation technique on polymerization contraction forces of resin composite

    Directory of Open Access Journals (Sweden)

    Sérgio Kiyoshi Ishikiriama

    2012-12-01

    Full Text Available OBJECTIVES: This study evaluated the influence of the cavity configuration factor ("C-Factor" and light activation technique on polymerization contraction forces of a Bis-GMA-based composite resin (Charisma, Heraeus Kulzer. MATERIAL AND METHODS: Three different pairs of steel moving bases were connected to a universal testing machine (emic DL 500: groups A and B - 2x2 mm (CF=0.33, groups C and D - 3x2 mm (CF=0.66, groups e and F - 6x2 mm (CF=1.5. After adjustment of the height between the pair of bases so that the resin had a volume of 12 mm³ in all groups, the material was inserted and polymerized by two different methods: pulse delay (100 mW/cm² for 5 s, 40 s interval, 600 mW/cm² for 20 s and continuous pulse (600 mW/cm² for 20 s. Each configuration was light cured with both techniques. Tensions generated during polymerization were recorded by 120 s. The values were expressed in curves (Force(N x Time(s and averages compared by statistical analysis (ANOVA and Tukey's test, p<0.05. RESULTS: For the 2x2 and 3x2 bases, with a reduced C-Factor, significant differences were found between the light curing methods. For 6x2 base, with high C-Factor, the light curing method did not influence the contraction forces of the composite resin. CONCLUSIONS: Pulse delay technique can determine less stress on tooth/restoration interface of adhesive restorations only when a reduced C-Factor is present.

  1. Posterior bulk-filled resin composite restorations.

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    up to 4mm as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using...... Class II, 4 SDR-CeramX mono+ and 6 CeramXmono+-only restorations. The main reasons for failurewere tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1...

  2. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins

    Directory of Open Access Journals (Sweden)

    Rafael Torres Brum

    2017-01-01

    Full Text Available Background: This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct and nanofilled (Filtek Z350 XT composite resins. Materials and Methods: A total of 120 specimens of each material (7.5 x 4.5 x 3 mm were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment, Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds. The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair were prepared (positive control. The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS and scanning electron microscopy (SEM. Results: The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. Conclusion: The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  3. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins.

    Science.gov (United States)

    Brum, Rafael Torres; Vieira, Sergio; Freire, Andrea; Mazur, Rui Fernando; De Souza, Evelise Machado; Rached, Rodrigo Nunes

    2017-01-01

    This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct) and nanofilled (Filtek Z350 XT) composite resins. A total of 120 specimens of each material (7.5 x 4.5 x 3 mm) were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment), Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds). The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair) were prepared (positive control). The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  4. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  5. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  6. The Effect of Resin-modified Glass-ionomer Cement Base and Bulk-fill Resin Composite on Cuspal Deformation.

    Science.gov (United States)

    Nguyen, K V; Wong, R H; Palamara, J; Burrow, M F

    2016-01-01

    This study investigated cuspal deformation in teeth restored with different types of adhesive materials with and without a base. Mesio-occluso-distal slot cavities of moderately large dimension were prepared on extracted maxillary premolars (n=24). Teeth were assigned to one of four groups and restored with either a sonic-activated bulk-fill resin composite (RC) (SonicFill), or a conventional nanohybrid RC (Herculite Ultra). The base materials used were a flowable nanofilled RC (Premise Flowable) and a high-viscosity resin-modified glass-ionomer cement (RMGIC) (Riva Light-Cure HV). Cuspal deflection was measured with two direct current differential transformers, each contacting a buccal and palatal cusp. Cuspal movements were recorded during and after restoration placement. Data for the buccal and palatal cusp deflections were combined to give the net cuspal deflection. Data varied widely. All teeth experienced net inward cuspal movement. No statistically significant differences in cuspal deflection were found among the four test groups. The use of a flowable RC or an RMGIC in closed-laminate restorations produced the same degree of cuspal movement as restorations filled with only a conventional nanohybrid or bulk-fill RC.

  7. Understanding of the color in composite resin

    Directory of Open Access Journals (Sweden)

    Jeong-Won Park

    2011-07-01

    Full Text Available In clinic, esthetic restoration of a defective natural tooth with composite resin is challenging procedure and needs complete understanding of the color of tooth itself and materials used. The optical characteristics of the composites are different because the chemical compositions and microstructures are not same. This review provided basic knowledge of the color and the color measurement devices, and analyze the color of the natural tooth. Further, the accuracy of the shade tab, color of the composite resins before and after curing, effect of the water, food and bleaching agent, and translucency, opalescence, and fluorescence effects were evaluated.

  8. Repair bond strength of nanohybrid composite resins with a universal adhesive.

    Science.gov (United States)

    Altinci, Pinar; Mutluay, Murat; Tezvergil-Mutluay, Arzu

    2018-01-01

    Objective: To investigate the repair bond strength of fresh and aged nanohybrid and hybrid composite resins using a universal adhesive (UA). Materials and methods: Fresh and aged substrates were prepared using two nanohybrid (Venus Pearl, Heraus Kulzer; Filtek Supreme XTE, 3 M ESPE) and one hybrid (Z100, 3 M ESPE) composite resin, and randomly assigned to different surface treatments: (1) no treatment (control), (2) surface roughening with 320-grit (SR), (3) SR + UA (iBOND, Heraus Kulzer), (4) SR + Silane (Signum, Ceramic Bond I, Heraeus Kulzer) + UA, (5) SR + Sandblasting (CoJet, 3 M ESPE) + Silane + UA. After surface treatment, fresh composite resin was added to the substrates at 2 mm layer increments to a height of 5 mm, and light cured. Restored specimens were water-stored for 24 h and sectioned to obtain 1.0 × 1.0 mm beams ( n  = 12), and were either water-stored for 24 h at 37 °C, or water-stored for 24 h, and then thermocycled for 6000 cycles before microtensile bond strength (µTBS) testing. Data were analyzed with ANOVA and Tukey's HSD tests ( p  = .05). Results: Combined treatment of SR, sandblasting, silane and UA provided repair bond strength values comparable to the cohesive strength of each tested resin material ( p  composite resins upto 65% ( p  composite repair. Sandblasting and silane application slightly increases the repair strength for all substrate types.

  9. SORPTION AND SOLUBILITY OF LOW-SHRINKAGE RESIN-BASED DENTAL COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sevda Yantcheva

    2016-04-01

    Full Text Available Background: Resin-based composites are well-established restorative materials. However, these materials may absorb significant amounts of water when exposed to aqueous environments. Sorption and solubility are affecting composite restorations by two different mechanisms; the first is the up taking of water producing an increased weight and the second is the dissolution of materials in water, leading to a weight reduction of the final conditioned samples. Objective: To measure the water sorption and solubility of different low-shrinkage resin-based composites. Six materials were selected: Filtek P60, Filtek Ultimate, SonicFill, Filtek Silorane, Kalore and Venus Diamond. Materials and methods: Five disc specimens were prepared of each material and polymerized with diode light-curing unit. Water sorption and solubility of the different materials were were calculated by means of weighting the samples before and after water immersion and desiccation. Data were statistically analyzed using Shapiro-Wilk One Way Analysis of Variance followed by the Holm-Sidak comparison test . Results: There were significant differences (p<=0.001 between materials regarding sorption and solubility. Regarding sorption F. Silorane showed lowest values, followed by SonicFill, without significant difference between them. Statistical significant differences exist between F. Silorane and F.P60, F. Ultimate, Kalore. Significant differences exist between SonicFill and F. Ultimate. F.Silorane (-0.018 and Kalore (-0.010 showed lowest values of solubility but there were marginal difference among all composites investigated. Conclusions: 1.The material with lowest values of sorption and solubility was F.Silorane. 2. The attained sorption and solubility values for composites are influenced by the differences in resin matrix composition and filler contend. 3. Modifications of dimethacrylate matrix did not minimize significantly sorption and solubility of composites. 4. Besides water

  10. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength

    Directory of Open Access Journals (Sweden)

    Shaloo Gupta

    2015-01-01

    Full Text Available Aim: The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin. Materials and Methods: Forty acrylic blocks were prepared in a cuboidal mould. In each block, a well of 5 mm diameter and 5 mm depth was prepared to retain the composite resin (Filtek™ Z350, 3M/ESPE. Aging of the composite discs was achieved by storing them in water at 37°C for 1 week, and after that were divided into 5 groups (n = 8 according to surface treatment: Group I- 37% phosphoric acid, Group II-10% hydrofluoric acid, Group III-30% citric acid, Group IV-7% maleic acid and Group V- Adhesive (no etchant. The etched surfaces were rinsed and dried followed by application of bonding agent (Adper™ Single Bond 2. 3M/ESPE. The repair composite was placed on aged composite, light-cured for 40 seconds and stored in water at 37°C for 1 week. Shear bond strength between the aged and the new composite resin was determined with a universal testing machine (crosshead speed of 0.5 mm/min. Statistical Analysis: The compressive shear strengths were compared for differences using ANOVA test followed by Tamhane′s T2 post hoc analysis. Results: The surface treatment with 10% hydrofluoric acid showed the maximum bond strength followed by 30% citric acid, 7% maleic acid and 37% phosphoric acid in decreasing order. Conclusion: The use of 10% hydrofluoric acid can be a good alternative for surface treatment in repair of composite resin restoration as compared to commonly used 37% orthophosphoric acid.

  11. Effect of mode of polymerization of bonding agent on shear bond strength of autocured resin composite luting cements.

    Science.gov (United States)

    Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E

    2003-04-01

    There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.

  12. Flexural and diametral tensile strength of composite resins

    Directory of Open Access Journals (Sweden)

    Álvaro Della Bona

    2008-03-01

    Full Text Available This study evaluated the flexural strength (sf and the diametral tensile strength (st of light-cured composite resins, testing the hypothesis that there is a positive relation between these properties. Twenty specimens were fabricated for each material (Filtek Z250- 3M-Espe; AM- Amelogen, Ultradent; VE- Vit-l-escence, Ultradent; EX- Esthet-X, Dentsply/Caulk, following ISO 4049 and ANSI/ADA 27 specifications and the manufacturers’ instructions. For the st test, cylindrical shaped (4 mm x 6 mm specimens (n = 10 were placed with their long axes perpendicular to the applied compressive load at a crosshead speed of 1.0 mm/min. The sf was measured using the 3-point bending test, in which bar shaped specimens (n = 10 were tested at a crosshead speed of 0.5 mm/min. Both tests were performed in a universal testing machine (EMIC 2000 recording the fracture load (N. Strength values (MPa were calculated and statistically analyzed by ANOVA and Tukey (a = 0.05. The mean and standard deviation values (MPa were Z250-45.06 ± 5.7; AM-35.61 ± 5.4; VE-34.45 ± 7.8; and EX-42.87 ± 6.6 for st; and Z250-126.52 ± 3.3; AM-87.75 ± 3.8; VE-104.66 ± 4.4; and EX-119.48 ± 2.1 for sf. EX and Z250 showed higher st and sf values than the other materials evaluated (p < 0.05, which followed a decreasing trend of mean values. The results confirmed the study hypothesis, showing a positive relation between the material properties examined.

  13. Approach of Surgeons Dentists in Relation to Lightcuring Composite Resins

    Directory of Open Access Journals (Sweden)

    Raquel Cristine Scariot

    2017-08-01

    Full Text Available Apparatus and methods for polymerization of composite resins have been seeking to improve the restorations properties. This study aimed to assess the knowledge of dentists before the use of light curing units. Data collection was done through a questionnaire, administered to 34 dentists from course IMED Restorative Dentistry Specialization in the years 2015 and 2016. The results showed that 34 of the dentists interviewed , 35.30% used Gnatus brand, 23.53% RadiCall, and 20.58% Schuster. As for the year 35.3% had photopolymerizer the year 2015, 17.64% year 2010 and 11.77% year 2014. Regarding the type of lamp used, 91.14% used Led, 5,38% halogen and 2 94% Led and halogen. Regarding the consequences of polymerization shrinkage, 23.52% of dentists related postoperative sensitivity, marginal leakage, recurrent decay and enamel crack as consequences, 20.58% considered the microleakage the only consequence and 23, 52% only postoperative sensitivity. Of the total sample 29.4% said to reduce the stress of polymerization shrinkage used other curing techniques, 17.64% ramp type, 20.58% step type. It can be observed that 70.56% of respondents reported that less than half of the cases occurred sensitivity incidences after the restorative treatment, 20.58% never observed postoperative sensitivity, and 8.82% just in half of the cases. It was possible to observe the most types and brands of equipment used by professionals, and it was noted still a lack in the knowledge from professionals about the polymerization shrinkage consequences.

  14. [Aging of silorane- and methacrylate-based composite resins: effects on color and translucency].

    Science.gov (United States)

    Liu, Chang; Pan, Jie; Lin, Hong; Shen, Song

    2015-10-01

    To evaluate the color stability and translucency of silorane-based low shrinkage composite after in vitro aging procedures of thermal cycling and water storage respectively, and to compare with those of conventional methacrylate-based posterior composite. Three light-cured composite resins, dimethacrylate-based composite A (Filtek™ Z350), B (Filtek™ P60) and silorane-based composite C (Filtek™ P90), were tested in this study. Ten specimens (10 mm in diameter, 1 mm in height) of each composite were prepared. The ten specimens in each group were then divided into two subgroups (n = 5). One subgroup underwent thermal cycling [(5.0 ± 0.5)~(55.0 ± 1.0) °C, 10 000 cycles] and the other was stored in 37 C° distilled water for 180 days. With a spectrophotometer, the CIE L * a * b * parameters of the specimens were tested before and after artificial aging against white, medium grey and black backgrounds, respectively. △E, TP and △TP were calculated and data were analyzed using independent-samples t test and partial analysis (P composite showed color alteration above the clinically acceptable levels (△E > 3.3), and also showed higher △E with a statistically significant difference in comparison with the other composites (B and C) (P composite C showed more alteration compared with composite B (P composite underwent greater alteration with regard to color stability and translucency.

  15. Evaluation of the polymerization shrinkage of experimental flowable composite resins through optical coherence tomography

    Science.gov (United States)

    Carneiro, Vanda S. M.; Mota, Cláudia C. B. O.; Souza, Alex F.; Cajazeira, Marlus R. R.; Gerbi, Marleny E. M. M.; Gomes, Anderson S. L.

    2018-02-01

    This study evaluated the polymerization shrinkage of two experimental flowable composite resins (CR) with different proportions of Urethane dimethacrylate (UDMA)/triethylene glycol dimethacrylate (TEGDMA) monomers in the organic matrix (50:50 and 60:40, respectively). A commercially available flowable CR, Tetric N-Flow (Ivoclair Vivadent, Liechtenstein, Germany), was employed as the control group. The resins were inserted in a cylindrical teflon mold (7 mm diameter, 0.6 mm height) and scanned with OCT before photoactivation, immediately after and 15 minutes after light-curing (Radii-Cal, SDI, Australia, 1,200 mW/cm2 ) exposure. A Callisto SD-OCT system (Thorlabs Inc, USA), operating at 930 nm central wavelength was employed for imaging acquisition. Cross-sectional OCT images were captured with 8 mm transverse scanning (2000x512 matrix), and processed by the ImageJ software, for comparison between the scanning times and between groups. Pearson correlation showed significant shrinkage for all groups in each time analyzed. Kruskal-Wallis test showed greater polymerization shrinkage for the 50:50 UDMA/TEGDMA group (p=0.001), followed by the control group (p=0.018). TEGDMA concentration was proportionally related to the polymerization shrinkage of the flowable composite resins.

  16. Effect of two lasers on the polymerization of composite resins: single vs combination.

    Science.gov (United States)

    Ro, Jung-Hoon; Son, Sung-Ae; Park, Jeong-kil; Jeon, Gye-Rok; Ko, Ching-Chang; Kwon, Yong Hoon

    2015-07-01

    The selection of a light-curing unit for the curing composite resins is important to achieve best outcomes. The purpose of the present study was to test lasers of 457 and 473 nm alone or in combination under different light conditions with respect to the cure of composite resins. Four different composite resins were light cured using five different laser combinations (530 mW/cm(2) 457 nm only, 530 mW/cm(2) 473 nm only, 177 mW/cm(2) 457 + 177 mW/cm(2) 473 nm, 265 mW/cm(2) 457 + 265 mW/cm(2) 473 nm, and 354 mW/cm(2) 457 + 354 mW/cm(2) 473 nm). Microhardness and polymerization shrinkage were evaluated. A light-emitting diode (LED) unit was used for comparison purposes. On top surfaces, after aging for 24 h, microhardness achieved using the LED unit and the lasers with different conditions ranged 42.4-65.5 and 38.9-67.7 Hv, respectively, and on bottom surfaces, corresponding ranges were 25.2-56.1 and 18.5-55.7 Hv, respectively. Of the conditions used, 354 mW/cm(2) 457 nm + 354 mW/cm(2) 473 nm produced the highest bottom microhardness (33.8-55.6 Hv). On top and bottom surfaces, microhardness by the lowest total light intensity, 354 (177 × 2) mW/cm(2), ranged 39.0-60.5 and 18.5-52.8 Hv, respectively. Generally, 530 mW/cm(2) at 457 nm produced the lowest polymerization shrinkage. However, shrinkage values obtained using all five laser conditions were similar. The study shows the lasers of 457 and 473 nm are useful for curing composite resins alone or in combination at much lower light intensities than the LED unit.

  17. Restoration of traumatized teeth with resin composites

    DEFF Research Database (Denmark)

    Pallesen, Ulla; van Dijken, Jan WV

    2018-01-01

    For a long time, the primary choice for initial restoration of a crown-fractured front tooth has been resin composite material. The restoration can in most cases be performed immediately after injury if there is no sign of periodontal injury. The method’s adhesive character is conservative to tooth...... present an aesthetic problem due to exposure of un-aesthetic crown-margins. The invasive permanent crown restorations are therefore often not suc-cessful on a long-term scale. On the other hand, a conservative direct restoration of an extensively fractured incisor crown with resin composite may......-structure and with minimal risk of pulpal complication. In addition, it offers an aesthetic solution to the patient immediately after an injury, which may bring a little comfort in a sad situation. The resin composite build-up is often changed or repaired a couple of times, before the tooth is restored with a porcelain...

  18. The effects of different opacifiers on the translucency of experimental dental composite resins.

    Science.gov (United States)

    Haas, Karine; Azhar, Gulelala; Wood, Duncan J; Moharamzadeh, Keyvan; van Noort, Richard

    2017-08-01

    The aim of this study was to evaluate the effects of different opacifiers on the translucency of experimental dental composite-resins. Three metal oxides that are used as opacifiers were tested in this study: titanium oxide (TiO 2 ), aluminium oxide (Al 2 O 3 ) and zirconium oxide (ZrO 2 ). Experimental composite-resins were fabricated containing 25wt.% urethane dimethacrylate (UDMA)-based resin matrix and 75% total filler including different concentrations of metal oxides (0, 0.25, 0.5, 0.75 and 1wt.%) blended into silane treated barium-silicate filler. The specimens (15.5mm diameter and 1mm thickness) were light-cured and tested in the transmittance mode using a UV/VIS spectrophotometer at wavelengths from 380 to 700nm under a standard illuminant D65. The color differences (ΔE* ab) between different concentrations of opacifiers were also measured in transmittance mode based on their Lab values. Statistical analysis by ANOVA and Tukey's test showed a significant decrease (pcomposite-resins. There was a linear correlation between different concentrations of TiO 2 and Al 2 O 3 and total transmittance. Total transmittance was also found to be wavelength dependent. The color differences for the concentrations of 0-1wt.% of the opacifiers were above 1 ΔE* unit, with Al 2 O 3 showing the smallest color shift. The type and the amount of the opacifiers used in this study had a significant effect on the translucency of the experimental UDMA-based dental composite resins. The most effective opacifier was TiO 2 , followed by ZrO 2 and Al 2 O 3 in decreasing order, respectively. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Marginal integrity of resin composite restorations restored with PPD initiatorcontaining resin composite cured by QTH, monowave and polywave LED units.

    Science.gov (United States)

    Bortolotto, Tissiana; Betancourt, Francisco; Krejci, Ivo

    2016-12-01

    This study evaluated the influence of curing devices on marginal adaptation of cavities restored with self-etching adhesive containing CQ and PPD initiators and hybrid composite. Twenty-four class V (3 groups, n=8) with margins located on enamel and dentin were restored with Clearfil S3 Bond and Clearfil APX PLT, light-cured with a monowave LED, multiwave LED and halogen light-curing unit (LCU). Marginal adaptation was evaluated with SEM before/after thermo-mechanical loading (TML). On enamel, significantly lower % continuous margins (74.5±12.6) were found in group cured by multiwave LED when compared to monowave LED (87.6±9.5) and halogen LCU (94.4±9.1). The presence of enamel and composite fractures was significantly higher in the group light-cured with multiwave LED, probably due to an increased materials' friability resulted from an improved degree of cure. The clinician should aware that due to a distinct activation of both initiators, marginal quality may be influenced on the long-term.

  20. Composite resin fillings and inlays: An 11-year evaluation

    DEFF Research Database (Denmark)

    Pallesen, U.; Qvist, V.

    2003-01-01

    Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth......Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth...

  1. In vitro biofilm formation on resin-based composites after different finishing and polishing procedures.

    Science.gov (United States)

    Cazzaniga, Gloria; Ottobelli, Marco; Ionescu, Andrei C; Paolone, Gaetano; Gherlone, Enrico; Ferracane, Jack L; Brambilla, Eugenio

    2017-12-01

    To evaluate the influence of surface treatments of different resin-based composites (RBCs) on S. mutans biofilm formation. 4 RBCs (microhybrid, nanohybrid, nanofilled, bulk-filled) and 6 finishing-polishing (F/P) procedures (open-air light-curing, light-curing against Mylar strip, aluminum oxide discs, one-step rubber point, diamond bur, multi-blade carbide bur) were evaluated. Surface roughness (SR) (n=5/group), gloss (n=5/group), scanning electron microscopy morphological analysis (SEM), energy-dispersive X-ray spectrometry (EDS) (n=3/group), and S. mutans biofilm formation (n=16/group) were assessed. EDS analysis was repeated after the biofilm assay. A morphological evaluation of S. mutans biofilm was also performed using confocal laser-scanning microscopy (CLSM) (n=2/group). The data were analyzed using Wilcoxon (SR, gloss) and two-way ANOVA with Tukey as post-hoc tests (EDS, biofilm formation). F/P procedures as well as RBCs significantly influenced SR and gloss. While F/P procedures did not significantly influence S. mutans biofilm formation, a significant influence of RBCs on the same parameter was found. Different RBCs showed different surface elemental composition. Both F/P procedures and S. mutans biofilm formation significantly modified this parameter. The tested F/P procedures significantly influenced RBCs surface properties but did not significantly affect S. mutans biofilm formation. The significant influence of the different RBCs tested on S. mutans biofilm formation suggests that material characteristics and composition play a greater role than SR. F/P procedures of RBCs may unexpectedly play a minor role compared to that of the restoration material itself in bacterial colonization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  3. Comparison of temperature rise in the pulp chamber with different light curing units: An in-vitro study.

    Science.gov (United States)

    Rajesh Ebenezar, A V; Anilkumar, R; Indira, R; Ramachandran, S; Srinivasan, M R

    2010-07-01

    This in vitro study was designed to measure and compare the temperature rise in the pulp chamber with different light curing units. The study was done in two settings-in-vitro and in-vivo simulation. In in-vitro setting, 3mm and 6mm acrylic spacers with 4mm tip diameter thermocouple was used and six groups were formed according to the light curing source- 3 Quartz-Tungsten-Halogen (QTH) units and 3 Light-Emitting-Diode (LED) units. For the LED units, three modes of curing like pulse-cure mode, fast mode and ramp mode were used. For in-vivo simulation, 12 caries free human third molar tooth with fused root were used. K-type thermocouple with 1 mm tip diameter was used. Occlusal cavity was prepared, etched, rinsed with water and blot dried; bonding agent was applied and incremental curing of composite was done. Thermal emission for each light curing agent was noted. Temperature rise was very minimal in LED light cure units than in QTH light cure units in both the settings. Temperature rise was minimal at 6mm distance when compared to 3 mm distance. Among the various modes, fast mode produces the less temperature rise. Temperature rise in all the light curing units was well within the normal range of pulpal physiology. Temperature rise caused due to light curing units does not result in irreversible pulpal damage.

  4. Light-Cured Self-Etch Adhesives Undergo Hydroxyapatite-Triggered Self-Cure

    Science.gov (United States)

    Liu, Y.; Bai, X.; Liu, Y.W.; Wang, Y.

    2015-01-01

    Light cure is a popular mode of curing for dental adhesives. However, it suffers from inadequate light delivery when the restoration site is less accessible, in which case a self-cure mechanism is desirable to salvage any compromised polymerization. We previously reported a novel self-cure system mediated by ethyl 4-(dimethylamino)-benzoate (4E) and hydroxyapatite (HAp). The present work aims to investigate if such self-cure phenomenon takes place in adhesives that underwent prior inadequate light cure and to elucidate if HAp released from the dental etching process is sufficient to trigger it. Model self-etch adhesives were formulated with various components, including bis[2-methacryloyloxy)ethyl]-phosphate (2MP) as acidic monomer and trimethylbenzoyl-diphenylphosphine oxide (TPO) as photoinitiator. In vitro evolution of degree of conversion (DC) of HAp-incorporated adhesives was monitored by infrared spectroscopy during light irradiation and dark storage. Selected adhesives were allowed to etch and extract HAp from enamel, light-cured in situ, and stored in the dark, after which Raman line mapping was used to obtain spatially resolved DC across the enamel-resin interface. Results showed that TPO+4E adhesives reached DC similar to TPO-only counterparts upon completion of light irradiation but underwent another round of initiation that boosted DC to ~100% regardless of HAp level or prior light exposure. When applied to enamel, TPO-only adhesives had ~80% DC in resin, which gradually descended to ~50% in enamel, whereas TPO+4E adhesives consistently scored ~80% DC across the enamel-resin interface. These observations suggest that polymerization of adhesives that underwent insufficient light cure is salvaged by the novel self-cure mechanism, and such salvaging effect can be triggered by HAp released from dental substrate during the etching process. PMID:26635279

  5. Light-Cured Self-Etch Adhesives Undergo Hydroxyapatite-Triggered Self-Cure.

    Science.gov (United States)

    Liu, Y; Bai, X; Liu, Y W; Wang, Y

    2016-03-01

    Light cure is a popular mode of curing for dental adhesives. However, it suffers from inadequate light delivery when the restoration site is less accessible, in which case a self-cure mechanism is desirable to salvage any compromised polymerization. We previously reported a novel self-cure system mediated by ethyl 4-(dimethylamino)-benzoate (4E) and hydroxyapatite (HAp). The present work aims to investigate if such self-cure phenomenon takes place in adhesives that underwent prior inadequate light cure and to elucidate if HAp released from the dental etching process is sufficient to trigger it. Model self-etch adhesives were formulated with various components, including bis[2-methacryloyloxy)ethyl]-phosphate (2MP) as acidic monomer and trimethylbenzoyl-diphenylphosphine oxide (TPO) as photoinitiator. In vitro evolution of degree of conversion (DC) of HAp-incorporated adhesives was monitored by infrared spectroscopy during light irradiation and dark storage. Selected adhesives were allowed to etch and extract HAp from enamel, light-cured in situ, and stored in the dark, after which Raman line mapping was used to obtain spatially resolved DC across the enamel-resin interface. Results showed that TPO+4E adhesives reached DC similar to TPO-only counterparts upon completion of light irradiation but underwent another round of initiation that boosted DC to ~100% regardless of HAp level or prior light exposure. When applied to enamel, TPO-only adhesives had ~80% DC in resin, which gradually descended to ~50% in enamel, whereas TPO+4E adhesives consistently scored ~80% DC across the enamel-resin interface. These observations suggest that polymerization of adhesives that underwent insufficient light cure is salvaged by the novel self-cure mechanism, and such salvaging effect can be triggered by HAp released from dental substrate during the etching process. © International & American Associations for Dental Research 2015.

  6. Processable polyimide adhesive and matrix composite resin

    Science.gov (United States)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  7. Color change of composite resins subjected to accelerated artificial aging

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2013-01-01

    Conclusions: All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2 and after (B2. It was also observed color difference within a group of the same composite resin and same hue.

  8. Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.

    Science.gov (United States)

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard

    2016-07-01

    Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites.

    Science.gov (United States)

    Al Sunbul, Hanan; Silikas, Nick; Watts, David C

    2016-08-01

    To investigate a set of resin-composites and the effect of their composition on polymerization shrinkage strain and strain kinetics, shrinkage stress and the apparent elastic modulus. Eighteen commercially available resin-composites were investigated. Three specimens (n=3) were made per material and light-cured with an LED unit (1200mW/cm(2)) for 20s. The bonded-disk method was used to measure the shrinkage strain and Bioman shrinkage stress instrument was used to measure shrinkage stress. The shrinkage strain kinetics at 23°C was monitored for 60min. Maximum strain and stress was evaluated at 60min. The shrinkage strain rate was calculated using numerical differentiation. The shrinkage strain values ranged from 1.83 (0.09) % for Tetric Evoceram (TEC) to 4.68 (0.04) % for Beautifil flow plus (BFP). The shrinkage strain rate ranged from 0.11 (0.01%s(-1)) for Gaenial posterior (GA-P) to 0.59 (0.07) %s(-1) for BFP. Shrinkage stress values ranged from 3.94 (0.40)MPa for TET to 10.45 (0.41)MPa for BFP. The apparent elastic modulus ranged from 153.56 (18.7)MPa for Ever X posterior (EVX) to 277.34 (25.5) MPa for Grandio SO heavy flow (GSO). The nature of the monomer system determines the amount of the bulk contraction that occurs during polymerization and the resultant stress. Higher values of shrinkage strain and stress were demonstrated by the investigated flowable materials. The bulk-fill materials showed comparable result when compared to the traditional resin-composites. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Evaluation of degree of conversion and the effect of thermal aging on the color stability of resin cements and flowable composite.

    Science.gov (United States)

    Prieto, Lúcia Trazzi; Pimenta de Araújo, Cíntia Tereza; Araujo Pierote, Josué Junior; Salles de Oliveira, Dayane Carvalho Ramos; Coppini, Erick Kamiya; Sartini Paulillo, Luís Alexandre Maffei

    2018-01-01

    The aim of this in vitro study was to evaluate the color stability and degree of conversion (DC) of dual-cure and light-cure cements and flowable composites after thermal aging. A total of 50 human incisors were prepared and divided into six groups ( n = 10). Veneers were fabricated using IPS Empress Direct composite resin were bonded with three types of luting agents: Light-cured, conventional dual, and flowable composite according to the manufacturer's instructions. The groups were as follows: Filtek Z350XT Flow/Single Bond 2, RelyX ARC/Single Bond 2, RelyX Veneer/Single Bond 2, Tetric N-Flow/Tetric N-Bond, and Variolink II/Tetric N-Bond. Commission Internationale de l'Éclairage L*, a* and b* color coordinates were measured 24 h after cementation procedure with a color spectrophotometer and reevaluated after 10,000 thermal cycles. To evaluate the DC 50 specimens ( n = 10) of each resin material were obtained and Fourier transform infrared spectroscopy was used to evaluate the absorption spectra. Statistical analysis was performed with one-way ANOVA and Tukey's test (α = 0.05). No statistically significant differences in ΔE* occurred after aging. The greatest change in lightness occurred in the Variolink II resin cement. Changes in red-green hue were very small for the same cement and largest in the Tetric N-Flow flowable resin composite, while the greatest change in blue-yellow hue was a yellowing of the RelyX ARC luting cement. RelyX ARC exhibited the highest DC, and there were no statistically significant differences in DC among the other cements. Resin-based luting agent might affect the final of ceramic veneer restorations. The thermal aging affected the final color of the evaluated materials, and these were regarded as clinically unacceptable (ΔE >3.3).

  11. New-generation curing units and short irradiation time: the degree of conversion of microhybrid composite resin.

    Science.gov (United States)

    Scotti, Nicolla; Venturello, Alberto; Migliaretti, Giuseppe; Pera, Francesco; Pasqualini, Damiano; Geobaldo, Francesco; Berutti, Elio

    2011-09-01

    This in vitro study investigated the depth of cure of a microhybrid composite resin when cured with reduced times of exposure to three commercially available curing lights. Different sample thicknesses (1, 2, and 3 mm) were light cured in high intensity polymerization mode (2,400 mW/cm² for 5, 10, 15, and 20 seconds; 1,100 mW/cm² for 10, 20, 30, and 40 seconds; and 1,100 mW/cm² for 10, 20, 30, and 40 seconds, respectively). The degree of conversion (%) at the bottom of each sample was measured by Attenuated Total Reflection Fourier Transform Infrared (ATR F-TIR) analysis after each polymerization step. Data were analyzed by ANOVA for repeated measures, showing the degree of conversion was not influenced by the curing light employed (P = .622) but was significantly influenced by the thickness of composite resin (P conversion vs the shorter irradiation time permitted (T1) were not significant among different lamps but were significant among different thicknesses. The depth of cure of microhybrid composite resin appears not to be influenced by the curing light employed. Increased irradiation time significantly increases the degree of conversion. Thickness strongly influences depth of cure.

  12. Degree of conversion of nanofilled and microhybrid composite resins photo-activated by different generations of LEDs

    Directory of Open Access Journals (Sweden)

    Benicia Carolina Iaskieviscz Ribeiro

    2012-04-01

    Full Text Available OBJECTIVE:This study aimed at evaluating the degree of conversion (DC of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs. MATERIAL AND METHODS: Filtek TM Z350 nanofilled composite resins and Amelogen® Plus, Vit-l-escenceTM and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free LightTM 2 and one third-generation LED (Ultra-Lume LED 5 by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control. After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr. After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm-1 coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1 against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1. RESULTS: The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs and the composite resins (p<0.001. The Tukey’s test showed that the nanofilled resin (FiltekTM Z350 and Opallis when photo-activated by the halogen lamp (QTH had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (FiltekTM Z350 was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free LightTM 2. CONCLUSIONS: The nanofilled resin showed the lowest DC, and the Vit-l-escenceTM microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second

  13. Versatile composite resins simplifying the practice of restorative dentistry.

    Science.gov (United States)

    Margeas, Robert

    2014-01-01

    After decades of technical development and refinement, composite resins continue to simplify the practice of restorative dentistry, offering clinicians versatility, predictability, and enhanced physical properties. With a wide range of products available today, composite resins are a reliable, conservative, multi-functional restorative material option. As manufacturers strive to improve such properties as compression strength, flexural strength, elastic modulus, coefficient of thermal expansion, water sorption, and wear resistance, several classification systems of composite resins have been developed.

  14. Easy Debonding of Ceramic Brackets Bonded with a Light-Cured Orthodontic Adhesive Containing Microcapsules with a CO2 Laser.

    Science.gov (United States)

    Arima, Shiori; Namura, Yasuhiro; Tamura, Takahiko; Shimizu, Noriyoshi

    2018-03-01

    An easy debonding method for ceramic brackets using a light-cured Bis-GMA resin containing heat-expandable microcapsules and CO 2 laser was investigated. Ceramic brackets are used frequently in orthodontic treatment because of their desirable esthetic properties. However, the application of heavy force to ceramic brackets in debonding can fracture the tooth enamel and ceramic brackets, causing tooth pain. In total, 60 freshly extracted bovine permanent mandibular incisors were divided randomly into 10 groups of 6 specimens each, corresponding to the number of variables tested. Ceramic brackets were bonded to bovine permanent mandibular incisors using an orthodontic bonding agent containing heat-expandable microcapsules at different levels (0-30 wt%) and resin composite paste, and cured by a curing device. The bond strengths were measured before and after CO 2 laser irradiation, and the temperature increase in the pulp chamber in fresh human first premolars was also evaluated. With CO 2 laser irradiation for 5 sec to the bracket, the bond strength in the 25% microcapsule group decreased significantly, to ∼0.17-fold, compared with that of the no-laser group (p brackets, with less debonding time and enamel damage.

  15. Influence of different light-curing units on the surface roughness of restorative materials: in situ study

    Directory of Open Access Journals (Sweden)

    Juliane Cristina Ciccone-Nogueira

    2007-09-01

    Full Text Available The aim of this study was to evaluate the influence of different light sources (LED and Halogen lamp on the roughness (superficial of composite resin (Filtek Z250, Filtek P60, Charisma and Durafill varying post-irradiation times, in an in situ experiment. For this purpose, 80 specimens were made in polyurethane moulds. Ten volunteers without medicament use and good oral condition were selected and from them study moulds were obtained. A palatal intra-oral acrylic resin appliance was made for each of the subjects of the experiment. In each appliance, two specimens of each material were fixed (LED/Halogen lamp - control group. Roughness tests were performed immediately and 30 days after initial light-curing. Statistical analysis was performed using ANOVA. Statistically significant difference was observed only between post-irradiation times, where the 30th day showed the highest roughness values. It be concluded that roughness was influenced only by post-irradiation times, presenting the 30- days period inferior behavior.

  16. Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins.

    Science.gov (United States)

    Rodríguez, Henry A; Giraldo, Luis F; Casanova, Herley

    2015-07-01

    The aim of this work was to study the effect of silica nanoclusters (SiNC), obtained by a solvent evaporation method and functionalized by 3-methacryloxypropyltrimethoxysilane (MPS) and MPS+octyltrimethoxysilane (OTMS) (50/50wt/wt), on the rheological, mechanical and sorption properties of urethane dimethylacrylate (UDMA)/triethylenglycol dimethacrylate (TEGDMA) (80/20wt/wt) resins blend. Silica nanoparticles (SiNP) were silanized with MPS or MPS+OTMS (50/50wt/wt) and incorporated in an UDMA-isopropanol mix to produce functionalized silica nanoclusters after evaporating the isopropanol. The effect of functionalized SiNC on resins rheological properties was determined by large and small deformation tests. Mechanical, thermal, sorption and solubility properties were evaluated for composite materials. The UDMA/TEGDMA (80/20wt/wt) resins blend with added SiNC (ca. 350nm) and functionalized with MPS showed a Newtonian flow behavior associated to their spheroidal shape, whereas the resins blend with nanoclusters silanized with MPS+OTMS (50/50wt/wt) (ca. 400nm) showed a shear-thinning behavior due to nanoclusters irregular shape. Composite materials prepared with bare silica nanoclusters showed lower compressive strength than functionalized silica nanoclusters. MPS functionalized nanoclusters showed better mechanical properties but higher water sorption than functionalized nanoclusters with both silane coupling agents, MPS and OTMS. The solvent evaporation method applied to functionalized nanoparticles showed to be an alternative way to the sinterization method for producing nanoclusters, which improved some dental composite mechanical properties and reduced water sorption. The shape of functionalized silica nanoclusters showed to have influence on the rheological properties of SiNC resin suspensions and the mechanical and sorption properties of light cured composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Method for curing alkyd resin compositions by applying ionizing radiation

    International Nuclear Information System (INIS)

    Watanabe, T.; Murata, K.; Maruyama, T.

    1975-01-01

    An alkyd resin composition is prepared by dissolving a polymerizable alkyd resin having from 10 to 50 percent of oil length into a vinyl monomer. The polymerizable alkyd resin is obtained by a half-esterification reaction of an acid anhydride having a polymerizable unsaturated group and an alkyd resin modified with conjugated unsaturated oil having at least one reactive hydroxyl group per one molecule. The alkyd resin composition thus obtained is coated on an article, and ionizing radiation is applied on the article to cure the coated film thereon. (U.S.)

  18. Color of bulk-fill composite resin restorative materials.

    Science.gov (United States)

    Barutcigil, Çağatay; Barutcigil, Kubilay; Özarslan, Mehmet Mustafa; Dündar, Ayşe; Yilmaz, Burak

    2018-03-01

    To evaluate the color stability of novel bulk-fill composite resins. Color measurements of a nanohybrid composite resin (Z550) and 3 bulk-fill composite resins (BLK, AFX, XTF; n = 45) were performed before polymerization. After polymerization, color measurements were repeated and specimens were immersed in distilled water or red wine, or coffee. Color change [CIEDE2000 (ΔE 00 )] was calculated after 24 h, 1 and 3 weeks. Data were analyzed with Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests (α = 0.05). Color changes observed after polymerization were significant for all groups. Color changes observed in distilled water for Z550 and AFX were significant. Color changes after stored in red wine and coffee were significant for all groups. Bulk-fill composite resin color change increased over time for all groups in red wine and coffee (P composite resin and bulk-fill composite resins. AFX had the highest color change in distilled water. The color of tested bulk-fill composite resins significantly changed after immersion in beverages and over time. Color change observed with the nanohybrid composite resin after 1 week was stable. Clinicians should keep in mind that tested composite resins may change color when exposed to water and significantly change color immediately after they are polymerized. In addition, the color change continues over time should the patient is a coffee and/or red wine consumer. © 2017 Wiley Periodicals, Inc.

  19. Characterization of Composite Fan Case Resins

    Science.gov (United States)

    Dvoracek, Charlene M.

    2004-01-01

    The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis

  20. The effect of curing units and methods on degree of conversion of two types of composite resins

    Directory of Open Access Journals (Sweden)

    Hasani Tabatabaei M

    2007-06-01

    Full Text Available Background and Aim: Halogen lamp is the commonly used light source for composite photo polymerization. Recently, high power halogen lamps, LED and plasma arc are introduced for improving the polymerization. The aim of this study was to investigate the effect of conventional and high power halogen lamps and LED light curing unit on degree of conversion of two different composite resins.Materials and Methods: In this in vitro experimental study two halogen units (Coltolux 50 with the intensity of  330 mW/cm2 and Optilux 501 with two different operating modes of standard with the intensity of 820 mW/cm2 and Ramp with the intentsiy of 100-1030mW/cm2 and one LED light curing unit (620 mW/cm2 were used. The composites were hybrid (Tetric ceram and nanofilled (Filteke supreme. Each materials/curing method contained three samples and degree of conversion (DC was measured with FTIR. Data were analyzed statistically with one way and two way ANOVA, Tukey HSD. P<0.05 was considered as the limit of significance.Results: Tetric ceram revealed higher DCthan Supreme. Tetric ceram showed a significant decrease in DC when Coltolux 50 was used in comparison to LED and Optilux 501. The latters did not show significant effect on DC of this material. DC of Supreme polymerized with various curing modes was not significantly different.Conclusion: Based on the results of this study, degree of conversion in hybrid composites was higher than nanofilled. In comparison with conventional halogen lamp (Coltolux 50, high intensity halogen lamps and LED unit significantly lead to higher degree of conversion in hybrid composites.

  1. Profilometric analysis of two composite resins' surface repolished after tooth brush abrasion with three polishing systems.

    Science.gov (United States)

    Uppal, Mudit; Ganesh, Arathi; Balagopal, Suresh; Kaur, Gurleen

    2013-07-01

    To evaluate the effect of three polishing protocols that could be implemented at recall on the surface roughness of two direct esthetic restorative materials. Specimens (n = 40) measuring 8 mm (length) × 5 mm (width) × 4 mm (height) were fabricated in an acrylic mold using two light-cured resin-based materials (microfilled composite and microhybrid composite). After photopolymerization, all specimens were finished and polished with one of three polishing protocols (Enhance, One Gloss, and Sof-Lex polishing systems). The average surface roughness of each treated specimen was determined using 3D optical profilometer. Next all specimens were brushed 60,000 times with nylon bristles at 7200 rpm using crosshead brushing device with equal parts of toothpaste and water used as abrasive medium. The surface roughness of each specimen was measured after brushing followed by repolishing with one of three polishing protocols, and then, the final surface roughness values were determined. The data were analyzed using one-way and two-factor analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD). Significant difference (P < 0.05) in surface roughness was observed. Simulated brushing following initial polishing procedure significantly roughened the surface of restorative material (P < 0.05). Polishing protocols can be used to restore a smooth surface on esthetic restorative materials following simulated tooth brushing.

  2. Degree of conversion of nanofilled and microhybrid composite resins photo-activated by different generations of LEDs.

    Science.gov (United States)

    Ribeiro, Benicia Carolina Iaskieviscz; Boaventura, Juliana Maria Capelozza; Brito-Gonçalves, Joel de; Rastelli, Alessandra Nara de Souza; Bagnato, Vanderlei Salvador; Saad, José Roberto Cury

    2012-01-01

    This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Filtek™ Z350 nanofilled composite resins and Amelogen® Plus, Vit-l-escence™ and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free Light™ 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm(-1)) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (presin (Filtek™ Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (Filtek™ Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free Light™ 2). The nanofilled resin showed the lowest DC, and the Vit-l-escence™ microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC.

  3. Comparison of the heat generation of light curing units.

    Science.gov (United States)

    Bagis, Bora; Bagis, Yildirim; Ertas, Ertan; Ustaomer, Seda

    2008-02-01

    The aim of this study was to evaluate the heat generation of three different types of light curing units. Temperature increases were recorded from a distance of 1 mm from a thermocouple to the tip of three different types of light curing units including one quartz-tungsten halogen (QTH), one plasma arc (PAC), and one light emitting diode (LED) unit. An experimental model was designed to fix the 1 mm distance between the tip of the light curing units and the thermocouple wire. Temperature changes were recorded in 10 second intervals up to 40 seconds. (10, 20, 30, and 40 seconds). Temperature measurements were repeated three times for every light curing unit after a one hour standby period. Statistical analysis of the results was performed using the analysis of variance (ANOVA) and the Bonferroni Test. The highest temperature rises (54.4+/-1.65 degrees C) occurred during activation of a PAC light curing unit for every test period (pdamage to the pulp.

  4. Effect of various teas on color stability of resin composites.

    Science.gov (United States)

    Dinç Ata, Gül; Gokay, Osman; Müjdeci, Arzu; Kivrak, Tugba Congara; Mokhtari Tavana, Armin

    2017-12-01

    To investigate the effect of various teas on color stability of resin composites. Two methacrylate-based (Arabesk Top, Grandio) and a silorane-based (Filtek Silorane) resin composites were used. 110 cylindrical samples of each resin composite were prepared (2 mm thickness and 8 mm diameter), polished and stored in distilled water (37°C for 24 hours). They were randomly divided into 11 groups (n= 10) and color measurements were taken. Then the samples were immersed in tap water (control), a black tea, a green tea or one of the eight herbal-fruit teas (37°C for 1 week) and subsequently subjected to the final color measurements. The color change of samples (ΔE*) was calculated, data were subjected to two-way ANOVA and Tukey's HSD tests. Teas, resin composites and their interactions were significant (P= 0.000). All the teas and control caused color changes in all three resin composites. Rosehip tea caused the most color changes, while tap water showed the least in all resin composites. Arabesk Top had the most staining potential in all the teas and control, whereas Filtek Silorane was the most stain resistant except Grandio immersed in sage tea. Color stability of all resin composites used were affected from both structure of resin materials and constituents of teas used. All resin composites were susceptible to staining by all teas especially rosehip tea. Arabesk Top composite showed the greatest color susceptibility in all teas and Filtek Silorane the least with one exception. Color of resin composites can be negatively affected from teas consumed. Clinicians should advise patients that drinking different kind of teas could intensify surface staining of resin based restorations.

  5. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  6. Nanoindentation creep versus bulk compressive creep of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Akhtar, R; Watts, D C

    2012-11-01

    To evaluate nanoindentation as an experimental tool for characterizing the viscoelastic time-dependent creep of resin-composites and to compare the resulting parameters with those obtained by bulk compressive creep. Ten dental resin-composites: five conventional, three bulk-fill and two flowable were investigated using both nanoindentation creep and bulk compressive creep methods. For nano creep, disc specimens (15mm×2mm) were prepared from each material by first injecting the resin-composite paste into metallic molds. Specimens were irradiated from top and bottom surfaces in multiple overlapping points to ensure optimal polymerization using a visible light curing unit with output irradiance of 650mW/cm(2). Specimens then were mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. Following grinding and polishing, specimens were stored in distilled water at 37°C for 24h. Using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius), the nano creep was measured at a maximum load of 10mN and the creep recovery was determined when each specimen was unloaded to 1mN. For bulk compressive creep, stainless steel split molds (4mm×6mm) were used to prepare cylindrical specimens which were thoroughly irradiated at 650mW/cm(2) from multiple directions and stored in distilled water at 37°C for 24h. Specimens were loaded (20MPa) for 2h and unloaded for 2h. One-way ANOVA, Levene's test for homogeneity of variance and the Bonferroni post hoc test (all at p≤0.05), plus regression plots, were used for statistical analysis. Dependent on the type of resin-composite material and the loading/unloading parameters, nanoindentation creep ranged from 29.58nm to 90.99nm and permanent set ranged from 8.96nm to 30.65nm. Bulk compressive creep ranged from 0.47% to 1.24% and permanent set ranged from 0.09% to 0.38%. There was a significant (p=0.001) strong positive non-linear correlation (r(2)=0.97) between bulk

  7. Color change of composite resins subjected to accelerated artificial aging.

    Science.gov (United States)

    Tornavoi, Denise Cremonezzi; Agnelli, José Augusto Marcondes; Panzeri, Heitor; Dos Reis, Andréa Cândido

    2013-01-01

    The aim of this study was to evaluate the influence of accelerated artificial aging (AAA) on the color change of composite resins used in dentistry. Three composite resins were evaluated: Two microhybrids and one hybrid of higher viscosity, with different amounts and sizes of filler particles, shades C2 and B2. A total of 54 specimens were obtained (18 for each composite resin), made of a Teflon matrix (15 mm in diameter and 2 mm in height). The color measurements were obtained with a Spectrophotometer, (PCB 6807 BYK Gardner) before and after AAA. Data were submitted to the Kolmogorov-Smirnov test (α >0.05), ANOVA and Tukey test (α 3). Considering the variable ∆E, it was observed that the color tone C2 was already statistically different for the microhybrid composite resin prior to AAA (P aging the composite resin hybrid of higher viscosity B2 showed the highest color variation rate and microhybrid with zirconium/silica C2 showed the lowest. All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2) and after (B2). It was also observed color difference within a group of the same composite resin and same hue.

  8. Effect of photoactivation on the reduction of composite resin contamination.

    Science.gov (United States)

    Pauletti, Natalia A; Girotto, Luiza P S; Leite, Françoise H S; Mario, Débora N

    2017-06-01

    Composite resins are predominantly marketed in developing countries in tube form, and the contents of the tube may be used in numerous procedures for different patients. This represents a problem because of the risk of cross-contamination. This study aimed to evaluate contamination in vitro of the internal contents of composite resin tubes in the dental clinics of a higher-education institution, as well as the effect of photoactivation on the level of contamination. Twenty-five tubes containing composite resin were randomly chosen (by lottery). From each tube, two samples of approximately 2 mm of composite resin were removed, and then one sample, but not the other, was photoactivated. These samples were plated on Brain-Heart Infusion (BHI), Sabouraud and MacConkey agars, and the plates were incubated at 37°C for 24-48 h. Colony counting and Gram staining were performed for subsequent microscopic identification of fungi and bacteria. The non-photoactivated composite resin group presented significantly higher microbial contamination in relation to the photoactivated composite resin group. The photoactivation of camphorquinone present in composite resin produces reactive oxygen species, which might promote cell death of contaminant microorganisms. Thus, although the same tube of composite resin may be used for a number of different patients in the dental clinics of developing countries, the photoactivation process potentially reduces the risk of cross-contamination. © 2017 Eur J Oral Sci.

  9. Fatigue resistance of CAD/CAM resin composite molar crowns.

    NARCIS (Netherlands)

    Shembish, F.A.; Tong, H.; Kaizer, M.; Janal, M.N.; Thompson, V.P.; Opdam, N.J.M.; Zhang, Y.

    2016-01-01

    OBJECTIVE: To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. METHODS: Fully anatomically shaped monolithic resin composite molar crowns (Lava

  10. Assessing degradation of composite resin cements during artificial aging by Martens hardness.

    Science.gov (United States)

    Bürgin, Stefan; Rohr, Nadja; Fischer, Jens

    2017-05-19

    Aim of the study was to verify the efficiency of Martens hardness measurements in detecting the degradation of composite resin cements during artificial aging. Four cements were used: Variolink II (VL2), RelyX Unicem 2 Automix (RUN), PermaFlo DC (PDC), and DuoCem (DCM). Specimens for Martens hardness measurements were light-cured and stored in water at 37 °C for 1 day to allow complete polymerization (baseline). Subsequently the specimens were artificially aged by water storage at 37 °C or thermal cycling (n = 6). Hardness was measured at baseline as well as after 1, 4, 9 and 16 days of aging. Specimens for indirect tensile strength measurements were produced in a similar manner. Indirect tensile strength was measured at baseline and after 16 days of aging (n = 10). The results were statistically analyzed using one-way ANOVA (α = 0.05). After water storage for 16 days hardness was significantly reduced for VL2, RUN and DCM while hardness of PDC as well as indirect tensile strength of all cements were not significantly affected. Thermal cycling significantly reduced both, hardness and indirect tensile strength for all cements. No general correlation was found between Martens hardness and indirect tensile strength. However, when each material was analyzed separately, relative change of hardness and of indirect tensile strength revealed a strong linear correlation. Martens hardness is a sensible test method to assess aging of resin composite cements during thermal cycling that is easy to perform.

  11. Effect of light intensity and irradiation time on the polymerization process of a dental composite resin

    Directory of Open Access Journals (Sweden)

    Discacciati José Augusto César

    2004-01-01

    Full Text Available Polymerization shrinkage is a critical factor affecting the longevity and acceptability of dental composite resins. The aim of this work was to evaluate the effect of light intensity and irradiation time on the polymerization process of a photo cured dental composite resin by measuring the Vickers hardness number (VHN and the volumetric polymerization shrinkage. Samples were prepared using a dental manual light-curing unit. The samples were submitted to irradiation times of 5, 10, 20 and 40 s, using 200 and 400 mW.cm-2 light intensities. Vickers hardness number was obtained at four different moments after photoactivation (immediate, 1 h, 24 h and 168 h. After this, volumetric polymerization shrinkage values were obtained through a specific density method. The values were analyzed by ANOVA and Duncan's (p = 0.05. Results showed increase in hardness values from the immediate reading to 1 h and 24 h readings. After 24 h no changes were observed regardless the light intensities or activation times. The hardness values were always smaller for the 200 mW.cm-2 light intensity, except for the 40 s irradiation time. No significant differences were detected in volumetric polymerization shrinkage considering the light intensity (p = 0.539 and the activation time (p = 0.637 factors. In conclusion the polymerization of the material does not terminate immediately after photoactivation and the increase of irradiation time can compensate a lower light intensity. Different combinations between light intensity and irradiation time, i.e., different amounts of energy given to the system, have not affected the polymerization shrinkage.

  12. Effects on microstrain and conversion of flowable resin composite using different curing modes and units.

    Science.gov (United States)

    Tseng, Wan-Yu; Chen, Ruey-Song; Wang, Jaw-Lin; Lee, Ming-Shu; Rueggeberg, Frederick A; Chen, Min-Huey

    2007-05-01

    The flowable resin composite, Tetric Flow, was used to measure microstrain and degree of conversion after hardening with each of three curing machines: XL3000(XL) for 10, 20, 30, and 40 s; Optilux 501 using conventional mode (OC) for 10, 20, 30, and 40 s, as well as Optilux boost (OB, 10 s) and ramp modes (OR, 20 s); and LEDemetron (LEDe) for 10, 20, 30, and 40 s. The emitted power density and spectral distribution of the three light curing units were also measured. The LEDe output energy spectrum was centralized between 425 and 490 nm, which encompasses the excited wavelength of camphorquinone. The microstrain produced by the curing process is as a second-degree polynomial for each light source. The OB microstrain was highest, while the OR microstrain was lower. The ranking in order of degree of monomer conversion was as follows: XL10 conversion cured with OB was significant higher than other curing modes except OC30, OC40, LEDe30, LEDe40, and XL40. The conversion value of XL10 was the lowest. The LEDe produced higher conversion for the same emitted energy compared to the two halogen units.

  13. Degree of conversion and cross-link density within a resin-matrix composite.

    Science.gov (United States)

    Al-Zain, Afnan O; Eckert, George J; Lukic, Henry; Megremis, Spiro J; Platt, Jeffrey A

    2018-05-01

    The aims of this study were to profile light radiated from two light-curing units (LCUs) and evaluate profile relationship to polymerization patterns within a resin-matrix composite (RMC). Beam profiles of one multiple emission peak light-emitting-diode and one quartz-tungsten-halogen curing-unit were measured using a beam profiler/spectrometer system. A camera-based profiler and an integrating sphere/spectrometer assembly were used to evaluate each LCU beam. Polymerization patterns within a nano-hybrid RMC were investigated using a mapping approach by assessing the degree of conversion utilizing micro-Raman spectroscopy and indirectly estimating cross-link-density by repeated microhardness testing before and after exposure to ethanol (%KH reduction, n = 3). The irradiance received on the top and bottom specimen surfaces from both LCUs was measured using a MARC-RC system. The investigated beam profile area from both LCUs was non-uniform and yielded localized discrepancies in DC (55.7-74.9%) and %KH reduction (26.7-54.1%). The LCU irradiance received at the bottom of the specimens was ∼10% of the top value. This study demonstrated that LCU beam profiles were non-uniform in the area explored. Localized differences in DC and %KH reduction existed throughout the RMC specimens but did not follow a specific pattern. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1496-1504, 2018. © 2017 Wiley Periodicals, Inc.

  14. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Microshear bond strength of composite resins to enamel and porcelain substrates utilizing unfilled versus filled resins.

    Science.gov (United States)

    Najafi-Abrandabadi, Ahmad; Najafi-Abrandabadi, Siamak; Ghasemi, Amir; Kotick, Philip G

    2014-11-01

    Failures such as marginal discoloration and composite chipping are still the problems of tooth-colored restorations on the substrate of enamel and porcelain, which some of these problems are consequently as a result of failures in the bonding layer. Using filled resin has been recently introduced to increase the bond strength of this layer. The aim of this study was to compare the microshear bond strength (μ-SBS) of composite resins to enamel incubated in periods of 24 h and 9 months and porcelain with unfilled resin and flowable composites (filled resin). In this in vitro study, two groups of 75 enamel samples with different storage times (24 h and 9 months) and a group of 75 porcelain samples were used. They were divided into 5 experimental groups of 15 samples in each. Composite cylinders in tygon tubes were bonded on the surface of acid-etched enamel and pretreated porcelain. Wave, Wave MV, Wave HV, Grandioflow and Margin Bond were used as bonding agents. The μ-SBS was measured at the speed of 1.0 mm/min. The bond strengths were analyzed with one-way analysis of variance (ANOVA) test followed by Tukey test. P composites (filled resins) can be used instead of unfilled resins in bonding composite resins to enamel and porcelain substrates.

  16. Conversion degrees of resin composites using different light sources.

    Science.gov (United States)

    Ozturk, Bora; Cobanoglu, Nevin; Cetin, Ali Rıza; Gunduz, Beniz

    2013-01-01

    The objective of this study was to compare the conversion degree of six different composite materials (Filtek Z 250, Filtek P60, Spectrum TPH, Pertac II, Clearfil AP-X, and Clearfil Photo Posterior) using three different light sources (blue light-emitting diode [LED], plasma arc curing [PAC], and conventional halogen lamp [QTH]). Composites were placed in a 2 mm thick and 5 mm diameter Teflon molds and light cured from the top using three methods: LED for 40 s, PAC for 10 s, and QTH for 40 s. A Fourier Transform Infrared Spectroscopy (FTIR) was used to evaluate the degree of conversion (DC) (n=5). The results were analyzed with two-way analysis of variance and Tukey HSD test. DC was significantly influenced by two variables, light source and composite (PDC values than LED (PDC values of QTH and PAC or between DC values of LED and PAC (P>.05). The highest DC was observed in the Z 250 composite specimens following photopolymerization with QTH (70%). The lowest DC was observed in Clearfil Photo Posterior composite specimens following photo-polymerization with LED (43%). The DC was found to be changing according to both light sources and composite materials used. Conventional light halogen (QTH) from light sources and Filtek Z 250 and Filtek P 60 among composite materials showed the most DC performance.

  17. Ballistic properties of bidirectional fiber/resin composites

    International Nuclear Information System (INIS)

    Dimeski, Dimko; Spaseska, Dijana

    2004-01-01

    The aim of the research was to make evaluation of the ballistic strength of four different fiber/resin composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ballistic nylon, aramid and HPPE (High Performance Polyethylene) plainly woven fabric based composites. As a matrix system, in all cases, polyvinylbutyral modified phenolic resin was used. For the investigation, areal weight range 2 - 9 kg/m 2 chosen was, which is applicable for personal ballistic protection and the ultimate resin content range 20 - 50 vol.%. Ballistic test of the composites has shown that the best results exhibit HPPE based composites; aramid based composites have been the second best followed by the polyamide based composites. The worst results have been shown by the glass based composites. All composites with lower resin content (20%) have performed much better than their counterparts with higher resin content (50 %).The plot of the ballistic strength (V 50 ) versus areal weight has shown a linear increase of V 50 with the increase of areal weight. The ballistic strength of the composites is highly dependant on the fiber/resin ratio and increases with the increase of the fiber content. (Author)

  18. Fiber-reinforced Composite Resin Prosthesis to Restore Missing ...

    African Journals Online (AJOL)

    A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland) embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland).

  19. Maleimido substituted cyclotriphosphazene resins for fire and heat resistant composites

    Science.gov (United States)

    Kumar, D.; Fohlen, G. M.; Parker, J. A.

    1983-01-01

    A new class of fire- and heat-resistant matrix resins have been synthesized by the thermal polymerization of maleimido substituted phenoxycyclotriphosphazenes. The resins have exhibited a char yield of 82 percent at 800 C in nitrogen and 81 percent at 700 C in air. Graphite-fabric laminates based on a resin of this class have shown a limiting oxygen index of 100 percent even at 300 C. Details of the fabrication of the resins and the composites and testing procedures are discussed.

  20. Aerospace Composite Materials Delivery Order 0003: Nanocomposite Polymeric Resin Enhancements for Improved Composite Performance

    National Research Council Canada - National Science Library

    Chen, Chenggang

    2002-01-01

    .... The addition of clays does not significantly alter the viscosity or cure kinetics so that the modified resin will still be suitable for liquid composite molding techniques such as resin transfer molding...

  1. Bond strength of resin composite to light activated bleached enamel

    African Journals Online (AJOL)

    2015-09-02

    Sep 2, 2015 ... After setting of the cement, a composite resin (Variolink II) block was .... do not completely duplicate the physical and chemical properties of the oral ... peroxide concentrations on the corrosion behavior and surface topography.

  2. Surface roughness of etched composite resin in light of composite repair

    NARCIS (Netherlands)

    Loomans, B.A.C.; Cardoso, M.V.; Opdam, N.J.M.; Roeters, F.J.M.; Munck, J. De; Huysmans, M.C.D.N.J.M.; Meerbeek, B. Van

    2011-01-01

    OBJECTIVES: In search for clinically effective composite repair protocols, the effect of various etching protocols on the surface roughness of composite resins with different filler composition were investigated. METHODS: Of two composite resins (hybrid-filled Clearfil AP-X; nano-filled Filtek

  3. Resin flow/fiber deformation model for composites

    International Nuclear Information System (INIS)

    Gutowski, T.G.

    1985-01-01

    This paper presents a resin flow/fiber deformation model that can be used to predict the behavior of composites during the molding cycle. The model can take into account time varying pressure and viscosity and output the time history of the fiber volume fraction. With this known, the composite thickness, resin pressure, and fiber pressure can all be determined as a function of time. The results of this model are in good agreement with experimentally measured values. 10 references, 9 figures

  4. Surface discoloration of composite resins: Effects of staining and bleaching.

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2012-09-01

    The purpose of this in vitro study was to evaluate surface discoloration of three microhybrid composite resins (Esthet•X HD, Clearfil AP-X, Gradia Direct) and five nanohybrid composite resins (Ceram•X, GC Kalore, G-aenial, Grandio, GrandioSO), after staining and bleaching procedures. The composite resins were polymerized with a curing light (Celalux II, Voco, Cuxhaven, Germany) into 160 silicon molds (6,4 mm in diameter and 2 mm in thickness) to obtain identical specimens. Twenty samples for each composite resin were prepared. The specimens were polished using an automated polishing machine with the sequence of 600-, 800-, 1000-grit abrasive paper under water irrigation. The specimens were immersed in tea and distilled water: the specimens were dipped for 20 min, once a day (every 24 h), for 14 days into the drinks. The specimens were then bleached with carbamide peroxide at 17% (Perfect Bleach-Voco). The color of specimens was measured with a spectrophotometer according to the CIE L(*)a(*)b(*) system after light-polymerization of composite resin specimens, after 7 days, after 14 days, and after bleaching. The color difference h index (DEab(*)) between each measurement was calculated. Statistical analysis was made using analysis of variance (ANOVA). All specimens showed a significant increase in staining with a similar trend and no significant differences between microhybrid and nanohybrid composite resins. After whitening procedures, materials tested showed both significant and unsignificant differences of the h index. Microhybrid and nanohybrid composite resins had similar in vitro surface discoloration in tea. After bleaching, discoloration was removed from some composite resins tested.

  5. Marginal adaptation of composite resins under two adhesive techniques.

    Science.gov (United States)

    Dačić, Stefan; Veselinović, Aleksandar M; Mitić, Aleksandar; Nikolić, Marija; Cenić, Milica; Dačić-Simonović, Dragica

    2016-11-01

    In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek Ultimate-ASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy One-AEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self-etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied. © 2016 Wiley Periodicals, Inc.

  6. Assessment of polymerization contraction stress of three composite resins

    NARCIS (Netherlands)

    Cadenaro, M.; Biasotto, M.; Scuor, N.; Breschi, L.; Davidson, C.L.; Di Lenarda, R.

    2008-01-01

    Objectives: The purpose of this study was to measure the development of contraction stress of three composite resin restorative materials during photo-polymerization: a micro-hybrid composite (Filtek Z250, 3M ESPE, St. Paul, MN, USA); a nano-filled composite (Filtek Supreme, 3M ESPE, St. Paul, MN,

  7. Radiation processed composite materials of wood and elastic polyester resins

    International Nuclear Information System (INIS)

    Tapolcai, I.; Czvikovszky, T.

    1983-01-01

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  8. Matrix resin effects in composite delamination - Mode I fracture aspects

    Science.gov (United States)

    Hunston, Donald L.; Moulton, Richard J.; Johnston, Norman J.; Bascom, Willard D.

    1987-01-01

    A number of thermoset, toughened thermoset, and thermoplastic resin matrix systems were characterized for Mode I critical strain energy release rates, and their composites were tested for interlaminar critical strain energy release rates using the double cantilever beam method. A clear correlation is found between the two sets of data. With brittle resins, the interlaminar critical strain energy release rates are somewhat larger than the neat resin values due to a full transfer of the neat resin toughness to the composite and toughening mechanisms associated with crack growth. With tougher matrices, the higher critical strain energy release rates are only partially transferred to the composites, presumably because the fibers restrict the crack-tip deformation zones.

  9. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  10. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite....

  11. Implications of resin-based composite (RBC) restoration on cuspal deflection and microleakage score in molar teeth: Placement protocol and restorative material.

    Science.gov (United States)

    McHugh, Lauren E J; Politi, Ioanna; Al-Fodeh, Rami S; Fleming, Garry J P

    2017-09-01

    To assess the cuspal deflection of standardised large mesio-occluso-distal (MOD) cavities in third molar teeth restored using conventional resin-based composite (RBC) or their bulk fill restorative counterparts compared with the unbound condition using a twin channel deflection measuring gauge. Following thermocycling, the cervical microleakage of the restored teeth was assessed to determine marginal integrity. Standardised MOD cavities were prepared in forty-eight sound third molar teeth and randomly allocated to six groups. Restorations were placed in conjunction with (and without) a universal bonding system and resin restorative materials were irradiated with a light-emitting-diode light-curing-unit. The dependent variable was the restoration protocol, eight oblique increments for conventional RBCs or two horizontal increments for the bulk fill resin restoratives. The cumulative buccal and palatal cuspal deflections from a twin channel deflection measuring gauge were summed, the restored teeth thermally fatigued, immersed in 0.2% basic fuchsin dye for 24h, sectioned and examined for cervical microleakage score. The one-way analysis of variance (ANOVA) identified third molar teeth restored using conventional RBC materials had significantly higher mean total cuspal deflection values compared with bulk fill resin restorative restoration (all pmaterial selection is vital in the absence of clinical data. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Sealing of adhesive systems in ferric sulfate-contaminated dentinal margins in class V composite resin restorations

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2016-03-01

    Full Text Available Background. Hemostatic agents are applied to prepare an isolated bleeding-free condition during dental treatments and can influence adhesive restorations. This study evaluated the effect of a hemostatic agent (ViscoStat on microleakage of contaminated dentinal margin of class V composite resin restorations with three adhesives. Methods. Sixty freshly extracted human molars were selected and class V cavities (3×3×1.5 mm were prepared on buccal and lingual surfaces. Gingival margins of the cavities were placed below the cementoenamel junction. The teeth were divided into six groups randomly. The adhesives were Excite, AdheSE and AdheSE One. In three groups, the gingival walls of the cavities were contaminated with ViscoStat and then rinsed. The cavities were restored with composite resin and light-cured. After storage in distilled water (37°C for 24 hours and polishing, the samples were thermocycled and sealed with nail varnish. Then they were stored in 1% basic fuchsin for 24 hours, rinsed and mounted in self-cured acryl resin, followed by sectioning buccolingually. Dye penetration was observed under a stereomicroscope and scored. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U tests. P 0.05. In the contaminated groups, Excite had significantly less microleakage than the others (P = 0.003. AdheSE and AdheSE One did not exhibit significant difference in microleakage (P > 0.05. Conclusion. ViscoStat hemostatic agent increased dentinal microleakage in AdheSE and AdheSE One adhesives with no effect on Excite.

  13. Analysis of surface hardness of artificially aged resin composites

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2012-02-01

    Full Text Available This study evaluated the effect of artificially accelerated aging (AAA on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05, ANOVA and Tukey test (p < 0.05. With regard to hardness (F = 86.74, p < 0.0001 the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53. In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002. It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.

  14. Resin infusion of large composite structures modeling and manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)

    2006-07-01

    The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)

  15. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    International Nuclear Information System (INIS)

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  16. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    International Nuclear Information System (INIS)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.

    2010-01-01

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  17. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yudovin-Farber, Ira [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel); Beyth, Nurit; Weiss, Ervin I. [Hebrew University of Jerusalem, Department of Prosthodontics, Faculty of Dentistry (Israel); Domb, Abraham J., E-mail: avid@ekmd.huji.ac.i [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel)

    2010-02-15

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  18. Resin-composite blocks for dental CAD/CAM applications.

    Science.gov (United States)

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.

  19. Temperature rise produced by different light-curing units through dentin.

    Science.gov (United States)

    Yazici, A Rüya; Müftü, Ali; Kugel, Gerard

    2007-11-01

    This study investigated the temperature rise caused by different light curing units and the temperature increase in dentin of different thicknesses. Dentin discs of 1.0 and 2.0 mm thicknesses were prepared from extracted human mandibular molars. Temperatures were recorded directly at the surface of the light guide tip, under dentin discs with different thicknesses, and through a sandwich composed of 2 mm thick cured composite and dentin using a K-type thermocouple. The curing units used were two quartz-tungsten-halogen lights (Spectrum and Elipar Trilight-ET) and a light-emitting diode (LED). The highest temperature rise was observed under a Mylar strip using ET standard mode. Under 1 and 2 mm thick dentin barriers, the lowest temperature rise was measured for the LED curing light. Significant differences in temperature rise existed among all curing units except between the Spectrum and ET exponential modes under a 1 mm thick dentin barrier with cured composite. Temperature rises were insignificant between the Spectrum and ET exponential modes and between two modes of Trilight when the same experimental setup was used under a 2 mm thick dentin barrier. For all curing units, temperature elevation through 2 mm of dentin was less than for 1 mm of dentin thickness. The ET standard mode produced the highest and the LED produced the lowest temperature rise for all tested conditions. The thickness of dentin and light-curing unit might affect temperature transmission.

  20. Effect of curing light emission spectrum on the nanohardness and elastic modulus of two bulk-fill resin composites.

    Science.gov (United States)

    Issa, Yaser; Watts, David C; Boyd, Daniel; Price, Richard B

    2016-04-01

    To determine the nanohardness and elastic moduli of two bulk-fill resin based composites (RBCs) at increasing depths from the surface and increasing distances laterally from the center after light curing. Two bulk-fill dental RBCs: Tetric EvoCeram Bulk Fill (TECBF) and Filtek Bulk Fill Flowable (FBFF) were light cured in a metal mold with a 6mm diameter and a 10mm long semi-circular notch. The RBCs were photo-polymerized for 10s using a light emitting diode (LED) Bluephase Style curing light, with the original light probe that lacked the homogenizer. This light has two blue light and one violet light LED emitters. By changing the probe orientation over the mold, the light output from only two LEDs reached the RBC. Measurements were made using: (i) the light from one violet and one blue LED, and (ii) the light from the two blue LEDs. Five specimens of each RBC were made using each LED orientation (total 20 specimens). Specimens were then stored in the dark at 37°C for 24h. Fifty indents were made using an Agilent G200 nanoindentor down to 4mm from the surface and 2.5mm right and left of the centerline. The results were analyzed (alpha=0.05) using multiple paired-sample t-tests, ANOVA, Bonferroni post-hoc tests, and Pearson correlations. The elastic modulus and nanohardness varied according to the depth and the distance from the centerline. For TECBF, no significant difference was found between the spatial variations in the elastic modulus or hardness values when violet-blue or blue-blue LEDs were used. For FBFF, the elastic modulus and nanohardness on the side exposed to the violet emitter were significantly less than the side exposed to the blue emitter. A strong correlation between nanohardness and elastic modulus was found in all groups (r(2)=0.9512-0.9712). Resin polymerization was not uniform throughout the RBC. The nanohardness and elastic modulus across two RBC materials were found to decline differently according to the orientation of the violet and blue

  1. Bisphenol A Release: Survey of the Composition of Dental Composite Resins.

    Science.gov (United States)

    Dursun, Elisabeth; Fron-Chabouis, Hélène; Attal, Jean-Pierre; Raskin, Anne

    2016-01-01

    Bisphenol A (BPA) is an endocrine disruptor with potential toxicity. Composite resins may not contain pure BPA, but its derivatives are widely used. Several studies found doses of BPA or its derivatives in saliva or urine of patients after composite resin placement. The aims of this study were to establish an exhaustive list of composite resins marketed in Europe and their composition, and to assess the extent of BPA derivatives used. A research on manufacturers' websites was performed to reference all composite resins marketed in Europe, then their composition was determined from both material safety data sheets and a standardized questionnaire sent to manufacturers. Manufacturers had to indicate whether their product contained the monomers listed, add other monomers if necessary, or indicate "not disclosed". 160 composite resins were identified from 31 manufacturers and 23 manufacturers (74.2%) responded to the survey. From the survey and websites, the composition of 130 composite resins (81.2%) was: 112 (86.2%) based on BPA derivatives, 97 (74.7%) on bis-GMA, 17 (13.1%) without monomer derived from BPA (UDMA, sometimes with TEGDMA) and 6 (4.6%) with UDMA (only); 1 (0.8%) did not contain a BPA derivative or UDMA or TEGDMA. Pure BPA was never reported. This work has established a list of 18 composite resins that contain no BPA derivative. Manufacturers should be required to report the exact composition of their products as it often remains unclear or incomplete.

  2. Fatigue resistance and crack propensity of large MOD composite resin restorations: direct versus CAD/CAM inlays.

    Science.gov (United States)

    Batalha-Silva, Silvana; de Andrada, Mauro Amaral Caldeira; Maia, Hamilton Pires; Magne, Pascal

    2013-03-01

    To assess the influence of material/technique selection (direct vs. CAD/CAM inlays) for large MOD composite adhesive restorations and its effect on the crack propensity and in vitro accelerated fatigue resistance. A standardized MOD slot-type tooth preparation was applied to 32 extracted maxillary molars (5mm depth and 5mm bucco-palatal width) including immediately sealed dentin for the inlay group. Fifteen teeth were restored with direct composite resin restoration (Miris2) and 17 teeth received milled inlays using Paradigm MZ100 block in the CEREC machine. All inlays were adhesively luted with a light curing composite resin (Filtek Z100). Enamel shrinkage-induced cracks were tracked with photography and transillumination. Cyclic isometric chewing (5 Hz) was simulated, starting with a load of 200 N (5000 cycles), followed by stages of 400, 600, 800, 1000, 1200 and 1400 N at a maximum of 30,000 cycles each. Samples were loaded until fracture or to a maximum of 185,000 cycles. Teeth restored with the direct technique fractured at an average load of 1213 N and two of them withstood all loading cycles (survival=13%); with inlays, the survival rate was 100%. Most failures with Miris2 occurred above the CEJ and were re-restorable (67%), but generated more shrinkage-induced cracks (47% of the specimen vs. 7% for inlays). CAD/CAM MZ100 inlays increased the accelerated fatigue resistance and decreased the crack propensity of large MOD restorations when compared to direct restorations. While both restorative techniques yielded excellent fatigue results at physiological masticatory loads, CAD/CAM inlays seem more indicated for high-load patients. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Ultraviolet light and ultraviolet light-activated composite resins

    International Nuclear Information System (INIS)

    Murray, G.A.; Yates, J.L.; Newman, S.M.

    1981-01-01

    In a comparison of the UV light--activated composite resins, Estilux was polymerized to a significantly greater depth than the other composite resins. In general, Lee-fill polymerized the least. When comparing the UV light sources, the Lee light and the Duralux light did not significantly differ from each other, but both polymerized the materials tested to a significantly greater depth than the other light sources. Of the two time exposures, 60-second exposure provided a significantly greater depth of polymerization than 20 seconds for each light with each material

  4. Modeling the curing process of thermosetting resin matrix composites

    Science.gov (United States)

    Loos, A. C.

    1986-01-01

    A model is presented for simulating the curing process of a thermosetting resin matrix composite. The model relates the cure temperature, the cure pressure, and the properties of the prepreg to the thermal, chemical, and rheological processes occurring in the composite during cure. The results calculated with the computer code developed on the basis of the model were compared with the experimental data obtained from autoclave-curved composite laminates. Good agreement between the two sets of results was obtained.

  5. Polymerization shrinkage stress of composite resins and resin cements – What do we need to know?

    Directory of Open Access Journals (Sweden)

    Carlos José SOARES

    2017-08-01

    Full Text Available Abstract Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  6. Polymerization shrinkage stress of composite resins and resin cements - What do we need to know?

    Science.gov (United States)

    Soares, Carlos José; Faria-E-Silva, André Luis; Rodrigues, Monise de Paula; Vilela, Andomar Bruno Fernandes; Pfeifer, Carmem Silvia; Tantbirojn, Daranee; Versluis, Antheunis

    2017-08-28

    Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  7. High performance dental resin composites with hydrolytically stable monomers.

    Science.gov (United States)

    Wang, Xiaohong; Huyang, George; Palagummi, Sri Vikram; Liu, Xiaohui; Skrtic, Drago; Beauchamp, Carlos; Bowen, Rafael; Sun, Jirun

    2018-02-01

    The objectives of this project were to: 1) develop strong and durable dental resin composites by employing new monomers that are hydrolytically stable, and 2) demonstrate that resin composites based on these monomers perform superiorly to the traditional bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) composites under testing conditions relevant to clinical applications. New resins comprising hydrolytically stable, ether-based monomer, i.e., triethylene glycol divinylbenzyl ether (TEG-DVBE), and urethane dimethacrylate (UDMA) were produced via composition-controlled photo-polymerization. Their composites contained 67.5wt% of micro and 7.5wt% of nano-sized filler. The performances of both copolymers and composites were evaluated by a battery of clinically-relevant assessments: degree of vinyl conversion (DC: FTIR and NIR spectroscopy); refractive index (n: optical microscopy); elastic modulus (E), flexural strength (F) and fracture toughness (K IC ) (universal mechanical testing); Knoop hardness (HK; indentation); water sorption (W sp ) and solubility (W su ) (gravimetry); polymerization shrinkage (S v ; mercury dilatometry) and polymerization stress (tensometer). The experimental UDMA/TEG-DVBE composites were compared with the Bis-GMA/TEGDMA composites containing the identical filler contents, and with the commercial micro hybrid flowable composite. UDMA/TEG-DBVE composites exhibited n, E, W sp , W su and S v equivalent to the controls. They outperformed the controls with respect to F (up to 26.8% increase), K IC (up to 27.7% increase), modulus recovery upon water sorption (full recovery vs. 91.9% recovery), and stress formation (up to 52.7% reduction). In addition, new composites showed up to 27.7% increase in attainable DC compared to the traditional composites. Bis-GMA/TEGDMA controls exceeded the experimental composites with respect to only one property, the composite hardness. Significantly, up to 18.1% lower HK values in

  8. Effect of Ingested Liquids on Color Change of Composite Resins.

    Science.gov (United States)

    Malek Afzali, Beheshteh; Ghasemi, Amir; Mirani, Asrin; Abdolazimi, Zahra; Akbarzade Baghban, Alireza; Kharazifard, Mohammad Javad

    2015-08-01

    Color change of composite restorations is well known to dentists. However, the effect of commonly consumed drinks on discoloration of composite resins has yet to be determined. This study sought to assess the color change of a nanofilled (Premise) and a flowable composite resin (Premise flowable) following simulated consumption of tea, cola, iron drops and multivitamin syrup. Forty disk-shaped specimens (7 mm in diameter and 2 mm thick) were fabricated from each composite resin. The baseline color values were measured according to the CIE L*a*b* system using digital imaging. The specimens of each restorative material were randomly divided into five groups (eight each) according to the storage media namely tea, cola, iron drops, multivitamin syrup or distilled water (control). The specimens were immersed in staining solutions for three hours daily over a 40-day test period. Following this, the color change values (ΔE*) were calculated. For statistical analyses, the color differences were analyzed using two-way ANOVA and Tukey's test (Pcomposite resins (P>0.05). In both composite materials, the difference among the solutions was not significant (P>0.05). Under the tested experimental conditions, both restorative materials were susceptible to discoloration by all four staining solutions. The color change values were not related to the solution or the type of material used.

  9. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  10. Color stability of bulk-fill and incremental-fill resin-based composites polished with aluminum-oxide impregnated disks

    Directory of Open Access Journals (Sweden)

    Uzay Koc-Vural

    2017-05-01

    Full Text Available Objectives This study aimed to evaluate the color stability of bulk-fill and nanohybrid resin-based composites polished with 3 different, multistep, aluminum-oxide impregnated finishing and polishing disks. Materials and Methods Disk-shaped specimens (8 mm in diameter and 4 mm in thickness were light-cured between two glass slabs using one nanohybid bulk-fill (Tetric EvoCeram, Ivoclar Vivadent, one micro-hybrid bulk-fill (Quixfil, Dentsply, and two nanohybrid incremental-fill (Filtek Ultimate, 3M ESPE; Herculite XRV Ultra, Kerr resin-based composites, and aged by thermocycling (between 5 - 55℃, 3,000 cycles. Then, they were divided into subgroups according to the polishing procedure as SwissFlex (Coltène/Whaledent, Optidisc (Kerr, and Praxis TDV (TDV Dental (n = 12 per subgroup. One surface of each specimen was left unpolished. All specimens were immersed in coffee solution at 37℃. The color differences (ΔE were measured after 1 and 7 days of storage using a colorimeter based on CIE Lab system. The data were analyzed by univariate ANOVA, Mann-Whitney U test, and Friedmann tests (α = 0.05. Results Univariate ANOVA detected significant interactions between polishing procedure and composite resin and polishing procedure and storage time (p 0.05. Polishing reduced the discoloration resistance of Tetric EvoCeram/SwissFlex, Tetric EvoCeram/Praxis TDV, Quixfil-SwissFlex, and all Herculite XRV Ultra groups after 7 days storage (p < 0.05. Conclusions Discoloration resistance of bulk-fill resin-based composites can be significantly affected by the polishing procedures.

  11. New acrylic resin composite with improved thermal diffusivity.

    Science.gov (United States)

    Messersmith, P B; Obrez, A; Lindberg, S

    1998-03-01

    Studies have shown that physical characteristics of denture base materials may affect patient acceptance of denture prostheses by altering sensory experience of food during mastication. Thermal diffusivity is one material property that has been cited as being important in determining gustatory response, with denture base acrylic resins having low thermal diffusivity compared with denture base metal alloys. This study prepared and characterized experimental acrylic resin composite material with increased thermal diffusivity. Sapphire (Al2O3) whiskers were added to conventional denture base acrylic resin during processing to achieve loadings of 9.35% and 15% by volume. Cylindrical test specimens containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 degree to 70 degrees C). Thermal diffusivities of the sapphire containing composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the volume percentage of sapphire filler, which suggested that the high aspect ratio ceramic particles formed a pathway for heat conduction through the insulating polymer matrix. The thermal diffusivity of denture base acrylic resin was increased by the addition of thermally conducting sapphire whiskers.

  12. Resin transfer molding for advanced composite primary aircraft structures

    Science.gov (United States)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  13. Bond strength of resin composite to differently conditioned amalgam

    NARCIS (Netherlands)

    Ozcan, M; Vallittu, PK; Huysmans, MC; Kalk, W; Vahlberg, T

    Bulk fracture of teeth, where a part of the amalgam restoration and/or the cusp is fractured, is a common clinical problem. The aim of this study was to evaluate the effect of different surface conditioning methods on the shear bond strength of a hybrid resin composite to fresh amalgam. Amalgams (N

  14. BACTERIAL ADHESION TO DENTAL AMALGAM AND 3 RESIN COMPOSITES

    NARCIS (Netherlands)

    SULJAK, JP; REID, G; WOOD, SM; MCCONNELL, RJ; VANDERMEI, HC; BUSSCHER, HJ

    Objectives: The ability of three oral bacteria to adhere to hydrophobic amalgam (water contact angle 60 degrees) and hydrophobic resin composites (Prisma-AP.H 56 degrees, Herculite XRV 82 degrees and Z100 89 degrees) was compared using an in vitro assay. Methods and results: Following preincubation

  15. Amalgam stained dentin: a proper substrate for bonding resin composite?

    NARCIS (Netherlands)

    Scholtanus, J.D.

    2016-01-01

    Nowadays the use of dental amalgam is mostly abandoned and substituted by tooth colored resin composites that can be bonded to teeth tissues by adhesive techniques. The aim of this thesis was to find out whether dark stained dentin, as often observed after removal of amalgam restorations and

  16. Composite Resin – A Versatile Restorative Tool | Koleoso | Nigerian ...

    African Journals Online (AJOL)

    ... the use of composite resin restorations as a treatment option in several situations where conventional aesthetic restorations such as porcelain veneers, crowns and cream-metal crown could otherwise be placed. Methods and Materials: Patients who presented with restoration aesthetic challenges over a six months period ...

  17. Degradation of dental resin composites during intra-oral wear

    NARCIS (Netherlands)

    Yulianto, Heribertus Dedy Kusuma

    2017-01-01

    Dental resin composites have become an integral part of modern dentistry and used worldwide to restore missing tooth structures, to modify tooth color and anatomical contour, and to enhance aesthetics and function. The dentist should be aware that, the aggressive complexity of the oral environment

  18. Repair of Defective Composite Resin Restoration: Current Trend ...

    African Journals Online (AJOL)

    Background: Repair of defective composite resins restorations is being increasingly recognized as a viable alternative to replacement. there is however no consensus yet on the treatment protocol. Objective: To determine the views and practice of specialists in Conservative Dentistry in Nigeria as regard to repair procedure ...

  19. Correlations of norbornenyl crosslinked polyimide resin structures with resin thermo-oxidative stability, resin glass transition temperature and composite initial mechanical properties

    Science.gov (United States)

    Alston, William B.

    1988-01-01

    PMR (polymerization of monomeric reactants) methodology was used to prepare 70 different polyimide oligomeric resins and 30 different unidirectional graphite fiber/polyimide composites. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on resin thermo-oxidative stability and glass transition temperature (Tg) of the cured/postcured resins. A linear correlation of decreasing 316 C resin weight loss/surface area versus (1) decreasing aliphatic content, or (2) increasing benzylic/aliphatic content stoichiometry ratio over a wide range of resin compositions was observed. An almost linear correlation of Tg versus molecular distance between the crosslinks was also observed. An attempt was made to correlate Tg with initial composite mechanical properties (flexural strength and interlaminar shear strength). However, the scatter in mechanical strength data prevented obtaining a clear correlation. Instead, only a range of composite mechanical properties was obtained at 25, 288, and 316 C. Perhaps more importantly, what did become apparent during the correlation study was (1) the PMR methodology could be used to prepare composites from resins containing a wide variety of monomer modifications, (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins formulated exhibited satisfactory processing flow, and (3) that PMR resins exhibited predictable rates of 316 C weight loss/surface area based on their benzylic/aliphatic stoichiometery ratio.

  20. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  1. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  2. Characterization of selected LDEF polymer matrix resin composite materials

    Science.gov (United States)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  3. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  4. A qualitative chemometric study of resin composite polymerization

    Directory of Open Access Journals (Sweden)

    Regina Ferraz Mendes

    2008-01-01

    Full Text Available Objective: An experiment was carried out to assess the effect produced by different polymerization techniques on resin composite color after it has been immersed in coffee. Methods: Samples were manufactured using TPH Spectrum composite. It was polymerized for 10 or 40 seconds, with the light tip at one or zero millimeters from the resin surface, and afterwards the samples were immersed in coffee for 24 hours or 7 days. Ten different evaluators classified the samples according to their degree of staining. Results: The samples that were polymerized for 10 seconds were more susceptible to staining than the ones polymerized by 40 seconds. Samples immersed in coffee for 7 days were more susceptible to staining than the ones immersed for 24 hours. Conclusion: The variables polymerization time and immersion time were determinant in the staining susceptibility of the studied composite by coffee. However, there was no significant difference, irrespective of whether the resin was polymerized 10 or zero millimeters away from the resin surface.

  5. Development of new addition-type composite resins

    Science.gov (United States)

    Kray, R. J.

    1981-01-01

    The most promising of a number of new addition type polyimides and polyaromatic melamine (NCNS) resins for use in high performance composite materials. Three different cure temperature ranges were of interest: 530-560 K (500-550 F), 475-530 K (400-500 F), and 450 K (350 F). Examined were a wide variety of polyimide precursors terminated with 5 norbornene groups and addition polymerized at 560 K similar to PMR-15 and LARC-160 polyimides. In addition, a number of lower curing cinnamal end capped polyimides and a bismaleimide were investigated but were not found promising. A group of NCNS resins were investigated and some were found to be superior to current epoxy resins in moisture resistance, oxidative aging and flame and smoke properties.

  6. Terpenoid composition and class of Tertiary resins from India

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mallick, Monalisa; Mathews, Runcie Paul [Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India); Bertram, Norbert [LTA-Labor fuer Toxikologie und Analytik, Friedrichshoeher Str. 28, D-53639 Koenigswinter (Germany); Greenwood, Paul F. [John De Laeter Mass Spectrometry and WA Biogeochemitry Centres (M090), The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009 (Australia); WA - Organic and Isotope Geochemistry Centre, Curtin University of Technology, Kent St., Bentley 6102 (Australia)

    2009-10-01

    The terpenoid composition and class of Tertiary resins preserved within lignites of Cambay, Kutch and Cauvery Basins of India have been characterized using Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) and Fourier Transform Infrared (FTIR) Spectroscopy. Major pyrolysis products include cadalene-based C{sub 15}-bicyclic sesquiterpenoids with some C{sub 30} and C{sub 31} bicadinanes and bicadinenes typical of Class II or dammar resin. The occurrence of these terpenoids in Early Eocene sediments may extend the first appearance of Dipterocarpaceae angiosperms, the predominant source of this resin class, back to the Early Eocene epoch in India. The same terpenoid biomarkers have been detected in many SE Asian oils reflecting a close source relationship with these resins. Strong CH{sub 3} (1377 cm{sup -} {sup 1}) and other CH{sub x} (3000-2800 and 1460-1450 cm{sup -} {sup 1}) aliphatic absorptions of much larger intensity than the aromatic C = C (1560-1650 cm{sup -} {sup 1}) absorption were detected in the Indian resins by FTIR Spectroscopy, confirming the quantitative significance of the terpenoid pyrolysates. (author)

  7. Bioinspired Catecholic Primers for Rigid and Ductile Dental Resin Composites.

    Science.gov (United States)

    Shin, Eeseul; Ju, Sung Won; An, Larry; Ahn, Eungjin; Ahn, Jin-Soo; Kim, Byeong-Su; Ahn, B Kollbe

    2018-01-17

    In the construction of dental restorative polymer composite materials, surface priming on mineral fillers is essential to improve the mechanical performance of the composites. Here we present bioinspired catechol-functionalized primers for a tougher dental resin composite containing glass fillers. The catecholic primers with different polymerizable end groups were designed and then coated on glass surfaces using a simple drop-casting or dip-coating process. The surface binding ability and possible cross-linking (coupling or chemical bridging between the glass substrate and the dental resin) of the catecholic bifunctional primers were evaluated using atomic force microscopy, contact angle measurements, and the knife shear bonding test and compared to a state-of-the-art silane-based coupling agent. Various mechanical tests including shrinkage and compression tests of the dental resin composites were also conducted. Compression tests of the composites containing the catecholic primed fillers exhibited enhanced mechanical properties, owing to the bidentate hydrogen bonding of catechol moieties to the oxide mineral surface. Furthermore, the superior biocompatibility of the primed surface was confirmed via cell attachment assay, thus providing applicability of catecholic primers for practical dental and biomedical applications.

  8. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2010-01-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43...

  9. Study on thermal conductive BN/novolac resin composites

    International Nuclear Information System (INIS)

    Li, Shasha; Qi, Shuhua; Liu, Nailiang; Cao, Peng

    2011-01-01

    Highlights: → Boron nitride (BN) particles were used to modify novolac resin. → BN particles were pretreated by γ-aminopropyltriethoxysilane. → The thermal conductivity trend of composite almost agrees with the predicted data from the Maxwell-Eucken model. → At BN concentration of 80 wt.%, thermal conductivity value of composite is 4.5 times that of pure novolac resin. → Combined use of the larger and smaller particles with a mass ratio of 1:2 provides the composites with the maximum thermal conductivity among the testing systems. → The composite thermal property also increases with an increase in the BN concentration. - Abstract: In this study, γ-aminopropyltriethoxysilane-treated boron nitride (BN) particles were used to modify novolac resin. The effect of varying the BN concentration, particle size, and hybrid BN fillers with the binary particle size distribution on the thermal conductivity of the composites was investigated. Scanning electron microscopy (SEM) imaging showed homogeneously dispersed treated BN particles in the matrix. Furthermore, the thermal conductivity increased as the BN concentration was increased. This behavior was also observed when the filler size was increased. Experimentally obtained thermal conductivity values agree with the predicted data from the Maxwell-Eucken model well at less than 70 wt.% BN loading. A larger particle size BN-filled novolac resin exhibits a higher thermal conductivity than a smaller particle size BN-filled one. The combined use of 0.5 and 15 μm particles with a mass ratio of 2:1 achieved the maximum thermal conductivity among the testing systems. The thermal resistance properties of the composites were also studied.

  10. Interactions between resin monomers and commercial composite resins with human saliva derived esterases.

    Science.gov (United States)

    Jaffer, F; Finer, Y; Santerre, J P

    2002-04-01

    Cholesterol esterase (CE) and pseudocholinesterase (PCE) have been reported to degrade commercial and model composite resins containing bisphenylglycidyl dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) or the latter in combination with urethane modified BisGMA monomer systems. In addition, human saliva has been shown to contain esterase like activities similar to CE and PCE. Hence, it was the aim of the current study to determine to what extent human saliva could degrade two common commercial composite resins (Z250 from 3M Inc. and Spectrum TPH from L.D. Caulk) which contain the above monomer systems. Saliva samples from different volunteers were collected, processed, pooled, and freeze-dried. TEGDMA and BisGMA monomers were incubated with human saliva derived esterase activity (HSDEA) and their respective hydrolysis was monitored using high performance liquid chromatography (HPLC). Both monomers were completely hydrolyzed within 25 h by HSDEA. Photopolymerized composites were incubated with buffer or human saliva (pH 7.0 and 37 C) for 2, 8 and 16 days. The incubation solutions were analyzed using HPLC and mass spectrometry. Surface morphology characterization was carried out using scanning electron microscopy. Upon biodegradation, the Z250 composite yielded higher amounts of BisGMA and TEGDMA related products relative to the TPH composite. However, there were higher amounts of ethoxylated bis-phenol A released from the TPH material. In terms of total mass of products released, human saliva demonstrated a greater ability to degrade Z250. In summary, HSDEA has been shown to contain esterase activities that can readily catalyze the biodegradation of current commercial composite resins.

  11. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  12. Profile of Fluoride Release from a Nanohybrid Composite Resin

    Directory of Open Access Journals (Sweden)

    Raquel Assed Bezerra Silva

    2015-02-01

    Full Text Available The aim of this study was to evaluate in vitro the amount and profile of fluoride release from a fluoride-containing nanohybrid composite resin (Tetric® N-Ceram by direct potentiometry. Thirty specimens (5 mm diameter x 3 mm high; n=10/material were made of Tetric® N-Ceram, Vitremer® resin-modified glass ionomer cement (RMGIC (positive control or Filtek® Z350 nanofill composite resin (negative control. The specimens were stored individually in plastic tubes containing 1 mL of artificial saliva at 37°C, which was daily renewed during 15 days. At each renewal of saliva, the amount of fluoride ions released in the solution was measured using a fluoride ion-selective electrode with ion analyzer, and the values obtained in mV were converted to ppm (µg/mL. Data were analyzed statistically by ANOVA and Tukey’s post-hoc test at a significance level of 5%. The results showed that the resins Tetric® N-Ceram and Filtek® Z350 did not release significant amounts of fluoride during the whole period of evaluation (p>0.05. Only Vitremer® released significant amounts of fluoride ions during the 15 days of the experiment, with greater release in first 2 days (p0.05. In conclusion, the nanohybrid composite resin Tetric® N-Ceram did not present in vitro fluoride-releasing capacity throughout the 15 days of study.

  13. Influence of polymerization time and depth of cure of resin composites determined by Vickers hardness

    Directory of Open Access Journals (Sweden)

    Marco Lombardini

    2012-01-01

    Conclusion: Among the materials tested, the nanofilled and the nanohybrid resin composites were rather insensible to thickness variations. Miicrohybrid composites, instead, had features different from one another.

  14. Boron/aluminum graphite/resin advanced fiber composite hybrids

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  15. Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors

    Directory of Open Access Journals (Sweden)

    Akimasa Tsujimoto

    2018-05-01

    Full Text Available Summary: The application of resin composites in dentistry has become increasingly widespread due to the increased aesthetic demands of patients, improvements in the formulation of resin composites, and the ability of these materials to bond to tooth structures, together with concerns about dental amalgam fillings. As resistance to wear is an important factor in determining the clinical success of resin composite restoratives, this review article defines what constitutes wear and describes the major underlying phenomena involved in this process. Insights are further included on both in vivo and in vitro tests used to determine the wear resistance of resin composite and the relationships between these tests. The discussion focuses on factors that contribute to the wear of resin composite. Finally, future perspectives are included on both clinical and laboratory tests and on the development of resin composite restorations. Keywords: Resin composites, Wear resistance, Wear testing

  16. Surface roughness of composite resins subjected to hydrochloric acid.

    Science.gov (United States)

    Roque, Ana Carolina Cabral; Bohner, Lauren Oliveira Lima; de Godoi, Ana Paula Terossi; Colucci, Vivian; Corona, Silmara Aparecida Milori; Catirse, Alma Blásida Concepción Elizaur Benitez

    2015-01-01

    The purpose of this study was to determine the influence of hydrochloric acid on surface roughness of composite resins subjected to brushing. Sixty samples measuring 2 mm thick x 6 mm diameter were prepared and used as experimental units. The study presented a 3x2 factorial design, in which the factors were composite resin (n=20), at 3 levels: microhybrid composite (Z100), nanofilled composite (FiltekTM Supreme), nanohybrid composite (Ice), and acid challenge (n=10) at 2 levels: absence and presence. Acid challenge was performed by immersion of specimens in hydrochloric acid (pH 1.2) for 1 min, 4 times per day for 7 days. The specimens not subjected to acid challenge were stored in 15 mL of artificial saliva at 37 oC. Afterwards, all specimens were submitted to abrasive challenge by a brushing cycle performed with a 200 g weight at a speed of 356 rpm, totaling 17.8 cycles. Surface roughness measurements (Ra) were performed and analyzed by ANOVA and Tukey test (p≤0.05). Surface roughness values were higher in the presence (1.07±0.24) as compared with the absence of hydrochloric acid (0.72±0.04). Surface roughness values were higher for microhybrid (1.01±0.27) compared with nanofilled (0.68 ±0.09) and nanohybrid (0.48±0.15) composites when the specimens were not subjects to acid challenge. In the presence of hydrochloric acid, microhybrid (1.26±0.28) and nanofilled (1.18±0,30) composites presents higher surface roughness values compared with nanohybrid (0.77±0.15). The hydrochloric acid affected the surface roughness of composite resin subjected to brushing.

  17. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  18. The Influence of Hydroxylated Carbon Nanotubes on Epoxy Resin Composites

    Directory of Open Access Journals (Sweden)

    Jiaoxia Zhang

    2012-01-01

    Full Text Available Hydroxylated multiwall carbon nanotubes (MWNTs/epoxy resin nanocomposites were prepared with ultrasonic dispersion and casting molding. The effect of hydroxylated MWNTs content on reactive activity of composites is discussed. Then the flexural and electrical properties were studied. Transmission electron microscope was employed to characterize the microstructure of nanocomposites. As a result, the reactive activity of nanocomposites obtained increases with the increasing content of MWNTs. When MWNTs content of the composites is 1 wt%, as compared to neat resin, the flexural strength increases from 143 Mpa to 156 MPa, the modulus increases from 3563 Mpa to 3691 MPa, and the volume and surface resistance of nanocomposites decrease by two orders of magnitude, respectively.

  19. Effects of polishing procedures on color stability of composite resins

    Directory of Open Access Journals (Sweden)

    Ahmet Umut Güler

    2009-04-01

    Full Text Available The purpose of this study was to investigate the effect of different polishing methods on color stability of posterior, universal and nanohybrid composite resin restorative materials upon exposure to a staining agent. Twenty-five specimens were prepared for each of 5 different composite resins (Filtek Z250, Filtek P60, Quadrant LC, Grandio and Filtek Supreme. Specimens were divided into 5 groups and different polishing procedures, including polishing discs (Pd, polishing discs then diamond polishing paste (PdP, polishing discs then a liquid polishing system (Biscover (PdB, and combinations of these (PdPB were used. Unpolished specimens served as the control (C. The specimens were stored for 48 h in a coffee solution. The color of all specimens was measured before and after exposure with a colorimeter, and total color change (DE* were calculated. The data were analyzed with a two-way ANOVA and the means were compared by Tukey HSD test (a=0.05. The lowest color difference was observed in the groups PdP and C, while the highest color difference was observed in PdPB, and PdB. When comparing the five different restorative materials, no significant difference was observed between FiltekP60 and FiltekZ250, and these materials demonstrated significantly less color change than Quadrant LC and the nanohybrid materials (Grandio, Filtek Supreme. The posterior (Filtek P60 and universal (Filtek Z250 composite resin restorative materials, which do not contain tetraethyleneglycol dimethacrylate (TEGDMA, were found to be less stainable than the nanohybrid (Grandio, Filtek Supreme and universal (Quadrant LC composite resins, which contain TEGDMA. The use of diamond polishing paste after polishing with polishing discs significantly decreased staining when compared to the groups that used polishing discs alone, for all restorative materials tested. The highest color change values were obtained for the specimens that were polished with the Biscover liquid polish

  20. Effects of blood contamination on resin-resin bond strength.

    Science.gov (United States)

    Eiriksson, Sigurdur O; Pereira, Patricia N R; Swift, Edward J; Heymann, Harald O; Sigurdsson, Asgeir

    2004-02-01

    Incremental placement and curing of resin composites has been recommended. However, this requires longer operating time, and therefore, increased risk of contamination. The purpose of this study was to evaluate the effects of blood contamination on microtensile bond strengths (microTBS) between resin interfaces and to determine the best decontamination method to re-establish the original resin-resin bond strength. The top surfaces of 64, 4-mm composite blocks (Z-250, Renew, APX, Pertac II) were untreated as the control, or were treated as follows: blood applied and dried on the surface (Treatment 1), blood applied, rinsed, dried (Treatment 2), blood applied, rinsed, and an adhesive applied (Single Bond, One-Step, Clearfil SE, Prompt L-Pop) (Treatment 3). Fresh composite was applied and light-cured in 2-mm increments. After 24 h storage in water, the specimens were sectioned into 0.7-mm thick slabs, trimmed to a cross-sectional area of 1 mm(2), and loaded to failure at a crosshead speed of 1 mm/min using an Instron universal testing machine. Data were analyzed using two-way ANOVA and Fisher's PLSD test (pcontamination resulted in resin-resin bond strengths of only 1.0-13.1 MPa. Rinsing raised bond strengths to over 40 MPa for each material. Use of an adhesive further increased bond strengths except for Pertac II. Rinsing blood from contaminated surfaces increases the resin-resin bond strength significantly and the application of an appropriate adhesive increases the bond strength to control levels.

  1. Repair bond strength of resin composite to bilayer dental ceramics

    Science.gov (United States)

    2018-01-01

    PURPOSE The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at 37℃. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS There were statistically significant differences among the tested surface treatments within the all tested fracture types (P.00125). CONCLUSION This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types. PMID:29713430

  2. Initial polishing time affects gloss retention in resin composites.

    Science.gov (United States)

    Waheeb, Nehal; Silikas, Nick; Watts, David

    2012-10-01

    To determine the effect of finishing and polishing time on the surface gloss of various resin-composites before and after simulated toothbrushing. Eight representative resin-composites (Ceram X mono, Ceram X duo, Tetric EvoCeram, Venus Diamond, EsteliteSigma Quick, Esthet.X HD, Filtek Supreme XT and Spectrum TPH) were used to prepare 80 disc-shaped (12 mm x 2 mm) specimens. The two step system Venus Supra was used for polishing the specimens for 3 minutes (Group A) and 10 minutes (Group B). All specimens were subjected to 16,000 cycles of simulated toothbrushing. The surface gloss was measured after polishing and after brushing using the gloss meter. Results were evaluated using one way ANOVA, two ways ANOVA and Dennett's post hoc test (P = 0.05). Group B (10-minute polishing) resulted in higher gloss values (GV) for all specimens compared to Group A (3 minutes). Also Group B showed better gloss retention compared to Group A after simulated toothbrushing. In each group, there was a significant difference between the polished composite resins (P gloss after the simulated toothbrushing.

  3. Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.

    Science.gov (United States)

    Tsumita, M; Kokubo, Y; Kano, T

    2012-09-01

    The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.

  4. CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM

    Directory of Open Access Journals (Sweden)

    R. YUSOFF

    2007-08-01

    Full Text Available The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems. Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites. C-scan traces showed that all composites, regardless of methods of curing, had minimal defects.

  5. Anterior makeover on fractured teeth by simple composite resin restoration

    Directory of Open Access Journals (Sweden)

    Eric Priyo Prasetyo

    2011-09-01

    Full Text Available Background: In daily practice dentists usually treat tooth fractures with more invasive treatments such as crown, veneer and bridges which preparation require more tooth structure removal. While currently there is trend toward minimal invasive dentistry which conserves more tooth structure. This is enhanced with the vast supply of dental materials and equipment in the market, including restorative materials. Provided with these supporting materials and equipment and greater patient’s demand for esthetic treatment, dentists must aware of the esthetics and basic principle of conserving tooth which should retain tooth longevity. Purpose: This article showed that a simple and less invasive composite resin restoration can successfully restore anterior esthetic and function of fractured teeth which generally treated with more invasive treatment options. Case: A 19 year-old female patient came with fracture on 21 and 22. This patient had a previous history of dental trauma about nine years before and was brought to a local dentist for debridement and was given analgesic, the involved teeth were not given any restorative treatment. Case management: The fractured 21 and 22 were conventionally restored with simple composite resin restoration. Conclusion: Fracture anterior teeth would certainly disturbs patient’s appearance, but these teeth could be managed conservatively and economically by simple composite resin restoration.Latar belakang: Dalam praktek sehari-hari pada umumnya dokter gigi merawat fraktur dengan restorasi invasif seperti mahkota, veneer dan jembatan yang semuanya memerlukan pengambilan jaringan gigi lebih banyak, sedangkan saat ini trend perawatan gigi lebih menuju kearah invasif minimal yang mempertahankan jaringan gigi sebanyak mungkin. Keadaan ini ditunjang oleh tersedianya berbagai macam bahan dan peralatan kedokteran gigi di pasaran, termasuk bahan restorasi. Dengan tersedianya bahan dan peralatan yang mendukung serta tingginya

  6. Process for curing ionizing radiation-highly sensitive resin composition

    International Nuclear Information System (INIS)

    Araki, K.; Sasaki, T.; Tabei, K.; Goto, K.

    1979-01-01

    A process is described for curing a radiation curable composition consisting essentially of (a) an amide represented by the formula R,CONR 2 R 3 and (b) an unsaturated polyester resin by irradiating the composition with an ionizing radiation. R 1 is H, an alkyl groups having from 1 to 17 carbon atoms or an alkenyl groups having from 1 to 17 carbon atoms, and R 2 and R 3 are each -H, -CH 3 , or -CH 2 OH. R 1 and R 2 taken together represent alkylene having 2 to 5 carbon atoms

  7. Double Vacuum Bag Process for Resin Matrix Composite Manufacturing

    Science.gov (United States)

    Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)

    2007-01-01

    A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.

  8. Elution of monomer from different bulk fill dental composite resins.

    Science.gov (United States)

    Cebe, Mehmet Ata; Cebe, Fatma; Cengiz, Mehmet Fatih; Cetin, Ali Rıza; Arpag, Osman Fatih; Ozturk, Bora

    2015-07-01

    The purpose of this study was to evaluate the elution of Bis-GMA, TEGDMA, HEMA, and Bis-EMA monomers from six bulk fill composite resins over four different time periods, using HPLC. Six different composite resin materials were used in the present study: Tetric Evo Ceram Bulk Fill (Ivoclar Vivadent, Amherst, NY), X-tra Fill (VOCO, Cuxhaven, Germany), Sonic Fill (Kerr, Orange, CA, USA), Filtek Bulk Fill (3M ESPE Dental Product, St. Paul, MN), SDR (Dentsply, Konstanz, Germany), EQUIA (GC America INC, Alsip, IL). The samples (4mm thickness, 5mm diameter) were prepared and polymerized for 20s with a light emitted diode unit. After fabrication, each sample was immediately immersed in 75wt% ethanol/water solution used as extraction fluid and stored in the amber colored bottles at room temperature. Ethanol/water samples were taken (0.5mL) at predefined time intervals:10m (T1), 1h (T2), 24h (T3) and 30 days (T4). These samples were analyzed by HPLC. The obtained data were analyzed with one-way ANOVA and Tukey HSD at significance level of pcomposites (pcomposite resins in all time periods and the amount of eluted monomers was increased with time. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Fiber Optic Systems for Light Curing Rigidization of Inflatable Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Light (UV and visible) curing composite matrix resins are being explored as an attractive means for rigidizing inflatable spacecraft for large space-deployed...

  10. Effect of Resin Coating and Chlorhexidine on Microleakage of Two Resin Cements after Storage

    Directory of Open Access Journals (Sweden)

    F. Shafie

    2010-03-01

    Full Text Available Objective: Evaluating the effect of resin coating and chlorhexidine on microleakage of two resin cements after water storage.Materials and Methods: Standardized class V cavities were prepared on facial and lingual surfaces of one hundred twenty intact human molars with gingival margins placed 1mm below the cemento-enamel junction. Indirect composite inlays were fabricated and thespecimens were randomly assigned into 6 groups. In Groups 1 to 4, inlays were cemented with Panavia F2.0 cement. G1: according to the manufacturer’s instruction. G2: with light cured resin on the ED primer. G3: chlorhexidine application before priming. G4: withchlorhexidine application before priming and light cured resin on primer. G5: inlays were cemented with Nexus 2 resin cement. G6: chlorhexidine application after etching. Each group was divided into two subgroups based on the 24-hour and 6-month water storagetime. After preparation for microleakage test, the teeth were sectioned and evaluated at both margins under a 20×stereomicroscope. Dye penetration was scored using 0-3 criteria.The data was analyzed using Kruskal-Wallis and complementary Dunn tests.Results: There was significantly less leakage in G2 and G4 than the Panavia F2.0 control group at gingival margins after 6 months (P<0.05. There was no significant differences in leakage between G1 and G3 at both margins after 24 hours and 6 months storage. After 6months, G6 revealed significantly less leakage than G5 at gingival margins (P=0.033. In general, gingival margins showed more leakage than occlusal margins.Conclusion: Additionally, resin coating in self-etch (Panavia F2.0 and chlorhexidine application in etch-rinse (Nexus resin cement reduced microleakage at gingival margins after storage.

  11. A Comparison of the Shear Bond Strength of Orthodontic Brackets Bonded With Light-Emitting Diode and Halogen Light-Curing Units

    Directory of Open Access Journals (Sweden)

    SM. Abtahi

    2006-09-01

    Full Text Available Statement of the problem: Various methods such as light emitting diode (LED have been used to enhance the polymerization of resin-based orthodontic adhesives. There is a lack of information on the advantages and disadvantages of different light curing systems.Purpose: The aim of this study was to compare the effect of LED and halogen light curing systems on the shear bond strength of orthodontic brackets.Materials and Methods: Forty extracted human premolars were etched with 37% phosphoric acid and cleansed with water spray and air dried. The sealant was applied on the tooth surface and the brackets were bonded using Transbond adhesive (3M Unitek,Monrovia, Calif. Adhesives were cured for 40 and 20 seconds with halogen (Blue Light, APOZA, Taiwan and LED (Blue dent, Smart, Yugoslavia light-curing systems,respectively. Specimens were thermocycled 2500 times (from 5 to 55 °C and the shear bond strength of the adhesive system was evaluated with an Universal testing machine (Zwick GmbH, Ulm, Germany at a crosshead speed of 1 mm/min until the bracketswere detached from the tooth. Adhesive remnant index (ARI scores were determined after bracket failure. The data were submitted to statistical analysis, using Mann-Whitney analysis and t-test.Results: No significant difference was found in bond strength between the LED and halogen groups (P=0.12. A significant difference was not observed in the adhesive remnant index scores between the two groups (P=0.97.Conclusion: Within the limitations of this in vitro study, the shear bond strength of resin-based orthodontic adhesives cured with a LED was statistically equivalent to those cured with a conventional halogen-based unit. LED light-curing units can be suggested for the polymerization of orthodontic bonding adhesives.

  12. Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins.

    Science.gov (United States)

    Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar

    2017-01-01

    Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (Pcomposite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (Pcomposite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples.

  13. Thermal stability relationships between PMR-15 resin and its composites

    Science.gov (United States)

    Bowles, Kenneth J.; Jayne, Douglas; Leonhardt, Todd A.; Bors, Dennis

    1993-01-01

    A study was conducted to investigate the relationship between the thermo-oxidative stability of PMR-15 matrix resin and the stability of graphite-fiber-reinforced composites that contain this resin as the matrix material. Three areas were investigated. The first was the effect of fiber/matrix interfacial bond strength on the isothermal aging weight loss of composites. By using type-A graphite fibers produced by Hercules, it was possible to study composites reinforced with fibers that were processed to receive different surface treatments. One of the fibers was untreated, a second fiber was treated by oxidation to enhance fiber/matrix bonding, and the third type of fiber was coated with an epoxy sizing. These treatments produced three significantly different interfacial bond strengths. The epoxy sizing on the third fiber was quickly oxidized from the bare fiber surfaces at 288, 316, and 343 C. The weight loss due to the removal of the sizing was constant at 1.5 percent. This initial weight loss was not observed in thermo-oxidative stability studies of composites. The PMR-15 matrix satisfactorily protected the reinforcemnt at all three temperatures.

  14. Polishing and toothbrushing alters the surface roughness and gloss of composite resins.

    Science.gov (United States)

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Takahashi, Hidekazu; Kanehira, Masafumi; Finger, Werner J

    2014-01-01

    This study aimed to investigate the surface roughness and gloss of composite resins after using two polishing systems and toothbrushing. Six composite resins (Durafill VS, Filtek Z250, Filtek Z350 XT, Kalore, Venus Diamond, and Venus Pearl) were evaluated after polishing with two polishing systems (Sof-Lex, Venus Supra) and after toothbrushing up to 40,000 cycles. Surface roughness (Ra) and gloss were determined for each composite resin group (n=6) after silicon carbide paper grinding, polishing, and toothbrushing. Two-way ANOVA indicated significant differences in both Ra and gloss between measuring stages for the composite resins tested, except Venus Pearl, which showed significant differences only in gloss. After polishing, the Filtek Z350 XT, Kalore, and Venus Diamond showed significant increases in Ra, while all composite resin groups except the Filtek Z350 XT and Durafill VS with Sof-Lex showed increases in gloss. After toothbrushing, all composite resin demonstrated increases in Ra and decreases in gloss.

  15. Diffusion through composite materials made with thermosetting resins

    International Nuclear Information System (INIS)

    Morin, Bruno.

    1981-08-01

    Medium and low-level radioactive wastes may be coated in a solid matrix mainly made with thermosetting resins: the study of water and cesium migration through composite materials made with thermosetting resins is usefull to compare the water tightness of different coatings. Disks with a thickness of two millimeters were used to measure the water absorption. Diffusion cells including a plane membrane the thickness of which was at least 70μ were used to measure the diffusion of cesium 137. The diffusion coefficient of water in pure thermosetting resins, polyester or epoxyde, is about 10 -9 cm 2 .s -1 ; the diffusion coefficients of cesium in the same materials are about 10 -12 cm 2 .s -1 ; the introduction of solid particles in these polymers generally induces an acceleration of the diffusion process: the diffusion coefficient may reach 10 -8 cm 2 .s -1 . This lost of water-tightness may be reduced either by rendering insoluble the filler mixed to the polymer, or by diminushing the porosity of the interfacial zones by improving the bonding between the polymer and the filler [fr

  16. Polymerization Behavior and Mechanical Properties of High-Viscosity Bulk Fill and Low Shrinkage Resin Composites.

    Science.gov (United States)

    Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M

    The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and

  17. Effects of 35% Carbamide Peroxide Gel on Surface Roughness and Hardness of Composite Resins

    OpenAIRE

    Sharafeddin, F.; Jamalipour, GR.

    2010-01-01

    Objective: Bleaching agents may not be safe for dental materials. The purpose of this in-vitro study was to evaluate the effects of Opalescent Quick ?in-office bleaching gel? containing 35% carbamide peroxide on the surface roughness and hardness of microfilled (Heliomolar) and hybride (Spectrum TPH) composite resins. Materials and Methods: Twenty specimens of Spectrum TPH composite resins and twenty Heliomolar composite resins were fabricated using a metallic ring (6.5 mm diameter and 2.5 mm...

  18. Failure in a composite resin-dentin adhesive bond

    Energy Technology Data Exchange (ETDEWEB)

    Rezgui, B. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia)); Abdennagi, H. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia)); Sahtout, S. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia) Dept. d' Odontologie, Faculte de Chirurgie Dentaire de Monastir (Tunisia)); Belkhir, M.S. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia) Dept. d' Odontologie, Faculte de Chirurgie Dentaire de Monastir (Tunisia))

    1993-11-01

    Composites are drawing more and more attention as preferred materials for teeth restoration. The success of teeth restoration has been generally limited by the Composite Resin-Dentin bond strength. A testing device has been developped to allow a satisfactory testing method for evaluating bonding strength in tension and shear, which led to reproducible results. A comparaison between different bond systems has shown no significant difference in the tensile and the shear strength as well as in the fracture behavior. Moreover, results showed difference between tensile and shear strength, when considering one same bond system. Failure mode examination turned out to be, either cohesive (composite rupture), or adhesive (interface rupture) or both (mixed rupture). (orig.).

  19. Unsaturated polyester resin composition curable with ionizing radiations

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu; Murata, Koichiro.

    1971-01-01

    An unsaturated polyester resin composition curable with ionizing radiations and excellent in weather resistance is provided. The composition is obtained by reacting 10-12 moles of a polyhydric alcohol (e.g. ethylene glycol) with 10 moles of an acid mixture (25.45% by mole of endo-cis-bicyclo (2,2,1)-5-heptene-2-3-dicarboxylic acid (A), 20-40% of unsaturated dibasic acid and 15-55% of saturated dibasic acid) so that the acid value reaches 4-11. The composition is useful as coating, laminating and molding materials. As a coating material it is excellent in surface hardening property. The ionizing radiation used is preferably β-, α-rays or electron beams. In one example, and unsaturated polyester was prepared by reacting 3 moles of fumaric acid, 2 moles of phthalic anhydride, 3 moles of adipic acid 3, moles of (A), 10 moles of neopentyl glycol and 1 mole of trimethylolpropane. The resin was dissolved into a mixture of styrene, methyl methacrylate and butyl acrylate (50:8:42) and incorporated with titanium white. An ABS plate was coated with the enamel thus obtained and irradiated with electron beams (12 Mrad). In exposure test at 60 0 C, luster of the film was 92 before exposure and 83 after 30 months. In a comparative run in which (A) was not used, luster of the film decreased from 90 to 45 in 30 months. (Sakaichi, S.)

  20. Surface characterization of modern resin composites: a multitechnique approach.

    Science.gov (United States)

    Silikas, Nick; Kavvadia, Katerina; Eliades, George; Watts, David

    2005-04-01

    To characterize the surface properties of some modern resin composites employing a series of physicochemical methods. Specimens from three microhybrid (Palfique Estellite-PE, Z250 Filtek-ZF, Tetric Ceram-TC) and one nanofilled (Supreme Filtek-SF) conventionally photo-cured resin composites polished with Soflex disks were studied for the following properties: Surface chemical composition and degree of C=C conversion (FTIR), surface energetics (contact angles), surface texture (AFM), surface roughness (AFM, stylus profilometry) and gloss (60 degrees-, 20 degrees-angle specular gloss). Polar and non polar molecular groups were identified in all products including NH and CONH (SF, ZF, TC). SF and ZF demonstrated higher conversion than PE and TC (P 0.05) were found in critical surface tension, total work of adhesion and its polar and dispersion components, the latter being the highest in all products. AFM showed the smoothest surface texture in PE. The ranking of Sa, Sq, Ra and Rz roughness parameters was PEgloss measurements (PE, SF>ZF>TC, PTC, Pgloss differences. A positive correlation was found between Sa and Ra and a negative one between Sa and 20 degree-angle gloss.

  1. Characterization of heat emission of light-curing units.

    Science.gov (United States)

    Wahbi, Mohammed A; Aalam, F A; Fatiny, F I; Radwan, S A; Eshan, I Y; Al-Samadani, K H

    2012-04-01

    This study was designed to analyze the heat emissions produced by light-curing units (LCUs) of different intensities during their operation. The null hypothesis was that the tested LCUs would show no differences in their temperature rises. FIVE COMMERCIALLY AVAILABLE LCUS WERE TESTED: a "Flipo" plasma arc, "Cromalux 100" quartz-tungsten-halogen, "L.E. Demetron 1" second-generation light-emitting diode (LED), and "Blue Phase C5" and "UltraLume 5" third-generation LED LCUs. The intensity of each LCU was measured with two radiometers. The temperature rise due to illumination was registered with a type-K thermocouple, which was connected to a computer-based data acquisition system. Temperature changes were recorded in continues 10 and 20 s intervals up to 300 s. The Flipo (ARC) light source revealed the highest mean heat emission while the L.E. Demetron 1 LED showing the lowest mean value at 10 and 20 s exposure times. Moreover, Cromalux (QTH) recorded the second highest value for all intervals (12.71, 14.63, 14.60) of heat emission than Blue Phase C5 (LED) (12.25, 13.87, 13.69), interestingly at 20 s illumination for all intervals the highest results (18.15, 19.27, 20.31) were also recorded with Flipo (PAC) LCU, and the lowest (6.71, 5.97, 5.55) with L.E. Demetron 1 LED, while Blue Phase C5 (LED) recorded the second highest value at the 1st and 2nd 20 s intervals (14.12, 11.84, 10.18) of heat emission than Cromalux (QTH) (12.26, 11.43, 10.26). The speed of temperature or heat rise during the 10 and 20 s depends on light intensity of emitted light. However, the QTH LCU was investigated resulted in a higher temperature rise than LED curing units of the same power density. The PAC curing unit induced a significantly higher heat emission and temperature increase in all periods, and data were statistically different than the other tested groups (p < .05). LED (Blue Phase C5) was not statistically significant (p < .05) (at 10 s) than QTH units, also LED (Blue

  2. The effects of irradiance and exposure time on the surface roughness of bulk-fill composite resin restorative materials

    Science.gov (United States)

    Alkhudhairy, Fahad I.

    2018-01-01

    Objectives: To evaluate the surface roughness of 4 different bulk-fill resin-based composites cured using different irradiance levels. Methods: This in vitro study was performed in February 2017 to August 2017 at the College of Dentistry, King Saud University. Twenty-four specimens were prepared from each of the bulk-fill materials [Tetric N-Ceram (TNC), SonicFill (SF), Smart Dentin Replacement (SDR), and Filtek Bulk-Fill (FB)] using a brass metal mold, resulting in a total of 96 specimens, cured using a Bluephase N light curing unit. Half of the total number of specimens (N=48) were cured using high-power irradiance (1200 mW/cm2) for 20 seconds, while the remaining half (N=48) were cured using low power irradiance (650 mW/cm2) for 40 seconds. After 24 hours, baseline surface roughness of each specimen was analyzed using a profilometer, then polished using Sof-lex abrasive disks, and the surface roughness of all groups was assessed. Results: Post-polished SonicFill cured at high irradiance had the highest mean surface roughness (0.23±0.03), whereas pre-polished Smart Dentin Replacement (0.11±0.01) and SonicFill (0.11±0.02) cured at low irradiance had the lowest mean surface roughness. Conclusion: High curing irradiance (1,200 mW/cm2) had no positive influence on the surface roughness of Filtek Bulk Fill and Tetric N-Ceram bulk-fill RBCs compared with lower curing irradiance (650 mW/cm2). However, the difference of curing irradiance significantly affected the surface roughness in SDR and sonic fill RBCs. PMID:29436570

  3. Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Li-gang; Li, Ai-ju; Yin, Qiang [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Shandong Key Laboratory of Engineering Ceramics, Shandong University, Jinan 250061 (China); Wang, Wei-qiang [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Lin, Heng; Zhao, Yi-bo [School of Material Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-03-15

    In the paper, a kind of polyphenylene sulfide (PPS) resin/graphite (G) composite for bipolar plate was prepared by using the PPS resin as adhesive and simple hot pressing. The influences of the resin content, the molding temperature and holding time on the conductivity and the bending strength of the PPS/G composite bipolar plate were investigated firstly and then the optimum content and the preparing conditions of the composite were obtained. The experimental results show that the electrical conductivity decreases and the bending strength reveals a serrated variation with increase in PPS resin content; when the holding time is certain, the conductivity decreases and the bending strength increases with the molding temperature increasing. The experimental results further show that the effect of the holding time on the properties of the composite is different at different molding temperatures. The PPS/G composite with 20% PPS resin content has electrical conductivity of 118.9 S cm{sup -1} and bending strength of 52.4 MPa when it molded at 380 C for 30 min, and has electrical conductivity of 105 S cm{sup -1}, bending strength of 55.7 MPa when it molded at 390 C for 30 min. The properties of the composites can meet the requirements of United States Department of Energy (DOE). (author)

  4. Surface roughness comparison of methacrylate and silorane-based composite resins after 40% hydrogen peroxide application

    Directory of Open Access Journals (Sweden)

    Rori Sasmita

    2018-01-01

    Full Text Available The change of the tooth colour could be restored with bleaching. The tooth bleaching will affects the surface roughness of the composite resins. Recently, the material basis for composite resins has developed, among others are methacrylate-based and silorane based composite resins. The objective of this study was to distinguish the surface roughness value of methacrylate-based composite resin and silorane based composite resins. This research was quasi-experimental. The sample used in this study were methacrylate and silorane based composite resins in discs form, with the size of 6 mm and the thickness of 3 mm, manufactured into 20 specimens and divided into 2 groups. The control group was immersed in the artificial saliva, and the treatment group was applied with 40% hydrogen peroxide. The result of the experiment analyzed using unpaired sample t-test showed significant differences in the average value of the surface roughness after the application of 40% hydrogen peroxide. The average value of methacrylate and silorane based composite resins were 2.744 μm and 3.417 μm, respectively. There was a difference in the surface roughness of methacrylate and silorane based composite resin compounds after the application of 40% hydrogen peroxide. The surface roughness value of the silorane-based composite resin was higher than the methacrylate-based.

  5. Effectiveness of bleaching agent on composite resin discoloration

    Directory of Open Access Journals (Sweden)

    Galih Sampoerno

    2012-03-01

    Full Text Available Background: The discoloration of teeth, especially anterior teeth, is one of aesthetic problems. The use of tooth bleaching agents for discolored natural teeth is becoming increasingly popular. Many dentists, however, get many problems when they conduct bleaching process since there is much composite filling on patient’s anterior teeth. Although many research have focused on the discoloration of composite resin after bleaching process, the problem still becomes debatable. Purpose: The purpose of this study was to investigate the difference of the discoloration between hybrid composite and nano composite before and after the application of tooth bleaching agent, 38% hydrogen peroxide. Methods: Eighteen disk-shaped specimens (5 mm of each of two composite resins, hybrid and nano filler, were prepared. The each group was treated 3 times and the specimens were divided into two groups consisted of 9 specimens for each, and then immersed in black tea solutions for 72 hours. Next, after having staining and bleaching processes, the color of the specimens was measured with a optic spectrophotometer by using photo with type BPY-47 and digital microvolt. The differences of the light intensity among three measurements were then calculated. Afterwards, GLM MANOVA Repeated Measure and parametric analysis (Independent t-test and Paired t-test were then used to analyze the data. Results: After staining process, it is then known that the nano composite had more discoloration and more affected by the black tea solution than the hybrid one. Conclusion: After bleaching, the discoloration was finally removed completely from both hybride and nano filler composite resins and became brighter from the baseline color.Latar belakang: Salah satu problem estetik adalah adanya perubahan warna pada gigi anterior. Peningkatan pemakaian bahan bleaching semakin popular. Banyak dokter gigi mempunyai problem ketika mereka akan melakukan proses bleaching dan ditemukan banyak

  6. Flowable Resin Composites: A Systematic Review and Clinical Considerations

    Science.gov (United States)

    Rodrigues, Jean C.

    2015-01-01

    Background Little is known about flowable composite materials. Most literature mentions conventional composite materials at large, giving minimal emphasis to flowables in particular. This paper briefly gives an in depth insight to the multiple facets of this versatile material. Aim To exclusively review the most salient features of flowable composite materials in comparison to conventional composites and to give clinicians a detailed understanding of the advantages, drawbacks, indications and contraindications based on composition and physical/mechanical properties. Methodology Data Sources: A thorough literature search from the year 1996 up to January 2015 was done on PubMed Central, The Cochrane Library, Science Direct, Wiley Online Library, and Google Scholar. Grey literature (pending patents, technical reports etc.) was also screened. The search terms used were “dental flowable resin composites”. Search Strategy After omitting the duplicates/repetitions, a total of 491 full text articles were assessed. As including all articles were out of the scope of this paper. Only relevant articles that fulfilled the reviewer’s objectives {mentioning indications, contraindications, applications, assessment of physical/mechanical/biological properties (in vitro/ in vivo /ex vivo)} were considered. A total of 92 full text articles were selected. Conclusion Flowable composites exhibit a variable composition and consequently variable mechanical/ physical properties. Clinicians must be aware of this aspect to make a proper material selection based on specific properties and indications of each material relevant to a particular clinical situation. PMID:26266238

  7. Evaluation of shear bond strength of orthodontic brackets using trans-illumination technique with different curing profiles of LED light-curing unit in posterior teeth.

    Science.gov (United States)

    Heravi, Farzin; Moazzami, Saied Mostafa; Ghaffari, Negin; Jalayer, Javad; Bozorgnia, Yasaman

    2013-11-21

    Although using light-cured composites for bonding orthodontic brackets has become increasingly popular, curing light cannot penetrate the metallic bulk of brackets and polymerization of composites is limited to the edges. Limited access and poor direct sight may be a problem in the posterior teeth. Meanwhile, effectiveness of the trans-illumination technique is questionable due to increased bucco-lingual thickness of the posterior teeth. Light-emitting diode (LED) light-curing units cause less temperature rise and lower risk to the pulpal tissue. The purpose of this study was to evaluate the clinical effectiveness of trans-illumination technique in bonding metallic brackets to premolars, using different light intensities and curing times of an LED light-curing unit. Sixty premolars were randomly divided into six groups. Bonding of brackets was done with 40- and 80-s light curing from the buccal or lingual aspect with different intensities. Shear bond strengths of brackets were measured using a universal testing machine. Data were analyzed by one-way analysis of variance test and Duncan's post hoc test. The highest shear bond belonged to group 2 (high intensity, 40 s, buccal) and the lowest belonged to group 3 (low intensity, 40 s, lingual). Bond strength means in control groups were significantly higher than those in experimental groups. In all experimental groups except group 6 (80 s, high intensity, lingual), shear bond strength was below the clinically accepted values. In clinical limitations where light curing from the same side of the bracket is not possible, doubling the curing time and increasing the light intensity during trans-illumination are recommended for achieving acceptable bond strengths.

  8. Effect of sealant agents on the color stability and surface roughness of nanohybrid composite resins.

    Science.gov (United States)

    Dede, Doğu Ömür; Şahin, Onur; Koroglu, Aysegül; Yilmaz, Burak

    2016-07-01

    The effect of sealant agents on the surface roughness and color stability of nanohybrid composite resins is unknown. The purpose of this in vitro study was to evaluate the effect of sealant agents on the surface roughness and color stability of 4 nanohybrid composite resin materials. Forty disks (10×2 mm) were fabricated for each nanohybrid composite resin material (Z-550, Tetric EvoCeram, Clearfill Majesty, Ice) (N=160) and divided into 4 surface treatment groups: 1 conventional polishing (control) and 3 different sealant agent (Palaseal, Optiglaze, BisCover) coupling groups (n=10). The specimens were thermocycled, and surface roughness (Ra) values were obtained with a profilometer. Scanning electron microscope images were also recorded. CIELab color parameters of each specimen were measured with a spectrophotometer before and after 7 days of storage in a coffee solution. Color differences were calculated by the CIEDE 2000 (ΔE00) formula. The data were statistically analyzed by 2-way ANOVA and by the Tukey HSD test (α=.05). The surface treatment technique significantly affected the Ra values of the composite resins tested (Pcomposite resin material was also significant for ΔE00 values (Pcomposite resin groups, significant decreases in Ra were observed only for the Palaseal agent coupled composite resin groups (except Ice) compared with the control groups (Pcomposite resin group, except for BisCover applied Clearfill Majesty (Pcomposite resin groups, significant differences were observed between the color change seen with BisCover and other sealants for Clearfill Majesty composite resin (Pcomposite resins except for Ice produced smoother surfaces. All surface sealant agents provided less discoloration of nanohybrid composite resins after coffee staining compared with conventional polishing except for BisCover applied Clearfill Majesty composite resin. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All

  9. Influence of light-exposure methods and depths of cavity on the microhardness of dual-cured core build-up resin composites

    Directory of Open Access Journals (Sweden)

    Keiichi YOSHIDA

    2014-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the Knoop hardness number (KHN of dual-cured core build-up resin composites (DCBRCs at 6 depths of cavity after 3 post-irradiation times by 4 light-exposure methods. Material and Methods: Five specimens each of DCBRCs (Clearfil DC Core Plus [DCP] and Unifil Core EM [UCE] were filled in acrylic resin blocks with a semi-cylindrical cavity and light-cured using an LED light unit (power density: 1,000 mW/cm2at the top surface by irradiation for 20 seconds (20 s, 40 seconds (40 s, bonding agent plus 20 seconds (B+20 s, or 40 seconds plus light irradiation of both sides of each acrylic resin block for 40 seconds each (120 s. KHN was measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours, 24 hours, and 7 days post-irradiation. Statistical analysis was performed using repeated measures ANOVA and Tukey's compromise post-hoc test with a significance level of p0.05. In DCP, and not UCE, at 24 hours and 7 days post-irradiation, the B+20 s method showed significantly higher KHN at all depths of cavity, except the depth of 0.5 mm (p<0.05. Conclusion: KHN depends on the light-exposure method, use of bonding agent, depth of cavity, post-irradiation time, and material brand. Based on the microhardness behavior, DCBRCs are preferably prepared by the effective exposure method, when used for a greater depth of cavity.

  10. Epoxy Resin Based Composites, Mechanical and Tribological Properties: A Review

    Directory of Open Access Journals (Sweden)

    S.A. Bello

    2015-12-01

    Full Text Available High fuel consumption by automobile and aerospace vehicles built from legacy alloys has been a great challenge to global design and material engineers. This has called for researches into material development for the production of lighter materials of the same or even superior mechanical properties to the existing materials in this area of applications. This forms a part of efforts to achieve the global vision 2025 i.e to reduce the fuel consumption by automobile and aerospace vehicles by at least 75 %. Many researchers have identified advanced composites as suitable materials in this regard. Among the common matrices used for the development of advanced composites, epoxy resin has attained a dominance among its counterparts because of its excellent properties including chemical, thermal and electrical resistance properties, mechanical properties and dimensional stability. This review is a reflection of the extensive study on the currently ongoing research aimed at development of epoxy resin hybrid nanocomposites for engineering applications. In this paper, brief explanation has been given to different terms related to the research work and also, some previous works (in accordance with materials within authors’ reach in the area of the ongoing research have been reported.

  11. Treatment planning and smile design using composite resin.

    Science.gov (United States)

    Marus, Robert

    2006-05-01

    Recent advances in dental materials and adhesive protocols have expanded the restorative procedures available to today's clinicians. Used in combination with proper treatment planning, these innovations enable dental professionals to provide enhanced aesthetic care that achieves the increasing expectations of their patients. Using a case presentation, this article will document the steps required to harmoniously integrate smile design, material selection, and patient communication that are involved in the provisional of aesthetic dental care. This article discusses the utilization of composite resin as a tool to enhance the patient's smile. Upon reading this article, the reader should: Become familiar with a smile-enhancing technique which can be completed in one office visit. Realize the benefits that intraoral composite mockups offer in terms of prototyping and confirming patient satisfaction.

  12. Microwave absorption properties of barium titanate/epoxide resin composites

    International Nuclear Information System (INIS)

    Chen Xiaodong; Wang Guiqin; Duan Yuping; Liu Shunhua

    2007-01-01

    Nano-barium titanate (BT) was prepared by a sol-gel method. The prepared powders were characterized by x-ray powder diffraction and transmission electron microscopy. The complex relative dielectric permittivity (ε = ε' - jε-prime) and magnetic permeability (μ = μ' - jμ-prime) of the BT powders were measured in the frequency range 8 ∼ 18 GHz. The BT/epoxide resin (EP) composite with different volume contents was investigated. The effects of thickness on the BT/EP composite were studied. It was found that an optimum thickness and contents of the absorber can yield the maximum reflection loss which could be obtained over a broad frequency region in the X and Ku bands. Our results indicate that BT could be a promising microwave absorption material

  13. Comparative Evaluation of Shear Bond Strength and Debonding Characteristics using Conventional Halogen Light Curing Unit and LED Light Curing Unit: An in vitro Study

    Directory of Open Access Journals (Sweden)

    Amit Bhardwaj

    2013-01-01

    Conclusion: The result of this study showed promise for the orthodontic application of LED as light curing units and 20 seconds of exposure time is adequate for both LED and Halogen light, since increasing the curing time to 40 seconds showed no significant difference.

  14. Application of Some Synthesized Polymeric Composite Resins for Removal of Some Metal Ions

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The ion-exchange and sorption characteristic of new polymeric composite resins, prepared by gamma radiation were experimentally studied. The composite resins shows high uptake for Co(II) and Eu(III) ions in aqueous solutions in wide range of ph. The selectivity of the resins to Co (II) or Eu (III) species in the presence of some competing ions and complexing agents (as Na + , Fe 3+ , EDTA Na 2 , etc.) was compared. Various factors that could affect the sorption behaviors of metal ions (Co (II) and Eu (III)) on the prepared polymeric composite resins were studied such as ionic strength, Contact time, volume mass ratio

  15. The effect of processing on autohesive strength development in thermoplastic resins and composites

    Science.gov (United States)

    Howes, Jeremy C.; Loos, Alfred C.; Hinkley, Jeffrey A.

    1989-01-01

    In the present investigation of processing effects on the autohesive bond strength of neat polysulfone resin and graphite-reinforced polysulfone-matrix composites measured resin bond strength development in precracked compact tension specimens 'healed' by heating over a contact period at a given temperature. The critical strain energy release rate of refractured composite specimens did not exhibit the strong time or temperature dependence of the neat resin tests; only 80-90 percent of the undamaged fracture energy is recoverable.

  16. Advanced resin systems and 3D textile preforms for low cost composite structures

    Science.gov (United States)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  17. Fracture Resistance of Endodontically Treated Teeth Restored with Biodentine, Resin Modified GIC and Hybrid Composite Resin as a Core Material.

    Science.gov (United States)

    Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan

    2017-09-01

    The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture

  18. In vitro enamel remineralization capacity of composite resins containing sodium trimetaphosphate and fluoride.

    Science.gov (United States)

    Tiveron, Adelisa Rodolfo Ferreira; Delbem, Alberto Carlos Botazzo; Gaban, Gabriel; Sassaki, Kikue Takebayashi; Pedrini, Denise

    2015-11-01

    This study evaluated the in vitro enamel remineralization capacity of experimental composite resins containing sodium trimetaphosphate (TMP) combined or not with fluoride (F). Bovine enamel slabs were selected upon analysis of initial surface hardness (SH1) and after induction of artificial carious lesions (SH2). Experimental resins were as follows: resin C (control—no sodium fluoride (NaF) or TMP), resin F (with 1.6% NaF), resin TMP (with 14.1% TMP), and resin TMP/F (with NaF and TMP). Resin samples were made and attached to enamel slabs (n = 12 slabs per material). Those specimens (resin/enamel slab) were subjected to pH cycling to promote remineralization, and then final surface hardness (SH3) was measured to calculate the percentage of surface hardness recovery (%SH). The integrated recovery of subsurface hardness (ΔKHN) and F concentration in enamel were also determined. Data was analyzed by ANOVA and Student-Newman-Keuls test (p Resins F and TMP/F showed similar SH3 values (p = 0.478) and %SH (p = 0.336) and differed significantly from the other resins (p resin TMP/F presented the lowest area of lesion (p resins (p = 0.042), but higher than in the other resins (p composite resin enhanced its capacity for remineralization of enamel in vitro. The combination of two agents with action on enamel favored remineralization, suggesting that composite resins containing sodium trimetaphosphate and fluoride could be indicated for clinical procedures in situations with higher cariogenic challenges.

  19. Effect of resin chemistry on depth of cure and cytotoxicity of dental resin composites

    International Nuclear Information System (INIS)

    Susila Anand, V.; Balasubramanian, Venkatesh

    2014-01-01

    Highlights: • Dental composites have differences in polymerization within 2 mm thickness. • Degree of conversion alone may not affect the biocompatibility of composite. • Unreacted double bonds in dental composites may influence biocompatibility. • Magnitude of double bonds depends on the polymerization and chemical composition. • These influence biocompatibility especially if they possess lipophylic properties. -- Abstract: New dental composite restorative materials are being introduced aiming to overcome the disadvantages of contemporary materials. Hence there is a need to analyze the critical properties of these composites to aid in clinical application. This study aims to comparatively analyze the degree of conversion (DC), residual reactivity (DBC/reactivity) and cytotoxicity of 2 composites based on different resin chemistry. Ceram X and Filtek P90 were used in the study to prepare disc shaped samples of 2 mm thickness and 4 mm diameter. The samples for cytotoxicity were cured for 40 s and those of Fourier Transform Infra-red Spectroscopy (FTIR) (DBC/reactivity and DC) for 5 s, 10 s, 20 s and 40 s, at an average intensity of 800 mW/cm 2 with Quartz–Tungsten–Halogen (QTH) light. DC was calculated in 60–100 μm thick and 6 mm diameter samples. Double bonds concentration/reactivity was measured in approximately 80 μm thick sections prepared from the 2 mm thick discs using a hard tissue microtome. The cell viability was scored by Trypan blue exclusion staining technique at 24 h and 48 h. Both composites showed a progressive increase in double bonds/reactivity as the distance from curing probe increased which was inversely proportional to the curing time. The DC of Filtek P90 was 20% and 96% and that of Ceram X 33% and 50% at 5 s and 40 s, respectively. Ceram X showed statistically significantly higher cell viability score at both 24 h and 48 h than Filtek P90. The results were statistically analyzed using non-parametric Kruskal–Wallis, Mann

  20. Effect of resin chemistry on depth of cure and cytotoxicity of dental resin composites

    Energy Technology Data Exchange (ETDEWEB)

    Susila Anand, V. [Rehabilitation Bioengineering Group, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha University, Chennai 600077 (India); Balasubramanian, Venkatesh, E-mail: chanakya@iitm.ac.in [Rehabilitation Bioengineering Group, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-02-15

    Highlights: • Dental composites have differences in polymerization within 2 mm thickness. • Degree of conversion alone may not affect the biocompatibility of composite. • Unreacted double bonds in dental composites may influence biocompatibility. • Magnitude of double bonds depends on the polymerization and chemical composition. • These influence biocompatibility especially if they possess lipophylic properties. -- Abstract: New dental composite restorative materials are being introduced aiming to overcome the disadvantages of contemporary materials. Hence there is a need to analyze the critical properties of these composites to aid in clinical application. This study aims to comparatively analyze the degree of conversion (DC), residual reactivity (DBC/reactivity) and cytotoxicity of 2 composites based on different resin chemistry. Ceram X and Filtek P90 were used in the study to prepare disc shaped samples of 2 mm thickness and 4 mm diameter. The samples for cytotoxicity were cured for 40 s and those of Fourier Transform Infra-red Spectroscopy (FTIR) (DBC/reactivity and DC) for 5 s, 10 s, 20 s and 40 s, at an average intensity of 800 mW/cm{sup 2} with Quartz–Tungsten–Halogen (QTH) light. DC was calculated in 60–100 μm thick and 6 mm diameter samples. Double bonds concentration/reactivity was measured in approximately 80 μm thick sections prepared from the 2 mm thick discs using a hard tissue microtome. The cell viability was scored by Trypan blue exclusion staining technique at 24 h and 48 h. Both composites showed a progressive increase in double bonds/reactivity as the distance from curing probe increased which was inversely proportional to the curing time. The DC of Filtek P90 was 20% and 96% and that of Ceram X 33% and 50% at 5 s and 40 s, respectively. Ceram X showed statistically significantly higher cell viability score at both 24 h and 48 h than Filtek P90. The results were statistically analyzed using non-parametric Kruskal

  1. The bond of different post materials to a resin composite cement and a resin composite core material.

    Science.gov (United States)

    Stewardson, D; Shortall, A; Marquis, P

    2012-01-01

    To investigate the bond of endodontic post materials, with and without grit blasting, to a resin composite cement and a core material using push-out bond strength tests. Fiber-reinforced composite (FRC) posts containing carbon (C) or glass (A) fiber and a steel (S) post were cemented into cylinders of polymerized restorative composite without surface treatment (as controls) and after grit blasting for 8, 16, and 32 seconds. Additional steel post samples were sputter-coated with gold before cementation to prevent chemical interaction with the cement. Cylindrical composite cores were bonded to other samples. After sectioning into discs, bond strengths were determined using push-out testing. Profilometry and electron microscopy were used to assess the effect of grit blasting on surface topography. Mean (standard deviation) bond strength values (MPa) for untreated posts to resin cement were 8.41 (2.80) for C, 9.61(1.88) for A, and 19.90 (3.61) for S. Prolonged grit blasting increased bond strength for FRC posts but produced only a minimal increase for S. After 32 seconds, mean values were 20.65 (4.91) for C, 20.41 (2.93) for A, and 22.97 (2.87) for S. Gold-coated steel samples produced the lowest bond strength value, 7.84 (1.40). Mean bond strengths for untreated posts bonded to composite cores were 6.19 (0.95) for C, 13.22 (1.61) for A, and 8.82 (1.18) for S, and after 32 seconds of grit blasting the values were 17.30 (2.02) for C, 26.47 (3.09) for A, and 20.61 (2.67) for S. FRC materials recorded higher roughness values before and after grit blasting than S. With prolonged grit blasting, roughness increased for A and C, but not for S. There was no evidence of significant bonding to untreated FRC posts, but significant bonding occurred between untreated steel posts and the resin cement. Increases in the roughness of FRC samples were material dependent and roughening significantly increased bond strength values (p<0.05). Surface roughening of the tested FRC posts is

  2. Mechanical behaviour of composite materials made by resin film infusion

    Directory of Open Access Journals (Sweden)

    Casavola C.

    2010-06-01

    Full Text Available Innovative composite materials are frequently used in designing aerospace, naval and automotive components. In the typical structure of composites, multiple layers are stacked together with a particular sequence in order to give specific mechanical properties. Layers are organized with different angles, different sequences and different technological process to obtain a new and innovative material. From the standpoint of engineering designer it is useful to consider the single layer of composite as macroscopically homogeneous material. However, composites are non homogeneous bodies. Moreover, layers are not often perfectly bonded together and delamination often occurs. Other violations of lamination theory hypotheses, such as plane stress and thin material, are not unusual and in many cases the transverse shear flexibility and the thickness-normal stiffness should be considered. Therefore the real behaviour of composite materials is quite different from the predictions coming from the traditional lamination theory. Due to the increasing structural performance required to innovative composites, the knowledge of the mechanical properties for different loading cases is a fundamental source of concern. Experimental characterization of materials and structures in different environmental conditions is extremely important to understand the mechanical behaviour of these new materials. The purpose of the present work is to characterize a composite material developed for aerospace applications and produced by means of the resin film infusion process (RFI. Different tests have been carried out: tensile, open-hole and filled-hole tensile, compressive, openhole and filled-hole compressive. The experimental campaign has the aim to define mechanical characteristics of this RFI composite material in different conditions: environmental temperature, Hot/Wet and Cold.

  3. Bonding of Glass Ceramic and Indirect Composite to Non-aged and Aged Resin Composite

    NARCIS (Netherlands)

    Gresnigt, Marco; Ozcan, Mutlu; Muis, Maarten; Kalk, Warner

    2012-01-01

    Purpose: Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged

  4. Microhardness of dual-polymerizing resin cements and foundation composite resins for luting fiber-reinforced posts.

    Science.gov (United States)

    Yoshida, Keiichi; Meng, Xiangfeng

    2014-06-01

    The optimal luting material for fiber-reinforced posts to ensure the longevity of foundation restorations remains undetermined. The purpose of this study was to evaluate the suitability of 3 dual-polymerizing resin cements and 2 dual-polymerizing foundation composite resins for luting fiber-reinforced posts by assessing their Knoop hardness number. Five specimens of dual-polymerizing resin cements (SA Cement Automix, G-Cem LincAce, and Panavia F2.0) and 5 specimens of dual-polymerizing foundation composite resins (Clearfil DC Core Plus and Unifil Core EM) were polymerized from the top by irradiation for 40 seconds. Knoop hardness numbers were measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours and 7 days after irradiation. Data were statistically analyzed by repeated measures ANOVA, 1-way ANOVA, and the Tukey compromise post hoc test (α=.05). At both times after irradiation, the 5 resins materials showed the highest Knoop hardness numbers at the 0.5-mm depth. At 7 days after irradiation, the Knoop hardness numbers of the resin materials did not differ significantly between the 8.0-mm and 10.0-mm depths (P>.05). For all materials, the Knoop hardness numbers at 7 days after irradiation were significantly higher than those at 0.5 hours after irradiation at all depths (Presin materials were found to decrease in the following order: DC Core Plus, Unifil Core EM, Panavia F2.0, SA Cement Automix, and G-Cem LincAce (Pcomposite resins were higher than those of the 3 dual-polymerizing resin cements, notable differences were seen among the 5 materials at all depths and at both times after irradiation. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    Science.gov (United States)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Bismaleimide (BMI) resins are an attractive new addition to world-wide composite applications. This type of thermosetting polyimide provides several unique characteristics such as excellent physical property retention at elevated temperatures and in wet environments, constant electrical properties over a vast array of temperature settings, and nonflammability properties as well. This makes BMI a popular choice in advance composites and electronics applications [I]. Bismaleimide-2 (BMI-2) resin was used to infuse intermediate modulus 7 (IM7) based carbon fiber. Two panel configurations consisting of 4 plies with [+45deg, 90deg]2 and [0deg]4 orientations were fabricated. For tensile testing, a [90deg]4 configuration was tested by rotating the [0deg]4 configirration to lie orthogonal with the load direction of the test fixture. Curing of the BMI-2/IM7 system utilized an optimal infusion process which focused on the integration of the manufacturer-recommended ramp rates,. hold times, and cure temperatures. Completion of the cure cycle for the BMI-2/IM7 composite yielded a product with multiple surface voids determined through visual and metallographic observation. Although the curing cycle was the same for the three panellayups, the surface voids that remained within the material post-cure were different in abundance, shape, and size. For tensile testing, the [0deg]4 layup had a 19.9% and 21.7% greater average tensile strain performance compared to the [90deg]4 and [+45deg, 90deg, 90deg,-45degg] layups, respectively, at failure. For tensile stress performance, the [0deg]4 layup had a 5.8% and 34.0% greater average performance% than the [90deg]4 and [+45deg, 90deg, 90deg,-45deg] layups.

  6. Fracture strength and fatigue resistance of dental resin-based composites

    NARCIS (Netherlands)

    Keulemans, F.; Palav, P.; Aboushelib, M.M.N.; van Dalen, A.; Kleverlaan, C.J.; Feilzer, A.J.

    2009-01-01

    Objectives: The aim of this study was to evaluate in vitro the influence of fiber-reinforcement on the fracture strength and fatigue resistance of resin-based composites. Methods: One hundred rectangular bar-shaped specimens (2 mm × 2 mm × 25 mm) made of resin-based composite were prepared in a

  7. Influence of salivary enzymes and alkaline pH environment on fatigue behavior of resin composites

    NARCIS (Netherlands)

    Mirmohammadi, H.; Kleverlaan, C.J.; Aboushelib, M.N.; Feilzer, A.J.

    2011-01-01

    Purpose: To evaluate the effect of enzymatic activity and alkaline medium on flexural strength and rotary fatigue resistance of direct and indirect resin composite restorative materials. Methods: Three direct resin composite materials Filtek Z100, Filtek Z250 and Filtek Silorane (3M ESPE), and two

  8. Composite panels made with biofiber or office wastepaper bonded with thermoplastic and/or thermosetting resin

    Science.gov (United States)

    James H. Muehl; Andrzej M. Krzysik; Poo Chow

    2004-01-01

    The purpose of this study was to evaluate two groups of composite panels made from two types of underutilized natural fiber sources, kenaf bast fiber and office wastepaper, for their suitability in composite panels. All panels were made with 5% thermosetting phenol-formaldehyde (PF) resin and 1.5% wax. Also, an additional 10% polypropylene (PP) thermoplastic resin was...

  9. [Effect of bleaching agents on the color of indirect and direct composite resins].

    Science.gov (United States)

    Xing, Wenzhong; Jiang, Tao; Chen, Xiaodong; Wang, Yining

    2014-09-01

    To evaluate the effect of bleaching agents on the color of indirect and direct composite resins. Five resin composite materials were tested in this in vitro study. The five composites were as follow: two indirect composite resins (Adoro SR, Ceramage) and three direct composite resins (Filtek Z350, Clearfil Majesty Esthetic, and Gradia Direct Anterior). For each material, twenty disk-shaped specimens were prepared and randomly divided into five groups according to the color parameters of specimens before bleaching treatment. The composite resin specimens were treated by one of five sample solutions which were at-home bleaching agents (10% and 15% carbarmide peroxide), in- office bleaching agents (38% H(2)O(2) and 35%H(2)O(2)) and deionized water (control group). The color parameters of specimens were measured by spectrophotometer at baseline and after bleaching treatments. The color differences (ΔE values) between baseline and post-treatments were calculated. The data of color differences were evaluated statistically using two-way analysis with a significance level of 0.05. The color changes of the resin composites were less than 2.0 after bleaching agent treatment, therefore were not perceptible. Slight increase of L(*) values and decrease of C(*)ab values in color parameters of specimens were observed. There were statistically significant differences in ΔE values for different bleaching treatments and resin materials (P = 0.001). The bleaching agents did not affect the color of indirect and direct composite resins tested.

  10. Longevity of posterior resin composite restorations in permanent teeth in Public Dental Health Service

    DEFF Research Database (Denmark)

    Pallesen, Ulla; van Dijken, Jan W V; Halken, Jette

    2013-01-01

    To investigate in a prospective follow up the longevity of posterior resin composites (RC) placed in permanent teeth of children and adolescents attending Public Dental Health Service.......To investigate in a prospective follow up the longevity of posterior resin composites (RC) placed in permanent teeth of children and adolescents attending Public Dental Health Service....

  11. The effectiveness of different polymerization protocols for class II composite resin restorations.

    NARCIS (Netherlands)

    Jong, L.C.G. de; Opdam, N.J.M.; Bronkhorst, E.M.; Roeters, F.J.M.; Wolke, J.G.C.; Geitenbeek, B.

    2007-01-01

    OBJECTIVES: To investigate the effect of reduced light exposure times on Vickers hardness (VH) of class II composite resin restorations. METHODS: Class II restorations were made in vitro in three 2mm thick increments in a human molar. Two composite resins (Clearfil AP-X; Esthet-X) were polymerized

  12. The effect of proximal contour on marginal ridge fracture of Class II composite resin restorations.

    NARCIS (Netherlands)

    Loomans, B.A.C.; Roeters, F.J.M.; Opdam, N.J.M.; Kuijs, R.H.

    2008-01-01

    OBJECTIVES: To compare the marginal ridge fracture strength of Class II composite resin restorations placed with a straight or contoured matrix band using composite resins with different modulus of elasticity. METHODS: In 60 artificial first molars standardized MO-preparations were ground. Two

  13. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units.

    Science.gov (United States)

    Mousavinasab, Sayed-Mostafa; Khoroushi, Maryam; Moharreri, Mohammadreza; Atai, Mohammad

    2014-08-01

    Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p 0.05). Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  14. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

    Directory of Open Access Journals (Sweden)

    Sayed-Mostafa Mousavinasab

    2014-08-01

    Full Text Available Objectives Light-curing of resin-based materials (RBMs increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs of three different RBMs using quartz tungsten halogen (QTH and light-emitting diode (LED units (LCUs. Materials and Methods Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12 during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey, a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE, and a giomer (Beautifil II, Shofu GmbH, was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p 0.05. Conclusions Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  15. Effect of in-office bleaching agents on physical properties of dental composite resins.

    Science.gov (United States)

    Mourouzis, Petros; Koulaouzidou, Elisabeth A; Helvatjoglu-Antoniades, Maria

    2013-04-01

    The physical properties of dental restorative materials have a crucial effect on the longevity of restorations and moreover on the esthetic demands of patients, but they may be compromised by bleaching treatments. The purpose of this study was to evaluate the effects of in-office bleaching agents on the physical properties of three composite resin restorative materials. The bleaching agents used were hydrogen peroxide and carbamide peroxide at high concentrations. Specimens of each material were prepared, cured, and polished. Measurements of color difference, microhardness, and surface roughness were recorded before and after bleaching and data were examined statistically by analysis of variance (ANOVA) and Tukey HSD post-hoc test at P composite resin altered after the bleaching procedure (P composite resins tested (P > .05). The silorane-based composite resin tested showed some color alteration after bleaching procedures. The bleaching procedure did not alter the microhardness and the surface roughness of all composite resins tested.

  16. Compatibility between dental adhesive systems and dual-polymerizing composite resins.

    Science.gov (United States)

    Michaud, Pierre-Luc; MacKenzie, Alexandra

    2016-10-01

    Information is lacking about incompatibilities between certain types of adhesive systems and dual-polymerizing composite resins, and universal adhesives have yet to be tested with these resins. The purpose of this in vitro study was to investigate the bonding outcome of dual-polymerizing foundation composite resins by using different categories of adhesive solutions and to determine whether incompatibilities were present. One hundred and eighty caries-free, extracted third molar teeth were allocated to 9 groups (n=20), in which 3 different bonding agents (Single Bond Plus [SB]), Scotchbond Multi-purpose [MP], and Scotchbond Universal [SU]) were used to bond 3 different composite resins (CompCore AF [CC], Core Paste XP [CP], and Filtek Supreme Ultra [FS]). After restorations had been fabricated using an Ultradent device, the specimens were stored in water at 37°C for 24 hours. The specimens were tested under shear force at a rate of 0.5 mm/min. The data were analyzed with Kruskal-Wallis tests and post hoc pairwise comparisons (α=.05). All 3 composite resins produced comparable shear bond strengths when used with MP (P=.076). However, when either SB or SU was used, the light-polymerized composite resin (FS) and 1 dual-polymerized foundation composite resin (CC) bonded significantly better than the other dual-polymerized foundation composite resin (CP) (Pincompatibilities exist between different products. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Grinding efficiency of abutment tooth with both dentin and core composite resin on axial plane.

    Science.gov (United States)

    Miho, Otoaki; Sato, Toru; Matsukubo, Takashi

    2015-01-01

    The purpose of this study was to evaluate grinding efficiency in abutment teeth comprising both dentin and core composite resin in the axial plane. Grinding was performed over 5 runs at two loads (0.5 or 0.25 N) and two feed rates (1 or 2 mm/sec). The grinding surface was observed with a 3-D laser microscope. Tomographic images of the grinding surfaces captured perpendicular to the feed direction were also analyzed. Using a non-ground surface as a reference, areas comprising only dentin, both dentin and core composite resin, or only core composite resin were analyzed to determine the angle of the grinding surface. Composite resins were subjected to the Vickers hardness test and scanning electron microscopy. Data were statistically analyzed using a one-way analysis of variance and multiple comparison tests. Multiple regression analysis was performed for load, feed rate, and Vickers hardness of the build-up material depending on number of runs. When grinding was performed at a constant load and feed rate, a greater grinding angle was observed in areas comprising both dentin and composite resin or only composite resin than in areas consisting of dentin alone. A correlation was found between machinability and load or feed rate in areas comprising both dentin and composite resin or composite resin alone, with a particularly high correlation being observed between machinability and load. These results suggest that great caution should be exercised in a clinical setting when the boundary between the dentin and composite resin is to be ground, as the angle of the grinding surface changes when the rotating diamond point begins grinding the composite resin.

  18. Fracture toughness of dentin/resin-composite adhesive interfaces.

    Science.gov (United States)

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.

  19. Nanosilica Modification of Elastomer-Modified VARTM Epoxy Resins for Improved Resin and Composite Toughness

    National Research Council Canada - National Science Library

    Robinette, Jason; Bujanda, Andres; DeSchepper, Daniel; Dibelka, Jessica; Costanzo, Philip; Jensen, Robert; McKnight, Steven

    2007-01-01

    Recent publications have reported a synergy between rubber and silica in modified epoxy resins that results in significantly improved fracture toughness without reductions in other material properties...

  20. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins.

    Science.gov (United States)

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson's chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P resin had a score of 3.0 for cellular inflammation. On the 14th day, the micro-hybrid resin also exhibited a lower average grade for cellular inflammation. On the 90th day, the micro-hybrid resin had a higher grade of inflammation (0.9) compared to 0.3 recorded for nano-hybrid. The composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited significantly lower inflammatory response on the 90th day of implantation.

  1. Vickers microhardness comparison of 4 composite resins with different types of filler.

    Directory of Open Access Journals (Sweden)

    René García-Contreras

    2015-10-01

    Full Text Available Composite resins are the material of choice to restore minimal invasive cavities; conversely, it is important to explore the mechanical properties of commercially available dental materials. Objective: To compare the Vickers microhardness (VHN of four available commercial composite resins using standardized samples and methods. Methodology: Composite cylinders were manufactured in a Teflon mould. We used the follow composite resins (n=4/gp: Microhybrid resins [Feeling Lux (Viarden and Amelogen Plus (Ultradent], Hybrid resin [Te-Econom Plus (Ivoclar] and Nanohybrid resin [Filtek Z350 (3M ESPE]. All samples were incubated in distilled water at 37ºC for five days. The test was carried out with microhardness indenter at 10 N, and a dwelling time of 10 s for 9 indentations across the specimens resulting in a total of 36 indentations for each group. Data were subjected to Kolmogorov-Smirnov normality test and ANOVA (post-hoc Tukey test. Results: The VHN mean values ranged from harder to softer as follows: Filtek Z350 (71.96±6.44 (p Amelogen Plus (59.90±4.40 (p Feeling lux (53.52±5.72> Te-Econom Plus (53.26±5.19. Conclusion: According to our results, the microhardness of the evaluated conventional composite resins can withstand the masticatory forces; however nanohybrid composite resins showed better Vickers microhardness and therefore are a more clinically suitable option for minimal invasion treatments.

  2. UV curing silicon-containing epoxy resin and its glass cloth reinforced composites

    International Nuclear Information System (INIS)

    Yang Guang; Tang Zhuo; Huang Pengcheng

    2007-01-01

    A UV-curable cationic silicon-containing epoxy resin formulation was developed. The gel conversion of the cured resin after 10-min UV irradiation reached 80% in the presence of 5% diaryliodonium salt photoinitiator and 5.5% polyol chain transfer agent by cationic ring-opening polymerization. The glass cloth-reinforced composites were fabricated with the silicon-containing epoxy resin using the wet lay-up technique and UV irradiation. The mechanical properties of the composites were evaluated. Compared with glass cloth reinforced bisphenol A epoxy resin matrix composites, the silicon-containing epoxy resin matrix composites possessed higher tensile strength and interlayer shear strength which was 158.5MPa and 9.9MPa respectively while other mechanical properties such as flexural property and tensile modulus were similar. (authors)

  3. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength.

    Science.gov (United States)

    Song, Minju; Shin, Yooseok; Park, Jeong-Won; Roh, Byoung-Duck

    2015-02-01

    This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p composite resin (p composite resin than other manufacturer's composite resin. Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

  4. CHEMICAL COMPOSITIONS OF PINE RESIN, ROSIN AND TURPENTINE OIL FROM WEST JAVA

    OpenAIRE

    Wiyono Bambang; Tachibana Sanro; Djaban Tinambunan

    2006-01-01

    This study was conducted to identify chemical composition of merkus pine resin, rosin and turpentine oil. Initially, pine resin was separated into neutral and acidic fractions with an aqueous 4% sodium hydroxide solution. After methylation, the fraction containing turpentine oil and rosin were analyzed by gas chromatography (GC), and gas chromatograph mass spectrometry (GC-MS), respectively. The neutral fraction of pine resin and turpentine oil mainly consisted of a-pinene, D-3-carene and b-p...

  5. Thio-urethane oligomers improve the properties of light-cured resin cements.

    Science.gov (United States)

    Bacchi, Ataís; Consani, Rafael L; Martim, Gedalias C; Pfeifer, Carmem S

    2015-05-01

    Thio-urethanes were synthesized by combining 1,6-hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 10-30 phr to BisGMA-UDMA-TEGDMA (5:3:2, BUT). 25 wt% silanated inorganic fillers were added. Commercial cement (Relyx Veneer, 3M-ESPE) was also evaluated with 10-20 phr of aromatic oligomer. Near-IR was used to follow methacrylate conversion (DC) and rate of polymerization (Rpmax). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Volumetric shrinkage (VS, %) was measured with the bonded disk technique. Results were analyzed with ANOVA/Tukey's test (α=5%). In general terms, for BUT cements, conversion and mechanical properties in flexure increased for selected groups with the addition of thio-urethane oligomers. The aromatic versions resulted in greater FS/FM than aliphatic. Fracture toughness increased by two-fold in the experimental groups (from 1.17 ± 0.36 MPam(1/2) to around 3.23 ± 0.22 MPam(1/2)). Rpmax decreased with the addition of thio-urethanes, though the vitrification point was not statistically different from the control. VS and PS decreased with both oligomers. For the commercial cement, 20 phr of oligomer increased DC, vitrification, reduced Rpmax and also significantly increased KIC, and reduced PS and FM. Thio-urethane oligomers were shown to favorably modify conventional dimethacrylate networks. Significant reductions in polymerization stress were achieved at the same time conversion and fracture toughness increased. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Comparison of the Amount of Temperature Rise in the Pulp Chamber of Teeth Treated With QTH, Second and Third Generation LED Light Curing Units: An In Vitro Study.

    Science.gov (United States)

    Mahant, Rajesh Harivadanbhai; Chokshi, Shraddha; Vaidya, Rupal; Patel, Pruthvi; Vora, Asima; Mahant, Priyanka

    2016-01-01

    Introduction: This in vitro study was designed to measure and compare the amount of temperature rise in the pulp chamber of the teeth exposed to different light curing units (LCU), which are being used for curing composite restorations. Methods: The study was performed in two settings; first, an in vitro and second was mimicking an in vivo situation. In the first setup of the study, three groups were formed according to the respective three light curing sources. i.e. quartz-tungsten-halogen (QTH) unit and two light-emitting diode (LED) units (second and third generations). In the in vitro setting, direct thermal emission from three light sources at 3 mm and 6 mm distances, was measured with a k-type thermocouple, and connected to a digital thermometer. For a simulation of an in vivo situation, 30 premolar teeth were used. Class I Occlusal cavity of all the teeth were prepared and they were restored with incremental curing of composite, after bonding agent application. While curing the bonding agent and composite in layers, the intrapulpal temperature rise was simultaneously measured with a k-type thermocouple. Results: The first setting of the study showed that the heat produced by irradiation with LCU was significantly less at 6 mm distance when compared to 3 mm distance. The second setting of the study showed that the rise of intrapulpal temperature was significantly less with third generation LED light cure units than with second generation LED and QTH light cure units. Conclusion: As the distance from the light source increases, less irradiation heat is produced. Third generation LED lights cause the least temperature change in the pulp chamber of single rooted teeth.

  7. Synthesis of a magnetic composite resin and its cobalt removal characteristics in aqueous solution

    International Nuclear Information System (INIS)

    Kim, Young Kyun; Lee, Kun Jai

    2001-01-01

    A series of stepwise procedures to prepare a new organic-inorganic composite magnetic resin with phenolsulphonic-formaldehyde and freshly formed iron ferrite was established, based upon wet-and-neutralization method for synthesizing iron ferrite and pearl-polymerization method for synthesizing rigid bead-type composite resin. The ion exchange and sorption characteristics of the composite resin prepared by the above method at various conditions were experimentally disclosed. The composite resin prepared shows stably high removal efficiency to Co(II) species in aqueous solution in a wide range of solution pH. The overall isotherm is qualitatively explained by the generalized adsorption isotherm concept proposed by McKinley. The standard enthalpy change derived from van't Hoff equation conforms to the typical range for chemisorption or ion exchange. The selectivity of the PSF-F (phenolsulphonic formaldehyde-iron ferrite) composite resin to Co(II) species and other competing chemicals (i.e. Na 2 EDTA, Ca(II) and Na) was compared. It is anticipated that the composite resin can also be used for column-operation with process-control by applying external magnetic field, since the rigid bead-type composite resin shows magnetic-susceptibility due to its paramagnetic inorganic constituent (i.e. iron ferrite). (author)

  8. Creep and creep-recovery of a thermoplastic resin and composite

    Science.gov (United States)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  9. Salivary bisphenol A levels and their association with composite resin restoration.

    Science.gov (United States)

    Lee, Jung-Ha; Yi, Seung-Kyoo; Kim, Se-Yeon; Kim, Ji-Soo; Son, Sung-Ae; Jeong, Seung-Hwa; Kim, Jin-Bom

    2017-04-01

    Composite resin has been increasingly used in an effort to remove minimal amount of tooth structure and are used for restoring not just carious cavities but also cervical abrasion. To synthesize composite resin, bisphenol A (BPA) is used. The aim of the study was to measure the changes in salivary BPA level related with composite resin restoration. ELISA was used to examine the BPA levels in the saliva collected from 30 volunteers whose teeth were filled with composite resin. Salivary samples were collected immediately before filling and 5 min and 7 d after filling. Wilcoxon signed-ranks test and linear regression were performed to test the significant differences of the changes in BPA levels in saliva. Before a new composite resin filling, there was no significant difference between with and without existing filling of composite resin and BPA level in the saliva was not correlated to the number of filled surfaces with composite resin. However, BPA level in the saliva increased to average 3.64 μg/L from average 0.15 μg/L after filling 5 min. BPA level increased in proportion with the number of filled surfaces. BPA level decreased to average 0.59 after filling 7 d. However it was higher than the BPA level before a new composite resin filling. Considering 50 μg/kg/day as the Tolerable Daily Intake of BPA suggested by European Food Safety Authority, the amount of BPA eluted in saliva after the composite resin filling is considered a safe level that is not a hazard to health at all. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Bacterial adhesion on direct and indirect dental restorative composite resins: An in vitro study on a natural biofilm.

    Science.gov (United States)

    Derchi, Giacomo; Vano, Michele; Barone, Antonio; Covani, Ugo; Diaspro, Alberto; Salerno, Marco

    2017-05-01

    Both direct and indirect techniques are used for dental restorations. Which technique should be preferred or whether they are equivalent with respect to bacterial adhesion is unclear. The purpose of this in vitro study was to determine the affinity of bacterial biofilm to dental restorative composite resins placed directly and indirectly. Five direct composite resins for restorations (Venus Diamond, Adonis, Optifil, Enamel Plus HRi, Clearfil Majesty Esthetic) and 3 indirect composite resins (Gradia, Estenia, Signum) were selected. The materials were incubated in unstimulated whole saliva for 1 day. The biofilms grown were collected and their bacterial cells counted. In parallel, the composite resin surface morphology was analyzed with atomic force microscopy. Both bacterial cell count and surface topography parameters were subjected to statistical analysis (α=.05). Indirect composite resins showed significantly lower levels than direct composite resins for bacterial cell adhesion, (Pcomposite resins (P>.05). However, within the indirect composite resins a significantly lower level was found for Gradia than Estenia or Signum (Pcomposite resin roughness and bacterial adhesion when the second and particularly the third-order statistical moments of the composite resin height distributions were considered. Indirect dental restorative composite resins were found to be less prone to biofilm adhesion than direct composite resins. A correlation of bacterial adhesion to surface morphology exists that is described by kurtosis; thus, advanced data analysis is required to discover possible insights into the biologic effects of morphology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. "Greener" hybrid adhesives composed of urea formaldehyde resin and cottonseed meal for wood based composites

    Science.gov (United States)

    Urea formaldehyde (UF) resins are one of the most widely used adhesives in wood based composites. The major concerns of the resin utilization are free formaldehyde release and poor water resistance. As a renewable raw materials, water washed conttonseed meal can be used in wood bonding. To produce “...

  12. Effects of toothbrush hardness on in vitro wear and roughness of composite resins.

    Science.gov (United States)

    Kyoizumi, Hideaki; Yamada, Junji; Suzuki, Toshimitsu; Kanehira, Masafumi; Finger, Werner J; Sasaki, Keiichi

    2013-11-01

    To investigate and compare the effects of toothbrushes with different hardness on abrasion and surface roughness of composite resins. Toothbrushes (DENT. EX Slimhead II 33, Lion Dental Products Co. Ltd., Tokyo, Japan) marked as soft, medium and hard, were used to brush 10 beam-shaped specimens of each of three composites resins (Venus [VEN], Venus Diamond [VED] and Venus Pearl [VEP]; HeraeusKulzer) with standardized calcium carbonate slurry in a multistation testing machine (2N load, 60 Hz). After each of five cycles with 10k brushing strokes the wear depth and surface roughness of the specimens were determined. After completion of 50k strokes representative samples were inspected by SEM. Data were treated with ANOVA and regression analyses (p composite resins increased linearly with increasing number of brushing cycles (r² > 0.9). Highest wear was recorded for VEN, lowest for VED. Hard brushes produced significantly higher wear on VEN and VEP, whereas no difference in wear by toothbrush type was detected for VED. Significantly highest surface roughness was found on VED specimens (Ra > 1.5 µm), the lowest one on VEN (Ra composite resins produced by toothbrushing with dentifrice depend mainly on the type of restorative resin. Hardness grades of toothbrushes have minor effects only on abrasion and surface roughness of composite resins. No relationship was found between abrasion and surface roughness. The grade of the toothbrush used has minor effect on wear, texture and roughness of the composite resin.

  13. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    Science.gov (United States)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  14. Research and Development Progress of National Key Laboratory of Advanced Composites on Advanced Aeronautical Resin Matrix Composites

    Directory of Open Access Journals (Sweden)

    LI Bintai

    2016-06-01

    Full Text Available Applications and research progress in advanced aeronautical resin matrix composites by National Key Laboratory of Advanced Composites (LAC were summarized. A novel interlaminar toughening technology employing ultra-thin TP non-woven fabric was developed in LAC, which significantly improved the compression after impact (CAI performances of composite laminates.Newly designed multilayer sandwich stealth composite structures exhibited a good broadband radar absorbing properties at 1-18 GHz.There were remarkable developments in high toughness and high temperature resin matrix composites, covering major composite processing technologies such as prepreg-autoclave procedure, liquid composite molding and automation manufacture, etc. Finally, numerical simulation and optimization methods were deliberately utilized in the study of composites curing behavior, resin flow and curing deformation. A composite material database was also established.In conclusion, LAC has been a great support for the development of aeronautical equipment, playing such roles as innovation leading, system dominating, foundation supporting and application ensuring of aerocomposites.

  15. Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin.

    Science.gov (United States)

    Demirbuga, Sezer; Ucar, Faruk Izzet; Cayabatmaz, Muhammed; Zorba, Yahya Orcun; Cantekin, Kenan; Topçuoğlu, Hüseyin Sinan; Kilinc, Halil Ibrahim

    2016-01-01

    The aim of this study was to investigate the effect of preheating on microshear bond strength (MSBS) of silorane and methacrylate-based composite resins to human dentin. The teeth were randomly divided into three main groups: (1) composite resins were heated upto 68 °C; (2) cooled to 4 °C; and (3) control [room temperature (RT)]. Each group was then randomly subdivided into four subgroups according to adhesive system used [Solobond M (Voco), All Bond SE (Bisco), Clearfil SE Bond (CSE) (Kuraray), Silorane adhesive system (SAS) (3M ESPE)]. Resin composite cylinders were formed (0.9 mm diameter × 0.7 mm length) and MSBS of each specimen was tested. The preheated groups exhibited the highest MSBS (p composite resins may be an alternative way to increase the MSBS of composites on dentin. © Wiley Periodicals, Inc.

  16. Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques

    Science.gov (United States)

    Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.

    1988-01-01

    A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.

  17. The effect of soda immersion on nano hybrid composite resin discoloration

    Directory of Open Access Journals (Sweden)

    M. Chair Effendi

    2014-03-01

    Full Text Available Background: Composite resin is the tooth-colored restorative material which most of the people are fond of due to their aesthetic value. The composite resin discoloration may happen because of the intrinsic and extrinsic factors. Soda water is one of the beverages which can cause the composite resin discoloration. Purpose: The study was aimed to determine the effect of soda immersion on nano hybrid composite resin discoloration. Methods: The study was an experimental laboratory study using 100 shade A3 nano hybrid composite resin specimens with the diameter of 5 mm and density of 2mm. The samples were divided into 5 groups, each group was immersed in different beverages. The beverages were mineral water; lemon-flavored soda; strawberry-flavored soda; fruit punch-flavored soda; and orange-flavored soda for 3, 7, 14 and 21 days respectively, in the temperature of 37o C. The discoloration measurement utilizes Spectrophotometer, Vita Easy Shade, and uses CIEL*a*b* method. Results: The result showed that the duration of immersion in soda had an effect on the Nano hybrid composite resin discoloration. Strawberry and fruit punch- flavored soda were the most influential components toward the discoloration. Nevertheless, the generally-occurred discoloration was clinically acceptable (∆E ≤ 3,3. Conclusion: The study suggested that the soda immersion duration has effect on Nano hybrid composite resin discoloration.Latar belakang: Resin komposit adalah material sewarna gigi yang diminati masyarakat karena memiliki nilai estetik yang baik. Perubahan warna resin komposit dapat terjadi karena faktor intrinsik dan ekstrinsik. Minuman soda merupakan salah satu minuman yang dapat menyebabkan perubahan warna pada resin komposit. Tujuan: Tujuan dari penelitian ini untuk meneliti perubahan warna resin komposit nanohibrida akibat perendaman dalam minuman soda. Metode: Metode yang digunakan pada penelitian ini adalah eksperimental laboratorik dengan menggunakan

  18. A comparative study to determine strength of autopolymerizing acrylic resin and autopolymerizing composite resin influenced by temperature during polymerization: An In Vitro study

    Directory of Open Access Journals (Sweden)

    Anuj Chhabra

    2017-01-01

    Full Text Available Aim: Temporary coverage of a prepared tooth is an important step during various stages of the fixed dental prosthesis. Provisional restorations should satisfy proper mechanical requirements to resist functional and nonfunctional loads. A few studies are carried out regarding the comparison of the effect of curing environment, air and water, on mechanical properties of autopolymerizing acrylic and composite resin. Hence, the aim of this study was to compare the transverse strength of autopolymerizing acrylic resin and autopolymerizing composite resin as influenced by the temperature of air and water during polymerization. Materials and Methods: Samples of autopolymerizing acrylic resin and composite resin were prepared by mixing as per manufacturer's instructions and were placed in a preformed stainless steel mold. The mold containing the material was placed under different controlled conditions of water temperature and air at room temperature. Polymerized samples were then tested for transverse strength using an Instron universal testing machine. Results: Alteration of curing condition during polymerization revealed a significant effect on the transverse strength. The transverse strength of acrylic resin specimens cured at 60°C and composite resin specimens cured at 80°C was highest. Polymerizing the resin in cold water at 10°C reduced the mechanical strength. Conclusions: Polymerization of the resin in hot water greatly increased its mechanical properties. The method of placing resin restoration in hot water during polymerization may be useful for improving the mechanical requirements and obtaining long-lasting performance.

  19. Marginal Leakage of Class V Composite Resin Restorations

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2018-01-01

    Full Text Available >Introduction: Marginal leakage is one of the significant causes of restoration failure. This in-vitro study was conducted to compare cone beam computed tomography (CBCT and dye-penetration methods for determining marginal leakage at gingival surface of class V resin composite restorations.Materials and Methods: Class V cavities were prepared on the buccal surfaces of nineteen caries-free extracted human molar teeth. Cavities were conditioned and filled. The teeth were immersed in a 50% w/w aqueous silver nitrate solution for 24 h and were taken out and rinsed with distilled water. Then, they were put into a developing solution. Whole specimens were first viewed with CBCT and were then sectioned and evaluated by stereomicroscope.Results: Measurement of agreement between CBCT and stereomicroscope revealed that 15 (78.9% teeth had score 0, 1 (5.3% tooth had score 1, and 1 (5.3% tooth had score 2 in both techniques. Measurement of agreement between CBCT and stereomicroscope techniques, in the detection of marginal leakage, was 89.5% (Kappa coefficient = 0.627, P = 0.00. The Wilcoxon paired rank test revealed no significant difference between the results of CBCT and stereomicroscope in measuring the leakage at gingival margin (P = 0.157.Conclusion: Considering the limitations of the study, there was no significant difference between the results of CBCT and stereomicroscope in measuring the leakage at gingival margin of class V composite restorations. CBCT can be used noninvasively to detect the marginal leakage of gingival wall of class V composite restorations using aqueous silver nitrate solution as a tracer.

  20. Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin

    Directory of Open Access Journals (Sweden)

    Ji-Sun Kim

    2013-02-01

    Full Text Available Objectives This study evaluated the antibacterial effect and mechanical properties of composite resins (LCR, MCR, HCR incorporating chitosan with three different molecular weights (L, Low; M, Medium; H, High. Materials and Methods Streptococcus (S. mutans 100 mL and each chitosan powder were inoculated in sterilized 10 mL Brain-Heart Infusion (BHI solution, and was centrifuged for 12 hr. Absorbance of the supernatent was measured at OD660 to estimate the antibacterial activities of chitosan. After S. mutans was inoculated in the disc shaped chitosan-containing composite resins, the disc was cleansed with BHI and diluted with serial dilution method. S. mutans was spread on Mitis-salivarius bacitracin agar. After then, colony forming unit (CFU was measured to verify the inhibitory effect on S. mutans biofilm. To ascertain the effect on the mechanical properties of composite resin, 3-point bending and Vickers hardness tests were done after 1 and 3 wk water storage, respectively. Using 2-way analysis of variance (ANOVA and Scheffe test, statistical analysis was done with 95% significance level. Results All chitosan powder showed inhibition effect against S. mutans. CFU number in chitosan-containing composite resins was smaller than that of control resin without chitosan. The chitosan containing composite resins did not show any significant difference in flexural strength and Vickers hardness in comparison with the control resin. However, the composite resin, MCR showed a slightly decreased flexural strength and the maximum load than those of control and the other composite resins HCR and LCR. Conclusions LCR and HCR would be recommended as a feasible antibacterial restorative due to its antibacterial nature and mechanical properties.

  1. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  2. Perlekatan koloni Streptococcus mutans pada permukaan resin komposit sinar tampak (The adherence of Streptococcus mutans colony to surface visible light composite resins

    Directory of Open Access Journals (Sweden)

    Ajeng Anggraeni

    2005-03-01

    Full Text Available Visible light composite resins was used to restore anterior and posterior teeth, and it is always covered by saliva pellicle. S. mutans can adhere to all of the surface of oral cavity and visible light composite resins. The aim of this study was to know the amount of S. mutans colony adherence to visible light composite resins surface. The sample of 5 mm diameter and 3 mm in thickness was immersed in saliva for one hour, than the samples were put into bacteria suspension, incubated for 24 hours at 37° C. The amount of S. mutans was determined by direct count using microscope. The data were statistically analyzed by using t test. The result showed a significance difference of S. mutans colony between hybrid and micro fill visible light composite resins. The conclusion was that the amount of S. mutans adherence on the surface of hybrid was higher than the micro fill visible light composite resins.

  3. Comparison of shear bond strength of stainless steel brackets bonded with three light- cured adhesives

    Directory of Open Access Journals (Sweden)

    Zahra Minaei Basharik

    2015-09-01

    Full Text Available Introduction: The bonding process of the brackets to enamel has been a critical issue in orthodontic research. The purpose of this study was to evaluate the shear bond strength of 3 light-cured adhesives (transbond XT, Z250, light bond. Materials &Methods: In this study sixty extracted human premolars were collected and randomly divided into 3 test groups. All teeth were etched by 37% phosphoric acid. In first group brackets were bonded by Transbond XT adhesive, in group two brackets were bonded by Light bond adhesive and in third group were bonded by filtek Z250 composite. All of them were cured with Ortholux xt for 40 seconds.24 hours after thermocycling, Shear Bond Strength (SBS values of these brackets were recorded using a Universal Testing Machine. Adhesive Remnant Index (ARI scores were determined after the failure of the brackets, using Stereo Microscope the data were analyzed using ANOVA and Chi-square tests. Results: Mean shear bond strength of Transbond XT, light bond and Z250 were 28.9±2.25 MPa, 25.06±1.98 MPa and 26.8±2.57 MPa, respectively. No significant difference was observed in the SBS among the groups and a clinically acceptable SBS was found for the three adhesives. ARI scores were not significantly different between the various groups (P>0.05. Conclusion: This study showed that the Z250 can be used as light bond and transbond xt to bond orthodontic brackets and ARI and SBS scores were not significantly different.

  4. Comparative study of the shear bond strength of composite resin bonded to enamel treated with acid etchant and erbium, chromium: Yttrium, scandium, gallium, garnet laser

    Directory of Open Access Journals (Sweden)

    Adel Sulaiman Alagl

    2016-01-01

    Full Text Available Aim: The purpose of this investigation is in vitro comparison of the shear bond strength (SBS of composite resin bonded to enamel pretreated with an acid etchant against enamel etched with erbium, chromium: yttrium, scandium, gallium, garnet (Er, Cr:YSGG laser. Materials and Methods: Sixty premolars were sectioned mesiodistally and these 120 specimens were separated into two groups of 60 each (Groups A and B. In Group A (buccal surfaces, enamel surface was etched using 37% phosphoric acid for 15 s. In Group B (lingual surfaces, enamel was laser-etched at 2W for 10 s by Er, Cr:YSGG laser operational at 2780 nm with pulse duration of 140 μs and a frequency of 20 Hz. After application of bonding agent on all test samples, a transparent plastic cylinder of 1.5 mm × 3 mm was loaded with composite and bonded by light curing for 20 s. All the samples were subjected to SBS analysis using Instron Universal testing machine. Failure modes were observed under light microscope and grouped as adhesive, cohesive, and mixed. Failure mode distributions were compared using the Chi-square test. Results: SBS values obtained for acid-etched enamel were in the range of 7.12–28.36 megapascals (MPa and for laser-etched enamel were in the range of 6.23–23.35 MPa. Mean SBS for acid-etched enamel was 15.77 ± 4.38 MPa, which was considerably greater (P < 0.01 than laser-etched enamel 11.24 ± 3.76 MPa. The Chi-square test revealed that the groups showed no statistically significant differences in bond failure modes. Conclusions: We concluded that the mean SBS of composite with acid etching is significantly higher as compared to Er, Cr: YSGG (operated at 2W for 10 s laser-etched enamel.

  5. Synthesis of iodine-containing cyclophosphazenes for using as radiopacifiers in dental composite resin

    International Nuclear Information System (INIS)

    Zhao, Yuchen; Lan, Jinle; Wang, Xiaoyan; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2014-01-01

    In this study, a strategy of using iodine-containing cyclophosphazenes as radiopacifiers for dental composite resin was evaluated. It was hypothesized that cyclophosphazenes bearing both iodine and acrylate group swere able to endow composite resins radiopacity without compromising mechanical properties. The cyclophosphazene compounds were synthesized by subsequently nucleophilic substitution of hexachlorocyclotriphosphazene with hydroxyethyl methacrylate (HEMA) and 4-iodoaniline. Cyclotriphosphazenes containing two different molar ratios of HEMA to 4-iodoaniline (1:5 and 2:4) were obtained, and were identified with 1 H NMR, FT-IR, UV and mass spectroscopy. The iodine-containing cyclophosphazenes were able to dissolve well in bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) resin, and were added at two contents (10 or 15%wt. of the resin). The resins were photo-cured and post-thermal treated before characterizations. The resulting composite resins demonstrated the ability of blocking X-ray. And the addition of HEMA-co-iodoaniline substituted cyclotriphosphazenes caused minor adverse effect on the mechanical properties of the resins because the cyclotriphosphazenes could mix well and react with the resins. The presence of rigid phosphazene rings between resin backbones displayed an effective function of decreasing polymerization shrinkage. In summary, soluble and reactive iodine-containing cyclotriphosphazenes demonstrated advantages over traditional heavy metals or metal oxides in being used as additives for producing radiopaque dental resins. - Highlights: • Iodine-containing cyclotriphosphazenes were prepared via nucleophilic substitution. • The cyclotriphosphazenes endowed Bis-GMA/TEGDMA resins radiopacity. • The cyclotriphosphazenes caused a minor adverse effect on mechanical properties

  6. Computerized mathematical model for prediction of resin/fiber composite properties

    International Nuclear Information System (INIS)

    Lowe, K.A.

    1985-01-01

    A mathematical model has been developed for the design and optimization of resin formulations. The behavior of a fiber-reinforced cured resin matrix can be predicted from constituent properties of the formulation and fiber when component interaction is taken into account. A computer implementation of the mathematical model has been coded to simulate resin/fiber response and generate expected values for any definable properties of the composite. The algorithm is based on multistage regression techniques and the manipulation of n-order matrices. Excellent correlation between actual test values and predicted values has been observed for physical, mechanical, and qualitative properties of resin/fiber composites. Both experimental and commercial resin systems with various fiber reinforcements have been successfully characterized by the model. 6 references, 3 figures, 2 tables

  7. Influence of curing protocol on selected properties of light-curing polymers

    DEFF Research Database (Denmark)

    Dewaele, Magali; Asmussen, Erik; Peutzfeldt, Anne

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other....

  8. Surface roughness of composite resin veneer after application of herbal and non-herbal toothpaste

    Science.gov (United States)

    Nuraini, S.; Herda, E.; Irawan, B.

    2017-08-01

    The aim of this study was to find out the surface roughness of composite resin veneer after brushing. In this study, 24 specimens of composite resin veneer are divided into three subgroups: brushed without toothpaste, brushed with non-herbal toothpaste, and brushed with herbal toothpaste. Brushing was performed for one set of 5,000 strokes and continued for a second set of 5,000 strokes. Roughness of composite resin veneer was determined using a Surface Roughness Tester. The results were statistically analyzed using Kruskal-Wallis nonparametric test and Post Hoc Mann-Whitney. The results indicate that the highest difference among the Ra values occurred within the subgroup that was brushed with the herbal toothpaste. In conclusion, the herbal toothpaste produced a rougher surface on composite resin veneer compared to non-herbal toothpaste.

  9. Initial Development of Composite Repair Resins With Low Hazardous Air Pollutant Contents

    National Research Council Canada - National Science Library

    LaScala, John J; Bingham, Scott; Andrews, Kevin S; Sands, James M; Palmese, Guiseppe R

    2008-01-01

    Unsaturated polyester-based repair resins, such a Bondo, are widely used for automotive repair, marine repair, sporting equipment repair, and household repair of metal, composites, plastics, and wood...

  10. Leaching of iodine from composites based on epoxy resin and lead iodide

    International Nuclear Information System (INIS)

    Kalinin, N.N.; Elizarova, A.N.

    1988-01-01

    The scope for using solid composites obtained by incorporating dry powdery lead iodide and its aqueous suspension into epoxy resin for prolonged immobilization of iodine-129 under monitorable storage conditions has been assessed by a study of leaching of iodine

  11. Polyimide Composites Properties of RTM370 Fabricated by Vacuum Assisted Resins Transfer Molding (VARTM)

    Science.gov (United States)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.

    2011-01-01

    RTM370 imide resin based on 2,3,3 ,4 -biphenyl dianhydride ( a-BPDA), 3,4 -oxydianinline (3,4 -ODA) with 4-phenylethynylphthalic (PEPA) endcap has shown to exhibit high Tg (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been fabricated into composites with T650-35 carbon fabrics by resin transfer molding (RTM) successfully. RTM370 composites exhibit excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288 C (550 F) for 1000 hrs. In this presentation, RTM 370 composites will be fabricated by vacuum assisted resins transfer molding (VARTM), using vacuum bags without mold. The mechanical properties of RTM370 composites fabricated by VARTM will be compared to those of RTM370 made by RTM.

  12. Composite Properties of RTM370 Polyimide Fabricated by Vacuum Assisted Resin Transfer Molding (VARTM)

    Science.gov (United States)

    Chuang, Kathy C.; Criss, James M.; Mintz, Eric A.; Shonkwiler, Brian; McCorkle, Linda S.

    2011-01-01

    RTM370 imide resin based on 2,3,3?,4?-biphenyl dianhydride (a-BPDA), 3,4'-oxydianinline (3,4'-ODA) with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a high cured T(sub g) (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites exhibit excellent mechanical properties up to 327?C (620?F), and outstanding property retention after aging at 288?C (550?F) for 1000 h. In this work, RTM370 composites were fabricated by vacuum assisted resin transfer molding (VARTM), using vacuum bags on a steel plate. The mechanical properties of RTM370 composites fabricated by VARTM are compared to those prepared by RTM.

  13. Polymerization stresses in low-shrinkage dental resin composites measured by crack analysis.

    Science.gov (United States)

    Yamamoto, Takatsugu; Kubota, Yu; Momoi, Yasuko; Ferracane, Jack L

    2012-09-01

    The objective of this study was to compare several dental restoratives currently advertised as low-shrinkage composites (Clearfil Majesty Posterior, Kalore, Reflexions XLS Dentin and Venus Diamond) with a microfill composite (Heliomolar) in terms of polymerization stress, polymerization shrinkage and elastic modulus. Cracks were made at several distances from the edge of a precision cavity in a soda-lime glass disk. The composites were placed into the cavity and lengths of the cracks were measured before and after light curing. Polymerization stresses generated in the glass at 2 and 10 min after the irradiation were calculated from the crack lengths and K(c) of the glass. Polymerization shrinkage and elastic modulus of the composites also were measured at 2 and 10 min after irradiation using a video-imaging device and a nanoindenter, respectively. The data were statistically analyzed by ANOVAs and Tukey's test (pelastic moduli of Clearfil Majesty Posterior and Reflexions XLS Dentin were greatest at 2 and 10 min, respectively. Among the four low-shrinkage composites, two demonstrated significantly reduced polymerization stress compared to Heliomolar, which has previously been shown in in vitro tests to generate low curing stress. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite.

    Science.gov (United States)

    Huang, Qiting; Qin, Wei; Garoushi, Sufyan; He, Jingwei; Lin, Zhengmei; Liu, Fang; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-30

    The objective of this study was to investigate several physicochemical properties of an experimental discontinuous S2-glass fiber-reinforced resin composite. The experimental composite was prepared by mixing 10 wt% of discontinuous S2-glass fibers with 27.5 wt% of resin matrix and 62.5 wt% of particulate fillers. Flexural strength (FS) and modulus (FM), fracture toughness (FT), work of fracture (WOF), double bond conversion (DC), Vickers hardness, volume shrinkage (VS) and fiber length distribution were determined. These were compared with two commercial resin composites. The experimental composite showed the highest FS, WOF and FT compared with two control composites. The DC of the experimental composite was comparable with controls. No significant difference was observed in VS between the three tested composites. The use of discontinuous glass fiber fillers with polymer matrix and particulate fillers yielded improved physical properties and substantial improvement was associated with the use of S2-glass fiber.

  15. Manufacturing of kevlar/polyester composite by resin transfer moulding using conventional and microwave heating

    International Nuclear Information System (INIS)

    Abdullah, I.

    2015-01-01

    Microwave heating was incorporated into the resin transfer moulding technique. Polytetrafluoroethylene (PTFE) mould was used to cure the composite panel. Through the use of microwave heating, the mechanical and physical properties of produced Kevlar fibre/polyester composites were compared to those manufactured by conventional resin transfer moulding. The flexural modulus and flexural strength of 6-ply conventionally cured composites was 45% and 9% higher than the flexural modulus and flexural strength of 6-ply microwaved cured composites, respectively. However, 19% increase in interlaminar shear strength (ILSS) and 2% increase in compressive strength was observed in 6-ply microwave cured composites. This enhancement in ILSS and compressive strength is attributed to the better interfacial bonding of polyester resin with Kevlar fibres in microwaved cured composite, which was also confirmed via electron microscopy scanning. Furthermore, the microwave cured composite yielded maximum void contents (3%). (author)

  16. A 24-month evaluation of amalgam and resin-based composite restorations

    DEFF Research Database (Denmark)

    McCracken, Michael S; Gordan, Valeria V; Litaker, Mark S

    2013-01-01

    Knowing which factors influence restoration longevity can help clinicians make sound treatment decisions. The authors analyzed data from The National Dental Practice-Based Research Network to identify predictors of early failures of amalgam and resin-based composite (RBC) restorations.......Knowing which factors influence restoration longevity can help clinicians make sound treatment decisions. The authors analyzed data from The National Dental Practice-Based Research Network to identify predictors of early failures of amalgam and resin-based composite (RBC) restorations....

  17. Influence of Bleaching Agents on Color and Translucency of Aged Resin Composites.

    Science.gov (United States)

    Lago, Maristela; Mozzaquatro, Lisandra R; Rodrigues, Camila; Kaizer, Marina R; Mallmann, André; Jacques, Letícia B

    2017-09-01

    Evaluate the influence of two bleaching agents (16% carbamide peroxide-CP and 35% hydrogen peroxide-HP) on color and translucency of one resin composite (Filtek Z350 XT) in two opacities (enamel and dentin) previously aged in deionized water or red wine. Sixty specimens of each material were divided in two groups (n = 30): aged in water or red wine for 14 days. Then the specimens were divided in three subgroups (n = 10): control/no treatment, treated with 16% carbamide peroxide (Mix Night), treated with 35% hydrogen peroxide (Mix One). Color readings were performed 24 hours after polishing (baseline); after the 14 days of aging; and after bleaching treatment. Color coordinates CIE L*a*b* were measured using a spectrophotometer (SP60 X-Rite). Color change (CIEDE2000) and translucency parameter were calculated. Data were analyzed with repeated measures two-way ANOVA, and Student-Newman-Keuls tests (5%). Bleaching decreased color change in stained resin composites (aged in red wine), whereas increased it in non-stained enamel resin composites (aged in water). CP had better bleaching results with stained resin composites than HP. Translucency of non-stained dentin resin composite decreased with aging, but did not change with bleaching. For stained resin composites, aging caused reduced translucency, whereas bleaching increased it. Effective bleaching of discolored resin composites aged in an acidic and alcoholic media rich in staining agents was achieved, improving color and translucency. Carbamide peroxide showed better performance than hydrogen peroxide for the bleaching of stained resin composites. (J Esthet Restor Dent 29:368-377, 2017). © 2016 Wiley Periodicals, Inc.

  18. Degree of conversion and microhardness of TPO-containing resin-based composites cured by polywave and monowave LED units.

    Science.gov (United States)

    Santini, Ario; Miletic, Vesna; Swift, Michael D; Bradley, Mark

    2012-07-01

    To determine the degree of conversion (DC) and Knoop microhardness (KHN) of resin-based composites (RBCs) containing trimethylbenzoyl-diphenylphosphine oxide (TPO) cured by polywave or monowave LED light-curing units (LCUs). Three groups (each n = 5) of Tetric EvoCeram (Ivoclar Vivadent), Vit-l-escence (Ultradent) and Herculite XRV Ultra (Kerr) were prepared in Teflon moulds (5mm in diameter and 2mm thick) and cured with polywave Bluephase(®) G2 (Ivoclar Vivadent), polywave Valo (Ultradent) or monowave Bluephase(®) (Ivoclar Vivadent; control) resulting in 9 groups. DC and KHN were determined using micro-Raman spectroscopy and Knoop microhardness, respectively. High-performance liquid chromatography and nuclear magnetic resonance spectroscopy were used to confirm the presence or absence of TPO in the three uncured materials. Data were statistically analysed using two-way and one-way ANOVA and DC and KHN were correlated using Pearson's correlation (α = 0.05). TPO was confirmed in Tetric EvoCeram and Vit-l-escence but not in Herculite XRV Ultra. All three LCUs produced comparable KHN for Tetric EvoCeram and Herculite XRV Ultra (p > 0.05). Both polywave LCUs resulted in significantly higher KHN for Vit-l-escence and higher DC in Tetric EvoCeram and Vit-l-escence than the monowave Bluephase(®) (p Conversely, Bluephase(®) showed higher DC than the two polywave LCUs in Herculite XRV Ultra (p conversion and KHN in the two TPO-containing RBCs, but not in Herculite XRV Ultra. DC and KHN were linearly correlated in all three RBCs. Vit-l-escence showed the highest DC and KHN of the three materials tested. The use of polywave LEDs significantly improves both the DC and KHN of materials which contain TPO. This should be taken into account when curing bleached shades of RBCs even if the manufacturers do not indicate the presence of TPO in their materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Effect of tooth brushing on gloss retention and surface roughness of five bulk-fill resin composites.

    Science.gov (United States)

    O'Neill, Catherine; Kreplak, Laurent; Rueggeberg, Frederick A; Labrie, Daniel; Shimokawa, Carlos Alberto Kenji; Price, Richard Bengt

    2018-01-01

    To determine the effects of tooth brushing on five bulk-fill resin based composites (RBCs). Ten samples of Filtek Supreme Enamel (control), Filtek One Bulk Fill, Tetric EvoCeram Bulk Fill, SonicFill 2, SDR flow+, and Admira Fusion X-tra were light cured for 20 seconds using the Valo Grand curing light. After 24 hours storage in air at 37°C, specimens were brushed in a random order using Colgate OpticWhite dentifrice and a soft toothbrush. Surface gloss was measured prior to brushing, after 5,000, 10,000 and 15,000 back and forth brushing cycles. Surface roughness was measured after 15,000 brushing cycles using atomic force microscopy (AFM) and selected scanning electron microscope (SEM) images were taken. The data was examined using ANOVA and pair-wise comparisons using Scheffe's post-hoc multiple comparison tests (α = 0.05). Surface gloss decreased and the surface roughness increased after brushing. Two-way ANOVA showed that both the RBC and the number of brushing cycles had a significant negative effect on the gloss. One-way ANOVA showed that the RBC had a significant effect on the roughness after 15,000 brushing cycles. For both gloss and roughness, brushing had the least effect on the nano-filled control and nano-filled bulk-fill RBC, and the greatest negative effect on Admira Fusion X-tra. The SEM images provided visual agreement. There was an excellent linear correlation (R 2  = 0.98) between the logarithm of the gloss and roughness. After brushing, the bulk-fill RBCs were all rougher than the control nano-filled RBC. The nano-filled bulk-fill RBC was the least affected by brushing. Bulk-fill RBCs lose their gloss faster and become rougher than the nanofilled conventional RBC, Filtek Supreme Ultra. The nanofilled bulk-fill RBC was the least affected by tooth brushing. © 2017 Wiley Periodicals, Inc.

  20. Antimicrobial and mechanical properties of dental resin composite containing bioactive glass.

    Science.gov (United States)

    Korkut, Emre; Torlak, Emrah; Altunsoy, Mustafa

    2016-07-26

    The aim of this study was to evaluate the antimicrobial efficacy and mechanical properties of dental resin composites containing different amounts of microparticulate bioactive glass (BAG). Experimental resin composites were prepared by mixing resin matrix (70% BisGMA and 30% TEGDMA) and inorganic filler with various fractions of BAG to achieve final BAG concentrations of 5, 10 and 30 wt%. Antimicrobial efficacy was assessed in aqueous suspension against Escherichia coli, Staphylococcus aureus and Streptococcus mutans and in biofilm against S. mutans. The effect of incorporation of BAG on the mechanical properties of resin composite was evaluated by measuring the surface roughness, compressive strength and flexural strength. Under the dynamic contact condition, viable counts of E. coli, S. aureus and S. mutans in suspensions were reduced up to 78%, 57% and 50%, respectively, after 90 minutes of exposure to disc-shaped composite specimens, depending on the BAG contents. In 2-day-old S. mutans biofilm, incorporation of BAG into composite at ratios of 10% and 30% resulted in 0.8 and 1.4 log reductions in the viable cell counts compared with the BAG-free composite, respectively. The surface roughness values of composite specimens did not show any significant difference (p>0.05) at any concentration of BAG. However, compressive and flexural strengths of composite were decreased significantly with addition of 30% BAG (p<0.05). The results demonstrated the successful utilization of BAG as a promising biomaterial in resin composites to provide antimicrobial function.

  1. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation.

    Science.gov (United States)

    Benetti, A R; Havndrup-Pedersen, C; Honoré, D; Pedersen, M K; Pallesen, U

    2015-01-01

    The bulk-filling of deep, wide dental cavities is faster and easier than traditional incremental restoration. However, the extent of cure at the bottom of the restoration should be carefully examined in combination with the polymerization contraction and gap formation that occur during the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk-fill materials produced a significantly larger depth of cure and polymerization contraction. Although most of the bulk-fill materials exhibited a gap formation similar to that of the conventional resin composite, two of the low-viscosity bulk-fill resin composites, x-tra base and Venus Bulk Fill, produced larger gaps.

  2. Equivalent Young's modulus of composite resin for simulation of stress during dental restoration.

    Science.gov (United States)

    Park, Jung-Hoon; Choi, Nak-Sam

    2017-02-01

    For shrinkage stress simulation in dental restoration, the elastic properties of composite resins should be acquired beforehand. This study proposes a formula to measure the equivalent Young's modulus of a composite resin through a calculation scheme of the shrinkage stress in dental restoration. Two types of composite resins remarkably different in the polymerization shrinkage strain were used for experimental verification: the methacrylate-type (Clearfil AP-X) and the silorane-type (Filtek P90). The linear shrinkage strains of the composite resins were gained through the bonded disk method. A formula to calculate the equivalent Young's moduli of composite resin was derived on the basis of the restored ring substrate. Equivalent Young's moduli were measured for the two types of composite resins through the formula. Those values were applied as input to a finite element analysis (FEA) for validation of the calculated shrinkage stress. Both of the measured moduli through the formula were appropriate for stress simulation of dental restoration in that the shrinkage stresses calculated by the FEA were in good agreement within 3.5% with the experimental values. The concept of equivalent Young's modulus so measured could be applied for stress simulation of 2D and 3D dental restoration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Modeling and mechanical performance of carbon nanotube/epoxy resin composites

    International Nuclear Information System (INIS)

    Srivastava, Vijay Kumar

    2012-01-01

    Highlights: ► The MWCNT fillers are uniformly dispersed in the epoxy resin, which improved the mechanical properties of epoxy resin. ► Modified Halpin–Tsai model is useful to calculate the Young’s modulus of MWCNT/epoxy resin composite. ► The experimental moduli are within the variation of 27% with the theoretical values. -- Abstract: The effect of multi-walled carbon nanotube (MWCNT) addition on mechanical properties of epoxy resin was investigated to obtain the tensile strength, compressive strength and Young’s modulus from load versus displacement graphs. The result shows that the tensile strength, compressive strength and Young’s modulus of epoxy resin were increased with the addition of MWCNT fillers. The significant improvements in tensile strength, compressive strength and Young’s modulus were obtained due to the excellent dispersion of MWCNT fillers in the epoxy resin. The dispersion of MWCNT fillers in epoxy resin was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Also, Halpin–Tsai model was modified by considering the average diameter of internal/external of multi-walled nanotube and orientation factor (α) to calculate the Young’s modulus of multi-walled carbon nanotubes (MWCNTs)/epoxy resin composite. There was a good correlation between the experimentally obtained Young’s modulus and modified Halpin–Tsai model.

  4. Behaviour of E-glass fibre reinforced vinylester resin composites ...

    Indian Academy of Sciences (India)

    Unknown

    Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. ... Impact fatigue; static fatigue; residual stress; E-glass fibre; vinylester resin. 1. ... The present work ..... American Society for Testing and Materials) 497 p. 311.

  5. Mechanical properties of silorane-based and methacrylate-based composite resins after artificial aging.

    Science.gov (United States)

    de Castro, Denise Tornavoi; Lepri, César Penazzo; Valente, Mariana Lima da Costa; dos Reis, Andréa Cândido

    2016-01-01

    The aim of this study was to compare the compressive strength of a silorane-based composite resin (Filtek P90) to that of conventional composite resins (Charisma, Filtek Z250, Fill Magic, and NT Premium) before and after accelerated artificial aging (AAA). For each composite resin, 16 cylindrical specimens were prepared and divided into 2 groups. One group underwent analysis of compressive strength in a universal testing machine 24 hours after preparation, and the other was subjected first to 192 hours of AAA and then the compressive strength test. Data were analyzed by analysis of variance, followed by the Tukey HSD post hoc test (α = 0.05). Some statistically significant differences in compressive strength were found among the commercial brands (P aging. Comparison of each material before and after AAA revealed that the aging process did not influence the compressive strength of the tested resins (P = 0.785).

  6. Effect of resin composition to the electrical and mechanical properties of high voltage insulator material

    International Nuclear Information System (INIS)

    Totok Dermawan; Elin Nuraini; Suyamto

    2012-01-01

    A solid insulator manufacture of resins for high voltage with a variation of resin and hardener composition has been made. The purpose of research to know electrical and mechanical properties of high voltage insulator material of resin. To determine its electric properties, the material is tested its breakdown voltage and the flashover voltage that occurred on the surface. While to determine the mechanical properties were tested by measuring its strength with a tensile test. From testing with variety of mixed composition it is known that for composition between hardener and resin of 1 : 800 has most advantageous properties because it has good strength with a tensile strength of 19.86 MPa and enough high dielectric strength of 43.2 kV / mm). (author)

  7. Novel matrix resins for composites for aircraft primary structures, phase 1

    Science.gov (United States)

    Woo, Edmund P.; Puckett, P. M.; Maynard, S.; Bishop, M. T.; Bruza, K. J.; Godschalx, J. P.; Mullins, M. J.

    1992-01-01

    The objective of the contract is the development of matrix resins with improved processability and properties for composites for primarily aircraft structures. To this end, several resins/systems were identified for subsonic and supersonic applications. For subsonic aircraft, a series of epoxy resins suitable for RTM and powder prepreg was shown to give composites with about 40 ksi compressive strength after impact (CAI) and 200 F/wet mechanical performance. For supersonic applications, a thermoplastic toughened cyanate prepreg system has demonstrated excellent resistance to heat aging at 360 F for 4000 hours, 40 ksi CAI and useful mechanical properties at greater than or equal to 310 F. An AB-BCB-maleimide resin was identified as a leading candidate for the HSCT. Composite panels fabricated by RTM show CAI of approximately 50 ksi, 350 F/wet performance and excellent retention of mechanical properties after aging at 400 F for 4000 hours.

  8. Toothbrushing alters the surface roughness and gloss of composite resin CAD/CAM blocks.

    Science.gov (United States)

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Lauvahutanon, Sasipin; Takahashi, Hidekazu

    2016-01-01

    This study investigated the surface roughness and gloss of composite resin CAD/CAM blocks after toothbrushing. Five composite resin blocks (Block HC, Cerasmart, Gradia Block, KZR-CAD Hybrid Resin Block, and Lava Ultimate), one hybrid ceramic (Vita Enamic), one feldspar ceramic (Vitablocs Mark II), one PMMA block (Telio CAD), and one conventional composite resin (Filtek Z350 XT) were evaluated. Surface roughness (Ra) and gloss were determined for each group of materials (n=6) after silicon carbide paper (P4000) grinding, 10k, 20k, and 40k toothbrushing cycles. One-way repeated measures ANOVA indicated significant differences in the Ra and gloss of each material except for the Ra of GRA. After 40k toothbrushing cycles, the Ra of BLO and TEL showed significant increases, while CER, KZR, ULT, and Z350 showed significant decreases. GRA, ENA, and VIT maintained their Ra. All of the materials tested, except CER, demonstrated significant decreases in gloss after 40k toothbrushing cycles.

  9. Dielectric analysis of depth dependent curing behavior of dental resin composites.

    Science.gov (United States)

    Steinhaus, Johannes; Moeginger, Bernhard; Grossgarten, Mandy; Rosentritt, Martin; Hausnerova, Berenika

    2014-06-01

    The aim of this study is to investigate depth dependent changes of polymerization process and kinetics of visible light-curing (VLC) dental composites in real-time. The measured quantity - "ion viscosity" determined by dielectric analysis (DEA) - provides the depth dependent reaction rate which is correlated to the light intensity available in the corresponding depths derived from light transmission measurements. The ion viscosity curves of two composites (VOCO Arabesk Top and Grandio) were determined during irradiation of 40s with a light-curing unit (LCU) in specimen depths of 0.5/0.75/1.0/1.25/1.5/1.75 and 2.0mm using a dielectric cure analyzer (NETZSCH DEA 231 with Mini IDEX sensors). The thickness dependent light transmission was measured by irradiation composite specimens of various thicknesses on top of a radiometer setup. The shape of the ion viscosity curves depends strongly on the specimen thickness above the sensor. All curves exhibit a range of linear time dependency of the ion viscosity after a certain initiation time. The determined initiation times, the slopes of the linear part of the curves, and the ion viscosities at the end of the irradiation differ significantly with depth within the specimen. The slopes of the ion viscosity curves as well as the light intensity values decrease with depth and fit to the Lambert-Beer law. The corresponding attenuation coefficients are determined for Arabesk Top OA2 to 1.39mm(-1) and 1.48mm(-1), respectively, and for Grandio OA2 with 1.17 and 1.39mm(-1), respectively. For thicknesses exceeding 1.5mm a change in polymerization behavior is observed as the ion viscosity increases subsequent to the linear range indicating some kind of reaction acceleration. The two VLC composites and different specimen thicknesses discriminate significantly in their ion viscosity evolution allowing for a precise characterization of the curing process even with respect to the polymerization mechanism. Copyright © 2014. Published by

  10. Effect of Different Liners on Fracture Resistance of Premolars Restored with Conventional and Short Fiber-Reinforced Composite Resins.

    Science.gov (United States)

    Shafiei, Fereshteh; Doozandeh, Maryam; Ghaffaripour, Dordaneh

    2018-01-11

    To see whether applying four different liners under short fiber-reinforced composite (SFRC), everX Posterior, compared to conventional composite resin, Z250, affected their strengthening property in premolar MOD cavities. Mesio-occluso-distal (MOD) cavities were prepared in 120 sound maxillary premolars divided into 10 groups (n = 12) in terms of two composite resin types and 4 liners or no liner. For each composite resin, in 5 groups no liner, resin-modified glass ionomer (RMGI), conventional flowable composite (COFL), self-adhesive flowable composite resin (SAFL), and self-adhesive resin cement (SARC) were applied prior to restoring incrementally. After water storage and thermocycling, static fracture resistance was tested. Data (in Newtons) were analyzed using two-way ANOVA (α = 0.05). Fracture resistance was significantly affected by composite resin type (p = 0.02), but not by the liner (p > 0.05). The interaction of the two factors was not statistically significant (p > 0.05). SFRC exhibited higher fracture strength (1470 ± 200 N) compared to conventional composite resin (1350 ± 290), irrespective of the application of liners. Application of SARC and SAFL liners led to a higher number of restorable fractures for both composite resins. The four liners can be used without interfering with the higher efficacy of SFRC, compared to conventional composite resins, to improve the fracture strength of premolar MOD cavities. © 2018 by the American College of Prosthodontists.

  11. Properties of a New Nanofiber Restorative Composite.

    Science.gov (United States)

    Yancey, E M; Lien, W; Nuttall, C S; Brewster, J A; Roberts, H W; Vandewalle, K S

    2018-04-09

    A new nanofiber-reinforced hybrid composite (NovaPro Fill, Nanova) was recently introduced with reportedly improved mechanical properties. The purpose of this study was to compare the properties (flexural strength/modulus, degree of conversion [DC], depth of cure, and polymerization shrinkage) of the nanofiber composite to those of traditional hybrid composites (Filtek Z250, 3M ESPE; Esthet-X HD, Dentsply). To determine flexural strength and modulus, composite was placed in a rectangular mold, light-cured, stored for 24 hours, and then fractured in a universal testing machine. For degree of conversion, composite was placed in a cylindrical mold, light-cured, and stored for 24 hours. Measurements were made at the top and bottom surfaces using Fourier Transform Infrared Spectroscopy. To determine depth of cure, composite was placed in a cylindrical mold and light-cured. Uncured composite was scraped until polymerized resin was reached. Remaining composite was measured and divided by two. Polymerization shrinkage was determined by placing the composite material on a pedestal in a video-imaging device while light-curing. Shrinkage was determined after 10 minutes. Data were analyzed with one-way analysis of variance and Tukey post hoc test per property (α=0.05). Compared to Filtek Z250, NovaPro Fill had significantly lower flexural strength and modulus, greater volumetric shrinkage, and similar depth of cure, but greater top and bottom DC. Compared to Esthet-X HD, NovaPro Fill had similar flexural strength, shrinkage, and top and bottom DC, but significantly greater depth of cure and flexural modulus.

  12. Microstructure and mechanical properties of composite resins subjected to accelerated artificial aging.

    Science.gov (United States)

    dos Reis, Andréa Cândido; de Castro, Denise Tornavoi; Schiavon, Marco Antônio; da Silva, Leandro Jardel; Agnelli, José Augusto Marcondes

    2013-01-01

    The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, p<0.0001) and compressive strength (F=40.31, p<0.0001), but AAA did not affect the properties (surface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.

  13. Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units.

    Science.gov (United States)

    Miletic, Vesna; Santini, Ario

    2012-02-01

    To determine the degree of conversion (DC) over 48 h post-curing of resin mixtures containing trimethylbenzoyl-diphenylphosphine oxide (TPO) initiator cured by a polywave or a monowave LED light-curing unit (LCU). In resin mixtures based on equal weight percent (wt%) of BisGMA and TEGDMA the following initiators were added: 0.2 wt% camphorquinone (CQ)+0.8 wt% ethyl-4-dimethylaminobenzoate (EDMAB) (Group 1); 1 wt% TPO (Group 2) and 0.1 wt% CQ+0.4 wt% EDMAB+0.5 wt% TPO (Group 3). Half of the samples in each group (n=5) were cured using a polywave (bluephase(®) G2, Ivoclar Vivadent) or a monowave LED LCU (bluephase(®), Ivoclar Vivadent). The DC was measured using micro-Raman spectroscopy within 5 min and then 1, 3, 6, 24 and 48 h post-irradiation. The data were analysed using general linear model and two-way ANOVA for the factors 'time', 'material', 'surface' and 'LCU' at α=0.05. The initial DC values obtained upon light curing remained similar over a 48 h period. bluephase(®) G2 produced the highest DC in Group 2 followed by Group 3, and Group 1. bluephase(®) resulted in the highest DC in Group 1, followed by Group 2 and Group 3 (pconversion of uncured monomers was detected in an unfilled resin material over 48 h at 37°C. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effect of different light curing methods on the push-out bond strength of glass fiber post to different root canal regions

    Directory of Open Access Journals (Sweden)

    Ali Eskandarizadeh

    2016-07-01

    Full Text Available Background and Aims: Slow polymerization rate in early stage of light curing process leads to higher monomers movement and entering in polymer network that cause higher mechanical properties.The aim of this study was to evaluate the effect of light activation methodes (immediate, 5 and 10 minutes delay on the push-out bond strength of cemented fiber posts in different regions of root canal with two types of resin cements. Materials and Methods: In sixty extracted human single canal, the teeth were decoronated from cement enamel junction and after root canal therapy, FRC postec plus were cemented with two resin cements, Duolink and Variolink 2, in three curing methods; immediate, 5 and 10 minutes of delay. After storing in a dark place for 24 hours, they were cut into three sections: coronal, middle and apical. The push-out bond strength test was performed using a universal testing machine. The failure modes were observed using a stereomicroscope. Data were analyzed using ANOVA and Tukey post hoc test (P0.05. In immediate light curing method, regardless of root region, Duolink had higher push-out bond strength than that of Variolink 2 (P=0.02. In all subgroups, there were reductions in the bond strengths from coronal to apical. Mixed failure at the cement-fiber post interface was predominent in all groups. Conclusion: 5 and 10 minutes delay caused reduction in the push-out bond strength for Variolink 2 but did not have significant effect for Duolink resin cement.

  15. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    International Nuclear Information System (INIS)

    Wang Hua; Zhu Meifang; Li Yaogang; Zhang Qinghong; Wang Hongzhi

    2011-01-01

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO 2 were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N 2 adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  16. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hua; Zhu Meifang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Li Yaogang [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Zhang Qinghong, E-mail: zhangqh@dhu.edu.cn [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Wang Hongzhi, E-mail: wanghz@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China)

    2011-04-08

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO{sub 2} were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N{sub 2} adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  17. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Caixeta

    2015-01-01

    Full Text Available The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED. Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10 followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa were submitted to Student’s t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x. Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites.

  18. Improvement in char formability of phenolic resin for development of Carbon/Carbon composites

    International Nuclear Information System (INIS)

    Hajhosseini, M.; Payami, A.; Ghaffarian, S. R.; Rezadoust, A. M.

    2008-01-01

    In the processing of carbon/carbon composites using polymer resin as the matrix precursor, it is inevitable that a porous structure was formed after carbonization. As a result, densification by liquid phase impregnation followed by recarbonization is required to obtain a densified composite. Consequently, the char formability of resin is an important factor in reducing the number of densification cycles and hence the processing cost. In this study, a novel approach is adopted to improve the densification of carbon/carbon composites by using a new phenolic resin modified by pitch. For this purpose, soluble part of pitch was extracted and dispersed in resol type phenolic resin. The polymerization reaction was performed in presence of para-formaldehyde and a resol-pitch compound was obtained. The second compound was prepared by mixing novolac-furfural in 55:45 weight ratio containing 9% by weight hexamethylene tetramine. This compound was added to resol-pitch compound in 10,20,50 and 80 w %. The microstructure of carbonized resin was investigated by X-ray diffraction and char yield, and the linear and volumetric shrinkage were obtained. Results show that in 80:20 ratio of resol-pitch to novolac-furfural , the char yield would be maximized by 71% and volumetric shrinkage would be minimized at 16.4%. At the same time, XRD results indicate that the resin has a strong ability to graphitize carbon/carbon composites matrix as a necessary step for its processing

  19. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.

    Science.gov (United States)

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-10-01

    The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Efficacy of polishing kits on the surface roughness and color stability of different composite resins.

    Science.gov (United States)

    Kocaagaoglu, H; Aslan, T; Gürbulak, A; Albayrak, H; Taşdemir, Z; Gumus, H

    2017-05-01

    Different polishing kits may have different effects on the composite resin surfaces. The aim of this study was to evaluate the surface roughness and color stability of four different composites which was applied different polishing technique. Thirty specimens were made for each composite resin group (nanohybrid, GrandioSo-GS; nanohybrid, Clearfil Majesty Esthetic-CME; hybrid, Valux Plus-VP; micro-hybrid, Ruby Comp-RC; [15 mm in diameter and 2 mm height]), with the different monomer composition and particle size from a total of 120 specimens. Each composite group was divided into three subgroups (n = 10). The first subgroup of the each composite subgroups served as control (C) and had no surface treatment. The second subgroup of the each composite resin groups was polished with finishing discs (Bisco Finishing Discs; Bisco Inc., Schaumburg, IL, USA). The third subgroup of the each composite resin was polished with polishing wheel (Enhance and PoGo, Dentsply, Konstanz, Germany). The surface roughness and the color differences measurement of the specimens were made and recorded. The data were compared using Kruskal-Wallis test, and regression analysis was used in order to examine the correlation between surface roughness and color differences of the specimens (α = 0.05). The Kruskal-Wallis test indicated significant difference among the composite resins in terms of ΔE (P composite resins in terms of surface roughness (P > 0.05). Result of the regression analysis indicated statistically significant correlation between Ra and ΔE values (P < 0.05, r2 = 0.74). The findings of the present study have clinical relevance in the choice of polishing kits used.

  1. Fracture strength testing of crowns made of CAD/CAM composite resins.

    Science.gov (United States)

    Okada, Ryota; Asakura, Masaki; Ando, Akihiro; Kumano, Hirokazu; Ban, Seiji; Kawai, Tatsushi; Takebe, Jun

    2018-03-28

    The purpose of this study was to ascertain whether computer aided design/computer aided manufacturing (CAD/CAM) composite resin crowns have sufficient strength to withstand the bite force of the molar teeth. The null hypothesis was that the fracture strength of CAD/CAM composite resin crowns is lower than the average maximum bite force of the molar tooth. The crowns, which shape is the right maxillary first molar, were fabricated using four CAD/CAM blanks made of composite resins (Block HC: HC, KZR-CAD HR: HR, KZR-CAD HR2: HR2, Avencia Block: AVE) and one CAD/CAM blank made of lithium disilicate glass-ceramic (IPS e.max CAD: IPS), which was used as a control. Fracture strength of fabricated crowns bonded to metal abutment and biaxial flexural strength of the materials were evaluated. The results of fracture strength test and biaxial flexural strength test showed different tendencies. The fracture strength of CAD/CAM composite resin crowns except HC ranged from 3.3kN to 3.9kN, and was similar to that of IPS (3.3kN). In contrast, biaxial flexural strength of CAD/CAM composite resins ranged from 175MPa to 247MPa, and was significantly lower than that of IPS (360MPa). All CAD/CAM composite resin crowns studied presented about 3-4 times higher fracture strength than the average maximum bite force of the molar tooth (700-900N), which result leads to the conclusion that CAD/CAM composite resin crowns would have sufficient strength to withstand the bite force of the molar teeth. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. Environmentally Compliant Vinyl Ester Resin (VER) Composite Matrix Resin Derived from Renewable Resources

    Science.gov (United States)

    2011-11-01

    polycar- bonate and polyacrylate thermoplastic resins. Annual production of phenol in the United States (Dow) exceeds 650 million pounds with virtually...second method reacted glycidol with methyl methacrylate in the presence of 2, 4- dimethyl-6-tert.butyl phenol and potassium cyanide [24]. The mixture...presence of DCC and the second reacted glycidol with methyl methacrylate in the presence of potassium cyanide and 2, 4-dimethyl-6-tert.butyl phenol

  3. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  4. Effect of mechanical properties of fillers on the grindability of composite resin adhesives.

    Science.gov (United States)

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Yuasa, Toshihiro; Uechi, Jun; Mizoguchi, Itaru

    2010-10-01

    The purpose of this study was to investigate the effect of filler properties on the grindability of composite resin adhesives. Six composite resin products were selected: Transbond XT (3M Unitek, Monrovia, Calif), Transbond Plus (3M Unitek), Enlight (Ormco, Glendora, Calif), Kurasper F (Kuraray Medical, Tokyo, Japan), Beauty Ortho Bond (Shofu, Kyoto, Japan), and Beauty Ortho Bond Salivatect (Shofu). Compositions and weight fractions of fillers were determined by x-ray fluorescence analysis and ash test, respectively. The polished surface of each resin specimen was examined with a scanning electron microscope. Vickers hardness of plate specimens (15 × 10 × 3 mm) was measured, and nano-indentation was performed on large filler particles (>10 μm). Grindability for a low-speed tungsten-carbide bur was estimated. Data were compared with anlaysis of variance (ANOVA) and the Tukey multiple range test. Relationships among grindability, filler content, filler nano-indentation hardness (nano-hardness), filler elastic modulus, and Vickers hardness of the composite resins were investigated with the Pearson correlation coefficient test. Morphology and filler size of these adhesives showed great variations. The products could be divided into 2 groups, based on composition, which affected grindability. Vickers hardness of the adhesives did not correlate (r = 0.140) with filler nano-hardness, which showed a significant negative correlation (r = -0.664) with grindability. Filler nano-hardness greatly influences the grindability of composite resin adhesives. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. [Comparison of surface roughness of nanofilled and microhybrid composite resins after curing and polishing].

    Science.gov (United States)

    Jiang, Hong; Lv, Da; Liu, Kailei; Zhang, Weisheng; Yao, Yao; Liao, Chuhong

    2014-05-01

    To compare the surface roughness of nanofilled dental composite resin and microhybrid composite resins after curing and polishing. A nanofilled composite (Z350) and 4 microhybrid composites (P60, Z250, Spectrum, and AP-X) were fabricated from the lateral to the medial layers to prepare 8 mm×8 mm×5 mm cubical specimens. The 4 lateral surfaces of each specimens were polished with abrasive disks (Super-Snap). Profilometer was used to test the mean surface roughness (Ra) after polishing. P60 had the lowest Ra (0.125∓0.030 µm) followed by Z250 and Spectrum. The Ra of Z350 (0.205∓0.052 µm) was greater than that of the other 3 resins, and AP-X had the roughest surfaces. Under scanning electron microscope, the polished faces of P60 resin were characterized by minor, evenly distributed particles with fewer scratches; the polished faces of Z350 presented with scratches where defects of the filling material could be seen. The nanofilled composite Z350 has smooth surface after polishing by abrasive disks, but its smoothness remains inferior to that of other micro-hybrid composite resins.

  6. Failure Rates of Orthodontic Fixed Lingual Retainers bonded with Two Flowable Light-cured Adhesives: A Comparative Prospective Clinical Trial.

    Science.gov (United States)

    Talic, Nabeel F

    2016-08-01

    This comparative prospective randomized clinical trial examined the in vivo failure rates of fixed mandibular and maxillary lingual retainers bonded with two light-cured flowable composites over 6 months. Consecutive patients were divided into two groups on a 1:1 basis. Two hundred fixed lingual retainers were included, and their failures were followed for 6 months. One group (n = 50) received retainers bonded with a nano-hybrid composite based on nano-optimized technology (Tetric-N-Flow, Ivoclar Vivadent). Another group (n = 50) received retainers bonded with a low viscosity (LV) composite (Transbond Supreme LV, 3M Unitek). There was no significant difference between the overall failure rates of mandibular retainers bonded with Transbond (8%) and those bonded with Tetric-N-Flow (18%). However, the odds ratio for failure using Tetric-N-flow was 2.52-fold greater than that of Transbond. The failure rate of maxillary retainers bonded with Transbond was higher (14%), but not significantly different, than that of maxillary retainers bonded with Tetric-N-flow (10%). There was no significant difference in the estimated mean survival times of the maxillary and mandibular retainers bonded with the two composites. Both types of composites tested in the current study can be used to bond fixed maxillary and mandibular lingual retainers, with low failure rates.

  7. [A new machinability test machine and the machinability of composite resins for core built-up].

    Science.gov (United States)

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  8. Composition of atmospheric precipitation. I. Sampling technique. Use of ion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Egner, H; Eriksson, E; Emanuelsson, A

    1947-01-01

    In order to investigate the composition of atmospheric precipitations in Sweden, a technique using ion exchange resins has been developed. The possibilities of nitrate reduction, and ammonia losses, when the precipitation is collected in zinc gauges is stressed. Glass funnels are used, and they are effectively protected from bird droppings. The ion exchange resins so far available are quite serviceable but show some deficiencies as to stability, and activity in alkaline solutions. New resins, which are not yet available, seem to offer definite advantages.

  9. The Compositions: Biodegradable Material - Typical Resin, as Moulding Sands’ Binders

    Directory of Open Access Journals (Sweden)

    Major-Gabryś K.

    2015-03-01

    Full Text Available The paper presents possibility of using biodegradable materials as parts of moulding sands’ binders based on commonly used in foundry practice resins. The authors focus on thermal destruction of binding materials and thermal deformation of moulding sands with tested materials. All the research is conducted for the biodegradable material and two typical resins separately. The point of the article is to show if tested materials are compatible from thermal destruction and thermal deformation points of view. It was proved that tested materials characterized with similar thermal destruction but thermal deformation of moulding sands with those binders was different.

  10. Diffusion in composite materials made of thermosetting resins

    International Nuclear Information System (INIS)

    Morin, Bruno.

    1981-03-01

    The embedding process of low and medium level radioactive wastes in thermosetting resins allows their containment in a solid matrix. During storage the risk of circulation of water is possible. The aim of this containment process is to prevent radionuclide migration in environment. Ion migration through membranes of thermosetting resins alone or filler added were measured to evaluate released radioactivity by embedded blocks with time and to compare the different embedding formulas. Water influence on diffusion was taken into account considering that radioactive wastes dispersion is faster in a wet medium than in a dry one [fr

  11. Color change of CAD-CAM materials and composite resin cements after thermocycling.

    Science.gov (United States)

    Gürdal, Isil; Atay, Ayse; Eichberger, Marlis; Cal, Ebru; Üsümez, Aslihan; Stawarczyk, Bogna

    2018-04-24

    The color of resin cements and computer-aided-design and computer-aided-manufacturing (CAD-CAM) restorations may change with aging. The purpose of this in vitro study was to analyze the influence of thermocycling on the color of CAD-CAM materials with underlying resin cement. Seven different CAD-CAM materials, composite resins and glass-ceramics were cut into 0.7-mm and 1.2-mm thicknesses (n=10) and cemented with a dual-polymerizing resin cement, a light-polymerizing resin cement, and a preheated composite resin (N=420). Color values were measured by using spectrophotometry. Specimens were subjected to thermocycling (5°C and 55°C; 5000 cycles). The measured color difference (ΔE) data were analyzed by using descriptive statistics. Normality of data distribution was tested by using the Kolmogorov-Smirnov test. Three-way and 1-way ANOVA followed by the Scheffé post-hoc test and unpaired 2-sample Student t test were computed to determine the significant differences among the tested parameters (α=.05). ΔE values were significantly influenced by the CAD-CAM material (η p 2 =0.85, Pcement (η P 2 =0.03, P=.003) but were not influenced by thickness (P=.179). Significant interactions were present among thickness, cement, and CAD-CAM materials (Pcement showed significantly lower ΔE values than the preheated composite resin (P=.003). Restoration materials and composite resin cement types used for cementation influence the amount of color change due to aging. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Cytotoxicity Evaluation of Two Bis-Acryl Composite Resins Using Human Gingival Fibroblasts.

    Science.gov (United States)

    Gonçalves, Fabiano Palmeira; Alves, Gutemberg; Guimarães, Vladi Oliveira; Gallito, Marco Antônio; Oliveira, Felipe; Scelza, Míriam Zaccaro

    2016-01-01

    Bis-acryl resins are used for temporary dental restorations and have shown advantages over other materials. The aim of this work was to evaluate the in vitro cytotoxicity of two bis-acryl composite resins (Protemp 4 and Luxatemp Star), obtained at 1, 7 and 40 days after mixing the resin components, using a standardized assay employing human primary cells closely related to oral tissues. Human gingival fibroblast cell cultures were exposed for 24 h to either bis-acryl composite resins, polystyrene beads (negative control) and latex (positive control) extracts obtained after incubation by the different periods, at 37 °C under 5% CO2. Cell viability was evaluated using a multiparametric procedure involving sequential assessment (using the same cells) of mitochondrial activity (XTT assay), membrane integrity (neutral red test) and total cell density (crystal violet dye exclusion test). The cells exposed to the resin extracts showed cell viability indexes exceeding 75% after 24 h. Even when cells were exposed to extracts prepared with longer conditioning times, the bis-acryl composite resins showed no significant cytotoxic effects (p>0.05), compared to the control group or in relation to the first 24 h of contact with the products. There were no differences among the results obtained for the bis-acryl composite resins evaluated 24 h, 7 days and 40 days after mixing. It may be concluded that the bis-acryl resins Protemp 4 and Luxatemp Star were cytocompatible with human gingival fibroblasts, suggesting that both materials are suitable for use in contact with human tissues.

  13. Thermal and mechanical behaviour of sub micron sized fly ash reinforced polyester resin composite

    Science.gov (United States)

    Nantha Kumar, P.; Rajadurai, A.; Muthuramalingam, T.

    2018-04-01

    The utilization of particles reinforced resin matrix composites is being increased owing to its lower density and high strength to weight ratio. In the present study, an attempt has been made to synthesize fly ash particles reinforced polyester resin composite for engine cowling application. The thermal stability and mechanical behaviours such as hardness and flexural strength of the composite with 2, 3 and 4 weight % of reinforcement is studied and analyzed. The thermo gravimetric analysis indicates that the higher addition of reinforcement increases the decomposition temperature due to its refractory nature. It is also observed that the hardness increases with higher filler addition owing to the resistance of FA particles towards penetration. The flexural strength is found to increase up to the addition of 3% of FA particles, whereas the polyester resin composite prepared with 4% FA particles addition is observed to have low flexural strength owing to agglomeration of particles.

  14. Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating

    Science.gov (United States)

    Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang

    2017-11-01

    The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.

  15. Nonlinear DC Conduction Behavior in Graphene Nanoplatelets/Epoxy Resin Composites

    Science.gov (United States)

    Yuan, Yang; Wang, Qingguo; Qu, Zhaoming

    2018-01-01

    Graphene nanoplatelets (GNPs)/Epoxy resin (ER) with a low percolation threshold were fabricated. Then the nonlinear DC conduction behavior of GNPs/ER composites was investigated, which indicates that dispersion, exfoliation level and conductivity of GNPs in specimens are closely related to the conduction of composites. Moreover, it could be seen that the modified graphene nanoplatelets made in this paper could be successfully used for increasing the electric conductivity of the epoxy resin, and the GNPs/ER composites with nonlinear conduction behavior have a good application prospects in the field of intelligent electromagnetic protection.

  16. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins

    Directory of Open Access Journals (Sweden)

    Yih-Dean Jan

    2014-04-01

    Conclusion: Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins.

  17. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials.

    Science.gov (United States)

    Cekic-Nagas, Isil; Ergun, Gulfem; Egilmez, Ferhan; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2016-10-01

    The aim of this study was to evaluate the effects of hydrofluoric acid treatment on bond strength of resin cements to three different types of ceramic/glass containing CAD-CAM block composite materials. CAD-CAM block materials of polymer infiltrated (Vita Enamic), resin nanoceramic (Lava Ultimate) and nanoceramic (Cerasmart) with a thickness of 1.5mm were randomly divided into two groups according to the surface treatment performed. In Group 1, specimens were wet-ground with silicon carbide abrasive papers up to no. 1000. In Group 2, 9.6% hydrofluoric acid gel was applied to ceramics. Three different resin cements (RelyX, Variolink Esthetic and G-CEM LinkAce) were applied to the tubes in 1.2-mm thick increments and light-cured for 40s using LED light curing unit. Half of the specimens (n=10) were submitted to thermal cycling (5000 cycles, 5-55°C). The strength measurements were accomplished with a universal testing machine (Lloyd Instruments) at a cross-head speed of 0.5mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with multivariate analysis of variance (MANOVA) and Tukey's post hoc tests (α=0.05). There were significant differences between ceramics and resin cements (pceramics (pceramic/glass-polymer materials might promote the bonding capacity of these systems. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Influence of nanometric silicon carbide on phenolic resin composites

    Indian Academy of Sciences (India)

    The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric ...

  19. The study on the ion exchange behavior of metal ions using composite ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kukki; Lee, Kunjai [Nuclear Engineering Department Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Youngkyun [Korea Institute of Nuclear Safety, Daejon (Korea, Republic of); Lee, Sangjin; Yang, Hoyeon; Ha, Jonghyun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2002-04-15

    In this study, a series of stepwise procedures to prepare a new organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite was established, based upon wet-and-neutralization method for synthesizing iron ferrite and pearl-polymerization method for synthesizing rigid bead-type composite resin. And a separation of metal ions in the liquid radioactive waste have been performed using organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite. The PSF-F (phenol sulphonic formaldehyde-iron ferrite) composite resin prepared by the above method shows stably high removal efficiency to Co(II), Fe, Cs species from wastewater in a wide range of solution pH. The wide range of applicable solution pH (i. e. pH 4.0 to 10.3) implies that the PSF-F composite resin overcomes the limitations of the conventional ferrite process which is practically applicable only to alkaline conditions. The experiment proceeded using batch reactor in a constant temperature with water bath. The experiments divided into three parts. The first one is TG/DTA (Thermogravimetry / Differential Thermal Analysis) which can analyze the trend of pyrolysis of PSF-F ion exchanger. The Second one is equilibrium experiment in which the separation factor of metal ions and Langmuir, Freundlich isotherm was achieved. The last one is kinetics experiment in which the equilibrium reaction time and removal efficiency is estimated.

  20. The study on the ion exchange behavior of metal ions using composite ion exchange resin

    International Nuclear Information System (INIS)

    Kim, Kukki; Lee, Kunjai; Kim, Youngkyun; Lee, Sangjin; Yang, Hoyeon; Ha, Jonghyun

    2002-01-01

    In this study, a series of stepwise procedures to prepare a new organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite was established, based upon wet-and-neutralization method for synthesizing iron ferrite and pearl-polymerization method for synthesizing rigid bead-type composite resin. And a separation of metal ions in the liquid radioactive waste have been performed using organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite. The PSF-F (phenol sulphonic formaldehyde-iron ferrite) composite resin prepared by the above method shows stably high removal efficiency to Co(II), Fe, Cs species from wastewater in a wide range of solution pH. The wide range of applicable solution pH (i. e. pH 4.0 to 10.3) implies that the PSF-F composite resin overcomes the limitations of the conventional ferrite process which is practically applicable only to alkaline conditions. The experiment proceeded using batch reactor in a constant temperature with water bath. The experiments divided into three parts. The first one is TG/DTA (Thermogravimetry / Differential Thermal Analysis) which can analyze the trend of pyrolysis of PSF-F ion exchanger. The Second one is equilibrium experiment in which the separation factor of metal ions and Langmuir, Freundlich isotherm was achieved. The last one is kinetics experiment in which the equilibrium reaction time and removal efficiency is estimated

  1. A long-term laboratory test on staining susceptibility of esthetic composite resin materials

    NARCIS (Netherlands)

    Ardu, S.; Braut, V.; Gutemberg, D.; Krejci, I.; Dietschi, D.; Feilzer, A.J.

    2010-01-01

    Objective: To evaluate the color stability of composite resin types designed for esthetic anterior restorations when continuously exposed to various staining agents. Method and Materials: Thirty-six disk-shaped specimens were made of each of 12 composite materials (1 microfilled and 11 hybrid

  2. Direct spectrometry: a new alternative for measuring the fluorescence of composite resins and dental tissues.

    Science.gov (United States)

    da Silva, Tm; de Oliveira, Hpm; Severino, D; Balducci, I; Huhtala, Mfrl; Gonçalves, Sep

    2014-01-01

    The aim of this study was to evaluate the fluorescence intensity of different composite resins and compare those values with the fluorescence intensity of dental tissues. Different composite resins were used to make 10 discs (2 mm in depth and 4 mm in diameter) of each brand, divided into groups: 1) Z (Filtek Z350, 3M ESPE), 2) ES (Esthet-X, Dentsply), 3) A (Amelogen Plus, Ultradent), 4) DVS (Durafill-VS, Heraeus Kulzer) with 2 mm composite resin for enamel (A2), 5) OES ([Esthet-X] opaque-OA [1 mm] + enamel-A2 [1 mm]); 6) ODVSI ([Charisma-Opal/Durafill-VSI], opaque-OM (1 mm) + translucent [1mm]), and 7) DVSI ([Durafill- VSI] translucent [2 mm]). Dental tissue specimens were obtained from human anterior teeth cut in a mesiodistal direction to obtain enamel, dentin, and enamel/dentin samples (2 mm). The fluorescence intensity of specimens was directly measured using an optic fiber associated with a spectrometer (Ocean Optics USB 4000) and recorded in graphic form (Origin 8.0 program). Data were submitted to statistical analysis using Dunnet, Tukey, and Kruskall-Wallis tests. Light absorption of the composite resins was obtained in a spectral range from 250 to 450 nm, and that of dental tissues was between 250 and 300 nm. All composite resins were excited at 398 nm and exhibited maximum emissions of around 485 nm. Fluorescence intensity values for all of the resins showed statistically significant differences (measured in arbitrary units [AUs]), with the exception of groups Z and DVS. Group DVSI had the highest fluorescence intensity values (13539 AU), followed by ODVS (10440 AU), DVS (10146 AU), ES (3946 AU), OES (3841 AU), A (3540 AU), and Z (1146 AU). The fluorescence intensity values for the composite resins differed statistically from those of dental tissues (E=1380 AU; D=6262 AU; E/D=3251 AU). The opacity interfered with fluorescence intensity, and group Z demonstrated fluorescence intensity values closest to that of tooth enamel. It is concluded that the

  3. Accelerated Fatigue Resistance of Thick CAD/CAM Composite Resin Overlays Bonded with Light- and Dual-polymerizing Luting Resins.

    Science.gov (United States)

    Goldberg, Jack; Güth, Jan-Frederik; Magne, Pascal

    To evaluate the accelerated fatigue resistance of thick CAD/CAM composite resin overlays luted with three different bonding methods. Forty-five sound human second mandibular molars were organized and distributed into three experimental groups. All teeth were restored with a 5-mm-thick CAD/CAM composite resin overlay. Group A: immediate dentin sealing (IDS) with Optibond FL and luted with light-polymerizing composite (Herculite XRV). Group B: IDS with Optibond FL and luted with dual-polymerizing composite (Nexus 3). Group C: direct luting with Optibond FL and dual-polymerizing composite (Nexus 3). Masticatory forces at a frequency of 5 Hz were simulated using closed-loop servo-hydraulics and forces starting with a load of 200 N for 5000 cycles, followed by steps of 400, 600, 800, 1000, 1200 and 1400 N for a maximum of 30,000 cycles. Each step was applied through a flat steel cylinder at a 45-degree angle under submerged conditions. The fatigue test generated one failure in group A, three failures in group B, and no failures in group C. The survival table analysis for the fatigue test did not demonstrate any significant difference between the groups (p = 0.154). The specimens that survived the fatigue test were set up for the load-to-failure test with a limit of 4600 N. The survival table analysis for the load-to-failure test demonstrates an average failure load of 3495.20 N with survival of four specimens in group A, an average failure load of 4103.60 N with survival of six specimens in group B, and an average failure load of 4075.33 N with survival of nine specimens in group C. Pairwise comparisons revealed no significant differences (p composites in combination with IDS are not contraindicated with thick restorations.

  4. Characterization of water sorption, solubility, and roughness of silorane- and methacrylate-based composite resins.

    Science.gov (United States)

    Giannini, M; Di Francescantonio, M; Pacheco, R R; Cidreira Boaro, L C; Braga, R R

    2014-01-01

    The objective of this study was to evaluate the surface roughness (SR), water sorption (WS), and solubility (SO) of four composite resins after finishing/polishing and after one year of water storage. Two low-shrinkage composites (Filtek Silorane [3M ESPE] and Aelite LS [Bisco Inc]) and two composites of conventional formulations (Heliomolar and Tetric N-Ceram [Ivoclar Vivadent]) were tested. Their respective finishing and polishing systems (Sof-Lex Discs, 3M ESPE; Finishing Discs Kit, Bisco Inc; and Astropol F, P, HP, Ivoclar Vivadent) were used according to the manufacturers' instructions. Ten disc-shaped specimens of each composite resin were made for each evaluation. Polished surfaces were analyzed using a profilometer after 24 hours and one year. For the WS and SO, the discs were stored in desiccators until constant mass was achieved. Specimens were then stored in water for seven days or one year, at which time the mass of each specimen was measured. The specimens were dried again and dried specimen mass determined. The WS and SO were calculated from these measurements. Data were analyzed by two-way analysis of variance and Tukey post hoc test (α=0.05). Filtek Silorane showed the lowest SR, WS, and SO means. Water storage for one year increased the WS means for all composite resins tested. The silorane-based composite resin results were better than those obtained for methacrylate-based resins. One-year water storage did not change the SR and SO properties in any of the composite resins.

  5. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite.

    Science.gov (United States)

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (Pcomposite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations.

  6. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding

    Science.gov (United States)

    Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad

    2014-01-01

    Objective: The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Materials and Methods: Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. Results: RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (Porthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range. PMID:25628663

  7. Posterior bulk-filled resin composite restorations. A 5-year randomized controlled clinical study

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2 mm increments. The restorations were evaluated using slightly......, 4 SDR-CeramX mono+ and 6 CeramX mono +-only restorations. The main reasons for failure were tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1.3% (p = 0...

  8. Influence of a peracetic acid-based immersion on indirect composite resin.

    Science.gov (United States)

    Samuel, Susana Maria Werner; Fracaro, Gisele Baggio; Collares, Fabrício Mezzomo; Leitune, Vicente Castelo Branco; Campregher, Ulisses Bastos

    2011-06-01

    The aim of this study was to evaluate the influence of immersion in a 0.2% peracetic acid-based disinfectant on the three-point flexural strength, water sorption and water solubility of an indirect composite resin. Specimens were produced according to ISO 4049:2000 specifications and were divided in two groups: Control group, with no disinfection and Disinfected group, with three 10 min immersions in the peracetic acid intercalated with 10 min immersions in sterile distilled water. All evaluations were conducted in compliance with ISO specifications. Three-point flexural strength, water sorption and solubility of indirect composite resin before and after immersion showed no statistical significant differences (p > 0.05) and met ISO standard requirements. Immersion in peracetic acid solution showed no influence in indirect composite resin tested properties.

  9. Radiopacity of Methacrylate and Silorane Composite Resins Using a Digital Radiographic System.

    Science.gov (United States)

    Firoozmand, Leily Macedo; Cordeiro, Mariana Gonçalves; Da Silva, Marcos André Dos Santos; De Jesus Tavarez, Rudys Rodolfo; Matos Maia Filho, Etevaldo

    The aim of this study was to evaluate the radiopacity of silorane and methacrylate resin composites, comparing them to the enamel, dentin, and aluminum penetrometer using a digital image. From six resin composites (Filtek ™ P90, Filtek Z350, Filtek Z350 XT flow, Tetric Ceram, TPH Spectrum, and SureFil SDR flow) cylindrical disks (5 × 1 mm) were made and radiographed by a digital method, together with a 15-step aluminum step-wedge and a 1 mm slice of human tooth. The degree of radiopacity of each image was quantified using digital image processing. The mean values of the shades of gray of the tested materials were measured and the equivalent width of aluminum was calculated for each resin. The results of our work yielded the following radiopacity values, given here in descending order: Tetric Ceram > TPH > SDR > Z350 > Z350 flow > P90 > enamel > dentin. The radiopacity of the materials was different both for the enamel and for the dentin, except for resin P90, which was no different than enamel. In conclusion, silorane-based resin exhibited a radiopacity higher than dentin and closest to the enamel; a large portion of the methacrylate-based flow and conventional resins demonstrated greater radiopacity in comparison to dentin and enamel.

  10. Radiopacity of Methacrylate and Silorane Composite Resins Using a Digital Radiographic System

    Directory of Open Access Journals (Sweden)

    Leily Macedo Firoozmand

    2016-01-01

    Full Text Available The aim of this study was to evaluate the radiopacity of silorane and methacrylate resin composites, comparing them to the enamel, dentin, and aluminum penetrometer using a digital image. From six resin composites (Filtek™ P90, Filtek Z350, Filtek Z350 XT flow, Tetric Ceram, TPH Spectrum, and SureFil SDR flow cylindrical disks (5 × 1 mm were made and radiographed by a digital method, together with a 15-step aluminum step-wedge and a 1 mm slice of human tooth. The degree of radiopacity of each image was quantified using digital image processing. The mean values of the shades of gray of the tested materials were measured and the equivalent width of aluminum was calculated for each resin. The results of our work yielded the following radiopacity values, given here in descending order: Tetric Ceram > TPH > SDR > Z350 > Z350 flow > P90 > enamel > dentin. The radiopacity of the materials was different both for the enamel and for the dentin, except for resin P90, which was no different than enamel. In conclusion, silorane-based resin exhibited a radiopacity higher than dentin and closest to the enamel; a large portion of the methacrylate-based flow and conventional resins demonstrated greater radiopacity in comparison to dentin and enamel.

  11. Effects of air-polishing powders on color stability of composite resins.

    Science.gov (United States)

    Güler, Ahmet Umut; Duran, Ibrahim; Yücel, Ali Çağin; Ozkan, Pelin

    2011-10-01

    The purpose of this study was to investigate the effect of different air-polishing powders on the color stability of different types of composite resin restorative materials. Thirty cylindrical specimens (15×2 mm) were prepared for each of 7 composite resin restorative materials. All specimens were polished with a series of aluminum oxide polishing discs (Sof-Lex). The prepared specimens of each composite resin were randomly divided into 3 groups of 10 specimens each, for control (Group-C) and two air-powder applications (Group-CP: Cavitron Prophy-Jet; Group-PS: Sirona ProSmile prophylaxis powder). A standard air-polishing unit (ProSmile Handly) was used. All specimens were air-powdered for 10 s at 4-bar pressure. The distance of the spray nosel from the specimens was approximately 10 mm and angulation of the nosel was 90°. Specimens were stored in 100 mL of coffee (Nescafe Classic) for 24 h at 37°C. Color measurement of all specimens was recorded before and after exposure to staining agent with a colorimeter (Minolta CR-300). Color differences (∆E*) between the 2 color measurements (baseline and after 24 h storage) were calculated. The data were analyzed with a 2-way ANOVA test, and mean values were compared by the Tukey HSD test (p.05) and these groups demonstrated the highest ∆E* values. For Filtek Silorane and IntenS, the highest ∆E* values were observed in Group-PS. The lowest ∆E* values for all composite resin groups were observed in Group-C. When comparing the 7 composite resin restorative materials, Aelite Aesthetic Enemal demonstrated significantly less ∆E* values than the other composite resins tested. The highest ∆E* values were observed in Quixfil. Except for Quixfil, all control groups of composite resins that were polished Sof-Lex exhibited clinically acceptable ∆E values (<3.7). Air-polishing applications increased the color change for all composite resin restorative materials tested. Composite restorations may require re

  12. Effects of air-polishing powders on color stability of composite resins

    Directory of Open Access Journals (Sweden)

    Ahmet Umut Güler

    2011-10-01

    Full Text Available OBJECTIVES: The purpose of this study was to investigate the effect of different air-polishing powders on the color stability of different types of composite resin restorative materials. MATERIAL AND METHODS: Thirty cylindrical specimens (15×2 mm were prepared for each of 7 composite resin restorative materials. All specimens were polished with a series of aluminum oxide polishing discs (Sof-Lex. The prepared specimens of each composite resin were randomly divided into 3 groups of 10 specimens each, for control (Group-C and two air-powder applications (Group-CP: Cavitron Prophy-Jet; Group-PS: Sirona ProSmile prophylaxis powder. A standard air-polishing unit (ProSmile Handly was used. All specimens were air-powdered for 10 s at 4-bar pressure. The distance of the spray nosel from the specimens was approximately 10 mm and angulation of the nosel was 90°. Specimens were stored in 100 mL of coffee (Nescafe Classic for 24 h at 37°C. Color measurement of all specimens was recorded before and after exposure to staining agent with a colorimeter (Minolta CR-300. Color differences (∆E* between the 2 color measurements (baseline and after 24 h storage were calculated. The data were analyzed with a 2-way ANOVA test, and mean values were compared by the Tukey HSD test (p.05 and these groups demonstrated the highest ∆E* values. For Filtek Silorane and IntenS, the highest ∆E* values were observed in Group-PS. The lowest ∆E* values for all composite resin groups were observed in Group-C. When comparing the 7 composite resin restorative materials, Aelite Aesthetic Enemal demonstrated significantly less ∆E* values than the other composite resins tested. The highest ∆E* values were observed in Quixfil. CONCLUSION: Except for Quixfil, all control groups of composite resins that were polished Sof-Lex exhibited clinically acceptable ∆E values (<3.7. Air-polishing applications increased the color change for all composite resin restorative materials

  13. CHEMICAL COMPOSITIONS OF PINE RESIN, ROSIN AND TURPENTINE OIL FROM WEST JAVA

    Directory of Open Access Journals (Sweden)

    Bambang Wiyono

    2006-03-01

    Full Text Available This study was conducted to identify chemical composition of merkus pine resin, rosin and turpentine oil. Initially, pine resin was separated into neutral and acidic fractions with an aqueous 4% sodium hydroxide solution. After methylation, the fraction containing turpentine oil and rosin were analyzed by gas chromatography (GC, and gas chromatograph mass spectrometry (GC-MS, respectively. The neutral fraction of pine resin and turpentine oil mainly consisted of a-pinene, D-3-carene and b-pinene. Based on mass spectral comparison, the major constituents of the acidic fraction and rosin were identified as sandaracopimaric acid, isopimaric acid, palustric acid, dehydroabietic acid, abietic acid, neoabietic acid, and merkusic acid. The major component of the acidic fractions was palustric acid, while that of rosin was abietic acid. Using TC (tough column 1 and TC 5 columns, levopimaric acid could not be separated from rosin or acidic fraction of pine resin of Indonesian Pinus merkusii.

  14. Simulation of Air Entrapment and Resin Curing During Manufacturing of Composite Cab Front by Resin Transfer Moulding Process

    Directory of Open Access Journals (Sweden)

    Kuppusamy Raghu Raja Pandiyan

    2017-09-01

    Full Text Available Mould filling and subsequent curing are the significant processing stages involved in the production of a composite component through Resin Transfer Moulding (RTM fabrication technique. Dry spot formation and air entrapment during filling stage caused by improper design of filling conditions and locations that lead to undesired filling patterns resulting in defective RTM parts. Proper placement of inlet ports and exit vents as well as by adjustment of filling conditions can alleviate the problems during the mould filling stage. The temperature profile used to polymerize the resin must be carefully chosen to reduce the cure time. Instead of trial and error methods that are expensive, time consuming, and non-optimal, we propose a simulation-based optimization strategy for a composite cab front component to reduce the air entrapment and cure stage optimization. In order to be effective, the optimization strategy requires an accurate simulation of the process utilizing submodels to describe the raw material characteristics. Cure reaction kinetics and chemo-rheology were the submodels developed empirically for an unsaturated polyester resin using experimental data. The simulations were performed using commercial software PAM RTM 2008, developed by ESI Technologies. Simulation results show that the use of increase in injection pressure at the inlet filling conditions greatly reduce the air entrapped. For the cab front, the alteration of injection pressure with proper timing of vent opening reduced the air entrapped during mould filling stage. Similarly, the curing simulation results show that the use of higher mould temperatures effectively decreases the cure time as expected.

  15. Repair Strength in Simulated Restorations of Methacrylate- or Silorane-Based Composite Resins.

    Science.gov (United States)

    Consani, Rafael Leonardo Xediek; Marinho, Tatiane; Bacchi, Atais; Caldas, Ricardo Armini; Feitosa, Victor Pinheiro; Pfeifer, Carmem Silvia

    2016-01-01

    The study verified the bond strength in simulated dental restorations of silorane- or methacrylate-based composites repaired with methacrylate-based composite. Methacrylate- (P60) or silorane-based (P90) composites were used associated with adhesive (Adper Single Bond 2). Twenty-four hemi-hourglass-shaped samples were repaired with each composite (n=12). Samples were divided according to groups: G1= P60 + Adper Single Bond 2+ P60; G2= P60 + Adper Single Bond 2 + P60 + thermocycling; G3= P90 + Adper Single Bond 2 + P60; and G4= P90 + Adper Single Bond 2 + P60 + thermocycling. G1 and G3 were submitted to tensile test 24 h after repair procedure, and G2 and G4 after submitted to 5,000 thermocycles at 5 and 55 ?#61616;C for 30 s in each bath. Tensile bond strength test was accomplished in an universal testing machine at crosshead speed of 0.5 mm/min. Data (MPa) were analyzed by two-way ANOVA and Tukey's test (5%). Sample failure pattern (adhesive, cohesive in resin or mixed) was evaluated by stereomicroscope at 30?#61655; and images were obtained in SEM. Bond strength values of methacrylate-based composite samples repaired with methacrylate-based composite (G1 and G2) were greater than for silorane-based samples (G3 and G4). Thermocycling decreased the bond strength values for both composites. All groups showed predominance of adhesive failures and no cohesive failure in composite resin was observed. In conclusion, higher bond strength values were observed in methacrylate-based resin samples and greater percentage of adhesive failures in silorane-based resin samples, both composites repaired with methacrylate-based resin.

  16. Comparison of time-dependent changes in the surface hardness of different composite resins

    Science.gov (United States)

    Ozcan, Suat; Yikilgan, Ihsan; Uctasli, Mine Betul; Bala, Oya; Kurklu, Zeliha Gonca Bek

    2013-01-01

    Objective: The aim of this study was to evaluate the change in surface hardness of silorane-based composite resin (Filtek Silorane) in time and compare the results with the surface hardness of two methacrylate-based resins (Filtek Supreme and Majesty Posterior). Materials and Methods: From each composite material, 18 wheel-shaped samples (5-mm diameter and 2-mm depth) were prepared. Top and bottom surface hardness of these samples was measured using a Vicker's hardness tester. The samples were then stored at 37°C and 100% humidity. After 24 h and 7, 30 and 90 days, the top and bottom surface hardness of the samples was measured. In each measurement, the rate between the hardness of the top and bottom surfaces were recorded as the hardness rate. Statistical analysis was performed by one-way analysis of variance, multiple comparisons by Tukey's test and binary comparisons by t-test with a significance level of P = 0.05. Results: The highest hardness values were obtained from each two surfaces of Majesty Posterior and the lowest from Filtek Silorane. Both the top and bottom surface hardness of the methacrylate based composite resins was high and there was a statistically significant difference between the top and bottom hardness values of only the silorane-based composite, Filtek Silorane (P composite resin Filtek Silorane showed adequate hardness ratio, the use of incremental technic during application is more important than methacrylate based composites. PMID:24966724

  17. The effect of repeated preheating of dimethacrylate and silorane-based composite resins on marginal gap of class V restorations.

    Science.gov (United States)

    Alizadeh Oskoee, Parnian; Pournaghi Azar, Fatemeh; Jafari Navimipour, Elmira; Ebrahimi Chaharom, Mohammad Esmaeel; Naser Alavi, Fereshteh; Salari, Ashkan

    2017-01-01

    Background. One of the problems with composite resin restorations is gap formation at resin‒tooth interface. The present study evaluated the effect of preheating cycles of silorane- and dimethacrylate-based composite resins on gap formation at the gingival margins of Class V restorations. Methods. In this in vitro study, standard Class V cavities were prepared on the buccal surfaces of 48 bovine incisors. For restorative procedure, the samples were randomly divided into 2 groups based on the type of composite resin (group 1: di-methacrylate composite [Filtek Z250]; group 2: silorane composite [Filtek P90]) and each group was randomly divided into 2 subgroups based on the composite temperature (A: room temperature; B: after 40 preheating cycles up to 55°C). Marginal gaps were measured using a stereomicroscope at ×40 and analyzed with two-way ANOVA. Inter- and intra-group comparisons were analyzed with post-hoc Tukey tests. Significance level was defined at P composite resin type, preheating and interactive effect of these variables on gap formation were significant (Pcomposite resins (Pcomposite resins at room temperature compared to composite resins after 40 preheating cycles (Pcomposite re-sins. Preheating of silorane-based composites can result in the best marginal adaptation.

  18. The effects of different polishing techniques on the staining resistance of CAD/CAM resin-ceramics

    Science.gov (United States)

    Demirci, Tevfik; Demirci, Gamze; Sagsoz, Nurdan Polat; Yildiz, Mehmet

    2016-01-01

    PURPOSE The purposes of this study were to evaluate the staining resistance of CAD/CAM resin-ceramics polished with different techniques and to determine the effectiveness of the polishing techniques on resin-ceramics, comparing it with that of a glazed glass-ceramic. MATERIALS AND METHODS Four different CAD/CAM ceramics (feldspathic ceramic: C-CEREC Blocs, (SIRONA) and three resin-ceramics: L-Lava Ultimate, (3M ESPE), E-Enamic, (VITA) and CS-CeraSmart, (GC)) and one light cure composite resin: ME-Clearfil Majesty Esthetic (Kuraray) were used. Only C samples were glazed (gl). Other restorations were divided into four groups according to the polishing technique: nonpolished control group (c), a group polished with light cure liquid polish (Biscover LV BISCO) (bb), a group polished with ceramic polishing kit (Diapol, EVE) (cd), and a group polished with composite polishing kit (Clearfil Twist Dia, Kuraray) (kc). Glazed C samples and the polished samples were further divided into four subgroups and immersed into different solutions: distilled water, tea, coffee, and fermented black carrot juice. Eight samples (8 × 8 × 1 mm) were prepared for each subgroup. According to CIELab system, four color measurements were made: before immersion, immersion after 1 day, after 1 week, and after 1 month. Data were analyzed with repeated measures of ANOVA (α=.05). RESULTS The highest staining resistance was found in gl samples. There was no difference among gl, kc and cd (P>.05). Staining resistance of gl was significantly higher than that of bb (PCeramic and composite polishing kits can be used for resin ceramics as a counterpart of glazing procedure used for full ceramic materials. Liquid polish has limited indications for resin ceramics. PMID:28018558

  19. Kinetics and equilibrium studies for sorption of Cu (II) and Cr (VI) ions onto polymeric composite resins

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The sorption behavior of Cu (II) and Cr (VI) ions from aqueous solutions was studied using polymeric composite resins. Batch sorption experiments were performed as a function of hydrogen ion concentration, complexing agent concentration, resin weight and ionic strength. Kinetic parameters as a function of initial ion concentration were determined to predict the sorption behavior of Cu (II) and Cr (VI) onto polymeric composite resins. The equilibrium data could be fitted by the frendlich adsorption isotherm equation

  20. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    Science.gov (United States)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  1. Analysis of the microstructure and mechanical performance of composite resins after accelerated artificial aging.

    Science.gov (United States)

    De Oliveira Daltoé, M; Lepri, C Penazzo; Wiezel, J Guilherme G; Tornavoi, D Cremonezzi; Agnelli, J A Marcondes; Reis, A Cândido Dos

    2013-03-01

    Researches that assess the behavior of dental materials are important for scientific and industrial development especially when they are tested under conditions that simulate the oral environment, so this work analyzed the compressive strength and microstructure of three composite resins subjected to accelerated artificial aging (AAA). Three composites resins of 3M (P90, P60 and Z100) were analyzed and were obtained 16 specimens for each type (N.=48). Half of each type were subjected to UV-C system AAA and then were analyzed the surfaces of three aged specimens and three not aged of each type through the scanning electron microscope (SEM). After, eight specimens of each resin, aged and not aged, were subjected to compression test. After statistical analysis of compressive strength values, it was found that there was difference between groups (α aged P60 presented lower values of compressive strength statistically significant when compared to the not subject to the AAA. For the other composite resins, there was no difference, regardless of aging, a fact confirmed by SEM. The results showed that the AAA influenced the compressive strength of the resin aged P60; confirmed by surface analysis by SEM, which showed greater structural disarrangement on surface material.

  2. Candida albicans adherence to resin-composite restorative dental material: influence of whole human saliva.

    Science.gov (United States)

    Maza, José Luis; Elguezabal, Natalia; Prado, Carlota; Ellacuría, Joseba; Soler, Iñaki; Pontón, José

    2002-11-01

    Attachment of Candida albicans to oral surfaces is believed to be a critical event in the colonization of the oral cavity and in the development of oral diseases such as Candida-associated denture stomatitis. Although there is considerable information about the adhesion of C albicans to buccal epithelial cells and prosthetic materials, there is very little information about the adhesion of C albicans to composite restorative materials. The purpose of this study was to investigate the degree of adhesion of C albicans to a resin-composite restorative material (Herculite). The adhesion of 2 strains of C albicans, a germinative and a germ tube-deficient mutant, was studied by a visual method after incubating the fungus and the resin with and without human whole saliva. In absence of saliva, the adhesion of the C albicans germinative isolate to the resin showed an increase in parallel with the germination, reaching a maximum at the end of the experiment (120 minutes). However, no significant differences were observed in the adhesion of the agerminative mutant during the period of time studied. In the presence of saliva, the adhesion of both isolates to the resin was significantly lowered. Germination and the presence of human whole saliva are important factors in the adhesion of C albicans to the resin-composite restorative material Herculite.

  3. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    Science.gov (United States)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  4. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  5. Influence of Finishing and Polishing Techniques and Abrasion on Transmittance and Roughness of Composite Resins.

    Science.gov (United States)

    Carneiro, Pma; Ramos, T M; de Azevedo, C S; de Lima, E; de Souza, Shj; Turbino, M L; Cesar, P F; Matos, A B

    The aim of this study was to evaluate the influence of finishing and polishing systems and toothbrush abrasion on transmittance (T) and surface roughness (Ra) of three composite resins (Filtek Z350 XT, Tetric N-Ceram, and IPS Empress Direct). Eighteen resin disks (10 mm diameter × 2 mm thick) finished by polyester strips had initial surface smoothness recorded, representing phase 1 (P1). Specimens were divided into three groups (n=6) according to the finishing/polishing instrument used (OneGloss, TopGloss, and Sof-Lex) to compose phase 2 samples (P2). Then specimens were subjected to 514 cycles of toothbrush simulation using a toothpaste slurry, with a constant load applied to soft bristles, and were then washed (phase 3=P3). After each phase, the specimens were examined by an optical profiler and spectrophotometer to measure Ra and T. Data were analyzed by analysis of variance, Tukey and Pearson tests. T values were statistically influenced by composite resin ( p=0.000) and phase of measurement ( p=0.000) factors, while the finishing/polishing system used ( p=0.741) did not affect T. On the other hand, Ra values were statistically affected by the factor finishing/polishing system ( p=0.000), but not by composite resin ( p=0.100) and phase of measurement ( p=0.451). Tetric N-Ceram and Empress Direct presented higher values of roughness when polished by OneGloss, while TopGloss and Sof-Lex showed a lower roughness. It can be concluded that composite resins transmitted more light after dental abrasion. Transmittance of composite resins was not modified by the distinct roughness created by finishing/polishing instruments.

  6. Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite

    International Nuclear Information System (INIS)

    Li, Ran; Gu, Yizhuo; Yang, Zhongjia; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2015-01-01

    Gamma-ray (γ-ray) irradiation is a crucial reason for the aging in materials used for nuclear industry. Due to high specific strength and stiffness, light weight and good corrosion resistance, fiber reinforced composites are regarded as an alternative of traditional materials used on nuclear facilities. In this study, basalt fiber (BF)/AG80 epoxy composite laminates were fabricated by autoclave process and treated with "6"0Co gamma irradiation dose up to 2.0 MGy. Irradiation induced polymer chain scission and oxidation of AG80 resin were detected from physical and chemical analysis. The experimental results show that the tensile and flexural performances of irradiated BF/AG80 composite maintain stable and have a low amplitude attenuation respectively, and the interlaminar shear strength has increased from irradiation dose of 0–1.5 MGy. Furthermore, the comparison between the studied BF composite and reported polymer and composite materials was done for evaluating the γ resistance property of BF composite. - Highlights: • The properties of basalt fiber reinforced epoxy resin matrix composite under "6"0Co γ irradiation up to 2.0 MGy were studied. • Basalt fiber can weaken the aging effects of γ irradiation on the resin matrix. • Tensile property of basalt fiber composite remains stable and flexural property has a low degree of attenuation. • Basalt fiber composite is an ideal candidate of structural material for nuclear industry.

  7. Effect of Various Surface Treatment on Repair Strength of Composite Resin

    Directory of Open Access Journals (Sweden)

    Y. Alizade

    2004-12-01

    Full Text Available Statement of Problem: In some clinical situations, repair of composite restorations is treatment of choice. Improving the bond strength between one new and old composite usually requires increased surface roughness to promote mechanical interlocking sincechemical bonding might not be adequate. Similarly, the treatment of a laboratory fabricated resin composite restoration involves the same procedures, and there is a need to create the strongest possible bond of a resin cement to a previously polymerized composite.Purpose: The aim of this study was to evaluate the effect of various surface treatments on the shear bond strength of repaired to aged composite resin.Materials and Methods: Eighty four cylindrical specimens of a composite resin were fabricated and stored in distilled water for 100 days prior to surface treatment. Surface treatment of old composite was done in 6 groups as follow:1- Air abrasion with CoJet sand particles with micoretcher + silane + dentin bonding agent2- Air abrasion with 50μm Al2O3 particles+ phosphoric acid+ silane+ dentin bonding agent3- Air abrasion with 50μm Al2O3 particles + phosphoric acid + dentin bonding agent4- Diamond bur + phosphoric acid + silane + dentin bonding agent5- Diamond bur + phosphoric acid + dentin bonding agent6- Diamond bur + phosphoric acid + composite activator + dentin bonding agentThen fresh composite resin was bonded to treated surfaces. Twelve specimens were also fabricated as control group with the same diameter but with the height twice as much as other specimens. All of the specimens were thermocycled prior to testing for shear bondstrength. The bond strength data were analyzed statistically using one way ANOVA test, t test and Duncan's grouping test.Results: One-way ANOVA indicated no significant difference between 7 groups (P=0.059. One-way ANOVA indicated significant difference between the three diamond bur groups (P=0.036. Silane had a significant effect on the repair bond

  8. The effect of time between curing and tea immersion on composite resin discoloration.

    Science.gov (United States)

    Esmaeili, Behnaz; Afkhami, Solaleh; Abolghasemzadeh, Faezeh

    2018-01-01

    One common cause for the replacement of a composite restoration is discoloration. This in vitro study evaluated the effect of tea solution on the discoloration of 3 types of composites at different timepoints after curing. For this study, 150 disc-shaped specimens of 3 types of composite resin-a nanohybrid (Filtek Z350), a microhybrid (Filtek Z250), and a microfilled material (Heliomolar)-were prepared. Specimens were randomly divided into 5 subgroups (n = 10) according to the type of composite and the time from curing to immersion in a tea solution (none [immersed immediately], 1 hour, 6 hours, 12 hours, or 24 hours postcuring). The color for all specimens was measured before and after immersion in tea. Color change (ΔE*) for all specimens was measured, and a ΔE* value of less than 3.3 was considered clinically acceptable. Analysis of variance and a post hoc Tukey test were used to analyze the data (α = 0.05). Immediately after curing, the levels of composite discoloration were deemed clinically acceptable (ΔE* composites, the greatest color change was found immediately after curing (P composite resin specimens was significantly greater than that of Heliomolar specimens (P composite group than in the Heliomolar group (P composites were not significantly different from each other (P > 0.05), except with 12-hour postcure immersion. The results suggest that patients should avoid the intake of staining foods or beverages for at least 12 hours after placement of a composite resin restoration, although this restriction may be reduced to 1 hour for microfilled composite resins.

  9. Randomized Clinical Trial of Indirect Resin Composite and Ceramic Veneers : Up to 3-year Follow-up

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Kalk, Warner; Ozcan, Mutlu

    2013-01-01

    Purpose: This randomized controlled split-mouth clinical trial evaluated the short-term survival rate of indirect resin composite and ceramic laminate veneers. Materials and Methods: A total of 10 patients (mean age: 48.6 years) received 46 indirect resin composite (Estenia; n = 23) and ceramic

  10. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

    Directory of Open Access Journals (Sweden)

    Shahin Kasraei

    2014-05-01

    Full Text Available Objectives Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30. The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683 and Lactobacillus (PTCC 1643 were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at 37℃ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05. The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05. There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus.

  11. Laminated composite based on polyester geotextile fibers and polyurethane resin for coating wood structures

    Directory of Open Access Journals (Sweden)

    Yuri Andrey Olivato Assagra

    2013-01-01

    Full Text Available New environmental laws have restricted the use of hardwood trees in overhead power lines structures, such as, poles and cross-arms, leading companies to seek alternative materials. Reforested wood coated with polymeric resin has been proposed as an environmental friendly solution, with improved electrical properties and protection against external agents, e.g. moisture, ultraviolet radiation and fungi. However, the single thin layer of resin, normally applied on such structures reveal to be inefficient, due to be easily damage during handling. In this paper, we present a composite coating, based on geotextile fibers and polyurethane resin that is suitable for wooden structures. Results obtained from two different tree species (from managed and reforested areas coated with the composite reveal that the additional layer not only provided a stronger adhesion between wood and ccoating layer but also a further improvement in the electrical properties and better protection against abrasion and moisture.

  12. Three-dimensional temperature field model of thermally decomposing resin composite irradiated by laser

    International Nuclear Information System (INIS)

    Chen Minsun; Jiang Houman; Liu Zejin

    2011-01-01

    Fundamental equations governing the temperature field of thermally decomposing resin composite irradiated by laser are derived from mass and energy conservation laws with the control Janume method. The thermal decomposition of resin is described by a multi-step model. An assumption is proposed that the flow of pyrolysis gas is one-dimensional, which makes it possible to consider the influence of pyrolysis gas convective transport and realize the closure of the three-dimensional model without introducing mechanical quantities. In view of the anisotropy of resin composite, expressions of the thermal conductivities of partially pyrolyzed material are deduced, as well as the computing formula for the laser absorption coefficient of partially pyrolyzed material. The energy conservation equation is consistent with reference under some simplifications. (authors)

  13. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Valdirene Aparecida [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Folgueras, Luiza de Castro; Candido, Geraldo Mauricio; Paula, Adriano Luiz de; Rezende, Mirabel Cerqueira, E-mail: mirabelmcr@iae.cta.br [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil). Div. de Materiais; Costa, Michelle Leali [Universidade Estadual Paulista Julio de Mesquita Filho (DMT/UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia

    2013-07-01

    Nanostructured polymer composites have opened up new perspectives for multifunctional materials. In particular, carbon nanotubes (CNTs) present potential applications in order to improve mechanical and electrical performance in composites with aerospace application. The combination of epoxy resin with multi walled carbon nanotubes results in a new functional material with enhanced electromagnetic properties. The objective of this work was the processing of radar absorbing materials based on formulations containing different quantities of carbon nanotubes in an epoxy resin matrix. To reach this objective the adequate concentration of CNTs in the resin matrix was determined. The processed structures were characterized by scanning electron microscopy, rheology, thermal and reflectivity in the frequency range of 8.2 to 12.4 GHz analyses. The microwave attenuation was up to 99.7%, using only 0.5% (w/w) of CNT, showing that these materials present advantages in performance associated with low additive concentrations (author)

  14. A Randomized 10-year Prospective Follow-up of Class II Nanohybrid and Conventional Hybrid Resin Composite Restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan Wv; Pallesen, Ulla

    2014-01-01

    Purpose: To evaluate the 10-year durability of a nanohybrid resin composite in Class II restorations in a randomized controlled intraindividual comparison with its conventional hybrid resin composite predecessor. Materials and Methods: Each of 52 participants received at least two Class II...... restorations that were as similar as possible. The cavities were chosen at random to be restored with a nanohybrid resin composite (Excite/Tetric EvoCeram (TEC); n = 61) and a conventional hybrid (Excite/Tetric Ceram (TC); n = 61). The restorations were evaluated with slightly modified USPHS criteria...... investigated resin composites. Conclusion: The nanohybrid and the conventional hybrid resin composite showed good clinical effectiveness in extensive Class II restorations during the 10-year study....

  15. Study of the chemical composition of the resinous exudate isolated from Heliotropium sclerocarpum and evaluation of the antioxidant properties of the phenolic compounds and the resin.

    Science.gov (United States)

    Modak, Brenda; Salina, Melissa; Rodilla, Jesús; Torres, René

    2009-11-12

    Heliotropium sclerocarpum Phil. (Heliotropiaceae) is a resinous bush that grows in the Atacama of northern Chile. The chemical composition of its resinous exudate was analyzed for the first time. One aromatic geranyl derivative: filifolinol (1), one flavanone: naringenin (2) and a new type of 3-oxo-2-arylbenzofuran derivative 3 were isolated and their structures were determined. The antioxidant activity of the phenolic compounds and resin was evaluated using the bleaching of DPPH radical method and expressed as fast reacting equivalents (FRE) and total reacting equivalents (TRE).

  16. Study of the Chemical Composition of the Resinous Exudate Isolated from Heliotropium Sclerocarpum and Evaluation of the Antioxidant Properties of the Phenolic Compounds and the Resin

    Directory of Open Access Journals (Sweden)

    René Torres

    2009-11-01

    Full Text Available Heliotropium sclerocarpum Phil. (Heliotropiaceae is a resinous bush that grows in the Atacama of northern Chile. The chemical composition of its resinous exudate was analyzed for the first time. One aromatic geranyl derivative: filifolinol (1, one flavanone: naringenin (2 and a new type of 3-oxo-2-arylbenzofuran derivative 3 were isolated and their structures were determined. The antioxidant activity of the phenolic compounds and resin was evaluated using the bleaching of DPPH radical method and expressed as fast reacting equivalents (FRE and total reacting equivalents (TRE.

  17. Interpenetrating network ceramic-resin composite dental restorative materials.

    Science.gov (United States)

    Swain, M V; Coldea, A; Bilkhair, A; Guess, P C

    2016-01-01

    This paper investigates the structure and some properties of resin infiltrated ceramic network structure materials suitable for CAD/CAM dental restorative applications. Initially the basis of interpenetrating network materials is defined along with placing them into a materials science perspective. This involves identifying potential advantages of such structures beyond that of the individual materials or simple mixing of the components. Observations from a number of recently published papers on this class of materials are summarized. These include the strength, fracture toughness, hardness and damage tolerance, namely to pointed and blunt (spherical) indentation as well as to burr adjustment. In addition a summary of recent results of crowns subjected to simulated clinical conditions using a chewing simulator are presented. These results are rationalized on the basis of existing theoretical considerations. The currently available ceramic-resin IPN material for clinical application is softer, exhibits comparable strength and fracture toughness but with substantial R-curve behavior, has lower E modulus and is more damage tolerant than existing glass-ceramic materials. Chewing simulation observations with crowns of this material indicate that it appears to be more resistant to sliding/impact induced cracking although its overall contact induced breakage load is modest. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Bond strength of a pit-and-fissure sealant associated to etch-and-rinse and self-etching adhesive systems to saliva-contaminated enamel: individual vs. simultaneous light curing.

    Science.gov (United States)

    Gomes-Silva, Jaciara Miranda; Torres, Carolina Paes; Contente, Marta Maria Martins Giamatei; Oliveira, Maria Angélica Hueb de Menezes; Palma-Dibb, Regina Guenka; Borsatto, Maria Cristina

    2008-01-01

    This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (alpha=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (+/-4.29); II-8.57 (+/-3.19); III-7.97 (+/-2.16); IV-12.56 (+/-3.11); V-11.45 (+/-3.77); and VI-7.47 (+/-1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.

  19. [Influences of composition on brush wear of composite resins. Influences of particle size and content of filler].

    Science.gov (United States)

    Yuasa, S

    1990-07-01

    The influences of the composition on abrasion resistance of composite resins were examined using various experimental composite resins which had various matrix resin, filler size and content. The abrasion test was conducted by the experimental toothbrush abrasion testing machine developed in our laboratory. Three series of heat-curing composite resins were tested. One series was made from a Bis-MPEPP or UDMA monomer, and a silica filler with an average particle size of 0.04, 1.9, 3.8, 4.3, 7.5, 13.8 and 14.1 microns. The filler content of this series was constant at 45 wt%. The second series contained a silica filler of 4.3 microns in a content ranging from 35 to 75 wt%. The third series contained a microfiller (0.04 microns) and macrofiller (4.3 microns) in total content of 45 wt%. In this series, the microfiller was gradually replaced by 5, 15, 25 and 45 wt% of the macrofiller. The results obtained for these three series indicated that the abrasion resistance of composite resins was controlled by the inorganic filler, mainly filler size and content. The abrasion loss did not vary with the difference of matrix resin. When the particle size of the filler was below about 5 microns, the abrasion resistance decreased markedly with the decrease in filler size. The composite resin which contained a 0.04 or 1.9 micron filler was less resistant to toothbrush wear than the unfilled matrix resin. However, the microfiller also contributed to abrasion resistance when used in combination with the macrofiller, although abrasion resistance decreased with the increase in the microfiller concentration. The increase of filler content clearly improved the abrasion resistance when used the macrofiller. The analysis of these results and SEM observations of the brushed surfaces of samples suggested that the toothbrush abrasion was three-body abrasion caused by the abrasive in the toothpaste, and affected by the difference in the particle size between abrasive and filler, and between

  20. Investigation of the photoluminescence properties of composite optical resins containing high lanthanide content

    International Nuclear Information System (INIS)

    Wang Dongmei; Wang Fuxiang; Peng Weixian

    2012-01-01

    Novel composite optical resins with high lanthanide content have been synthesized through a free radical copolymerization of methacrylic acid (MA), styrene (St) and Eu(DBM) 3 ·H 2 O nanocrystals. We characterized the structure, the thermal properties, dimensions and photoluminescence properties of Eu(DBM) 3 ·H 2 O nanocrystals. Our results indicated that the diameters of the Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. These materials exhibited characteristic europium ion luminescence. The europium-bearing nanocrystals and were then incorporated into the copolymer systems of MA/St and luminescence functional optical resins with high lanthanide content (50 wt%) were obtained. The combination of these particles and optical resins is facile because the diameter of Eu(DBM) 3 ·H 2 O is decreased. These copolymer-based optical resins not only possess good transparency and mechanical performance, but also exhibit an intense narrow band emission of lanthanide complexes and longer fluorescence lifetimes under UV excitation at room temperature. - Highlights: ► Novel composite optical resins with high lanthanide content have been synthesized. ► The Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. ► Fluorescent resins with high lanthanide content (50 wt%) were obtained. ► Resins exhibit intense emission of lanthanide and longer fluorescence lifetimes. ► Variety properties of Eu(DBM) 3 ·H 2 O nanocrystals were characterized.

  1. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    Science.gov (United States)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  2. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature.

    Science.gov (United States)

    Spitznagel, Frank A; Horvath, Sebastian D; Guess, Petra C; Blatz, Markus B

    2014-01-01

    Resin bonding is essential for clinical longevity of indirect restorations. Especially in light of the increasing popularity of computer-aided design/computer-aided manufacturing-fabricated indirect restorations, there is a need to assess optimal bonding protocols for new ceramic/polymer materials and indirect composites. The aim of this article was to review and assess the current scientific evidence on the resin bond to indirect composite and new ceramic/polymer materials. An electronic PubMed database search was conducted from 1966 to September 2013 for in vitro studies pertaining the resin bond to indirect composite and new ceramic/polymer materials. The search revealed 198 titles. Full-text screening was carried out for 43 studies, yielding 18 relevant articles that complied with inclusion criteria. No relevant studies could be identified regarding new ceramic/polymer materials. Most common surface treatments are aluminum-oxide air-abrasion, silane treatment, and hydrofluoric acid-etching for indirect composite restoration. Self-adhesive cements achieve lower bond strengths in comparison with etch-and-rinse systems. Thermocycling has a greater impact on bonding behavior than water storage. Air-particle abrasion and additional silane treatment should be applied to enhance the resin bond to laboratory-processed composites. However, there is an urgent need for in vitro studies that evaluate the bond strength to new ceramic/polymer materials. This article reviews the available dental literature on resin bond of laboratory composites and gives scientifically based guidance for their successful placement. Furthermore, this review demonstrated that future research for new ceramic/polymer materials is required. © 2014 Wiley Periodicals, Inc.

  3. Effect of Ultrasonic Versus Manual Cementation on the Fracture Strength of Resin Composite Laminates

    NARCIS (Netherlands)

    Ozcan, M.; Mese, A.

    2009-01-01

    This study evaluated the effect of conventional versus ultrasonic cementation techniques on the fracture strength of resin composite laminates. In addition, the failure modes were assessed. Window-type preparations I mm above the cemento-enamel junction were made on intact human maxillary central

  4. A medicated polycarboxylate cement to prevent complications in composite resin therapy

    International Nuclear Information System (INIS)

    Okamoto, Y.; Shintani, H.; Yamaki, M.

    1990-01-01

    Preparative treatment is the preferred method to protect the dentin and pulp from complications in composite resin therapy. This study investigated the in vivo effects of the polycarboxylate cement containing zinc fluoride and tannic acid in composite resin restorations. Scanning electron micrographs established that the composite resin failed to contact the axial wall. The gaps varied from 10 to 60 microns. However, this polycarboxylate cement was shown to provide excellent adaptation to dentin when used as a base and its chemical adhesion allowed it to make close contact with the unetched dentin. The newly developed electron probe x-ray microanalyzer revealed that the in vivo penetration of fluoride and zinc occurred through the dentinal tubules. When this polycarboxylate cement was used, the orifices of dentinal tubules were partially occluded, possibly with the smear layer fixed by tannic acid. In addition, by releasing the components, this polycarboxylate cement adds acid resistance to dentin and increases the resistance of dentin collagen to proteolytic enzymes. As such this polycarboxylate cement offers advantages as a base to composite resin therapy

  5. A review of devices used for photocuring resin-based composites.

    Science.gov (United States)

    Small, B W

    2001-01-01

    Composite resin shrinks up to 5% by volume upon curing. This shrinkage and the associated contraction stress remain the two most significant clinical problems with curing resin composite restorations. Many patients continue to experience sensitivity following placement of direct composites and seating of indirect restorations utilizing resin cements. Unfortunately, some claims made by manufacturers or certain clinicians that promise to alleviate these problems are made from a marketing standpoint, with no refereed literature to support those claims. Even within the literature, contradictory results have been reported, perpetuating the confusion. It is of utmost importance that all practicing dentists be aware of the various types of curing systems available and the advantages and disadvantages of each system. It is the opinion of the author that no existing system will alleviate every problem. Until new composite systems are perfected, such as the cyclopolymerizable resins and expanding polymers, we will continue to have shrinkage and stress. Be aware of false claims, read and interpret the literature, and, most importantly, do what is best for your patients.

  6. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

    Directory of Open Access Journals (Sweden)

    Da Hye Kim

    2017-02-01

    Full Text Available Objectives Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans on the dental composite resins coated with three commercial surface sealants. Materials and Methods Composite resin (Filtek Z250 discs (8 mm in diameter, 1 mm in thickness were fabricated in a mold covered with a Mylar strip (control. In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP. The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9. Results Group OG achieved the lowest water contact angle among all groups tested (p 0.05 or significantly lower (group OG, p < 0.001 bacterial adhesion when compared with the control group. Conclusions The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

  7. Comparison of proximal contacts of class II resin composite restorations in vitro.

    NARCIS (Netherlands)

    Loomans, B.A.C.; Opdam, N.J.M.; Roeters, F.J.M.; Bronkhorst, E.M.; Burgersdijk, R.C.W.

    2006-01-01

    This study investigated the tightness of the proximal contact when placing posterior resin composite restorations with circumferential and sectional matrix systems in an in vitro model using a special measuring device (Tooth Pressure Meter). A manikin model was used with an artificial first molar in

  8. Evaluation of proximal contact tightness of Class II resin composite restorations.

    NARCIS (Netherlands)

    Saber, M.H.; Loomans, B.A.C.; Zohairy, A. El; Dorfer, C.E.; El-Badrawy, W.

    2010-01-01

    OBJECTIVE: The objective of the current study was to compare in-vitro the proximal contact tightness (PCT) of Class II resin composite restorations (RCR) placed with different established and new placement techniques. METHODS: 105 ivorine lower left first molars with standardized MO cavities were

  9. Ion release from a composite resin after exposure to different 10% carbamide peroxide bleaching agents

    Directory of Open Access Journals (Sweden)

    Renata Plá Rizzolo Bueno

    2012-06-01

    Full Text Available OBJECTIVE: This in vitro study evaluated the influence of two 10% carbamide peroxide bleaching agents - a commercial product (Opalescence PF; Ultradent Products, Inc. and a bleaching agent prepared in a compounding pharmacy - on the chemical degradation of a light-activated composite resin by determining its release of ions before and after exposure to the agents. MATERIAL AND METHODS: Thirty composite resin (Filtek Z250; 3M/ESPE samples were divided into three groups: group I (exposed to Opalescence PF commercial bleaching agent, group II (exposed to a compounded bleaching agent and group III (control - Milli-Q water. After 14 days of exposure, with a protocol of 8 h of daily exposure to the bleaching agents and 16 h of immersion in Milli-Q water, the analysis of ion release was carried out using a HP 8453 spectrophotometer. The values were analyzed statistically by ANOVA, Tukey's test and the paired t-tests. The significance level was set at 5%. RESULTS: After 14 days of the experiment, statistically significant difference was found between group II and groups I and III, with greater ion release from the composite resin in group II. CONCLUSIONS: The compounded bleaching agent had a more aggressive effect on the composite resin after 14 days of exposure than the commercial product and the control (no bleaching.

  10. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    Science.gov (United States)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  11. Effect of Home Bleaching on Microleakage of Fiber-reinforced and Particle-filled Composite Resins

    Directory of Open Access Journals (Sweden)

    Farahnaz Sharafeddin

    2013-12-01

    Full Text Available Background and aims. Bleaching may exert some negative effects on existing composite resin restorations. The aim of this study was to evaluate the effect of home bleaching on microleakage of fiber-reinforced and particle-filled composite resins. Materials and methods. Ninety class V cavities (1.5×2×3 mm were prepared on the buccal surfaces of 90 bovine teeth. The teeth were randomly divided into 6 groups (n=15 and restored as follows: Groups 1 and 2 with Z100, groups 3 and 4 with Z250, and groups 5 and 6 with Nulite F composite resins. All the specimens were thermocycled. Groups 1, 3 and 5 were selected as control groups (without bleaching and the experimental groups 2, 4 and 6 were bleached with 22% carbamide peroxide gel. All the samples were immersed in 2% basic fuchsin dye for 24 hours and then sectioned longitudinally. Dye penetration was evaluated under a stereomicroscope (×25, at both the gingival and incisal margins. Data were analyzed using Kruskal-Wallis, Mann-Whitney and Wilcoxon tests (α=0.05. Results. Statistical analyses revealed that bleaching gel increased microleakage only at gingival margins with Z250 (P=0.007. Moreover, the control groups showed a statistically significant difference in microleakage at their gingival margins. Nulite F had the maximum microleakage while Z250 showed the minimum (P=0.006. Conclusion. Microleakage of home-bleached restorations might be related to the type of composite resin used.

  12. Study of a composite from reactive blending of methylol urea resin ...

    African Journals Online (AJOL)

    This study was designed to study some physical properties of a composite derivable from reactive blending of methylol urea resin (MUR) with natural rubber (NR). Formaldehyde emission, decreased with increase in NR concentration in the blend. Elongation at break and viscosity recorded an initial increase but gradually ...

  13. Surface Roughness of Composite Resins after Simulated Toothbrushing with Different Dentifrices.

    Science.gov (United States)

    Monteiro, Bruna; Spohr, Ana Maria

    2015-07-01

    The aim of the study was to evaluate, in vitro, the surface roughness of two composite resins submitted to simulated toothbrushing with three different dentifrices. Totally, 36 samples of Z350XT and 36 samples of Empress Direct were built and randomly divided into three groups (n = 12) according to the dentifrice used (Oral-B Pro-Health Whitening [OBW], Colgate Sensitive Pro-Relief [CS], Colgate Total Clean Mint 12 [CT12]). The samples were submitted to 5,000, 10,000 or 20,000 cycles of simulated toothbrushing. After each simulated period, the surface roughness of the samples was measured using a roughness tester. According to three-way analysis of variance, dentifrice (P = 0.044) and brushing time (P = 0.000) were significant. The composite resin was not significant (P = 0.381) and the interaction among the factors was not significant (P > 0.05). The mean values of the surface roughness (µm) followed by the same letter represent no statistical difference by Tukey's post-hoc test (P composite resins. The dentifrice OBW caused a higher surface roughness in both composite resins.

  14. Correlating cytotoxicity to elution behaviors of composite resins in term of curing kinetic.

    Science.gov (United States)

    Meng, Junquan; Yang, Huichuan; Cao, Man; Li, Lei; Cai, Qing

    2017-09-01

    Cytotoxicity of photocurable composite resins is a key issue for their safe use in dental restoration. Curing kinetic and elution behaviors of the composite resin would have decisive effects on its cytotoxicity. In this study, composite resins composed of bisphenol-glycidyl dimethacrylate (Bis-GMA), triethyleneglycol dimethacrylate (TEGDMA), camphorquinone (CQ), N,N-dimethylaminoethyl methacrylate (DMAEMA) and barium glass powders were prepared by setting the photoinitiators CQ/DMAEMA at 0.5wt%, 1wt% or 3wt% of the total weight of Bis-GMA/TEGDMA. The ratio of Bis-GMA/TEGDMA was 6:4, the ratio of CQ/DMAEMA was 1:1, and the incorporated inorganic powder was 75wt%. Then, curing kinetics were studied by using real-time Fourier transform infrared spectroscopy (FTIR) and photo-DSC (differential scanning calorimeter). Elution behaviors in both ethanol solution and deionized water were monitored by using liquid chromatogram/mass spectrometry (LC/MS). Cytotoxicity was evaluated by in vitro culture of L929 fibroblasts. Finally, they were all analyzed and correlated in terms of initiator contents. It was found that the commonly used 0.5wt% of photoinitiators was somewhat insufficient in obtaining composite resin with low cytotoxicity. Copyright © 2017. Published by Elsevier B.V.

  15. Endodontic complications in teeth with vital pulps restored with composite resins: a systematic review.

    Science.gov (United States)

    Dawson, V S; Amjad, S; Fransson, H

    2015-07-01

    Composite resin is used extensively for restoration of teeth with vital pulps. Although cell culture studies have disclosed harmful effects on pulpal cells, any untoward clinical effects, manifest as adverse pulpal responses, have yet to be determined. This study comprises a systematic review, designed to address the question of whether the risk of endodontic complications is greater with composite resin restorations than with other restorative materials, such as amalgam. The study methodology involved (i) formulation of the research question, (ii) construction and conduct of an extensive literature search with (iii) interpretation and assessment of the retrieved literature. A search of the medical database PubMed was complemented with a search of the Controlled Trials Register (CENTRAL). The initial search yielded 1043 publications, the abstracts of which were read independently by the authors. After additional searches, 10 studies were included in the review. In all the included studies, the level of evidence was assessed as low. No conclusions could therefore be drawn. The included studies reported few, if any, endodontic complications. Little or no differences emerged between teeth restored with composite resins and those restored with amalgam. To determine whether composite resin restorations of teeth with vital pulps are associated with an increased risk for development of endodontic complications such as apical periodontitis, further evidence is needed, from well-constructed studies with a large number of participants. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. The effect of chemical composition and granulation of Fe - based fillers on properties of metal resinous composite

    International Nuclear Information System (INIS)

    Janecki, J.; Dasiewicz, J.; Pawelec, Z.

    2000-01-01

    In this paper the authors present metal-resinous composites with Fe based fillers of various element constitution and granulation. The analysis of influence of filler type on coefficient of linear thermal expansion of composite materials was performed. Friction and wear tests (composite-bronze and composite-steel pairs) were carried out. It was stated that the thinner granulation of main filler has a positive effect on coefficient of linear thermal expansion and friction/wear characteristics. The presence of copper, nickel and molybdenum in the filler is beneficial for some properties of the composite. (author)

  17. Do the monomers release from the composite resins after artificial aging?

    Science.gov (United States)

    Tokay, Ugur; Koyuturk, Alp Erdin; Aksoy, Abdurrahman; Ozmen, Bilal

    2015-04-01

    The aim of this study is to measure the effect of thermal cycling on the amount of monomer released from three different composite materials by HPLC analysis method. Three different composite materials, inlay composite, posterior composite and micro-hybrid composite were used. Sixty cylinder specimens each with a dimension of approximately 1 cm width and 3 mm depth, were prepared before experiments were carried out. Inlay composite material was polymerized according to manufacturers' instructions. Thermal cycling device was used to simulate thermal differences which occur in the mouth media. Monomers were analyzed using HPLC technic after thermal cycling process. The amount of ethoxylated Bis-GMA and urethane dimethacrylate (UDMA) in inlay composite material, the amount of ethoxylated Bis-GMA in posterior composite material, the amount of ethoxylated Bis-GMA and triethyleneglycol dimethacrylate (TEGDMA) in micro-hybrid composite material were investigated. Monomer release of thermal cycles levels showed a linear increase in UDMA and TEGDMA (P < 0.05). In terms of thermal cycles levels, Bis-EMA released from posterior composite showed a cubic change (P < 0.001). It was observed that use of additional polymerization processes might have positive effect on the decrease of residual monomer. In the light of the results, we suggest that indirect composite resins have more outstanding features than direct composite resins in terms of biocompatibility. © 2015 Wiley Periodicals, Inc.

  18. Marginal Gap Formation in Approximal "Bulk Fill" Resin Composite Restorations After Artificial Ageing.

    Science.gov (United States)

    Peutzfeldt, A; Mühlebach, S; Lussi, A; Flury, S

    The aim of this in vitro study was to investigate the marginal gap formation of a packable "regular" resin composite (Filtek Supreme XTE [3M ESPE]) and two flowable "bulk fill" resin composites (Filtek Bulk Fill [3M ESPE] and SDR [DENTSPLY DeTrey]) along the approximal margins of Class II restorations. In each of 39 extracted human molars (n=13 per resin composite), mesial and distal Class II cavities were prepared, placing the gingival margins below the cemento-enamel junction. The cavities were restored with the adhesive system OptiBond FL (Kerr) and one of the three resin composites. After restoration, each molar was cut in half in the oro-vestibular direction between the two restorations, resulting in two specimens per molar. Polyvinylsiloxane impressions were taken and "baseline" replicas were produced. The specimens were then divided into two groups: At the beginning of each month over the course of six months' tap water storage (37°C), one specimen per molar was subjected to mechanical toothbrushing, whereas the other was subjected to thermocycling. After artificial ageing, "final" replicas were produced. Baseline and final replicas were examined under the scanning electron microscope (SEM), and the SEM micrographs were used to determine the percentage of marginal gap formation in enamel or dentin. Paramarginal gaps were registered. The percentages of marginal gap formation were statistically analyzed with a nonparametric analysis of variance followed by Wilcoxon-Mann-Whitney tests and Wilcoxon signed rank tests, and all p-values were corrected with the Bonferroni-Holm adjustment for multiple testing (significance level: α=0.05). Paramarginal gaps were analyzed descriptively. In enamel, significantly lower marginal gap formation was found for Filtek Supreme XTE compared to Filtek Bulk Fill ( p=0.0052) and SDR ( p=0.0289), with no significant difference between Filtek Bulk Fill and SDR ( p=0.4072). In dentin, significantly lower marginal gap formation was

  19. Determination of unreacted monomers in restorative dental resins based on dimethacrylate by NMR hydrogen

    International Nuclear Information System (INIS)

    Correa, Ivo Carlos; Miranda Junior, Walter G.; Tavares, Maria Ines B.

    2001-01-01

    The presence of unreacted monomers after photo-activation of dental composites causes mechanical and biological properties to decrease and could be detected by NMR analysis. The aim of this study was to evaluate the percentage of leachable monomers of light-cured composites under the effect of variations of exposure time of photo activation by nuclear magnetic resonance of hydrogen in solution (NMR 1 H). The composite resins tested Z250 and Fill Magic obtained similar values of unreacted monomers (%) at photo curing time suggested by the manufacturer and values were also lower than Durafill and A110 concentrations. From the NMR results, one day extractable time was efficient to quantify the amount of residual monomers in the dental composites tested, unless for Durafill composite. (author)

  20. Structure-to-property relationships in addition cured polymers. II - Resin Tg and composite initial mechanical properties of norbornenyl cured polyimide resins

    Science.gov (United States)

    Alston, William B.

    1986-01-01

    PRM (polymerization of monomeric reactants) methodology was used to prepare thirty different polyimide oligomeric resins. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on glass transition temperature (Tg) of the cured/postcured resins. An almost linear correlation of Tg versus molecular distance between the crosslinks was observed. An attempt was made to correlate Tg with initial mechanical properties (flexural strength and interlaminar shear strength) of unidirectional graphite fiber composites prepared with these resins. However, the scatter in mechanical strength data prevented obtaining as clear a correlation as was observed for the structural modification/crosslink distance versus Tg. Instead, only a range of composite mechanical properties was obtained at the test temperatures studied (room temperature, 288 and 316 C). Perhaps more importantly, what did become apparent during the attempted correlation study was: (1) that PMR methodology could be used to prepare composites from resins that contain a wide variety of monomer modifications, and (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins selected were melt processable.

  1. Thermal, spectral, and surface properties of LED light-polymerized bulk fill resin composites.

    Science.gov (United States)

    Pişkin, Mehmet Burçin; Atalı, Pınar Yılmaz; Figen, Aysel Kantürk

    2015-02-01

    The aim of this study was to evaluate the thermal, spectral, and surface properties of four different bulk fill materials – SureFil SDR (SDR, Dentsplay DETREY), QuixFil (QF, Dentsplay DETREY), X-tra base (XB, Voco) X-tra fil (XF, Voco) – polymerized by light-emitting diode (LED). Resin matrix, filler type, size and amount, and photoinitiator types influence the degree of conversion. LED-cured bulk fill composites achieved sufficient polymerization. Scanning electron microscope (SEM) analysis revealed different patterns of surface roughness, depending on the composite material. Bulk fill materials showed surface characteristics similar to those of nanohybrid composites. Based on the thermal analysis results, glass transition (T(g)) and initial degradation (T(i)) temperatures changed depending on the bulk fill resin composites.

  2. Current-Voltage Characteristics of the Composites Based on Epoxy Resin and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2015-01-01

    Full Text Available Polymer composites based on epoxy resin were prepared. Multiwalled carbon nanotubes synthesized on iron-cobalt catalyst were applied as a filler in a polymer matrix. Chlorine or hydroxyl groups were incorporated on the carbon nanotubes surface via chlorination or chlorination followed by hydroxylation. The effect of functionalized carbon nanotubes on the epoxy resin matrix is discussed in terms of the state of CNTs dispersion in composites as well as electrical properties. For the obtained materials current-voltage characteristics were determined. They had a nonlinear character and were well described by an exponential-type equation. For all the obtained materials the percolation threshold occurred at a concentration of about 1 wt%. At a higher filler concentration >2 wt%, better conductivity was demonstrated by polymer composites with raw carbon nanotubes. At a lower filler concentration <2 wt%, higher values of electrical conductivity were obtained for polymer composites with modified carbon nanotubes.

  3. Optimal Design for Hybrid Ratio of Carbon/Basalt Hybrid Fiber Reinforced Resin Matrix Composites

    Directory of Open Access Journals (Sweden)

    XU Hong

    2017-08-01

    Full Text Available The optimum hybrid ratio range of carbon/basalt hybrid fiber reinforced resin composites was studied. Hybrid fiber composites with nine different hybrid ratios were prepared before tensile test.According to the structural features of plain weave, the unit cell's performance parameters were calculated. Finite element model was established by using SHELL181 in ANSYS. The simulated values of the sample stiffness in the model were approximately similar to the experimental ones. The stress nephogram shows that there is a critical hybrid ratio which divides the failure mechanism of HFRP into single failure state and multiple failure state. The tensile modulus, strength and limit tensile strain of HFRP with 45% resin are simulated by finite element method. The result shows that the tensile modulus of HFRP with 60% hybrid ratio increases by 93.4% compared with basalt fiber composites (BFRP, and the limit tensile strain increases by 11.3% compared with carbon fiber composites(CFRP.

  4. EFFECT OF SURFACE SEALING ON STAIN RESISTANCE OF A NANO-HYBRID RESIN COMPOSITE*

    Directory of Open Access Journals (Sweden)

    Günçe SAYGI

    2015-04-01

    Full Text Available Purpose: This study investigated the influence of sealant application on stain resistance of a nanohybrid resin composite compared to the efficacy of a bonding agent used as a surface sealant on prolonging color stability of the resin composite. Materials and Methods: 28 disc-shaped materials were prepared from a nano-hybrid resin composite Filtek Z550 and assigned to four groups: G1K: nonsealed; G2:Adper Single Bond; G3: Fortify ; G4: Biscover LV. After 24 h storage in distilled water at 37˚C, all specimens were subjected to thermocycling and immersed into coffee solution. Color measurements were performed using spectrophotometer (VITA Easyshade; Vident according to CIEL*a*b* system. Results: Color change values were significantly different among the groups in each evaluation period except for after thermocycling (p<0.05. For 7 days evaluation period, the difference between G3 and G4 group was statistically significant while G4 exhibited statistically significant differences (p<0.05 and p<0.0001 respectively compared to control (G1 in 14 day whereas no significant difference was found between GI and GII in 28-day evaluation period. However, ΔE values of sealed specimens (GIII, GIV differed significantly from non-sealed (GI specimens after 28 days of immersion in coffee solution (p<0.05 and p<0.0001 respectively. Conclusion: It may be concluded that using a bonding agent as a surface sealant does not increase stain resistance of resin composites of the sealants evaluated. Biscover LV showed the highest efficacy to prolong color stability of the resin composite.

  5. Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.

    Science.gov (United States)

    Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco

    2007-08-01

    Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.

  6. A new methodology for fluorescence analysis of composite resins used in anterior direct restorations.

    Science.gov (United States)

    de Lima, Liliane Motta; Abreu, Jessica Dantas; Cohen-Carneiro, Flavia; Regalado, Diego Ferreira; Pontes, Danielson Guedes

    2015-01-01

    The aim of this study was to use a new methodology to evaluate the fluorescence of composite resins for direct restorations. Microhybrid (group 1, Amelogen; group 2, Opallis; group 3, Filtek Z250) and nanohybrid (group 4, Filtek Z350 XT; group 5, Brilliant NG; group 6, Evolu-X) composite resins were analyzed in this study. A prefabricated matrix was used to prepare 60 specimens of 7.0 × 3.0 mm (n = 10 per group); the composite resin discs were prepared in 2 increments (1.5 mm each) and photocured for 20 seconds. To establish a control group of natural teeth, 10 maxillary central incisor crowns were horizontally sectioned to create 10 discs of dentin and enamel tissues with the same dimensions as the composite resin specimens. The specimens were placed in a box with ultraviolet light, and photographs were taken. Aperture 3.0 software was used to quantify the central portion of the image of each specimen in shades of red (R), green (G), and blue (B) of the RGB color space. The brighter the B shade in the evaluated area of the image, the greater the fluorescence shown by the specimen. One-way analysis of variance revealed significant differences between the groups. The fluorescence achieved in group 1 was statistically similar to that of the control group and significantly different from those of the other groups (Bonferroni test). Groups 3 and 4 had the lowest fluorescence values, which were significantly different from those of the other groups. According to the results of this study, neither the size nor the amount of inorganic particles in the evaluated composite resin materials predicts if the material will exhibit good fluorescence.

  7. Polymer-inorganic composite resins for recovery of radioactive cesium from acidic media

    International Nuclear Information System (INIS)

    Park, J.I.; Kim, J.S.; Jo, A.; Jang, E.; Park, Y.J.

    2014-01-01

    In this work, our objectives are as follow: i) the development of a method to produce polymer-ammonium molybdophosphate composite resins with the size range ideal for column operations, ii) the preparation of a different type of polymer-AMP granules, other than polyacrylonitrile, with good physical and chemical stability, and iii) the investigation of sorption and recovery properties of the composite potentially useful for radioactive cesium. (author)

  8. Radiometric determinations of linear mass, resin levels and density of composite materials

    International Nuclear Information System (INIS)

    Boutaine, J.L.; Pintena, J.; Tanguy, J.C.

    1978-01-01

    A description is given of the principle, characteristics and performances of a gamma back-scattering gauge developed in cooperation between the CEA and SNPE. This instrument allows for on-line inspection of the linear mass and resin level of strips of composite materials whilst being produced. The industrial application involved boron, carbon and 'Kevlar' fibres. The performance of beta and gamma transmission gauges are also given for inspecting the density of panels and dense composite materials [fr

  9. High performance thermoplastics - A review of neat resin and composite properties

    Science.gov (United States)

    Johnston, Norman J.; Hergenrother, Paul M.

    1987-01-01

    A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness.

  10. Lessons Learned in the Processing of Polycyanurate Resin Composites

    National Research Council Canada - National Science Library

    Zaldivar, R

    2002-01-01

    .... Composites using a polycyanurate matrix are superior to those with epoxy matrices due to their increased toughness and dimensional stability, lower moisture absorption, reduced outgassing, and higher...

  11. Damage Tolerance of Resin Transfer Molded Composite Sandwich Constructions

    National Research Council Canada - National Science Library

    Vaidya, U

    1999-01-01

    .... The sandwich composite concepts considered in this study possessed the feasibility to improve the transverse stiffness, provide enhanced damage resistance/tolerance to impact and functionality...

  12. Damage analysis of fiber reinforced resin matrix composites irradiated by CW laser

    International Nuclear Information System (INIS)

    Wan Hong; Hu Kaiwei; Mu Jingyang; Bai Shuxin

    2008-01-01

    In this paper, the damage modes of the carbon fiber and the glass fiber reinforced epoxy or bakelite resin matrix composites irradiated by CW laser under different power densities were analyzed, and the changes of the microstructure and the tensile strength of the composites were also researched. When the resin matrix composites were radiated at a power density more than 0.1 kW/cm 2 , the matrix would be decomposed and the tensile properties of the radiated samples were lost over 30% while the carbon fiber hardly damaged and the glass fiber melted. When the power density of the laser was raised to 1 kW/cm 2 , the matrix burned violently and the carbon fiber cloth began to split with some carbon fiber being fractured, therefore, the fracture strength of the radiated sample lost over 80%. The higher the power density of radiation was, the more serious the damage of the sample was. It was also found that the difference of the matrixes had little effect on the damage extent of the composites. The influence of the radiation density on the temperature of the radiated surface of the carbon/resin composite was numerically calculated by ANSYS finite element software and the calculation results coincided with the damage mode of the radiated composites. (authors)

  13. Effects of polishing on surface roughness, gloss, and color of resin composites.

    Science.gov (United States)

    Hosoya, Yumiko; Shiraishi, Takanobu; Odatsu, Tetsuro; Nagafuji, Junichi; Kotaku, Mayumi; Miyazaki, Masashi; Powers, John M

    2011-09-01

    This study evaluated the effects of polishing on surface roughness, gloss, and color of regular, opaque, and enamel shades for each of three resin composites. Two-mm-thick resin disks made with Estelite Σ Quick, Clearfil Majesty, and Beautifil II were final polished with 180-, 1000-, and 3000-grit silicon carbide paper. Surface roughness, gloss, and color were measured one week after curing. Estelite Σ Quick had significantly lower roughness values and significantly higher gloss values as compared with Clearfil Majesty and Beautifil II. The effects of surface roughness and gloss on color (L*a*b*) differed among resin composites and by shade. Correlation coefficients between surface roughness and L*a*b* color factors were generally high for Clearfil Majesty, partially high (i.e., between roughness and L*) for Beautifil II, and low for Estelite Σ Quick. Correlation coefficients between gloss and L*a*b* color parameters were generally high for Beautifil II and low for Estelite Σ Quick and Clearfil Majesty. However, for all resin composites, the values of the color differences between 3000-grit and 180-grit polishing groups for all shades were imperceptible by the naked eye.

  14. Silorane- and high filled-based"low-shrinkage" resin composites: shrinkage, flexural strength and modulus

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Galvão Arrais

    2013-04-01

    Full Text Available This study compared the volumetric shrinkage (VS, flexural strength (FS and flexural modulus (FM properties of the low-shrinkage resin composite Aelite LS (Bisco to those of Filtek LS (3M ESPE and two regular dimethacrylate-based resin composites, the microfilled Heliomolar (Ivoclar Vivadent and the microhybrid Aelite Universal (Bisco. The composites (n = 5 were placed on the Teflon pedestal of a video-imaging device, and VS was recorded every minute for 5 min after 40 s of light exposure. For the FS and FM tests, resin discs (0.6 mm in thickness and 6.0 mm in diameter were obtained (n = 12 and submitted to a piston-ring biaxial test in a universal testing machine. VS, FS, and FM data were submitted to two-way repeated measures and one-way ANOVA, respectively, followed by Tukey's post-hoc test (a = 5%. Filtek LS showed lower VS than did Aelite LS, which in turn showed lower shrinkage than did the other composites. Aelite Universal and Filtek LS exhibited higher FS than did Heliomolar and Aelite LS, both of which exhibited the highest FM. No significant difference in FM was noted between Filtek LS and Aelite Universal, while Heliomolar exhibited the lowest values. Aelite LS was not as effective as Filtek LS regarding shrinkage, although both low-shrinkage composites showed lower VS than did the other composites. Only Filtek LS exhibited FS and FM comparable to those of the regular microhybrid dimethacrylate-based resin composite.

  15. Do Dental Resin Composites Accumulate More Oral Biofilms and Plaque than Amalgam and Glass Ionomer Materials?

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-11-01

    Full Text Available A long-time drawback of dental composites is that they accumulate more biofilms and plaques than amalgam and glass ionomer restorative materials. It would be highly desirable to develop a new composite with reduced biofilm growth, while avoiding the non-esthetics of amalgam and low strength of glass ionomer. The objectives of this study were to: (1 develop a protein-repellent composite with reduced biofilms matching amalgam and glass ionomer for the first time; and (2 investigate their protein adsorption, biofilms, and mechanical properties. Five materials were tested: A new composite containing 3% of protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC; the composite with 0% MPC as control; commercial composite control; dental amalgam; resin-modified glass ionomer (RMGI. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU, and lactic acid production. Composite with 3% MPC had flexural strength similar to those with 0% MPC and commercial composite control (p > 0.1, and much greater than RMGI (p < 0.05. Composite with 3% MPC had protein adsorption that was only 1/10 that of control composites (p < 0.05. Composite with 3% MPC had biofilm CFU and lactic acid much lower than control composites (p < 0.05. Biofilm growth, metabolic activity and lactic acid on the new composite with 3% MPC were reduced to the low level of amalgam and RMGI (p > 0.1. In conclusion, a new protein-repellent dental resin composite reduced oral biofilm growth and acid production to the low levels of non-esthetic amalgam and RMGI for the first time. The long-held conclusion that dental composites accumulate more biofilms than amalgam and glass ionomer is no longer true. The novel composite is promising to finally overcome the major biofilm-accumulation drawback of dental composites in order to reduce biofilm acids and secondary caries.

  16. Effect of universal adhesive etching modes on bond strength to dual-polymerizing composite resins.

    Science.gov (United States)

    Michaud, Pierre-Luc; Brown, Matthew

    2018-04-01

    Information is lacking as to the effect on bond strength of the etching modes of universal adhesives when they are used to bond dual-polymerizing composite resins to dentin. The purpose of this in vitro study was to investigate the bonding of dual-polymerizing foundation composite resins to dentin when universal bonding agents are used in self-etch or etch-and-rinse modes. Sixty caries-free, extracted third molar teeth were sectioned transversely in the apical third of the crown and allocated to 12 groups (n=5). Three different bonding agents (Scotchbond Universal, OptiBond XTR, All-Bond Universal) were used to bond 2 different dual-polymerizing composite resins (CompCore AF or CoreFlo DC) to dentin, using 2 different etching approaches (etch-and-rinse or self-etch). The specimens were sectioned into sticks (1×1×8 mm) with a precision saw. The bond strength of the specimens was tested under microtensile force at a crosshead speed of 0.5 mm/min. The data were analyzed using a 3-way ANOVA, a Games-Howell post hoc comparisons model, and Student t tests with Bonferroni corrections (α=.05). In the overall model, the composite