WorldWideScience

Sample records for light photocatalytic performance

  1. Enhanced visible-light-driven photocatalytic performance of porous graphitic carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Fei, E-mail: feichang@usst.edu.cn [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Li, Chenlu; Luo, Jieru; Xie, Yunchao; Deng, Baoqing [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Hu, Xuefeng, E-mail: xfhu@yic.ac.cn [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003 (China)

    2015-12-15

    Graphical abstract: - Highlights: • Porous g-C{sub 3}N{sub 4} samples were fabricated by a facile pyrolysis method. • As-prepared porous g-C{sub 3}N{sub 4} samples showed remarkably enhanced photocatalytic performance. • Holes and radicals ·O{sub 2}{sup −} exerted dominant roles on the photocatalytic process. - Abstract: In this study, a series of porous graphitic carbon nitride (g-C{sub 3}N{sub 4}) materials were fabricated through a direct pyrolysis of protonated melamine by nitric acid solution. These as-prepared porous samples were characterized by a collection of analytical techniques. It was found that a proper concentration of nitric acid solution involved facilitated to generate samples in tube-like morphology with numerous pores, identified with X-ray diffraction patterns, FT-IR spectra, SEM, TEM, and BET measurements. These g-C{sub 3}N{sub 4} samples were subjected to photocatalytic degradation of dye Rhodamine B (RhB) in aqueous under visible-light irradiation. Under identical conditions, those porous g-C{sub 3}N{sub 4} samples showed significantly improved catalytic performance in comparison with the sample prepared without the introduction of nitric acid. In particularly, the best candidate, sample M1:1, showed an apparent reaction rate nearly 6.2 times that of the unmodified counterpart. The enhancement of photocatalytic performance could be attributed to the favorable porous structure with the enlarged specific surface area and the suitable electronic structure as well. In addition, ESR measurements were conducted for the sake of proposing a photocatalytic degradation mechanism.

  2. Visible-light-induced Ag/BiVO4 semiconductor with enhanced photocatalytic and antibacterial performance

    Science.gov (United States)

    Regmi, Chhabilal; Dhakal, Dipesh; Wohn Lee, Soo

    2018-02-01

    An Ag-loaded BiVO4 visible-light-driven photocatalyst was synthesized by the microwave hydrothermal method followed by photodeposition. The photocatalytic performance of the synthesized samples was evaluated on a mixed dye (methylene blue and rhodamine B), as well as bisphenol A in aqueous solution. Similarly, the disinfection activities of synthesized samples towards the Gram-negative Escherichia coli (E. coli) in a model cell were investigated under irradiation with visible light (λ ≥ 420 nm). The synthesized samples have monoclinic scheelite structure. Photocatalytic results showed that all Ag-loaded BiVO4 samples exhibited greater degradation and a higher mineralization rate than the pure BiVO4, probably due to the presence of surface plasmon absorption that arises due to the loading of Ag on the BiVO4 surface. The optimum Ag loading of 5 wt% has the highest photocatalytic performance and greatest stability with pseudo-first-order rate constants of 0.031 min-1 and 0.023 min-1 for the degradation of methylene blue and rhodamine B respectively in a mixture with an equal volume and concentration of each dye. The photocatalytic degradation of bisphenol A reaches 76.2% with 5 wt% Ag-doped BiVO4 within 180 min irradiation time. Similarly, the Ag-loaded BiVO4 could completely inactivate E. coli cells within 30 min under visible light irradiation. The disruption of the cell membrane as well as degradation of protein and DNA exhibited constituted evidence for antibacterial activity towards E. coli. Moreover, the bactericidal mechanisms involved in the photocatalytic disinfection process were systematically investigated.

  3. Graphene-spindle shaped TiO2 mesocrystal composites: Facile synthesis and enhanced visible light photocatalytic performance

    International Nuclear Information System (INIS)

    Yang, Xiaofei; Qin, Jieling; Li, Yang; Zhang, Rongxian; Tang, Hua

    2013-01-01

    Highlights: • Graphene-TiO 2 mesocrystal composites were fabricated via a facile approach. • Graphene sheets were decorated with spindle-like TiO 2 mesocrystals. • Graphene causes enhanced light absorbance and visible light photocatalytic activity. • Oxygen-containing radicals are believed to responsible for its improved activity. -- Abstract: Graphene (GR)-TiO 2 mesocrystal composites were prepared by a facile template-free process based on the combination of sol–gel and solvothermal methods, and were characterized using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis diffuse reflectance spectroscopy (UV–vis DRS), nitrogen absorption and electron spin resonance (ESR). Visible light photocatalytic performance of GR-TiO 2 composites was evaluated for photocatalytic degradation of organic dye Rhodamine B. It was found that the amount of graphene oxide (GO) added obviously affects morphologies of TiO 2 mesocrystals and photocatalytic activities of as-prepared nanocomposites. Composites prepared in the presence of different amounts of GO all exhibit higher photocatalytic activity than pure TiO 2 mesocrystals and P25, the composite obtained by using 20 mg GO presents the most uniform TiO 2 mesocrystals in the composite and shows the highest photocatalytic efficiency. The mechanism for the generation of TiO 2 mesocrystals in the GR-TiO 2 composite is proposed and possible reasons for the enhancement in visible light photocatalytic efficiency are also discussed

  4. A comprehensive investigation of tetragonal Gd-doped BiVO{sub 4} with enhanced photocatalytic performance under sun-light

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yangyang; Tan, Guoqiang, E-mail: tan3114@163.com; Dong, Guohua; Ren, Huijun; Xia, Ao

    2016-02-28

    Graphical abstract: - Highlights: • Tetragonal Gd-BiVO{sub 4} with enhanced photocatalytic activity was synthesized. • Gd doping can induce the phase transition from monoclinic to tetragonal BiVO{sub 4}. • GdVO{sub 4} seeds as crystal nucleus dominate the formation of tetragonal Gd-BiVO{sub 4}. • Tetragonal Gd-BiVO{sub 4} exhibits the excellent separation of electrons and holes. • The contribution of high photocatalytic activity under sun-light is from UV-light. - Abstract: Tetragonal Gd-doped BiVO{sub 4} having enhanced photocatalytic activity have been synthesized by a facile microwave hydrothermal method. The structural analysis indicates that Gd doping can induce the phase transition from monoclinic to tetragonal BiVO{sub 4}. The reaction results in precursor solutions imply that tetragonal GdVO{sub 4} seeds as crystal nucleus are the original and determined incentives to force the formation of tetragonal Gd-BiVO{sub 4}. The influences of the surface defect, band structure, and BET surface area on the improved photocatalytic activities of tetragonal Gd-doped BiVO{sub 4} are investigated systematically. The results demonstrate that the more surface oxygen deficiencies as active sites and the excellent mobility and separation of photogenerated electrons and holes are beneficial to the enhancement of the photocatalytic performance of tetragonal Gd-BiVO{sub 4}. The RhB photodegradation experiments indicate that the contribution of high photocatalytic activities under simulated sun-light is mainly from UV-light region due to the tetragonal structure feature. The best photocatalytic performance is obtained for tetragonal 10 at% Gd-BiVO{sub 4}, of which the RhB degradation rate can reach to 96% after 120 min simulated sun-light irradiation. The stable tetragonal Gd-BiVO{sub 4} with efficient mineralization will be a promising photocatalytic material applied in water purification.

  5. Self-assembled cabbage-like NaInS2 microstructures with efficient visible light photocatalytic performance

    International Nuclear Information System (INIS)

    Gao, Yuanhao; Zhai, Xuezhen; Zhang, Yange; Xu, Zhihong; Li, Pinjiang; Zheng, Zhi

    2013-01-01

    Cabbage-like NaInS 2 microstructures have been synthesized by reacting In(NO 3 ) 3 with the alkaline sulfur aqueous solution of NaOH in a simple hydrothermal process without any shape-directing surfactants. The cabbage-like NaInS 2 architectures are monodispersed in large quantities. The cabbage-like morphologies depend strongly on the different ratios of S powder to NaOH, the reaction temperature and reaction time. The possible growth mechanism for the formation of cabbage-like NaInS 2 architectures is discussed. The cabbage-like NaInS 2 architectures exhibit the superiority of photocatalytic performance for the photodegradation of RhB irradiation under visible light irradiation. It is believed that the photocatalytic superiority of the cabbage-like NaInS 2 architectures is mainly due to their special surface areas and inner interconnected structural features. - Graphical abstract: Cabbage-like NaInS 2 microstructures were facilely synthesized via simple hydrothermal reaction. The cabbage-like NaInS 2 architectures exhibit the superiority of photocatalytic performance for the photodegradation of RhB irradiation under visible light irradiation. - Highlights: • Cabbage-like NaInS 2 microstructures were facilely synthesized via a hydrothermal reaction. • Influencing parameters on the NaInS 2 morphologies have been discussed in detail. • The cabbage-like NaInS 2 architectures hold efficient photocatalytic performance. • The photocatalytic superiority is mainly due to their special structural features

  6. Facile synthesis of CNTs/CaIn{sub 2}S{sub 4} composites with enhanced visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yang; Li, Qin, E-mail: liqin0518@mail.scuec.edu.cn; Wu, Xiaofeng; Lv, Kangle; Tang, Dingguo; Li, Mei, E-mail: limei@mail.scuec.edu.cn

    2017-01-01

    Highlights: • CNTs/CaIn{sub 2}S{sub 4} (CIS) composites were prepared by a microwave hydrothermal method. • CNTs were embedded tightly in the hierarchical marigold-like CIS microspheres. • Intimate contact between CNTs and CIS made interfacial charge transfer available. • The composite exhibited obviously higher photocatalytic activity than bare CIS. • The composite was applicable in both environment remediation and energy conversion. - Abstract: In response to the continuous concerns to environmental contamination and energy crisis, visible-light-driven photocatalysis has attracted broad attention for its potential applications in environment remediation and energy conversion. In this study, visible-light-responsive CNTs/CaIn{sub 2}S{sub 4} (CIS) composite photocatalyst was designed and synthesized by a facile one-step microwave hydrothermal method. The effects of CNTs content on the crystallinity, structure, light absorption, specific surface area and photocatalytic performance of CIS semiconductor were systematically studied. The results demonstrated that the prepared composite with a suitable amount of CNTs exhibited an apparently enhanced photocatalytic activity than bare CIS for both X-3B dye degradation and H{sub 2} production under visible-light irradiation. The optimal content of CNTs was found to be 1 wt%. The corresponding apparent rate constants of photocatalytic degradation and H{sub 2}-production rate are about two times as that of bare CaIn{sub 2}S{sub 4} semiconductor. Comprehensive analysis demonstrated that such enhancement was mainly attributed to the strong coupling interface between CNTs and CIS, which largely improved the separation efficiency of photogenerated charge carriers in space. However, excessive CNTs resulted in a decreased photocatalytic activity due to the shield of active sites and absorbed photons on the surface of CIS photocatalyst. This work could shed new light on the design and synthesis of carbon material

  7. Carbon dots/BiOCl films with enhanced visible light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Weitian; Yu, Xiang; Shen, Yinghua; Chen, Hongbin; Zhu, Yi, E-mail: tzhury@jnu.edu.cn; Zhang, Yuanming [Jinan University, Department of Chemistry (China); Meng, Hui [Jinan University, Siyuan laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics (China)

    2017-02-15

    Novel carbon dots with a diameter of 6 nm modified BiOCl (CDs/BiOCl) photocatalyst on FTO was synthesized via a facile immobilization method at room temperature. The crystalline structures, morphologies, optical properties, and photocatalytic properties were studied. The results showed that the CDs/BiOCl films exhibited higher photocatalytic activity than pure BiOCl. The 4 wt% CDs/BiOCl film showed the best photocatalytic activity, which was about eight times than that of pure BiOCl and excellent recyclability even after four recycles. Compared with other film photocatalysts, the photocatalytic activity of 4 wt% CDs/BiOCl was also higher than that of many other photocatalysts. The enhanced activity was ascribed to the enhanced light adsorption and the improvement of charge separation. Holes and superoxide radicals ·O{sub 2}{sup −} were revealed as the dominant reactive species. The photocatalytic mechanism was proposed based on the results.

  8. Visible-light photocatalytic performances of TiO2 nanoparticles modified by trace derivatives of PVA

    Directory of Open Access Journals (Sweden)

    Le SHI

    2016-10-01

    Full Text Available In order to study the visible-light photocatalytic activity and catalysis stability of nanocomposites, a TiO2-based visible-light photocatalyst is prepared by surface-modification of TiO2 nanoparticles using trace conjugated derivatives from polyvinyl alcohol (DPVA via a facile method. The obtained DPVA/TiO2 nanocomposites are characterized by X-ray diffraction (XRD, Fourier transform infrared Spectra (FT-IR, scanning electron microscopy (SEM, UV-vis diffuse reflection spectroscopy (DRS, and X-ray photoelectron spectroscopy (XPS. With Rhodamine B (RhB as a model pollutant, the visible-light photocatalytic activity and stability of DPVA/TiO2 nanocomposites are investigated by evaluating the RhB decomposition under visible light irradiation. The results reveal that the trace conjugated polymers on the TiO2 surface doesn’t change the crystalline and crystal size of TiO2 nanoparticles, but significantly enhances their visible-light absorbance and visible-light photocatalytic activity. The nanocomposite with the PVA and TiO2 mass ratio of 1∶200 exhibits the highest visible-light photocatalytic activity. The investigated nanocomposites exhibit well visible-light photoctatalytic stability. The photogenerated holes are thought as the main active species for the RhB photodegradation in the presence of the DPVA/TiO2 nanocomposites.

  9. ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light

    International Nuclear Information System (INIS)

    Ashkarran, Ali Akbar; Mohammadi, Bahareh

    2015-01-01

    Graphical abstract: TEM image of ZnO–graphene composite. - Highlights: • Innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures. • Combination of bottom-up and top-down methods. • Decoration of ZnO nanoparticles on the surface of graphene. • Visible-light photocatalytic performance. - Abstract: We present an innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures through combination of improved hummer and arc discharge methods in liquid. A detailed study of the considerable visible-light photocatalytic activities of these nanostructures for the degradation of Phenol red (PR) and Methyl orange (MO) as standard organic compounds under the irradiation of 90 W halogen light for 2 h has been performed. The ZnO–G nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer Emmett Teller (BET) and ultra violet–visible absorption spectroscopy (UV–vis). The results revealed that the ZnO–G nanostructures extended the light absorption spectrum toward the visible region and remarkably enhanced the photodegradation of standard dyes under visible-light irradiation. It has been confirmed that the ZnO–G nanostructures could be excited by visible-light (E ∼ 2.6 eV). The major enhancement in the photocatalytic activity of ZnO–G nanostructures under visible-light irradiation can be attributed to the effect of electron transport among ZnO nanoparticles (NPs) and graphene sheets. A mechanism for photocatalytic degradation of organic pollutants over ZnO–G photocatalyst was proposed based on our observations

  10. ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Ashkarran, Ali Akbar, E-mail: ashkarran@umz.ac.ir; Mohammadi, Bahareh

    2015-07-01

    Graphical abstract: TEM image of ZnO–graphene composite. - Highlights: • Innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures. • Combination of bottom-up and top-down methods. • Decoration of ZnO nanoparticles on the surface of graphene. • Visible-light photocatalytic performance. - Abstract: We present an innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures through combination of improved hummer and arc discharge methods in liquid. A detailed study of the considerable visible-light photocatalytic activities of these nanostructures for the degradation of Phenol red (PR) and Methyl orange (MO) as standard organic compounds under the irradiation of 90 W halogen light for 2 h has been performed. The ZnO–G nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer Emmett Teller (BET) and ultra violet–visible absorption spectroscopy (UV–vis). The results revealed that the ZnO–G nanostructures extended the light absorption spectrum toward the visible region and remarkably enhanced the photodegradation of standard dyes under visible-light irradiation. It has been confirmed that the ZnO–G nanostructures could be excited by visible-light (E ∼ 2.6 eV). The major enhancement in the photocatalytic activity of ZnO–G nanostructures under visible-light irradiation can be attributed to the effect of electron transport among ZnO nanoparticles (NPs) and graphene sheets. A mechanism for photocatalytic degradation of organic pollutants over ZnO–G photocatalyst was proposed based on our observations.

  11. Facile Fabrication of BiOI/BiOCl Immobilized Films With Improved Visible Light Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Yingxian Zhong

    2018-03-01

    Full Text Available HIGHLIGHTSA facial method was used to fabricate BiOI/BiOCl film at room temperature.30% BiOI/BiOCl showed an excellent photocatalytic activity and stability.Improvement of photocatalytic activity was owed to expanded visible light absorption and high separation efficiency of charge.Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after five recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  12. Novel Au/CaIn{sub 2}S{sub 4} nanocomposites with plasmon-enhanced photocatalytic performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie; Meng, Suci, E-mail: mengsc@ujs.edu.cn; Wang, Tianyong; Xu, Qing; Shao, Leqiang; Jiang, Deli, E-mail: dlj@ujs.edu.cn; Chen, Min

    2017-02-28

    Highlights: • Au/CaIn{sub 2}S{sub 4} nanocomposites were fabricated by a simple photoreduction process. • The nanocomposites shown plasmon-enhanced visible light photocatalytic activity. • The enhanced activity was mainly due to improved separation of charge carriers. • The superoxide radicals and holes are the two main photoactive species. - Abstract: A series of Au/CaIn{sub 2}S{sub 4} nanocomposites with different Au contents were prepared by a simple photoreduction process. Under visible light irradiation, the as-prepared Au/CaIn{sub 2}S{sub 4} nanocomposites exhibited plasmon-enhanced photocatalytic activity for the degradation of methylene blue (MB) compared to that of bare CaIn{sub 2}S{sub 4}. The sample with 4 wt% Au hybridized CaIn{sub 2}S{sub 4} exhibited the highest photocatalytic efficiency for MB degradation compared with those of the other nanocomposites. The mechanism for improving the photocatalytic performance of the Au/CaIn{sub 2}S{sub 4} nanocomposites was proposed by using the photoluminescence measurement and electrochemical analyses. The enhanced photocatalytic performance could be attributed to the high separation efficiency of the photogenerated electron-hole pairs. This work could provide a new insight into the fabrication of CaIn{sub 2}S{sub 4}-based plasmonic photocatalysts with enhanced performance.

  13. Fabrication of Cu2O-TiO2 Nano-composite with High Photocatalytic Performance under Simulated Solar Light

    Directory of Open Access Journals (Sweden)

    Yi Wentao

    2016-01-01

    Full Text Available Cu2O-P25 (TiO2 nano-heterostructures with different mass ratios were synthesized via a wet chemical precipitation and hydrothermal method, and were characterized by X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM, UV-vis diffuse reflectance spectra (DRS, and X-ray photoelectron spectroscopy (XPS. DRS results showed that the light absorption of P25 extended to the visible light region with the loading of Cu2O. XPS results showed that Cu existed in the state of Cu+ in the presence of hydroxylamine hydrochloride, confirming the formation of Cu2O. The obtained products exhibited efficient photocatalytic performance in degradation of methyl orange (MO and methylene blue (MB under simulated solar light. The sample of 5% Cu2O-P25 exhibited the highest photocatalytic activity among all as-prepared samples. And the photocatalysts can be recycled without obvious loss of photocatalytic activity.

  14. Photocatalytic Performance of ZnO: Al Films under Different Light Sources

    Directory of Open Access Journals (Sweden)

    Prashant Pradhan

    2012-01-01

    Full Text Available ZnO and Al doped ZnO films were produced by spray pyrolysis. The films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, UV-vis spectroscopy, and photoluminescence. Their photocatalytic activity was evaluated by the decomposition of the methyl orange dye using different light sources: ultraviolet light, artificial white light, and direct sunlight. The films were also tested under darkness for comparison. The ZnO films were able to degrade the test pollutant under UV and sunlight in more than a 60% after 180 min of irradiation and a scarce degradation was obtained using white light. However, the Al doped ZnO films presented a very high degradation rate not only under UV and sunlight (100% degradation, but also under white light (90% degradation after the same irradiation time. An unexpected high degradation was also obtained in the dark, which indicates that a nonphotonic process is taking place parallel to the photocatalytic process. This can be due to the extra electrons—provided by the aluminum atoms—that migrate to the surface and produce radicals favoring the decomposition process even in the dark. The high activity achieved by the ZnO: Al films under natural conditions can be potentially applied to water treatment processes.

  15. Sol-Gel-Hydrothermal Synthesis of the Heterostructured TiO2/N-Bi2WO6 Composite with High-Visible-Light- and Ultraviolet-Light-Induced Photocatalytic Performances

    Directory of Open Access Journals (Sweden)

    Jiang Zhang

    2012-01-01

    Full Text Available The heterostructured TiO2/N-Bi2WO6 composites were prepared by a facile sol-gel-hydrothermal method. The phase structures, morphologies, and optical properties of the samples were characterized by using X-ray powder diffraction (XRD, scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HRTEM, energy dispersive spectroscopy (EDS, and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities for rhodamine B of the as-prepared products were measured under visible and ultraviolet light irradiation at room temperature. The TiO2/N-Bi2WO6 composites exhibited much higher photocatalytic performances than TiO2 as well as Bi2WO6. The enhancement in the visible light photocatalytic performance of the TiO2/N-Bi2WO6 composites could be attributed to the effective electron-hole separations at the interfaces of the two semiconductors, which facilitate the transfer of the photoinduced carriers.

  16. Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Akir, Sana [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Bizerte (Tunisia); Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Bordj Cedria, BP73, 8027, Soliman (Tunisia); Hamdi, Abderrahmane [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Bizerte (Tunisia); Laboratory of Semi-conductors, Nano-structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif (Tunisia); Addad, Ahmed [UMET, UMR CNRS 8207, Université Lille 1, 59655 Villeneuve d' Ascq Cédex (France); Coffinier, Yannick [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Boukherroub, Rabah, E-mail: rabah.boukherroub@iemn.univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); and others

    2017-04-01

    Highlights: • C-ZnO nanocomposite was successfully prepared via a facile and eco-friendly process. • C-ZnO NPs have excellent photocatalytic activity for RhB dye degradation under visible light irradiation compared with literature. • The visible photocatalytic properties originate from injection e{sup −} in CB of ZnO from RhB. - Abstract: The present study describes a facile route for synthesis of carbon-ZnO nanocomposites (C-ZnO) via hydrothermal process in presence of glucose as carbon precursor. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) measurements. The results showed carbon uniformly coated on the surface of the ZnO nanoparticles to form the C-ZnO nanocomposites. Further investigation revealed that carbon could significantly protect ZnO NPs against the coalescence during high temperature treatment. The obtained C-ZnO nanocomposite showed excellent photocatalytic activity for the degradation of rhodamine B (RhB) under visible light irradiation, which was attributed to the repressed charge carrier recombination in the nanocomposite. Quenching experiments and photocurrent measurements revealed a photocatalytic mechanism occurring through photosensitization.

  17. Enhanced photocatalytic performance of BiVO_4 in aqueous AgNO_3 solution under visible light irradiation

    International Nuclear Information System (INIS)

    Huang, Chien-Kai; Wu, Tsunghsueh; Huang, Chang-Wei; Lai, Chi-Yung; Wu, Mei-Yao; Lin, Yang-Wei

    2017-01-01

    Graphical abstract: Ag"+ ions enhanced photocatalytic activity of BiVO_4 under visible light irradiation. - Highlights: • The presence of Ag"+ ions enhanced the photodegradation activity of BiVO_4. • Photoreduction of Ag deposited on the BiVO_4 surface was obtained. • Luminescence and electrochemical results elucidated the photocatalytic mechanism. • Holes and oxygen radicals were the main reactive species generated by BiVO_4/Ag"+. • Used BiVO_4/Ag"+ exhibited photocatalytic antibacterial activity toward E. coli. - Abstract: Monoclinic-phase bismuth vanadate (BiVO_4) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag"+) in an aqueous solution under visible light irradiation. The mass ratio of AgNO_3 to BiVO_4 and the calcination temperature were discovered to considerably affect the degradation activity of BiVO_4/Ag"+. Superior photocatalytic performance was obtained when BiVO_4 was mixed with 0.01%(w/v) AgNO_3 solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO_4 or AgNO_3 solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron–hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag"+ and the formation of a BiVO_4/Ag heterojunction. The synergic effect between BiVO_4 and Ag"+ was discovered to be unique. BiVO_4/Ag"+ was successfully used to degrade two other dyes and disinfect Escherichia Coli. A unique fluorescent technique using BiVO_4 and a R6G solution to detect Ag"+ ions in water was discovered.

  18. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    Science.gov (United States)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and

  19. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    Science.gov (United States)

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  20. Functionalized nanostructures for enhanced photocatalytic performance under solar light

    Directory of Open Access Journals (Sweden)

    Liejin Guo

    2014-07-01

    Full Text Available Photocatalytic hydrogen production from water has been considered to be one of the most promising solar-to-hydrogen conversion technologies. In the last decade, various functionalized nanostructures were designed to address the primary requirements for an efficient photocatalytic generation of hydrogen by using solar energy: visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more semiconductors, followed by a further discussion of the heterostructures with improved matching of both band structures and crystal lattices. We then elaborate on the heterostructure design of the targeted materials from macroscopic regulation of compositions and phases, to the more precise control at the nanoscale, i.e., materials with the same compositions but different phases with certain band alignment. We conclude this review with perspectives on nanostructure design that might direct future research of this technology.

  1. AgBr/diatomite for the efficient visible-light-driven photocatalytic degradation of Rhodamine B

    Science.gov (United States)

    Fang, Jing; Zhao, Huamei; Liu, Qinglei; Zhang, Wang; Gu, Jiajun; Su, Yishi; Abbas, Waseem; Su, Huilan; You, Zhengwei; Zhang, Di

    2018-03-01

    The treatment of organic pollution via photocatalysis has been investigated for a few decades. However, earth-abundant, cheap, stable, and efficient substrates are still to be developed. Here, we prepare an efficient visible-light-driven photocatalyst via the deposition of Ag nanoparticles (light intensity. For comparison, AgBr/SiO2 ( κ = 0.04 min-1) and commercial AgBr nanoparticles ( κ = 0.05 min-1) were measured as well. The experimental results reveal that diatomite acted more than a substrate benefiting the dispersion of AgBr nanoparticles, as well as a cooperator to help harvest visible light and adsorb dye molecules, leading to the efficient visible-light-driven photocatalytic performance of AgBr/diatomite. Considering the low cost (10 per ton) and large-scale availability of diatomite, our study provides the possibility to prepare other types of diatomite-based efficient photocatalytic composites with low-cost but excellent photocatalytic performance.

  2. Starch mediated CdS nanoparticles and their photocatalytic performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Firdaus, Farha, E-mail: Farha-firdaus@yahoo.co.in [Chemistry Section, Women’s College, Aligarh Muslim University, Aligarh 202002 UP (India); Faraz, Mohd [Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002 (India)

    2016-05-06

    Green synthesis of Cadmium Sulphide (CdS-S) nanoparticles is of considerable interest due to its biocompatible and nontoxicity. Here, we present a biomolecule stimulated chemical method was adopted for the successful synthesis of CdS-S nanoparticles using starch as a capping agent. The CdS-S nanoparticles were characterized by various analytical techniques. The CdS-S nanoparicles exhibit photocatalytic activity against methyl orange (MO) at pH 9 in Visible light and the reaction follows pseudo first-order kinetics. The comparative photocatalytic activity revealed that CdS-S nanoparticles remarkably enhanced activities as compared to the commercial TiO{sub 2} nanoparticles. The outcome of these studies offers valuable for planning CdS-S nanoparticles having photocatalytic activities helpful for the formulation of waste water remediation.

  3. Starch mediated CdS nanoparticles and their photocatalytic performance under visible light irradiation

    International Nuclear Information System (INIS)

    Firdaus, Farha; Faraz, Mohd

    2016-01-01

    Green synthesis of Cadmium Sulphide (CdS-S) nanoparticles is of considerable interest due to its biocompatible and nontoxicity. Here, we present a biomolecule stimulated chemical method was adopted for the successful synthesis of CdS-S nanoparticles using starch as a capping agent. The CdS-S nanoparticles were characterized by various analytical techniques. The CdS-S nanoparicles exhibit photocatalytic activity against methyl orange (MO) at pH 9 in Visible light and the reaction follows pseudo first-order kinetics. The comparative photocatalytic activity revealed that CdS-S nanoparticles remarkably enhanced activities as compared to the commercial TiO 2 nanoparticles. The outcome of these studies offers valuable for planning CdS-S nanoparticles having photocatalytic activities helpful for the formulation of waste water remediation.

  4. Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Liu, Xinjuan, E-mail: lxj669635@126.com [Shanghai Nanotechnlogy Promotion Center, Shanghai 200237 (China); Center for Coordination Bond and Electronic Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Li, Jinliang; Liu, Junying [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Zhang, Jing; Li, Ping; Chen, Chen [Shanghai Nanotechnlogy Promotion Center, Shanghai 200237 (China); Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2014-11-15

    Graphical abstract: F-doped TiO2 is synthesized using a modified sol–gel method for visible photocatalytic degradation of MB with a high degradation rate of 91%. - Highlights: • F-doped TiO{sub 2} are synthesized using a modified sol–gel method. • The photocatalytic degradation of methylene blue by F-doped TiO{sub 2} is investigated. • A high methylene blue degradation rate of 91% is achieved under visible light irradiation. - Abstract: F-doped TiO{sub 2} (F-TiO{sub 2}) were successfully synthesized using a modified sol–gel method. The morphologies, structures, and photocatalytic performance in the degradation of methylene blue (MB) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV–vis absorption spectroscopy, and electrochemical impedance spectra, respectively. The results show that F-TiO{sub 2} exhibits an enhanced photocatalytic performance in the degradation of MB with a maximum degradation rate of 91% under visible light irradiation as compared with pure TiO{sub 2} (32%). The excellent photocatalytic activity is due to the contribution from the increased visible light absorption, promoted separation of photo-generated electrons and holes as well as enhanced photocatalytic oxidizing species with the doping of F in TiO{sub 2}.

  5. Facile Fabrication of BiOI/BiOCl Immobilized Films with Improved Visible Light Photocatalytic Performance

    Science.gov (United States)

    Zhong, Yingxian; Liu, Yuehua; Wu, Shuang; Zhu, Yi; Chen, Hongbin; Yu, Xiang; Zhang, Yuanming

    2018-03-01

    Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after 5 recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  6. Synthesis and Photocatalytic Performance of RGO/ZnO Nanorod Composites

    Directory of Open Access Journals (Sweden)

    LU Jia

    2016-12-01

    Full Text Available ZnO nanorods and RGO/ZnO nanorods composites were prepared by hydrothermal method. The influence of RGO content on the photocatalytic activity of RGO/ZnO nanorods composites was studied. ZnO nanorods and RGO/ZnO nanocomposites were characterized by X-ray diffraction (XRD, field emission electron microscopy (FESEM, X-ray photoelectron spectroscopy (XPS and diffuse reflectance UV-visible absorption spectroscopy techniques. The results show that RGO/ZnO samples are synthesized successfully. With different additions of GO, the RGO/ZnO samples obtained exhibit different absorption characteristics in visible light region. The photocatalytic results of using methyl orange (MO as the simulated pollutant show that RGO/ZnO nanorods composites exhibit high degradation efficiency under UV-Vis light illumination. The highest photocatalytic performance is obtained for RGO/ZnO composites when the mass ratio of RGO to ZnO is 3%. MO is almost completely degraded in 120min. RGO/ZnO also shows the visible-light-driven photocatalytic activity under visible light illumination (λ>400nm, and the maximum MO degradation efficiency in 180min can reach 26.2%, meanwhile, RGO/ZnO samples exhibit good photostability.

  7. Synthesis of β-AgVO3 nanowires decorated with Ag2CrO4, with improved visible light photocatalytic performance

    Science.gov (United States)

    Ouyang, Qi; Li, Zhonghua; Liu, Jiawen

    2018-05-01

    Silver chromate‑silver vanadate (Ag2CrO4/β-AgVO3) heterojunction composites are synthesized through a facile precipitation process. The Ag2CrO4/β-AgVO3 hybrids obtained exhibit better photocatalytic activity in degradation of RhB than both pure Ag2CrO4 and β-AgVO3 under visible light irradiation. The 20 wt% Ag2CrO4/β-AgVO3 heterojunction possesses the best photocatalytic ability for degrading RhB: 24.4 times that of pristine β-AgVO3 nanowires and 3.2 times that of individual Ag2CrO4 particles. The phase of the nanocomposites was analyzed using x-ray diffraction as well as x-ray photoelectron spectroscopy. Their morphology was observed via scanning electron microscopy and transmission electron microscopy. The improvement in photocatalytic performance is chiefly ascribed to the synergies between Ag2CrO4/β-AgVO3 heterostructure, which can enhance the light absorbance ability and also accelerate the separation and transfer of photoinduced electrons and holes under visible light irradiation; this is also confirmed by UV–vis diffuse reflection spectrometry and fluorescence emission spectra.

  8. Enhanced photocatalytic performance of BiVO{sub 4} in aqueous AgNO{sub 3} solution under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chien-Kai [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China); Wu, Tsunghsueh [Department of Chemistry, University of Wisconsin-Platteville, Platteville (United States); Huang, Chang-Wei [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China); Lai, Chi-Yung [Department of Biology, National Changhua University of Education, Changhua, Taiwan (China); Wu, Mei-Yao, E-mail: meiyaowu0919@gmail.com [Research Centre for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan (China); Lin, Yang-Wei, E-mail: linywjerry@cc.ncue.edu.tw [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China)

    2017-03-31

    Graphical abstract: Ag{sup +} ions enhanced photocatalytic activity of BiVO{sub 4} under visible light irradiation. - Highlights: • The presence of Ag{sup +} ions enhanced the photodegradation activity of BiVO{sub 4}. • Photoreduction of Ag deposited on the BiVO{sub 4} surface was obtained. • Luminescence and electrochemical results elucidated the photocatalytic mechanism. • Holes and oxygen radicals were the main reactive species generated by BiVO{sub 4}/Ag{sup +}. • Used BiVO{sub 4}/Ag{sup +} exhibited photocatalytic antibacterial activity toward E. coli. - Abstract: Monoclinic-phase bismuth vanadate (BiVO{sub 4}) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag{sup +}) in an aqueous solution under visible light irradiation. The mass ratio of AgNO{sub 3} to BiVO{sub 4} and the calcination temperature were discovered to considerably affect the degradation activity of BiVO{sub 4}/Ag{sup +}. Superior photocatalytic performance was obtained when BiVO{sub 4} was mixed with 0.01%(w/v) AgNO{sub 3} solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO{sub 4} or AgNO{sub 3} solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron–hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag{sup +} and the formation of a BiVO{sub 4}/Ag heterojunction. The synergic effect between BiVO{sub 4} and Ag{sup +} was discovered to be unique. BiVO{sub 4}/Ag{sup +} was successfully used to degrade two other dyes and disinfect Escherichia Coli. A

  9. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    Directory of Open Access Journals (Sweden)

    Jamal Al-Sabahi

    2016-03-01

    Full Text Available Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  10. An Advanced Semimetal-Organic Bi Spheres-g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification.

    Science.gov (United States)

    Dong, Fan; Zhao, Zaiwang; Sun, Yanjuan; Zhang, Yuxin; Yan, Shuai; Wu, Zhongbiao

    2015-10-20

    To achieve efficient photocatalytic air purification, we constructed an advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid through the in-situ growth of Bi nanospheres on g-C3N4 nanosheets. This Bi-g-C3N4 compound exhibited an exceptionally high and stable visible-light photocatalytic performance for NO removal due to the surface plasmon resonance (SPR) endowed by Bi metal. The SPR property of Bi could conspicuously enhance the visible-light harvesting and the charge separation. The electromagnetic field distribution of Bi spheres involving SPR effect was simulated and reaches its maximum in close proximity to the Bi particle surface. When the Bi metal content was controlled at 25%, the corresponding Bi-g-C3N4 displayed outstanding photocatalytic capability and transcended those of other visible-light photocatalysts. The Bi-g-C3N4 exhibited a high structural stability under repeated photocatalytic runs. A new visible-light-induced SPR-based photocatalysis mechanism with Bi-g-C3N4 was proposed on the basis of the DMPO-ESR spin-trapping. The photoinduced electrons could transfer from g-C3N4 to the Bi metal, as revealed with time-resolved fluorescence spectra. The function of Bi semimetal as a plasmonic cocatalyst for boosting visible light photocatalysis was similar to that of noble metals, which demonstrated a great potential of utilizing the economically feasible Bi element as a substitute for noble metals for the advancement of photocatalysis efficiency.

  11. Facile Preparation of Nano-Bi₂MoO₆/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation.

    Science.gov (United States)

    Cai, Lu; Gong, Jiuyan; Liu, Jianshe; Zhang, Hailong; Song, Wendong; Ji, Lili

    2018-02-09

    In this work, a new nano-Bi₂MoO₆/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-vis diffuse reflection spectroscopy (DRS) were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi₂MoO₆ crystals were well-deposited on the surface of Bi₂MoO₆/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB) under the visible light (λ > 420 nm) irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi₂MoO₆/diatomite composite with the mass ratio of Bi₂MoO₆ to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h⁺ and•O 2- . As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation.

  12. Enhanced visible light photocatalytic property of red phosphorus via surface roughening

    International Nuclear Information System (INIS)

    Li, Weibing; Yue, Jiguang; Hua, Fangxia; Feng, Chang; Bu, Yuyu; Chen, Zhuoyuan

    2015-01-01

    Highlights: • Photocatalytic RhB degradation of red phosphorus was studied for the first time. • Surface rough can increase the photocatalysis reaction active sites. • Surface rough red phosphorus possesses high photocatalytic performance. • Surface rough red phosphorus has high industrial application value. - Abstract: Red phosphorus with rough surface (SRP) was prepared by catalyst-assisted hydrothermal synthesis using Co 2+ catalyst. The photocatalytic Rhodamine B (RhB) degradation of red phosphorus (RP) and SRP was studied for the first time in this work. Rough surface can enhance the dye adsorption ability of RP. About 75% RhB was absorbed by SRP after 30-min adsorption in 100 ml RhB solution with concentration of 10 mg l −1 in dark. After only 10 min of illumination by visible light, more than 95% RhB was degraded, indicating that SRP has a great application potential in the area of photocatalysis. The photocatalytic RhB degradation properties of RP are much weaker than those of SRP. The increase of the number of the active sites for the photocatalytic reactions, the electron mobility and the lifetime of the photogenerated electrons cause the significant improvement of the photocatalytic performance of SRP based on the experimental results obtained

  13. Enhanced visible light photocatalytic property of red phosphorus via surface roughening

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weibing, E-mail: lwbing@qust.edu.cn [School of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042 (China); Yue, Jiguang; Hua, Fangxia; Feng, Chang [School of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042 (China); Bu, Yuyu; Chen, Zhuoyuan [Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071 (China)

    2015-10-15

    Highlights: • Photocatalytic RhB degradation of red phosphorus was studied for the first time. • Surface rough can increase the photocatalysis reaction active sites. • Surface rough red phosphorus possesses high photocatalytic performance. • Surface rough red phosphorus has high industrial application value. - Abstract: Red phosphorus with rough surface (SRP) was prepared by catalyst-assisted hydrothermal synthesis using Co{sup 2+} catalyst. The photocatalytic Rhodamine B (RhB) degradation of red phosphorus (RP) and SRP was studied for the first time in this work. Rough surface can enhance the dye adsorption ability of RP. About 75% RhB was absorbed by SRP after 30-min adsorption in 100 ml RhB solution with concentration of 10 mg l{sup −1} in dark. After only 10 min of illumination by visible light, more than 95% RhB was degraded, indicating that SRP has a great application potential in the area of photocatalysis. The photocatalytic RhB degradation properties of RP are much weaker than those of SRP. The increase of the number of the active sites for the photocatalytic reactions, the electron mobility and the lifetime of the photogenerated electrons cause the significant improvement of the photocatalytic performance of SRP based on the experimental results obtained.

  14. Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Sener, S.; Arpac, E.; Sayilkan, H.

    2008-01-01

    Sn-doped and undoped nano-TiO 2 particles have been synthesized by hydrotermal process without acid catalyst at 225 deg. C in 1 h. Nanostructure-TiO 2 based thin films, contain at different solid ratio of TiO 2 in coating, have been prepared on glass surfaces by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, BET and UV/VIS/NIR techniques. The photocatalytic performance of the films was tested for degradation of malachite green dye in solution under UV and VIS-lights. The results showed that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces have nearly super-hydrophilic properties and, the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO 2 thin film. The results also proved that malachite green is decomposed catalytically due to the pseudo first-order reaction kinetics

  15. Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO{sub 2} microsphere

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yaocheng [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Dong, Haoran; Yan, Ming; Wang, Jingjing [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Hu, Wei [College of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Wang, Jiajia; Zhou, Yaoyu; Tang, Jing [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2016-11-30

    Highlights: • The mesoporous single crystal microsphere of PANI/MS-TiO{sub 2} improved the light absorption. • The mesoporous structure of MS-TiO{sub 2} can increase the loading amount of PANI. • The synergistic effect between PANI and MS-TiO{sub 2} promoted the separation of charges. • Improved photocatalysis was achieved via PANI modified mesoporous single crystal TiO{sub 2} microsphere. - Abstract: Polyaniline (PANI) modified mesoporous single crystal TiO{sub 2} microsphere (PANI/MS-TiO{sub 2}) with excellent photocatalytic activity was successfully prepared by a simple method of solution evaporation and chemisorption. The X-ray diffraction characterization demonstrated that the whole MS-TiO{sub 2} kept the crystal type of anatase. The nitrogen adsorption-desorption characterization coupled with scanning electron microscopy indicated that the MS-TiO{sub 2} possessed a unique mesoporous structure with high specific surface area, which resulted in the increased load of PANI on the surface of MS-TiO{sub 2} and multiple light reflection in the photocatalyst. The UV–vis diffuse reflectance spectra confirmed that PANI/MS-TiO{sub 2} presented more absorption ability in the visible light range than that of the pristine MS-TiO{sub 2}. The transient photocurrent responses and electrochemical impedance spectroscopy (EIS) indicated the high photo responses and fast photogenerated charge separation efficiency of PANI/MS-TiO{sub 2}. The photocatalytic activity of the PANI/MS-TiO{sub 2} was evaluated by the photodegradation of RhB and MB under visible light irradiation. MS-TiO{sub 2} photocatalyst with different molar ration of PANI had been prepared, and the results showed that the optimal photocatalyst (PANI/MS-TiO{sub 2} (1:40)) exhibited the highest photocatalytic efficiency which is nearly three times as great as that of pristine MS-TiO{sub 2} for the degradation of the RhB and MB under visible light irradiation. The remarkable performance of the PANI

  16. Photocatalytic performance of Sn-doped and undoped TiO2 nanostructured thin films under UV and vis-lights

    International Nuclear Information System (INIS)

    Arpac, E.; Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, Nadir; Sayilkan, H.

    2007-01-01

    Sn-doped and undoped nano-TiO 2 particles have been synthesized by hydrotermal process without solvent at 200 deg. C in 1 h. Nanostructure-TiO 2 based thin films have been prepared on glass substrate by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, SEM, BET and UV-vis-NIR techniques. The photocatalytic performance of the films were tested for degradation of Malachite Green dye in solution under UV and vis-lights. The results showed that (a) hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, (b) the coated surfaces have nearly super-hydrophilic properties and (c) the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO 2 thin film

  17. One–step preparation of CNTs/InVO_4 hollow nanofibers by electrospinning and its photocatalytic performance under visible light

    International Nuclear Information System (INIS)

    , Jinan 250100 (China))" data-affiliation=" (College of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100 (China))" >Zhang, Yanxiang; Ma, Dong; Wu, Juan; , Jinan 250100 (China))" data-affiliation=" (College of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100 (China))" >Zhang, Qingzhe; Xin, Yanjun; , Jinan 250100 (China))" data-affiliation=" (College of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100 (China))" >Bao, Nan

    2015-01-01

    Graphical abstract: - Highlights: • CNTs/InVO_4 hollow nanofibers were obtained by electrospinning method. • The properties of InVO_4 hollow nanofibers were deeply influenced by CNTs. • CNTs could reduce recombination of e"−–h"+ pairs to improve photocatalytic activity. - Abstract: A series of InVO_4 incorporated with multi-wall carbon nanotubes (CNTs) composite nanofibers were successfully synthesized by an electrospinning technique. The as-collected nanofibers were calcined at 550 °C in air to remove polyvinyl pyrrolidone (PVP), which could enable InVO_4 to crystallize. InVO_4 in the composite illustrated a hollow fibrous morphology and orthorhombic phase, and CNTs were embedded or coated on the InVO_4 hollow nanofibers. High-resolution transmission emission microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) spectra illustrated that CNTs were existed in the composites. The optical properties measured using UV–Vis diffuse reflectance spectroscopy (DRS) confirmed that the absorbance of InVO_4 nanofibers increased in the visible light region with the incorporation of CNTs. The photocatalytic performance of the samples was investigated by the degradation rhodamine B (Rh B) under visible light irradiation. The CNTs/InVO_4 nanofibers in Rh B degradation displayed a higher photocatalytic activity than pure InVO_4 nanofibers and 10%CNTs/InVO_4 nanoparticles. The degradation showed an optimized photocatalytic oxidation for InVO_4 nanofibers incorporated with 10wt% CNTs. The enhanced photocatalytic activity might be ascribed to the role of CNTs as an electron transporter and acceptor in the composites, which could effectively inhibit the charge recombination and facilitate the charge transfer.

  18. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2016-03-01

    Full Text Available Titanium dioxide (TiO2 has gained much attentions for the last few decades due to its remarkable performance in photocatalysis and some other related properties. However, its wide bandgap (~3.2 eV can only absorb UV energy which is only ~5% of solar light spectrum. The objective of this research was to improve the photocatalytic activity of TiO2 by improving the optical absorption to the visible light range. Here, colored TiO2 nanoparticles range from light to dark grey were prepared via aluminium treatment at the temperatures ranging from 400 to 600 oC. The modified TiO2 is able to absorb up to 50% of visible light (400-700 nm and shows a relatively good photocatalytic activity in organic dye (Rhodamine B degradation under visible light irradiation compared with the commercial TiO2. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 7th January 2016; Accepted: 7th January 20 How to Cite: Ariyanti, D., Dong, J.Z., Dong, J.Y., Gao, W. (2016. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 40-47. (doi:10.9767/bcrec.11.1.414.40-47 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.414.40-47

  19. Effects of indium contents on photocatalytic performance of ZnIn_2S_4 for hydrogen evolution under visible light

    International Nuclear Information System (INIS)

    Song, Kelin; Zhu, Rongshu; Tian, Fei; Cao, Gang; Ouyang, Feng

    2015-01-01

    A series of ZnIn_xS_4_+_y (x=1.6, 2.0, 2.3, 2.6, 2.9, 3.1) photocatalysts were synthesized via a facile hydrothermal method and characterized by various analytical techniques, such as XRD, EDS, UV–vis DRS, SEM, TEM, BET and PL. The ZnIn_xS_4_+_y photocatalysts had a similar crystal structure. With the increase of indium content, the absorption edges of ZnIn_xS_4_+_y photocatalysts shifted to longer wavelength, their crystal sizes decreased firstly and then increased and the variation of the specific surface area and total pore volume was exactly opposite. Especially, when x=2.3, ZnIn_2_._3S_4_+_y catalyst had smallest crystal size, largest specific surface area and total pore volume. Additionally, the morphology of ZnIn_xS_4_+_y greatly depended on the contents of indium. The photocatalytic activity of ZnIn_xS_4_+_y was evaluated by photocatalytic hydrogen production from water under visible light. The ZnIn_2_._3S_4_+_y sample had the highest photocatalytic activity among these ZnIn_xS_4_+_y photocatalysts and its hydrogen production rate was 363 μmol/g h. - Graphical abstract: First, a series of catalysts were synthesized. And then those were characterized by various analytical techniques (such as SEM). finally, The photocatalytic activity of catalyst was evaluated by photocatalytic hydrogen production from water under visible light. - Highlights: • The photocatalytic property was studied upon visible-light irradiation. • ZnIn_xS_4_+_y photocatalysts show superior photocatalytic activity. • The catalyst of grain size, morphology and BET are related to indium content. • ZnIn_xS_4_+_y photocatalysts were synthesized via a facile hydrothermal method.

  20. Hexagonal pencil-like CdS nanorods: Facile synthesis and enhanced visible light photocatalytic performance

    Science.gov (United States)

    An, Liang; Wang, Guanghui; Zhao, Lei; Zhou, Yong; Gao, Fang; Cheng, Yang

    2015-07-01

    In the present study, hexagonal pencil-like CdS nanorods have been successfully synthesized through a typical facile and economical one-step hydrothermal method without using any surfactant or template. The product was characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive analysis of X-ray (EDX). The results revealed that the prepared CdS photocatalyst consisted of a large quantity of straight and smooth solid hexagonal nanorods and a few nanoparticles. The photocatalytic activities of CdS nanorods and commercial CdS powders were investigated by the photodegradation of Orange II (OII) in aqueous solution under visible light, and the CdS nanorods presented the highest photocatalytic activity. Its photocatalytic efficiency enhancement was attributed to the improved transmission of photogenerated electron-hole pairs in the CdS nanostructures. The present findings may provide a facile approach to synthesize high efficient CdS photocatalysts.

  1. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO{sub 2} nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Peng, Feng, E-mail: cefpeng@scut.edu.cn

    2014-12-15

    Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent is explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.

  2. Enhanced visible light-driven photocatalytic performance of ZnO–g-C_3N_4 coupled with graphene oxide as a novel ternary nanocomposite

    International Nuclear Information System (INIS)

    Jo, Wan-Kuen; Clament Sagaya Selvam, N.

    2015-01-01

    Highlights: • Prepared novel ternary nanocomposite consisting of ZnO, g-C_3N_4, and graphene oxide. • ZnO nanospheres disperse evenly and embed on porous g-C_3N_4-coupled graphene oxide. • Heterojunction of ternary composite account for the enhanced photocatalytic activity. - Abstract: This article reports a novel ternary nanocomposite consisting of ZnO, g-C_3N_4, and graphene oxide (GO) that provides enhanced photocatalytic performance and stability. The ZnO nanospheres disperse evenly and embed themselves in the porous g-C_3N_4. Composites with various g-C_3N_4 and GO to ZnO weight ratios were synthesized and characterized systematically. The results indicated that the absorption of binary g-C_3N_4/ZnO nanocomposites shifted to a lower energy compared to pure ZnO in a fashion consistent with the loading content of g-C_3N_4. Notably, the loading content of GO in the ZnO–g-C_3N_4 composite resulted in increased absorption in the visible range and improved charge separation efficiency, thereby drastically improving photocatalytic activity. Successful hybridization of ternary nanocomposite was confirmed by drastic quenching of fluorescence and broader visible light absorption. The optimal content of g-C_3N_4 in the ZnO–g-C_3N_4 composite was 50%, which exhibited the effective hybridization between ZnO and g-C_3N_4, and high photocatalytic efficiency. However, the photocatalytic degradation of the ternary nanocomposite showed performance that was two times greater than ZnO–g-C_3N_4, exhibiting 99.5% degradation efficiency after just 15 min of light irradiation. The combined heterojunction and synergistic effects of this composite account for the improved photocatalytic activity.

  3. Performance analysis of photocatalytic CO2 reduction in optical fiber monolith reactor with multiple inverse lights

    International Nuclear Information System (INIS)

    Yuan, Kai; Yang, Lijun; Du, Xiaoze; Yang, Yongping

    2014-01-01

    Highlights: • A new optical fiber monolith reactor model for CO 2 reduction was developed. • Methanol concentration versus fiber location and operation parameters was obtained. • Reaction efficiency increases by 31.1% due to the four fibers and inverse layout. • With increasing space of fiber and channel center, methanol concentration increases. • Methanol concentration increases as the vapor ratio and light intensity increase. - Abstract: Photocatalytic CO 2 reduction seems potential to mitigate greenhouse gas emissions and produce renewable energy. A new model of photocatalytic CO 2 reduction in optical fiber monolith reactor with multiple inverse lights was developed in this study to improve the conversion of CO 2 to CH 3 OH. The new light distribution equation was derived, by which the light distribution was modeled and analyzed. The variations of CH 3 OH concentration with the fiber location and operation parameters were obtained by means of numerical simulation. The results show that the outlet CH 3 OH concentration is 31.1% higher than the previous model, which is attributed to the four fibers and inverse layout. With the increase of the distance between the fiber and the monolith center, the average CH 3 OH concentration increases. The average CH 3 OH concentration also rises as the light input and water vapor percentage increase, but declines with increasing the inlet velocity. The maximum conversion rate and quantum efficiency in the model are 0.235 μmol g −1 h −1 and 0.0177% respectively, both higher than previous internally illuminated monolith reactor (0.16 μmol g −1 h −1 and 0.012%). The optical fiber monolith reactor layout with multiple inverse lights is recommended in the design of photocatalytic reactor of CO 2 reduction

  4. UV Blocking Glass: Low Cost Filters for Visible Light Photocatalytic Assessment

    OpenAIRE

    Dunnill, Charles W.

    2014-01-01

    A number of commercially available art protection products have been compared and assessed for their suitability as UV blocking filters in the application of “visible light” photocatalytic research. Many groups claiming visible light photocatalytic success employ filters to block out stray UV radiation in order to justify that their photocatalysts are indeed visible light photocatalysts and not UV light photocatalysts. These filters come in varying degrees of ability and price and many author...

  5. Sol-gel synthesis of Bi2WO6/graphene thin films with enhanced photocatalytic performance for nitric monoxide oxidation under visible light irradiation

    Science.gov (United States)

    Sun, Chufeng; Wang, Yanbin; Su, Qiong

    2018-06-01

    Bi2WO6 and Bi2WO6/graphene thin films were fabricated by spin coating and post annealing at 600 °C for 2 h. In four different thin film samples, the graphene concentration was controlled as 0, 2, 4 and 6 wt%, respectively. The morphology, grain size and elemental distribution of the thin films were characterized by SEM and TEM. The crystallization and crystal phases were determined by XRD patterns, and the existence of graphene in Bi2WO6/graphene composite thin films were confirmed by Raman spectra. The photocatalytic performance of Bi2WO6 and Bi2WO6/graphene thin films was investigated by oxidizing NO under visible light irradiation. The results showed that Bi2WO6/graphene with 4 wt% of graphene showed the highest photocatalytic performance among all samples. This could be attributed to the increased electron conductivity with the presence of graphene. However, a further increased graphene concentration resulted in a decreased photocatalytic performance.

  6. Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.

    Science.gov (United States)

    Yang, He; Han, Chong; Xue, Xiangxin

    2014-07-01

    The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min. Copyright © 2014. Published by Elsevier B.V.

  7. Hierarchical nanostructures assembled from ultrathin Bi2WO6 nanoflakes and their visible-light induced photocatalytic property

    International Nuclear Information System (INIS)

    Wang, Xiong; Tian, Peng; Lin, Ying; Li, Li

    2015-01-01

    Graphical abstract: Hierarchical Bi 2 WO 6 nanostructures assembled from nanoflakes were successfully synthesized by a facile hydrothermal method. The excellent photocatalytic activity and recycling performance might be mainly ascribed to the unique hierarchical nanostructures and are expected to offer the nanostructures promising applications in the field of wastewater treatment. - Highlights: • Hierarchical Bi 2 WO 6 nanostructures assembled from nanoflakes were successfully synthesized by a facile hydrothermal method. • Visible-light-induced photocatalytic efficiency of the obtained nanoarchitectures was enhanced about 6 times. • A possible mechanism was proposed. - Abstract: With the aid of ethylene glycol and sodium dodecylbenzene sulfonate, the hierarchical Bi 2 WO 6 nanoarchitectures assembled from nanoflakes could be attained by a facile solvothermal method. The synthetic strategy is versatile and environmentally friendly and a plausible growth-assembly process was proposed for the formation of the hierarchical nanostructures. The visible-light-irradiated photocatalytic activity was estimated by the degradation of rhodamine B. Compared with the sample prepared by a solid-state reaction, the visible-light-induced photocatalytic efficiency of the nanostructures was enhanced about 6 times. The photocatalysis tests show that the nanostructures exhibit excellent photocatalytic activity and recycling performance, which were mainly ascribed to the unique hierarchical nanostructures and are expected to offer promising applications in the field of wastewater treatment

  8. Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region

    International Nuclear Information System (INIS)

    Ren, Shoutian; Wang, Yingying; Wang, Benyang; Wang, Qiang; Zhao, Guoliang

    2015-01-01

    Sandwiched ZnO@Ag@Cu 2 O nanorod films were synthesized by successive electrodeposition, magnetron sputtering and the second electrodeposition. The as-synthesized composites were characterized by x-ray diffraction patterns, field emission scanning electron microscopy, low- and high-resolution transmission electron microscopy and a UV–vis spectrophotometer. Their photocatalytic performance was estimated by the degradation of a methyl orange solution under UV or visible-light irradiation, respectively. In the visible region, due to localized surface plasmon resonance absorption of Ag NPs, ZnO@Ag@Cu 2 O showed a significantly enhanced photocatalytic performance. The enhancement factor of Ag NPs on the catalytic performance of ZnO@Ag@Cu 2 O was estimated as a function of the Cu 2 O deposition time, and the corresponding enhancement mechanism was also evaluated by the monochromatic photocatalytic experiment and discrete dipole approximation simulation. In the UV region, due to the formation of a Schottky junction (e.g. Ag/ZnO, Ag/Cu 2 O), a limited enhanced photocatalytic performance was also realized for ZnO@Ag@Cu 2 O photocatalysts. (paper)

  9. Facile Preparation of Nano-Bi2MoO6/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Lu Cai

    2018-02-01

    Full Text Available In this work, a new nano-Bi2MoO6/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, and UV-vis diffuse reflection spectroscopy (DRS were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi2MoO6 crystals were well-deposited on the surface of Bi2MoO6/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB under the visible light (λ > 420 nm irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi2MoO6/diatomite composite with the mass ratio of Bi2MoO6 to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h+ and•O2−. As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation.

  10. Facile Preparation of Nano-Bi2MoO6/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation

    Science.gov (United States)

    Gong, Jiuyan; Liu, Jianshe; Song, Wendong; Ji, Lili

    2018-01-01

    In this work, a new nano-Bi2MoO6/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-vis diffuse reflection spectroscopy (DRS) were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi2MoO6 crystals were well-deposited on the surface of Bi2MoO6/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB) under the visible light (λ > 420 nm) irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi2MoO6/diatomite composite with the mass ratio of Bi2MoO6 to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h+ and•O2−. As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation. PMID:29425138

  11. Fabrication of Tiron-TiO{sub 2} charge-transfer complex with excellent visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Binghua, E-mail: bhyao@xaut.edu.cn [Department of Applied Chemistry, Xi' an University of Technology, Xi' an 710048 (China); The Key Laboratory of Northwest Water Resources and Environmental Ecology of Ministry of Education, Xi' an University of Technology, Xi' an 710048 (China); Peng, Chao; Lu, Pan; He, Yangqing [Department of Applied Chemistry, Xi' an University of Technology, Xi' an 710048 (China); Zhang, Wen, E-mail: wenzhang@uark.edu [Department of Civil Engineering, University of Arkansas, Fayetteville 72701 (United States); Zhang, Qinku [Department of Applied Chemistry, Xi' an University of Technology, Xi' an 710048 (China); The Key Laboratory of Northwest Water Resources and Environmental Ecology of Ministry of Education, Xi' an University of Technology, Xi' an 710048 (China)

    2016-12-01

    A new charge-transfer(CT) complex (Tiron-TiO{sub 2}) was prepared via the 1,2-dihydroxy-3,5-benzenedisulfonic acid disodium salt (Tiron) as chelate sensitizer. The phase structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results demonstrated that the as-prepared Tiron-TiO{sub 2} is of anatase microspheres with size range between 300 and 350 nm. The analysis of FT-IR and XPS revealed that the binding structure of the Tiron-TiO{sub 2} CT complex is of the characteristic of bidentate binuclear binding-bridging. UV–vis analysis showed that the formation of CT complex on the surface of TiO{sub 2} through Tiron significantly extends the photoresponse of Tiron-TiO{sub 2} nanoparticles to visible light range (400–600 nm). Compared with unmodified TiO{sub 2}, Tiron-modified TiO{sub 2}(Tiron-TiO{sub 2}) exhibited excellent photocatalytic activity for the photocatalytic degradation of methylene blue(MB) and three kind of antibiotics under visible light irradiation (λ > 400 nm). - Highlights: • The Tiron-TiO{sub 2} charge transfer complex was synthesized. • The incorporation of Tiron with TiO{sub 2} extended TiO{sub 2} response to visible light region. • Tiron-TiO{sub 2} exhibited significant photocatalytic degradation for antibiotics. • Tiron-TiO{sub 2} showed the long-term stability and reusability.

  12. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    Science.gov (United States)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  13. Facile synthesis of Sm-doped BiFeO{sub 3} nanoparticles for enhanced visible light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zijun; Chen, Da, E-mail: dchen_80@hotmail.com; Wang, Sen; Zhang, Ning; Qin, Laishun, E-mail: qinlaishun@cjlu.edu.cn; Huang, Yuexiang

    2017-06-15

    Highlights: • Effective Sm doping into BiFeO{sub 3} nanoparticles was obtained by a facile sol-gel route. • Band gap of Sm-doped BiFeO{sub 3} nanoparticles was regulated by the dopant concentration. • Sm-doped BiFeO{sub 3} nanoparticles exhibited superior photocatalytic activities. • The possible photocatalytic mechanism of Sm-doped BiFeO{sub 3} nanospheres was discussed. - Abstract: In this work, the effect of Sm doping on the structural and photocatalytic properties of BiFeO{sub 3} (BFO) was investigated. A series of Sm doped BFO nanoparticles containing different Sm dopant contents (Bi{sub (1−x)}Sm{sub x}FeO{sub 3}, x = 0.00, 0.01, 0.03, 0.05, 0.07, 0.10) were synthesized via a simple sol-gel route. It was revealed that Sm{sup 3+} ions were successfully doped into BFO nanoparticles, and the band gap value was gradually decreased when increasing Sm dopant concentration. The photocatalytic activity of Sm-doped BFO photocatalyst was significantly affected by the Sm doping content. Compared to pure BFO, the Sm-doped BFO samples exhibited much higher photocatalytic activity. The improved photocatalytic activity of Sm-doped BFO could be attributed to the enhanced visible light absorption and the efficient separation of photogenerated electrons and holes derived from Sm dopant trapping level in the Sm-doped BFO samples. In addition, the possible photocatalytic mechanism of Sm-doped BFO photocatalyst was also proposed.

  14. TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation.

    Science.gov (United States)

    Zhang, Junying; Zhu, Hailing; Zheng, Shukai; Pan, Feng; Wang, Tianmin

    2009-10-01

    Coupling a narrow-band-gap semiconductor with TiO(2) is an effective method to produce photocatalysts that work under UV-vis light irradiation. Usually photocatalytic coupled-semiconductors exist mainly as powders, and photocatalytic activity is only favored when a small loading amount of narrow-band-gap semiconductor is used. Here we propose a heavy-loading photocatalyst configuration in which 51% of the surface of the TiO(2) film is covered by a Cu(2)O microgrid. The coupled system shows higher photocatalytic activity under solar light irradiation than TiO(2) and Cu(2)O films. This improved performance is due to the efficient charge transfer between the two phases and the similar opportunity each has to be exposed to irradiation and adsorbates.

  15. Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays.

    Science.gov (United States)

    Jiao, Zhengbo; Chen, Tao; Xiong, Jinyan; Wang, Teng; Lu, Gongxuan; Ye, Jinhua; Bi, Yingpu

    2013-01-01

    Well-aligned TiO2 nanotube arrays have become of increasing significance because of their unique highly ordered array structure, high specific surface area, unidirectional charge transfer and transportation features. However, their poor visible light utilization as well as the high recombination rate of photoexcited electron-hole pairs greatly limited their practical applications. Herein, we demonstrate the fabrication of visible-light-responsive heterostructured Cr-doped SrTiO3/TiO2 nanotube arrays by a simple hydrothermal method, which facilitate efficient charge separation and thus improve the photoelectrochemical as well as photocatalytic performances.

  16. The enhanced visible light photocatalytic activity of yttrium-doped BiOBr synthesized via a reactable ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    He, Minqiang; Li, Weibing [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xia, Jiexiang, E-mail: xjx@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Li; Di, Jun [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Hui [School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Yin, Sheng [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Huaming, E-mail: lhm@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Mengna [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China)

    2015-03-15

    Graphical abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest photocatalytic activity. The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Highlights: • Yttrium (Y)-doped BiOBr composites have been synthesized via solvothermal method in the presence of reactable ionic liquid [C16mim]Br. • The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of ciprofloxacin (CIP) and rhodamine B (RhB). • The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br). Their structures, morphologies and optical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest

  17. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    Science.gov (United States)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Bismuth selenide (Bi2Se3) and nickel (Ni) doped Bi2Se3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi2Se3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi2Se3 sample exhibited higher photo-catalytic activity than that of the pure Bi2Se3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi2Se3 in presence of hydrogen peroxide (H2O2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  18. BiOCl{sub x}Br{sub y}I{sub z} (x + y + z = 1) solid solutions with controllable band gap and highly enhanced visible light photocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiuguo; Zhang, Yangyang; Li, Chunmei; Zhang, Zhifeng; Peng, Zheng; Si, Huayan; Zhang, Jianmin [School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Li, Yanting, E-mail: yantingcn@stdu.edu.cn [School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Hebei Provincial Key Laboratory of Traffic Engineering materials, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China)

    2015-07-25

    Highlights: • BiOCl{sub x}Br{sub y}I{sub z} solid solutions were prepared by hydrolysis method. • Band gap of the solid solutions can be controllable by adjusting the molar ratio of halogen ions. • The samples show higher visible light photocatalytic activity than pure BiOX. • Orbital diversification of VB is beneficial to separating the holes and electrons effectively. • The mechanisms are discussed by active species trapping and band theory. - Abstract: A series of BiOCl{sub x}Br{sub y}I{sub z} solid solutions with controllable band gap and highly enhanced visible light photocatalytic performances were synthesized by a simple hydrolysis method. The samples were characterized by X-ray powder diffraction, UV–vis diffuse reflectance spectra, scanning electron microscope, high-resolution transmission electron microscopy and Brunauer–Emmett–Teller analysis. By adjusting the molar ratio of halogen ions, the band gap of BiOCl{sub x}Br{sub y}I{sub z} could be controllable to the suitable value for a photocatalytic reaction. Especially, BiOCl{sub x}Br{sub y}I{sub z} with a 1:1:2 molar ratio of Cl, Br to I showed the highest visible light photocatalytic activity for the degradation of methyl orange than individual BiOX systems. The degradation efficiency could reach over 90% within 60 min. The possible mechanism of photogenerated carrier transfer and higher photocatalytic activity was analyzed by active species trapping and energy band theory.

  19. Preparation of TiO2-Fullerene Composites and Their Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Ken-ichi Katsumata

    2012-01-01

    Full Text Available The development of visible light-sensitive photocatalytic materials is being investigated. In this study, the anatase and rutile-C60 composites were prepared by solution process. The characterization of the samples was conducted by using XRD, UV-vis, FT-IR, Raman, and TEM. The photocatalytic activity of the samples was evaluated by the decolorization of the methylene blue. From the results of the Raman, FT-IR, and XRD, the existence of the C60 was confirmed in the samples. The C60 was modified on the anatase or rutile particle as a cluster. The C60 didn't have the photocatalytic activity under UV and visible light. The anatase and rutile-C60 composites exhibited lower photocatalytic activity than the anatase and rutile under UV light. The anatase-C60 exhibited also lower activity than the anatase under visible light. On the other hand, the rutile-C60 exhibited higher activity than the rutile under visible light. It is considered that the photogenerated electrons can transfer from the C60 to the rutile under visible light irradiation.

  20. Enhancement of photocatalytic property on ZnS/MoS2 composite under visible light irradiation

    Directory of Open Access Journals (Sweden)

    Cheng Jiushan

    2017-01-01

    Full Text Available In this paper, the composite ZnS/MoS2 was obtained via two steps including solvothermal methods. The as-synthesized sample was characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and UV-Vis. diffuse reflectance spectra (DRS. The photocatalytic activity of the product was evaluated through photocatalytic degradation of Rhodamine B (Rh B under UV-Vis. light irradiation; the electrical conductivity of ZnS/MoS2 composites was significantly improved compared to ZnS, MoS2, respectively. The results showed that the ZnS/MoS2 composite photocatalyst possesses better photocatalytic activity in degrading Rh B than the single ZnS or the single MoS2. The better photocatalytic properties may be due to the synergetic effect of two semiconductors, because of which electrons and holes were separated effectively. And its specific microstructure played an active role in evaluating photocatalytic performance.

  1. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    Science.gov (United States)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  2. Solvent-free, visible-light photocatalytic alcohol oxidations applying an organic photocatalyst

    Directory of Open Access Journals (Sweden)

    Martin Obst

    2016-11-01

    Full Text Available A method for the solvent-free photocatalytic conversion of solid and liquid substrates was developed, using a novel rod mill apparatus. In this setup, thin liquid films are realized which is crucial for an effective photocatalytic conversion due to the low penetration depth of light in heterogeneous systems. Several benzylic alcohols were oxidized with riboflavin tetraacetate as photocatalyst under blue light irradiation of the reaction mixture. The corresponding carbonyl compounds were obtained in moderate to good yields.

  3. Effects of indium contents on photocatalytic performance of ZnIn{sub 2}S{sub 4} for hydrogen evolution under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kelin [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Zhu, Rongshu, E-mail: rszhu@hitsz.edu.cn [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Public Platform for Technological Service in Urban Waste Reuse and Energy Regeneration, Shenzhen 518055 (China); Tian, Fei [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Cao, Gang, E-mail: caog@hotmail.com [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Public Platform for Technological Service in Urban Waste Reuse and Energy Regeneration, Shenzhen 518055 (China); Ouyang, Feng [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Public Platform for Technological Service in Urban Waste Reuse and Energy Regeneration, Shenzhen 518055 (China)

    2015-12-15

    A series of ZnIn{sub x}S{sub 4+y} (x=1.6, 2.0, 2.3, 2.6, 2.9, 3.1) photocatalysts were synthesized via a facile hydrothermal method and characterized by various analytical techniques, such as XRD, EDS, UV–vis DRS, SEM, TEM, BET and PL. The ZnIn{sub x}S{sub 4+y} photocatalysts had a similar crystal structure. With the increase of indium content, the absorption edges of ZnIn{sub x}S{sub 4+y} photocatalysts shifted to longer wavelength, their crystal sizes decreased firstly and then increased and the variation of the specific surface area and total pore volume was exactly opposite. Especially, when x=2.3, ZnIn{sub 2.3}S{sub 4+y} catalyst had smallest crystal size, largest specific surface area and total pore volume. Additionally, the morphology of ZnIn{sub x}S{sub 4+y} greatly depended on the contents of indium. The photocatalytic activity of ZnIn{sub x}S{sub 4+y} was evaluated by photocatalytic hydrogen production from water under visible light. The ZnIn{sub 2.3}S{sub 4+y} sample had the highest photocatalytic activity among these ZnIn{sub x}S{sub 4+y} photocatalysts and its hydrogen production rate was 363 μmol/g h. - Graphical abstract: First, a series of catalysts were synthesized. And then those were characterized by various analytical techniques (such as SEM). finally, The photocatalytic activity of catalyst was evaluated by photocatalytic hydrogen production from water under visible light. - Highlights: • The photocatalytic property was studied upon visible-light irradiation. • ZnIn{sub x}S{sub 4+y} photocatalysts show superior photocatalytic activity. • The catalyst of grain size, morphology and BET are related to indium content. • ZnIn{sub x}S{sub 4+y} photocatalysts were synthesized via a facile hydrothermal method.

  4. Synthesis of C@Bi{sub 2}MoO{sub 6} nanocomposites with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuying; Wu, Juan; Ma, Tianjin; Wang, Pengchao; Cui, Chunyue; Ma, Dong, E-mail: madong8088@126.com

    2017-05-01

    Highlights: • C@BM composites were obtained by two–step hydrothermal method. • The properties of Bi{sub 2}MoO{sub 6} were deeply influenced by carbon layer. • Carbon could reduce recombination of electrons and holes in C@BM composites. • The holes and ·O{sub 2}{sup −} are the two main reactive species for Rh B degradation. - Abstract: Carbon–coated Bi{sub 2}MoO{sub 6} (C@BM) composites have been successfully synthesized via two–step hydrothermal method. The morphology, structure and photocatalytic performance of the composites in the degradation of Rhodamine B (Rh B) are characterized. The results show that the C@BM composites exhibit enhanced photocatalytic performance in the degradation of Rh B with maximum degradation rates of 90% (210 min) under visible light irradiation. 1.0%C@BM sample shows the highest photocatalytic activity, and the improved photocatalytic performance is mainly ascribed to the formation of Mo−O−C and Bi−O−C bonds. The bonds could promote electron transfer from Bi{sub 2}MoO{sub 6} to carbon layer and inhibit the recombination of electron–hole pairs with the presence of carbon layer in the composites. Moreover, the carbon layer on Bi{sub 2}MoO{sub 6} could enhance the absorption in the visible light region. In the photocatalytic degradation process, ·O{sub 2}{sup −}and holes are the predominant active species for the decomposition of Rh B.

  5. Tuning Cu dopant of Zn 0.5 Cd 0.5 S nanocrystals enables high-performance photocatalytic H 2 evolution from water splitting under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Zongwei; Zhang, Bingkai; Zheng, Jiaxin; Yuan, Sheng; Zhuo, Zengqing; Meng, Xianguang; Chen, Zonghai; Amine, Khalil; Yang, Wanli; Wang, Lin. -Wang; Wang, Wei; Wang, Shufeng; Gong, Qihuang; Li, Jun; Liu, Fu. -Sheng; Pan, Feng

    2016-08-01

    Cu-doping into Zn1-xCdxS can greatly enhance the photocatalytic H2 evolution from water splitting under visible-light irradiation. However, it is still controversial for how the Cu-dopant improves this performance. Here, we report that appropriate Cu-doped Zn0.5Cd0.5S nanocrystals reach 21.4 mmol/h/g of H2 evolution rate without cocatalyst in the visible-light region, which is also 2.8 times as high as that of the undoped counterpart, and the corresponding apparent quantum efficiency is 18.8% at 428 nm. It is firstly confirmed that the Cu2+ changes into Cu+ after being doped by soft X-ray absorption spectroscopy (sXAS). We theoretically propose that the transformation of 2Cu2+ to 2Cu+ results in one adjacent S2- vacancy (VS) in host during the doping process, while the Cu+-dopant and VS attract the photoexcited holes and electrons, respectively. Accordingly, the photocatalytic activity is improved due to the enhanced separation of photoexcited carriers accompanied with the enhanced light absorption resulting from the Cu+-dopant and 2Cu+/VS complex as possible active site for photocatalytic H2 evolution.

  6. Hydrothermal synthesis of CdS/Bi{sub 2}MoO{sub 6} heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yi; Yan, Xu; Liu, Chunbo; Hong, Yuanzhi; Zhu, Lin; Zhou, Mingjun; Shi, Weidong, E-mail: swd1978@ujs.edu.cn

    2015-10-30

    Graphical abstract: - Highlights: • The novel CdS/Bi{sub 2}MoO{sub 6} heterojunction were synthesized for the first time via a two-step hydrothermal process. • The CdS/Bi{sub 2}MoO{sub 6} heterojunction exhibited an excellent visible-light-driven photocatalytic activity for RhB degradation. • The photocatalytic activity of this heterojunction also evaluated by TC, MB degradation. • The mechanism of this photocatalysis system was firstly proposed. - Abstract: A novel CdS/Bi{sub 2}MoO{sub 6} heterojunction photocatalysts were successfully prepared via two-step hydrothermal methods. The prepared samples were characterized by various physicochemical techniques, such as XRD, SEM, TEM, HRTEM, XPS, UV–vis and PL. The obtained samples exhibited highly photocatalytic activity toward the degradation of the different kinds of organic dyes and tetracycline in aqueous solution under visible light irradiation (λ > 420 nm). The optimum photocatalytic efficiency of CdS-2 sample for the degradation rhodamine B (RhB) was about 25.3 and 3.7 times higher than that of individual CdS and Bi{sub 2}MoO{sub 6}, respectively. In addition, the possible photocatalytic mechanism was analyzed by different active species trapping experiments. The results indicated that the h{sup +} and ·O{sub 2}{sup −} were the main active species for the photocatalytic degradation of RhB. Moreover, the prepared sample shows good stability and recyclability properties which are beneficial for its practical application.

  7. Enhanced visible light-driven photocatalytic performance of ZnO–g-C{sub 3}N{sub 4} coupled with graphene oxide as a novel ternary nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wan-Kuen; Clament Sagaya Selvam, N., E-mail: clamentloy@gmail.com

    2015-12-15

    Highlights: • Prepared novel ternary nanocomposite consisting of ZnO, g-C{sub 3}N{sub 4}, and graphene oxide. • ZnO nanospheres disperse evenly and embed on porous g-C{sub 3}N{sub 4}-coupled graphene oxide. • Heterojunction of ternary composite account for the enhanced photocatalytic activity. - Abstract: This article reports a novel ternary nanocomposite consisting of ZnO, g-C{sub 3}N{sub 4}, and graphene oxide (GO) that provides enhanced photocatalytic performance and stability. The ZnO nanospheres disperse evenly and embed themselves in the porous g-C{sub 3}N{sub 4}. Composites with various g-C{sub 3}N{sub 4} and GO to ZnO weight ratios were synthesized and characterized systematically. The results indicated that the absorption of binary g-C{sub 3}N{sub 4}/ZnO nanocomposites shifted to a lower energy compared to pure ZnO in a fashion consistent with the loading content of g-C{sub 3}N{sub 4}. Notably, the loading content of GO in the ZnO–g-C{sub 3}N{sub 4} composite resulted in increased absorption in the visible range and improved charge separation efficiency, thereby drastically improving photocatalytic activity. Successful hybridization of ternary nanocomposite was confirmed by drastic quenching of fluorescence and broader visible light absorption. The optimal content of g-C{sub 3}N{sub 4} in the ZnO–g-C{sub 3}N{sub 4} composite was 50%, which exhibited the effective hybridization between ZnO and g-C{sub 3}N{sub 4}, and high photocatalytic efficiency. However, the photocatalytic degradation of the ternary nanocomposite showed performance that was two times greater than ZnO–g-C{sub 3}N{sub 4}, exhibiting 99.5% degradation efficiency after just 15 min of light irradiation. The combined heterojunction and synergistic effects of this composite account for the improved photocatalytic activity.

  8. Enhanced visible-light-induced photocatalytic activity of α-Fe2O3 adsorbing redox enzymes

    Directory of Open Access Journals (Sweden)

    Kai Kamada

    2015-03-01

    Full Text Available We report fabrication of hybrid photocatalyst composed of an n-type semiconductor (α-Fe2O3 and a redox enzyme (horseradish peroxidase; HRP, and its performance for oxidation of luminol in an aqueous solution. The hybrid photocatalyst is simply formed via physical adsorption of HRP to an α-Fe2O3 sintered body. Under visible light irradiation, the bare α-Fe2O3 with a narrow bandgap photocatalytically oxidizes luminol along with blue emission that can be used as an indicator of the photocatalytic performance. The blue emission is largely strengthened after the adsorption of HRP, demonstrating that the presence of enzyme improves apparent photocatalytic activity of α-Fe2O3. The favorable effect is derived from synergistic oxidation of luminol by the biocatalysts (HRP as well as by the photocatalyst (α-Fe2O3. In this paper, influence of excitation wavelength, adsorption amount of HRP, and reaction temperature on the overall photocatalytic activity are elucidated, and then a reaction mechanism of the proposed novel hybrid photocatalyst is discussed in detail.

  9. Microwave assisted hydrothermal synthesis of Ag/AgCl/WO3 photocatalyst and its photocatalytic activity under simulated solar light

    International Nuclear Information System (INIS)

    Adhikari, Rajesh; Gyawali, Gobinda; Sekino, Tohru; Wohn Lee, Soo

    2013-01-01

    Simulated solar light responsive Ag/AgCl/WO 3 composite photocatalyst was synthesized by microwave assisted hydrothermal process. The synthesized powders were characterized by X-Ray Diffraction (XRD) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Diffuse Reflectance Spectroscopy (UV–Vis DRS), and BET surface area analyzer to investigate the crystal structure, morphology, chemical composition, optical properties and surface area of the composite photocatalyst. This photocatalyst exhibited higher photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation. Dye degradation efficiency of composite photocatalyst was found to be increased significantly as compared to that of the commercial WO 3 nanopowder. Increase in photocatalytic activity of the photocatalyst was explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the composite photocatalyst. Highlights: ► Successful synthesis of Ag/AgCl/WO 3 nanocomposite. ► Photocatalytic experiment was performed under simulated solar light. ► Nanocomposite photocatalyst was very active as compared to WO 3 commercial powder. ► SPR effect due to Ag nanoparticles enhanced the photocatalytic activity.

  10. Controllable Fabrication of Ordered Mesoporous Bi2WO6 and Its High Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Xueming Dang

    2014-01-01

    Full Text Available Ordered mesoporous Bi2WO6 was fabricated by nanocasting technique using SBA-15 as the template. The effect of the dosage of SBA-15 on the formation of the ordered structure and the photocatalytic ability of mesoporous Bi2WO6 was discussed. It was confirmed that the ordered mesoporous structure was obtained as the dosage of SBA-15 was 0.3 g. It was found that, compared to Bi2WO6, the RhB degradation rate with ordered mesoporous Bi2WO6 was enhanced under visible light (λ>400 nm by the photocatalytic measurements. The enhanced photocatalytic performance of ordered mesoporous Bi2WO6 was attributed to its particular ordered mesoporous structure which could increase the light-harvesting efficiency, reduce the recombination of the photogenerated charge carriers, and promote the surface reaction.

  11. Sonochemical synthesis of Ag/AgCl nanocubes and their efficient visible-light-driven photocatalytic performance.

    Science.gov (United States)

    Chen, Deliang; Yoo, Seung Hwa; Huang, Qingsong; Ali, Ghafar; Cho, Sung Oh

    2012-04-23

    A novel one-step sonochemical approach to synthesize a plasmonic photocatalyst of AgCl nanocubes (ca. 115 nm in edge length) with a small amount of Ag metal species is presented. The nanoscale Ag/AgCl hybrid photocatalysts with cubic morphology are readily formed under ambient ultrasonic conditions and neither external heat treatment nor reducing agents are required. The size of the Ag/AgCl photocatalysts could be controlled by changing the concentrations of Ag(+) ions and polyvinylpyrrolidone molecules in precursor solutions. The compositions, microstructures, influencing factors, and possible growth mechanism of the Ag/AgCl hybrid nanocubes were systematically investigated. The Ag/AgCl photocatalysts show excellent photocatalytic performance for degradation of various dye molecules under visible light. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. TiO2/Halloysite Composites Codoped with Carbon and Nitrogen from Melamine and Their Enhanced Solar-Light-Driven Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Pengcheng Yao

    2015-01-01

    Full Text Available Carbon (C and nitrogen (N codoped anatase TiO2/amorphous halloysite nanotubes (C+N-TiO2/HNTs were fabricated using melamine as C and N source. The samples prepared by different weight ratios of melamine and TiO2 were investigated by X-ray diffraction (XRD and UV-vis diffuse reflectance spectrometer. It is shown that the doping amounts of C and N could influence the photocatalytic performance of as-prepared composites. When the weight ratio of melamine/TiO2 is 4.5, the C+N-TiO2/HNTs exhibited the best photocatalytic degradation efficiency of methyl blue (MB under solar light irradiation. The obtained C+N-TiO2/HNTs were characterized by transmission electron microscopy (TEM, N2 adsorption-desorption isotherm (BET, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR. The results showed that the aggregation was effectively reduced, and TiO2 nanoparticles could be uniformly deposited on the surface of HNTs. This leads to an increase of their specific surface area. XPS and FT-IR analyses indicated TiO2 particles were doped successfully with C and N via the linkage of the Ti–O–N, O–Ti–N, and Ti–O–C. Photocatalytic experiments showed that C+N-TiO2/HNTs had higher degradation efficiency of MB than TiO2/HNTs. This makes the composite a potential candidate for the photocatalytic wastewater treatment.

  13. Visible light induced photocatalytic degradation of some xanthene ...

    African Journals Online (AJOL)

    Photocatalytic degradation of eosin and erythrosin-B (xanthene dyes) has been carried out using anthracene semiconductor immobilized on polyethylene films. Effect of various parameters like pH, concentration of dyes, amount of semiconductor and light intensity have been studied on the rate of reaction. Various control ...

  14. Hydrothermal synthesis of CdS nanoparticle/functionalized graphene sheet nanocomposites for visible-light photocatalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Yan, Shancheng; Wang, Bojun; Shi, Yi; Yang, Fan; Hu, Dong; Xu, Xin; Wu, Jiansheng

    2013-01-01

    CdS nanoparticle/functionalized graphene sheet (CdS NP/FGS) nanocomposites were successfully prepared in a one-step hydrothermal synthesis route. The samples were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and Raman spectroscopy. In addition, the photocatalytic performance of CdS NP/FGS composites and pure CdS in the degradation of methyl orange (MO) was examined using visible light. Results show that the addition of FGS can enhance the photocatalytic performance of CdS NP/FGS composites with a maximum degradation efficiency of 98.1% under visible light irradiation as compared with pure CdS (60.1%). This finding can be attributed to three reasons. First is the strong redox ability of CdS in the nanocomposite with smaller crystal size. Second is the increase in specific surface area for more adsorbed MO. Third is the reduction in electron–hole pair recombination with the introduction of FGS. Based on their high photocatalytic activity, the CdS NP/FGS composites can be expected to be a practical visible light photocatalyst.

  15. Hydrothermal synthesis of CdS nanoparticle/functionalized graphene sheet nanocomposites for visible-light photocatalytic degradation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shancheng, E-mail: yansc@njupt.edu.cn [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wang, Bojun [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Shi, Yi [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yang, Fan; Hu, Dong; Xu, Xin; Wu, Jiansheng [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China)

    2013-11-15

    CdS nanoparticle/functionalized graphene sheet (CdS NP/FGS) nanocomposites were successfully prepared in a one-step hydrothermal synthesis route. The samples were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and Raman spectroscopy. In addition, the photocatalytic performance of CdS NP/FGS composites and pure CdS in the degradation of methyl orange (MO) was examined using visible light. Results show that the addition of FGS can enhance the photocatalytic performance of CdS NP/FGS composites with a maximum degradation efficiency of 98.1% under visible light irradiation as compared with pure CdS (60.1%). This finding can be attributed to three reasons. First is the strong redox ability of CdS in the nanocomposite with smaller crystal size. Second is the increase in specific surface area for more adsorbed MO. Third is the reduction in electron–hole pair recombination with the introduction of FGS. Based on their high photocatalytic activity, the CdS NP/FGS composites can be expected to be a practical visible light photocatalyst.

  16. Ag_3PO_4 Microcrystals Synthesized by Room-Temperature Solid State Reaction: Enhanced Photocatalytic Activity and Photoelectronchemistry Performance

    International Nuclear Information System (INIS)

    Hao Chen-Chun; Xu Jie; Shi Hong-Long; Fu Jun-Li; Zou Bin; Meng Shan; Wang Wen-Zhong; Jia Ying

    2015-01-01

    Ag_3PO_4 microcrystals with highly enhanced visible light photocatalytic activity are prepared by a facile and simple solid state reaction at room temperature. The composition, morphology and optical properties of the as-prepared Ag_3PO_4 microcrystals are characterized by x-ray diffraction, scanning electron microscopy and UV-vis diffuse reflectance spectra. The photocatalytic properties of Ag_3PO_4 are investigated by the degradation of both methylene blue and methyl orange dyes under visible light irradiation. The as-prepared Ag_3PO_4 microcrystals possess high photocatalytic oxygen production with the rate of 673 μmolh"−"1 g"−"1. Moreover, the as-prepared Ag_3PO_4 microcrystals show an enhanced photoelectrochemistry performance under irradiation of visible light. (paper)

  17. Preparation of sensitized ZnS and its photocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang Haitao; Chen Xinyi; Li Zhaosheng; Kou Jiahui; Yu Tao; Zou Zhigang

    2007-01-01

    In this paper, sensitized ZnS with visible light driven photocatlytic ability was successfully prepared. The obtained ZnS was characterized by x-ray diffraction, UV-visible diffuse reflectance spectra and Fourier transform infrared spectra. The photocatalytic property of the prepared ZnS was evaluated by decomposing methyl orange (MO). These sensitized ZnS powders with a proper molar ratio showed higher photocatalytic activity than TiO 2 (P25) under visible light (λ > 420 nm) irradiation. A possible explanation for the visible light activity of the prepared ZnS was proposed

  18. Two-dimensional molybdenum disulphide nanoflakes synthesized by liquid-solid phase reaction method: regenerative photocatalytic performance under UV-visible light irradiation by advance oxidation process

    Science.gov (United States)

    Afsar, M. F.; Rafiq, M. A.; Siddique, Fizza; Saira, F.; Chaudhary, M. M.; Hasan, M. M.; Tok, A. I. Y.

    2018-05-01

    Molybdenum disulphide (MoS2) nanoflakes were prepared through liquid-solid phase reaction technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM) analysis revealed the formation of pure, polycrystalline, hexagonal phase of MoS2 nanoflakes. The texture coefficient (T{c}hkl) analysis showed that (100) plane was preferentially oriented. The specific surface area of the nanoflakes was 21 m2 g‑1 as determined using Brunaure-Emmett-Teller (BET) technique. A band gap of ∼2.05 eV for MoS2 nanoflakes was estimated from UV-visible spectrum. Regenerative photocatalytic activity of MoS2 nanoflakes was assessed by degrading methylene blue (MB) and safranin-o (SO) dyes under UV-visible light irradiation. Under light irradiation, degradation efficiency for MB was ∼99.58% in 100 min while for SO it was ∼99.89% in 70 min. The MoS2 nanoflakes exhibited excellent photocatalytic performance and good stability in a wide pH range (3–11). MoS2 nanoflakes showed a high reaction rate constant (k app ) for SO ∼ 0.104 49 min‑1 and MB ∼ 0.092 18 min‑1 as compared to other MoS2 nanostructures. The obtained exceptional photocatalytic performance of MoS2 nanoflakes offers potential applications for the treatment of polluted water as well as in other correlated fields.

  19. Facile synthesis of Ag nanoparticles supported on TiO2 inverse opal with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhao Yongxun; Yang Beifang; Xu Jiao; Fu Zhengping; Wu Min; Li Feng

    2012-01-01

    TiO 2 inverse opal films loaded with silver nanoparticles (ATIO) were synthesized on glass substrates. TiO 2 inverse opal (TIO) films were prepared via a sol–gel process using self-assembly of SiO 2 colloidal crystal template and a facile wet chemical route featuring an AgNO 3 precursor solution to fabricate silver nanoparticles on the TIO films. The inverse opal structure and Ag deposition physically and chemically modify titania, respectively. The catalysts were characterized by Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), UV–vis absorption spectra, X-ray photoelectron spectroscopy and photoluminescence spectroscopy. The HRTEM results show that Ag nanoparticles measuring 5–10 nm were evenly distributed on TIO. Both the UV- and visible-light photocatalytic activities of the samples were evaluated by analyzing the degradation of methylene blue (MB) in aqueous solution. The results reveal that the apparent reaction rate constant (k app ) of MB degradation of the sample ATIO under UV-light irradiation is approximately 1.5 times that of the conventional Ag-loaded TiO 2 film (ATF) without an ordered porous structure at an AgNO 3 concentration of 5 mM in the precursor solution. At an AgNO 3 concentration of 10 mM, the sample exhibits a k app value approximately 4.2 times that of ATF under visible-light irradiation. This enhanced visible-light photocatalytic performance can be attributed to the synergistic effect of optimized Ag nanoparticle deposition and an ordered macroporous TIO structure. Repeated cycling tests revealed that the samples showed stable photocatalytic activity, even after six repeated cycles. - Highlights: ►TiO 2 inverse opal films loaded with silver nanoparticles were synthesized. ►Physical and chemical modifications of TiO 2 were achieved simultaneously. ►The catalysts exhibited enhanced visible-light photocatalytic activity. ►The mechanism for enhanced

  20. Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiation

    International Nuclear Information System (INIS)

    Luévano-Hipólito, E.; Martínez-de la Cruz, A.; López-Cuellar, E.; Yu, Q.L.; Brouwers, H.J.H.

    2014-01-01

    Samples with different proportions WO 3 /TiO 2 were prepared by co-precipitation method followed by a heat treatment. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and adsorption–desorption N 2 isotherms (BET). The photocatalytic properties of WO 3 /TiO 2 samples were evaluated in the photo-oxidation reaction of nitric oxide (NO) under UV and visible light irradiation. The highest photocatalytic activity was observed in the WO 3 /TiO 2 sample with a composition of 80% mole of TiO 2 . Among the different substrates used for supporting the photocatalyst, the best results were reached over concrete and glass when it was exposed to UV and visible light irradiation, respectively. In overall, the photocatalytic efficiency of the synthesized materials was higher under UV than visible light irradiation. - Highlights: • WO 3 /TiO 2 prepared in simple way show high photocatalytic activity for NO removal. • The concrete was the best substrate to the performance of WO 3 /TiO 2 with UV radiation. • The glass was the best substrate to the performance of WO 3 /TiO 2 with visible radiation

  1. Hydroxyapatite supported Ag3PO4 nanoparticles with higher visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Hong Xiaoting; Wu Xiaohui; Zhang Qiuyun; Xiao Mingfeng; Yang Gelin; Qiu Meirong; Han Guocheng

    2012-01-01

    Hydroxyapatite supported Ag 3 PO 4 nanocomposites have been synthesized by a wet impregnation process. UV-vis absorption spectra show a red shift of the absorption edges for the composite systems compared to pure hydroxyapatite support. The surface structure and morphology of the nanocomposites were characterized by Brunauer-Emmett-Teller (BET) apparatus, X-ray diffraction (XRD), transmission electron microscopy (TEM). The results suggest that Ag 3 PO 4 nanoparticles (6-17 nm in diameter) are well dispersed on the hydroxyapatite support and Ag 3 PO 4 nanoparticles density is larger for the higher Ag + loading sample. The as-prepared nanocomposite photocatalysts showed a pronounced photocatalytic activity upon decomposition of methylene blue dye in aqueous solution under both visible light (wavelength > 400 nm) and UV-vis light irradiation. A synergic mechanism of inherent photocatalytic capability of Ag 3 PO 4 and the accelerated electron/hole separation resulting from the photoinduced electrons captured by the slow-released Ag + at the interface of Ag 3 PO 4 and hydroxyapatite is proposed for the nanocomposites on the enhancement of photocatalytic performance in comparison to that of pure Ag 3 PO 4 nanoparticles. The support of hydroxyapatite may also act as an absorbent which favors the mass transfer in heterogeneous photocatalysis reaction.

  2. Fabrication of Ni-doped BiVO_4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment

    International Nuclear Information System (INIS)

    Regmi, Chhabilal; Kshetri, Yuwaraj K.; Kim, Tae-Ho; Pandey, Ramesh Prasad; Ray, Schindra Kumar; Lee, Soo Wohn

    2017-01-01

    Highlights: • Synthesis of a Ni-doped BiVO_4 semiconductor photocatalyst with reduced band gap energy. • Ni-doped BiVO_4 provided efficient photocatalytic activity for ibuprofen degradation and E. coli and green tide deactivation. • DFT calculation and thermodynamic modeling to understand the underlying mechanism. - Abstract: A visible-light-driven Ni-doped BiVO_4 photocatalyst was synthesized using a microwave hydrothermal method. The nominal Ni doping amount of 1 wt% provided excellent photoactivity for a variety of water pollutants, such as ibuprofen (pharmaceutical), Escherichia coli (bacteria), and green tides (phytoplankton). Each Ni-doped BiVO_4 sample exhibits better performance than pure BiVO_4. The degradation of ibuprofen reaches 80% within 90 min, the deactivation of Escherichia coli reaches around 92% within 5 h, and the inactivation of green tide (Chlamydomonas pulsatilla) reaches 70% upon 60 min of the visible light irradiation. The first principle calculation and thermodynamic modeling revealed that Ni doping in the vanadium site gives the most stable configuration of the synthesized samples with the formation of an in-gap energy state and oxygen vacancies. The in-gap energy state and the oxygen vacancies serve as an electron-trapping center that decreases the migration time of the photogenerated carrier and increases the separation efficiency of electron-hole pairs, which are responsible for the observed efficient photocatalytic, anti-bacterial and anti-algal activity of the samples. These properties thus suggest potential applications of Ni-doped BiVO_4 as a multifunctional material in the field of wastewater treatment.

  3. 2D BiOCl/Bi12O17Cl2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation

    Science.gov (United States)

    Zhang, Wendong; Dong, Xin'an; Jia, Bin; Zhong, Junbo; Sun, Yanjuan; Dong, Fan

    2018-02-01

    Novel two-dimensional (2D) BiOCl/Bi12O17Cl2 nanojunctions were fabricated by a facile one-pot in situ method at room temperature. The as-prepared samples were analyzed by XRD, SEM, TEM, HRTEM, UV-vis DRS, PL, ESR and BET-BJH measurement in detail. The photocatalytic performance of the samples was evaluated by removal of NO at ppb level under visible-light illumination. The result reveals that the BiOCl/Bi12O17Cl2 nanojunctions manifests conspicuously enhanced photocatalytic efficiency for NO removal. The facilitated performance can be ascribed to the well-matched band structure and relatively high specific surface area. In addition, the in situ diffuse reflectance infrared Fourier transform spectroscopy was applied to investigate the adsorption and photocatalytic NO oxidation processes. The reaction mechanism of photocatalytic NO oxidation was proposed based on the observed intermediates. The present work could pave a way to synthesize novel visible light photocatalysts at room temperature for environmental application.

  4. Photocatalytic performance of cylindrical reactor inserted with UV light-emitting-diodes for purification of low-level toxic volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wan K., E-mail: wkjo@knu.ac.kr [Department of Environmental Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Kang, Hyun J., E-mail: khj435@naver.com [Department of Environmental Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Photocatalyst baked at 350 Degree-Sign C exhibited the highest BTEX degradation efficiency. Black-Right-Pointing-Pointer Conventional lamp evidenced a higher degradation efficiency compared to LEDs. Black-Right-Pointing-Pointer LEDs was more energy-efficient than conventional lamp for BTEX degradation. Black-Right-Pointing-Pointer As the residence time increased, the average degradation efficiency increased. - Abstract: The present study investigated the photocatalytic performance of a cylindrical reactor inserted with UV light-emitting-diodes for the decomposition of low-level (0.1 ppm) gas-phase organic compounds (benzene, toluene, ethyl benzene and xylene (BTEX)). The morphological and optical properties of photocatalysts (Degussa P-25 TiO{sub 2}) baked at different temperatures were determined using a range of spectral instruments. The photocatalyst baked at 350 Degree-Sign C exhibited the highest conversion efficiencies for both benzene and toluene (81 and {approx}100%, respectively). The conventional lamp showed a higher conversion efficiency for benzene compared to the 380-nm UV-LED and a higher conversion efficiency for benzene and toluene than the 365-nm UV-LED. However, the ratios of conversion efficiency to electric power consumption were 2.5-3.0 times higher for the latter light source than the former source. Moreover, as the residence time increased from 0.2 to 1.2 min, the average conversion efficiencies for BTEX of the 3-h photocatalytic process increased from nearly zero to 81%, 7 to nearly 100%, 20 to nearly 100%, and 29-30 to nearly 100%, respectively. The cylindrical photocatalytic reactor inserted with UV-LEDs could be energy-efficiently applied for the decomposition of low-level toxic compounds after optimization of the operating conditions.

  5. Photocatalytic performance of cylindrical reactor inserted with UV light-emitting-diodes for purification of low-level toxic volatile organic compounds

    International Nuclear Information System (INIS)

    Jo, Wan K.; Kang, Hyun J.

    2012-01-01

    Highlights: ► Photocatalyst baked at 350 °C exhibited the highest BTEX degradation efficiency. ► Conventional lamp evidenced a higher degradation efficiency compared to LEDs. ► LEDs was more energy-efficient than conventional lamp for BTEX degradation. ► As the residence time increased, the average degradation efficiency increased. - Abstract: The present study investigated the photocatalytic performance of a cylindrical reactor inserted with UV light-emitting-diodes for the decomposition of low-level (0.1 ppm) gas-phase organic compounds (benzene, toluene, ethyl benzene and xylene (BTEX)). The morphological and optical properties of photocatalysts (Degussa P-25 TiO 2 ) baked at different temperatures were determined using a range of spectral instruments. The photocatalyst baked at 350 °C exhibited the highest conversion efficiencies for both benzene and toluene (81 and ∼100%, respectively). The conventional lamp showed a higher conversion efficiency for benzene compared to the 380-nm UV-LED and a higher conversion efficiency for benzene and toluene than the 365-nm UV-LED. However, the ratios of conversion efficiency to electric power consumption were 2.5–3.0 times higher for the latter light source than the former source. Moreover, as the residence time increased from 0.2 to 1.2 min, the average conversion efficiencies for BTEX of the 3-h photocatalytic process increased from nearly zero to 81%, 7 to nearly 100%, 20 to nearly 100%, and 29–30 to nearly 100%, respectively. The cylindrical photocatalytic reactor inserted with UV-LEDs could be energy-efficiently applied for the decomposition of low-level toxic compounds after optimization of the operating conditions.

  6. Preparation, characterization and enhanced visible-light photocatalytic activities of BiPO4/BiVO4 composites

    International Nuclear Information System (INIS)

    Wu, Siyuan; Zheng, Hong; Lian, Youwei; Wu, Yiying

    2013-01-01

    Graphical abstract: - Highlights: • BiPO 4 /BiVO 4 composites were successfully prepared by the hydrothermal method. • BiPO 4 /BiVO 4 composites exhibited broad absorption in the visible region. • Visible-light photocatalytic activities of BiPO 4 /BiVO 4 composites were enhanced. • P/V molar ratio and pH value of the reaction affect photocatalytic activity. • The mechanism of enhanced visible-light photocatalytic activities was discussed. - Abstract: BiPO 4 /BiVO 4 composites with different P/V molar ratios were prepared by the hydrothermal method and the effect of pH values of hydrothermal reaction on photocatalytic activity of BiPO 4 /BiVO 4 composite was investigated. The photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. The photocatalytic property of BiPO 4 /BiVO 4 was evaluated by photocatalytic degradation of Methylene blue under visible light irradiation. The results showed that the photocatalytic activity of the composites was much higher than that of pure BiPO 4 and BiVO 4 . The rate constant of Methylene blue degradation over BiPO 4 /BiVO 4 (P/V molar ratio of 5:1 and hydrothermal reaction pH value of 1.5) is 1.7 times that of pure BiVO 4 . The photocatalytic activity enhancement of BiPO 4 /BiVO 4 composite is closely related to the BiVO 4 functioning as a sensitizer to adsorb visible light and the heterojunction of BiPO 4 /BiVO 4 acting as an active center for hindering the rapid recombination of electron–hole pairs during the photocatalytic reaction

  7. Zinc vanadate nanorods and their visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y.

    2015-01-01

    Highlights: • Zinc vanadate nanorods have been synthesized by a facile hydrothermal process. • The size of zinc vanadate nanorods can be controlled by growth conditions. • Zinc vanadate nanorods show good photocatalytic activities of methylene blue under solar light. - Abstract: Zinc vanadate nanorods have been synthesized by a simple hydrothermal process using zinc acetate and sodium vanadate as the raw materials. The zinc vanadate nanorods have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and solid UV–vis diffuse reflectance spectrum. XRD pattern and HRTEM image show that the zinc vanadate nanorods are composed of single crystalline monoclinic Zn 2 V 2 O 7 phase. SEM and TEM observations show that the diameter and length of the zinc vanadate nanorods are 50–100 nm and about 5 μm, respectively. Sodium dodecyl sulfonate (SDS) has an essential role in the formation of zinc vanadate nanorods. The SDS-assisted nucleation and growth process have been proposed to explain the formation and growth of the zinc vanadate nanorods. Solid UV–vis diffuse reflectance spectrum shows that the zinc vanadate nanorods have a band gap of 2.76 eV. The photocatalytic activities of the zinc vanadate nanorods have been evaluated by the photocatalytic degradation of methylene blue (MB) under solar light irradiation. The MB with the concentration of 10 mg L −1 can be degraded totally under the solar light irradiation for 4 h. It is suggested that the zinc vanadate nanorods exhibit promising application potential for the degradation of organic pollutants under solar light irradiation

  8. Visible-light photocatalytic activity of nitrided TiO2 thin films

    International Nuclear Information System (INIS)

    Camps, Enrique; Escobar-Alarcon, L.; Camacho-Lopez, Marco Antonio; Casados, Dora A. Solis

    2010-01-01

    TiO 2 thin films have been applied in UV-light photocatalysis. Nevertheless visible-light photocatalytic activity would make this material more attractive for applications. In this work we present results on the modification of titanium oxide (anatase) sol-gel thin films, via a nitriding process using a microwave plasma source. After the treatment in the nitrogen plasma, the nitrogen content in the TiO 2 films varied in the range from 14 up to 28 at%. The titanium oxide films and the nitrided ones were characterized by XPS, micro-Raman spectroscopy and UV-vis spectroscopy. Photocatalytic activity tests were done using a Methylene Blue dye solution, and as catalyst TiO 2 and nitrided TiO 2 films. The irradiation of films was carried out with a lamp with emission in the visible (without UV). The results showed that the nitrided TiO 2 films had photocatalytic activity, while the unnitrided films did not.

  9. An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance

    Science.gov (United States)

    Guo, Yanru; Xiao, Limin; Zhang, Min; Li, Qiuye; Yang, Jianjun

    2018-05-01

    An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 ternary nanocomposite was fabricated using nanotubular titanic acid as precursors via a simple photo-deposition of Pd nanoparticles and calcination process. The prepared nanocomposites were investigated by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy, respectively. For g-C3N4/TiO2 binary nanocomposites, at the optimal content of g-C3N4 (2%), the apparent photocatalytic activity of 2%g-C3N4/TiO2 was 9 times higher than that of pure TiO2 under visible-light illumination. After deposition of Pd (1 wt%) at the contact interface between g-C3N4 and TiO2, the 2%g-C3N4/Pd/TiO2 ternary nanocomposites demonstrated the highest visible-light-driven photocatalytic activity for the degradation of gaseous propylene, which was 16- and 2-fold higher activities than pure TiO2 and 2%g-C3N4/TiO2, respectively. The mechanism for the enhanced photocatalytic performance of the g-C3N4/Pd/TiO2 photo-catalyst is proposed to be based on the efficient separation of photo-generated electron-hole pairs through Z-scheme system, in which uniform dispersity of Pd nanoparticles at contact interface between g-C3N4 and TiO2 and oxygen vacancies promote charge separation.

  10. Synthesis, characterization and photocatalytic performance of chemically exfoliated MoS2

    Science.gov (United States)

    Prabhakar Vattikuti, S. V.; Shim, Jaesool

    2018-03-01

    Two-dimensional (2D) layered structure transition metal dichalcogenides (TMDs) has gained huge attention and importance for photocatalytic energy conversion because of their unique properties. Molybdenum disulfide (MoS2) nanosheets were synthesized via one-pot method and exfoliated in (dimethylformamide) DMF solution. Subsequent exfoliated MoS2 nanosheets (e-MoS2) were used as photocatalysts for degradation of Rhodamine B (RhB) pollutant under solar light irradiation. The e-MoS2 nanosheets exhibited excellent photocatalytic activity than that of pristine MoS2, owing to high specific surface area with enormous active sites and light absorption capacity. In addition, e-MoS2 demonstrated remarkable photocatalytic stability.

  11. Bismuth titanate nanorods and their visible light photocatalytic properties

    International Nuclear Information System (INIS)

    Pei, L.Z.; Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-01-01

    Highlights: • Bismuth titanate nanorods have been synthesized by a simple hydrothermal process. • The size of bismuth titanate nanorods can be controlled by growth conditions. • Bismuth titanate nanorods show good photocatalytic activities of methylene blue and Rhodamine B. - Abstract: Bismuth titanate nanorods have been prepared using a facile hydrothermal process without additives. The bismuth titanate products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and UV-vis diffusion reflectance spectrum. XRD pattern shows that the bismuth titanate nanorods are composed of cubic Bi 2 Ti 2 O 7 phase. Electron microscopy images show that the length and diameter of the bismuth titanate nanorods are 50-200 nm and 2 μm, respectively. Hydrothermal temperature and reaction time play important roles on the formation and size of the bismuth titanate nanorods. UV-vis diffusion reflectance spectrum indicates that bismuth titanate nanorods have a band gap of 2.58 eV. The bismuth titanate nanorods exhibit good photocatalytic activities in the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RB) under visible light irradiation. The bismuth titanate nanorods with cubic Bi 2 Ti 2 O 7 phase are a promising candidate as a visible light photocatalyst

  12. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    Science.gov (United States)

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  13. Enhanced photocatalytic performance of CeO2-TiO2 nanocomposite for degradation of crystal violet dye and industrial waste effluent

    Science.gov (United States)

    Zahoor, Mehvish; Arshad, Amara; Khan, Yaqoob; Iqbal, Mazhar; Bajwa, Sadia Zafar; Soomro, Razium Ali; Ahmad, Ishaq; Butt, Faheem K.; Iqbal, M. Zubair; Wu, Aiguo; Khan, Waheed S.

    2018-03-01

    This study presents the synthesis of CeO2-TiO2 nanocomposite and its potential application for the visible light-driven photocatalytic degradation of model crystal violet dye as well as real industrial waste water. The ceria-titania (CeO2-TiO2) nanocomposite material was synthesised using facile hydrothermal route without the assistance of any template molecule. As-prepared composite was characterised by SEM, TEM, HRTEM, XRD, XPS for surface features, morphological and crystalline characters. The formed nanostructures were determined to possess crystal-like geometrical shape and average size less than 100 nm. The as-synthesised nanocomposite was further investigated for their heterogeneous photocatalytic potential against the oxidative degradation of CV dye taken as model pollutant. The photo-catalytic performance of the as-synthesised material was evaluated both under ultra-violet as well as visible light. Best photocatalytic performance was achieved under visible light with complete degradation (100%) exhibited within 60 min of irradiation time. The kinetics of the photocatalytic process were also considered and the reaction rate constant for CeO2-TiO2 nanocomposite was determined to be 0.0125 and 0.0662 min-1 for ultra-violet and visible region, respectively. In addition, the as-synthesised nanocomposite demonstrated promising results when considered for the photo-catalytic degradation of coloured industrial waste water collected from local textile industry situated in Faisalabad region of Pakistan. Enhanced photo-catalytic performance of CeO2-TiO2 nanocomposite was proposed owing to heterostructure formation leading to reduced electron-hole recombination.

  14. In-situ anion exchange fabrication of porous ZnO/ZnSe heterostructural microspheres with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Hu, Yanchun [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); He, Xia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); Jia, Husheng, E-mail: jia_husheng@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang; Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China)

    2015-11-25

    Porous ZnO microspheres were fabricated by an ultrasonic irradiation technique. Subsequently, through a facile in-situ anion exchange reaction between the ZnO microsphere and sodium selenite, spherical ZnO/ZnSe heterostructures with different ratios of the two components were fabricated. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV–vis spectrometry. The results reveal that the secondary ZnSe nanoparticles are grown on the surface of pre-grown ZnO microspheres. Compared with pure ZnO microspheres, the ZnO/ZnSe hetero-microspheres show enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. Photoluminescent spectra further indicate that the ZnO/ZnSe heterostructures greatly suppress the charge recombination of photogenerated electron–hole pairs, which would be beneficial to improve their photocatalytic activity. Finally, the photocatalytic mechanism of the ZnO/ZnSe heterostructures is proposed. - Graphical abstract: Porous ZnO/ZnSe heterostructures with different ratios of the two components were fabricated and present enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. - Highlights: • Spherical ZnO/ZnSe porous composites were fabricated by in-situ anion exchange. • ZnO/ZnSe composites exhibited enhanced visible-light photocatalytic activity. • The matching band gap improves the separation of

  15. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  16. The photocatalytic degradation of methylene blue by green semiconductor films that is induced by irradiation by a light-emitting diode and visible light.

    Science.gov (United States)

    Yang, Chih-Chi; Doong, Ruey-An; Chen, Ku-Fan; Chen, Giin-Shan; Tsai, Yung-Pin

    2018-01-01

    This study develops a low-energy rotating photocatalytic contactor (LE-RPC) that has Cu-doped TiO 2 films coated on stainless-steel rotating disks, to experimentally evaluate the efficiency of the degradation and decolorization of methylene blue (MB) under irradiation from different light sources (visible 430 nm, light-emitting diode [LED] 460 nm, and LED 525 nm). The production of hydroxyl radicals is also examined. The experimental results show that the photocatalytic activity of TiO 2 that is doped with Cu 2+ is induced by illumination with visible light and an LED. More than 90% of methylene blue at a 10 mg/L concentration is degraded after illumination by visible light (430 nm) for 4 hr at 20 rpm. This study also demonstrates that the quantity of hydroxyl radicals produced is directly proportional to the light energy intensity. The greater the light energy intensity, the greater is the number of hydroxyl radicals produced. The CuO-doped anatase TiO 2 powder was successfully synthesized in this study by a sol-gel method. The catalytic abilities of the stainless-steel film were enhanced in the visible light regions. This study has successfully modified the nano-photocatalytic materials to drop band gap and has also successfully fixed the nano-photocatalytic materials on a substratum to effectively treat dye wastewater in the range of visible light. The results can be useful to the development of a low-energy rotating photocatalytic contactor for decontamination purposes.

  17. Enhanced visible-light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties

    International Nuclear Information System (INIS)

    Yi, Shasha; Cui, Jiabao; Li, Shuo; Zhang, Lijing; Wang, Dejun; Lin, Yanhong

    2014-01-01

    Highlights: • ZnO and Fe/ZnO nanoflowers were synthesized via a hydrothermal process. • Fe/ZnO nanoflowers show improved photocatalytic activity under the irradiation of visible light. • In the Fe/ZnO system, Fe 3+ and Fe 2+ coexistences in the ZnO host. • The detailed photocatalytic mechanism and the role of Fe in the photodegradation system are discussed. - Abstract: Zinc oxide (ZnO) and iron doped zinc oxide (Fe/ZnO) nanoflowers were successfully synthesized via a simple hydrothermal process. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman scattering, ultraviolet–visible (UV–vis) diffuse spectroscopy and scanning electron microscopy (SEM), and it was found that the dopant ions replaced some of the crystal lattice zinc ions, and furthermore, Fe 3+ and Fe 2+ ions coexist. Photocatalytic activities of the catalysts were assessed based on the degradation of rhodamine B (RhB) in aqueous solution under both UV and visible light irradiation (λ > 420 nm), respectively. All Fe/ZnO samples showed enhanced photocatalytic activity under the irradiation of visible light. On the contrary, Fe/ZnO products displayed poorer performance than that of pure ZnO in the presence of UV light. This phenomenon can be attributed to the coexistence of Fe 3+ and Fe 2+ in the ZnO host. The photophysical mechanism of the UV and visible photocatalytic activity was investigated with the help of surface photovoltage (SPV) and PL measurements, respectively. The results indicated the influence of coexistence of Fe 3+ and Fe 2+ in ZnO host on the separation and transfer behavior of the photogenerated charges in the UV and visible regions, which are distinctly different: under the irradiation of UV light, the recombination of the photogenerated electrons and holes was promoted, whereas the separation and transfer of photogenerated electrons and holes was facilitated under the visible light irradiation. The detailed photocatalytic

  18. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution

    KAUST Repository

    Bhunia, Manas Kumar

    2014-08-14

    Described herein is the photocatalytic hydrogen evolution using crystalline carbon nitrides (CNs) obtained by supramolecular aggregation followed by ionic melt polycondensation (IMP) using melamine and 2,4,6-triaminopyrimidine as a dopant. The solid state NMR spectrum of 15N-enriched CN confirms the triazine as a building unit. Controlling the amount and arrangements of dopants in the CN structure can dramatically enhance the photocatalytic performance for H2 evolution. The polytriazine imide (PTI) exhibits the apparent quantum efficiency (AQE) of 15% at 400 nm. This method successfully enables a substantial amount of visible light to be harvested for H2 evolution, and provides a promising route for the rational design of a variety of highly active crystalline CN photocatalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Monoclinic BiVO4 micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    International Nuclear Information System (INIS)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong; Chen, Rong

    2013-01-01

    Graphical abstract: Monoclinic BiVO 4 with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: ► BiVO 4 nanostructures were prepared by microwave and ultrasonic wave combined method. ► BiVO 4 nanostructures could be modulated by varying the solvent and pH value. ► Different BiVO 4 nanostructures exhibited different photocatalytic activities. ► The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO 4 ) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO 4 products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV–vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO 4 were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO 4 nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO 4 nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  20. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    International Nuclear Information System (INIS)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Highlights: • Bi_2Se_3 and Ni doped Bi_2Se_3 were synthesized by solvothermal approach. • Presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement. • Complete degradation of malachite green (MG) dye was achieved by Ni doped Bi_2Se_3 with H_2O_2. • Remarkable photo-catalytic degradation by doped bismuth selenide has been explained. • Scavenger tests show degradation of MG is mainly dominated by ·OH oxidation process. - Abstract: Bismuth selenide (Bi_2Se_3) and nickel (Ni) doped Bi_2Se_3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi_2Se_3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi_2Se_3 sample exhibited higher photo-catalytic activity than that of the pure Bi_2Se_3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi_2Se_3 in presence of hydrogen peroxide (H_2O_2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  1. Novel ternary g-C3N4/Ag3VO4/AgBr nanocomposites with excellent visible-light-driven photocatalytic performance for environmental applications

    Science.gov (United States)

    Barzegar, Javid; Habibi-Yangjeh, Aziz; Akhundi, Anise; Vadivel, S.

    2018-04-01

    Novel visible-light-induced photocatalysts were fabricated by integration of Ag3VO4 and AgBr semiconductors with graphitic carbon nitride (g-C3N4) through a facile refluxing method. The fabricated photocatalysts were extensively characterized by XRD, EDX, SEM, TEM, FT-IR, UV-vis DRS, BET, TGA, and PL instruments. The photocatalytic performance of these samples was studied by degradations of three dye contaminants under visible-light exposure. Among the ternary photocatalysts, the g-C3N4/Ag3VO4/AgBr (10%) nanocomposite displayed the maximum activity for RhB degradation with rate constant of 1366.6 × 10-4 min-1, which is 116, 7.23, and 38.5 times as high as those of the g-C3N4, g-C3N4/AgBr (10%), and g-C3N4/Ag3VO4 (30%) photocatalysts, respectively. The effects of synthesis time and calcination temperature were also investigated and discussed. Furthermore, according to the trapping experiments, it was found that superoxide anion radicals were the predominant reactive species in this system. Finally, the ternary photocatalyst displayed superlative activity in removal of the contaminants under visible-light exposure, displaying great potential of this ternary photocatalyst for environmental remediation, because of a facile synthesis route and outstanding photocatalytic performance.

  2. Solar Light Responsive Photocatalytic Activity of Reduced Graphene Oxide-Zinc Selenide Nanocomposite

    Science.gov (United States)

    Chakraborty, Koushik; Ibrahim, Sk; Das, Poulomi; Ghosh, Surajit; Pal, Tanusri

    2017-10-01

    Solution processable reduced graphene oxide-zinc selenide (RGO-ZnSe) nanocomposite has been successfully synthesized by an easy one-pot single-step solvothermal reaction. The RGO-ZnSe composite was characterized structurally and morphologically by the study of XRD analysis, SEM and TEM imaging. Reduction in graphene oxide was confirmed by FTIR spectroscopy analysis. Photocatalytic efficiency of RGO-ZnSe composite was investigated toward the degradation of Rhodamine B under solar light irradiation. Our study indicates that the RGO-ZnSe composite is catalytically more active compared to the controlled-ZnSe under the solar light illumination. Here, RGO plays an important role for photoinduced charge separation and subsequently hinders the electron-hole recombination probability that consequently enhances photocatalytic degradation efficiency. We expect that this type of RGO-based optoelectronics materials opens up a new avenue in the field of photocatalytic degradation of different organic water pollutants.

  3. Enhanced UV-Visible Light Photocatalytic Activity by Constructing Appropriate Heterostructures between Mesopore TiO₂ Nanospheres and Sn₃O₄ Nanoparticles.

    Science.gov (United States)

    Hu, Jianling; Tu, Jianhai; Li, Xingyang; Wang, Ziya; Li, Yan; Li, Quanshui; Wang, Fengping

    2017-10-19

    Novel TiO₂/Sn₃O₄ heterostructure photocatalysts were ingeniously synthesized via a scalable two-step method. The impressive photocatalytic abilities of the TiO₂/Sn₃O₄ sphere nanocomposites were validated by the degradation test of methyl orange and •OH trapping photoluminescence experiments under ultraviolet (UV) and visible light irradiation, respectively. Especially under the visible light, the TiO₂/Sn₃O₄ nanocomposites demonstrated a superb photocatalytic activity, with 81.2% of methyl orange (MO) decomposed at 30 min after irradiation, which greatly exceeded that of the P25 (13.4%), TiO₂ (0.5%) and pure Sn₃O₄ (59.1%) nanostructures. This enhanced photocatalytic performance could be attributed to the mesopore induced by the monodispersed TiO₂ cores that supply sufficient surface areas and accessibility to reactant molecules. This exquisite hetero-architecture facilitates extended UV-visible absorption and efficient photoexcited charge carrier separation.

  4. Solid-phase photocatalytic degradation of polystyrene plastic with goethite modified by boron under UV-vis light irradiation

    International Nuclear Information System (INIS)

    Liu Guanglong; Zhu Duanwei; Zhou Wenbing; Liao Shuijiao; Cui Jingzhen; Wu Kang; Hamilton, David

    2010-01-01

    A novel photodegradable polyethylene-boron-goethite (PE-B-goethite) composite film was prepared by embedding the boron-doped goethite into the commercial polyethylene. The goethite catalyst was modified by boron in order to improve its photocatalytic efficiency under the ultraviolet and visible light irradiation. Solid-phase photocatalytic degradation of the PE-B-goethite composite film was carried out in an ambient air at room temperature under ultraviolet and visible light irradiation. The properties of composite films were compared with those of the pure PE films and the PE-goethite composite films through performing weight loss monitoring, scanning electron microscope (SEM) analysis, FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). The photo-induced degradation of PE-B-goethite composite films was higher than that of the pure PE films and the PE-goethite composite films under the UV-irradiation, while there has been little change under the visible light irradiation. The weight loss of the PE-B-goethite (0.4 wt.%) composite film reached 12.6% under the UV-irradiation for 300 h. The photocatalytic degradation mechanism of the composite films was briefly discussed.

  5. Synthesis of surface oxygen-deficient BiPO{sub 4} nanocubes with enhanced visible light induced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Bingtao; Yin, Haoyong; Li, Tao; Gong, Jianying; Lv, Shumei; Nie, Qiulin, E-mail: yhy@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou (China)

    2017-05-15

    The visible light driven BiPO{sub 4} nanocubes with sufficient surface oxygen deficiency were fabricated by a hydrothermal process and subsequently ultrasonic assistant Fe reduction process. The products were characterized by XRD, DRS, XPS, SEM and TEM which showed that the BiPO{sub 4} had cuboid-like shape with a smooth surface and clear edges and the oxygen vacancies were successfully introduced on the surface of the BiPO{sub 4} nanocubes. The as prepared oxygen-deficient BiPO{sub 4} nanocubes showed greatly enhanced visible light induced photocatalytic activity in degradation of Rhodamine B. The enhanced photocatalytic performance and expanded visible light response of BiPO{sub 4} may be due to the introduction of surface oxygen vacancies which can generate the oxygen vacancies mid-gap states lower to the conduction band of BiPO{sub 4}. (author)

  6. Magnetically separable CuFe{sub 2}O{sub 4}/AgBr composite photocatalysts: Preparation, characterization, photocatalytic activity and photocatalytic mechanism under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yalei; Lin, Cuiping; Bi, Huijie; Liu, Yonggang; Yan, Qishe, E-mail: Qisheyanzzu@163.com

    2017-01-15

    Highlights: • CuFe{sub 2}O{sub 4}/AgBr composites were prepared by a facile sol-gel and hydrothermal method. • Visible-light response and high photocatalytic performance. • Excellent magnetic properties. • Different reactive species had different effects on degradation different pollutants. - Abstract: The CuFe{sub 2}O{sub 4} and CuFe{sub 2}O{sub 4}/AgBr composites with different CuFe{sub 2}O{sub 4} contents were prepared by a facile sol-gel and hydrothermal method, respectively. The as-synthesized photocatalysts were characterized by means of powder X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectrum (UV–vis DRS). Their magnetic properties, photocatalytic degradation activities on methyl orange (MO) and tetracycline hydrochloride (TC) solution and photocatalytic mechanism were investigated in detail. The results revealed that the CuFe{sub 2}O{sub 4}/AgBr composites exhibited significantly higher photocatalytic activities than the pure CuFe{sub 2}O{sub 4}. The enhanced photocatalytic activity could be attributed to the matched band structure of two components and more effective charge transportation and separations. In addition, the quenching investigation of different scavengers demonstrated that h{sup +}, ·OH, ·O{sub 2}{sup −} reactive species played different roles in the decolorization of MO and degradation of TC.

  7. Uniform Gold-Nanoparticle-Decorated {001}-Faceted Anatase TiO2 Nanosheets for Enhanced Solar-Light Photocatalytic Reactions.

    Science.gov (United States)

    Shi, Huimin; Zhang, Shi; Zhu, Xupeng; Liu, Yu; Wang, Tao; Jiang, Tian; Zhang, Guanhua; Duan, Huigao

    2017-10-25

    The {001}-faceted anatase TiO 2 micro-/nanocrystals have been widely investigated for enhancing the photocatalysis and photoelectrochemical performance of TiO 2 nanostructures, but their practical applications still require improved energy conversion efficiency under solar-light and enhanced cycling stability. In this work, we demonstrate the controlled growth of ultrathin {001}-faceted anatase TiO 2 nanosheets on flexible carbon cloth for enhancing the cycling stability, and the solar-light photocatalytic performance of the synthesized TiO 2 nanosheets can be significantly improved by decorating with vapor-phase-deposited uniformly distributed plasmonic gold nanoparticles. The fabricated Au-TiO 2 hybrid system shows an 8-fold solar-light photocatalysis enhancement factor in photodegrading Rhodamine B, a high photocurrent density of 300 μA cm -2 under the illumination of AM 1.5G, and 100% recyclability under a consecutive long-term cycling measurement. Combined with electromagnetic simulations and systematic control experiments, it is believed that the tandem-type separation and transition of plasmon-induced hot electrons from Au nanoparticles to the {001} facet of anatase TiO 2 , and then to the neighboring {101} facet, is responsible for the enhanced solar-light photochemical performance of the hybrid system. The Au-TiO 2 nanosheet system addresses well the problems of the limited solar-light response of anatase TiO 2 and fast recombination of photogenerated electron-hole pairs, representing a promising high-performance recyclable solar-light-responding system for practical photocatalytic reactions.

  8. Hierarchical ZnO/S,N:GQD composites: Biotemplated synthesis and enhanced visible-light-driven photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Aijun, E-mail: caiaijun80@163.com [College of Life Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600 (China); College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China); Wang, Xiuping, E-mail: wangxiuping0721@163.com [College of Life Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600 (China); Qi, Yanling, E-mail: qyl6790@126.com [College of Life Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600 (China); Ma, Zichuan, E-mail: mazc@vip.163.com [College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China)

    2017-01-01

    Highlights: • ZnO/S,N:GQD composites were synthesized by using poplar leaves as biotemplates. • The composites have enhanced visible-light-driven photocatalytic activity. • The highly efficient charge separation of electron-hole pairs is achieved. • High surface areas play an important role in the photocatalysis. - Abstract: Graphene quantum dots co-doped with sulfur and nitrogen (S,N:GQDs) are successfully combined with leaf-templated ZnO nanoparticles (L-ZnO) to obtain hierarchical L-ZnO/S,N:GQD composites exhibiting highly surface area. The morphology, structure, and the visible-light-driven photocatalytic activity are investigated. Compared with non-templated ZnO/S,N:GQDs, L-ZnO/S,N:GQD composites exhibit higher photocatalytic activity for the degradation of rhodamine B under visible light irradiation. Such elevated photocatalytic activity results from two main effects: one is the highly effective charge separation in L-ZnO/S,N:GQD composites; the other is the high surface area, allowing for efficient capture of the visible light.

  9. Fabrication of Ni-doped BiVO{sub 4} semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Regmi, Chhabilal [Department of Environmental and Biochemical Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Kshetri, Yuwaraj K. [Department of Advanced Materials Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Kim, Tae-Ho [Division of Mechanics and ICT Convergence Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Pandey, Ramesh Prasad [Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Ray, Schindra Kumar [Department of Environmental and Biochemical Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Lee, Soo Wohn, E-mail: swlee@sunmoon.ac.kr [Department of Environmental and Biochemical Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of)

    2017-08-15

    Highlights: • Synthesis of a Ni-doped BiVO{sub 4} semiconductor photocatalyst with reduced band gap energy. • Ni-doped BiVO{sub 4} provided efficient photocatalytic activity for ibuprofen degradation and E. coli and green tide deactivation. • DFT calculation and thermodynamic modeling to understand the underlying mechanism. - Abstract: A visible-light-driven Ni-doped BiVO{sub 4} photocatalyst was synthesized using a microwave hydrothermal method. The nominal Ni doping amount of 1 wt% provided excellent photoactivity for a variety of water pollutants, such as ibuprofen (pharmaceutical), Escherichia coli (bacteria), and green tides (phytoplankton). Each Ni-doped BiVO{sub 4} sample exhibits better performance than pure BiVO{sub 4}. The degradation of ibuprofen reaches 80% within 90 min, the deactivation of Escherichia coli reaches around 92% within 5 h, and the inactivation of green tide (Chlamydomonas pulsatilla) reaches 70% upon 60 min of the visible light irradiation. The first principle calculation and thermodynamic modeling revealed that Ni doping in the vanadium site gives the most stable configuration of the synthesized samples with the formation of an in-gap energy state and oxygen vacancies. The in-gap energy state and the oxygen vacancies serve as an electron-trapping center that decreases the migration time of the photogenerated carrier and increases the separation efficiency of electron-hole pairs, which are responsible for the observed efficient photocatalytic, anti-bacterial and anti-algal activity of the samples. These properties thus suggest potential applications of Ni-doped BiVO{sub 4} as a multifunctional material in the field of wastewater treatment.

  10. Structure and photocatalytic performance of layered HNbWO6 nanosheet aggregation

    KAUST Repository

    Hu, Li-Fang

    2015-12-10

    Layered HNbWO6HNbWO6 nanosheet aggregation (e-HNbWO6e-HNbWO6) has been assembled by HNbWO6HNbWO6 nanosheet via an exfoliation-restaking route. The as-prepared samples are characterized by means of powder x-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, laser Raman spectroscopy, ultraviolet-vis diffuse reflectance spectroscopy, and N2N2 adsorption-desorption isotherms. The photocatalytic performances of the as-prepared samples are evaluated by degradation of methylene blue (MB). The results revealed that e-HNbWO6e-HNbWO6 has a specific surface area of about 156.5  m2 g−1156.5  m2 g−1, and exhibits a relatively excellent photocatalytic performance for degradation of MB under UV light.

  11. Structure and photocatalytic performance of layered HNbWO6 nanosheet aggregation

    KAUST Repository

    Hu, Li-Fang; Li, Rui; He, Jie; Da, Liang-guo; Lv, Wei; Hu, Jin-song

    2015-01-01

    Layered HNbWO6HNbWO6 nanosheet aggregation (e-HNbWO6e-HNbWO6) has been assembled by HNbWO6HNbWO6 nanosheet via an exfoliation-restaking route. The as-prepared samples are characterized by means of powder x-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, laser Raman spectroscopy, ultraviolet-vis diffuse reflectance spectroscopy, and N2N2 adsorption-desorption isotherms. The photocatalytic performances of the as-prepared samples are evaluated by degradation of methylene blue (MB). The results revealed that e-HNbWO6e-HNbWO6 has a specific surface area of about 156.5  m2 g−1156.5  m2 g−1, and exhibits a relatively excellent photocatalytic performance for degradation of MB under UV light.

  12. Synergistic effect of N- and F-codoping on the structure and photocatalytic performance of TiO2.

    Science.gov (United States)

    Yu, Jiemei; Liu, Zongming; Zhang, Haitao; Huang, Taizhong; Han, Jitian; Zhang, Yihe; Chong, Daohuang

    2015-02-01

    Three types of TiO2 nanostructures were synthesized via a facile hydrolysis method at 195°C. Effects of the preparation method and doping with N and F on the crystal structure and photocatalytic performance of TiO2 were investigated. The nanomaterials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller porosimetry, ultraviolet-visible diffuse reflectance spectroscopy and fluorescent emission spectra. Their photo-catalytic activity was examined by the photodegradation of methylene blue in aqueous solution under both ultra-violet and visible light irradiation. The results show that nitrogen and fluorine co-doped anatase TiO2 had the characteristics of a smaller crystalline size, broader light absorption spectrum and lower charge recombination than pure TiO2. Most importantly, more efficient photocatalytic activity under both ultra-violet and visible light was observed. The obtained N-F-TiO2 nanomaterial shows considerable potential for water treatment under sunlight irradiation. Copyright © 2014. Published by Elsevier B.V.

  13. UV Blocking Glass: Low Cost Filters for Visible Light Photocatalytic Assessment

    Directory of Open Access Journals (Sweden)

    Charles W. Dunnill

    2014-01-01

    Full Text Available A number of commercially available art protection products have been compared and assessed for their suitability as UV blocking filters in the application of “visible light” photocatalytic research. Many groups claiming visible light photocatalytic success employ filters to block out stray UV radiation in order to justify that their photocatalysts are indeed visible light photocatalysts and not UV light photocatalysts. These filters come in varying degrees of ability and price and many authors fail to correctly characterise their filters in individual papers. The use of effective filters to prevent both false positive and false negative results is important to maintain scientific rigor and create accurate understanding of the subject. The optimum UV filter would have the highest UV blocking properties (<390 nm and simultaneously the highest visible light transmission (390–750 nm. Single and double layers of each of the glass products were assessed as well as laminate products. The conclusions show an inexpensive and highly effective setup for the conduction of visible light photochemistry that should be incorporated as a standard part in any researcher’s work where the claim of visible light activity is made.

  14. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Vasilaki, E.; Georgaki, I.; Vernardou, D.; Vamvakaki, M.; Katsarakis, N.

    2015-01-01

    Highlights: • Ag nanoparticles were loaded on TiO 2 by chemical reduction. • TiO 2 /Ag and TiO 2 samples were deposited on reduced graphene oxide (rGO). • Their performance was evaluated via methylene blue removal under visible-light. • TiO 2 /Ag/rGO presented superior activity compared to TiO 2 , TiO 2 /Ag and TiO 2 /rGO. - Abstract: In this work, Ag nanoparticles were loaded by chemical reduction onto TiO 2 P25 under different loadings ranging from 1 up to 4 wt% and hydrothermally deposited on reduced graphene oxide sheets. Chemical reduction was determined to be an effective preparation approach for Ag attachment to titania, leading to the formation of small silver nanoparticles with an average diameter of 4.2 nm. The photocatalytic performance of the hybrid nanocomposite materials was evaluated via methylene blue (MB) dye removal under visible-light irradiation. The rate of dye decolorization was found to depend on the metal loading, showing an increase till a threshold value of 3 wt%, above which the rate drops. Next, the as prepared sample of TiO 2 /Ag of better photocatalytic response, i.e., at a 3 wt% loading value, was hydrothermally deposited on a platform of reduced graphene oxide (rGO) of tunable content (mass ratio). TiO 2 /Ag/rGO coupled nanocomposite presented significantly enhanced photocatalytic activity compared to the TiO 2 /Ag, TiO 2 /rGO composites and bare P25 titania semiconductor photocatalysts. In particular, after 45 min of irradiation almost complete decolorization of the dye was observed for the TiO 2 /Ag/rGO nanocatalyst, while the respective removal efficiency was 92% for TiO 2 /Ag, 93% for TiO 2 /rGO and only 80% for the bare TiO 2 nanoparticles. This simple step by step preparation strategy allows for optimum exploitation of the advanced properties of metal plasmonic effect and reduced graphene oxide as the critical host for boosting the overall photocatalytic activity towards visible-light.

  15. Controlled preparation of Ag–Cu2O nanocorncobs and their enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Yang, Siyuan; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Fang, Yueping; Peng, Feng

    2015-01-01

    Graphical abstract: The corncob-like Ag–Cu 2 O nanostructure with suitably exposed Ag surface exhibited much higher photocatalytic activity than Ag@Cu 2 O nanocables and Cu 2 O nanowires. - Highlights: • Ag–Cu 2 O nanocorncobs have been controllably prepared by a simple synthesis. • The possible formation mechanism of Ag–Cu 2 O has been studied. • Ag–Cu 2 O exhibits noticeable improved photocurrent compared with the pure Cu 2 O NWs. • Ag–Cu 2 O with suitably exposed Ag surface shows much higher photocatalytic activity. - Abstract: Novel corncob-like nano-heterostructured Ag–Cu 2 O photocatalyst has been controllably prepared by adjusting the synthetic parameters, and the possible formation mechanism has been also studied. The photoelectrochemical and photocatalytic performances demonstrated that the as-prepared Ag–Cu 2 O nanocorncobs exhibited higher photocatalytic activity than both pure Cu 2 O nanowires and cable-like Ag@Cu 2 O nano-composites. It was concluded that Ag–Cu 2 O nanocorncobs with suitably exposed Ag surface not only effectively inhibit the recombination of electron–hole pairs but also suitably increase the active sites of electronic conduction, and thus increasing the photocatalytic activity under visible light irradiation

  16. Synthesis and photocatalytic properties of visible light responsive La/TiO2-graphene composites

    International Nuclear Information System (INIS)

    Khalid, N.R.; Ahmed, E.; Hong Zhanglian; Ahmad, M.

    2012-01-01

    Highlights: ► Synthesis of La/TiO 2 -graphene composites by two-step hydrothermal method. ► Efficient charge separation due to La doping and graphene incorporation. ► Enhanced photocatalytic activity of composite catalyst for MB degradation under visible-light. - Abstract: La/TiO 2 -graphene composites used as photocatalyst were prepared by two-step hydrothermal method. The as-prepared composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS) and photoluminescence spectroscopy (PL). The results of optical properties of La/TiO 2 -graphene composites exhibit extended light absorption in visible-light region and possess better charge separation capability as compared to pure TiO 2 . The photocatalytic activity measurement demonstrate that La/TiO 2 -graphene composites exhibited an enhanced photocatalytic activity for methylene blue (MB) degradation under visible-light irradiation compared to pure TiO 2 , which was attributed to greater adsorptivity of dyes, extended light absorption and increased charge separation efficiency due to excellent electrical properties of graphene and the large surface contact between graphene and La/TiO 2 nanoparticles.

  17. Synthesis and visible-light-driven photocatalytic activity of p–n heterojunction Ag_2O/NaTaO_3 nanocubes

    International Nuclear Information System (INIS)

    Yang, Songbo; Xu, Dongbo; Chen, Biyi; Luo, Bifu; Yan, Xu; Xiao, Lisong; Shi, Weidong

    2016-01-01

    Highlights: • We firstly report a facile way to prepare the visible-light-driven Ag_2O/NaTaO_3p–n heterojunction by chemical precipitation method. • The Ag_2O/NaTaO_3 heterojunction shows the highest photocatalytic activity than the pure NaTaO_3 and Ag_2O nanoparticles under visible light. • The enhancement of the heterojunction photocatalytic activity was discussed and the photocatalytic mechanism was tested in our paper. • In summary, we think that the Ag_2O/NaTaO_3 heterojunction with the strong visible light absorption and efficient photocatalytic activity have been extended application in photocatalysis for organic dyes pollutants degradation and purification of water. - Abstract: The constructing of p–n heterojunction photocatalytic system has received much attention in environmental purification and hydrogen generation from water. In this study, an efficient visible-light-driven p–n heterojunction Ag_2O/NaTaO_3 was successfully prepared by chemical precipitation method at room temperature. It showed an enhanced photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation, much higher than those of either individual Ag_2O or NaTaO_3. The reactive species scavenger results indicated the superoxide anion radicals (·O"2"−) played key roles in RhB decoloration. From the experimental results and the relative band gap position of these semiconductors, a detailed possible photocatalytic mechanism of the Ag_2O/NaTaO_3 heterojunction under visible light was proposed. The enhancement of the photocatalytic activity was attributed to the interfacial electronic interaction between NaTaO_3 and Ag_2O and the high migration efficiency of photogenerated carriers.

  18. Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO_4 inverse opals

    International Nuclear Information System (INIS)

    Fang, Liang; Nan, Feng; Yang, Ying; Cao, Dawei

    2016-01-01

    BiVO_4 photonic crystal inverse opals (io-BiVO_4) with highly dispersed Ag nanoparticles (NPs) were prepared by the nanosphere lithography method combining the pulsed current deposition method. The incorporation of the Ag NPs can significantly improve the photoelectrochemical and photocatalytic activity of BiVO_4 inverse opals in the visible light region. The photocurrent density of the Ag/io-BiVO_4 sample is 4.7 times higher than that of the disordered sample without the Ag NPs, while the enhancement factor of the corresponding kinetic constant in photocatalytic experiment is approximately 3. The improved photoelectrochemical and photocatalytic activity is benefited from two reasons: one is the enhanced light harvesting owing to the coupling between the slow light and localized surface plasmon resonance effect; the other is the efficient separation of charge carriers due to the Schottky barriers.

  19. Facile preparation of squarylium dye sensitized TiO{sub 2} nanoparticles and their enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhongyu, E-mail: zhongyuli@mail.tsinghua.edu.cn [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Changzhou Expansion New Stuff Technology Limited Company, Changzhou 213122 (China); Fang, Yongling [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Zhan, Xueqiu [Department of Basic Courses, Wuxi Institute of Technology, Wuxi 214121 (China); Xu, Song [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2013-07-05

    Highlights: •ISQ dye sensitized TiO{sub 2} nanoparticles were prepared via a facile solution method. •ISQ/TiO{sub 2} nanoparticles exhibited significantly enhanced visible light activity. •ISQ/TiO{sub 2} showed high visible light photocatalytic activity over MB decomposition. •ISQ/TiO{sub 2} nanoparticles exhibited good photocatalytic stability. -- Abstract: A squarylium dye, 1,3-bis[(3,3-dimethylindolin-2-ylidene)methyl]squaraine (ISQ) sensitized TiO{sub 2} nanoparticles photocatalysts with different mass ratio of ISQ to TiO{sub 2} were facilely prepared by blending ISQ and TiO{sub 2} in ethanol solution. The resulting composite photocatalysts were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FT-IR) and UV–vis diffuse reflectance spectroscope (DRS). The visible light photocatalytic activities of ISQ sensitized TiO{sub 2} nanoparticles were evaluated using the degradation of methylene blue (MB) as a photodegradation target. The results showed that photo-response of the ISQ sensitized TiO{sub 2} nanoparticles were remarkably extended to visible-light region, and the ISQ dye sensitized TiO{sub 2} exhibited significantly enhanced photocatalytic activity under visible light irradiation. The maximum photocatalytic activity of the ISQ sensitized TiO{sub 2} was found at a composite photocatalyst (mass ratio of ISQ to TiO{sub 2} was 1:3), and its degradation efficiency of MB reached approximately 98% in 2 h under visible light irradiation. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also proposed.

  20. Light energy conversion by photocatalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fujishima, Akira; Yamagata, Sadamu [Univ. of Tokyo (Japan)

    1989-01-01

    The photocatalytic reaction, to be made to a suspended semiconductor powder system, was explained in summary. By using semiconductor as an electrode for the electrolyzation, etc. and projecting light on it to generate photoelectromotive force, a photocell can be composed. eg., by composing titanium oxide electrode, n-type semiconductor and platinum electrode, and irradiating light on the former electrode to generate electric current, oxygen and hydrogen are produced from the titanium oxide electrode and platinum electrode, respectively, which means the possibility of obtainment of clean energy from water as raw material. Such a wet type photocell, easy to produce, is active also in research. With white titanium oxide powder being suspended in water solution, hydrogen is produced by projecting light into it. Such a semiconductor is called photocatalyst, in which the research has been widely developed, mainly by taking notice of the hydrogen production on reduction side, since 1972. The photocatalysis using colloid and, differently, that doing heteropolyacid are also taken notice of. 24 refs., 6 figs.

  1. Fabrication of CaFe2O4 nanofibers via electrospinning method with enhanced visible light photocatalytic activity

    Science.gov (United States)

    Wang, Jianmin; Wang, Yunan; Liu, Yinglei; Li, Song; Cao, Feng; Qin, Gaowu

    CaFe2O4 nanofibers with diameters of about 130nm have been fabricated via a facile electrospinning method. The structures, morphologies and optical properties of the obtained CaF2O4 nanofibers have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible UV-Vis diffuse reflectance spectrum. The photocatalytic activities of the CaFe2O4 nanofibers are evaluated by the photo-degradation of Methyl orange (MO). The results show that the CaFe2O4 nanofibers (72%) exhibit much higher photocatalytic performance than the CaFe2O4 powders (27%) prepared by conventional method under visible light irradiation. The enhanced photocatalytic performance of CaFe2O4 nanofibers could be attributed to the large surface area, high photogenerated charge carriers density and low charge transfer resistance, as revealed by photoelectrochemical measurement. And fundamentally, it could be attributed to the decreased particle size and the fibrous nanostructure. This work not only provides an efficient way to improve the photocatalytic activity of CaFe2O4, but also provides a new method for preparing materials with nanofibrous structure.

  2. Synthesis of Mn-intercalated layered titanate by exfoliation–flocculation approach and its efficient photocatalytic activity under visible–light

    International Nuclear Information System (INIS)

    Fu, Jie; Tian, Yanlong; Chang, Binbin; Li, Gengnan; Xi, Fengna; Dong, Xiaoping

    2012-01-01

    A novel Mn-intercalated layered titanate as highly active photocatalyst in visible-light region has been synthesized via a convenient and efficient exfoliation–flocculation approach with divalent Mn ions and monolayer titanate nanosheets. The 0.91 nm interlayer spacing of obtained photocatalyst is in accordance with the sum of the thickness of titanate nanosheet and the diameter of Mn ions. The yellow photocatalyst shows a spectral response in visible-light region and the calculated band gap is 2.59 eV. The photocatalytic performance of this material was evaluated by degradation and mineralization of an aqueous dye methylene blue under visible-light irradiation, and an enhanced photocatalytic activity in comparison with protonated titanate as well as the P25 TiO 2 and N-doped TiO 2 was obtained. Additionally, the layered structure is retained, no dye ions intercalating occurs during the photocatalysis process, and a ∼90% photocatalytic activity can be remained after reusing 3 cycles. - Graphical abstract: Mn-intercalated layered titanate as a novel and efficient visible-light harvesting photocatalyst was synthesized via a convenient and efficient exfoliation–flocculation approach in a mild condition. Highlights: ► Mn-intercalated titanate has been prepared by exfoliation–flocculation approach. ► The as-prepared catalyst shows spectral response in the visible-light region. ► Heat treatment at certain temperature enables formation of Mn-doped TiO 2 . ► Dye can be degradated effectively by the catalyst under visible light irradiation.

  3. Hierarchical Ag/AgCl-TiO{sub 2} hollow spheres with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu Long; Yin, Hao Yong [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Nie, Qiu Lin, E-mail: nieqiulin@hdu.edu.cn [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Wei Wei [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Yang; LiYuan, Qiu [College of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-01-01

    The hierarchical Ag/AgCl-TiO{sub 2} hollow spheres were synthesized by depositing Ag/AgCl nanoparticles on TiO{sub 2} hollow spheres via a precipitation photoreduction method, and they were further characterized using TGA, SEM, TEM, XRD, XPS, UV–vis DRS and photoelectric chemical analysis. The analysis showed that the hierarchical Ag/AgCl-TiO{sub 2} hollow spheres exhibited the highest photocatalytic activity, which was approximately 13 times higher than that of TiO{sub 2} hollow spheres. The high photocatalytic activity of the composites is due to efficient electron-hole pairs separation at the photocatalyst interfaces, and localized surface plasmon resonance of Ag nanoparticles formed on AgCl particles in the degradation reaction. - Highlights: • TiO{sub 2} hollow spheres were prepared by a sacrificial template method. • The hollow spheres were modified with Ag/AgCl to form the heterojunctions. • The modification may produce synergistic effect of LSPR and hollow structure. • Visible light photocatalytic activity was enhanced on this hollow catalyst. • The mechanism of the improved photocatalytic performance was discussed.

  4. Performance of Ag-TiO2 Photocatalysts towards the Photocatalytic Disinfection of Water under Interior-Lighting and Solar-Simulated Light Irradiations

    Directory of Open Access Journals (Sweden)

    Camilo A. Castro

    2012-01-01

    Full Text Available This paper reports the characterization and photoactivity of Ag-TiO2 materials using different amounts of silver during the hydrothermal synthesis. Photocatalysts were characterized by means of TEM, XPS, XRD, DRS, and N2 sorption isotherms to determine the textural properties. The photocatalyst's configuration was observed to be as anatase-brookite mixed phase particles with Ag partially oxidized aggregates on the TiO2 surface, which increased visible light absorption of the material. Moreover, photoproduction of singlet oxygen was followed by EPR analysis under visible light irradiations following the formation of TEMPOL. Such photoproduction was totally decreased by using the singlet oxygen scavenger DABCO. Photocatalysts were tested towards the photocatalytic disinfection of water suing a solar light simulator and an interior-light irradiation setup. Results evidenced an increase in the photooxidative effect of TiO2, while dark processes evidenced that part of the inactivation process is due to the Ag-TiO2 surface bactericidal effect and possible lixiviated Ag+.

  5. Preparation of Hierarchical BiOBr Microspheres for Visible Light-Induced Photocatalytic Detoxification and Disinfection

    Directory of Open Access Journals (Sweden)

    Ayla Ahmad

    2016-01-01

    Full Text Available Photocatalytic degradation is a promising alternative to traditional wastewater treatment methods. Recently developed visible light-responsive photocatalyst, BiOBr, has attracted extensive attentions. Hereby, a detailed investigation of application of BiOBr to bacterial inactivation and organic pollutants degradation is reported. Hydrothermal catalyst was prepared using template-free method. While, for solvothermal synthesis, CTAB was used as a template. Results indicate a higher photocatalytic activity by the solvothermally prepared catalyst. Solvothermally prepared BiOBr exhibited high photocatalytic activities in both water detoxification and disinfection.

  6. Monoclinic BiVO{sub 4} micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Lumo Road, Wuhan 430074 (China)

    2013-02-25

    Graphical abstract: Monoclinic BiVO{sub 4} with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures were prepared by microwave and ultrasonic wave combined method. Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures could be modulated by varying the solvent and pH value. Black-Right-Pointing-Pointer Different BiVO{sub 4} nanostructures exhibited different photocatalytic activities. Black-Right-Pointing-Pointer The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO{sub 4}) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO{sub 4} products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV-vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO{sub 4} were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO{sub 4} nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO{sub 4} nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  7. Electrodeposition synthesis of MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites and their visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xuyao [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China); Zhou, Xiaosong, E-mail: zxs801213@163.com [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China); Li, Xiaoyu, E-mail: lixiaoyu@iga.ac.cn [Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130012 (China); Yang, Fei [The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101 (China); Jin, Bei; Xu, Tan; Li, Guosheng; Li, Manyi [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China)

    2014-11-15

    Highlights: • MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites are prepared by electrodeposition. • MnO{sub 2}/TiO{sub 2} exhibits high visible light photocatalytic activity. • The results of XRD show the depositions are attributed to α-MnO{sub 2}. • A photocatalytic mechanism is discussed under visible light irradiation. - Abstract: MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposite photocatalysts have been synthesized through an electrodeposition method. X-ray powder diffraction analysis and X-ray photoelectron spectroscopy measurements reveal that the products of electrodeposition method are MnO{sub 2}. Scanning electron microscopy measurements suggest that the depositions are deposited on the surface or internal of the nanotube. UV–vis light absorbance spectra demonstrate the excellent adsorption properties of MnO{sub 2}/TiO{sub 2} over the whole region of visible light, which enables this novel photocatalytic material to possess remarkable activity in the photocatalytic degradation of acid Orange II under visible light radiation. Moreover, a possible photocatalytic mechanism is discussed.

  8. Enhanced visible-light photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites fabricated by facile in situ precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bo [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Li, Zhongyu, E-mail: zhongyuli@mail.tsinghua.edu.cn [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Changzhou Expansion New Stuff Technology Limited Company, Changzhou 213122 (China); Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Song, E-mail: cyanine123@163.com [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Han, Dandan; Lu, Dayong [Jilin Institute of Chemical Technology, Jilin 132022 (China)

    2014-05-01

    Highlights: • Ag{sub 3}PO{sub 4}/MWCNT composites were facilely fabricated via in situ precipitation method. • Ag{sub 3}PO{sub 4}/MWCNT composites exhibited enhanced visible-light photocatalytic activity. • Ag{sub 3}PO{sub 4}/MWCNT composites showed good photostability compared with Ag{sub 3}PO{sub 4} particles. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: The Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were facilely fabricated via in situ precipitation method by adding (NH{sub 4}){sub 2}HPO{sub 4} into the mixture of multi-walled carbon nanotube (MWCNT) and AgNO{sub 3} solution under stirring. The as-prepared Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Brunauer–Emmett–Teller surface area (BET) and UV–vis diffuse reflectance spectroscopy. The TEM results showed that the Ag{sub 3}PO{sub 4} nanoparticles were distributed on the surface of MWCNT uniformly with an average diameter of 70 nm, indicating excellent loading result. The photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were investigated by degrading methylene blue (MB) and malachite green (MG) under visible-light irradiation. It was found that the Ag{sub 3}PO{sub 4}/MWCNT nanocomposite exhibited excellent photocatalytic performance with enhanced photocatalytic efficiency and good photostability compared with bare Ag{sub 3}PO{sub 4}. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.

  9. Synthesis, characterization and photocatalytic activity of WO{sub 3}/TiO{sub 2} for NO removal under UV and visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luévano-Hipólito, E. [CIIDIT, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Martínez-de la Cruz, A., E-mail: azael.martinezdl@uanl.edu.mx [CIIDIT, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); López-Cuellar, E. [CIIDIT, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Yu, Q.L.; Brouwers, H.J.H. [Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-11-14

    Samples with different proportions WO{sub 3}/TiO{sub 2} were prepared by co-precipitation method followed by a heat treatment. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and adsorption–desorption N{sub 2} isotherms (BET). The photocatalytic properties of WO{sub 3}/TiO{sub 2} samples were evaluated in the photo-oxidation reaction of nitric oxide (NO) under UV and visible light irradiation. The highest photocatalytic activity was observed in the WO{sub 3}/TiO{sub 2} sample with a composition of 80% mole of TiO{sub 2}. Among the different substrates used for supporting the photocatalyst, the best results were reached over concrete and glass when it was exposed to UV and visible light irradiation, respectively. In overall, the photocatalytic efficiency of the synthesized materials was higher under UV than visible light irradiation. - Highlights: • WO{sub 3}/TiO{sub 2} prepared in simple way show high photocatalytic activity for NO removal. • The concrete was the best substrate to the performance of WO{sub 3}/TiO{sub 2} with UV radiation. • The glass was the best substrate to the performance of WO{sub 3}/TiO{sub 2} with visible radiation.

  10. Synthesis of Zn{sup 2+} doped BiOCl hierarchical nanostructures and their exceptional visible light photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen Ting [Department of Chemistry, Fujian Normal University, Fuzhou 350007 (China); Huang, Wan Zhen; Zhou, Huan [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014 (China); Yin, Hao Yong [Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zheng, Yi Fan [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014 (China); Song, Xu Chun, E-mail: songxuchunfj@163.com [Department of Chemistry, Fujian Normal University, Fuzhou 350007 (China)

    2015-07-25

    Highlights: • Hierarchical-structured Zn-doped BiOCl were prepared by a facile solvothermal method. • The Zn-doped BiOCl showed higher photocatalytic ability than other BiOCl materials. • The effects of Zn-doping contents on the photocatalytic activity were discussed. • Repetitive tests implied the good stability of the Zn-doped BiOCl photocatalyst. - Abstract: In this study, BiOCl doped with different contents of zinc were successfully prepared via a facile ethylene glycol (EG)-assisted solvothermal process at 160 °C for 12 h. The as-synthesized samples were characterized in details by X-ray powder diffraction (XRD), energy dispersive X-ray analysis (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), UV–vis diffuse reflectance spectra (UV–vis DRS) and Brunauer Emmet Teller (BET) measurement. The photocatalytic performances were evaluated by the photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. The results showed that Zn doping did not change the morphologies and particle sizes of BiOCl. However, it had an obvious effect on the photocurrent and BET surface area of BiOCl and accordingly the photocatalytic performance of BiOCl was greatly improved. The Zn-doped BiOCl with R{sub Zn} = 0.07 showed the highest photocatalytic activities with almost all of the RhB decomposed in 8 min. Moreover, repetitive tests imply the good recyclability and stability of the catalysts. The enhanced photocatalytic activity was largely ascribed to the efficient separation of photogenerated electron–hole pairs and high BET surface area of the catalysts. In addition, a possible mechanism on basis of the experimental results was discussed.

  11. Facile preparation of Z-scheme WO{sub 3}/g-C{sub 3}N{sub 4} composite photocatalyst with enhanced photocatalytic performance under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Lifeng, E-mail: lifeng.cui@gmail.com [School of Chemistry and Environmental Engineering, Dongguan University of Technology, Guangdong 523808 (China); Ding, Xiang; Wang, Yangang; Shi, Huancong; Huang, Lihua; Zuo, Yuanhui [Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Kang, Shifei, E-mail: sfkang@usst.edu.cn [Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-01-01

    Highlights: • WO{sub 3}/g-C{sub 3}N{sub 4} composites were synthesized through a facile mixing-and-heating method. • The composite showed improved visible light response. • The composite showed high activity for MB degradation. • Z-scheme charge carrier transfer pathways in the composite are proposed. - Abstract: Visible-light-driven WO{sub 3}/g-C{sub 3}N{sub 4} composites photocatalysts were synthesized via a facile one-step simultaneously heating procedure with urea as the main precursor. These prepared catalyst samples were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG), transmission electron microscopy (TEM), N{sub 2} adsorption, ultraviolet-visible diffuse reflection spectroscopy (UV–vis), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and electrochemical impedance spectroscopy (EIS). The photocatalytic activity of the WO{sub 3}/g-C{sub 3}N{sub 4} composites was evaluated by the photo-degradation of Rhodamine B (RhB) under visible light irradiation. The results indicated that the composites with 25 wt.% WO{sub 3} content exhibited highest photocatalytic activity compared to pure WO{sub 3}, bare g-C{sub 3}N{sub 4} and other WO{sub 3}/g-C{sub 3}N{sub 4} composites. The favorable photocatalytic activity of WO{sub 3}/g-C{sub 3}N{sub 4} composites was mainly attributed to the excellent surface properties, enhanced visible-light absorption and the desirable band positions. A possible Z-scheme photocatalytic mechanism was proposed based on structure and electrochemical characterizations results, which can well explain the enhanced migration rate of photogenerated electrons and holes in WO{sub 3}/g-C{sub 3}N{sub 4} heterojunctions.

  12. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Longxing, E-mail: hulxhhhb@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Deng, Guihua [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Lu, Wencong [College of Sciences, Shanghai University, Shanghai 200444 (China); Pang, Siwei; Hu, Xing [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2017-07-15

    Graphical abstract: The CdS/MIL-53(Fe) photocatalyst has been synthesized by a facile two-step solvothermal method and applied for photocatalytic degradation of organic pollutant RhB under visible light irradiation. - Highlights: • A novel CdS/MIL-53(Fe) photocatalyst was successfully synthesized via a facile two-step solvothermal method. • CdS/MIL-53(Fe) exhibited an enhanced visible-light photocatalytic degradation of RhB in water. • The mechanisms for the formation of CdS/MIL-53(Fe) and photocatalytic degradation of RhB were proposed. - Abstract: A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV–vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhB{sub aq}-visible light system was O{sub 2}{sup −}·; nevertheless, h{sup +} and ·OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs

  13. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    International Nuclear Information System (INIS)

    Hu, Longxing; Deng, Guihua; Lu, Wencong; Pang, Siwei; Hu, Xing

    2017-01-01

    Graphical abstract: The CdS/MIL-53(Fe) photocatalyst has been synthesized by a facile two-step solvothermal method and applied for photocatalytic degradation of organic pollutant RhB under visible light irradiation. - Highlights: • A novel CdS/MIL-53(Fe) photocatalyst was successfully synthesized via a facile two-step solvothermal method. • CdS/MIL-53(Fe) exhibited an enhanced visible-light photocatalytic degradation of RhB in water. • The mechanisms for the formation of CdS/MIL-53(Fe) and photocatalytic degradation of RhB were proposed. - Abstract: A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV–vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhB aq -visible light system was O 2 − ·; nevertheless, h + and ·OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs. Moreover, the

  14. Ease synthesis of mesoporous WO{sub 3}–TiO{sub 2} nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Adel A., E-mail: adelali141@yahoo.com [Advanced Materials Department, Central Metallurgical R& D Institute, CMRDI, P.O. Box 87, Helwan 11421 Cairo (Egypt); Advanced Materials and Nano Research Center, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Abdelfattah, Ibrahim [Water Pollution Research Dept., National Research Centre, 33 EL Bohouth St. (Former EL Tahrir St.), P.O. 12622, Dokki, Giza (Egypt); Helal, Ahmed [Advanced Materials Department, Central Metallurgical R& D Institute, CMRDI, P.O. Box 87, Helwan 11421 Cairo (Egypt); Al-Sayari, S.A. [Advanced Materials and Nano Research Center, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Robben, L. [Chemische Kristallographie fester Stoffe, Universität Bremen (Germany); Bahnemann, D.W. [Institut für Technische Chemie, Leibniz Universität Hannover, Callinstrasse 3, 30167 Hannover (Germany)

    2016-04-15

    Highlights: • Ease synthesis of mesoporous WO{sub 3}–TiO{sub 2} nanocomposites were performed. • XRD and Raman spectra confirmed that monoclinic and triclinic of WO{sub 3} was detected. • The prepared photocatalysts were evaluated for photodegradation of imazapyr. • It could be completely degraded of imazapyr within 120 min under UV light. • Under visible light, 0.5%WO{sub 3}–TiO{sub 2} is the optimum with 46% photocatalytic efficiency. - Abstract: Herein, we report the ease synthesis of mesoporous WO{sub 3}–TiO{sub 2} nanocomposites at different WO{sub 3} contents (0–5 wt%) together with their photocatalytic performance for the degradation of the imazapyr herbicide under visible light and UV illumination. XRD and Raman spectra indicated that the highly crystalline anatase TiO{sub 2} phase and monoclinic and triclinic of WO{sub 3} were formed. The mesoporous TiO{sub 2} exhibits large pore volumes of 0.267 cm{sup 3} g−1 and high surface areas of 180 m{sup 2} g{sup −1} but they become reduced to 0.221 cm{sup 3} g{sup −1} and 113 m{sup 2} g{sup −1}, respectively upon WO{sub 3} incorporation, with tunable mesopore diameter in the range of 5–6.5 nm. TEM images show WO{sub 3}–TiO{sub 2} nanocomposites are quite uniform with 10–15 nm of TiO{sub 2} and 5–10 nm of WO{sub 3} sizes. Under UV illumination, the overall photocatalytic efficiency of the 3% WO{sub 3}–TiO{sub 2} nanocomposite is 3.5 and 6.6 times higher than that of mesoporous TiO{sub 2} and commercial UV-100 photocatalyst, respectively. The 3% WO{sub 3}–TiO{sub 2} nanocomposite is considered to be the optimum photocatalyst which is able to degrade completely (100% conversion) of imazapyr herbicide along 120 min with high photonic efficiency ∼8%. While under visible light illumination, the 0.5% WO{sub 3}–TiO{sub 2} nanocomposite is the optimum photocatalyst which achieves 46% photocatalytic efficiency.

  15. Crystallization-mediated amorphous Cu_xO (x = 1, 2)/crystalline CuI p–p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    International Nuclear Information System (INIS)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun; Yang, Yang

    2017-01-01

    Highlights: • Cu_xO(x = 1, 2)/CuI p–p type heterojunctions were facilely constructed via crystallization-mediated approaches. • Cu_xO/CuI heterojunctions exhibit effective visible-light-driven photocatalytic activity for dye degradation. • The Cu_xO/CuI interface can enhance the spatial separation of the photogenerated electron–hole pairs. • This work represents a critical step for mass production of functional semiconductor heterojunctions in a mild manner. - Abstract: We report simple and cost-effective fabrication of amorphous Cu_xO (x = 1, 2)/crystalline CuI p–p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace Cu_xO on CuI surface. As a proof of concept, the as-fabricated Cu_xO/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the Cu_xO/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the Cu_xO/CuI interface can enhance the spatial separation of the electron–hole pairs with the excitation of Cu_xO under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  16. Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: donguser@hotmail.com; Liu, Xiaogang; Xue, Xiaoxiao; Pan, Hui; Zhang, Min; Li, Qiuye; Yu, Laigui; Yang, Jianjun; Zhang, Zhijun [Henan University, Key Laboratory of Ministry of Education for Special Functional Materials (China)

    2013-09-15

    Nanotube titanic acid/graphene (NTA/Gr) composites were prepared by an easy hydrothermal treatment of graphene oxide (GO) and NTA in a mixed solvent of ethanol-water. As-prepared NTA/Gr composites and GO were characterized by means of Fourier transform infrared spectrometry, X-ray diffraction, diffuse-reflection spectrometry, thermal analysis, and transmission electron microscopy. Besides, the photocatalytic activities of as-prepared NTA/Gr composites were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation. It has been found that extending hydrothermal reaction time (24 h instead of 3 h) leads to great changes in the morphology and crystal structure of as-prepared composites. Namely, the orthorhombic NTA (ca. 10 nm in diameter) in the composite transformed to anatase TiO{sub 2} particle (ca. 20-30 nm in diameter) while the Gr sheets (with micrometers-long wrinkles) in it transformed to a few Gr fragments (ca. 50 nm in diameter). Correspondingly, the NTA/Gr composite transformed to titanium dioxide/graphene (TiO{sub 2}/Gr) composite. In the meantime, pure GO only has adsorption effect but it has no photocatalytic activity in the visible light region. Nevertheless, increasing Gr ratio results in enhanced visible light absorption capability and photocatalytic activity of NTA/Gr composites as well as the TiO{sub 2}/Gr composites. This demonstrates that the true visible light photocatalytic activity of NTA/Gr composites as well as the TiO{sub 2}/Gr composites for the degradation of MO is not as excellent as expected, and their high apparent activity is attributed to the strong adsorption of MO on the composites.

  17. Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites

    Science.gov (United States)

    Wang, Xiaodong; Liu, Xiaogang; Xue, Xiaoxiao; Pan, Hui; Zhang, Min; Li, Qiuye; Yu, Laigui; Yang, Jianjun; Zhang, Zhijun

    2013-09-01

    Nanotube titanic acid/graphene (NTA/Gr) composites were prepared by an easy hydrothermal treatment of graphene oxide (GO) and NTA in a mixed solvent of ethanol-water. As-prepared NTA/Gr composites and GO were characterized by means of Fourier transform infrared spectrometry, X-ray diffraction, diffuse-reflection spectrometry, thermal analysis, and transmission electron microscopy. Besides, the photocatalytic activities of as-prepared NTA/Gr composites were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation. It has been found that extending hydrothermal reaction time (24 h instead of 3 h) leads to great changes in the morphology and crystal structure of as-prepared composites. Namely, the orthorhombic NTA (ca. 10 nm in diameter) in the composite transformed to anatase TiO2 particle (ca. 20-30 nm in diameter) while the Gr sheets (with micrometers-long wrinkles) in it transformed to a few Gr fragments (ca. 50 nm in diameter). Correspondingly, the NTA/Gr composite transformed to titanium dioxide/graphene (TiO2/Gr) composite. In the meantime, pure GO only has adsorption effect but it has no photocatalytic activity in the visible light region. Nevertheless, increasing Gr ratio results in enhanced visible light absorption capability and photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites. This demonstrates that the true visible light photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites for the degradation of MO is not as excellent as expected, and their high apparent activity is attributed to the strong adsorption of MO on the composites.

  18. Facile in situ solvothermal method to synthesize MWCNT/SnIn4S8 composites with enhanced visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Ding, Chaoying; Tian, Li; Liu, Bo; Liang, Qian; Li, Zhongyu; Xu, Song; Liu, Qiaoli; Lu, Dayong

    2015-01-01

    Highlights: • MWCNT/SnIn 4 S 8 composites were facilely fabricated via in situ solvothermal method. • MWCNT/SnIn 4 S 8 composites exhibited significantly enhanced visible-light activity. • MWCNT/SnIn 4 S 8 composites showed remarkable visible light photocatalytic activity. • MWCNT/SnIn 4 S 8 composites exhibited excellent photo-stability. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: Superior photocatalytic activity could be achieved by multi-walled carbon nanotube (MWCNT) incorporated in the porous assembly of marigold-like SnIn 4 S 8 heterostructures synthesized by a flexible in-situ solvothermal method. The as-prepared MWCNT/SnIn 4 S 8 composites were well-characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic properties of the as-prepared samples were tested by photo-degradation of aqueous malachite green (MG) under the irradiation of visible light. It was found that the MWCNT/SnIn 4 S 8 composites showed enhanced visible light photocatalytic activity for dye degradation, and an optimum photocatalytic activity was observed over 3.0 wt.% MWCNT incorporated SnIn 4 S 8 composites. The superior photocatalytic activity of MWCNT/SnIn 4 S 8 composites could be ascribed to the existence of MWCNT which could serve as a good electron acceptor, mediator as well as the co-catalyst for dye degradation. The synergistic effect between SnIn 4 S 8 and MWCNT in the composites facilitated the interfacial charge transfer driven by the excitation of SnIn 4 S 8 under visible-light irradiation. Furthermore, a possible mechanism for the photocatalytic degradation of MWCNT/SnIn 4 S 8 composites was also discussed

  19. Enhancing Photocatalytic Performance through Tuning the Interfacial Process between -Assembled and Pt-Loaded Microspheres

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2012-01-01

    Full Text Available This work reports on a simple two-step approach to rutile TiO2-assembled microspheres loaded by Pt with an aim to tune semiconductor-metal interfacial processes for enhancing the photocatalytic performance. Systematic sample characterizations and structural analysis indicate that Pt loading did not produce any significant influences on the lattice structure of TiO2-assembled microspheres. Instead, upon Pt loading, Schottky barrier was formed in the interfaces between microspheres and Pt nanoparticles, which inhabited efficiently the recombination of photo-generated electron-hole pairs essential for the photocatalytic activities. In addition, TiO2 microspheres also showed a capacity of electrons storage and releasing as represented by a high dielectric constant, which increased the utility rate of photogenerated electrons. All these structural advantages contribute to the excellent photocatalytic activity under ultraviolet light irradiation. The interfacial process between microspheres and Pt nanoparticles was further tuned through adjusting the loading Pt content of metal Pt. As a consequence, the best photocatalytic activity on TiO2 was obtained at 0.85 wt% Pt loading, above or below which photocatalytic activity was apparently decreased.

  20. Fabrication of a direct Z-scheme type WO{sub 3}/Ag{sub 3}PO{sub 4} composite photocatalyst with enhanced visible-light photocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinsuo, E-mail: lujinsuo@xauat.edu.cn [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Wang, Yujing [School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an, Shaanxi 710032 (China); Liu, Fei [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Zhang, Liang [College of Sciences, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Chai, Shouning, E-mail: s.n.chai@xauat.edu.cn [College of Sciences, Xi’an University of Architecture and Technology, Xi’an 710055 (China)

    2017-01-30

    Highlights: • A solid direct Z-scheme type photocatalyst WO{sub 3}/Ag{sub 3}PO{sub 4} was synthesized. • The WO{sub 3}/Ag{sub 3}PO{sub 4} composite showed enhanced photocatalytic activity and stability. • Nearly complete removal of organic dyes was achieved in a short time. • The reasonable Z-scheme mechanism of WO{sub 3}/Ag{sub 3}PO{sub 4} composite was proposed. - Abstract: A direct Z-scheme type photocatalyst WO{sub 3}/Ag{sub 3}PO{sub 4} composite (molar ration 1:1, 1W/1Ag) was prepared by hydrothermal method. The 1W/1Ag was characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), UV–vis diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and photoluminescence emission spectroscopy (PL) etc. technologies. The photocatalytic performances were evaluated by degradation of methylene blue (MB) and methyl orange (MO), and their removal rates were up to 95% after 60 min and 90% after 180 min, respectively. The prepared 1W/1Ag exhibits a much higher photocatalytic activity than pure Ag{sub 3}PO{sub 4} and pure WO{sub 3} under visible light irradiation. The apparent rate constants of MB and MO degradation on 1W/1Ag are about 2.4 and 2.5 times that of pure Ag{sub 3}PO{sub 4}, respectively. The enhanced performance of the 1W/1Ag is attributed to a synergistic effect including relatively high surface area, strong light absorption, matched energy band structure, and the improved separation of photogenerated charge carriers between the two components. A reasonable Z-scheme mechanism referring to directed migration of photoinduced carriers was proposed. Thus, it can be suggested that the 1W/1Ag can serve as a promising photocatalyst for environmental purification and clean energy utilization.

  1. Ammonia-evaporation-induced construction of three-dimensional NiO/g-C3N4 composite with enhanced adsorption and visible light-driven photocatalytic performance

    Science.gov (United States)

    Tzvetkov, George; Tsvetkov, Martin; Spassov, Tony

    2018-07-01

    Novel visible light-driven heterostructured NiO/g-C3N4 photocatalyst has been designed and successfully prepared via ammonia-evaporation-induced method. The synthetic strategy consists of grafting the surface of g-C3N4 with Ni(NH3)62+ complex followed by its hydrolysis at lower pH to form nano-wrinkled thin film of α-Ni(OH)2. The final NiO/g-C3N4 hybrid was obtained after calcination of the Ni(OH)2/g-C3N4 precursor at 350 °C. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, FTIR, N2 adsorption/desorption, UV-vis diffuse reflectance and photoluminescence spectroscopy were used to characterize the resulting material. Our results revealed the formation of meso-/macroporous three-dimensional hierarchical honeycomb-like structure with high BET surface area (141 m2 g-1). The photocatalytic performance of the composite under visible light (λ > 400 nm) irradiation was evaluated through degradation of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and photocatalytic properties of the pristine g-C3N4 and nanostructured NiO were also examined. Results indicated that NiO/g-C3N4 is much more active than pristine g-C3N4 and NiO in the photodegradation of MG. The enhanced photocatalytic performance of the composite was mainly attributed to the combination of high adsorption capacity which facilitates the direct redox reactions of dye and the efficient inhibition of photo-generated electron-hole pair recombination. Superoxide radicals (•O2-) and photo-generated holes (h+) were found to be the main active species in the process.

  2. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Bo, E-mail: willycb@163.com; Yan, Juntao; Wang, Chunlei; Ren, Zhandong; Zhu, Yuchan

    2017-01-01

    Highlights: • The phosphorus doped g-C{sub 3}N{sub 4} photocatalysts are synthesized by a co-pyrolysis procedure. • The crystal phase, morphology, and optical property of P doped g-C{sub 3}N{sub 4} are characterized. • The P doped g-C{sub 3}N{sub 4} photocatalysts show the improved photocatalytic activity. • The possible mechanism for enhanced photocatalytic activity is proposed. - Abstract: Phosphorus doped graphitic carbon nitride (g-C{sub 3}N{sub 4}) was easily synthesized using ammonium hexafluorophosphate (NH{sub 4}PF{sub 6}) as phosphorus source, and ammonium thiocyanate (NH{sub 4}SCN) as g-C{sub 3}N{sub 4} precursor, through a direct thermal co-polycondensation procedure. The obtained phosphorus doped g-C{sub 3}N{sub 4} was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), UV–vis diffuse reflectance absorption spectra (UV-DRS), photoelectrochemical measurement and photoluminescence spectra (PL). The photocatalytic activities of phosphorus doped g-C{sub 3}N{sub 4} samples were evaluated by degradation of Rhodamine B (RhB) solution under visible light irradiation. The results showed that the phosphorus doped g-C{sub 3}N{sub 4} had a superior photocatalytic activity than that of pristine g-C{sub 3}N{sub 4}, attributing to the phosphorus atoms substituting carbon atoms of g-C{sub 3}N{sub 4} frameworks to result in light harvesting enhancement and delocalized π-conjugated system of this copolymer, beneficial for the increase of photocatalytic performance. The photoelectrochemical measurements also verified that the charge carrier separation efficiency was promoted by phosphorus doping g-C{sub 3}N{sub 4}. Moreover, the tests of radical scavengers demonstrated that the holes (h{sup +}) and superoxide radicals (·O{sub 2}{sup −}) were the main active species for the

  3. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    Science.gov (United States)

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  4. Synthesis and photocatalytic performance of g-C{sub 3}N{sub 4} nanosheets via liquid phase stripping

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jilin [Industry & Equipment Technology Institute of Hefei University of Technology, Hefei 230009 (China); Xu, Guangqing [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009 (China); Liu, Jiaqin [Industry & Equipment Technology Institute of Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009 (China); Lv, Jun [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009 (China); Wu, Yucheng [Industry & Equipment Technology Institute of Hefei University of Technology, Hefei 230009 (China); School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009 (China)

    2017-02-15

    Well dispersed g-C{sub 3}N{sub 4} nanosheets were prepared by exfoliating the bulk g-C{sub 3}N{sub 4} in concentrated sulfuric acid. Phase structures, morphologies and elemental compositions were characterized by X-ray diffractometer, scanning electron microscope, transmission electron microscope and X-ray photoelectron spectrometer, respectively. Optical absorption and photoluminescence were also used to explain the optical performances of samples. NaI, BQ and IPA were used as the sacrificial agents for studying the surface reactions in the photocatalytic process. By the precipitation of g-C{sub 3}N{sub 4} nanosheets in ethanol with different ratios between concentrated sulfuric acid and ethyl alcohol, well dispersed g-C{sub 3}N{sub 4} nanosheets with high specific surface area can be obtained. The optimized g-C{sub 3}N{sub 4} (1:10) nanosheets achieve the highest photocatalytic activities under UV light illumination, which can degrade 10 mg/L RhB about 98% in 60 min, which is 6 times that of bulk g-C{sub 3}N{sub 4} under UV light. - Graphical Abstract: The schematic diagram of photocatalysis and excellent photocatalytic performance of g-C{sub 3}N{sub 4} nanosheets. - Highlights: • Well dispersed g-C{sub 3}N{sub 4} were prepared via Liquid Phase Stripping. • The g-C{sub 3}N{sub 4} is in a sheet like structure after being exfoliated. • The g-C{sub 3}N{sub 4} nanosheets possess high photocatalytic performances.

  5. Three-dimensional assembly structure of anatase TiO2 hollow microspheres with enhanced photocatalytic performance

    Science.gov (United States)

    Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui

    The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.

  6. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xue [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing dao 266100 (China); Shi, Junjie, E-mail: junjieshiding@gmail.com [Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University Bremen, Leobener Str. UFT, 28359 Bremen (Germany); Feng, Lijuan; Li, Chunhu [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing dao 266100 (China); Wang, Liang, E-mail: wangliangouc@ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing dao 266100 (China)

    2017-02-28

    Highlights: • A BiOBr/RGO aerogel photocatalyst was synthesized using dopamine as reducing agent. • BiOBr/RGO aerogel can be easily controlled morphology by a simple two-step method. • BiOBr/RGO aerogel photocatalyst exhibited superior performance in MO decoloration. - Abstract: A series of BiOBr/reduced graphene oxide (RGO) aerogel was fabricated using a two steps hydrothermal method. Various methods such as SEM, TEM, DRS and Raman spectroscopy were employed to fully characterize the as-obtained BiOBr/RGO. Their photocatalytic degradation of methyl orange (MO) were studied under visible light irradiation. The combination of BiOBr and RGO result in an improved activity. The sample with 10 wt% RGO abbreviated as BiOBr-G10 shows the highest activity. Moreover, this sample exhibits a selective visible-light photocatalytic behavior as the degradation rate over MO (80%) is much higher than that over Rhodamin B (50%) and phenol (35%) in 60 min. The XRD and photoluminescence emission spectroscopy characterization of the BiOBr-G10 samples indicates an increased crystallization of BiOBr and efficient quenching of photo-excited electrons and holes contributes to the improved photocatalytic activities.

  7. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light

    International Nuclear Information System (INIS)

    Yu, Xue; Shi, Junjie; Feng, Lijuan; Li, Chunhu; Wang, Liang

    2017-01-01

    Highlights: • A BiOBr/RGO aerogel photocatalyst was synthesized using dopamine as reducing agent. • BiOBr/RGO aerogel can be easily controlled morphology by a simple two-step method. • BiOBr/RGO aerogel photocatalyst exhibited superior performance in MO decoloration. - Abstract: A series of BiOBr/reduced graphene oxide (RGO) aerogel was fabricated using a two steps hydrothermal method. Various methods such as SEM, TEM, DRS and Raman spectroscopy were employed to fully characterize the as-obtained BiOBr/RGO. Their photocatalytic degradation of methyl orange (MO) were studied under visible light irradiation. The combination of BiOBr and RGO result in an improved activity. The sample with 10 wt% RGO abbreviated as BiOBr-G10 shows the highest activity. Moreover, this sample exhibits a selective visible-light photocatalytic behavior as the degradation rate over MO (80%) is much higher than that over Rhodamin B (50%) and phenol (35%) in 60 min. The XRD and photoluminescence emission spectroscopy characterization of the BiOBr-G10 samples indicates an increased crystallization of BiOBr and efficient quenching of photo-excited electrons and holes contributes to the improved photocatalytic activities.

  8. Z-Scheme NiTiO 3 /g-C 3 N 4 Heterojunctions with Enhanced Photoelectrochemical and Photocatalytic Performances under Visible LED Light Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenyu [School; Zeng, Xiaoqiao [Chemical; Li, Kai [School; Gao, Shanmin [School; Wang, Qingyao [School; Lu, Jun [Chemical

    2017-11-14

    Direct Z-scheme NiTiO3/g-C3N4 heterojunctions were successfully assembled by using simple calcination method and the photoelectrochemical and photocatalytic performance were investigated by light emitting diode (LED). The photoanode composed by the heterojunction with about 50 wt% NiTiO3 content exhibits the best photoelectrochemical activity with photoconversion efficiency up to 0.066%, which is 4.4 and 3.13 times larger than NiTiO3 or g-C3N4. The remarkably enhanced photoelectrochemical and photocatalytic activity of the heterojunction can be due to the efficiently photogenerated electron-hole separation by a Z-scheme mechanism.

  9. Crystallization-mediated amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    Science.gov (United States)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun; Yang, Yang

    2017-04-01

    We report simple and cost-effective fabrication of amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace CuxO on CuI surface. As a proof of concept, the as-fabricated CuxO/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the CuxO/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the CuxO/CuI interface can enhance the spatial separation of the electron-hole pairs with the excitation of CuxO under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  10. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation

    International Nuclear Information System (INIS)

    Lee, Eunwoo; Hong, Jin-Yong; Kang, Haeyoung; Jang, Jyongsik

    2012-01-01

    Highlights: ► TiO 2 nanorods were successfully decorated on the surface of graphene sheets. ► Population of TiO 2 nanorods can be controlled by changing experimental conditions. ► TiO 2 nanorod-decorated graphene sheets have an expanded light absorption range. ► TiO 2 nanorod-decorated graphene sheets showed unprecedented photocatalytic activity. - Abstract: The titanium dioxide (TiO 2 ) nanorod-decorated graphene sheets photocatalysts with different TiO 2 nanorods population have been synthesized by a simple non-hydrolytic sol–gel approach. Electron microscopy and X-ray diffraction analysis indicated that the TiO 2 nanorods are well-dispersed and successfully anchored on the graphene sheet surface through the formation of covalent bonds between Ti and C atoms. The photocatalytic activities are evaluated in terms of the efficiencies of photodecomposition and adsorption of methylene blue (MB) in aqueous solution under visible-light irradiation. The as-synthesized TiO 2 nanorod-decorated graphene sheets showed unprecedented photodecomposition efficiency compared to the pristine TiO 2 nanorods and the commercial TiO 2 (P-25, Degussa) under visible-light. It is believed that this predominant photocatalytic activity is due to the synergistic contribution of both a retarded charge recombination rate caused by a high electronic mobility of graphene and an increased surface area originated from nanometer-sized TiO 2 nanorods. Furthermore, photoelectrochemical study is performed to give deep insights into the primary roles of graphene that determines the photocatalytic activity.

  11. Hierarchical Fe_3O_4@MoS_2/Ag_3PO_4 magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation

    International Nuclear Information System (INIS)

    Guo, Na; Li, Haiyan; Xu, Xingjian; Yu, Hongwen

    2016-01-01

    Highlights: • The FM/A-6% possesses a large specific surface area: 76.56 m"2/g. • The FM/A-6% displays high photocatalytic stability. • The FM/A-6% can be collected easily from the water by magnetic field. - Abstract: Novel hierarchical Fe_3O_4@MoS_2/Ag_3PO_4 magnetic nanophotocatalyst with remarkable photocatalytic capability were prepared by simply depositing the Ag_3PO_4 onto the surface of crumpled Fe_3O_4@MoS_2 nanosphere. The nanocomposites were characterized by XRD, TEM, HRTEM, XPS, BET, and UV–vis DRS. The outcome of the photocatalytic experiments demonstrated that Fe_3O_4@MoS_2/Ag_3PO_4 with 6 wt% content of Ag_3PO_4 (FM/A-6%) showed the highest photocatalytic activity upon the degradation Congo red (CR) and Rhodamine B (RhB) under both visible light and simulated sunlight irradiation. In addition, FM/A-6% possessed larger specific surface area (76.56 m"2/g) and excellent optical property. The possible Z-scheme charge carriers transfer mechanism for the enhanced photocatalytic properties of the FM/A-6% was also discussed. The Z-scheme charge carriers transfer mechanism established between MoS_2 and Ag_3PO_4 facilitate the charge separation efficiency. Moreover, FM/A-6% can be separated and collected easily by external magnetic field and maintain high activity after five times photoreaction cycles. Given the remarkable photocatalytic performance and high stability of FM/A-6% nanocomposite, it is looking forward to exhibit great potential for applications in water purification.

  12. Crystallization-mediated amorphous Cu{sub x}O (x = 1, 2)/crystalline CuI p–p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun, E-mail: fangjun@njtech.edu.cn; Yang, Yang, E-mail: yangy@njtech.edu.cn

    2017-04-30

    Highlights: • Cu{sub x}O(x = 1, 2)/CuI p–p type heterojunctions were facilely constructed via crystallization-mediated approaches. • Cu{sub x}O/CuI heterojunctions exhibit effective visible-light-driven photocatalytic activity for dye degradation. • The Cu{sub x}O/CuI interface can enhance the spatial separation of the photogenerated electron–hole pairs. • This work represents a critical step for mass production of functional semiconductor heterojunctions in a mild manner. - Abstract: We report simple and cost-effective fabrication of amorphous Cu{sub x}O (x = 1, 2)/crystalline CuI p–p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace Cu{sub x}O on CuI surface. As a proof of concept, the as-fabricated Cu{sub x}O/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the Cu{sub x}O/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the Cu{sub x}O/CuI interface can enhance the spatial separation of the electron–hole pairs with the excitation of Cu{sub x}O under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  13. Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process

    International Nuclear Information System (INIS)

    Wei Zaishan; Sun Jianliang; Xie Zhirong; Liang Mingyan; Chen Shangzhi

    2010-01-01

    Photocatalysis is a promising technology for treatment of gaseous waste; its disadvantages, however, include causing secondary pollution. Biofiltration has been known as an efficient technology for treatment volatile organic compounds (VOCs) at low cost of maintenance, and produces harmless by-products; its disadvantages, include large volume of bioreactor and slow adaptation to fluctuating concentrations in waste gas. A bench scale system integrated with a photocatalytic oxidation and a biofilter unit for the treatment of gases containing toluene was investigated. The integrated system can effectively oxidize toluene with high removal efficiency. The photocatalytic activity of N-TiO 2 /zeolite was evaluated by the decomposition of toluene in air under UV and visible light (VL) illumination. The N-TiO 2 /zeolite has more photocatalytic activity under complex light irradiation of UV and visible light for toluene removal than that of pure TiO 2 /zeolite under UV or visible light irradiation. N-TiO 2 /zeolite was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrum analysis (XPS), Fourier transform infrared spectroscopy (FT-IR), and as-obtained products were identified by means of gas chromatography/mass spectrometry (GC/MS). Results revealed that the photocatalyst was porous and was high photoactive for mineralizing toluene. The high activity can be attributed to the results of the synergetic effects of strong UV and visible light absorption, surface hydroxyl groups. The photocatalytic degradation reaction of toluene with the N-TiO 2 /zeolite follows Langmuir-Hinshelwood kinetics. Toluene biodegradation rate matches enzymatic oxidation kinetics model.

  14. Green synthesis of AgI-reduced graphene oxide nanocomposites: Toward enhanced visible-light photocatalytic activity for organic dye removal

    International Nuclear Information System (INIS)

    Reddy, D. Amaranatha; Lee, Seunghee; Choi, Jiha; Park, Seonhwa; Ma, Rory; Yang, Haesik; Kim, Tae Kyu

    2015-01-01

    Graphical abstract: - Highlights: • A novel green synthesis of AgI-RGO nanocomposites. • Significant improvement of the photocatalytic activity in RGO wrapped composites. • Additive promoted photocatalytic performance in AgI-RGO composites. • AgI-RGO nanocomposites may find applications in luminescent and catalytic devices. - Abstract: Novel reduced graphene oxide (RGO) enwrapped AgI nanocomposites were successfully fabricated by a facile template-free ultrasound-assisted method at room temperature. The structural, morphological, and optical studies demonstrate that the obtained nanostructures have good crystallinity and that the graphene nanosheets are decorated densely with AgI nanostructures. The photocatalytic activity of the composite was evaluated by the degradation of an organic dye, Rhodamine B (RhB), under visible-light irradiation. The results indicate that AgI with incorporated graphene exhibited much higher photocatalytic activity than the pure AgI due to the improved separation efficiency of the photogenerated carriers and that it prolonged the lifetime of the electron–hole pairs due to the chemical bonding between AgI and graphene. AgI (0.4 mg mL −1 of graphene oxide) nanocomposites displayed the highest photocatalytic degradation efficiency and the corresponding catalytic efficiencies within 70 min were ∼96%. Moreover, with the assistance of H 2 O 2 the photocatalytic ability of the as-obtained AgI-RGO nanocomposites was enhanced. The corresponding catalytic efficiencies within 30 min were ∼96.8% (for 1 mL H 2 O 2 ) under the same irradiation conditions. The excellent visible-light photocatalytic efficiency and luminescence properties make the AgI-RGO nanocomposites promising candidates for the removal of organic dyes for water purification and enable their application in near-UV white LEDs

  15. Effective Electron Transfer Pathway of the Ternary TiO2/RGO/Ag Nanocomposite with Enhanced Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Hongwei Tian

    2017-05-01

    Full Text Available Mesoporous TiO2/reduced graphene oxide/Ag (TiO2/RGO/Ag ternary nanocomposite with an effective electron transfer pathway is obtained by an electrostatic self-assembly method and photo-assisted treatment. Compared with bare mesoporous TiO2 (MT and mesoporous TiO2/RGO (MTG, the ternary mesoporous TiO2/RGO/Ag (MTGA nanocomposite exhibited superior photocatalytic performance for the degradation of methylene blue (MB under visible light, and the degradation rate reached 0.017 min−1, which was 3.4-times higher than that of MTG. What is more, the degradation rate of MTGA nanocomposite after three cycle times is 91.2%, and the composition is unchanged. In addition, we found that the OH•, h+ and especially O2•− contribute to the high photocatalytic activity of MTGA for MB degradation. It is proposed that Ag nanoparticles can form the local surface plasmon resonance (LSPR to absorb the visible light and distract the electrons into MT, and RGO can accept the electrons from MT to accelerate the separation efficiency of photogenerated carriers. The establishment of MTGA ternary nanocomposite makes the three components act synergistically to enhance the photocatalytic performance.

  16. Twin defects engineered Pd cocatalyst on C3N4 nanosheets for enhanced photocatalytic performance in CO2 reduction reaction

    Science.gov (United States)

    Lang, Qingqing; Hu, Wenli; Zhou, Penghui; Huang, Tianlong; Zhong, Shuxian; Yang, Lining; Chen, Jianrong; Bai, Song

    2017-12-01

    Photocatalytic conversion of CO2 to value-added chemicals, a potential route to addressing the depletion of fossil fuels and anthropogenic climate change, is greatly limited by the low-efficient semiconductor photocatalyst. The integration of cocatalyst with light-harvesting semiconductor is a promising approach to enhancing the photocatalytic performance in CO2 reduction reaction. The enhancement is greatly determined by the catalytic active sites on the surface of cocatalyst. Herein, we demonstrate that the photocatalytic performance in the CO2 reduction reaction is greatly promoted by twin defects engineered Pd cocatalyst. In this work, Pd nanoicosahedrons with twin defects were in situ grown on C3N4 nanosheets, which effectively improve the photocatalytic performance in reduction of CO2 to CO and CH4 in comparison with Pd nanotetrahedrons without twin defects. It is proposed that the twin boundary (TB) terminations on the surface of Pd cocatalysts are highly catalytic active sites for CO2 reduction reaction. Based on the proposed mechanism, the photocatalytic activity and selectivity in CO2 reduction were further advanced through reducing the size of Pd icosahedral cocatalyst resulted from the increased surface density of TB terminations. The defect engineering on the surface of cocatalyst represents a novel route in realizing high-performance photocatalytic applications.

  17. Photocatalytic properties of Au-deposited mesoporous SiO_2–TiO_2 photocatalyst under simultaneous irradiation of UV and visible light

    International Nuclear Information System (INIS)

    Okuno, T.; Kawamura, G.; Muto, H.; Matsuda, A.

    2016-01-01

    Mesoporous SiO_2 templates deposited TiO_2 nanocrystals are synthesized via a sol–gel route, and Au nanoparticles (NPs) are deposited in the tubular mesopores of the templates by a photodeposition method (Au/SiO_2–TiO_2). The photocatalytic characteristics of Au/SiO_2–TiO_2 are discussed with the action spectra of photoreactions of 2-propanol and methylene blue. Photocatalytic activities of SiO_2–TiO_2 under individual ultraviolet (UV) and visible (Vis) light illumination are enhanced by deposition of Au NPs. Furthermore, Au/SiO_2–TiO_2 shows higher photocatalytic activities under simultaneous irradiation of UV and Vis light compared to the activity under individual UV and Vis light irradiation. Since the photocatalytic activity under simultaneous irradiation is almost the same as the total activities under individual UV and Vis light irradiation, it is concluded that the electrons and the holes generated by lights of different wavelengths are efficiently used for photocatalysis without carrier recombination. - Graphical abstract: This graphic shows the possible charge behavior in Au/SiO_2–TiO_2 under independent light irradiation of ultraviolet and visible light irradiation. Both reactions under independent UV and Vis light irradiation occurred in parallel when Au/SiO_2–TiO_2 photocatalyst was illuminated UV and Vis light simultaneously, and then photocatalytic activity is improved by simultaneous irradiation. - Highlights: • Au nanoparticles were deposited in mesoporous SiO_2–TiO_2 by a photodeposition method. • Photocatalytic activity under UV and Vis light was enhanced by deposition of Au. • Photocatalytic activity of Au/SiO_2–TiO_2 was improved by simultaneous irradiation.

  18. CdS nanoparticles/CeO_2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity

    International Nuclear Information System (INIS)

    You, Daotong; Pan, Bao; Jiang, Fan; Zhou, Yangen; Su, Wenyue

    2016-01-01

    Graphical abstract: Coupling CdS with CeO_2 can effectively improve the light-harvesting ability of wide-band gap CeO_2 NRs as the photoinduced electrons on the conduction band of CdS are transfered to the conduction band of CeO_2. - Highlights: • Coupling CdS can effectively improve the light-harvesting ability of wide-band gap CeO_2. • CdS/CeO_2 composites show high photocatalytic activity under visible light irradiation. • The mechanism of photocatalytic H_2 evolution over CdS/CeO_2 was proposed. - Abstract: Different mole ratios of CdS nanoparticles (NPs)/CeO_2 nanorods (NRs) composites with effective contacts were synthesized through a two-step hydrothermal method. The crystal phase, microstructure, optical absorption properties, electrochemical properties and photocatalytic H_2 production activity of these composites were investigated. It was concluded that the photogenerated charge carriers in the CdS NPs/CeO_2 NRs composite with a proper mole ratio (1:1) exhibited the longest lifetime and highest separation efficiency, which was responsible for the highest H_2-production rate of 8.4 mmol h"−"1 g"−"1 under visible-light irradiation (λ > 420 nm). The superior photocatalytic H_2 evolution properties are attributed to the transfer of visible-excited electrons of CdS NPs to CeO_2 NRs, which can effectively extend the light absorption range of wide-band gap CeO_2 NRs. This work provides feasible routes to develop visible-light responsive CeO_2-based nanomaterial for efficient solar utilization.

  19. Synthesis and visible-light-driven photocatalytic activity of p–n heterojunction Ag{sub 2}O/NaTaO{sub 3} nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Songbo [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Xu, Dongbo [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013 (China); Chen, Biyi; Luo, Bifu [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan, Xu [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013 (China); Xiao, Lisong, E-mail: xiaolisong123@sina.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Shi, Weidong, E-mail: swd1978@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2016-10-15

    Highlights: • We firstly report a facile way to prepare the visible-light-driven Ag{sub 2}O/NaTaO{sub 3}p–n heterojunction by chemical precipitation method. • The Ag{sub 2}O/NaTaO{sub 3} heterojunction shows the highest photocatalytic activity than the pure NaTaO{sub 3} and Ag{sub 2}O nanoparticles under visible light. • The enhancement of the heterojunction photocatalytic activity was discussed and the photocatalytic mechanism was tested in our paper. • In summary, we think that the Ag{sub 2}O/NaTaO{sub 3} heterojunction with the strong visible light absorption and efficient photocatalytic activity have been extended application in photocatalysis for organic dyes pollutants degradation and purification of water. - Abstract: The constructing of p–n heterojunction photocatalytic system has received much attention in environmental purification and hydrogen generation from water. In this study, an efficient visible-light-driven p–n heterojunction Ag{sub 2}O/NaTaO{sub 3} was successfully prepared by chemical precipitation method at room temperature. It showed an enhanced photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation, much higher than those of either individual Ag{sub 2}O or NaTaO{sub 3}. The reactive species scavenger results indicated the superoxide anion radicals (·O{sup 2−}) played key roles in RhB decoloration. From the experimental results and the relative band gap position of these semiconductors, a detailed possible photocatalytic mechanism of the Ag{sub 2}O/NaTaO{sub 3} heterojunction under visible light was proposed. The enhancement of the photocatalytic activity was attributed to the interfacial electronic interaction between NaTaO{sub 3} and Ag{sub 2}O and the high migration efficiency of photogenerated carriers.

  20. Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohua [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China); School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Su, Shuai; Wu, Guangli; Li, Caizhu [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Qin, Zhe [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China); Lou, Xiangdong [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Zhou, Jianguo, E-mail: zhoujgwj@163.com [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China)

    2017-06-01

    Highlights: • Flower-like Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was synthesized. • A green facile synthesis method was used. • Ag/ZnO@C exhibited better photocatalytic performance than Ag/ZnO, ZnO@C, and ZnO. • Dye and metronidazole both can be decomposed by Ag/ZnO@C. - Abstract: To utilize sunlight more effectively in photocatalytic reactions, the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was successfully synthesized by a green and facile one-pot hydrothermal method. The carbon spheres (CSs) were wrapped by ZnO nanosheets, forming flower-like microstructures, and Ag nanoparticles (Ag NPs) were deposited on the surface of the ZnO nanosheets. The Ag/ZnO@C ternary heterostructure exhibited enhanced photocatalytic activity compared to those of Ag/ZnO, ZnO@C and pure ZnO for the degradation of Reactive Black GR and metronidazole under sunlight and visible light irradiation. This was attributed to the enhanced visible light absorption and effective charge separation based on the synergistic effect of ZnO, Ag NPs, and CSs. Due to the surface plasmon resonance effect of Ag NPs and surface photosensitizing effect of CSs, Ag/ZnO@C exhibited enhanced visible light absorption. Meanwhile, Ag NPs and CSs can both act as rapid electron transfer units to improve the separation of photogenerated charge carriers in Ag/ZnO@C. The primary active species were determined, and the photocatalytic mechanism was proposed. This work demonstrates an effective way to improve the photocatalytic performance of ZnO and provides information for the facile synthesis of noble metal/ZnO@C ternary heterostructure.

  1. Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide–zinc oxide composite

    International Nuclear Information System (INIS)

    Wu, Dan; An, Taicheng; Li, Guiying; Wang, Wei; Cai, Yuncheng; Yip, Ho Yin; Zhao, Huijun; Wong, Po Keung

    2015-01-01

    Graphical abstract: - Highlights: • The GO–ZnO composites exhibited efficient VLD bacterial inactivation performance. • Strong interfacial interaction existed between GO and ZnO. • GO served as a photosensitizer in the inactivation process. • Excellent antibacterial activity by GO–ZnO composite was shown under sunlight. • An inactivation mechanism based on the GO photosensitizer induction was proposed. - Abstract: The visible-light-driven (VLD) photocatalytic activity of graphene oxide–zinc oxide (GO–ZnO) composite prepared by a simple hydrothermal method was evaluated toward the inactivation of Escherichia coli K-12. The results showed that GO–ZnO composite had excellent VLD photocatalytic bacterial inactivation activity, comparing with those of ZnO and GO, which was attributed to the strong interaction between ZnO and GO in the composite. Accordingly, an interaction induced VLD photocatalytic inactivation mechanism of the strong interaction of GO with ZnO within the GO–ZnO composite was proposed. GO served as a photosensitizer and facilitated the charge separation and transfer, thus boosted the massive production of reactive oxygen species such as ·OH bulk , which was identified as the major reactive species from conduction band of ZnO, and resulted in a remarkable enhancement of bacterial inactivation efficiency. Moreover, GO–ZnO composite showed obviously superior photocatalytic bacterial inactivation within 10 min under natural solar light irradiation, indicating that GO–ZnO composite has great potential in wastewater treatment and environmental protection.

  2. Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light

    Directory of Open Access Journals (Sweden)

    Shan Hu

    2012-01-01

    Full Text Available Photocatalytic degradation of atrazine by boron-doped iron oxides under visible light irradiation was investigated. In this work, boron-doped goethite and hematite were successfully prepared by sol-gel method with trimethylborate as boron precursor. The powders were characterized by XRD, UV-vis diffuse reflectance spectra, and porosimetry analysis. The results showed that boron doping could influence the crystal structure, enlarge the BET surface area, improve light absorption ability, and narrow their band-gap energy. The photocatalytic activity of B-doped iron oxides was evaluated in the degradation of atrazine under the visible light irradiation, and B-doped iron oxides showed higher atrazine degradation rate than that of pristine iron oxides. Particularly, B-doped goethite exhibited better photocatalytic activity than B-doped hematite.

  3. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    Science.gov (United States)

    Hu, Longxing; Deng, Guihua; Lu, Wencong; Pang, Siwei; Hu, Xing

    2017-07-01

    A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV-vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhBaq-visible light system was O2-rad ; nevertheless, h+ and rad OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs. Moreover, the reusability of 1.5-CdS/MIL composite was also studied.

  4. PREPARATION AND VISIBLE LIGHT RESPONSIVE PHOTOCATALYTIC ACTIVITY OF Fe3O4/Ni-Al-Ce LDH/Bi2WO6 COMPOSITES

    Directory of Open Access Journals (Sweden)

    Jiaqi Hao

    Full Text Available Novel Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites were prepared through a hydrothermal method and co-precipitation method. The morphologies and structures of the photocatalysts were characterized by XRD, Raman, TEM, UV-vis-DRS, BET surface area and VSM techniques. The photocatalytic performances of the photocatalysts were investigated by the decolorization of methyl orange (MO under visible-light irradiation. The results showed that the Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites exhibited greater photocatalytic activities compared to pure Bi2WO6 and the Ni-Al-Ce LDH; the decolorization rate of MO was 87% within 60 min under visible-light irradiation. The decolorization efficiency of the composite material remained at 71% after 4 recycling runs, showing improved stability. Furthermore, the experimental results also showed that the photocatalytic reactions for the composites followed first-order reaction kinetics. Therefore, the Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites were photocatalysts with high efficiencies and stabilities for a photocatalytic reaction of an organic pollutant, and this study provides a new, effective method for the development of wastewater treatment.

  5. Ease synthesis of mesoporous WO3-TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination.

    Science.gov (United States)

    Ismail, Adel A; Abdelfattah, Ibrahim; Helal, Ahmed; Al-Sayari, S A; Robben, L; Bahnemann, D W

    2016-04-15

    Herein, we report the ease synthesis of mesoporous WO3-TiO2 nanocomposites at different WO3 contents (0-5wt%) together with their photocatalytic performance for the degradation of the imazapyr herbicide under visible light and UV illumination. XRD and Raman spectra indicated that the highly crystalline anatase TiO2 phase and monoclinic and triclinic of WO3 were formed. The mesoporous TiO2 exhibits large pore volumes of 0.267cm(3)g-1 and high surface areas of 180m(2)g(-1) but they become reduced to 0.221cm(3)g(-1) and 113m(2)g(-1), respectively upon WO3 incorporation, with tunable mesopore diameter in the range of 5-6.5nm. TEM images show WO3-TiO2 nanocomposites are quite uniform with 10-15nm of TiO2 and 5-10nm of WO3 sizes. Under UV illumination, the overall photocatalytic efficiency of the 3% WO3-TiO2 nanocomposite is 3.5 and 6.6 times higher than that of mesoporous TiO2 and commercial UV-100 photocatalyst, respectively. The 3% WO3-TiO2 nanocomposite is considered to be the optimum photocatalyst which is able to degrade completely (100% conversion) of imazapyr herbicide along 120min with high photonic efficiency ∼8%. While under visible light illumination, the 0.5% WO3-TiO2 nanocomposite is the optimum photocatalyst which achieves 46% photocatalytic efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Arpac, E.; Sayilkan, H.

    2007-01-01

    Nanostructure Sn 4+ -doped TiO 2 based mono and double layer thin films, contain 50% solid ratio of TiO 2 in coating have been prepared on glass surfaces by spin-coating technique. Their photocatalytic performances were tested for degradation of Malachite Green dye in solution under UV and vis irradiation. Sn 4+ -doped nano-TiO 2 particle a doping ratio of about 5[Sn 4+ /Ti(OBu n ) 4 ; mol/mol%] has been synthesized by hydrotermal process at 225 deg. C. The structure, surface and optical properties of the thin films and/or the particles have been investigated by XRD, BET and UV/vis/NIR techniques. The results showed that the double layer coated glass surfaces have a very high photocatalytic performance than the other one under UV and vis lights. The results also proved that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water. The results also reveal that the coated surfaces have hydrophilic property

  7. Photocatalytic removal of doxycycline from aqueous solution using ZnO nano-particles: a comparison between UV-C and visible light.

    Science.gov (United States)

    Pourmoslemi, Shabnam; Mohammadi, Ali; Kobarfard, Farzad; Amini, Mohsen

    2016-10-01

    Zinc oxide nano-particles were synthesized, characterized and used for photocatalytic degradation of doxycycline using UV-C and visible light. Effects of several operational factors including initial pH of antibiotic solution, initial antibiotic concentration and ZnO nano-particles loading amount were investigated. Comparing photocatalytic degradation and mineralization of doxycycline under UV-C and visible light showed successful application of the method under both light sources. However, reaction rate was higher under UV-C irradiation, which degraded doxycycline almost completely in 5 hours, and 68% mineralization was achieved. Synthesized ZnO nano-particles were successfully applied for photocatalytic degradation of doxycycline in a pharmaceutical wastewater sample. The process was fitted to the pseudo first order kinetic model with rate constants in the range of 6-22(×10 -3 ) mg L -1 min -1 with respect to initial concentration of doxycycline under UV-C irradiation. The Langmuir-Hinshelwood model was also employed for describing the photocatalytic reaction with surface reaction kinetic constant k c and equilibrium adsorption constant K LH values calculated as 0.12 mg L -1 min -1 and 2.2 L mg -1 , respectively. Degradation of doxycycline was followed by UV-visible spectroscopy and a validated stability indicating high-performance liquid chromatography method that was developed using stressed samples of doxycycline and could selectively determine doxycycline in the presence of its degradation products. Mass spectrometry was used for determining final degradation products.

  8. Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO{sub 2} under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lina [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); Wang, Changhua; Wan, Fangxu; Zheng, Han [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China)

    2017-02-28

    Highlights: • Anatase TiO{sub 2} was modified with Fe-ethoxide through wet impregnation method. • XPS and EPR investigation supported the formation of Vo and Fe species. • Vo improved the optical absorption properties to a larger extent. • Fe species inhibited the charge carrier recombination process. • Synergism between Vo and Fe species enhanced the photocatalytic activity. - Abstract: Surface grafting of transition-metal complexes or oxides is an appealing way to enhance the photocatalytic activity of TiO{sub 2} under visible-light excitation. However, the performance of these co-catalysts assistant TiO{sub 2} photocatalysts is still not sufficient enough due to their relatively weak visible-light absorption. Herein, we report a simple impregnation treatment with ferric ethoxide/ethanol solvent, followed with mild heating which can significantly enhance the visible-light absorption and photocatalytic activity of TiO{sub 2}. XPS and EPR analyses manifest that the oxygen vacancies (V{sub O}s) and Fe-species are simultaneously introduced to the surface of TiO{sub 2}. The chemical state and photocatalytic activity of the Fe-species-grafted TiO{sub 2−x} is dependent on the heating temperature after impregnation. The sample heat-treated at 250 °C exhibits the optimal photocatalytic performance for β-naphthol degradation with rate constant 6.0, 2.7, and 3.9 times higher than that of TiO{sub 2}, TiO{sub 2−x}, and Fe-TiO{sub 2}, respectively. The activity enhancement is discussed on the basis of the synergistic effect and energy-level matching of surface V{sub O}s and Fe-species co-catalyst, i.e. the V{sub O}s defects states increase the visible-light absorption and the Fe-species in the form of FeOOH promote the consumption of photo-generated electrons through multi-electron reduction of adsorbed molecule oxygen.

  9. Hydrothermal synthesis of B-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B

    Science.gov (United States)

    Wang, Min; Han, Jin; Guo, Pengyao; Sun, Mingzhi; Zhang, Yu; Tong, Zhu; You, Meiyan; Lv, Chunmei

    2018-02-01

    B-doped Bi2MoO6 photocatalysts have been synthesized by a hydrothermal method using HBO3 as the doping source and the effect of B doping content on Bi2MoO6 structure and performance was studied. The samples were characterized with XPS, XRD, SEM, BET, UV-Vis DRS, and PL. The photocatalytic activity was evaluated by photocatalytic degradation of Rhodamine B (RhB) under visible light (λ ≥ 420 nm). The results show that all samples are orthorhombic structure. Doping Bi2MoO6 with B increases the amount of Bi5+ and oxygen vacancies, which led to stronger absorption in visible light region and lower band gap energy of the B-doped Bi2MoO6 but had little impact on morphology. B doping significantly improves the photocatalytic activity of Bi2MoO6 and the highest photocatalytic degradation rate is 89% when the initial molar ratio of B to Bi is 0.01.

  10. Facile preparation and visible light photocatalytic activity of CdIn2S4 monodispersed spherical particles

    International Nuclear Information System (INIS)

    Mu Jin; Wei Qinglian; Yao Pingping; Zhao Xueling; Kang Shizhao; Li Xiangqing

    2012-01-01

    Highlights: ► CdIn 2 S 4 monodispersed spherical particles were prepared by a soft solution method. ► Mercaptoacetic acid was used as capping agent to hinder the fast crystal growth. ► Thioacetamide as sulfur source resulted in the slow growth of particles. ► CdIn 2 S 4 spheres showed high visible light photocatalytic activity. - Abstract: We developed a facile method to prepare CdIn 2 S 4 monodispersed spherical particles by using mercaptoacetic acid as capping agent and thioacetamide as sulfur source. The results indicated that the size and morphology of CdIn 2 S 4 particles were related to reaction time. The CdIn 2 S 4 spherical particles with an average size of about 236 nm and a narrow size distribution were formed after reacting for 7 h. The photocatalytic activity of as-synthesized CdIn 2 S 4 spherical particles was evaluated by the photocatalytic degradation of methyl orange under visible light illumination. The results showed that the photocatalytic activity increased with prolonging reaction time in the preparation of CdIn 2 S 4 spherical particles. The CdIn 2 S 4 spherical particles prepared after reacting for 7 h exhibited a 98% degradation efficiency of methyl orange after 15 min visible light irradiation.

  11. Synthesis and visible-light-driven photocatalytic activity of p-n heterojunction Ag2O/NaTaO3 nanocubes

    Science.gov (United States)

    Yang, Songbo; Xu, Dongbo; Chen, Biyi; Luo, Bifu; Yan, Xu; Xiao, Lisong; Shi, Weidong

    2016-10-01

    The constructing of p-n heterojunction photocatalytic system has received much attention in environmental purification and hydrogen generation from water. In this study, an efficient visible-light-driven p-n heterojunction Ag2O/NaTaO3 was successfully prepared by chemical precipitation method at room temperature. It showed an enhanced photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation, much higher than those of either individual Ag2O or NaTaO3. The reactive species scavenger results indicated the superoxide anion radicals (rad O2-) played key roles in RhB decoloration. From the experimental results and the relative band gap position of these semiconductors, a detailed possible photocatalytic mechanism of the Ag2O/NaTaO3 heterojunction under visible light was proposed. The enhancement of the photocatalytic activity was attributed to the interfacial electronic interaction between NaTaO3 and Ag2O and the high migration efficiency of photogenerated carriers.

  12. Synthesis of NaOH-Modified TiOF2 and Its Enhanced Visible Light Photocatalytic Performance on RhB

    Directory of Open Access Journals (Sweden)

    Chentao Hou

    2017-08-01

    Full Text Available NaOH-modified TiOF2 was successfully prepared using a modified low-temperature hydrothermal method. Scanning electron microscopy shows that NaOH-modified TiOF2 displayed a complex network shape with network units of about 100 nm. The structures of NaOH-modified TiOF2 have not been reported elsewhere. The network shape permits the NaOH-modified TiOF2 a SBET of 36 m2∙g−1 and a pore diameter around 49 nm. X-ray diffraction characterization shows that TiOF2 and NaOH-modified TiOF2 are crystallized with a pure changed cubic phase which accords with the SEM results. Fourier transform infrared spectroscopy characterization shows that NaOH-modified TiOF2 has more O–H groups to supply more lone electron pairs to transfer from O of O–H to Ti and O of TiOF2. UV–vis diffuse reflectance spectroscopy (DRS shows that the NaOH-modified TiOF2 sample has an adsorption plateau rising from 400 to 600 nm in comparison with TiOF2, and its band gap is 2.62 eV, lower than that of TiOF2. Due to the lower band gap, more O–H groups adsorption, network morphologies with larger surface area, and sensitization progress, the NaOH-modified TiOF2 exhibited much higher photocatalytic activity for Rhodamine B (RhB degradation. In addition, considering the sensitization progress, O–H groups on TiOF2 not only accelerated the degradation rate of RhB, but also changed its degradation path. As a result, the NaOH-modified TiOF2 exhibited much higher photocatalytic activity for RhB degradation than the TiOF2 in references under visible light. This finding provides a new idea to enhance the photocatalytic performance by NaOH modification of the surface of TiOF2.

  13. Synthesis of AgI/Bi2MoO6 nano-heterostructure with enhanced visible-light photocatalytic property

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2018-04-01

    Full Text Available A novel nano-heterostructure of AgI/Bi2MoO6 photocatalyst was successfully synthesized via a facile deposition-precipitation method. The samples were systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoemission spectroscopy, UV–Vis absorption spectroscopy, and photoluminescence spectra. While sole Bi2MoO6 or AgI showed poor activity toward photocatalytic rhodamine B degradation, the nano-heterostructure was found with superior performance. The AgI/Bi2MoO6 composite with an optimal content of 20 wt% AgI exhibited the highest photocatalytic degradation rate. Rhodamine B was totally degraded within 75 min visible-light irradiation. Moreover, the hybrid photocatalyst also showed a fairly good stability for several-cycle reuse. This study indicates that the AgI/Bi2MoO6 nano-heterostructure can be used as an effective candidate for photocatalytic degradation of organic pollutants. Keywords: Heterostructure, Photocatalyst, RhB-degradation

  14. Ultrathin g-C3N4 Nanosheet-Modified BiOCl Hierarchical Flower-Like Plate Heterostructure with Enhanced Photostability and Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Tiekun Jia

    2017-08-01

    Full Text Available A novel ultrathin g-C3N4 nanosheet-modified BiOCl hierarchical flower-like plate heterostructure (abbreviated as BC/CN was constructed via a thermal polymerization of urea precursor followed with hydrolysis route. The as-prepared samples were well characterized by various analytical techniques. The morphological observation showed that hierarchical flower-like BiOCl nanoplates were discretely anchored on the surface of ultra-thin C3N4 nanosheets. The photocatalytic performance of the as-prepared photocatalysts was evaluated by degradation of methylene blue (MB under visible-light irradiation. The results showed that BC/CN photocatalyst exhibited enhanced photostability and photocatalytic performance in the degradation process. On the basis of experimental results and the analysis of band energy structure, it could be inferred that the enhanced photocatalytic performance of BC/CN photocatalyst was intimately related with the hybridization of hierarchical flower-like BiOCl nanoplates with ultrathin g-C3N4 nanosheets, which provided good adsorptive capacity, extended light absorption, suppressed the recombination of photo-generated electron–hole pairs, and facilitated charge transfer efficiently.

  15. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.

    Science.gov (United States)

    Wang, Dong-Hong; Wang, Lei; Xu, An-Wu

    2012-03-21

    Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and N(2) adsorption-desorption analysis. The solid solutions show efficient photocatalytic activity for H(2) evolution from aqueous solutions containing sacrificial reagents S(2-) and SO(3)(2-) under visible-light irradiation without a Pt cocatalyst, and loading of the Pt cocatalyst further improves the visible-light photocatalytic activity. The optimal photocatalyst with x = 0.20 prepared at pH = 7.3 displays the highest activity for H(2) evolution. The bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S nanoparticles exhibit a high H(2) evolution rate of 193 μmol h(-1) and 458 μmol h(-1) under visible-light irradiation (λ ≥ 420 nm), respectively. In addition, the bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S catalysts show a high H(2) evolution rate of 252 and 640 μmol h(-1) under simulated solar light irradiation, respectively. Moreover, the Zn(0.80)Cd(0.20)S catalyst displays a high photocatalytic stability for H(2) evolution under long-term light irradiation. The incorporation of Cd in the solid solution leads to the visible light absorption, and the high content of Zn in the solid solution results in a relatively negative conduction band, a modulated band gap and a rather wide valence bandwidth, which are responsible for the excellent photocatalytic performance of H(2) production and for the high photostability

  16. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    Science.gov (United States)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  17. Facile Br- assisted hydrothermal synthesis of Bi2MoO6 nanoplates with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhang, Peng; Teng, Xiaoxu; Liu, Dongsheng; Fu, Liang; Xie, Hualin; Zhang, Guoqing; Ding, Shimin

    2017-01-01

    Bi 2 MoO 6 nanoplates have been controllably synthesized via a facile hydrothermal process with the assistance of Br - containing surfactant cetyltrimethylammonium bromide (CTAB) or KBr. A remarkable enhancement in the visible-light-driven photocatalytic degradation of Rhodamine B was observed. It was found that reaction temperature and surfactant play crucial roles in the formation and properties of the Bi 2 MoO 6 nanoplates. The best results as photocatalyst were obtained with the sample hydrothermally synthesized at 150 C with the assistance of CTAB. The improved photocatalytic performance could be ascribed to the {001}-oriented nanostructure of the Bi 2 MoO 6 nanoplates. KBr-templated Bi 2 MoO 6 nanoplates also showed better photocatalytic efficiency compared with that of flower-like Bi 2 MoO 6 but inferior to that of CTAB-templated Bi 2 MoO 6 nanoplates. (orig.)

  18. The effects of hydrothermal temperature on the photocatalytic performance of ZnIn2S4 for hydrogen generation under visible light irradiation

    International Nuclear Information System (INIS)

    Tian, Fei; Zhu, Rongshu; Song, Kelin; Niu, Minli; Ouyang, Feng; Cao, Gang

    2015-01-01

    Highlights: • The ZnIn 2 S 4 (120, 140, 160, 180, and 200 °C) was prepared. • The activities splitting water to hydrogen under visible light were evaluated. • The activity achieved the best when hydrothermal temperature was 160 °C. • The activity order is related to the surface morphology and surface defects. - Abstract: A series of ZnIn 2 S 4 photocatalysts were successfully synthesized using the hydrothermal method with different hydrothermal temperatures (120, 140, 160, 180, and 200 °C) and characterized by various analysis techniques, such as UV–vis, XRD, SEM, BET and PL. The results indicated that these photocatalysts had a similar band gap. The hydrothermal temperature had a huge influence on the properties of the photocatalysts such as the BET surface area, the total pore volume, the average pore diameter, the defects and the morphology. The photocatalytic activities of ZnIn 2 S 4 were evaluated based on photocatalytic hydrogen production from water under visible-light irradiation. The activity order is attributed to the coefficient of the surface morphology and the surface defects. The hydrogen production efficiency achieved the best when the hydrothermal temperature was 160 °C. On the basis of the characterization of the catalysts, the effects of the hydrothermal temperature on the photocatalytic activity of ZnIn 2 S 4 were discussed

  19. Porous TiO_2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    International Nuclear Information System (INIS)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    Graphical abstract: A heterojunction photocatalyst with CdS Nanoparticles self-assembled via SILAR Method at surfaces of electrospun TiO2 nanofibers shows enhanced visible-light photocatalytic activities. - Highlights: • Combined electrospinning and successive ionic layer adsorption and reaction process. • Pouous TiO_2 nanofibers decorated CdS nanoparticles. • Synergetic effect of photosensitization and heterojunction. - Abstract: 1D porous CdS nanoparticles/TiO_2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO_2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO_2 nanofibers,the as-obtained CdS/TiO_2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H_2 generation rates of 678.61 μmol h"−"1 g"−"1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  20. Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln = La, Sm) nanoparticles by synergistic catalysis

    International Nuclear Information System (INIS)

    Li, Li; Wang, Xiong; Zhang, Yange

    2014-01-01

    Highlights: • LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method. • The samples exhibit superior visible-light-responsive photocatalytic activity. • Synergistic effect will enhance the photodegradation of RhB under visible light. - Abstract: LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method with assistance of glycol at different calcination temperatures. The as-synthesized LnFeO 3 was characterized by X-ray diffraction, transmission electron microscopy, differential scanning calorimeter and thermogravimetric analysis, and UV–vis absorption spectroscopy. The photocatalytic behaviors of LnFeO 3 nanoparticles were evaluated by photodegradation of rhodamine B under visible light irradiation. The results indicate that the visible light-responsive photocatalytic activity of LnFeO 3 nanoparticles was enhanced remarkably by the synergistic effect between the semiconductor photocatalysis and Fenton-like reaction. And a possible catalytic mechanism was also proposed based on the experimental results

  1. Photocatalytic activity enhancement by electron irradiation of fullerene derivative-TiO2 nanoparticles under visible light illumination

    International Nuclear Information System (INIS)

    Cho, Sung Oh; Yoo, Seung Hwa; Lee, Dong Hoon

    2011-01-01

    Photocatalytic decomposition of aqueous organic pollutant have attracted many interest due to its simple, low cost, and clean procedure. By only using the sun light and photocatalyst, especially TiO 2 nanoparticles based systems have been extensively studied and commercialized for real life application. However, TiO 2 has a critical disadvantage, which can only absorb the ultra-violet region of the solar spectrum, due to the large band-gap of 3.2 eV. Extensive studies have been preformed to expand the light absorption of TiO 2 to the visible light region of the solar spectrum, by doping metal or non-metal elements on TiO 2 or attaching small band-gap semiconductors on TiO 2 . In this study, a fullerene derivative 1-(3- carboxypropyl)-1-phenyl[6,6]C 61 (PCBA) was attached on the surface of TiO 2 nanoparticles, and its photocatalytic activity was evaluated by decomposition of methyl orange under visible light. Furthermore, enhancement in the photocatalytic activity of these nanoparticles by electron irradiation is discussed

  2. Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NO{sub x} abatement

    Energy Technology Data Exchange (ETDEWEB)

    Tobaldi, D.M., E-mail: david.tobaldi@ua.pt [Department of Materials and Ceramic Engineering / CICECO−Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pullar, R.C. [Department of Materials and Ceramic Engineering / CICECO−Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Gualtieri, A.F. [Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Modena e Reggio Emilia, I-41121 Modena (Italy); Otero-Irurueta, G.; Singh, M.K. [Center for Mechanical Technology and Automation – TEMA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Seabra, M.P.; Labrincha, J.A. [Department of Materials and Ceramic Engineering / CICECO−Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2015-11-15

    Titanium dioxide (TiO{sub 2}) is a popular photocatalyst used for many environmental and anti-pollution applications, but it normally operates under UV light, exploiting ∼5% of the solar spectrum. Nitrification of titania to form N-doped TiO{sub 2} has been explored as a way to increase its photocatalytic activity under visible light, and anionic doping is a promising method to enable TiO{sub 2} to harvest visible-light by changing its photo-absorption properties. In this paper, we explore the insertion of nitrogen into the TiO{sub 2} lattice using our green sol–gel nanosynthesis method, used to create 10 nm TiO{sub 2} NPs. Two parallel routes were studied to produce nitrogen-modified TiO{sub 2} nanoparticles (NPs), using HNO{sub 3}+NH{sub 3} (acid-precipitated base-peptised) and NH{sub 4}OH (totally base catalysed) as nitrogen sources. These NPs were thermally treated between 450 and 800 °C. Their true phase composition (crystalline and amorphous phases), as well as their micro-/nanostructure (crystalline domain shape, size and size distribution, edge and screw dislocation density) was fully characterised through advanced X-ray methods (Rietveld-reference intensity ratio, RIR, and whole powder pattern modelling, WPPM). As pollutants, nitrogen oxides (NO{sub x}) are of particular concern for human health, so the photocatalytic activity of the NPs was assessed by monitoring NO{sub x} abatement, using both solar and white-light (indoor artificial lighting), simulating outdoor and indoor environments, respectively. Results showed that the onset of the anatase-to-rutile phase transformation (ART) occurred at temperatures above 450 °C, and NPs heated to 450 °C possessed excellent photocatalytic activity (PCA) under visible white-light (indoor artificial lighting), with a PCA double than that of the standard P25 TiO{sub 2} NPs. However, higher thermal treatment temperatures were found to be detrimental for visible-light photocatalytic activity, due to the effects

  3. Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies

    International Nuclear Information System (INIS)

    Liu Zhang; Xu Weicheng; Fang Jianzhang; Xu Xiaoxin; Wu Shuxing; Zhu Ximiao; Chen Zehua

    2012-01-01

    Highlights: ► RGO/BiOI nanocomposites were synthesized by a reverse microemulsion method. ► Quantum sized BiOI nanoparticles can be obtained by this approach. ► Ascorbic acid was used as a reducing agent to reduce GO and seemed to be effective. ► RGO/BiOI presented outstanding visible-light-induced photocatalytic performance. ► Possible photocatalytic mechanism was proposed based on the experimental studies. - Abstract: Herein, a reverse microemulsion route was developed to synthesize bismuth oxyiodide (BiOI) nanocrystals and reduced graphene oxide (RGO) nanocomposites as a highly efficient photocatalyst, and both the formation of BiOI and the reduction of RGO were achieved in situ in microemulsions simultaneously at low temperature (60 °C). The uniform nanocrystal size and structure were indicated by XRD, TEM, and the reduction of GO by ascorbic acid was evidenced by FTIR, XPS, and Raman spectra techniques. The enhanced photoactivity of RGO/BiOI nanocomposites under visible light was attributed to improved light absorption and efficient charge separation and transportation.

  4. Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhang, E-mail: liuzhang0126@126.com [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Xu Weicheng [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Fang Jianzhang, E-mail: fangjzh@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Xu Xiaoxin; Wu Shuxing; Zhu Ximiao; Chen Zehua [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer RGO/BiOI nanocomposites were synthesized by a reverse microemulsion method. Black-Right-Pointing-Pointer Quantum sized BiOI nanoparticles can be obtained by this approach. Black-Right-Pointing-Pointer Ascorbic acid was used as a reducing agent to reduce GO and seemed to be effective. Black-Right-Pointing-Pointer RGO/BiOI presented outstanding visible-light-induced photocatalytic performance. Black-Right-Pointing-Pointer Possible photocatalytic mechanism was proposed based on the experimental studies. - Abstract: Herein, a reverse microemulsion route was developed to synthesize bismuth oxyiodide (BiOI) nanocrystals and reduced graphene oxide (RGO) nanocomposites as a highly efficient photocatalyst, and both the formation of BiOI and the reduction of RGO were achieved in situ in microemulsions simultaneously at low temperature (60 Degree-Sign C). The uniform nanocrystal size and structure were indicated by XRD, TEM, and the reduction of GO by ascorbic acid was evidenced by FTIR, XPS, and Raman spectra techniques. The enhanced photoactivity of RGO/BiOI nanocomposites under visible light was attributed to improved light absorption and efficient charge separation and transportation.

  5. Photocatalytic decolorization of methylene blue over Zn1-xCoxO under visible light irradiation

    International Nuclear Information System (INIS)

    Xiao Qi; Zhang Jiang; Xiao Chong; Tan Xiaoke

    2007-01-01

    Co-doped ZnO photocatalysts were prepared by hydrothermal method. The obtained Co-doped ZnO powders were characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and photoluminescence (PL) spectra. The prepared Co-doped ZnO photocatalysts showed high photocatalytic activities for methylene blue decolorization at pH 10.5 under visible light irradiation. It was found that there were certain relationships between PL spectra and photocatalytic activity, namely, the stronger the PL intensity, the larger the content of oxygen vacancies and defects, the higher the photocatalytic activity. Therefore, in this study 3.0 mol% was the most suitable content of Co 2+ in ZnO, at which the recombination of photoinduced electrons and holes could be effectively inhibited and thereby the highest photocatalytic activity was formed

  6. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-01-01

    Graphical abstract: - Highlights: • P-doped g-C 3 N 4 has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C 3 N 4 . • A postannealing treatment further enhanced the activity of P-doped g-C 3 N 4 . • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C 3 N 4 , which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry

  7. Ag loading induced visible light photocatalytic activity for pervoskite SrTiO3 nanofibers

    Science.gov (United States)

    Wu, Yeqiu; He, Tao

    2018-06-01

    The synthesis and photocatalytic activities of Ag-SrTiO3 nanofibers were reported in this work. The fabricated Ag-SrTiO3 nanofibers were characterized by TG-DSC, XRD, IR, XPS, SEM, TEM, DRS and ESR techniques. The XRD and IR results show that Ag-SrTiO3 nanofibers have a perovskite structure after the heat treatment at 700 °C. The XPS result shows that Ag element exists as Ag0 in the fabricated Ag-SrTiO3 nanofibers. The SEM and TEM images indicate the obtaining of nanofibers with porous structure. The photocatalytic activity of Ag-SrTiO3 nanofibers was evaluated by degrading RhB and MB under visible light irradiation. The Ag-SrTiO3 nanofibers show excellent photocatalytic activity under visible light irradiation because of the surface plasmon resonance effect of Ag0. In the photocatalysis process of RhB and MB, lots of hydroxyl radicals were generated, which plays the key role in the decomposition of organic pollutants.

  8. Photocatalytic and electrochemical performance of three-Dimensional reduced graphene Oxide/WS{sub 2}/Mg-doped ZnO composites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weiwei [College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114 (China); Chen, Xi’an [Zhejiang Key Laboratory of Carbon Materials, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027 (China); Mei, Wei [College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114 (China); Chen, Chuansheng, E-mail: 1666423158@qq.com [College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114 (China); Tsang, Yuenhong [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077 (China)

    2017-04-01

    Highlights: • 3D graphene oxide/WS{sub 2}/Mg-doped ZnO composites were prepared by electrostatic self-assembly and coprecipitation methods. • A significant photocatalytic activity enhancement of rGWMZ was observed. • The enhancement for photocatalytic activity is ascribed to the synergistic effect of rGO and WS{sub 2} nanosheets. - Abstract: To improve the dispersion of reduced graphene oxide and enhance the photocatalytic property of reduced graphene oxide/Mg-doped ZnO composites (rGMZ), the reduced graphene oxide/WS{sub 2}/Mg-doped ZnO composites (rGWMZ) were prepared by electrostatic self-assembly and coprecipitation methods. The effects of mass ratio of WS{sub 2} nanosheets to reduced graphene oxide (WS{sub 2}/rGO wt.%) and calcination temperature on the photocatalytic and electrochemical property of rGWMZ composites were investigated. Experimental results showed that the photocatalytic efficiency of rGWMZ composites is three-fold compared with that of rGMZ composites when the WS{sub 2}/rGO wt.% is 20.8% and calcination temperature is 500 °C, in which the degradation ratio Rhodamin B (RhB) can reach 95% within 15 min under the UV light and 90% within 90 min under simulated solar light. In addition, the rGWMZ show larger capacitance and smaller resistance than rGMZ. The enhancement for photocatalytic activity and electrochemical performance of rGWMZ is ascribed to improving the specific surface area, electrical conductivity and electronic storage capability because of the synergistic effect of rGO and WS{sub 2} nanosheets.

  9. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles

    International Nuclear Information System (INIS)

    Liu, Y.; Wei, J.H.; Xiong, R.; Pan, C.X.; Shi, J.

    2011-01-01

    In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO 2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO 2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N 2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe 3+ -dopants in TiO 2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO 2 ) and N-doped TiO 2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.

  10. Nanocomposite of exfoliated bentonite/g-C3N4/Ag3PO4 for enhanced visible-light photocatalytic decomposition of Rhodamine B.

    Science.gov (United States)

    Ma, Jianfeng; Huang, Daiqin; Zhang, Wenyi; Zou, Jing; Kong, Yong; Zhu, Jianxi; Komarneni, Sridhar

    2016-11-01

    Novel visible-light-driven heterojunction photocatalyst comprising exfoliated bentonite, g-C3N4 and Ag3PO4 (EB/g-C3N4/Ag3PO4) was synthesized by a facile and green method. The composites EB/g-C3N4/Ag3PO4 were characterized by X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy and the Brunauer, Emmett, and Teller (BET) surface area method. Under visible light irradiation, EB/g-C3N4/Ag3PO4 composites displayed much higher photocatalytic activity than that of either pure g-C3N4 or pure Ag3PO4 in the degradation of Rhodamine B (RhB). Among the hybrid photocatalysts, EB/g-C3N4/Ag3PO4 composite containing 20 wt% Ag3PO4 exhibited the highest photocatalytic activity for the decolorization of RhB. Under the visible-light irradiation, the RhB dye was completely decolorized in less than 60 min. The enhanced photocatalytic performance is attributed to the stable structure, enlarged surface area, strong adsorbability, strong light absorption ability, and high-efficiency separation rate of photoinduced electron-hole pairs. Our finding paves a way to design highly efficient and stable visible-light-induced photocatalysts for practical applications in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. CdS nanoparticles/CeO{sub 2} nanorods composite with high-efficiency visible-light-driven photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    You, Daotong; Pan, Bao; Jiang, Fan; Zhou, Yangen; Su, Wenyue, E-mail: suweny@fzu.edu.cn

    2016-02-15

    Graphical abstract: Coupling CdS with CeO{sub 2} can effectively improve the light-harvesting ability of wide-band gap CeO{sub 2} NRs as the photoinduced electrons on the conduction band of CdS are transfered to the conduction band of CeO{sub 2}. - Highlights: • Coupling CdS can effectively improve the light-harvesting ability of wide-band gap CeO{sub 2}. • CdS/CeO{sub 2} composites show high photocatalytic activity under visible light irradiation. • The mechanism of photocatalytic H{sub 2} evolution over CdS/CeO{sub 2} was proposed. - Abstract: Different mole ratios of CdS nanoparticles (NPs)/CeO{sub 2} nanorods (NRs) composites with effective contacts were synthesized through a two-step hydrothermal method. The crystal phase, microstructure, optical absorption properties, electrochemical properties and photocatalytic H{sub 2} production activity of these composites were investigated. It was concluded that the photogenerated charge carriers in the CdS NPs/CeO{sub 2} NRs composite with a proper mole ratio (1:1) exhibited the longest lifetime and highest separation efficiency, which was responsible for the highest H{sub 2}-production rate of 8.4 mmol h{sup −1} g{sup −1} under visible-light irradiation (λ > 420 nm). The superior photocatalytic H{sub 2} evolution properties are attributed to the transfer of visible-excited electrons of CdS NPs to CeO{sub 2} NRs, which can effectively extend the light absorption range of wide-band gap CeO{sub 2} NRs. This work provides feasible routes to develop visible-light responsive CeO{sub 2}-based nanomaterial for efficient solar utilization.

  12. Visible-light photocatalytic activity of Ag2O coated Bi2WO6 hierarchical microspheres assembled by nanosheets

    International Nuclear Information System (INIS)

    Chen, Lin; Hua, Hao; Yang, Qi; Hu, Chenguo

    2015-01-01

    Graphical abstract: - Highlights: • Bi 2 WO 6 hierarchical microspheres assembled by nanosheets and dispersed nanosheets are synthesized. • Ag 2 O/Bi 2 WO 6 heterostuctures exhibites an enhanced photocatalytic activity compared with the Bi 2 WO 6 nanostructures. • Photocatalytic activity of the Ag 2 O/Bi 2 WO 6 microspheres is higher than that of the nanosheets. • Bi 2 WO 6 hierarchical structure is an excellent architecture for loading of Ag 2 O nanoparticles. - Abstract: Bi 2 WO 6 hierarchical microspheres assembled by nanosheets and dispersed nanosheets were synthesized by hydrothermal reaction in different conditions. Ag 2 O nanoparticles were deposited on the surface of Bi 2 WO 6 microspheres and nanosheets by the chemical precipitation method. The photocatalytic performance of pure Bi 2 WO 6 nanostructures and Ag 2 O/Bi 2 WO 6 heterostructures were evaluated by the photocatalytic decolorization of RhB solution under visible-light irradiation. Compared with the pure Bi 2 WO 6 nanostructures, the Ag 2 O/Bi 2 WO 6 heterostructures exhibited an obviously enhanced photocatalytic activity. And photocatalytic activity of the Ag 2 O/Bi 2 WO 6 microspheres is higher than that of the Ag 2 O/Bi 2 WO 6 nanosheets. This work demonstrates that the Bi 2 WO 6 hierarchical three-dimensional structure is an excellent architecture for the loading of Ag 2 O nanoparticles to build a highly efficient photocatalyst

  13. Synthesis of CdSe-TiO_2 Photocatalyst and Their Enhanced Photocatalytic Activities under UV and Visible Light

    International Nuclear Information System (INIS)

    Lim, Chang Sung; Chen, Ming Liang; Oh, Won Chun

    2011-01-01

    In this study, CdSe-TiO_2 photocatalyst were synthesized by a facile solvothermal method and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and UV-vis diffuse reflectance spectrophotometer. The photocatalytic activity was investigated by degrading methylene blue (MB) in aqueous solution under irradiation of UV light as well as visible light. The absorbance of degraded MB solution was determined by UV-vis spectrophotometer. The results revealed that the CdSe- TiO_2 photocatalyst exhibited much higher photocatalytic activity than TiO_2 both under irradiation of UV light as well as visible light

  14. Hydrothermal synthesis of Ca3Bi8O15 rods and their visible light photocatalytic properties

    International Nuclear Information System (INIS)

    Li, Wenjuan; Kong, Desheng; Cui, Xiaoli; Du, Dandan; Yan, Tingjiang; You, Jinmao

    2014-01-01

    Graphical abstract: The novel Ca 3 Bi 8 O 15 rods can utilize the sunlight efficiently with the small band-gap. Using methyl orange (MO) as a model organic pollutant, the photocatalysts exhibited good photocatalytic activity, with the photodegradation conversion ratio of MO being up to 90% after 2 h of visible light (420 nm < λ < 800 nm) irradiation. - Highlights: • Ca 3 Bi 8 O 15 rods were synthesized by a hydrothermal method. • They can utilize the sunlight efficiently with the small band-gap. • They showed good photocatalytic activities in the degradation of MO, RhB and 4-CP. • The conversion ratio of MO was up to 90% after 2 h of visible light irradiation. - Abstract: High efficient visible light Ca 3 Bi 8 O 15 photocatalysts were synthesized by a hydrothermal method. Characterized by X-ray diffractometer, transmission electron microscopy, and the UV–vis diffuse reflectance spectroscopy, the results showed that the novel Ca 3 Bi 8 O 15 rods can utilize the sunlight efficiently with the small band-gap. Using methyl orange (MO) as a model organic pollutant, the photocatalysts exhibited good photocatalytic activity, with the photodegradation conversion ratio of MO being up to 90% after 2 h of visible light (420 nm < λ < 800 nm) irradiation. Furthermore, they also showed good photocatalytic activities in the degradation of rhodamine B and p-chlorophenol. Through the investigation of the degraded mechanism, the main active species played important roles in the degradation process were holes, O 2 · − and ·OH

  15. Photocatalytic performance of graphene/TiO_2-Ag composites on amaranth dye degradation

    International Nuclear Information System (INIS)

    Roşu, Marcela-Corina; Socaci, Crina; Floare-Avram, Veronica; Borodi, Gheorghe; Pogăcean, Florina; Coroş, Maria; Măgeruşan, Lidia; Pruneanu, Stela

    2016-01-01

    Ternary nanocomposites containing TiO_2, silver and graphene with different reduction levels were prepared and used as photocatalysts for amaranth azo dye degradation, under UV and natural light exposure. The obtained materials were characterized by TEM, XRD, FTIR and UV-Vis spectroscopy, confirming the successful formation of the nanocomposites. HPLC analysis along with UV-Vis spectroscopy were employed to quantify the concentration of non-degraded dye in solution. The graphene/TiO_2-Ag nanocomposites proved to have remarkable photocatalytic activities for amaranth degradation under UV and solar irradiation (85.3–98% of dye has disappeared in the first 2 h). Also, significant removal efficiencies (between 40.5 and 71.8%) of photocatalysts, in day light conditions, were demonstrated. The best result for amaranth dye degradation was obtained with the reduced graphene/TiO_2-Ag catalyst (up to 99.9%). Based on the degradation products analysis, a photodegradation pathway of amaranth dye was also proposed. - Highlights: • Graphene/TiO_2-Ag composites were prepared by a combined chemical-thermal method. • The composites showed improved light-absorption characteristics. • A significant degradation performance of amaranth was obtained with these composites under UV and natural light exposure. • Graphene/TiO_2-Ag composites offer a high potential for various photocatalytic applications in pollutant removal processes.

  16. Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag2CrO4

    Directory of Open Access Journals (Sweden)

    Difa Xu

    2014-05-01

    Full Text Available Silver chromate (Ag2CrO4 photocatalysts are prepared by microemulsion, precipitation, and hydrothermal methods, in order to investigate the effect of preparation methods on the structure and the visible-light photocatalytic activity. It is found that the photocatalytic activity of the prepared Ag2CrO4was highly dependent on the preparation methods. The sample prepared by microemulsion method exhibits the highest photocatalytic efficiency on the degradation of methylene blue (MB under visible-light irradiation. The enhanced photocatalytic activity could be ascribed to the smaller particle size, higher surface area, relatively stronger light absorption, and blue-shift absorption edge, which result in the adsorption of more MB molecules, a shorter diffusion process of more photogenerated excitons, and a stronger oxidation ability of the photogenerated holes. Considering the universalities of microemulsion, precipitation, and hydrothermal methods, this work may also provide a prototype for the comparative study of semiconductor based photocatalysis for water purification and environmental remediation.

  17. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    Science.gov (United States)

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly

  18. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    Directory of Open Access Journals (Sweden)

    Weirong Zhao

    Full Text Available BACKGROUND PURPOSE: Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. METHODS: Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, UV-vis diffuse reflectance spectroscopy (DRS, photoluminescence spectroscopy (PL, and photoelectrochemical characterizations. RESULTS: DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2. This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. CONCLUSION: Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of

  19. The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation

    Science.gov (United States)

    Guo, Qiyao; Huang, Yunfang; Xu, Hui; Luo, Dan; Huang, Feiyue; Gu, Lin; Wei, Yuelin; Zhao, Huang; Fan, Leqing; Wu, Jihuai

    2018-04-01

    Bi2WO6/TiO2 heterojunction photocatalysts with two different microstructures were controllably fabricated via a facile two-step synthetic route. XRD, XPS, SEM, TEM, BET-surface, DRS, PL spectra, photoelectrochemical measurement (Mott-Schottky), and zeta-potential analyzer were employed to clarify structural and morphological characteristics of the obtained products. The results showed that Bi2WO6 nanoparticles/nanosheets grew on the primary TiO2 nanorods. The TiO2 nanorods used as a synthetic template inhibit the growth of Bi2WO6 crystals along the c-axis, resulting in Bi2WO6/TiO2 heterostructure with one-dimensional (1D) morphology. The photocatalytic properties of Bi2WO6/TiO2 heterojunction photocatalysts were strongly dependent on their shapes and structures. Compared with bare Bi2WO6 and TiO2, Bi2WO6/TiO2 composite have stronger adsorption ability and better visible light photocatalytic activities towards organic dyes. The Bi2WO6/TiO2 composite prepared in EG solvent with optimal Bi:Ti ratio of 2:12 (S-TB2) showed the highest photocatalytic activity, which could totally decompose Rhodamine B within 10 min upon irradiation with visible light (λ > 422 nm), and retained the high photocatalytic performance after five recycles, confirming its stability and practical usability. The results of PL indicated that Bi2WO6 and TiO2 could combine well to form a heterojunction structure which facilitated electron-hole separation, and lead to the increasing photocatalytic activity.

  20. Facile fabrication of Bi_2S_3/SnS_2 heterojunction photocatalysts with efficient photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Gao, Xiaomin; Huang, Guanbo; Gao, Haihuan; Pan, Cheng; Wang, Huan; Yan, Jing; Liu, Yu; Qiu, Haixia; Ma, Ning; Gao, Jianping

    2016-01-01

    In this work, Bi_2S_3/SnS_2 heterojunction photocatalysts were prepared by combining a hydrothermal technique and a facile in situ growth method. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma spectroscopy, X-ray photoelectron spectroscopy, UV–Vis diffusion reflectance spectroscopy and room-temperature photoluminescence spectra. Their photocatalytic performances were evaluated by degrading methyl orange (MO) in aqueous solution (50 mg/L) under visible light (λ > 420 nm) irradiation. It was found that when the mass percentage of Bi_2S_3 in Bi_2S_3/SnS_2 was 7.95 wt%, the as-prepared Bi_2S_3/SnS_2 nanocomposite showed the best photocatalytic activity for the degradation of MO. The highly improved performance of the Bi_2S_3/SnS_2 nanocomposite was mainly ascribed to the efficient charge separation. - Highlights: • Facile fabrication of novel Bi_2S_3/SnS_2 heterojunction photocatalysts. • High-performance photocatalyst for the degradation of organic pollutants. • Good recyclability of catalyst without photo-corrosion. • The photocatalytic mechanism was proposed.

  1. Facile in situ hydrothermal synthesis of g-C{sub 3}N{sub 4}/SnS{sub 2} composites with excellent visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Fang; Zhao, Lina; Pei, Xule [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Xubiao, E-mail: luoxubiao@126.com [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2017-03-01

    The g-C{sub 3}N{sub 4}/SnS{sub 2} composites were prepared by in situ hydrothermal method, and the effect of g-C{sub 3}N{sub 4} content on the physical and chemical properties, and photocatalytic performance of g-C{sub 3}N{sub 4}/SnS{sub 2} composites was investigated. The introduction of g-C{sub 3}N{sub 4} enhanced the visible-light absorption of SnS{sub 2}, and reduced the recombination rate of electron-hole pairs. The photocatalytic performance of g-C{sub 3}N{sub 4}/SnS{sub 2} composites was also obviously influenced by g-C{sub 3}N{sub 4} content, and it was found that 15% g-C{sub 3}N{sub 4}/SnS{sub 2} composite exhibited the highest photocatalytic activity and excellent regeneration, which was attributed to the most efficient charge separation, the largest specific surface area and the formation of dominant active species (h{sup +} and ·O{sub 2}{sup −} radicals) during the photocatalytic process. - Graphical abstract: Photocatalytic mechanism of g-C{sub 3}N{sub 4}/SnS{sub 2} composites. - Highlights: • g-C{sub 3}N{sub 4}/SnS{sub 2} composites were fabricated by a in situ hydrothermal process. • g-C{sub 3}N{sub 4} content was optimized, and the optimal g-C{sub 3}N{sub 4} content is 15%. • 15% g-C{sub 3}N{sub 4}/SnS{sub 2} shows the highest visible-light photocatalytic activity. • g-C{sub 3}N{sub 4}/SnS{sub 2} composites exhibit excellent reusability.

  2. BiVO4–graphene catalyst and its high photocatalytic performance under visible light irradiation

    International Nuclear Information System (INIS)

    Fu Yongsheng; Sun Xiaoqiang; Wang Xin

    2011-01-01

    Highlights: ► A facile strategy is designed to deposit leaf-like BiVO 4 lamellas on graphene sheet. ► Graphene oxide is reduced to graphene in the hydrothermal reaction process. ► BiVO 4 –graphene system shows high catalytic effects under visible light irradiation. - Abstract: A BiVO 4 –graphene photocatalyst was prepared by a facile one-step hydrothermal method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectra (XPS), and transmission electron microscopy (TEM) techniques. The results show that the graphene sheets in this catalyst are exfoliated and decorated by leaf-like BiVO 4 lamellas. In comparison with the pure BiVO 4 catalyst, the BiVO 4 –graphene system reveals much higher photocatalytic activity for degradation of methyl orange (MO), methylene blue (MB), Rhodamine B (RhB) and active black BL-G in water under visible light irradiation due to the concerted effects of BiVO 4 and graphene sheets or their integrated properties.

  3. Hydrothermal fabrication of N-doped (BiO){sub 2}CO{sub 3}: Structural and morphological influence on the visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Wang, Rui; Li, Xinwei [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Ho, Wing-Kei [Department of Science and Environmental Studies, The Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Hong Kong (China)

    2014-11-15

    Graphical abstract: - Highlights: • Persimmon-like, flower-like N-doped (BiO){sub 2}CO{sub 3} superstructures were prepared. • The superstructures were fabricated by one-step hydrothermal method. • The hydrothermal temperature controlled the morphological structure. • N-doped (BiO){sub 2}CO{sub 3} superstructure showed enhanced photocatalytic activity. • The high activity can be ascribed to doped nitrogen and hierarchical structure. - Abstract: Various 3D N-doped (BiO){sub 2}CO{sub 3} (N-BOC) hierarchical superstructures self-assembled with 2D nanosheets were fabricated by one-step hydrothermal treatment of bismuth citrate and urea. The as-obtained samples were characterized by XRD, XPS, FT-IR, SEM, N{sub 2} adsorption–desorption isotherms and UV–vis DRS. The hydrothermal temperature plays a crucial role in tuning the crystal and morphological structure of the samples. Adjusting the reaction temperature to 150, 180 and 210 °C, we obtained N-doped (BiO){sub 2}CO{sub 3} samples with corresponding attractive persimmon-like, flower-like and nanoflakes nano/microstructures. The photocatalytic activities of the samples were evaluated by removal of NO under visible and solar light irradiation. The results revealed that the N-doped (BiO){sub 2}CO{sub 3} hierarchical superstructures showed enhanced visible light photocatalytic activity compared to pure (BiO){sub 2}CO{sub 3} and TiO{sub 2}-based visible light photocatalysts. The outstanding photocatalytic performance of N-BOC samples can be ascribed to the doped nitrogen and the special hierarchical structure. The present work could provide new perspectives in controlling the morphological structure and photocatalytic activity of photocatalyst for better environmental pollution control.

  4. TiO2/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Tian Lihong; Ye Liqun; Deng Kejian; Zan Ling

    2011-01-01

    MWCNT/TiO 2 hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO 2 nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO 2 was 20%, MWCNT/TiO 2 hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO 2 nanostructures at 400 deg. C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO 2 and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue. - Graphical abstract: MWCNT/TiO 2 nanostructures have been prepared by solvothermal method, which exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. The carbonaceous Ti-C bonds on the interface between TiO 2 and MWCNTs enhanced the photoabsorbance of the hybrid materials in the visible light region. Highlights: → Anatase TiO 2 nanoparticles were anchored on CNTs surface uniformly via solvothermal method → The morphology facilitated the electron transfer between CNTs and TiO 2 → Ti-C bonds extended the absorption of MWCNT/TiO 2 to the whole visible light region. → The hybrid nanostructures showed enhanced visible-light induced photocatalytic activity.

  5. Porous TiO{sub 2} nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fengyu; Hou, Dongfang, E-mail: dfhouok@126.com; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng, E-mail: lidongsheng1@126.com

    2017-01-01

    Graphical abstract: A heterojunction photocatalyst with CdS Nanoparticles self-assembled via SILAR Method at surfaces of electrospun TiO2 nanofibers shows enhanced visible-light photocatalytic activities. - Highlights: • Combined electrospinning and successive ionic layer adsorption and reaction process. • Pouous TiO{sub 2} nanofibers decorated CdS nanoparticles. • Synergetic effect of photosensitization and heterojunction. - Abstract: 1D porous CdS nanoparticles/TiO{sub 2} nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO{sub 2} heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO{sub 2} nanofibers,the as-obtained CdS/TiO{sub 2} heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H{sub 2} generation rates of 678.61 μmol h{sup −1} g{sup −1} under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  6. AgBr/MgBi2O6 heterostructured composites with highly efficient visible-light-driven photocatalytic activity

    Science.gov (United States)

    Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying

    2018-06-01

    AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.

  7. Enhanced selective photocatalytic CO{sub 2} reduction into CO over Ag/CdS nanocomposites under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zezhou; Qin, Jiani; Jiang, Min; Ding, Zhengxin; Hou, Yidong, E-mail: ydhou@fzu.edu.cn

    2017-01-01

    Highlights: • Ag/CdS nanocomposites were prepared by a facile photodeposition method. • Ag/CdS was more effective as a photocatalyst for CO{sub 2} reduction than CdS. • Ag as cocatalyst served as electron trap as well as active site for CO{sub 2} reduction reaction. - Abstract: Photocatalytic reduction of carbon dioxide can convert chemically inert carbon dioxide into useful chemical fuel in a mild manner. Herein, Ag-CdS nanocomposites were prepared by photodeposition method and examined for photocatalytic CO{sub 2} reduction under visible light. Meanwhile, the nanocomposites were characterized by XRD, SEM, TEM, XPS, DRS and PL in detail. The results show that, the deposition of Ag improves the photocatalytic performance of CdS, especially in the selectivity of CO{sub 2}-to-CO. The highest photocatalytic activity is achieved over 1.0 wt.% Ag/CdS, with an increase by 3 times in comparison to CdS. In this reaction system, Ag can serve as electron trap as well as active site for CO{sub 2} reduction, which is probably responsible for the enhanced activity and selectivity of CO{sub 2} to CO over Ag/CdS. The possible mechanism of CO{sub 2} photoreduction over Ag/CdS was proposed in view of the abovementioned analysis.

  8. Alkaline hydrogen peroxide treatment for TiO_2 nanoparticles with superior water-dispersibility and visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Wu, Chung-Yi; Tu, Kuan-Ju; Lo, Yu-Shiu; Pang, Yean Ling; Wu, Chien-Hou

    2016-01-01

    Alkaline hydrogen peroxide treatment was proposed as a simple and green way to improve the performance of commercial TiO_2 powder for water-dispersibility and visible-light photocatalytic activity on the degradation of dye pollutants. The performance of treated TiO_2 was evaluated as a function of NaOH concentration, H_2O_2 concentration, and treatment time. The optimal conditions were determined to be 24 h in 100 mM H_2O_2 and 8 M NaOH. The treated samples were characterized by Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectrophotometry. The analysis revealed that the crystal structure, morphology, and absorption band gap were retained, but the surface of the treated TiO_2 was dramatically changed. The treated TiO_2 was highly dispersible with a uniform hydrodynamic size of 41 ± 12 nm and stable over months in water at pH 3 without any stabilizing ligand and could significantly enhance the visible-light photodegradation of dye pollutants. The superior performance might be attributed to the formation of abundant surface hydroxyl groups. This treatment paves the way for developing water-dispersible TiO_2 with superior visible-light induced photocatalytic degradation of dye pollutants without any complicated and expensive surface modification. - Highlights: • Alkaline hydrogen peroxide is proposed to treat commercial TiO_2 powder. • The treated TiO_2 powder exhibits superior water-dispersibility with a uniform size distribution. • The treated TiO_2 powder can significantly enhance the visible-light photodegradation of dyes.

  9. Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    Science.gov (United States)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    1D porous CdS nanoparticles/TiO2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO2 nanofibers,the as-obtained CdS/TiO2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H2 generation rates of 678.61 μmol h-1 g-1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  10. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe2O4 nanocomposites

    International Nuclear Information System (INIS)

    Li, Xiaojuan; Tang, Duanlian; Tang, Fan; Zhu, Yunyan; He, Changfa; Liu, Minghua; Lin, Chunxiang; Liu, Yifan

    2014-01-01

    Highlights: • A plasmonic Ag/AgBr/ZnFe 2 O 4 photocatalyst has been successfully synthesized. • Ag/AgBr/ZnFe 2 O 4 nanocomposites exhibit high visible light photocatalytic activity. • Ag/AgBr/ZnFe 2 O 4 photocatalyst is stable and magnetically separable. - Abstract: A visible-light-driven plasmonic Ag/AgBr/ZnFe 2 O 4 nanocomposite has been successfully synthesized via a deposition–precipitation and photoreduction through a novel one-pot process. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy were employed to investigate the crystal structure, chemical composition, morphology, and optical properties of the as-prepared nanocomposites. The photocatalytic activities of the nanocomposites were evaluated by photodegradation of Rhodamine B (RhB) and phenol under visible light. The results demonstrated that the obtained Ag/AgBr/ZnFe 2 O 4 nanocomposites exhibited higher photocatalytic activity as compared to pure ZnFe 2 O 4 . In addition, the sample photoreduced for 20 min and calcined at 500 °C achieved the highest photocatalytic activity. Furthermore, the Ag/AgBr/ZnFe 2 O 4 nanocomposite has high stability under visible light irradiation and could be conveniently separated by using an external magnetic field

  11. Controlled synthesis of bismuth oxyiodide toward optimization of photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chenxing; Ma, Zhijun [State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641 (China); Chen, Xiaofeng, E-mail: chenxf@scut.edu.c [Biomaterials Research Institute, School of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641 (China); He, Xin [School of Applied Physics and Materials, Wuyi University, Jiangmen 529020 (China); Qiu, Jianrong, E-mail: qjr@scut.edu.cn [State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641 (China)

    2016-11-30

    Highlights: • Different bismuth oxyiodide was synthesized. • The hollow Bi{sub 4}O{sub 5}I{sub 2} microspheres was obtained. • Formation mechanism of the hollow structure was discussed in detail. - Abstract: A new investigation on the variation rule of the structure, morphology, chemical composition and photocatalytic performance of bismuth oxyiodide synthesized by solvothermal method as a function of reaction conditions was performed here. The composition and morphology of the product could be determined by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results revealed that the particle size together with content of iodide in bismuth oxyiodide decrease with the increase of the concentration of reaction precursors. Hollow Bi{sub 4}O{sub 5}I{sub 2} microsphere with specific surface area as high as 120.88 m{sup 2} g{sup −1} can be easily synthesized when the concentration of the reaction precursors finally increased to 62.5 mM. Photocatalytic water purification performance of the as-prepared samples was evaluated by using Rhodamine B (RhB) as a model contaminant. The results revealed that the hollow Bi{sub 4}O{sub 5}I{sub 2} exhibited the best performance among all the bismuth oxyodide synthesized here for the degradation of RhB under visible light irradiation. Meanwhile, the formation mechanism of the hierarchical hollow structure of bismuth oxyiodide was investigated by the dissolution-recrystallization mechanism.

  12. Facile synthesis of Ag@CeO{sub 2} core–shell plasmonic photocatalysts with enhanced visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Linen; Fang, Siman [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Ge, Lei, E-mail: gelei08@sina.com [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Han, Changcun; Qiu, Ping; Xin, Yongji [Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China)

    2015-12-30

    Highlights: • Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized. • The Ag@CeO{sub 2} showed dramatic photocatalytic activity than pure CeO{sub 2}. • Improving activity is from a combination of SPR effect and hybrid effects. • The mechanism was proposed and confirmed by ESR and PL results. - Abstract: Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized via a green and facile template-free approach in aqueous solution. As-prepared samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (DRS), electron spin resonance (ESR) and photoluminescence spectroscopy (PL). The structures with different core shapes and controllable shell thickness exhibited unique optical properties. It is found that the nanoscale Ag@CeO{sub 2} core–shell photocatalysts exhibit significantly enhanced photocatalytic activities in the O{sub 2} evolution and MB dye degradation compared to pure CeO{sub 2} nanoparticals. The enhancement in photocatalytic activities can be ascribed to the localized surface plasmon resonance (SPR) of Ag cores. Moreover, larger active interfacial areas and contact between metal/semiconductor in the core–shell structure facilitate transfer of charge carriers and prolong lifetime of photogenerated electron-hole pairs. It is expected that the Ag@CeO{sub 2} core–shell structure may have great potential in a wider range of light-harvesting applications.

  13. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Yuxin; Guo, Wan; Guo, Yingna; Zhao, Yahui; Yuan, Xing; Guo, Yihang

    2014-01-01

    Graphical abstract: - Highlights: • Z-scheme plasmonic photocatalyst of Ag@AgBr/g-C 3 N 4 is prepared for the first time. • Ag@AgBr/g-C 3 N 4 shows enhanced visible-light photocatalytic activity. • Photocatalytic mechanism based on the experimental results is revealed. • Photocatalytic degradation pathway of MO is put forward. - Abstract: A series of Ag@AgBr grafted graphitic carbon nitride (Ag@AgBr/g-C 3 N 4 ) plasmonic photocatalysts are fabricated through photoreducing AgBr/g-C 3 N 4 hybrids prepared by deposition–precipitation method. The phase and chemical structures, electronic and optical properties as well as morphologies of Ag@AgBr/g-C 3 N 4 heterostructures are well-characterized. Subsequently, the photocatalytic activity of Ag@AgBr/g-C 3 N 4 is evaluated by the degradation of methyl orange (MO) and rhodamin B (RB) under visible-light irradiation. The enhanced photocatalytic activity of Ag@AgBr/g-C 3 N 4 compared with g-C 3 N 4 and Ag@AgBr is obtained and explained in terms of the efficient visible-light utilization efficiency as well as the construction of Z-scheme, which keeps photogenerated electrons and holes with high reduction and oxidation capability, evidenced by photoelectrochemical tests and free radical and hole scavenging experiments. Based on the intermediates identified in the reaction system, the photocatalytic degradation pathway of MO is put forward

  14. Synthesis of flower-like Ag{sub 2}O/BiOCOOH p-n heterojunction with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shijie [Innovation & Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022 (China); Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021 (China); State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Xu, Kaibing [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement, Donghua University, Shanghai 201620 (China); Hu, Shiwei, E-mail: hushiweihai@163.com [Innovation & Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022 (China); Jiang, Wei [Innovation & Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022 (China); Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021 (China); Zhang, Junlei [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Liu, Jianshe [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Zhang, Lisha, E-mail: lszhang@dhu.edu.cn [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2017-03-01

    Highlights: • Ag{sub 2}O/BiOCOOH p-n heterojunctions are prepared by a solvothermal deposition-precipitation method. • They consist of flower-like BiOCOOH microspheres decorated with Ag{sub 2}O nanoparticles. • Heterojunction with the Ag/Bi molar ratio of 0.2/1 showed the highest photocatalytic activity. • The photogenerated holes (h{sup +}) and superoxide radical anions (·O{sub 2}{sup −}) have been found to be the main reactive species. - Abstract: The development of efficient semiconductor heterojunction photocatalysts has drawn much attention. Herein, we have reported a kind of flower-like Ag{sub 2}O/BiOCOOH p-n heterojunction as a novel and efficient visible-light-driven photocatalyst. The Ag{sub 2}O/BiOCOOH heterojunctions have been successfully prepared via a solvothermal precipitation-deposition method. They consist of flower-like BiOCOOH microspheres (diameters: 1–2.5 μm) decorated with Ag{sub 2}O nanoparticles (size: ∼14 nm). In addition, optical characterization reveals that they have broad visible-light photo-absorption. Importantly, under visible-light irradiation (λ > 400 nm), all Ag{sub 2}O/BiOCOOH heterojunctions exhibit enhanced photocatalytic activity than pure BiOCOOH or Ag{sub 2}O for the degradation of rhodamine B (RhB) dye and para-chlorophenol (4-CP). Especially, the Ag{sub 2}O/BiOCOOH heterojunction with the Ag/Bi molar ratio of 0.2/1 shows the highest photocatalytic activity, which is even higher than the activity from the mechanical mixture (8 wt% Ag{sub 2}O + 92 wt% BiOCOOH). This enhanced photocatalytic performance could be predominantly attributed to the efficient separation of photogenerated electron-hole pairs. The photogenerated holes (h{sup +}) and superoxide radical anions (·O{sub 2}{sup −}) have been found to be the main reactive species responsible for the photodegradation of RhB dye in aqueous solution. Therefore, the Ag{sub 2}O/BiOCOOH p-n heterojunction has great potential to be used as a kind of efficient

  15. Photocatalytic Pre-Oxidation of Arsenic (III) in Groundwater by a Visible-Light-Driven System with Magnetic Separating Characteristic

    Science.gov (United States)

    Cui, Y.; Liu, Y.; Peng, L.; Qin, Y.

    2017-12-01

    Arsenic was a typical toxic metalloid element and its contamination in groundwater was widely recognized as a global health problem, especially in north China, where people depended on groundwater as water resource. Arsenic was existed as As(III) in underground water, and has low affinity to the surface of various minerals and more toxic and more difficultly to be removed compared with As(V), so a pre-oxidation technology by transforming As (III) to As (V) is highly desirable. Electrochemical and oxidizing agents were traditional technology, which usually causes secondary pollution. A novel methodology is presented here, using prepared magnetic visible-light-driven nanomaterials as recyclable media to investigate As(III) pre-oxidation processing. Ag@AgCl core-shell nanowires were first synthesized by oxidation of Ag nanowires with moderate FeCl3, and exhibited excellent photocatalytic activity to As(III) with visible-light. The ratio of chloridization was proved to act as key effect on photocatalytic oxidation efficiency. Testing with simulated groundwater condition proved that pH, ionic strength and concentration of humic acid have obvious effects on Ag@AgCl photocatalytic ability. h+ and ·O2- were confirmed to be the main active species during the visible-light driven photocatalytic oxidation process for As(III) by trapping experiments with radical scavengers. Then Fe0 was introduced to prepare Fe-Ag nanowire and chloridized into Fe-Ag@AgCl to provide magnetic characteristic. The magnetic recycling and re-chloride experiments validated this visible-light-driven material has excellent stable and high reused ability as photocatalyst under visible light irradiation.

  16. Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst

    Directory of Open Access Journals (Sweden)

    Birte Mull

    2017-01-01

    Full Text Available Photocatalysis is a promising technique to reduce volatile organic compounds indoors. Titanium dioxide (TiO2 is a frequently-used UV active photocatalyst. Because of the lack of UV light indoors, TiO2 has to be modified to get its working range shifted into the visible light spectrum. In this study, the photocatalytic degradation of toluene, butyl acetate and limonene was investigated under UV LED light and blue LED light in emission test chambers with catalysts either made of pure TiO2 or TiO2 modified with graphene oxide (GO. TiO2 coated with different GO amounts (0.75%–14% were investigated to find an optimum ratio for the photocatalytic degradation of VOC in real indoor air concentrations. Most experiments were performed at a relative humidity of 0% in 20 L emission test chambers. Experiments at 40% relative humidity were done in a 1 m³ emission test chamber to determine potential byproducts. Degradation under UV LED light could be achieved for all three compounds with almost all tested catalyst samples up to more than 95%. Limonene had the highest degradation of the three selected volatile organic compounds under blue LED light with all investigated catalyst samples.

  17. Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities

    International Nuclear Information System (INIS)

    Choi, Young In; Jung, Hye Jin; Shin, Weon Gyu; Sohn, Youngku

    2015-01-01

    Graphical abstract: - Highlights: • Ag/ZnO hybrid materials were prepared by a ball-milling method. • Adsorption and photocatalytic dye degradation were tested for pure RhB under visible light. • Adsorption and photocatalytic dye degradation were tested for mixed dye (MO + RhB + MB) under visible light. • Fenton-like photocatalytic activity (H 2 O 2 addition effects) was examined. - Abstract: The hybridization of ZnO with Ag has been performed extensively to increase the efficiency of ZnO in various applications, including catalysis. In this study, a wet (w) and dry (d) ball-milling method was used to hybridize Ag with ZnO nanoparticles, and their physicochemical properties were examined. Visible light absorption was enhanced and the band gap was engineered by ball-milling and Ag hybridization. Their photocatalytic activities were tested with rhodamine B (RhB) and a mixed dye (methyl orange + RhB + methylene blue) under visible light irradiation. For pure RhB, the photocatalytic activity was decreased by ball-milling and was observed in the order of ZnO(d) < Ag/ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). For the degradation of RhB and methylene blue (MB) in the mixed dye (or the simulated real contaminated water), the photocatalytic activity was observed in the order of Ag/ZnO(d) < ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). When the photodegradation tested with H 2 O 2 addition, however, the Fenton-like photocatalytic activity was reversed and the ZnO(ref) showed the poorest activity for the degradation of RhB and methylene blue (MB). In the mixed dye over all the catalysts, methyl orange (MO) was degraded most rapidly. The relative degradation rates of RhB and MB were found to be dependent on the catalyst and reaction conditions.

  18. Weighting the influence of TiO{sub 2} anatase/brookite ratio in TiO{sub 2}–Ag porous nanocomposites on visible photocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, V. [Babes-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Baia, M., E-mail: monica.baia@phys.ubbcluj.ro [Babes-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Diamandescu, L. [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania); Pap, Zs. [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, Tisza Lajos krt. 103, H-6720 Szeged (Hungary); Vlaicu, A.M. [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania); Danciu, V. [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Baia, L. [Babes-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania)

    2013-08-15

    Nanocomposites based on TiO{sub 2} aerogel and Ag nanoparticles have been successfully obtained through different synthesis methods and their specific surface areas have been determined by N{sub 2} sorption (BET method). The photocatalytic potential for salicylic acid degradation has been evaluated. It was found that under visible light irradiation, all synthesized nanocomposites exhibit higher photocatalytic activity than the commercially available Aeroxide P25. By correlating the structural parameters with the photocatalytic performances, it has been found that the Ag nanoparticles and brookite phase presence alongside the anatase play important roles on the visible photocatalysts behavior. For the Ag containing samples with mixed anatase–brookite phases, it has been observed that the visible photocatalytic performance decreases with the increase in brookite crystalline phase content. On the other hand, the addition of Ag nanoparticles results, as expected, in a clear enhancement of the visible photocatalytic activity. - Graphical abstract: Display Omitted - Highlights: • Synthesis of composites based on TiO{sub 2} aerogel and Ag nanoparticles. • Existence of mixed crystalline structure consisting of brookite and anatase phases. • Composites visible photocatalytic activity reduces as brookite phase content raises. • Ag nanoparticles addition enhances the visible photocatalytic activity.

  19. Synthesis of belt-like BiOBr hierarchical nanostructure with high photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiping [National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100 (China); Liu, Jingyi; Hu, Tingxia [Environment Research Institute, Shandong University, Jinan 250100 (China); Du, Na; Song, Shue [Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100 (China); Hou, Wanguo, E-mail: wghou@sdu.edu.cn [Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100 (China)

    2016-05-15

    Highlights: • BiOBr hierarchical nanobelts (NBs) were solvothermally prepared. • NBs show higher specific surface area and photoabsorption than BiOBr nanosheets. • NBs exhibit higher photoactivity than the nanosheets. - Abstract: One-dimensional (1D) bismuth oxyhalide (BiOX) hierarchical nanostructures are always difficult to prepare. Herein, we report, for the first time, a simple synthesis of BiOBr nanobelts (NBs) via a facile solvothermal route, using bismuth subsalicylate as the template and bismuth source. The BiOBr nanobelts are composed of irregular single crystal nanoparticles with highly exposed (0 1 0) facets. Compared with the BiOBr nanosheets (NSs) with dominant exposed (0 0 1) facets, they exhibit higher photocatalytic activity toward degradation of Rhodamine B and Methylene Blue under visible light irradiation. The higher photocatalytic performance of BiOBr NBs arises from their larger specific surface area and higher photoabsorption capability. This study provides a simple route for synthesis of belt-like Bi-based hierarchical nanostructures.

  20. Photocatalytic performance of graphene/TiO{sub 2}-Ag composites on amaranth dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Roşu, Marcela-Corina, E-mail: marcela.rosu@itim-cj.ro; Socaci, Crina; Floare-Avram, Veronica; Borodi, Gheorghe; Pogăcean, Florina; Coroş, Maria; Măgeruşan, Lidia; Pruneanu, Stela

    2016-08-15

    Ternary nanocomposites containing TiO{sub 2}, silver and graphene with different reduction levels were prepared and used as photocatalysts for amaranth azo dye degradation, under UV and natural light exposure. The obtained materials were characterized by TEM, XRD, FTIR and UV-Vis spectroscopy, confirming the successful formation of the nanocomposites. HPLC analysis along with UV-Vis spectroscopy were employed to quantify the concentration of non-degraded dye in solution. The graphene/TiO{sub 2}-Ag nanocomposites proved to have remarkable photocatalytic activities for amaranth degradation under UV and solar irradiation (85.3–98% of dye has disappeared in the first 2 h). Also, significant removal efficiencies (between 40.5 and 71.8%) of photocatalysts, in day light conditions, were demonstrated. The best result for amaranth dye degradation was obtained with the reduced graphene/TiO{sub 2}-Ag catalyst (up to 99.9%). Based on the degradation products analysis, a photodegradation pathway of amaranth dye was also proposed. - Highlights: • Graphene/TiO{sub 2}-Ag composites were prepared by a combined chemical-thermal method. • The composites showed improved light-absorption characteristics. • A significant degradation performance of amaranth was obtained with these composites under UV and natural light exposure. • Graphene/TiO{sub 2}-Ag composites offer a high potential for various photocatalytic applications in pollutant removal processes.

  1. AgI/Ag3PO4 hybrids with highly efficient visible-light driven photocatalytic activity

    International Nuclear Information System (INIS)

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-01-01

    Highlights: • AgI/Ag 3 PO 4 hybrid was prepared via an in situ anion-exchange method. • AgI/Ag 3 PO 4 displays the excellent photocatalytic activity under visible light. • AgI/Ag 3 PO 4 readily transforms to be Ag@AgI/Ag 3 PO 4 system. • h + and O 2 ·− play the major role in the AO 7 decolorization over AgI/Ag 3 PO 4 . • The activity enhancement is ascribed to a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag 3 PO 4 hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag 3 PO 4 photocatalysts displayed the higher photocatalytic activity than pure Ag 3 PO 4 and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag 3 PO 4 with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag 3 PO 4 readily transformed to be Ag@AgI/Ag 3 PO 4 system while the photocatalytic activity of AgI/Ag 3 PO 4 remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h + and O 2 ·− play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag 3 PO 4 hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI, in which Ag nanoparticles act as the charge separation center

  2. Enhanced photocatalytic performance of KNbO3(100)/reduced graphene oxide nanocomposites investigated using first-principles calculations: RGO reductivity effect

    Science.gov (United States)

    Zhang, Pan; Shen, Yanqing; Wu, Wenjing; Li, Jun; Zhou, Zhongxiang

    2018-03-01

    Although a number of various reduced graphene oxide (RGO)-based nanomaterials with enhanced photocatalytic performance have recently been characterized, the effect of RGO reductivity on their performance is still not clear. Herein, KNbO3(100) surface modification with three RGO sheets of different reductivity is investigated using first-principles calculations, revealing that increasing RGO reductivity enhances the photocatalytic performance of KNbO3(100)/RGO nanocomposites. In contrast to CeO2/RGO nanocomposites, the O atoms of RGO inhibit the photoactivity of KNbO3/RGO nanocomposites by restraining the effect of inducing a red shift of the corresponding photocatalytic absorption spectra by C 2p states. Increased RGO reductivity extends its absorption edge to the visible light region of the optical absorption and also promotes charge transfer from the KNbO3(100) surface to RGO sheets, in contrast to the behavior observed for g-C3N4/RGO composites. Overall, this work provides a reasonable explanation of controversial experimental results obtained previously, paving the way to the development of highly efficient RGO-based photocatalysts and promoting further photocatalytic applications of KNbO3/RGO nanocomposites.

  3. Enhanced visible light photocatalytic activity of copper-doped titanium oxide–zinc oxide heterojunction for methyl orange degradation

    Energy Technology Data Exchange (ETDEWEB)

    Dorraj, Masoumeh, E-mail: masidor20@gmail.com [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Alizadeh, Mahdi [UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4 Wisma R& D, University of Malaya, Jalan Pantai Baharu, 59990 Kuala Lumpur (Malaysia); Sairi, Nor Asrina, E-mail: asrina@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Basirun, Wan Jefrey [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Goh, Boon Tong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Woi, Pei Meng; Alias, Yatimah [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2017-08-31

    Highlights: • The novel Cu-TiO{sub 2}/ZnO heterojunction nanocomposite was synthesized for the first time via a two-step process. • The Cu-TiO{sub 2}/ZnO heterostructured nanocomposite exhibited an enhanced visible-light-driven photocatalytic activity for MO degradation. • The heterostructured nanocomposite could be recycled during the degradation of MO in a three-cycle experiment with good stability. - Abstract: A novel Cu-doped TiO{sub 2} coupled with ZnO nanoparticles (Cu-TiO{sub 2}/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO{sub 2}/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectra and Brunauer–Emmett–Teller adsorption isotherm techniques. The Cu-TiO{sub 2}/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO{sub 2} and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO{sub 2}/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron−hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.

  4. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study

    Science.gov (United States)

    Zhao, Yu; Xu, Shiping; Sun, Xiang; Xu, Xing; Gao, Baoyu

    2018-04-01

    In this work, a nanocomposite of TiO2 nanoparticles coupled with sulfur-doped C3N4 (S-C3N4) laminated layer was successfully fabricated using a facile impregnation method and the nanocomposite exhibited superior photocatalytic activity in pollutant removal under visible light irradiation, compared to bare TiO2, g-C3N4 and binary C3N4-TiO2 nanocomposite. The enhanced photocatalytic activity was benefited from the efficient migration and transformation of electron-hole (e--h+) pairs, improved visible light absorption capability, and relatively large specific surface area induce by sulfur doping. Interestingly, the introduction of sulfur changes regulated the morphology of g-C3N4 leading to the formation of ultrathin g-C3N4 layer nanosheet assemblies and unique bar-like g-C3N4/TiO2 nanocomposite, which is beneficial for the outstanding performance of the product. In addition, trapping experiment was carried out to identify the main active species in the photocatalytic reaction over the S-C3N4/TiO2 photocatalyst, and functional mechanism of the composite was proposed. This work may provide new ideas for the fabrication and utilization of highly efficient photocatalyst with excellent visible light response in environmental purification applications.

  5. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst

    International Nuclear Information System (INIS)

    Chala, Sinaporn; Wetchakun, Khatcharin; Phanichphant, Sukon; Inceesungvorn, Burapat; Wetchakun, Natda

    2014-01-01

    Highlights: • Fe-loaded BiVO 4 particles were prepared by hydrothermal method. • Physicochemical properties played a significant role in photocatalytic process. • All Fe-loaded BiVO 4 samples showed higher photocatalytic activity than pure BiVO 4 . • The Fe 3+ ions may improve the separation of photogenerated electrons and holes. - Abstract: Pure BiVO 4 and nominal 0.5–5.0 mol% Fe-loaded BiVO 4 samples were synthesized by hydrothermal method. All samples were characterized in order to obtain the correlation between structure and photocatalytic properties by X-ray diffraction, Brunauer, Emmett and Teller, UV–vis diffuse reflectance spectrophotometry, photoluminescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-optical emission spectroscopy. The structure of all samples was single-phase monoclinic scheelite. The absorption spectrum of 5.0 mol% Fe-loaded BiVO 4 shifted to the visible region, suggesting the potential application of this material as a superior visible-light driven photocatalyst in comparison with pure BiVO 4 . Photocatalytic activities of all photocatalyst samples were examined by studying the degradation of methylene blue under visible light irradiation. The results clearly showed that Fe-loaded BiVO 4 sample exhibited remarkably higher activity than pure BiVO 4

  6. Insight into synergistically enhanced adsorption and visible light photocatalytic performance of Z-scheme heterojunction of SrTiO{sub 3}(La,Cr)-decorated WO{sub 3} nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin; Jiang, Junzhe; Jia, Yushuai, E-mail: ysjia@jxnu.edu.cn; Qiu, Jinmin; Xia, Tonglin; Zhang, Yuhong; Li, Yuqin; Chen, Xiangshu, E-mail: cxs66cn@jxnu.edu.cn

    2017-08-01

    Highlights: • Fabrication of SrTiO{sub 3}(La,Cr)/WO{sub 3} heterojunction with well-defined morphology. • Synergistic effect of adsorption and photocatalytic elimination for methylene blue. • Adsorption kinetics and isotherm were investigated in detail. • Negative zeta potential and large surface area result in high adsorption capacity. • A novel Z-scheme mechanism for the enhanced photocatalytic activity is proposed. - Abstract: The efficient treatment of dye wastewater has been a hot topic of environment field. The integration of adsorption and photocatalytic degradation via fabrication of bi-component heterojunction photocatalyst is considered as a facile and effective strategy to enhance the dye elimination efficiency. In this report, a Z-scheme heterojunction material, SrTiO{sub 3}(La,Cr)/WO{sub 3} with bifunction of adsorption and photocatalysis was successfully synthesized for efficient removal of methylene blue (MB) under visible light irradiation. The morphology and microstructure characterization demonstrates that the SrTiO{sub 3}(La,Cr) nanoparticles are uniformly decorated on the WO{sub 3} nanosheets, forming an intimate heterojunction interface. MB degradation results indicate that the removal efficiency by the synergistic adsorption-photocatalysis process is greatly improved compared to pure WO{sub 3} and SrTiO{sub 3}(La,Cr) with the adsorption and photocatalytic activity closely related to the composition of the material. The possible mechanism for the enhanced photocatalytic activity could be ascribed to the formation of a Z-scheme heterojunction system based on active species trapping experiments. Furthermore, the investigations of adsorption kinetics and isotherm show that the adsorption process follows pseudo-second-order kinetic model and Langmuir isotherm, respectively. Due to the synergistic advantages of negative zeta potential, large surface area and accelerated separation of photogenerated carriers driven by Z

  7. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light

    International Nuclear Information System (INIS)

    Papadimitriou, Vassileios C.; Stefanopoulos, Vassileios G.; Romanias, Manolis N.; Papagiannakopoulos, Panos; Sambani, Kyriaki; Tudose, Valentin; Kiriakidis, George

    2011-01-01

    Titanium dioxide (TiO 2 ) photocatalytic powder materials doped with various levels of manganese (Mn) were synthesized to be used as additives to wall painting in combating indoor and outdoor air pollution. The heterogeneous photocatalytic degradation of gaseous acetaldehyde (CH 3 CHO) on Mn–TiO 2 surfaces under ultraviolet and visible (UV/Vis) irradiation was investigated, by employing the Photochemical Static Reactor coupled with Fourier-Transformed Infrared spectroscopy (PSR/FTIR) technique. Experiments were performed by exposing acetaldehyde (∼ 400 Pa) and synthetic air mixtures (∼ 1.01 × 10 5 Pa total pressure) on un-doped TiO 2 and doped with various levels of Mn (0.1–33% mole percentage) under UV and visible irradiation at room temperature. Photoactivation was initiated using either UV or visible light sources with known emission spectra. Initially, the photo-activity of CH 3 CHO under the above light sources, and the physical adsorption of CH 3 CHO on Mn–TiO 2 samples in the absence of light were determined prior to the photocatalytic experiments. The photocatalytic loss of CH 3 CHO on un-doped TiO 2 and Mn–TiO 2 samples in the absence and presence of UV or visible irradiation was measured over a long time period (≈ 60 min), to evaluate their relative photocatalytic activity. The gaseous photocatalytic end products were also determined using absorption FTIR spectroscopy. Carbon dioxide (CO 2 ) was identified as the main photocatalysis product. It was found that 0.1% Mn–TiO 2 samples resulted in the highest photocatalytic loss of CH 3 CHO under visible irradiation. This efficiency was drastically diminished at higher levels of Mn doping (1–33%). The CO 2 yields were the highest for 0.1% Mn–TiO 2 samples under UV irradiation, in agreement with the observed highest CH 3 CHO decomposition rates. It was demonstrated that low-level (0.1%) doping of TiO 2 with Mn results in a significant increase of their photocatalytic activity in the visible

  8. Preparation of Fe-Doped TiO2 Nanotubes and Their Photocatalytic Activities under Visible Light

    Directory of Open Access Journals (Sweden)

    Honghui Teng

    2013-01-01

    Full Text Available Fe-doped TiO2 nanotubes (Fe-TNTs have been prepared by ultrasonic-assisted hydrothermal method. The structure and composition of the as-prepared TiO2 nanotubes were characterized by transmission electron microscopy, X-ray diffraction, and UV-Visible absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of MO under visible light. The UV-visible absorption spectra of the Fe-TNT showed a red shift and an enhancement of the absorption in the visible region compared to the pure TNT. The Fe-TNTs were provided with good photocatalytic activities and photostability and under visible light irradiation, and the optimum molar ratio of Ti : Fe was found to be 100 : 1 in our experiments.

  9. Efficient photocatalytic performance enhancement in Co-doped ZnO nanowires coupled with CuS nanoparticles

    Science.gov (United States)

    Li, Wei; Wang, Guojing; Feng, Yimeng; Li, Zhengcao

    2018-01-01

    In this research, a kind of highly efficient semiconductor photocatalyst was fabricated by depositing CuS nanoparticles uniformly on the surface of Co-doped ZnO nanowires. ZnO nanowires were synthesized by hydrothermal method and CuS nanoparticles were modified by successive ionic layer adsorption and reaction (SILAR). By conducting methyl orange (MO) degradation experiments under the illumination of visible light, the photocatalytic activity of Co-doped ZnO nanowires modified with CuS nanoparticles was found to be nearly three times active when compared to bare ZnO nanowires. Its superior photocatalytic performance has two main reasons. The doped Co2+ ions can inhibit the recombination of photo-generated electron-hole pairs and decrease the optical bandgap, while the p-n heterostructure can enhance the visible light absorption ability and promote the separation of photo-excited charge carriers. Furthermore, the effect of the amount of deposited CuS nanoparticles on the photocatalysis was also investigated. The photocatalytic efficiency firstly raised along with the increment of SILAR cycle times and reached a maximum at 10 cycles but then decreased as the cycle times continue to increase. This originates from that an excessive amount of CuS would not only cover the active reacting sites, but also serve as recombination centers. Overall, this new nanostructure is expected to work as an efficient photocatalyst.

  10. Enhanced visible light photocatalytic activity of copper-doped titanium oxide-zinc oxide heterojunction for methyl orange degradation

    Science.gov (United States)

    Dorraj, Masoumeh; Alizadeh, Mahdi; Sairi, Nor Asrina; Basirun, Wan Jefrey; Goh, Boon Tong; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    A novel Cu-doped TiO2 coupled with ZnO nanoparticles (Cu-TiO2/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO2/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflectance spectra and Brunauer-Emmett-Teller adsorption isotherm techniques. The Cu-TiO2/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO2 and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO2/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron-hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.

  11. Solvothermal modification of BiOCl nanosheets with Bi nanoparticles using ascorbic acid as reductant and the superoxide radicals dominated photocatalytic performance

    Science.gov (United States)

    Cui, Zhankui; Gao, Keke; Ge, Suxiang; Fa, Wenjun

    2017-11-01

    BiOCl nanosheets were solvothermally modified with Bi nanoparticles (NPs) using ascorbic acid as the reductant. The structures of Bi/BiOCl composites were characterized by XRD, Raman spectroscopy, FTIR spectroscopy and SEM. The light absorption properties were measured by UV-vis-NIR spectroscopy. The photocatalytic performances were evaluated by photodegrading methyl orange (MO) and the photocatalytic mechanism was investigated using trapping experiments and a fluorescent probe method. The results show that Bi NPs are uniformly distributed on the surfaces of BiOCl nanosheets and the modification amount of Bi NPs could be well controlled because of the mild property of ascorbic acid as reducing agent. The photocatalytic activities for the composites are improved obviously and the best photocatalytic performance is obtained when the weight ratio of Bi and BiOCl is1:10 and the photochemical reaction rate is 3.5 times that of pure BiOCl nanosheets and 19.7 times of Bi powders. The enhanced photocatalytic efficiency is ascribed to the favorable formation of dominant \\cdot O2- radicals caused by the increased photoinduced electrons from both Bi NPs and BiOCl nanosheets.

  12. Enhancement of acid treated g-C3N4sbnd Cu2O photocatalytic activity by PEG under visible light irradiation

    Science.gov (United States)

    Zuo, Shiyu; Xu, Haiming; Liao, Wei; Sun, Lei; Li, Qiang; Zan, Jie; Zhang, Binyang; Li, Dongya; Xia, Dongsheng

    2018-05-01

    In this study, g-C3N4sbnd Cu2O was successfully synthesized in the presence of PEG-400 surfactant via an acid treatment hydrothermal method and a high-temperature calcination method. The structures and properties of as-synthesized samples were characterized using a range of techniques, such as XPS, TEM, PL and BET. The g-C3N4sbnd Cu2O heterojunction exhibits the enhanced photocatalytic performance and high stability. It is revealed that the addition of PEG can promote the heterojunction effect of g-C3N4sbnd Cu2O, effectively improving the crystallinity and specific surface area of the photocatalyst, separation efficiency of photocarriers, and light absorption, thus enhancing the photocatalytic performance.

  13. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    Science.gov (United States)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  14. Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO2 for Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Fuchang Peng

    2017-02-01

    Full Text Available Mixed phase TiO2 nanoparticles with element doping by Sm and C were prepared via a facile sol-gel procedure. The UV-Vis light-diffuse reflectance spectroscopy analysis showed that the absorption region of co-doped TiO2 was shifted to the visible-light region, which was attributed to incorporation of samarium and carbon into the TiO2 lattice during high-temperature reaction. Samarium effectively decreased the anatase-rutile phase transformation. The grain size can be controlled by Sm doping to achieve a large specific surface area useful for the enhancement of photocatalytic activity. The photocatalytic activities under visible light irradiation were evaluated by photocatalytic degradation of methylene blue (MB. The degradation rate of MB over the Sm-C co-doped TiO2 sample was the best. Additionally, first-order apparent rate constants increased by about 4.3 times compared to that of commercial Degusssa P25 under the same experimental conditions. Using different types of scavengers, the results indicated that the electrons, holes, and •OH radicals are the main active species for the MB degradation. The high visible-light photocatalytic activity was attributed to low recombination of the photo-generated electrons and holes which originated from the synergistic effect of the co-doped ions and the heterostructure.

  15. Hierarchical architectures of ZnS–In2S3 solid solution onto TiO2 nanofibers with high visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Chengbin; Meng, Deshui; Li, Yue; Wang, Longlu; Liu, Yutang; Luo, Shenglian

    2015-01-01

    Graphical abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution onto TiO 2 nanofibers was fabricated. The hierarchical heterostructures exhibit high visible light photocatalytic activity and outstanding recycling performance. - Highlights: • Novel hierarchical heterostructure of TiO 2 @ZnS–In 2 S 3 solid solution. • Efficient inhibition of ZnS–In 2 S 3 solid solution aggregation. • High visible light photocatalytic activity. • Highly stable recycling performance. - Abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution nanostructures onto TiO 2 nanofibers (TiO 2 @ZnS–In 2 S 3 ) has been successfully fabricated by simple hydrothermal method. The ZnS–In 2 S 3 solid solution nanostructures exhibit a diversity of morphologies: nanosheet, nanorod and nanoparticle. The porous TiO 2 nanofiber templates effectively inhibit the aggregation growth of ZnS–In 2 S 3 solid solution. The formation of ZnS–In 2 S 3 solid solution is proved by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and the intimate contact between TiO 2 nanofibers and ZnS–In 2 S 3 solid solution favors fast transfer of photogenerated electrons. The trinary TiO 2 @ZnS–In 2 S 3 heterostructures exhibit high adsorption capacity and visible light photocatalytic activity for the degradation of rhodamine B dye (RhB), remarkably superior to pure TiO 2 nanofibers or binary structures (ZnS/TiO 2 nanofibers, In 2 S 3 /TiO 2 nanofibers and ZnS–In 2 S 3 solid solution). Under visible light irradiation the RhB photocatalytic degradation rate over TiO 2 @ZnS–In 2 S 3 heterostructures is about 16.7, 12.5, 6.3, 5.9, and 2.2 times that over pure TiO 2 nanofibers, ZnS nanoparticles, In 2 S 3 /TiO 2 nanofibers, ZnS/TiO 2 nanofibers, and ZnS-In 2 S 3 solid solution, respectively. Furthermore, the TiO 2 @ZnS–In 2 S 3 heterostructures show highly stable recycling performance

  16. A weak-light-responsive TiO2/g-C3N4 composite film: photocatalytic activity under low-intensity light irradiation.

    Science.gov (United States)

    Wang, Peifang; Guo, Xiang; Rao, Lei; Wang, Chao; Guo, Yong; Zhang, Lixin

    2018-05-10

    A TiO 2 /g-C 3 N 4 composite photocatalytic film was prepared by in situ synthesis method and its photocatalytic capability under weak-visible-light condition was studied. The co-precursor with different ratio of melamine and TiO 2 sol-gel precursor were treated using ultrasonic mixing, physical deposition, and co-sintering method to form the smooth, white-yellow, and compact TiO 2 /g-C 3 N 4 composite films. The prepared TiO 2 /g-C 3 N 4 materials were characterized by SEM, TEM, EDS, XRD, BET, VBXPS, and UV-vis diffuse reflectance spectra. The results of composite showed that TiO 2 and g-C 3 N 4 have close interfacial connections which are favorable to charge transfer between these two semiconductors with suitable band structure, g-C 3 N 4 retard the anatase-to-rutile phase transition of TiO 2 significantly, the specific surface area were increased with g-C 3 N 4 ratio raised. Under weak-light irradiation, composite films photocatalytic experiments exhibited RhB removal efficiency approaching 90% after three recycles. Powders suspension degradation experiments revealed the removal efficiency of TiO 2 /g-C 3 N 4 (90.8%) was higher than pure TiO 2 (52.1%) and slightly lower than pure g-C 3 N 4 (96.6%). By control experiment, the enhanced photocatalysis is ascribed to the combination of TiO 2 and g-C 3 N 4 , which not only produced thin films with greater stability but also formed heterojunctions that can be favorable to charge transfer between these two semiconductors with suitable band structure. This study presents the potential application of photocatalytic film in the wastewater treatment under weak-light situation.

  17. Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field

    Science.gov (United States)

    Zhang, L.; Ma, C. H.; Wang, J.; Li, S. G.; Li, Y.

    2014-12-01

    In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.

  18. MoS{sub 2}–GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong; Zhou, Yifeng, E-mail: yifengzhou@126.com; Nie, Wangyan; Chen, Pengpeng, E-mail: chenpp@ahu.edu.cn

    2015-12-01

    Graphical abstract: - Highlights: • The molybdenum disulfide–graphene oxide (MoS{sub 2}–GO) nanocomposite was synthesized via a one-step hydrothermal hydrogel method. • MoS{sub 2} and GO were composited fairly well in the obtained nanocomposites. • The electrons–hole pair recombination rate of MoS{sub 2} was greatly reduced via compositing with graphene. • The MoS{sub 2}–GO nanocomposite exhibited excellent photocatalytic performance for the degradation of methylene blue under solar light irradiation. - Abstract: In this work, molybdenum disulfide–graphene oxide (MoS{sub 2}–GO) composite hydrogel was prepared via a one-step hydrothermal method. The morphology and structure of the as-prepared hydrogels with different proportions of MoS{sub 2} and GO were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, electrochemical impedance spectra and UV–vis absorption spectroscopy. The photocatalytic performance of MoS{sub 2}–GO nanocomposites was studied toward the degradation of methylene blue (MB). Results showed that the MoS{sub 2}–GO nanocomposites exhibited improved photocatalytic activities in the degradation of MB with a maximum degradation rate of 99% under solar lights irradiation within 60 min. The synthesized MoS{sub 2}–GO composite hydrogel possesses great potential toward the development of newly synthesizable catalysts in the field of organic degradation in water.

  19. Enhancement of visible-light photocatalytic activity of silver and mesoporous carbon co-modified Bi2WO6

    International Nuclear Information System (INIS)

    Zhao, Qian; Gong, Ming; Liu, Wangping; Mao, Yulin; Le, Shukun; Ju, Shang; Long, Fei; Liu, Xiufang; Liu, Kai; Jiang, Tingshun

    2015-01-01

    Graphical abstract: - Highlights: • Silver and mesoporous carbon co-modified Bi 2 WO 6 (Ag/Bi 2 WO 6 /CMK-3) composite was prepared. • Photocatalytic activity of Bi 2 WO 6 was remarkably enhanced by co-modification of silver and mesoporous carbon. • The degradation rate of MB can reach ca. 95.1% under visible light irradiation. • The Ag/Bi 2 WO 6 /CMK-3 composite has good stability and potential application prospects. - Abstract: Ordered mesoporous carbon CMK-3 was prepared by hard template method using SBA-15 as template, sucrose as carbon source. Flower/sphere-like Bi 2 WO 6 and CMK-3/Bi 2 WO 6 photocatalysts were synthesized by hydrothermal method, and then Ag/Bi 2 WO 6 and Ag/Bi 2 WO 6 /CMK-3 composite photocatalysts were prepared via a photoreduction process. The samples were characterized by XRD, UV–vis, TEM (HR-TEM), SEM, N 2 physical adsorption and PL and their photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The results show that both incorporating of CMK-3 and Ag loading greatly improved the photocatalytic activity of Bi 2 WO 6 , and the content of CMK-3 and silver have an impact on the photocatalytic activity of Bi 2 WO 6 . The photocatalytic activity of Ag/Bi 2 WO 6 /CMK-3 photocatalyst is superior to the activities of CMK-3/Bi 2 WO 6 and Ag/Bi 2 WO 6 under comparable conditions, and Ag/Bi 2 WO 6 /CMK-3 photocatalyst has high stability and is easy to be recycled. Also, the mechanism for the enhancement of the photocatalytic activity of CMK-3 and Ag co-modified Bi 2 WO 6 was also investigated

  20. Probing Photocatalytic Characteristics of Sb-Doped TiO2 under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Lingjing Luo

    2014-01-01

    Full Text Available Sb-doped TiO2 nanoparticle with varied dopant concentrations was synthesized using titanium tetrachloride (TiCl4 and antimony chloride (SbCl3 as the precursors. The properties of Sb-doped TiO2 nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, fluorescence spectrophotometer, and Uv-vis spectrophotometer. The absorption edge of TiO2 nanoparticles could be extended to visible region after doping with antimony, in contrast to the UV absorption of pure TiO2. The results showed that the photocatalytic activity of Sb-doped TiO2 nanoparticles was much more active than pure TiO2. The 0.1% Sb-doped TiO2 nanoparticles demonstrated the best photocatalytic activity which was better than that of the Degussa P25 under visible light irradiation using terephthalic acid as fluorescent probe. The effects of Sb dopant on the photocatalytic activity and the involved mechanism were extensively investigated in this work as well.

  1. Incorporation of N–ZnO/CdS/Graphene oxide composite photocatalyst for enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Pengwei, E-mail: huopw1@163.com [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013 (China); Zhou, Mingjun; Tang, Yanfeng [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Liu, Xinlin [School of Energy & Power Engineering Jiangsu University Zhenjiang, 212013 (China); Ma, Changchang; Yu, Longbao [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Yan, Yongsheng, E-mail: yys@mail.ujs.edu.cn [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013 (China)

    2016-06-15

    N–ZnO/CdS/Graphene oxide (GO) composite photocatalysts have been successfully synthesized by hydrothermal method. The as-prepared composite photocatalysts were characterized by X-ray diffraction (XRD), Raman, scanning electron microscopy(SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FT-IR) spectra, UV–vis diffuse reflectance spectra (UV–vis DRS), thermogravimetry (TG) and photoluminescence (PL). The as-prepared photocatalysts exhibited strong visible light photocatalytic activity toward to degradation of antibiotics under ambient conditions. Particularly, the N–ZnO/CdS/GO composite photocatalysts showed the higher photocatalytic degradation rate (86%) of ciprofloxacin CIP under visible light irradiation than the pure photocatalysts. Compared with degradation of different antibiotics (tetracycline (TC), oxytetracycline hydrochloride (OTC-HCl) and levofloxacin (LEV)), the N–ZnO/CdS/GO composite photocatalysts also exhibited high photocatalytic activities. According to the experiments, the role of GO in the composite photocatalysts acted as an electron conductor, and also enhanced the separation rate of electrons and holes which greatly improved the photocatalytic activity. Lastly, the mechanism of enhanced photocatalytic degradation of CIP was also discussed. - Highlights: • N–ZnO/CdS/GO composite was synthesized by the hydrothermal processes. • N–ZnO/CdS composites prevent pure CdS or ZnO from photocorrosion. • N–ZnO/CdS/GO shows the remarkable photocatalytic activity and stability.

  2. Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity.

    Science.gov (United States)

    Zhao, Haixin; Cui, Shu; Yang, Lan; Li, Guodong; Li, Nan; Li, Xiaotian

    2018-02-15

    Photocatalysts with a hierarchically porous structure have attracted considerable attention owing to their wide pore size distribution and high surface area, which enhance the efficiency of transporting species to active sites. In this study, hierarchically meso-macroporous TiO 2 photocatalysts decorated with highly dispersed CdS nanoparticles were synthesized via hydrolysis, followed by a hydrothermal treatment. The textural mesopores and interconnected pore framework provided more accessible active sites and efficient mass transport for the photocatalytic process. The light collection efficiency was enhanced because of multiple scattering of incident light in the macropores. Moreover, the formation of a heterojunction between the CdS and TiO 2 nanoparticles extended the photoresponse of TiO 2 to the visible-light range and enhanced the charge separation efficiency. Therefore, the hierarchically meso-macroporous TiO 2 /CdS photocatalysts exhibited excellent photocatalytic activity for the degradation of rhodaming B under visible-light irradiation. Trapping experiments demonstrated that superoxide radicals (O 2 - ) and hydroxyl radicals (OH) were the main active species in photocatalysis. A reasonable photocatalytic mechanism of TiO 2 /CdS heterojunction photocatalysts was also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Bi2WO6 nanoflowers: An efficient visible light photocatalytic activity for ceftriaxone sodium degradation

    Science.gov (United States)

    Zhao, Yanyan; Wang, Yongbo; Liu, Enzhou; Fan, Jun; Hu, Xiaoyun

    2018-04-01

    The morphology-controlled synthesis of nano-structure photocatalyst have leaded a new possibility to improve their physical and chemical properties. Herein, Bi2WO6 nanocrystals (BWO) with nano-flower, nano plates, knot shape, rod like and irregular morphologies have been successfully synthesized through a highly facile hydrothermal process by simply adjusting pH values, reactive solvents and temperature. Photocatalytic activity of the as-prepared samples were evaluated by degradation of Ceftriaxone sodium under visible light irradiation (λ > 420 nm), the results indicated that all the BWO samples exhibit morphology-associated photocatalytic activity, and the 3D flowerlike-structure of BWO composed of well-ordered nano plates (BWO-D-5) displayed the outstanding photocatalytic activity. Through getting insight into the mechanism, h+ and rad O2- play major roles compared with rad OH in photocatalytic degradation process. The possible pathway of Ceftriaxone sodium and the intermediates were proposed to better understand the reaction process. Moreover, this work not only provides an example of morphology-dependent photocatalytic activity of BWO but also provides an illustrative example for removing organic pollutant molecules according to practical requirements.

  4. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation

    Science.gov (United States)

    Wang, Yanyun; Zhao, Shuo; Zhang, Yiwei; Fang, Jiasheng; Zhou, Yuming; Yuan, Shenhao; Zhang, Chao; Chen, Wenxia

    2018-05-01

    Graphite carbon nitride (g-C3N4), as a promising low cost, visible light driven conjugated polymer semiconductor photocatalyst, has attracted wide attentions from researchers. However, low light absorption efficiency and inadequate charge separation limit the potential applications of g-C3N4. This paper exhibits K-doped g-C3N4 prepared by a facile thermal polymerization with KBr as the K source. The experiments of photocatalytic hydrogen evolution demonstrate that KBr content strongly affects the activity of the catalyst. XRD, FT-IR, XPS, SEM, TEM, UV-vis diffuse reflectance spectra, photoluminescence (PL) characterization methods are used to study the effects of potassium on the catalyst performance. The results find that K-modified g-C3N4 has a narrower band gap and enhanced light harvesting properties. Moreover, the photocatalytic hydrogen evolution rate (HER) of the optimized K-doped g-C3N4 nanosheets (10 wt % KBr) reaches 1337.2 μmol g-1h-1, which is about 5.6 times in comparison with that of pure g-C3N4 (239.8 μmol g-1h-1). The doping of the potassium may increase the π-conjugated systems and accelerate the electron transport rate, then improve the photocatalytic properties. Based on the results of the analysis, a possible mechanism is proposed.

  5. Rational construction of Z-scheme Ag_2CrO_4/g-C_3N_4 composites with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Luo, Jin; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao

    2016-01-01

    Highlights: • Novel visible-light driven Ag_2CrO_4/g-C_3N_4 composites were synthesized. • Ag_2CrO_4/g-C_3N_4 exhibited enhanced visible-light photocatalytic activity. • The reasons for the enhanced photocatalytic activity were revealed. - Abstract: Novel visible-light driven Z-scheme Ag_2CrO_4/g-C_3N_4 composites with different contents of Ag_2CrO_4 were fabricated by a facile chemical precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy and photoelectrochemical measurements. Compared with individual g-C_3N_4 and Ag_2CrO_4, the Ag_2CrO_4/g-C_3N_4 composites displayed much larger photocatalytic activities for the photocatalytic degradation of methyl orange (MO) solution at room temperature under visible light irradiation (λ > 420 nm). Importantly, the optimum photodegradation rate constant of the Ag_2CrO_4/g-C_3N_4 composite at a theoretical weight content of 8.0% Ag_2CrO_4 for the photodegradation of MO was 0.0068 min"−"1, which was 5.7 and 4.3 times higher than that of pure g-C_3N_4 and Ag_2CrO_4, respectively. Such enormous enhancement in photocatalytic performance was predominantly ascribed to the efficient separation and transfer of photogenerated electrons and holes at the Ag_2CrO_4/g-C_3N_4 interface imparted through the Z-scheme electron transfer. Furthermore, radical trap experiments depicted that both the holes and superoxide radical anions were thought to dominate oxidative species of the Ag_2CrO_4/g-C_3N_4 composite for MO degradation under visible light irradiation. Ultimately, a tentative Z-scheme photodegradation mechanism was proposed. This work may be useful for the rational design of new types of Z-scheme photocatalysts and provide some illuminate insights into the Z-scheme transfer mechanism for application in energy

  6. Effect of the structure distortion on the high photocatalytic performance of C{sub 60}/g-C{sub 3}N{sub 4} composite

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojuan; Li, Xinru; Li, Mengmeng; Ma, Xiangchao; Yu, Lin, E-mail: yu-lin@sdu.edu.cn; Dai, Ying, E-mail: daiy60@sina.com

    2017-08-31

    Highlights: • The adsorption of C{sub 60} can induce an irreversible structure distortion for g-C{sub 3}N{sub 4} from flat to wrinkle. • The structure distortion of g-C{sub 3}N{sub 4} plays a crucial role in enhancing photocatalytic performances. • Stability, optical absorption and band edge all have positive correlations with wrinkle degree for g-C{sub 3}N{sub 4} monolayers. - Abstract: C{sub 60}/g-C{sub 3}N{sub 4} composite was reported experimentally to be of high photocatalytic activity in degrading organics. To investigate the underlying mechanism of high photocatalytic performance, the structural and electronic properties of g-C{sub 3}N{sub 4} monolayers with adsorbing and removing fullerene C{sub 60} are studied by means of density functional theory calculations. After 25 possible configurations examination, it is found that C{sub 60} prefers to stay upon the “junction nitrogen” with the carbon atom of fullerene being nearest to monolayers. Correspondingly, a type-I band alignment appears. Our results further demonstrate that the adsorption of C{sub 60} can lead to an irreversible structure distortion for g-C{sub 3}N{sub 4} from flat to wrinkle, which plays a crucial role in improving photocatalytic performance other than the separation of carriers at interface due to the formation of type-II heterojunctions as previous report. Compared to flat one, the light absorption of wrinkled structure shows augmented, the valence band maximum shifts towards lower position along with a stronger photo-oxidation capability. Interestingly, the results indicate that the energy, light absorption and band edge all have a particular relationship with wrinkle degree. The work presented here can be helpful to understand the mechanism behind the better photocatalytic performance for C{sub 60} modified g-C{sub 3}N{sub 4}.

  7. Visible light-responded C, N and S co-doped anatase TiO{sub 2} for photocatalytic reduction of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Lei, X.F., E-mail: leixuefei69@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Xue, X.X.; Yang, H. [Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Chen, C.; Li, X.; Pei, J.X.; Niu, M.C.; Yang, Y.T.; Gao, X.Y. [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2015-10-15

    The (C, N and S) co-doped TiO{sub 2} (TH-TiO{sub 2}) samples were synthesized by a sol-gel method calcined at 500 °C, employing butyl titanate as the titanium source and thiourea as the dopant. The structures of TH-TiO{sub 2} samples were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS), photoluminescence (PL) spectroscopy, Thermo gravimetry and differential thermal analysis (TG-DTA), Scanning electron microscopy (SEM) and nitrogen adsorption–desorption isotherms. The photocatalytic activities were checked through the photocatalytic reduction of Cr(VI) as a model compound under visible light irradiation. The results showed that the thiourea content played an important role on the microstructure and photocatalytic activity of the samples. According to XPS results, (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. TH-TiO{sub 2} samples with thiourea: Ti molar ratio of 1.5 exhibits higher photocatalytic activity than that of the other samples under visible light irradiation, which can be attributed to the synergic effect of the pure anatase structure, the higher light absorption characteristics in visible regions, separation efficiency of electron–hole pairs, the specific surface area and the optimum (C, N and S) content. - Graphical abstract: (C, N and S) co-doped TiO{sub 2} samples show good photocatalytic activity for Cr (VI) reduction under visible light irradiation. - Highlights: • (C, N and S) co-doping in TH-TiO{sub 2} samples can promote the formation of the pure anatase structure. • (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. • The band gap energy of TH-TiO{sub 2} samples reduced after (C, N and S) co-doping. • (C, N and S) co-doped TiO{sub 2} samples were effective for the photocatalytic reduction of Cr(VI) under visible light

  8. Enhanced photocatalytic performances and magnetic recovery capacity of visible-light-driven Z-scheme ZnFe2O4/AgBr/Ag photocatalyst

    Science.gov (United States)

    He, Jie; Cheng, Yahui; Wang, Tianzhao; Feng, Deqiang; Zheng, Lingcheng; Shao, Dawei; Wang, Weichao; Wang, Weihua; Lu, Feng; Dong, Hong; Zheng, Rongkun; Liu, Hui

    2018-05-01

    High efficiency, high stability and easy recovery are three key factors for practical photocatalysts. Z-scheme heterostructure is one of the most promising photocatalytic systems to meet all above requirements. However, efficient Z-scheme photocatalysts which could absorb visible light are still few and difficult to implement at present. In this work, the composite photocatalysts ZnFe2O4/AgBr/Ag were prepared through a two-step method. A ∼92% photodegradation rate on methyl orange was observed within 30 min under visible light, which is much better than that of individual ZnFe2O4 or AgBr/Ag. The stability was also greatly improved compared with AgBr/Ag. The increased performance is resulted from the suitable band alignment of ZnFe2O4 and AgBr, and it is defined as Z-scheme mechanism which was demonstrated by detecting active species and electrochemical impedance spectroscopy. Besides, ZnFe2O4/AgBr/Ag is ferromagnetic and can be recycled by magnet. These results show that ZnFe2O4/AgBr/Ag is a potential magnetically recyclable photocatalyst which can be driven by visible light.

  9. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO{sub 3} nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zhen-dong [Department of Physics, Tsinghua University, Beijing 100084 (China); Wang, Jia-jun [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China); Wang, Liang, E-mail: wangl@shu.edu.cn [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444 (China); Yang, Xiong-yu; Xu, Gang [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China); Tang, Liang, E-mail: tang1liang@shu.edu.cn [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China)

    2016-07-15

    Highlights: • A novel heterojunction photocatalyst, GQD/AgVO{sub 3} was prepared. • The morphology of GQD/AgVO{sub 3} was well characterized. • Ibuprofen was easily decomposed using GQD/AgVO{sub 3} under visible-light irradiation. • The degradation pathway of ibuprofen was also suggested. - Abstract: Single crystalline, non-toxicity, and long-term stability graphene quantum dots (GQDs) were modified onto the AgVO{sub 3} nanoribbons by a facile hydrothermal and sintering technique which constructs a unique heterojunction photocatalyst. Characterization results indicate that GQDs are well dispersed on the surface of AgVO{sub 3} nanoribbons and GQD/AgVO{sub 3} heterojunctions are formed, which can greatly promote the separation efficiency of photogenerated electron-hole pairs under visible light irradiation. By taking advantage of this feature, the GQD/AgVO{sub 3} heterojunctions exhibit considerable improvement on the photocatalytic activities for the degradation of ibuprofen (IBP) under visible light irradiation as compared to pure AgVO{sub 3}. The photocatalytic activity of GQD/AgVO{sub 3} heterojunctions is relevant with GQD ratio and the optimal activity is obtained at 3 wt% with the highest separation efficiency of photogenerated electron-hole pairs. Integrating the physicochemical and photocatalytic properties, the factors controlling the photocatalytic activity of GQD/AgVO{sub 3} heterojunctions are discussed in detail. Moreover, potential photocatalytic degradation mechanisms of IBP via GQD/AgVO{sub 3} heterojunctions under visible light are proposed.

  10. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electronics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Hu, Yanchun [College of Physics & Electronics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Zhang, Zhuxia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); Jia, Husheng [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China)

    2015-11-15

    Graphical abstract: Ag nanoparticles decorated ZnO microspheres heterostructural composites were fabricated via a two-step chemical method, and present enhanced UV and visible light photocatalytic activity, which ascribed to the formation of Schottky barriers in the regions between Ag-NPs and ZnO-MSs and effective electron transfer from plasmon-excited Ag(0) nanoparticles to ZnO-MSs by strong localization of surface plasmonic resonance. - Highlights: • Ag/ZnO microspheres heterostructural composites were fabricated via a two-step chemical method. • Ag/ZnO composites exhibits enhanced visible light and UV light photocatalytic activity. • The UV and visible-light photocatalytic activity sequences are different for Ag/ZnO composites with the increase of Ag content. • The enhanced UV and visible light photocatalytic activity could be attributed to the formation of the Schottky barriers and surface plasmon resonance. - Abstract: Ag nanoparticles (Ag-NPs) decorated ZnO microspheres (ZnO-MSs) heterostructural composites were fabricated via a two-step chemical method. The ZnO-MSs with the diameter about 700 nm was initially prepared by ultrasonic technology. Subsequently, Ag-NPs with a diameter of 20–50 nm were anchored onto the surface of the as-prepared ZnO-MSs by a microwave polyol process. The morphology, structural and optical properties of the as-synthesized materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–visible absorption spectroscopy, and photoluminescence spectroscopy. The results show that the surface plasmon absorption band of Ag/ZnO composites is distinctly broadened and the PL intensity of Ag/ZnO heterostructural composites varies with the increase of Ag loading. The photocatalytic activity of the Ag/ZnO composites were evaluated by the degradation of rhodamine B (Rh

  11. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation

    International Nuclear Information System (INIS)

    Liu, Hairui; Hu, Yanchun; Zhang, Zhuxia; Liu, Xuguang; Jia, Husheng; Xu, Bingshe

    2015-01-01

    Graphical abstract: Ag nanoparticles decorated ZnO microspheres heterostructural composites were fabricated via a two-step chemical method, and present enhanced UV and visible light photocatalytic activity, which ascribed to the formation of Schottky barriers in the regions between Ag-NPs and ZnO-MSs and effective electron transfer from plasmon-excited Ag(0) nanoparticles to ZnO-MSs by strong localization of surface plasmonic resonance. - Highlights: • Ag/ZnO microspheres heterostructural composites were fabricated via a two-step chemical method. • Ag/ZnO composites exhibits enhanced visible light and UV light photocatalytic activity. • The UV and visible-light photocatalytic activity sequences are different for Ag/ZnO composites with the increase of Ag content. • The enhanced UV and visible light photocatalytic activity could be attributed to the formation of the Schottky barriers and surface plasmon resonance. - Abstract: Ag nanoparticles (Ag-NPs) decorated ZnO microspheres (ZnO-MSs) heterostructural composites were fabricated via a two-step chemical method. The ZnO-MSs with the diameter about 700 nm was initially prepared by ultrasonic technology. Subsequently, Ag-NPs with a diameter of 20–50 nm were anchored onto the surface of the as-prepared ZnO-MSs by a microwave polyol process. The morphology, structural and optical properties of the as-synthesized materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–visible absorption spectroscopy, and photoluminescence spectroscopy. The results show that the surface plasmon absorption band of Ag/ZnO composites is distinctly broadened and the PL intensity of Ag/ZnO heterostructural composites varies with the increase of Ag loading. The photocatalytic activity of the Ag/ZnO composites were evaluated by the degradation of rhodamine B (Rh

  12. Continuous Flow Science in an Undergraduate Teaching Laboratory: Photocatalytic Thiol-Ene Reaction Using Visible Light

    Science.gov (United States)

    Santandrea, Jeffrey; Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, photocatalytic thiol-ene reaction using visible-light irradiation is described that allows students to explore concepts of green chemistry, photochemistry, photocatalysis, and continuous flow chemistry.

  13. Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles

    Science.gov (United States)

    Pattnaik, Sambhu Prasad; Behera, Arjun; Martha, Satyabadi; Acharya, Rashmi; Parida, Kulamani

    2018-01-01

    Bismuth ferrite (BFO) nanoparticles prepared by solid state reaction route were characterized by various characterization techniques such as XRD, FESEM, HRTEM, UV-Vis DRS, PL etc., and their photocatalytic activities were evaluated by decolorization of aqueous solution of Congo red (CR) under solar light. The photocatalytic activity of BFO was increased by increasing the preparation temperature from 350 to 500 °C and then decreased with rise in temperature. The results of electrochemical measurements such as linear sweep voltammetry (LSV), electrochemical impedence (EIS), and Mott-Schottky analysis of BFO nanoparticles corroborated the findings of their photocatalytic activity. The enhanced photocatalytic response of the sample prepared at 500 °C is attributed to its smallest band gap, minimum crystallite size (30 nm), efficient separation, and lowest possible recombination of photo-generated charge carriers. The effects of amount of nano-BFO, irradiation time, initial CR concentration, and BFO calcination temperature on the decolorization of CR were examined. It was observed that 1 g/L nano-BFO calcined at 500 °C can decolorize up to 77% a 10-ppm CR dye solution under solar irradiation for 60 min. The studies included scavenger tests for identification of reactive species and a possible mechanism of dye decolorization.

  14. Facile synthesis of flake-like TiO{sub 2}/C nano-composites for photocatalytic H{sub 2} evolution under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai, E-mail: suxintai827@163.com

    2017-01-15

    Highlights: • TiO{sub 2}/C nano-flakes were prepared by a facile phase-transfer strategy combined with salt-template calcination method. • The sub–10 nm of TiO{sub 2} NPs were uniformly dispersed on the carbon flakes. • The TiO{sub 2}/C nano-flakes showed a superior visible-light photocatalytic activity for H{sub 2} production. - Abstract: The production of H{sub 2} by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H{sub 2} by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO{sub 2}/C nano-flakes, which was used as an efficient visible-light photocatalyst for H{sub 2} evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO{sub 2} nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m{sup 2} g{sup −1} and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H{sub 2} production rate of 57.2 μmol h{sup −1} under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO{sub 2} and carbon in this hybrid catalyst. This work highlights the potential of TiO{sub 2}/C nano-flakes in the field of photocatalytic H{sub 2} evolution under visible-light irradiation.

  15. Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction

    Science.gov (United States)

    Zhang, Ying; Zhou, Jiabin; Cai, Weiquan; Zhou, Jun; Li, Zhen

    2018-02-01

    In this study, hierarchical double-shelled NiO/ZnO hollow spheres heterojunction were prepared by calcination of the metallic organic frameworks (MOFs) as a sacrificial template in air via a one-step solvothermal method. Additionally, the photocatalytic activity of the as-prepared samples for the degradation of Rhodamine B (RhB) under UV-vis light irradiation were also investigated. NiO/ZnO microsphere comprised a core and a shell with unique hierarchically porous structure. The photocatalytic results showed that NiO/ZnO hollow spheres exhibited excellent catalytic activity for RhB degradation, causing complete decomposition of RhB (200 mL of 10 g/L) under UV-vis light irradiation within 3 h. Furthermore, the degradation pathway was proposed on the basis of the intermediates during the photodegradation process using liquid chromatography analysis coupled with mass spectroscopy (LC-MS). The improvement in photocatalytic performance could be attributed to the p-n heterojunction in the NiO/ZnO hollow spheres with hierarchically porous structure and the strong double-shell binding interaction, which enhances adsorption of the dye molecules on the catalyst surface and facilitates the electron/hole transfer within the framework. The degradation mechanism of pollutant is ascribed to the hydroxyl radicals (rad OH), which is the main oxidative species for the photocatalytic degradation of RhB. This work provides a facile and effective approach for the fabrication of porous metal oxides heterojunction with high photocatalytic activity and thus can be potentially used in the environmental purification.

  16. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles

    Science.gov (United States)

    Meng, Xiangchao; Li, Zizhen; Chen, Jie; Xie, Hongwei; Zhang, Zisheng

    2018-03-01

    Palladium nanoparticles well-dispersed on BiOBr surfaces were successfully prepared via a two-step process, namely hydrothermal synthesis of BiOBr followed by photodeposition of palladium. Surface-exposed palladium nanoparticles may improve the harvesting capacity of visible light photons via the surface plasmonic resonance effect to produce extra electrons. Palladium is an excellent electron acceptor, and therefore favours the separation of photogenerated electron/hole pairs. As a result, palladium significantly improves the photocatalytic activity of BiOBr in the removal of organic pollutants (phenol) under visible light irradiation. In addition to as-prepared samples which were comprehensively characterized, the mechanism for the enhancement via the deposition of palladium nanoparticles was also proposed based on results. This work may serve as solid evidence to confirm that surface-deposited palladium nanoparticles are capable of improving photocatalytic activity, and that photodeposition may be an effective approach to load metal nanoparticles onto a surface.

  17. Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation

    International Nuclear Information System (INIS)

    Yuan, Wenhui; Liu, Xiaoxia; Li, Li

    2014-01-01

    Graphical abstract: Hydrothermal synthesis method was applied for preparation of cubic-like CuCr 2 O 4 spinel nanoparticles without template. The synthesized cubic-like CuCr 2 O 4 shows excellent photocatalytic activity for degradation of RhB and MB cationic dyes but not for MO anionic dye in the presence of H 2 O 2 under visible light irradiation. - Highlights: • The cubic-like CuCr 2 O 4 spinel nanoparticles were successfully synthesized via the hydrothermal synthesis method. • The calcination temperature has a great influence on the morphology, particle size and photocatalytic activity of CuCr 2 O 4 . • The pH at the point of zero charge (pH pzc ) of the CuCr 2 O 4 calcined at 600 °C is about 4.52. • The cubic-like CuCr 2 O 4 calcined at 600 °C exhibits excellent photocatalytic activity for RhB and MB in the presence of H 2 O 2 under visible-light irradiation. - Abstract: CuCr 2 O 4 nanoparticles with cubic-like morphology were prepared via hydrothermal synthesis method without template. The CuCr 2 O 4 samples were characterized by thermogravimetry and differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS) and Zeta potentials, respectively. The results indicated that cubic-like CuCr 2 O 4 could be successfully synthesized by calcining the precursor at 600 °C, and the calcination temperature greatly influenced the morphology and optical performance of CuCr 2 O 4 . The pH at the point of zero charge (pH pzc ) of the CuCr 2 O 4 calcined at 600 °C was about 4.52. The photocatalytic activity of CuCr 2 O 4 was evaluated for degradation of rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) in the presence of H 2 O 2 under visible light irradiation and the effects of the calcination temperature, dosage of photocatalyst, etc., on photocatalytic activity were studied in detail. The photocatalytic results

  18. Facile synthesis of Bi/BiOCl composite with selective photocatalytic properties

    International Nuclear Information System (INIS)

    Chen, Dongling; Zhang, Min; Lu, Qiuju; Chen, Junfang; Liu, Bitao; Wang, Zhaofeng

    2015-01-01

    This paper presents a novel and facile method to fabricate Bi/BiOCl composites with dominant (001) facets in situ via a microwave reduction route. Different characterization techniques, including X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission scanning electron microscopy (TEM), UV–vis diffuse reflectance spectrometry (DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance spectroscopy (ESR), cathodoluminescence spectrum (CL), and lifetime, have been employed to investigate the structure, optical and electrical properties of the Bi/BiOCl composites. The experimental results show that the introduction of Bi particles can efficiently enhance the photocatalytic performance of BiOCl for the degradation of several dyes under ultraviolet (UV) light irradiation, especially for negative charged methyl orange (MO). Unlike the UV photocatalytic performance, such Bi/BiOCl composite shows higher degradation efficiency towards rhodamine B (RhB) than MO and methylene blue (MB) under visible light irradiation. This special photocatalytic performance can be ascribed to the synergistic effect between oxygen vacancies and Bi particles. This work provides new insights about the photodegradation mechanisms of MO, MB and RhB under UV and visible light irradiation, which would be helpful to guide the selection of an appropriate catalyst for other pollutants. - Highlights: • Bi/BiOCl composites were synthesized via a microwave reduction. • Tunable selectivity photocatalytic activity can be achieved. • Photodegradation mechanism under UV and visible light were proposed

  19. Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO2(B)/anatase mixed-phase nanowires

    International Nuclear Information System (INIS)

    Dai, Jun; Yang, Juan; Wang, Xiaohan; Zhang, Lei; Li, Yingjie

    2015-01-01

    Graphical abstract: Visible-light photocatalytic activities for selective oxidation of amines into imines are greatly affected by the crystal structure of TiO 2 catalysts and mixed-phase TiO 2 (B)/anatase possess higher photoactivity because of the moderate adsorption ability and efficient charge separation. - Highlights: • Visible-light photocatalytic oxidation of amines to imines is studied over different TiO 2 . • Photocatalytic activities are greatly affected by the crystal structure of TiO 2 nanowires. • Mixed-phase TiO 2 (B)/anatase exhibits higher catalytic activity than single-phase TiO 2 . • Enhanced activity is ascribed to efficient adsorption ability and interfacial charge separation. • Photoinduced charge transfer mechanism on TiO 2 (B)/anatase catalysts is also proposed. - Abstract: Wirelike catalysts of mixed-phase TiO 2 (B)/anatase TiO 2 , bare anatase TiO 2 and TiO 2 (B) are synthesized via calcining precursor hydrogen titanate obtained from hydrothermal process at different temperatures between 450 and 700 °C. Under visible light irradiation, mixed-phase TiO 2 (B)/anatase TiO 2 catalysts exhibit enhanced photocatalytic activity in comparison with pure TiO 2 (B) and anatase TiO 2 toward selective oxidation of benzylamines into imines and the highest photocatalytic activity is achieved by TW-550 sample consisting of 65% TiO 2 (B) and 35% anatase. The difference in photocatalytic activities of TiO 2 samples can be attributed to the different adsorption abilities resulted from their crystal structures and interfacial charge separation driven by surface-phase junctions between TiO 2 (B) and anatase TiO 2 . Moreover, the photoinduced charge transfer mechanism of surface complex is also proposed over mixed-phase TiO 2 (B)/anatase TiO 2 catalysts. Advantages of this photocatalytic system include efficient utilization of solar light, general suitability to amines, reusability and facile separation of nanowires catalysts

  20. Hierarchical Bi{sub 2}WO{sub 6} architectures decorated with Pd nanoparticles for enhanced visible-light-driven photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinniu; Chen, Tianhua [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062 (China); Lu, Hongbing, E-mail: hblu@snnu.edu.cn [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062 (China); Yang, Zhibo; Yin, Feng; Gao, Jianzhi; Liu, Qianru [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062 (China); Tu, Yafang [Department of Physics, Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056 (China)

    2017-05-15

    Highlights: • A new kind of Pd decorated Bi{sub 2}WO{sub 6} hierarchical microarchitecture was synthesized. • Pd nanoparticles remarkably improved the photocatalytic activity of Bi{sub 2}WO{sub 6}. • The photo-generated holes and ·O{sub 2}{sup −} played a crucial role in the degradation of RhB. • The photocatalytic enhancement mechanism of the Pd-Bi{sub 2}WO{sub 6} composites was proposed. - Abstract: A new kind of hierarchical Pd-Bi{sub 2}WO{sub 6} architecture decorated with different molar ratios of Pd to Bi, has been fabricated by a hydrothermal process, followed by a chemical deposition method. The photocatalytic activities of the pure Bi{sub 2}WO{sub 6} and Pd-Bi{sub 2}WO{sub 6} nanocatalyst were examined in the degradation of Rhodamine B (RhB) dyes and phenol under visible light. The photocatalytic results showed that the Pd-Bi{sub 2}WO{sub 6} nanocomposites possessed observably enhanced photocatalytic activities. Particularly, the 2.0% Pd loaded Bi{sub 2}WO{sub 6} had the highest photocatalytic activity, exhibiting a nearly complete degradation of 30 mg/L RhB and 10 mg/L phenol within only 50 and 60 min, respectively. In addition, the trapping experiment results indicated that the photo-generated holes (h{sup +}) and ·O{sub 2}{sup −} played a crucial role in the degradation of RhB. According to the experimental results, the photocatalytic degradation mechanism of Pd-Bi{sub 2}WO{sub 6} was also proposed. The enhanced photocatalytic activities were ascribed to the combined effects of the highly efficient separation of electrons and holes, improved visible light utilization and increased BET specific surface areas of the Pd-Bi{sub 2}WO{sub 6} nanocomposites.

  1. Fabrication of ZnAl mixed metal-oxides/RGO nanohybrid composites with enhanced photocatalytic activity under visible light

    Science.gov (United States)

    Ni, Jie; Xue, Jinjuan; Shen, Jing; He, Guangyu; Chen, Haiqun

    2018-05-01

    The ZnAl mixed metal-oxides (MMOs)/graphene nanocomposites were successfully fabricated by a facile hydrothermal method combined with a calcination process. The thermal treatment enables simultaneously the formation of ZnO/ZnAl2O4 heterogeneous structure, which are uniformly decorated on the surface of graphene, accompanying with the reduction of graphene oxide. The as-prepared heterostructure photocatalysts were well characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (DRS) to conduct investigations into the phase structures, microstructure and optical capability. The ZnAl MMO/RGO20 composite displayed favorable adsorption property and photo-degradation efficiency for Ciprofloxacin (CIP) aqueous solution under visible light. The photo-degradation efficiency of the as-prepared ZnAl MMO/RGO20 was 3.0 and even 4.6 times higher than that of ZnAl MMO and pure ZnAl LDH, respectively. The improvement of photocatalytic performance is ascribed to the synergistic effect of heterogeneous structure coupled with graphene, which realizes efficient charge separation efficiency, enlarged visible light adsorption range, and chemical stability of hybrid nanocomposite. The results of EIS, PL and photocurrent response also explained the best performance of ZnAl MMO/RGO20 nanocomposite. Besides, the mechanism of ZnAl MMO/RGO20 photocatalytic system was proposed and analyzed in detail.

  2. Alkaline hydrogen peroxide treatment for TiO{sub 2} nanoparticles with superior water-dispersibility and visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chung-Yi; Tu, Kuan-Ju; Lo, Yu-Shiu [Department of Biomedical Engineering and Environmental Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Pang, Yean Ling [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor (Malaysia); Wu, Chien-Hou, E-mail: chwu@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-09-15

    Alkaline hydrogen peroxide treatment was proposed as a simple and green way to improve the performance of commercial TiO{sub 2} powder for water-dispersibility and visible-light photocatalytic activity on the degradation of dye pollutants. The performance of treated TiO{sub 2} was evaluated as a function of NaOH concentration, H{sub 2}O{sub 2} concentration, and treatment time. The optimal conditions were determined to be 24 h in 100 mM H{sub 2}O{sub 2} and 8 M NaOH. The treated samples were characterized by Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectrophotometry. The analysis revealed that the crystal structure, morphology, and absorption band gap were retained, but the surface of the treated TiO{sub 2} was dramatically changed. The treated TiO{sub 2} was highly dispersible with a uniform hydrodynamic size of 41 ± 12 nm and stable over months in water at pH 3 without any stabilizing ligand and could significantly enhance the visible-light photodegradation of dye pollutants. The superior performance might be attributed to the formation of abundant surface hydroxyl groups. This treatment paves the way for developing water-dispersible TiO{sub 2} with superior visible-light induced photocatalytic degradation of dye pollutants without any complicated and expensive surface modification. - Highlights: • Alkaline hydrogen peroxide is proposed to treat commercial TiO{sub 2} powder. • The treated TiO{sub 2} powder exhibits superior water-dispersibility with a uniform size distribution. • The treated TiO{sub 2} powder can significantly enhance the visible-light photodegradation of dyes.

  3. Solution processable RGO-CdZnS composite for solar light responsive photocatalytic degradation of 4-Nitrophenol

    Science.gov (United States)

    Ibrahim, Sk; Chakraborty, Koushik; Pal, Tanusri; Ghosh, Surajit

    2017-05-01

    We report the one pot single step synthesis and characterization of solution processable reduced graphene oxide (RGO) - cadmium zinc sulfide (CdZnS) nanocomposite materials. The composite was characterized structurally and morphologically by XRD and TEM studies. The reduction of GO in RGO-CdZnS composite, was confirmed by XPS and Raman spectroscopy. The photocatalytic activity of the RGO-CdZnS composite was investigated towards the degradation of 4-Nitrophenol. A notable increase of photocatalytic efficiency of RGO-CdZnS compare to controlled CdZnS was observed. Here RGO plays a crucial role to efficient photo induced charge separation from the CdZnS, and decreases the electron-hole recombination probability and subsequently enhanced the photocatalytic activity of the RGO-CdZnS composite material under simulated solar light irradiation. This work highlights the potential application of RGO-based materials in the field of photocatalytic degradation of organic water pollutant.

  4. Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young In [School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of); Jung, Hye Jin [Department of Mechanical Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Shin, Weon Gyu, E-mail: wgshin@cnu.ac.kr [Department of Mechanical Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Sohn, Youngku, E-mail: youngkusohn@ynu.ac.kr [School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of)

    2015-11-30

    Graphical abstract: - Highlights: • Ag/ZnO hybrid materials were prepared by a ball-milling method. • Adsorption and photocatalytic dye degradation were tested for pure RhB under visible light. • Adsorption and photocatalytic dye degradation were tested for mixed dye (MO + RhB + MB) under visible light. • Fenton-like photocatalytic activity (H{sub 2}O{sub 2} addition effects) was examined. - Abstract: The hybridization of ZnO with Ag has been performed extensively to increase the efficiency of ZnO in various applications, including catalysis. In this study, a wet (w) and dry (d) ball-milling method was used to hybridize Ag with ZnO nanoparticles, and their physicochemical properties were examined. Visible light absorption was enhanced and the band gap was engineered by ball-milling and Ag hybridization. Their photocatalytic activities were tested with rhodamine B (RhB) and a mixed dye (methyl orange + RhB + methylene blue) under visible light irradiation. For pure RhB, the photocatalytic activity was decreased by ball-milling and was observed in the order of ZnO(d) < Ag/ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). For the degradation of RhB and methylene blue (MB) in the mixed dye (or the simulated real contaminated water), the photocatalytic activity was observed in the order of Ag/ZnO(d) < ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). When the photodegradation tested with H{sub 2}O{sub 2} addition, however, the Fenton-like photocatalytic activity was reversed and the ZnO(ref) showed the poorest activity for the degradation of RhB and methylene blue (MB). In the mixed dye over all the catalysts, methyl orange (MO) was degraded most rapidly. The relative degradation rates of RhB and MB were found to be dependent on the catalyst and reaction conditions.

  5. Preparation and photocatalytic performance of fibrous Tb3+-doped TiO2 using collagen fiber as template

    Science.gov (United States)

    Luo, Ting; Wan, Xiang-Jun; Jiang, Shang-Xuan; Zhang, Li-Yuan; Hong, Zheng-Qu; Liu, Jiao

    2018-04-01

    Fibrous Tb3+-doped TiO2 were prepared using collagen fiber as template. Morphology, crystalline structure, surface area, element content, chemical composition and elemental chemical status, microstructure and element distribution of the prepared samples were characterized by using scanning electron microscopy, X-ray diffraction, specific surface area analysis, inductively coupled plasma atomic emission spectrometer, X-ray photoelectron spectroscopy, transmission electron microscope and element mapping, respectively. The photocatalytic activities were evaluated by following degradation of methyl orange. The results showed that the fiber structure of collagen template was fully preserved when the calcination temperature was 500-800 °C. However, with the increase of calcination temperature, crystallinity and average particle size were increased, and the photocatalytic performance was decreased. For 2% Tb3+-TiO2 calcined at 500 °C, the degradation rate of methyl orange reached 93.87% after 6 h when a high-pressure mercury lamp (150 W) was used as the light source for photocatalytic degradation. Titanium tanning agent performance was excellent, the yield of TiO2 was high, and the fiber structure was presented when 0.2 mol/L citric acid/sodium citrate buffer solution was used.

  6. Utilization of visible to NIR light energy by Yb"+"3, Er"+"3 and Tm"+"3 doped BiVO_4 for the photocatalytic degradation of methylene blue

    International Nuclear Information System (INIS)

    Regmi, Chhabilal; Kshetri, Yuwaraj K.; Ray, Schindra Kumar; Pandey, Ramesh Prasad; Lee, Soo Wohn

    2017-01-01

    Highlights: • Lanthanide doped BiVO_4 as highly efficient upconversion and photocatalytic material. • Well defined beads like morphology for better photocatalytic activity. • Effective utilization of NIR and visible light for efficient photocatalytic degradation of methylene blue. • Nontoxic to human cells, potential for application in biological fields. - Abstract: Lanthanide-doped BiVO_4 semiconductors with efficient photocatalytic activities over a broad range of the solar light spectrum have been synthesized by the microwave hydrothermal method using ethylenediaminetetraacetic acid (EDTA). The structural, morphological, and optical properties of the as-synthesized samples were evaluated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, UV–vis diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS). The toxicity of the samples was measured using Mus musculus skin melanoma cells (B16-F10 (ATCC"® CRL-6475™)) and were found to be nontoxic for human cells. The photocatalytic efficiency of the prepared samples was evaluated by methylene blue (MB) degradation. The best photocatalytic activity was shown by BiVO_4 with 6:3:3 mol percentage of Yb"+"3:Er"+"3:Tm"+"3 in all solar light spectrum. The synthesized samples possess low band gap energy and a hollow structure suitable for the better photocatalytic activity. The observed NIR photoactivity supports that the upconversion mechanism is involved in the overall photocatalytic process. Therefore, this approach provides a better alternative upconversion material for integral solar light absorption.

  7. Hydrothermal synthesis of CdS nanorods anchored on α-Fe2O3 nanotube arrays with enhanced visible-light-driven photocatalytic properties.

    Science.gov (United States)

    Lei, Rui; Ni, Hongwei; Chen, Rongsheng; Gu, Huazhi; Zhang, Bowei; Zhan, Weiting

    2018-03-15

    As an n-type semiconductor with an excellent physicochemical properties, iron oxide (Fe 2 O 3 ) has been extensively used in the fields of environmental pollution control and solar energy conversion. However, the high recombination rate of the photoinduced electron-hole pairs and poor charge mobility for Fe 2 O 3 nanomaterial generally result in low photocatalytic efficiency. Herein, an uniform CdS nanorods grown directly on one-dimensional α-Fe 2 O 3 nanotube arrays (NTAs) are successfully synthesized by a facile hydrothermal method and the constructed heterojunction can be a kind of efficient and recyclable photocatalysts. Successful deposition of CdS nanorods onto the α-Fe 2 O 3 NTAs is verified by field emission scanning electron microscopy(FESEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDS). UV-Vis diffuse reflectance spectroscopy indicates that α-Fe 2 O 3 /CdS NTAs possess the intense visible light absorption and also display a red-shift of the band-edge compared with the pure α-Fe 2 O 3 NTAs. The as-obtained α-Fe 2 O 3 /CdS NTAs display excellent photocatalytic activity for decomposition of methylene blue (MB), methyl orange (MO), and phenol under visible light illumination. Among all the tested photocatalysts, the film synthesized for 3h with good stability exhibits the best photocatalytic properties and produces the highest photocurrent of 1.43 mA/cm 2 at 0.8 V vs. Ag/AgCl electrode, owing to its well formed heterojunction structure, effective electron-hole pair separation and direct electron transfer pathway along the CdS nanorods and α-Fe 2 O 3 NTAs. Besides, the photogenerated holes (h + ) and superoxide radicals (O 2 - ) play dominant roles in the photocatalytic process. On the basis of the photocatalytic results and energy band diagram, the photocatalytic process mechanism is proposed. Considering the easy preparation and excellent performance, α-Fe 2 O 3 /CdS NTAs could

  8. Rose-like I-doped Bi_2O_2CO_3 microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance

    International Nuclear Information System (INIS)

    Zai, Jiantao; Cao, Fenglei; Liang, Na; Yu, Ke; Tian, Yuan; Sun, Huai; Qian, Xuefeng

    2017-01-01

    Highlights: • DFT reveals I"− can partially substitute CO_3"2"−to narrow the bandgap of Bi_2O_2CO_3. • Sodium citrate play a key role on the formation of rose-like I-doped Bi_2O_2CO_3. • Rose-like I-doped Bi_2O_2CO_3 show enhanced visible light response. • The catalyst has enhanced photocatalytic activity to organic and Cr(VI) pollutes. - Abstract: Based on the crystal structure and the DFT calculation of Bi_2O_2CO_3, I"− can partly replace the CO_3"2"−in Bi_2O_2CO_3 to narrow its bandgap and to enhance its visible light absorption. With this in mind, rose-like I-doped Bi_2O_2CO_3 microspheres were prepared via a hydrothermal process. This method can also be extended to synthesize rose-like Cl- or Br-doped Bi_2O_2CO_3 microspheres. Photoelectrochemical test supports the DFT calculation result that I- doping narrows the bandgap of Bi_2O_2CO_3 by forming two intermediate levels in its forbidden band. Further study reveals that I-doped Bi_2O_2CO_3 microspheres with optimized composition exhibit the best photocatalytic activity. Rhodamine B can be completely degraded within 6 min and about 90% of Cr(VI) can be reduced after 25 min under the irradiation of visible light (λ > 400 nm).

  9. Hierarchical Fe{sub 3}O{sub 4}@MoS{sub 2}/Ag{sub 3}PO{sub 4} magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Na [Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Haiyan; Xu, Xingjian [Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 (China); Yu, Hongwen, E-mail: yuhw@neigae.ac.cn [Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 (China)

    2016-12-15

    Highlights: • The FM/A-6% possesses a large specific surface area: 76.56 m{sup 2}/g. • The FM/A-6% displays high photocatalytic stability. • The FM/A-6% can be collected easily from the water by magnetic field. - Abstract: Novel hierarchical Fe{sub 3}O{sub 4}@MoS{sub 2}/Ag{sub 3}PO{sub 4} magnetic nanophotocatalyst with remarkable photocatalytic capability were prepared by simply depositing the Ag{sub 3}PO{sub 4} onto the surface of crumpled Fe{sub 3}O{sub 4}@MoS{sub 2} nanosphere. The nanocomposites were characterized by XRD, TEM, HRTEM, XPS, BET, and UV–vis DRS. The outcome of the photocatalytic experiments demonstrated that Fe{sub 3}O{sub 4}@MoS{sub 2}/Ag{sub 3}PO{sub 4} with 6 wt% content of Ag{sub 3}PO{sub 4} (FM/A-6%) showed the highest photocatalytic activity upon the degradation Congo red (CR) and Rhodamine B (RhB) under both visible light and simulated sunlight irradiation. In addition, FM/A-6% possessed larger specific surface area (76.56 m{sup 2}/g) and excellent optical property. The possible Z-scheme charge carriers transfer mechanism for the enhanced photocatalytic properties of the FM/A-6% was also discussed. The Z-scheme charge carriers transfer mechanism established between MoS{sub 2} and Ag{sub 3}PO{sub 4} facilitate the charge separation efficiency. Moreover, FM/A-6% can be separated and collected easily by external magnetic field and maintain high activity after five times photoreaction cycles. Given the remarkable photocatalytic performance and high stability of FM/A-6% nanocomposite, it is looking forward to exhibit great potential for applications in water purification.

  10. Visible-light photocatalytic activity of graphene oxide-wrapped Bi{sub 2}WO{sub 6} hierarchical microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jiali; Yu, Hongwen, E-mail: yuhw@iga.ac.cn; Li, Haiyan; Sun, Lei; Zhang, Kexin; Yang, Hongjun

    2015-07-30

    Graphical abstract: - Highlights: • GO/Bi{sub 2}WO{sub 6} are readily fabricated by facile bubbling pretreatment and freeze drying. • GO/Bi{sub 2}WO{sub 6} possess excellent photocatalytic activity under visible light irradiation. • The visible light activity of GO/Bi{sub 2}WO{sub 6} is affected by the amount of GO. • The photostablity of GO is due to the photo-generated electrons transfer to Bi{sub 2}WO{sub 6}. - Abstract: A facile approach of fabricating homogeneous graphene oxide (GO)-wrapped Bi{sub 2}WO{sub 6} microspheres (GO/Bi{sub 2}WO{sub 6}) is developed. The transmission electron microscopy (TEM) results show that a heterojunction interface between GO and Bi{sub 2}WO{sub 6}. The UV–vis diffuse reflection spectra (DRS) reveal that the as-prepared GO/Bi{sub 2}WO{sub 6} composites own more intensive absorption in the visible light range compared with pure Bi{sub 2}WO{sub 6}. These characteristic structural and optical properties endow GO/Bi{sub 2}WO{sub 6} composites with enhanced photocatalytic activity. The enhanced photocatalytic activity of the GO/Bi{sub 2}WO{sub 6} is attributed predominantly to the synergetic effect between GO and Bi{sub 2}WO{sub 6}, causing rapid generation and separation of photo-generated charge carriers.

  11. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination

    International Nuclear Information System (INIS)

    Saravanan, R.; Karthikeyan, S.; Gupta, V.K.; Sekaran, G.; Narayanan, V.; Stephen, A.

    2013-01-01

    The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out. The catalyst ZnO nanorods and ZnO/CuO nanocomposites of different weight ratios were prepared by new thermal decomposition method, which is simple and cost effective. The prepared catalysts were characterized by different techniques such as X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV–visible absorption spectroscopy. Further, the most photocatalytically active composite material was used for degradation of real textile waste water under visible light illumination. The irradiated samples were analysed by total organic carbon and chemical oxygen demand. The efficiency of the catalyst and their photocatalytic mechanism has been discussed in detail. Highlights: ► Visible light active photocatalyst ► Degradation of methylene blue and methyl orange ► Preparation of composite materials is a simple, fast and cost effective method. ► Nano composite materials ► Degradation of textile waste water

  12. Facile Br{sup -} assisted hydrothermal synthesis of Bi{sub 2}MoO{sub 6} nanoplates with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng [Yangtze Normal University, Chongqing Key Laboratory of Inorganic Special Functional Materials, Chongqing (China); Yangtze Normal University, College of Chemistry and Chemical Engineering, Chongqing (China); Teng, Xiaoxu; Liu, Dongsheng; Fu, Liang; Xie, Hualin [Yangtze Normal University, College of Chemistry and Chemical Engineering, Chongqing (China); Zhang, Guoqing [Yangtze Normal University, Chongqing Key Laboratory of Inorganic Special Functional Materials, Chongqing (China); Ding, Shimin [Yangtze Normal University, Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Chongqing (China)

    2017-10-15

    Bi{sub 2}MoO{sub 6} nanoplates have been controllably synthesized via a facile hydrothermal process with the assistance of Br{sup -} containing surfactant cetyltrimethylammonium bromide (CTAB) or KBr. A remarkable enhancement in the visible-light-driven photocatalytic degradation of Rhodamine B was observed. It was found that reaction temperature and surfactant play crucial roles in the formation and properties of the Bi{sub 2}MoO{sub 6} nanoplates. The best results as photocatalyst were obtained with the sample hydrothermally synthesized at 150 C with the assistance of CTAB. The improved photocatalytic performance could be ascribed to the {001}-oriented nanostructure of the Bi{sub 2}MoO{sub 6} nanoplates. KBr-templated Bi{sub 2}MoO{sub 6} nanoplates also showed better photocatalytic efficiency compared with that of flower-like Bi{sub 2}MoO{sub 6} but inferior to that of CTAB-templated Bi{sub 2}MoO{sub 6} nanoplates. (orig.)

  13. Preparation and visible light responsive photocatalytic activity of Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiaqi; Qu, Ting; Wang, Qiufeng; Zhao, Zhenbo, E-mail: zhaozhenbo@ccut.edu.cn [School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin (China)

    2017-09-15

    Novel Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites were prepared through a hydrothermal method and co-precipitation method. The morphologies and structures of the photocatalysts were characterized by XRD, Raman, TEM, UV-vis-DRS, BET surface area and VSM techniques. The photocatalytic performances of the photocatalysts were investigated by the decolorisation of methyl orange (MO) under visible-light irradiation. The results showed that the Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites exhibited greater photocatalytic activities compared to pure Bi{sub 2}WO{sub 6} and the Ni-Al-Ce LDH; the decolorisation rate of MO was 87% within 60 min under visible-light irradiation. The decolorisation efficiency of the composite material remained at 71% after 4 recycling runs, showing improved stability. Furthermore, the experimental results also showed that the photocatalytic reactions for the composites followed first-order reaction kinetics. Therefore, the Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites were photocatalysts with high efficiencies and stabilities for a photocatalytic reaction of an organic pollutant, and this study provides a new, effective method for the development of wastewater treatment. (author)

  14. One-pot, self-assembled hydrothermal synthesis of 3D flower-like CuS/g-C3N4 composite with enhanced photocatalytic activity under visible-light irradiation

    Science.gov (United States)

    Khan, Azam; Alam, Umair; Raza, Waseem; Bahnemann, D.; Muneer, M.

    2018-04-01

    Novel visible-light-driven 3D flower-like CuS/g-C3N4 composites have been synthesized by different wt% of CuS using hydrothermal method and characterized by standard analytical techniques such as XRD, FTIR, XPS, BET, UV-Vis DRS spectroscopy, SEM-EDS, and TEM. SEM and TEM analyses showed an intimate interfacial contact between flower-like CuS and g-C3N4 sheet. The synthesized composite materials (CuS/g-C3N4) showed excellent photocatalytic activity for the decolorization of methylene blue (MB) in aqueous suspension under visible-light irradiation, compared with pure CuS and g-C3N4. Among various composites of CuS/g-C3N4, 10 wt% of CuS showed highest photocatalytic activity for the decolorization of dye (MB). This remarkably improved photocatalytic performance of the synthesized materials could be attributed to the synergistic interaction between CuS and g-C3N4, leading to prolonged lifetime of photo-generated e- and h+ pair through the Z-scheme system. A probable Z-scheme mechanism explaining the origin of enhanced performance of the composite material has been proposed. This work not only provides a facile way to synthesize 3D flower-like heterostructure, but also renders rational design for the development of highly efficient Z-scheme photocatalytic systems.

  15. Novel adsorption and photocatalytic oxidation for removal of gaseous toluene by V-doped TiO{sub 2}/PU under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thanh-Dong; Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr

    2015-12-30

    Highlights: • V doping was used to enhance the photocatalytic activity of TiO{sub 2} photocatalyst. • The enhanced TiO{sub 2} was fixed on porous polyurethane (PU) by chemical bonds. • The PU was used as a substrate to increase the adsorption ability of the photocatalyst. • V-TiO{sub 2}/PU adsorbed and photocatalytically oxidized toluene gas under visible light. • The V/TiO{sub 2} ratio of 6 wt% was optimal for enhancing the photocatalytic activity. - Abstract: In this study, V was used as a dopant to defect into the TiO{sub 2} lattice, leading to formation of Ti{sup 3+} and V{sup 4+} in the lattice. The presence of Ti{sup 3+} and V{sup 4+} introduced into the TiO{sub 2} lattice increased the electron–hole pair generation capacity and electron–hole pair separation efficiency of the TiO{sub 2}, leading to enhancement of the photocatalytic activity of the photocatalyst. Porous polyurethane (PU) was used to immobilize the V-doped TiO{sub 2} by creating chemical bonds. The use of porous substrate contributed to the increased adsorption ability of the enhanced photocatalyst, as well as expanded its application for the removal of toluene from aerosols. Under dark conditions, the V-TiO{sub 2}/PU only exhibited adsorption ability for toluene treatment in aerosol. Under visible light conditions, the V-TiO{sub 2}/PU exhibited high photocatalytic oxidation ability for the removal of toluene in aerosol. The photocatalytic oxidation ability was found to depend on the V to TiO{sub 2} ratio. The optimal V content in V/TiO{sub 2} for enhancing the photocatalytic activity of TiO{sub 2} was determined to be 6 wt%. Even under visible light irradiation, the 6% V-TiO{sub 2}/PU sample could photocatalytically remove 80% of the toluene in 200-ppmV inlet gas, while 89.3% of the removed amount was mineralized into CO{sub 2} and H{sub 2}O.

  16. Fabrication of Ag-decorated BiOBr-mBiVO4 dual heterojunction composite with enhanced visible light photocatalytic performance for degradation of malachite green

    Science.gov (United States)

    Regmi, Chhabilal; Dhakal, Dipesh; Kim, Tae-Ho; Yamaguchi, Takutaro; Wohn Lee, Soo

    2018-04-01

    A visible light active Ag-decorated BiVO4-BiOBr dual heterojunction photocatalyst was prepared using a facile hydrothermal method, followed by the photodeposition of Ag. The photocatalytic activity of the synthesized samples was investigated by monitoring the change in malachite green (MG) concentration upon visible light irradiation. The synthesized sample was highly effective for the degradation of non-biodegradable MG. The enhanced activity observed was ascribed to the efficient separation and transfer of charge carriers across the dual heterojunction structure as verified by photoluminescence measurements. The removal of MG was primarily initiated by hydroxyl radicals and holes based on scavenger’s effect. To gain insight into the degradation mechanism, both high performance liquid chromatography and high resolution-quantitative time of flight, electrospray ionization mass spectrometry measurements during the degradation process were carried out. The degradation primarily followed the hydroxylation and N-demethylation process. A possible reaction pathway is proposed on the basis of all the information obtained under various experimental conditions.

  17. Fabrication of In-rich AgInS{sub 2} nanoplates and nanotubes by a facile low-temperature co-precipitation strategy and their excellent visible-light photocatalytic mineralization performance

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Fang; Zhong, Fei [Nanchang Hangkong University, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, College of Environmental and Chemical Engineering (China); Hu, Peng [Jiaozuo University, College of Chemical Industry and Environment Engineering (China); Pei, Xule; Luo, Xubiao, E-mail: luoxubiao@126.com; Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Nanchang Hangkong University, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, College of Environmental and Chemical Engineering (China)

    2017-01-15

    Visible-light-driven In-rich AgInS{sub 2} nanoplates and nanotubes were successfully prepared by a convenient co-precipitation strategy at low temperature. The effect of different In/Ag molar ratio in the raw materials on the physicochemical properties and photocatalytic activity of AgInS{sub 2} was investigated. The In/Ag molar ratio has an obvious effect on the morphology of AgInS{sub 2}, and the physicochemical properties and photocatalytic activity of AgInS{sub 2} are also dependent on the In/Ag molar ratio. When the molar ratio of In/Ag is 9, the photoluminescence intensity of AgInS{sub 2} reaches a minimum value, while its photocurrent density is maximum (0.011 mA/cm{sup 2}), indicating the most efficient separation of electron-hole pairs. The AgInS{sub 2} with the In/Ag molar ratio of 9 exhibits the highest visible-light photocatalytic activities with almost complete degradation of 2-nitrophenol, which is attributed to the narrowest band gap and the most efficient separation of electron-hole pairs. Moreover, In-rich AgInS{sub 2} exhibits excellent regeneration ability.

  18. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity.

    Science.gov (United States)

    Wu, Shuisheng; Dai, Weili

    2017-03-03

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs.

  19. Graphene/CuS/ZnO hybrid nanocomposites for high performance photocatalytic applications

    International Nuclear Information System (INIS)

    Varghese, Jini; Varghese, K.T.

    2015-01-01

    We herein report a novel, high performance ternary nanocomposite composed of Graphene doped with nano Copper Sulphide and Zinc Oxide nanotubes (GCZ) for photodegradation of organic pollutants. Investigations were made to estimate and compare the Methyl Orange dye (MO) degradation using GCZ, synthesized pristine Graphene (Gr) and Graphene–ZnO hybrid nanocomposite (GZ) under UV light irradiations. The synthesis of nanocomposites involves the simple ultra-sonication and mixing methods. The nanocomposites were characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis absorption spectroscopy and Brunauer–Emmett–Teller (BET) surface area method. The as synthesized GCZ shows better surface area, porosity and band gap energy than as synthesized Gr and GZ. The photocatalytic degradation of methyl orange dye follows as Gr  > GZ due to the stronger adsorbability, large number of photo induced electrons and highest inhibition of charge carrier's recombination of GCZ. The kinetic investigation demonstrates that dye degradation exhibit the pseudo first order kinetic model with rate constant 0.1322, 0.049 and0.0109 min"−"1 corresponding to GCZ, GZ and Gr. The mechanism of dye degradation in presence of photocatalyst is also discussed. This study confirms that GCZ is a more promising material for high performance catalytic applications especially in the dye waste water purification. - Highlights: • Graphene–CuS–ZnO hybrid composites show better surface area, porosity and adsorbability. • CuS–ZnO hybrid nanostructure highly enhanced the photocatalytic activity of Graphene. • Graphene–CuS–ZnO hybrid composites show superior photocatalytic efficiency, rate constant and quantum yield.

  20. Graphene/CuS/ZnO hybrid nanocomposites for high performance photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Jini, E-mail: jini.nano@gmail.com; Varghese, K.T., E-mail: ktvscs@gmail.com

    2015-11-01

    We herein report a novel, high performance ternary nanocomposite composed of Graphene doped with nano Copper Sulphide and Zinc Oxide nanotubes (GCZ) for photodegradation of organic pollutants. Investigations were made to estimate and compare the Methyl Orange dye (MO) degradation using GCZ, synthesized pristine Graphene (Gr) and Graphene–ZnO hybrid nanocomposite (GZ) under UV light irradiations. The synthesis of nanocomposites involves the simple ultra-sonication and mixing methods. The nanocomposites were characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis absorption spectroscopy and Brunauer–Emmett–Teller (BET) surface area method. The as synthesized GCZ shows better surface area, porosity and band gap energy than as synthesized Gr and GZ. The photocatalytic degradation of methyl orange dye follows as Gr <<< GCZ >> GZ due to the stronger adsorbability, large number of photo induced electrons and highest inhibition of charge carrier's recombination of GCZ. The kinetic investigation demonstrates that dye degradation exhibit the pseudo first order kinetic model with rate constant 0.1322, 0.049 and0.0109 min{sup −1} corresponding to GCZ, GZ and Gr. The mechanism of dye degradation in presence of photocatalyst is also discussed. This study confirms that GCZ is a more promising material for high performance catalytic applications especially in the dye waste water purification. - Highlights: • Graphene–CuS–ZnO hybrid composites show better surface area, porosity and adsorbability. • CuS–ZnO hybrid nanostructure highly enhanced the photocatalytic activity of Graphene. • Graphene–CuS–ZnO hybrid composites show superior photocatalytic efficiency, rate constant and quantum yield.

  1. Facile synthesis of a conjugation-grafted-TiO2 nanohybrid with enhanced visible-light photocatalytic properties from nanotube titanic acid precursors

    Science.gov (United States)

    Guo, Yanru; Zhang, Min; Zhang, Zhihua; Li, Qiuye; Yang, Jianjun

    2016-08-01

    A conjugation-grafted-TiO2 nanohybrid was synthesized by chemically grafting conjugated structures on the surface of nanotube titanic acid (NTA) precursor-based TiO2 through the controlled thermal degradation of a coacervated polymer layer of polyvinyl alcohol (PVA). The interfacial interactions between the NTA precursor-based TiO2 and conjugated structures were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Moreover, the effects of the NTA's pretreatment temperature and the weight ratio of NTA to PVA on the photocatalytic degradation of methyl orange were also investigated. A higher NTA pretreatment temperature and a lower NTA to PVA weight ratio were found to enhance photogenerated electron-hole separation efficiency and photocatalytic activity. Moreover, the conjugation-grafted-TiO2 nanohybrid synthesized from the NTA precursor displayed a much higher visible-light photocatalytic activity than that of the sample obtained from the P25 precursor. The origin of the enhanced photocatalytic activity under visible-light irradiation is also discussed in detail.

  2. Effects of crystal structure and composition on the photocatalytic performance of Ta-O-N functional materials.

    Science.gov (United States)

    Liu, Qing-Lu; Zhao, Zong-Yan; Yi, Jian-Hong

    2018-05-07

    For photocatalytic applications, the response of a material to the solar spectrum and its redox capabilities are two important factors determined by the band gap and band edge position of the electronic structure of the material. The crystal structure and composition of the photocatalyst are fundamental for determining the above factors. In this article, we examine the functional material Ta-O-N as an example of how to discuss relationships among these factors in detail with the use of theoretical calculations. To explore how the crystal structure and composition influence the photocatalytic performance, two groups of Ta-O-N materials were considered: the first group included ε-Ta 2 O 5 , TaON, and Ta 3 N 5 ; the second group included β-Ta 2 O 5 , δ-Ta 2 O 5 , ε-Ta 2 O 5 , and amorphous-Ta 2 O 5 . Calculation results indicated that the band gap and band edge position are determined by interactions between the atomic core and valence electrons, the overlap of valence electronic states, and the localization of valence states. Ta 3 N 5 and TaON are suitable candidates for efficient photocatalysts owing to their photocatalytic water-splitting ability and good utilization efficiency of solar energy. δ-Ta 2 O 5 has a strong oxidation potential and a band gap suitable for absorbing visible light. Thus, it can be applied to photocatalytic degradation of most pollutants. Although a-Ta 2 O 5 , ε-Ta 2 O 5 , and β-Ta 2 O 5 cannot be directly used as photocatalysts, they can still be applied to modify conventional Ta-O-N photocatalysts, owing to their similar composition and structure. These calculation results will be helpful as reference data for analyzing the photocatalytic performance of more complicated Ta-O-N functional materials. On the basis of these findings, one could design novel Ta-O-N functional materials for specific photocatalytic applications by tuning the composition and crystal structure.

  3. Silica supported TiO{sub 2} nanostructures for highly efficient photocatalytic application under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pal, A.; Jana, T.K.; Chatterjee, K., E-mail: kuntal2k@gmail.com

    2016-04-15

    Highlights: • Synthesis of silica–titania nanocomposite by simple and facile chemical route and characterization of the materials. • Excellent catalytic activity on organic pollutant methylene blue under the visible light irradiation. • Photocatalytic rate is much higher than commercial P25 TiO{sub 2} catalyst powder. • The higher activity is attributed to the special structure and synergistic effect of the materials which has immense application potential. - Abstract: Titanium dioxide decorated silica nanospheres have been synthesized by a simple wet chemical approach. X-ray diffraction, electron microscopy and energy dispersive X-ray analysis revealed that anatase phase of TiO{sub 2} nanostructures, with exposed {0 0 1} and {1 0 1} facets, are anchored onto the amorphous silica spheres of ∼60 nm diameter. The photocatalytic activity of the sample under visible light irradiation was examined. It is found that photocatalytic efficiency of the material is better than commercial P25 TiO{sub 2} photocatalyst and the result is attributed to the unique synergistic effect of SiO{sub 2}–TiO{sub 2} nanocomposite structure resulting enhanced charge separation and charge transfer.

  4. Photocatalytic degradation of 2-propanol and phenol using Au loaded MnWO4 nanorod under visible light irradiation

    CSIR Research Space (South Africa)

    Chakraborty, AK

    2012-06-01

    Full Text Available ) under visible light ( = 420 nm) irradiation. The Au loading was optimized to 3.79 wt% for the highest efficiency. The enhanced photocatalytic activity originates from the absorption of visible light by MnWO4 as well as the introduction...

  5. Investigation of polypyrrole/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long, E-mail: jianglong@scu.edu.cn; Dan, Yi, E-mail: danyichenweiwei@163.com

    2015-07-01

    Graphical abstract: - Highlights: • The study provides an easy and convenient method to fabricate films, which will give guidance for the preparation of three-dimensional materials. • The PPy/PVA–TiO{sub 2} films can keep better photo-catalytic activities both under UV and visible light irradiation when compared with TiO{sub 2} film. • There exist electron transfers between PPy/PVA and TiO{sub 2}. - Abstract: Polypyrrole/polyvinyl alcohol–titanium dioxide (PPy/PVA–TiO{sub 2}) composite films used as photo-catalysts were fabricated by combining TiO{sub 2} sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO{sub 2} and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet–vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA–TiO{sub 2} composite films show better photo-catalytic properties than TiO{sub 2} film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA–TiO{sub 2} composite film was investigated and the results show that

  6. Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO{sub 2}(B)/anatase mixed-phase nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jun [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China); State Key Laboratory Cultivation Base for Gas Geology and Gas Control, School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003 (China); Yang, Juan, E-mail: yangjuanhpu@yahoo.com [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China); Wang, Xiaohan; Zhang, Lei; Li, Yingjie [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China)

    2015-09-15

    Graphical abstract: Visible-light photocatalytic activities for selective oxidation of amines into imines are greatly affected by the crystal structure of TiO{sub 2} catalysts and mixed-phase TiO{sub 2}(B)/anatase possess higher photoactivity because of the moderate adsorption ability and efficient charge separation. - Highlights: • Visible-light photocatalytic oxidation of amines to imines is studied over different TiO{sub 2}. • Photocatalytic activities are greatly affected by the crystal structure of TiO{sub 2} nanowires. • Mixed-phase TiO{sub 2}(B)/anatase exhibits higher catalytic activity than single-phase TiO{sub 2}. • Enhanced activity is ascribed to efficient adsorption ability and interfacial charge separation. • Photoinduced charge transfer mechanism on TiO{sub 2}(B)/anatase catalysts is also proposed. - Abstract: Wirelike catalysts of mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2}, bare anatase TiO{sub 2} and TiO{sub 2}(B) are synthesized via calcining precursor hydrogen titanate obtained from hydrothermal process at different temperatures between 450 and 700 °C. Under visible light irradiation, mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2} catalysts exhibit enhanced photocatalytic activity in comparison with pure TiO{sub 2}(B) and anatase TiO{sub 2} toward selective oxidation of benzylamines into imines and the highest photocatalytic activity is achieved by TW-550 sample consisting of 65% TiO{sub 2}(B) and 35% anatase. The difference in photocatalytic activities of TiO{sub 2} samples can be attributed to the different adsorption abilities resulted from their crystal structures and interfacial charge separation driven by surface-phase junctions between TiO{sub 2}(B) and anatase TiO{sub 2}. Moreover, the photoinduced charge transfer mechanism of surface complex is also proposed over mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2} catalysts. Advantages of this photocatalytic system include efficient utilization of solar light, general suitability to

  7. Immobilized/P25/DSAT and Immobilized/Kronos/DSAT on Photocatalytic Degradation of Reactive Red 4 Under Fluorescent Light

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available In this work, photocatalytic degradation of Reactive Red 4 (RR4 using immobilized P25 and kronos were performed under fluorescent light sources. The photocatalysis activity for both catalysts was investigated under fluorescent lamp source which consist UV and Visible light. The effect of various parameters such as initial concentration, initial pH and strenght of immobilized plate were studied. The result showed that 90% of RR4 dye was degrade in 1 hr using immobilized/kronos/DSAT at 100 mg L-1 of RR4 dye while 81% degradation was achieved by immobilized/P25/DSAT at the same condition. The lowest pH showed the higher photocatalytic activity. Hence, the effect of dye concentration and pH on the photocatalysis study can be related with the behavior of environmental pollution. The low strength showed by immobilized/P25/DSAT where it remain 37 % as compared with strength of immobilized/kronos/DSAT (52 wt.%. For the future work, the polymer binder like Polyvinyl alcohol (PVA, Polyethylene glycol (PEG, and others polymers can be apply in immobilized study to overcome the strength problem.

  8. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO{sub 4} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chala, Sinaporn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Khatcharin [Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000 (Thailand); Phanichphant, Sukon [Materials Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Inceesungvorn, Burapat [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Natda, E-mail: natda_we@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-06-01

    Highlights: • Fe-loaded BiVO{sub 4} particles were prepared by hydrothermal method. • Physicochemical properties played a significant role in photocatalytic process. • All Fe-loaded BiVO{sub 4} samples showed higher photocatalytic activity than pure BiVO{sub 4}. • The Fe{sup 3+} ions may improve the separation of photogenerated electrons and holes. - Abstract: Pure BiVO{sub 4} and nominal 0.5–5.0 mol% Fe-loaded BiVO{sub 4} samples were synthesized by hydrothermal method. All samples were characterized in order to obtain the correlation between structure and photocatalytic properties by X-ray diffraction, Brunauer, Emmett and Teller, UV–vis diffuse reflectance spectrophotometry, photoluminescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-optical emission spectroscopy. The structure of all samples was single-phase monoclinic scheelite. The absorption spectrum of 5.0 mol% Fe-loaded BiVO{sub 4} shifted to the visible region, suggesting the potential application of this material as a superior visible-light driven photocatalyst in comparison with pure BiVO{sub 4}. Photocatalytic activities of all photocatalyst samples were examined by studying the degradation of methylene blue under visible light irradiation. The results clearly showed that Fe-loaded BiVO{sub 4} sample exhibited remarkably higher activity than pure BiVO{sub 4}.

  9. Photocatalytic Oxidation of Low-Level Airborne 2-Propanol and Trichloroethylene over Titania Irradiated with Bulb-Type Light-Emitting Diodes.

    Science.gov (United States)

    Jo, Wan-Kuen

    2013-01-18

    This study examined the photocatalytic oxidation of gas-phase trichloroethylene (TCE) and 2-propanol, at indoor levels, over titanium dioxide (TiO₂) irradiated with light-emitting diodes (LED) under different operational conditions. TiO₂ powder baked at 450 °C exhibited the highest photocatalytic decomposition efficiency (PDE) for TCE, while all photocatalysts baked at different temperatures showed similar PDEs for 2-propanol. The average PDEs of TCE over a three hour period were four, four, five, and 51% for TiO₂ powders baked at 150, 250, 350, and 450 °C, respectively. The average PDEs of 2-propanol were 95, 97, 98, and 96% for TiO₂ powders baked at 150, 250, 350, and 450 °C, respectively. The ratio of anatase at 2θ = 25.2° to rutile at 2θ = 27.4° was lowest for the TiO₂ powder baked at 450 °C. Although the LED-irradiated TiO₂ system revealed lower PDEs of TCE and 2-propanol when compared to those of the eight watt, black-light lamp-irradiated TiO₂ system, the results for the PDEs normalized to the energy consumption were reversed. Other operational parameters, such as relative humidity, input concentrations, flow rate, and feeding type were also found to influence the photocatalytic performance of the UV LED-irradiated TiO₂ system when applied to the cleaning of TCE and 2-propanol at indoor air levels.

  10. Photocatalytic Oxidation of Low-Level Airborne 2-Propanol and Trichloroethylene over Titania Irradiated with Bulb-Type Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Wan-Kuen Jo

    2013-01-01

    Full Text Available This study examined the photocatalytic oxidation of gas-phase trichloroethylene (TCE and 2-propanol, at indoor levels, over titanium dioxide (TiO2 irradiated with light-emitting diodes (LED under different operational conditions. TiO2 powder baked at 450 °C exhibited the highest photocatalytic decomposition efficiency (PDE for TCE, while all photocatalysts baked at different temperatures showed similar PDEs for 2-propanol. The average PDEs of TCE over a three hour period were four, four, five, and 51% for TiO2 powders baked at 150, 250, 350, and 450 °C, respectively. The average PDEs of 2-propanol were 95, 97, 98, and 96% for TiO2 powders baked at 150, 250, 350, and 450 °C, respectively. The ratio of anatase at 2θ = 25.2° to rutile at 2θ = 27.4° was lowest for the TiO2 powder baked at 450 °C. Although the LED-irradiated TiO2 system revealed lower PDEs of TCE and 2-propanol when compared to those of the eight watt, black-light lamp-irradiated TiO2 system, the results for the PDEs normalized to the energy consumption were reversed. Other operational parameters, such as relative humidity, input concentrations, flow rate, and feeding type were also found to influence the photocatalytic performance of the UV LED-irradiated TiO2 system when applied to the cleaning of TCE and 2-propanol at indoor air levels.

  11. Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sojic, Daniela V., E-mail: daniela.sojic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Despotovic, Vesna N., E-mail: vesna.despotovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Abazovic, Nadica D., E-mail: kiki@vinca.rs [Vinca Institute of Nuclear Sciences, 11001 Beograd, PO Box 522 (Serbia); Comor, Mirjana I., E-mail: mirjanac@vinca.rs [Vinca Institute of Nuclear Sciences, 11001 Beograd, PO Box 522 (Serbia); Abramovic, Biljana F., E-mail: biljana.abramovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia)

    2010-07-15

    The aim of this work was to study the efficiency of Fe- and N-doped titania suspensions in the photocatalytic degradation of the herbicides RS-2-(4-chloro-o-tolyloxy)propionic acid (mecoprop, MCPP), (4-chloro-2-methylphenoxy)acetic acid (MCPA), and 3,6-dichloropyridine-2-carboxylic acid (clopyralid, CP) under the visible light ({lambda} {>=} 400 nm) irradiation. The obtained results were compared with those of the corresponding undoped TiO{sub 2} (rutile/anatase) and of the most frequently used TiO{sub 2} Degussa P25. Computational modeling procedures were used to optimize geometry and molecular electrostatic potentials of MCPP, MCPA and CP and discuss the obtained results. The results indicate that the efficiency of photocatalytic degradation is greatly influenced by the molecular structure of the compound. Lowering of the band gap of titanium dioxide by doping is not always favorable for increasing photocatalytic efficiency of degradation.

  12. Photocatalytic hydrogen production under direct solar light in a CPC based solar reactor: Reactor design and preliminary results

    International Nuclear Information System (INIS)

    Jing Dengwei; Liu Huan; Zhang Xianghui; Zhao Liang; Guo Liejin

    2009-01-01

    In despite of so many types of solar reactors designed for solar detoxification purposes, few attempts have been made for photocatalytic hydrogen production, which in our option, is one of the most promising approaches for solar to chemical energy conversion. Addressing both the similarity and dissimilarity for these two processes and by fully considering the special requirements for the latter reaction, a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar reactor has been designed for the first time. The design and optimization of this CPC based solar reactor has been discussed in detail. Preliminary results demonstrated that efficient photocatalytic hydrogen production under direct solar light can be accomplished by coupling tubular reactors with CPC concentrators. It is anticipated that this first demonstration of concentrator-based solar photocatalytic hydrogen production would draw attention for further studies in this promising direction.

  13. An ion exchange strategy to BiOI/CH{sub 3}COO(BiO) heterojunction with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Han, Qiaofeng, E-mail: hanqiaofeng@njust.edu.cn; Yang, Zhen; Wang, Li; Shen, Zichen; Wang, Xin; Zhu, Junwu; Jiang, Xiaohong

    2017-05-01

    Highlights: • BiOI/BiOAc heterojunction was firstly synthesized by an ion exchange route. • BiOI/BiOAc exhibited enhanced visible-light-driven photoreactivity for the dyes degradation in comparison with individuals. • Photocatalytic activity of the as-prepared BiOI/BiOAc is better than that prepared by precipitation-deposition method. • Photosensitization effect of BiOI to BiOAc was superior to that of Bi{sub 2}S{sub 3} due to suitable solubility constant. - Abstract: It is very significant to develop CH{sub 3}COO(BiO) (denoted as BiOAc) based photocatalysts for the removal of pollutants due to its non-toxicity and availability. We previously reported that BiOAc exhibited excellent photocatalytic activity for rhodamine B (RhB) degradation under UV light irradiation. Herein, by an ion exchange approach, BiOI/BiOAc heterojunction could be easily obtained. The as-prepared heterojunction possessed enhanced photodegradation activity for multiple dyes including RhB and methyl orange (MO) under visible light illumination in comparison with individual materials. Good visible-light photocatalytic activity of the heterojunction could be attributed to the increased visible light response, effective charge transfer from the modified band position and close interfacial contact due to partial ion exchange method.

  14. Preparation of mesoporous CdS-containing TiO{sub 2} film and enhanced visible light photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yanmei; Wang, Renliang, E-mail: rlwang@tsmc.edu.cn; Zhang, Wenping; Ge, Haiyan; Wang, Xiaopeng; Li, Li

    2015-01-15

    Highlights: • Well-dispersed distribution of CdS nanoparticles inside of TiO{sub 2} mesoporous structures was fabricated. • The sensitization of CdS nanoparticles significantly extends the response of TiO{sub 2} mesoporous film in the visible region. • An improved visible light photocatalytic activity was observed by the CdS–MTF. - Abstract: Mesoporous TiO{sub 2} films containing CdS nanocrystals were successfully fabricated by a two-step process of successive ionic layer adsorption and reaction (SILAR) technique and a solvothermal method followed by annealing. The distribution of CdS nanoparticles in the inner structures of the TiO{sub 2} mesoporous films is confirmed by field emission scanning electron microscope. The CdS modification of the mesoporous films results in an increase in the visible light adsorption, and exhibits more excellent photocatalytic degradation of methyl orange (MO) under visible light irradiation.

  15. An efficient visible and UV-light-activated B–N-codoped TiO2 photocatalytic film for solar depollution prepared via a green method

    International Nuclear Information System (INIS)

    Xu Qingchi; Zhang Yan; He Ziming; Loo, Say Chye Joachim; Tan, Timothy Thatt Yang

    2012-01-01

    This work reports an efficient visible and UV-light-activated boron and nitrogen codoped TiO 2 porous film prepared via a “green” and direct coating approach. Such photocatalyst is highly promising for solar depollution application due to its efficient photocatalytic activities in both visible and UV spectrum. The preparation method avoids the use of organic solvents, which are usually more expensive and hazardous compared with water. Using stearic acid as the model organic pollutant, the visible-light photocatalytic activity of optimized porous B–N-codoped TiO 2 film (p-3B–N–TiO 2 ) is 3 times higher than that of porous N-doped TiO 2 (p-N–TiO 2 ) film, while its UV photocatalytic activity is almost double that of p-N–TiO 2 film and comparable to that of porous TiO 2 . The enhancement in photocatalytic activity is attributed to higher surface area due to the porous structure, improved visible-light absorption attributed to interstitially substituted boron atoms, and coexistence of boron and nitrogen dopants which may reduce Ti 3+ recombination centers.

  16. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shun; Ge, Zhen-Hua [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Bo-Ping, E-mail: bpzhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yao, Yao [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Huan-Chun [School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Yang, Jing; Li, Yan; Gao, Chao [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Lin, Yuan-Hua [School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-10-30

    Highlights: • CuS quantum dots (<5 nm) were synthesized by mechanochemical ball milling. • Defects was observed in the CuS quantum dots. • They show good visible light photocatalytic activity as Fenton-like reagents. - Abstract: We report a simple mechanochemical ball milling method for synthesizing monodisperse CuS quantum dots (QDs) with sizes as small as sub-5 nm. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The CuS QDs exhibited excellent visible-light-driven photocatalytic activity and stability for degradation of Rodanmine B aqueous solution as Fenton-like reagents. Our study opens the opportunity to low-cost and facile synthesis of QDs in large scale for future industrial applications.

  17. Preparation of Fe-doped TiO{sub 2} nanotube arrays and their photocatalytic activities under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Ya-Fang; Huang, Sheng-You [Department of Physics, Wuhan University, Wuhan 430072 (China); Sang, Jian-Ping, E-mail: jpsang@acc-lab.whu.edu.cn [Department of Physics, Wuhan University, Wuhan 430072 (China); Department of Physics, Jianghan University, Wuhan 430056 (China); Zou, Xian-Wu [Department of Physics, Wuhan University, Wuhan 430072 (China)

    2010-02-15

    Fe-doped TiO{sub 2} nanotube arrays have been prepared by the template-based liquid phase deposition method. Their morphologies, structures and optical properties were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and UV-vis absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of methylene blue under visible light. The UV-vis absorption spectra of the Fe-doped TiO{sub 2} nanotube arrays showed a red shift and an enhancement of the absorption in the visible region compared to the undoped sample. The Fe-doped TiO{sub 2} nanotube arrays exhibited good photocatalytic activities under visible light irradiation, and the optimum dopant amount was found to be 5.9 at% in our experiments.

  18. [Spectroscopic study of photocatalytic mechanism of methanol and CO2].

    Science.gov (United States)

    Hai, Feng; Zhang, Qian-cheng; Bai, Feng-rong; Wang, A-nan; Wang, Zhi-wei; Jian, Li

    2011-12-01

    Ni-Ti-O/SiO2 catalyst was prepared by impregnation method, and its photocatalytic performance for carbonylation of methanol with CO2 was investigated under UV light. The in-situ IR, XPS and MS were carried out to analyze the possible photocatalytic reaction mechanism. Results indicated that the Ni-Ti-O/SiO2 exhibited good photocatalytic performance for carbonylation of methanol with CO2, the methanol conversion reached up to 24.9%, and the selectivity for the carbonylated products was more than 60% within 180 min reaction time. The catalyst characterization results showed that the O==C .--O- and CH3OC(O)* might be important intermediate in the carbonylation of methanol with CO2.

  19. Preparation of visible-light-responsive TiO{sub 2} coatings using molten KNO{sub 3} treatment and their photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Guan, Sujun; Takaya, Shunsuke [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Yoshida, Hiroyuki [Chiba Industrial Technology Research Institute, 6-13-1, Tendai, Inage-ku, Chiba 263-0016 (Japan); Tochihara, Misako [JFE Techno-Research Corporation, No. 1 Kawasaki-cho, Chuo-ku, Chiba 260-0835 (Japan); Lu, Yun, E-mail: luyun@faculty.chiba-u.jp [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2017-06-15

    Highlights: • Molten KNO{sub 3} treatment are used to prepare K-doped TiO{sub 2} photocatalyst coatings. • The coatings show good antibacterial activity even in absence of light. • The photocatalytic activity is increased with the amount increase of K-doping. • The good antibacterial activity should come from the doping and release of K ions. - Abstract: In this work, the process of mechanical coating followed by molten KNO{sub 3} treatment is given to prepare visible-light-responsive K{sup +}-doped TiO{sub 2}. X-ray diffraction (XRD), scanning electron spectroscopy (SEM), Energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize these TiO{sub 2} coatings. The results showed that K{sup +}-doped anatase TiO{sub 2}/Ti composite coatings formed after molten KNO{sub 3} treatment at elevated temperatures. Meanwhile, their photocatalytic degradation of methylene blue (MB) and the antibacterial activity against Escherichia coli (E. coli) was also studied. The visible-light-responsive photocatalytic activity of the coatings in MB degradation increased with increase of K{sup +} ions when holding temperature was raised from 673 to 773 K. An excellent antibacterial activity of the K{sup +}-doped TiO{sub 2}/Ti coatings against E. coli was also obtained even in absence of light. The antibacterial activity in dark should attribute to the release of K{sup +} ions from the coatings. The photocatalytic activity under visible-light irradiation should result from the absorption spectrum extension due to the doping of K{sup +} ions into the lattice of TiO{sub 2}.

  20. Photocatalytic degradation of p,p'-DDT under UV and visible light using interstitial N-doped TiO₂.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-01-01

    1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (or p,p'-DDT) is one of the most persistent pesticides. It is resistant to breakdown in nature and cause the water contamination problem. In this work, a major objective was to demonstrate the application of N-doped TiO2 in degradation and mineralization of the p,p'-DDT under UV and visible light in aqueous solution. The N-doped TiO2 nanopowders were prepared by a simple modified sol-gel procedure using diethanolamine (DEA) as a nitrogen source. The catalyst characteristics were investigated using XRD, SEM, TEM, and XPS. The adsorption and photocatalytic oxidation of p,p'-DDT using the synthesized N-doped TiO2 under UV and visible light were conducted in a batch photocatalytic experiment. The kinetics and p,p'-DDT degradation performance of the N-doped TiO2 were evaluated. Results show that the N-doped TiO2 can degrade p,p'-DDT effectively under both UV and visible lights. The rate constant of the p,p'-DDT degradation under UV light was only 0.0121 min(-1), whereas the rate constant of the p,p'-DDT degradation under visible light was 0.1282 min(-1). Under visible light, the 100% degradation of p,p'-DDT were obtained from N-doped TiO2 catalyst. The reaction rate of p,p'-DDT degradation using N-doped TiO2 under visible light was sixfold higher than that under UV light. According to Langmuir-Hinshelwood model, the adsorption equilibrium constant (K) for the N-doped TiO2 under visible light was 0.03078 L mg(-1), and the apparent reaction rate constant (k) was 1.3941 mg L(-1)-min. Major intermediates detected during the p,p'-DDT degradation were p,p'-DDE, o,p'-DDE, p,p'-DDD and p,p'-DDD. Results from this work can be applied further for the breakdown of p,p'-DDT molecule in the real contaminated water using this technology.

  1. In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation

    Science.gov (United States)

    Chen, Wei; Wang, Yanhong; Liu, Mei; Gao, Li; Mao, Liqun; Fan, Zeyun; Shangguan, Wenfeng

    2018-06-01

    Non-noble metal Co were loaded on CdS for enhancing photocatalytic activity of water splitting by a simple and efficient in situ photodeposition method. The Co particles with diameter ca. 5 nm were photoreduced and then loaded on the surface of CdS. The loading of Co can not only effectively promote the separation of electrons and holes photoexcited by CdS, but reduce the overpotential of hydrogen evolution as well, thus enhancing photocatalytic activity of water splitting. The highest photocatalytic H2 evolution rate of Co/CdS reaches up to 1299 μmol h-1 under visible light irradiation(λ > 420 nm) when the amount of loading is 1.0 wt%, which is 17 times of that of pure CdS and achieves 80% of that of 0.5 wt%Pt/CdS. This work not only exhibits a pathway to obtain photocatalysts with high photocatalytic activity for hydrogen production, but provides a possibility for the utilization of low cost Co as a substitute for noble metals in photocatalytic hydrogen production.

  2. Influence of inlet concentration and light intensity on the photocatalytic oxidation of nitrogen(II) oxide at the surface of Aeroxide® TiO2 P25

    International Nuclear Information System (INIS)

    Dillert, Ralf; Stötzner, Julia; Engel, Astrid; Bahnemann, Detlef W.

    2012-01-01

    Highlights: ► The photocatalytic oxidation of nitrogen(II) oxide at the TiO 2 surface was studied. ► The effect of the UV(A) light intensity on the reaction rate was evaluated. ► The effect of the NO concentration on the reaction rate was evaluated. ► A mechanistic model for the heterogeneous NO oxidation is presented. ► A rate law describing the influence of NO concentration and light intensity is given. - Abstract: Air pollution by nitrogen oxides represents a serious environmental problem in urban areas where numerous sources of these pollutants are concentrated. One approach to reduce the concentration of these air pollutants is the light-induced oxidation in the presence of molecular oxygen and a photocatalytically active building material, e.g., paints, roof tiles, or pavement stones. Herein, results of an investigation concerning the photocatalytic oxidation of nitrogen(II) oxide (NO) in the presence of molecular oxygen and UV(A) irradiated TiO 2 powder are presented. The standard operating procedure described in ISO 22197-1 which was developed to characterize the photocatalytic activity of air-cleaning products was successfully applied to determine the photocatalytic activity of a bare TiO 2 powder. The experimental data reveal that at the light intensity stipulated by the operation procedure the amount of NO removed from the gas phase by photocatalytic oxidation is strongly affected by small changes of this light intensity as well as of the NO concentration in the gas stream in the photoreactor. Therefore, these parameters have to be controlled very carefully. Based upon the experimental data obtained in this study a rate law for the photocatalytic NO oxidation inside the photoreactor is derived.

  3. Copper NPs decorated titania: A novel synthesis by high energy US with a study of the photocatalytic activity under visible light.

    Science.gov (United States)

    Stucchi, Marta; Bianchi, Claudia L; Pirola, Carlo; Cerrato, Giuseppina; Morandi, Sara; Argirusis, Christos; Sourkouni, Georgia; Naldoni, Alberto; Capucci, Valentino

    2016-07-01

    The most important drawback of the use of TiO2 as photocatalyst is its lack of activity under visible light. To overcome this problem, the surface modification of commercial micro-sized TiO2 by means of high-energy ultrasound (US), employing CuCl2 as precursor molecule to obtain both metallic copper as well as copper oxides species at the TiO2 surface, is here. We have prepared samples with different copper content, in order to evaluate its impact on the photocatalytic performances of the semiconductor, and studied in particular the photodegradation in the gas phase of some volatile organic molecules (VOCs), namely acetone and acetaldehyde. We used a LED lamp in order to have only the contribution of the visible wavelengths to the TiO2 activation (typical LED lights have no emission in the UV region). We employed several techniques (i.e., HR-TEM, XRD, FT-IR and UV-Vis) in order to characterize the prepared samples, thus evidencing different sample morphologies as a function of the various copper content, with a coherent correlation between them and the photocatalytic results. Firstly, we demonstrated the possibility to use US to modify the TiO2, even when it is commercial and micro-sized as well; secondly, by avoiding completely the UV irradiation, we confirmed that pure TiO2 is not activated by visible light. On the other hand, we showed that copper metal and metal oxides nanoparticles strongly and positively affect its photocatalytic activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application

    Science.gov (United States)

    An, Ha-Rim; Park, So Young; Kim, Hyeran; Lee, Che Yoon; Choi, Saehae; Lee, Soon Chang; Seo, Soonjoo; Park, Edmond Changkyun; Oh, You-Kwan; Song, Chan-Geun; Won, Jonghan; Kim, Youn Jung; Lee, Jouhahn; Lee, Hyun Uk; Lee, Young-Chul

    2016-01-01

    We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) — approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) — resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications. PMID:27406992

  5. Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites

    International Nuclear Information System (INIS)

    Meng Xue; Zhang Lei; Dai Hongxing; Zhao Zhenxuan; Zhang Ruzhen; Liu Yuxi

    2011-01-01

    Monoclinic BiVO 4 single-crystallites with polyhedral, rod-like, tubular, leaf-like, and spherical morphologies have been fabricated using the triblock copolymer P123-assisted hydrothermal strategy with bismuth nitrate and ammonium metavanadate as metal source and various bases as pH adjustor. The physicochemical properties of the materials were characterized by means of the XRD, TGA/DSC, Raman, HRSEM, HRTEM/SAED, XPS, and UV-vis techniques. The photocatalytic activities of the as-fabricated BiVO 4 samples were measured for the photodegradation of methylene blue (MB) under visible-light irradiation. It is shown that factors, such as the pH value of precursor solution, the introduction of surfactant, the nature of alkaline source, and the hydrothermal temperature, have a crucial influence on the particle architecture of the BiVO 4 product. Among the as-fabricated BiVO 4 samples, the ones derived hydrothermally with P123 at pH = 6 or 10 possessed excellent optical absorption performance both in UV- and visible-light regions and hence showed outstanding photocatalytic activities for the addressed reaction. The unusually high visible-light-driven catalytic performance of monoclinically crystallized rod-like and tubular BiVO 4 single-crystallites is associated with the higher surface areas and concentrations of surface oxygen defects, and unique particle morphologies. The possible formation mechanisms of such multiple morphological BiVO 4 materials have also been discussed.

  6. Low-temperature solid-state preparation of ternary CdS/g-C_3N_4/CuS nanocomposites for enhanced visible-light photocatalytic H_2-production activity

    International Nuclear Information System (INIS)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun

    2017-01-01

    Highlights: • CdS/g-C_3N_4/CuS composite were synthesized by low-temperature solid-state method. • CdS/g-C_3N_4/CuS show enhanced visible-light photocatalytic H_2 evolution activity. • The enhanced photocatalytic H_2 production activity is due to the heterojunction. • Heterojunction between the components promote charge separation/transfer property. - Abstract: Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C_3N_4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C_3N_4/CuS composite exhibits a high visible-light photocatalytic H_2-production rate of 57.56 μmol h"−"1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na_2S/Na_2SO_3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C_3N_4/CuS composites show the enhanced visible-light photocatalytic H_2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C_3N_4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H_2-production activity.

  7. Hydrogen peroxide-assisted synthesis of novel three-dimensional octagonal-like CuO nanostructures with enhanced visible-light-driven photocatalytic activity

    Science.gov (United States)

    Chen, Xiangyu; Chu, Deqing; Wang, Limin; Hu, Wenhui; Yang, Huifang; Sun, Jingjing; Zhu, Shaopeng; Wang, Guowei; Tao, Jian; Zhang, Songsong

    2018-04-01

    Novel three-dimensional octagonal-like CuO micro-/nanostructures with diameters ranging from 10 to 15 μm have been successfully prepared by hydrogen peroxide-assisted hydrothermal method and subsequent calcination. The product morphology can be changed by simply ordering the amount of hydrogen peroxide (H2O2). When the amounts of H2O2 is increased, the length of the corner portion is increased and the width is narrower. The obtained octagonal CuO nanostructures were evaluated for their ability for the degradation of hazardous organic contaminants in water under visible-light irradiation. Comparing with commercial CuO and other CuO products, the CuO octagonal nanostructures exhibit excellent performance for photocatalytic decomposition of RhB (Rhodamine B). It is well established that effective photocatalytic performance results from its unique 3D octagonal nanostructures. We believe that the present work will provide some ideas for further fabrication of other novel nanostructures and exploration of their applications.

  8. Biomolecule-assisted construction of cadmium sulfide hollow spheres with structure-dependent photocatalytic activity.

    Science.gov (United States)

    Wei, Chengzhen; Zang, Wenzhe; Yin, Jingzhou; Lu, Qingyi; Chen, Qun; Liu, Rongmei; Gao, Feng

    2013-02-25

    In this study, we report the synthesis of monodispersive solid and hollow CdS spheres with structure-dependent photocatalytic abilities for dye photodegradation. The monodispersive CdS nanospheres were constructed with the assistance of the soulcarboxymthyi chitosan biopolymer under hydrothermal conditions. The solid CdS spheres were corroded by ammonia to form hollow CdS nanospheres through a dissolution-reprecipitation mechanism. Their visible-light photocatalytic activities were investigated, and the results show that both the solid and the hollow CdS spheres have visible-light photocatalytic abilities for the photodegradation of dyes. The photocatalytic properties of the CdS spheres were demonstrated to be structure dependent. Although the nanoparticles comprising the hollow spheres have larger sizes than those comprising the solid spheres, the hollow CdS spheres have better photocatalytic performances than the solid CdS spheres, which can be attributed to the special hollow structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    International Nuclear Information System (INIS)

    Liu, Wei; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-01

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag 3 PO 4 /ZnO system. The accumulated electrons in the CB of Ag 3 PO 4 can be transferred to O 2 adsorbed on the surface of the composite semiconductors and H 2 O 2 yields. H 2 O 2 reacts with electrons in succession to produce active ·OH to some extent. Display Omitted Highlights: ► Efficient visible-light-sensitized Ag 3 PO 4 /ZnO composites were successfully prepared. ► Effect of Ag 3 PO 4 content on the catalytic activity of Ag 3 PO 4 /ZnO is studied in detail. ► Rate constant of RhB degradation over Ag 3 PO 4 (3.0 wt.%)/ZnO is 3 times that of Ag 3 PO 4 . ► The active species in RhB degradation are examined by adding a series of scavengers. ► Visible light degradation mechanism of RhB over Ag 3 PO 4 /ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag 3 PO 4 /ZnO composites with various weight percents of Ag 3 PO 4 were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The ·OH radicals produced during the photocatalytic reaction was detected by the TA–PL technique. The photocatalytic property of Ag 3 PO 4 /ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag 3 PO 4 and ZnO. The rate constant of RhB degradation over Ag 3 PO 4 (3.0 wt.%)/ZnO is 3 times that of single-phase Ag 3 PO 4 . The optimal percentage of Ag 3 PO 4 in the composite is 3.0 wt.%. It is proposed that the ·OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic degradation of Rhodamine B by Ag 3 PO 4 /ZnO systems under visible light irradiation.

  11. Photocatalytic and Escherichia antibacterial activities of Ag-TiO2-SiO2 nanocomposite powder under simulated solar light irradiation

    Science.gov (United States)

    Van Dang, Han; Le, Vien Minh; Hoang, Hoang Anh

    2017-09-01

    The photocatalytic nanocomposite powder TiO2, TiO2-SiO2 and Ag-TiO2-SiO2 (ATS) were synthesized by sol-gel method assisted with hydrothermal treatment and characterized by X-ray diffraction (XRD), Raman spectroscopy (RAMAN), Fourier transformed infrared spectroscopy (FT-IR), Energy dispersive X-ray (EDX), Transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) surface area and UV-Vis absorption spectra analysis. The Escherichia coli (E. coli) antibacterial activity of synthesized photo-catalysts under simulated solar light have been also investigated. The heterogeneous A4TS10 with the 4 wt.% Ag and 10 wt.% SiO2 had anatase and rutile phase, spherical in shape with the particle size about 20 - 30 nm, specific surface area (SSA) of 218.4 m2/g, the band gap of 3.06 eV. The E. coli antibacterial activities of the synthesized samples under simulated solar light were also investigated under simulated solar light with 25 W of light intensity. The E. coli antibacterial ability of A4TS10 performed the highest photo-activity. E. coli bacteria was entirely killed after 30-minute irradiation and no bacterial regrowth was observed after 24 hours. The research results demonstrated that the photocatalytic A4TS10 is a promising green material to treatment wastewater infected bacteria application.

  12. Facile fabrication of Bi{sub 2}S{sub 3}/SnS{sub 2} heterojunction photocatalysts with efficient photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaomin; Huang, Guanbo [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Gao, Haihuan [Tianjin Fourth Middle School, Tianjin 300021 (China); Pan, Cheng; Wang, Huan [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Yan, Jing, E-mail: yanjingls2012@163.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Liu, Yu [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Qiu, Haixia [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Ma, Ning [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Gao, Jianping [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China)

    2016-07-25

    In this work, Bi{sub 2}S{sub 3}/SnS{sub 2} heterojunction photocatalysts were prepared by combining a hydrothermal technique and a facile in situ growth method. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma spectroscopy, X-ray photoelectron spectroscopy, UV–Vis diffusion reflectance spectroscopy and room-temperature photoluminescence spectra. Their photocatalytic performances were evaluated by degrading methyl orange (MO) in aqueous solution (50 mg/L) under visible light (λ > 420 nm) irradiation. It was found that when the mass percentage of Bi{sub 2}S{sub 3} in Bi{sub 2}S{sub 3}/SnS{sub 2} was 7.95 wt%, the as-prepared Bi{sub 2}S{sub 3}/SnS{sub 2} nanocomposite showed the best photocatalytic activity for the degradation of MO. The highly improved performance of the Bi{sub 2}S{sub 3}/SnS{sub 2} nanocomposite was mainly ascribed to the efficient charge separation. - Highlights: • Facile fabrication of novel Bi{sub 2}S{sub 3}/SnS{sub 2} heterojunction photocatalysts. • High-performance photocatalyst for the degradation of organic pollutants. • Good recyclability of catalyst without photo-corrosion. • The photocatalytic mechanism was proposed.

  13. Magnetically separable Cu{sub 2}O/chitosan–Fe{sub 3}O{sub 4} nanocomposites: Preparation, characterization and visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chunhua [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Xiao, Ling, E-mail: xiaoling9119@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Chen, Chunhua [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Cao, Qihua [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China)

    2015-04-01

    Highlights: • A novel magnetically-separable Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} photocatalyst was in situ prepared. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs had rough and porous chitosan surface layer embedded with Fe{sub 3}O{sub 4} NPs. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs showed large surface areas and special dimodal pore structure. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs showed superparamagnetism and could be easily magnetic separated. • Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs exhibited good visible-light photocatalytic activity and stability. - Abstract: A novel magnetically-separable visible-light-induced photocatalyst, Cu{sub 2}O/chitosan–Fe{sub 3}O{sub 4} nanocomposite (Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NC), was prepared via a facile one-step precipitation–reduction process by using magnetic chitosan chelating copper ions as precursor. The structure and properties of Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs were characterized by XRD, FT-IR, SEM, HRTEM, SAED, EDS, BET, VSM, XPS and UV–vis/DRS. The photocatalytic activity of Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs was evaluated by decolorization of reactive brilliant red X-3B (X-3B) under visible light irradiation. The characterization results indicated that Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs exhibited relatively large specific surface areas and special dimodal pore structure because Cu{sub 2}O was wrapped in chitosan matrix embedded with Fe{sub 3}O{sub 4} nanoparticles. The tight combination of magnetic Fe{sub 3}O{sub 4} and semiconductor Cu{sub 2}O through chitosan made the nanocomposites show good superparamagnetism and photocatalytic activity. It was found that X-3B could be decolorized more efficiently in acidic media than in neutral or alkaline media. The decolorization of X-3B was ascribed to the synergistic effect of photocatalysis and adsorption. Cu{sub 2}O/CS–Fe{sub 3}O{sub 4} NCs could be easily separated from the solution by an external magnet, and the decolorization rates of X-3B

  14. Fabrication of hydrophilic S/In{sub 2}O{sub 3} core–shell nanocomposite for enhancement of photocatalytic performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Sugang; Cao, Zhisheng; Fu, Xianliang [Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000 (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000 (China); Department of Chemistry, Anhui Science and Technology University, Anhui Fengyang, 233100 (China)

    2015-01-01

    Graphical abstract: - Highlights: • The elemental core–shell heterostructure was reported for the first time. • The hydrophilic core–shell S/In{sub 2}O{sub 3} photocatalyst was prepared by ball milling. • The rate constant of 10% S/In{sub 2}O{sub 3} is 11.6 and 13.5 times that of In{sub 2}O{sub 3} and S. • The hydrophilicity and efficiently separation of carriers are major factor. - Abstract: Recently, elemental semiconductors as new photocatalysts excited by visible light have attracted great attention due to their potential applications for environmental remediation and clean energy generation. However, it is still a challenge to fabricate elemental photocatalysts with high activity and stability. In this paper, a straightforward ball-milling method was carried out to fabricate core–shell S/In{sub 2}O{sub 3} nanocomposite photocatalyst with high performance. The photocatalyst was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) method, photoluminescence spectra (PL) and super-hydrophilic experiment. The results showed that In{sub 2}O{sub 3} nanoparticles were successfully grown round of S blocks and formed core–shell heterostructures. The 10% S/In{sub 2}O{sub 3} core–shell nanocomposite exhibited the highest photocatalytic activity for degradation of rhodamine B (RhB) under visible light irradiation. The reaction rate constant (k) of the 10% S/In{sub 2}O{sub 3} core–shell nanocomposite is about 8.7 times as high as the sum of pure In{sub 2}O{sub 3} and S because of the formation of core–shell S/In{sub 2}O{sub 3} heterostructures, which might remedy the drawbacks of poor hydrophilicity of S, enhance visible light absorption and separate the photogenerated carriers efficiently. Furthermore, the mechanism of influence on the photocatalytic activity of the S

  15. Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants over Flower-Like Bi2O2CO3 Dotted with Ag@AgBr

    Directory of Open Access Journals (Sweden)

    Shuanglong Lin

    2016-10-01

    Full Text Available A facile and feasible oil-in-water self-assembly approach was developed to synthesize flower-like Ag@AgBr/Bi2O2CO3 micro-composites. The photocatalytic activities of the samples were evaluated through methylene blue degradation under visible light irradiation. Compared to Bi2O2CO3, flower-like Ag@AgBr/Bi2O2CO3 micro-composites show enhanced photocatalytic activities. In addition, results indicate that both the physicochemical properties and associated photocatalytic activities of Ag@AgBr/Bi2O2CO3 composites are shown to be dependent on the loading quantity of Ag@AgBr. The highest photocatalytic performance was achieved at 7 wt % Ag@AgBr, degrading 95.18% methylene blue (MB after 20 min of irradiation, which is over 1.52 and 3.56 times more efficient than that of pure Ag@AgBr and pure Bi2O2CO3, respectively. Bisphenol A (BPA was also degraded to further demonstrate the degradation ability of Ag@AgBr/Bi2O2CO3. A photocatalytic mechanism for the degradation of organic compounds over Ag@AgBr/Bi2O2CO3 was proposed. Results from this study illustrate an entirely new approach to fabricate semiconductor composites containing Ag@AgX/bismuth (X = a halogen.

  16. The CeO{sub 2}/Ag{sub 3}PO{sub 4} photocatalyst with stability and high photocatalytic activity under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yanhua [School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 (China); Zhao, Haozhu; Chen, Zhigang; Huang, Liying; Xu, Hui; Li, Huaming [School of the Environment, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 (China); Wang, Weiren [Department of Chemistry, Rice University, Houston, Texas, 77005 (United States)

    2016-09-15

    The CeO{sub 2}/Ag{sub 3}PO{sub 4} composite photocatalysts are synthesized by an in situ precipitation method. The XRD, FT-IR, XPS, TEM, EDS, and DRS are used to characterize the structure of the samples. The photocatalytic performance of the prepared samples is evaluated by the photocatalytic degradation of methylene blue (MB), rhodamine B (RhB), and ciprofloxacin (CIP). The results show that CeO{sub 2}/Ag{sub 3}PO{sub 4} hybrid materials exhibit much higher photocatalytic activity than the Ag{sub 3}PO{sub 4} alone. The optimal CeO{sub 2} content in CeO{sub 2}/Ag{sub 3}PO{sub 4} composites is found to be molar ratio 1 wt%. Photocurrent response of CeO{sub 2}/Ag{sub 3}PO{sub 4} (1 wt%) is about 1.5 times as high as that of the pure Ag{sub 3}PO{sub 4}. The increase of photocatalytic activity of CeO{sub 2}/Ag{sub 3}PO{sub 4} composites could be mainly attributed to the heterojunction between CeO{sub 2} and Ag{sub 3}PO{sub 4}. The trapping experiment has demonstrated that holes serve as the main active species for the degradation of MB under visible light irradiation. A photocatalytic mechanism is also proposed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Photocatalytic degradation of methylene blue on Fe3+-doped TiO2 nanoparticles under visible light irradiation

    Institute of Scientific and Technical Information of China (English)

    SU Bitao; WANG Ke; BAI Jie; MU Hongmei; TONG Yongchun; MIN Shixiong; SHE Shixiong; LEI Ziqiang

    2007-01-01

    Fe3+-doped TiO2 composite nanoparticles with different doping amounts were successfully synthesized using sol-gel method and characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV-Vis) diffuse reflectance spectra (DRS). The photocatalytic degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of Fe3+/TiO2 nanoparticles under visible light irradia-tion. The influence of doping amount of Fe3+ (ω: 0.00%-3.00%) on photocatalytic activities of TiO2 was investigated.Results show that the size of Fe3+/TiO2 particles decreases with the increase of the amount of Fe3+ and their absorptionspectra are broaden and absorption intensities are also increased. Doping Fe3+ can control the conversion of TiO2 from anatase to rutile. The doping amount of Fe3+ remarkably affects the activity of the catalyst, and the optimum efficiency occurs at about the doping amount of 0.3%. The appropriate doping of Fe3+ can markedly increase the catalytic activity of TiO2 under visible light irradiation.

  18. Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres

    Science.gov (United States)

    Zhai, Jiali; Yu, Hongwen; Li, Haiyan; Sun, Lei; Zhang, Kexin; Yang, Hongjun

    2015-07-01

    A facile approach of fabricating homogeneous graphene oxide (GO)-wrapped Bi2WO6 microspheres (GO/Bi2WO6) is developed. The transmission electron microscopy (TEM) results show that a heterojunction interface between GO and Bi2WO6. The UV-vis diffuse reflection spectra (DRS) reveal that the as-prepared GO/Bi2WO6 composites own more intensive absorption in the visible light range compared with pure Bi2WO6. These characteristic structural and optical properties endow GO/Bi2WO6 composites with enhanced photocatalytic activity. The enhanced photocatalytic activity of the GO/Bi2WO6 is attributed predominantly to the synergetic effect between GO and Bi2WO6, causing rapid generation and separation of photo-generated charge carriers.

  19. Hierarchical nanostructured 3D flowerlike BiOX particles with excellent visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jinling, E-mail: sjl2010004@imust.cn; Wang, Baoying; Guo, Xianjie; Wang, Ruifen; Dong, Zhongping [Inner Mongolia University of Science and Technology, School of Material and Metallurgy (China)

    2016-08-15

    BiOX (X = Cl, Br, and I) semiconductors were firstly prepared by a facile mixed solvent solvothermal route. Several characterization tools were employed to study the phase structures, morphologies, and optical properties of the samples. The in situ chemically mixed prepared BiOX particles with diameters 3.0–5.0 μm, fabricated by nanoplates in the thickness range of 5–18 nm, exhibited the highest visible-light photocatalytic activity among the as-prepared samples and Degussa P{sub 25} for the degradation of Rhodamine B (RhB). This result can be due to the narrow bandgap, broad sunlight range, high electronic negativity, and efficient separation of photoinduced electron–hole pairs. Finally, a possible photocatalytic mechanism has been proposed.

  20. Optical properties and visible-light-driven photocatalytic activity of Bi8V2O17 nanoparticles

    International Nuclear Information System (INIS)

    Pu, Yinfu; Liu, Ting; Huang, Yanlin; Chen, Cuili; Kim, Sun Il; Seo, Hyo Jin

    2015-01-01

    Bi 8 V 2 O 17 (4Bi 2 O 3 ·V 2 O 5 ) nanoparticles with the uniform size of about 50 nm were fabricated through the Pechini method. The crystal structure was investigated by X-ray powder diffraction and the structural refinement. The surface of the as-synthesized samples was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy, and X-ray photoelectron spectroscopy. The optical properties, band structure, and the degradation mechanisms were discussed. The experimental results demonstrate that Bi 8 V 2 O 17 nanoparticles have an efficient visible-light absorption with band-gap energy of 1.85 eV and a direct allowed electronic transition. The photocatalytic activity was evaluated by the photodegradation of the methylene blue (MB) under visible-light irradiation (λ > 420 nm) as a function of time. These results indicate that Bi 8 V 2 O 17 could be a potential photocatalyst driven by visible light. The effective photocatalytic activity was discussed on the base of the crystal structure characteristic

  1. Photocatalytic ozonation under visible light for the remediation of water effluents and its integration with an electro-membrane bioreactor.

    Science.gov (United States)

    Toledano Garcia, Diego; Ozer, Lütfiye Y; Parrino, Francesco; Ahmed, Menatalla; Brudecki, Grzegorz Przemyslaw; Hasan, Shadi W; Palmisano, Giovanni

    2018-06-06

    Photocatalysis and photocatalytic ozonation under visible light have been applied for the purification of a complex aqueous matrix such as the grey water of Masdar City (UAE), by using N-doped brookite-rutile catalysts. Preliminary runs on 4-nitrophenol (4-NP) solutions allowed to test the reaction system in the presence of a model pollutant and to afford the relevant kinetic parameters of the process. Subsequently, the remediation of grey water effluent has been evaluated in terms of the reduction of total organic carbon (TOC) and bacterial counts. The concentration of the most abundant inorganic ionic species in the effluent has been also monitored during reaction. Photocatalytic ozonation under visible light allowed to reduce the TOC content of the grey water by ca. 60% in the optimized experimental conditions and to reduce the total bacterial count by ca. 97%. The extent of TOC mineralization reached ca. 80% when the photocatalytic ozonation occurred downstream to a preliminary electro-membrane bioreactor (eMBR). Coupling the two processes enhanced the global efficiency. In fact, the eMBR treatment lowered the turbidity and the organic load of the effluent entering the photocatalytic ozonation treatment, which in turn enhanced the extent of purification and disinfection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance

    Science.gov (United States)

    Nie, Ning; Zhang, Liuyang; Fu, Junwei; Cheng, Bei; Yu, Jiaguo

    2018-05-01

    Photocatalytic reduction of CO2 into hydrocarbon fuels has been regarded as a promising approach to ease the greenhouse effect and the energy shortage. Herein, an electrostatic self-assembly method was exploited to prepare g-C3N4/ZnO composite microsphere. This method simply utilized the opposite surface charge of each component, achieving a hierarchical structure with intimate contact between them. A much improved photocatalytic CO2 reduction activity was attained. The CH3OH production rate was 1.32 μmol h-1 g-1, which was 2.1 and 4.1 times more than that of the pristine ZnO and g-C3N4, respectively. This facile design bestowed the g-C3N4/ZnO composite an extended light adsorption caused by multi-light scattering effect. It also guaranteed the uniform distribution of g-C3N4 nanosheets on the surface of ZnO microspheres, maximizing their advantage and synergistic effect. Most importantly, the preeminent performance was proposed and validated based on the direct Z-scheme. The recombination rate was considerably suppressed. This work features the meliority of constructing hierarchical direct Z-scheme structures in photocatalytic CO2 reduction reactions.

  3. Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2

    International Nuclear Information System (INIS)

    Triantis, T.M.; Fotiou, T.; Kaloudis, T.; Kontos, A.G.; Falaras, P.; Dionysiou, D.D.; Pelaez, M.; Hiskia, A.

    2012-01-01

    Highlights: ► N-TiO 2 exhibited effective degradation of MC-LR under UV-A, solar and visible light. ► Complete photocatalytic mineralization of MC-LR was achieved under UV-A and solar light. ► The organic nitrogen is mainly released as ammonium and nitrate ions. - Abstract: In an attempt to face serious environmental hazards, the degradation of microcystin-LR (MC-LR), one of the most common and more toxic water soluble cyanotoxin compounds released by cyanobacteria blooms, was investigated using nitrogen doped TiO 2 (N-TiO 2 ) photocatalyst, under UV-A, solar and visible light. Commercial Degussa P25 TiO 2 , Kronos and reference TiO 2 nanopowders were used for comparison. It was found that under UV-A irradiation, all photocatalysts were effective in toxin elimination. The higher MC-LR degradation (99%) was observed with Degussa P25 TiO 2 followed by N-TiO 2 with 96% toxin destruction after 20 min of illumination. Under solar light illumination, N-TiO 2 nanocatalyst exhibits similar photocatalytic activity with that of commercially available materials such as Degussa P25 and Kronos TiO 2 for the destruction of MC-LR. Upon irradiation with visible light Degussa P25 practically did not show any response, while the N-TiO 2 displayed remarkable photocatalytic efficiency. In addition, it has been shown that photodegradation products did not present any significant protein phosphatase inhibition activity, proving that toxicity is proportional only to the remaining MC-LR in solution. Finally, total organic carbon (TOC) and inorganic ions (NO 2 − , NO 3 − and NH 4 + ) determinations confirmed that complete photocatalytic mineralization of MC-LR was achieved under both UV-A and solar light.

  4. Improved Visible Light Photocatalytic Activity for TiO2 Nanomaterials by Codoping with Zinc and Sulfur

    Directory of Open Access Journals (Sweden)

    Qianzhi Xu

    2015-01-01

    Full Text Available S/Zn codoped TiO2 nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2 exhibited higher photocatalytic activity than pure TiO2 and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.

  5. An LED Approach for Measuring the Photocatalytic Breakdown of Crystal Violet Dye

    Science.gov (United States)

    Ryan, Robert E.; Underwood, Lauren W.; ONeal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    dye degradation on the slides over time, a temperature-stabilized white light LED was used to illuminate the opposite side of the slides. As the dye degraded, the amount of light from the white light LED transmitted through the slide was monitored with a spectrometer and subsequently analyzed to determine and compare the rate of dye degradation for photocatalytically coated versus uncoated slide surfaces. The long-term stability of the spectrometer/white light LED combination, which required only a single reference spectra to be taken for a time series sequence of several hours, enabled accurate measurements of transmitted light over time. Time series transmission curves were generated and results demonstrated that over time the transmission increased much more rapidly on the coated slides than on the control slides. This experimental configuration and methodology for photocatalytic activity measurement minimizes many external variable effects and allows low light level studies to be performed. This study also compares the advantages of this novel LED light source design to traditional mercury lamp systems and non-LED lamp approaches that have conventionally been used. The methodology and experimental design research summarized in this abstract is partly funded by the Department of Homeland Security, Science and Technology Directorate, and by the NASA Stennis Space Center Innovative Partnerships Program.

  6. Photocatalytic degradation of tartrazine dye using CuO straw-sheaf-like nanostructures.

    Science.gov (United States)

    Rao, Martha Purnachander; Wu, Jerry J; Asiri, Abdullah M; Anandan, Sambandam

    2017-03-01

    Straw-sheaf-like CuO nanostructures were fruitfully synthesized using a chemical precipitation approach for the photocatalytic degradation assessment of tartrazine. Phase identification, composition, and morphological outlook of prepared CuO nanostructures were established by X-ray diffraction and scanning electron microscopy analysis. The photocatalytic performance of the synthesized CuO nanostructures was appraised in the presence of visible light and the possible intermediates formed during the photocatalytic degradation were analyzed by gas chromatography-mass spectrometry. A suitable degradation pathway has also been proposed.

  7. Synthesis of frost-like CuO combined graphene-TiO{sub 2} by self-assembly method and its high photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cung Tien [Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam, 356-706 (Korea, Republic of); Cho, Kwang-Youn [Korea Institutes of Ceramic Engineering and Technology, Soho-ro, Jinju-Si, Gyeongsangnam-do (Korea, Republic of); Oh, Won-Chun, E-mail: wc_oh@hanseo.ac.kr [Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam, 356-706 (Korea, Republic of)

    2017-08-01

    become a new potential material for photodegradation activity with excellent photodegradation. The scavenging experiments confirmed that ·OH and h{sup +} play a major role in the photocatalytic reaction than O{sub 2}{sup ·−} or both hydroxyl and holes are the active species responsible for the RBB degradation under visible light irradiation. After five repeated cycles to investigate the stability of photocatalytic performance, the CuO-graphene-TiO{sub 2} had high stability under visible light irradiation.

  8. Visible-light CO{sub 2} photocatalytic reduction performance of ball-flower-like Bi{sub 2}WO{sub 6} synthesized without organic precursor: Effect of post-calcination and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhuxing; Yang, Zhenmei; Liu, Hongfeng [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China); Wang, Haiqiang, E-mail: wanghaiqiang2008@126.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China); Wu, Zhongbiao, E-mail: zbwu@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China)

    2014-10-01

    Graphical abstract: - Highlights: • Photocatalytic CO{sub 2} reduction on non-organic synthesized PB-Bi{sub 2}WO{sub 6} was investigated. • CO was detected as the major product. • Increased amount of CO was yielded in the condition with little water vapor. • Photocatalytic performance was enhanced with Bi{sub 2}WO{sub 6} after 550 °C post-annealing. • Renewing the catalysts used in CO{sub 2} photoreduction by water washing was achieved. - Abstract: Nanoplates-composed ball-flower-like Bi{sub 2}WO{sub 6} (PB-Bi{sub 2}WO{sub 6}) was synthesized by a hydrothermal method without any organic precursor and its performance in photocatalytic reduction of CO{sub 2} was investigated in a continuous-flow reaction system under visible light irradiation (420 nm < λ < 620 nm). CO was detected as the main product of this photocatalytic process and H{sub 2}O was found to suppress the conversion of CO{sub 2} to CO due to its competitive absorption with CO{sub 2} on the medium strength basic sites of Bi{sub 2}WO{sub 6}. PB-Bi{sub 2}WO{sub 6} annealed at 550 °C showed superior CO yield in the condition with little water vapor. It might be attributed to the enhanced crystallinity, significantly decreased recombination rate of photo-generated electrons and holes and more stable basic sites for strengthened CO{sub 2} adsorption, according to characterization results by XRD, SEM, UV–vis SRS, PL and CO{sub 2}-TPD. However, comparing with PB-Bi{sub 2}WO{sub 6}, the negative effect of H{sub 2}O was even more prominent on the annealed sample because of the reduced surface area. Yield decrease was observed during the irradiation time due to the adsorption of intermediates generated but fortunately washing with deionized water was found to be an effective way to renew the catalyst.

  9. UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations.

    Science.gov (United States)

    Yu, Yang; Wen, Wei; Qian, Xin-Yue; Liu, Jia-Bin; Wu, Jin-Ming

    2017-01-24

    To magnify anatase/rutile phase junction effects through appropriate Au decorations, a facile solution-based approach was developed to synthesize Au/TiO 2 nanoforests with controlled Au locations. The nanoforests cons®isted of anatase nanowires surrounded by radially grown rutile branches, on which Au nanoparticles were deposited with preferred locations controlled by simply altering the order of the fabrication step. The Au-decoration increased the photocatalytic activity under the illumination of either UV or visible light, because of the beneficial effects of either electron trapping or localized surface plasmon resonance (LSPR). Gold nanoparticles located preferably at the interface of anatase/rutile led to a further enhanced photocatalytic activity. The appropriate distributions of Au nanoparticles magnify the beneficial effects arising from the anatase/rutile phase junctions when illuminated by UV light. Under the visible light illumination, the LSPR effect followed by the consecutive electron transfer explains the enhanced photocatalysis. This study provides a facile route to control locations of gold nanoparticles in one-dimensional nanostructured arrays of multiple-phases semiconductors for achieving a further increased photocatalytic activity.

  10. Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation

    International Nuclear Information System (INIS)

    Sun, Lin; Shao, Rong; Tang, Lanqin; Chen, Zhidong

    2013-01-01

    Highlights: ► ZnFe 2 O 4 /ZnO nanocomposites immobilized on graphene were successfully prepared. ► The photocatalyst exhibited excellent reactivity under solar light irradiation. ► The photocatalysts could be recycled by external magnetic field conveniently. ► The photocatalytic mechanism of the novel material was proposed in detail. -- Abstract: Magnetically recyclable ZnFe 2 O 4 /ZnO nanocomposites immobilized on different content of graphene with favorable photocatalytic activity under solar light irradiation were successfully prepared on the basis of an ultrasound aided solution method. The molar ratio of ZnFe 2 O 4 to ZnO and the content of graphene could be controlled by adjusting the amount of zinc salts and graphene oxide dispersions. The most excellent photocatalytic activity under solar light irradiation was displayed when the molar ratio of ZnFe 2 O 4 to ZnO was 0.1 and the weight ratio of graphene to ZnFe 2 O 4 /ZnO was 0.04. Furthermore, the presence of magnetical ZnFe 2 O 4 will facilitate the recycling process of photocatalyst nanoparticles

  11. Influence of visible-light irradiation on physicochemical and photocatalytic properties of nitrogen-doped three-dimensional (3D) titanium dioxide

    International Nuclear Information System (INIS)

    Lee, Hyun Uk; Lee, Soon Chang; Choi, Saehae; Son, Byoungchul; Kim, Hyeran; Lee, Sang Moon; Kim, Hae Jin; Lee, Jouhahn

    2013-01-01

    Highlights: • The N-3D TiO 2 was synthesized at low temperature via a modified hydrothermal process and ultrasound irradiation. • The N-3D TiO 2 is irradiated with visible-light (*N-3D TiO 2 ) to improve the hydroxylation of its surface. • The N- and *N-3D TiO 2 exhibited excellent photocatalytic and antibacterial activities. • Moreover, the *N-3D TiO 2 exhibits excellent photocatalytic stability. -- Abstract: We report highly active visible-light driven nitrogen-doped three-dimensional polycrystalline anatase TiO 2 photocatalysts (N-3D TiO 2 ) for environmental and biomedical applications. N-3D TiO 2 is synthesized at a low temperature ( 2 is additionally irradiated with visible-light to improve the hydroxylation of its surface. Under visible-light irradiation, the photocatalytic activity of visible-light irradiated N-3D TiO 2 (*N-3D TiO 2 ; [k] = 1.435 h −1 ) is 26.1 times higher than that of 3D TiO 2 ([k] = 0.055 h −1 ). The *N-3D TiO 2 is highly recyclable and retained 91.8% of the initial decolorization rate after fifteen cycles. Interestingly, the *N-3D TiO 2 shows very strong antibacterial properties against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) after exposure to visible-light for 3 h. The antibacterial properties of *N-3D TiO 2 are more effective than those of TiO 2 , 3D TiO 2 , and N-3D TiO 2 . More than 91.3% of the E. coli is sterilized after ten cycles. There are a large increase in the photocatalytic and antibacterial activity of *N-3D TiO 2 relative to that of N-3D TiO 2 owing to the hydroxylation of the N-3D TiO 2 surface as a result of the visible-light irradiation. These results indicate that *N-3D TiO 2 might have utility in several promising applications such as highly efficient water/air treatment, inactivation of pathogenic microorganisms, and solar-energy conversion

  12. Preparation of Ag–AgBr/TiO2–graphene and its visible light photocatalytic activity enhancement for the degradation of polyacrylamide

    International Nuclear Information System (INIS)

    Rong, Xinshan; Qiu, Fengxian; Zhang, Chen; Fu, Liang; Wang, Yuanyuan; Yang, Dongya

    2015-01-01

    Highlights: • Ag–AgBr/TiO 2 –graphene (AATG) composite photocatalyst was prepared. • AATG was applied to photocatalytic degradation of polyacrylamide (PAM). • Degradation condition such as mass ratio of TiO 2 /graphene, dose, pH and time, was investigated. • The AATG composite photocatalyst can be separated from system effectively and easily. • The prepared AATG exhibits significant photocatalytic activity after five successive recycles. - Abstract: In current work, TiO 2 was modified by Ag/AgBr semiconductor and graphene to enhance its photocatalytic activity for the degradation of polyacrylamide (PAM). Ag–AgBr/TiO 2 –graphene (AATG) composite photocatalysts were prepared by the deposition–precipitation method combining a subsequent calcination process. The structure, surface morphology and chemical composition of AATG composite photocatalysts were investigated by XRD, XPS, DRS, PL, SEM, EDS, TEM, and HRTEM methods. XRD and XPS results show that Ag 0 is generated from Ag + under visible light irradiation. Degradation of PAM was chosen to evaluate photocatalytic activity using AATG composite as photocatalysts. The conditions such as mass ratio of TiO 2 /graphene, catalyst dose, pH and contact time, were investigated for the degradation of PAM. Possible pathway and mechanism were proposed for photocatalytic degradation of PAM over AATG composite photocatalyst under visible light irradiation. The prepared AATG composite photocatalyst can be separated from system effectively and easily; and exhibits significant photocatalytic activity after five successive recycles, which confirmed that the components of the AATG are not photo decomposed and the structure is stable during the photocatalytic process

  13. Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures

    Science.gov (United States)

    Meng, Fanke

    Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence

  14. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Kelly, Peter J.; West, Glen T. [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Tosheva, Lubomira; Edge, Michele [School of Science and the Environment, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom)

    2017-01-15

    Highlights: • Bismuth tungstate coatings were deposited by reactive magnetron sputtering. • Oscillating bowl was introduced to the system to enable coating of nanopartulates. • Deposition of Bi{sub 2}WO{sub 6} enhanced visible light activity of titania nanoparticles. • The best results were obtained for coating with Bi:W ratio of approximately 2:1. • Deposition of Bi{sub 2}WO{sub 6} onto TiO{sub 2} resulted in more efficient electron-hole separation. - Abstract: Titanium dioxide − bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO{sub 2} evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO{sub 2} nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these

  15. Large-scale controllable synthesis of dumbbell-like BiVO4 photocatalysts with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Lu Yang; Luo Yongsong; Kong Dezhi; Zhang Deyang; Jia Yonglei; Zhang Xinwei

    2012-01-01

    The controllable synthesis of novel dumbbell-like BiVO 4 hierarchical nanostructures has been successfully obtained via a simple hydrothermal route. The as-synthesized products were studied by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and UV–vis absorption spectroscopy. The results showed that the nucleation and growth of the nanodumbbells were governed by an oriented aggregation growth mechanism. It is noteworthy that the concentration of poly(vinyl pyrrolidone) and the volume ratio of H 2 O to CH 3 COOH were crucial to the growth of the final nanoarchitectures. Control experiments were also carried out to investigate the factors which impact on the morphology of the products. Furthermore, the as-prepared BiVO 4 hierarchical nanostructures demonstrated the superior visible-light-driven photocatalytic efficiency, which is helpful for the separation and recycle considering their promising applications in harmful pollutants disposal. - Graphical Abstract: The controllable synthesis of novel dumbbell-like BiVO 4 hierarchical nanostructures has been successfully obtained via a simple hydrothermal route; the as-prepared BiVO 4 hierarchical nanostructures demonstrated the superior visible-light-driven photocatalytic efficiency. Highlights: ►Dumbbell-like BiVO 4 structures were synthesized and characterized for the first time. ► The volume ratios of H 2 O to CH 3 COOH were crucial to the final morphologies. ► Their photocatalytic activity was up to 90% under visible-light irradiation. ► Dumbbell-like BiVO 4 structures may utilize the pollutant disposal.

  16. High solar-light photocatalytic activity of using Cu3Se2/rGO nanocomposites synthesized by a green co-precipitation method

    Science.gov (United States)

    Nouri, Morteza; Saray, Abdolali Moghaddam; Azimi, H. R.; Yousefi, Ramin

    2017-11-01

    Current work presents a facile, cost-effective, and green method to synthesize copper selenide nanostructures and copper selenide/graphene nanocomposites. The products were synthesized by a co-precipitation method by glycine amino acid as a green surfactant and graphene oxide (GO) sheets as a graphene source. X-ray diffraction patterns (XRD) of the products indicated that the products were Cu2Se3 with tetragonal phase. Fourier transform infrared (FTIR) spectroscopy and the XRD patterns indicated that the GO sheets were changed into reduced GO (rGO) during the synthesis process. Scanning and transmission electron microscopy (SEM and TEM) images showed the nanoparticles (NPs) that were decorated on rGO sheets had the significantly smaller size in compared to the pristine NPs. UV-vis results revealed that, the absorption peak of the products were in the visible region with a band-gap value between 1.85 eV and 1.95 eV. Finally, the products were applied as photocatalytic materials to remove Methylene Blue (MB) dye under solar-light and visible-light irradiation conditions. It was observed; the rGO had a significant role in enhancing the photocatalytic performance of the products and Cu2Se3/rGO (15%) could degrade more than 91% and 73% of MB only during 1 h under solar-light and visible-light sources, respectively.

  17. Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity

    Science.gov (United States)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun

    2017-01-01

    Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C3N4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C3N4/CuS composite exhibits a high visible-light photocatalytic H2-production rate of 57.56 μmol h-1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na2S/Na2SO3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C3N4/CuS composites show the enhanced visible-light photocatalytic H2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C3N4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H2-production activity.

  18. Facile synthesis of a conjugation-grafted-TiO{sub 2} nanohybrid with enhanced visible-light photocatalytic properties from nanotube titanic acid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yanru; Zhang, Min, E-mail: zm1012@henu.edu.cn; Zhang, Zhihua; Li, Qiuye; Yang, Jianjun [Henan University, National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials (China)

    2016-08-15

    A conjugation-grafted-TiO{sub 2} nanohybrid was synthesized by chemically grafting conjugated structures on the surface of nanotube titanic acid (NTA) precursor-based TiO{sub 2} through the controlled thermal degradation of a coacervated polymer layer of polyvinyl alcohol (PVA). The interfacial interactions between the NTA precursor-based TiO{sub 2} and conjugated structures were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Moreover, the effects of the NTA’s pretreatment temperature and the weight ratio of NTA to PVA on the photocatalytic degradation of methyl orange were also investigated. A higher NTA pretreatment temperature and a lower NTA to PVA weight ratio were found to enhance photogenerated electron–hole separation efficiency and photocatalytic activity. Moreover, the conjugation-grafted-TiO{sub 2} nanohybrid synthesized from the NTA precursor displayed a much higher visible-light photocatalytic activity than that of the sample obtained from the P25 precursor. The origin of the enhanced photocatalytic activity under visible-light irradiation is also discussed in detail.

  19. Photocatalytic Hydrogen or Oxygen Evolution from Water over S- or N-Doped TiO2 under Visible Light

    Directory of Open Access Journals (Sweden)

    Kazumoto Nishijima

    2008-01-01

    Full Text Available S- or N-doping of TiO2 powder having an anatase or rutile phase extended the photocatalytic activity for water oxidation and reduction under UV light and visible light irradiation. For the reduction of water, anatase-doped TiO2 showed higher level of activity than that of doped TiO2 having a rutile phase using ethanol as an electron donor. Furthermore, the activity level of S-doped TiO2 for hydrogen evolution was higher than that of N-doped TiO2 photocatalysts under visible light. Photocatalytic oxidation of water on doped TiO2 having a rutile phase proceeded with fairly high efficiency when Fe3+ ions were used as electron acceptors compared to that on doped TiO2 having an anatase phase. In addition, water splitting under visible light irradiation was achieved by construction of a Z-scheme photocatalysis system employing the doped TiO2 having anatase and rutile phases for H2 and O2 evolution and the I−/IO3− redox couple as an electron relay.

  20. Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation

    International Nuclear Information System (INIS)

    Zhao Xu; Li Zongwei; Chen Yi; Shi Liyi; Zhu Yongfa

    2008-01-01

    Solid-phase photocatalytic degradation of polyethylene (PE) plastic, one of the most common commercial plastic, over copper phthalocyanine (CuPc) modified TiO 2 (TiO 2 /CuPc) photocatalyst was investigated in the ambient air under solar light irradiation. Higher PE weight loss rate, greater texture change; more amount of generated CO 2 , which is the main product of the photocatalytic degradation of the composite PEC plastic can be achieved in the system of PE-(TiO 2 /CuPc) in comparison with PE-TiO 2 system. The CuPc promoted charge separation of TiO 2 and enhanced the photocatalytic degradation of PE based on the analysis of surface photovoltage spectroscopy (SPS). During the photodegradation of PE plastic, the reactive oxygen species generated on TiO 2 or TiO 2 /CuPc particle surfaces play important roles. The present study demonstrates that the combination of polymer plastic with TiO 2 /CuPc composite photocatalyst in the form of thin film is a practical and useful way to photodegrade plastic contaminants under solar light irradiation

  1. New ZnO@Cardanol Porphyrin Composite Nanomaterials with Enhanced Photocatalytic Capability under Solar Light Irradiation

    Science.gov (United States)

    Ribeiro, Viviane Gomes Pereira; Marcelo, Ana Maria Pereira; da Silva, Kássia Teixeira; da Silva, Fernando Luiz Firmino; Mota, João Paulo Ferreira; do Nascimento, João Paulo Costa; Sombra, Antonio Sérgio Bezerra; Clemente, Claudenilson da Silva; Mazzetto, Selma Elaine

    2017-01-01

    This work describes the synthesis, characterization, and photocatalytic activity of new composite nanomaterials based on ZnO nanostructures impregnated by lipophlilic porphyrins derived from cashew nut shell liquid (CNSL). The obtained nanomaterials were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and steady-state photoluminescence spectra (PL). The results confirm nanostructures showing average diameter of 55 nm and an improved absorption in the visible region. Further, the FTIR analysis proved the existence of non-covalent interactions between the porphyrin molecules and ZnO. The photocatalytic activity of prepared photocatalysts was investigated by degradation of rhodamine B (RhB) in aqueous solution under visible light irradiation and natural sunlight. It was demonstrated that the photocatalytic activity increases in the presence of the porphyrins and, also, depends on the irradiation source. The development of composite photocatalysts based on porphyrins derived from CNSL provides an alternative approach to eliminate efficiently toxic wastes from water under ambient conditions. PMID:28934117

  2. New ZnO@Cardanol Porphyrin Composite Nanomaterials with Enhanced Photocatalytic Capability under Solar Light Irradiation

    Directory of Open Access Journals (Sweden)

    Viviane Gomes Pereira Ribeiro

    2017-09-01

    Full Text Available This work describes the synthesis, characterization, and photocatalytic activity of new composite nanomaterials based on ZnO nanostructures impregnated by lipophlilic porphyrins derived from cashew nut shell liquid (CNSL. The obtained nanomaterials were characterized by X-ray diffraction (XRD, UV-Vis diffuse reflectance spectroscopy (DRS, Fourier transform infrared spectroscopy (FT-IR, transmission electron microscopy (TEM, and steady-state photoluminescence spectra (PL. The results confirm nanostructures showing average diameter of 55 nm and an improved absorption in the visible region. Further, the FTIR analysis proved the existence of non-covalent interactions between the porphyrin molecules and ZnO. The photocatalytic activity of prepared photocatalysts was investigated by degradation of rhodamine B (RhB in aqueous solution under visible light irradiation and natural sunlight. It was demonstrated that the photocatalytic activity increases in the presence of the porphyrins and, also, depends on the irradiation source. The development of composite photocatalysts based on porphyrins derived from CNSL provides an alternative approach to eliminate efficiently toxic wastes from water under ambient conditions.

  3. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn_2S_4/g-C_3N_4 photocatalyst

    International Nuclear Information System (INIS)

    Qiu, Pengxiang; Yao, Jinhua; Chen, Huan; Jiang, Fang; Xie, Xianchuan

    2016-01-01

    Highlights: • A novel flower-on-sheet ZnIn_2S_4/g-C_3N_4 nanocomposite was synthesized. • ZnIn_2S_4/g-C_3N_4 showed high visible light catalytic activity for 2,4-D degradation. • The photocatalytic degradation pathway of 2,4-D was investigated. - Abstract: ZnIn_2S_4/g-C_3N_4 heterojunction photocatalyst was successfully synthesized via a simple hydrothermal method and applied to visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous phase. The flower-like ZnIn_2S_4 particles were dispersed on the surface of g-C_3N_4 nanosheets in the ZnIn_2S_4/g-C_3N_4 composite. The composite showed higher separation rate of electron-hole pairs as compared to ZnIn_2S_4 and g-C_3N_4. Consequently, the ZnIn_2S_4/g-C_3N_4 composite exhibited enhanced visible light photocatalytic decomposition efficiency of 2,4-D, within 20% ZnIn_2S_4/g-C_3N_4 composite owning the highest photocatalytic efficiency and initial rate. The initial rates of 2,4-D degradation on g-C_3N_4, ZnIn_2S_4, and 20% ZnIn_2S_4/g-C_3N_4 were 1.23, 0.57 and 3.69 mmol/(g_c_a_t h), respectively. The h"+ and O_2"·"− were found to be the dominant active species for 2,4-D decomposition. The photocatalytic degradation pathways of 2,4-D by ZnIn_2S_4/g-C_3N_4 under visible light irradiation were explored. The ZnIn_2S_4/g-C_3N_4 composite displayed high photostability in recycling tests, reflecting its promising potential as an effective visible light photocatalyst for 2,4-D treatment.

  4. Facile Synthesis of g-C3N4 Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI under Visible Light

    Directory of Open Access Journals (Sweden)

    Xiaoya Yuan

    2016-09-01

    Full Text Available Graphitic-C3N4 nanosheets (CN/ZnO photocatalysts (CN/ZnO with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C3N4 nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, UV-Vis diffuse reflectance spectroscopy (DRS and photoluminescence spectra (PL. The results showed that hexagonal wurzite-phase ZnO nanoparticles were randomly distributed onto the CN nanosheets with a well-bonded interface between the two components in the CN/ZnO composites. The performance of the photocatalytic Cr(VI reduction indicated that CN/ZnO exhibited better photocatalytic activity than pure ZnO under visible-light irradiation and the photocatalyst composite with a lower loading of CN sheets eventually displayed higher activity. The enhanced performance of CN/ZnO photocatalysts could be ascribed to the increased absorption of the visible light and the effective transfer and separation of the photogenerated charge carriers.

  5. Utilization of visible to NIR light energy by Yb{sup +3}, Er{sup +3} and Tm{sup +3} doped BiVO{sub 4} for the photocatalytic degradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Regmi, Chhabilal [Research Center for Eco-Multifunctional Nanomaterials, Sun Moon University, Chungnam 31460 (Korea, Republic of); Kshetri, Yuwaraj K. [Department of Advanced Materials Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Ray, Schindra Kumar [Research Center for Eco-Multifunctional Nanomaterials, Sun Moon University, Chungnam 31460 (Korea, Republic of); Pandey, Ramesh Prasad [Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Lee, Soo Wohn, E-mail: swlee@sunmoon.ac.kr [Research Center for Eco-Multifunctional Nanomaterials, Sun Moon University, Chungnam 31460 (Korea, Republic of)

    2017-01-15

    Highlights: • Lanthanide doped BiVO{sub 4} as highly efficient upconversion and photocatalytic material. • Well defined beads like morphology for better photocatalytic activity. • Effective utilization of NIR and visible light for efficient photocatalytic degradation of methylene blue. • Nontoxic to human cells, potential for application in biological fields. - Abstract: Lanthanide-doped BiVO{sub 4} semiconductors with efficient photocatalytic activities over a broad range of the solar light spectrum have been synthesized by the microwave hydrothermal method using ethylenediaminetetraacetic acid (EDTA). The structural, morphological, and optical properties of the as-synthesized samples were evaluated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, UV–vis diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS). The toxicity of the samples was measured using Mus musculus skin melanoma cells (B16-F10 (ATCC{sup ®} CRL-6475™)) and were found to be nontoxic for human cells. The photocatalytic efficiency of the prepared samples was evaluated by methylene blue (MB) degradation. The best photocatalytic activity was shown by BiVO{sub 4} with 6:3:3 mol percentage of Yb{sup +3}:Er{sup +3}:Tm{sup +3} in all solar light spectrum. The synthesized samples possess low band gap energy and a hollow structure suitable for the better photocatalytic activity. The observed NIR photoactivity supports that the upconversion mechanism is involved in the overall photocatalytic process. Therefore, this approach provides a better alternative upconversion material for integral solar light absorption.

  6. A Novel Heterostructure of BiOI Nanosheets Anchored onto MWCNTs with Excellent Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Shijie Li

    2017-01-01

    Full Text Available Developing efficient visible-light-driven (VLD photocatalysts for environmental decontamination has drawn significant attention in recent years. Herein, we have reported a novel heterostructure of multiwalled carbon nanotubes (MWCNTs coated with BiOI nanosheets as an efficient VLD photocatalyst, which was prepared via a simple solvothermal method. The morphology and structure were characterized by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, UV-Vis diffuse reflectance spectroscopy (DRS, and specific surface area measurements. The results showed that BiOI nanosheets were well deposited on MWCNTs. The MWCNTs/BiOI composites exhibited remarkably enhanced photocatalytic activity for the degradation of rhodamine B (RhB, methyl orange (MO, and para-chlorophenol (4-CP under visible-light, compared with pure BiOI. When the MWCNTs content is 3 wt %, the MWCNTs/BiOI composite (3%M-Bi achieves the highest activity, which is even higher than that of a mechanical mixture (3 wt % MWCNTs + 97 wt % BiOI. The superior photocatalytic activity is predominantly due to the strong coupling interface between MWCNTs and BiOI, which significantly promotes the efficient electron-hole separation. The photo-induced holes (h+ and superoxide radicals (O2− mainly contribute to the photocatalytic degradation of RhB over 3%M-Bi. Therefore, the MWCNTs/BiOI composite is expected to be an efficient VLD photocatalyst for environmental purification.

  7. SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-02-01

    Full Text Available The present study highlights the facile synthesis of polyaniline (PANI-based nanocomposites doped with SrTiO3 nanocubes synthesized via the in situ oxidative polymerization technique using ammonium persulfate (APS as an oxidant in acidic medium for the photocatalytic degradation of methylene blue dye. Field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV–Vis spectroscopy, Brunauer–Emmett–Teller analysis (BET and Fourier transform infrared spectroscopy (FTIR measurements were used to characterize the prepared nanocomposite photocatalysts. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB under visible light irradiation. The results showed that the degradation efficiency of the composite photocatalysts that were doped with SrTiO3 nanocubes was higher than that of the undoped polyaniline. In this study, the effects of the weight ratio of polyaniline to SrTiO3 on the photocatalytic activities were investigated. The results revealed that the nanocomposite P-Sr500 was found to be an optimum photocatalyst, with a 97% degradation efficiency after 90 min of irradiation under solar light.

  8. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    International Nuclear Information System (INIS)

    Zhang, Weiping; Xiao, Xinyan; Zheng, Lili; Wan, Caixia

    2015-01-01

    Graphical abstract: A novel approach was developed for fabrication of TiO 2 /MoS 2 @zeolite photocatalyst using bulk MoS 2 as a photosensitizer and zeolite as carrier. The as-prepared TiO 2 /MoS 2 @zeolite composite exhibited excellent photocatalytic performance for degradation of methyl orange under visible-light irradiation. - Highlights: • Ultrasound-exfoliation and hydrothermal reforming technique were employed for generating nano-MoS 2 from micro-MoS 2 . • The embedded sensitizer composite mode of (TiO 2 /MoS 2 /TiO 2 ) was used in the fabrication of TiO 2 /MoS 2 @zeolite composite photocatalyst. • The photocatalytic mechanism of TiO 2 /MoS 2 @zeolite photocatalyst was presented. - Abstract: TiO 2 /MoS 2 @zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl 4 as Ti source, MoS 2 as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM–EDS, TEM, XPS, UV–vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO 2 /MoS 2 @zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir–Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (k app ) (2.304 h −1 ) is higher than that of Degussa P25 (0.768 h −1 ); (3) the heterostructure consisted of zeolite, MoS 2 and TiO 2 nanostructure could provide synergistic effect for degradation

  9. An efficient visible and UV-light-activated B-N-codoped TiO{sub 2} photocatalytic film for solar depollution prepared via a green method

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qingchi; Zhang Yan; He Ziming [Nanyang Technological University, School of Chemical and Biomedical Engineering (Singapore); Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore); Tan, Timothy Thatt Yang, E-mail: tytan@ntu.edu.sg [Nanyang Technological University, School of Chemical and Biomedical Engineering (Singapore)

    2012-08-15

    This work reports an efficient visible and UV-light-activated boron and nitrogen codoped TiO{sub 2} porous film prepared via a 'green' and direct coating approach. Such photocatalyst is highly promising for solar depollution application due to its efficient photocatalytic activities in both visible and UV spectrum. The preparation method avoids the use of organic solvents, which are usually more expensive and hazardous compared with water. Using stearic acid as the model organic pollutant, the visible-light photocatalytic activity of optimized porous B-N-codoped TiO{sub 2} film (p-3B-N-TiO{sub 2}) is 3 times higher than that of porous N-doped TiO{sub 2} (p-N-TiO{sub 2}) film, while its UV photocatalytic activity is almost double that of p-N-TiO{sub 2} film and comparable to that of porous TiO{sub 2}. The enhancement in photocatalytic activity is attributed to higher surface area due to the porous structure, improved visible-light absorption attributed to interstitially substituted boron atoms, and coexistence of boron and nitrogen dopants which may reduce Ti{sup 3+} recombination centers.

  10. Novel GQD-PVP-CdS composite with enhanced visible-light-driven photocatalytic properties

    International Nuclear Information System (INIS)

    Fan, Tao; Li, Yinle; Shen, Jianfeng; Ye, Mingxin

    2016-01-01

    Graphical abstract: - Highlights: • GQD-PVP-CdS composite was prepared for the first time through a facile hydrothermal route. • GQD-PVP-CdS demonstrated outstanding photoactivity under visible light illumination. • GQDs and polymeric material are compounded with CdS nanoparticles simultaneously for the first time. • The addition of GQDs plays pivotal roles in the enhancement of the photoactivity. - Abstract: A facile one-step hydrothermal method to synthesize graphene quantum dots (GQDs)-polyvinyl pyrrolidone (PVP)-CdS nanocomposite was reported. The nanocomposite was thoroughly characterized with X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and ultraviolet–visible spectroscopy. The results confirmed the formation of GQD-PVP-CdS composite with a uniform size (5–10 nm) and a relatively low band gap (E_g = 2.23 eV). Moreover, the as-prepared composite exhibited enhanced photocatalytic activity toward the degradation of organic contaminants, with 92.3% of methyl orange (10 mg/L) removed after 3 hours of visible light illumination. This enhancement in photocatalytic activity was postulated to be attributed to the upconversion property of GQDs and a more efficient charge distribution between GQDs and CdS particles.

  11. Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Triantis, T.M.; Fotiou, T. [Laboratory of Catalytic - Photocatalytic Processes (Solar Energy - Environment), Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , Neapoleos 25, 15310 Agia Paraskevi, Attiki (Greece); Kaloudis, T. [Organic Micropollutants Laboratory, Athens Water Supply and Sewerage Company (EYDAP SA), WTP Aharnon, Menidi (Greece); Kontos, A.G.; Falaras, P. [Laboratory of Photo-redox Conversion and Storage of Solar Energy, Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , Neapoleos 25, 15310 Agia Paraskevi, Attiki (Greece); Dionysiou, D.D.; Pelaez, M. [Environmental Engineering and Science Program, School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, OH 45221-0012 (United States); Hiskia, A., E-mail: hiskia@chem.demokritos.gr [Laboratory of Catalytic - Photocatalytic Processes (Solar Energy - Environment), Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , Neapoleos 25, 15310 Agia Paraskevi, Attiki (Greece)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer N-TiO{sub 2} exhibited effective degradation of MC-LR under UV-A, solar and visible light. Black-Right-Pointing-Pointer Complete photocatalytic mineralization of MC-LR was achieved under UV-A and solar light. Black-Right-Pointing-Pointer The organic nitrogen is mainly released as ammonium and nitrate ions. - Abstract: In an attempt to face serious environmental hazards, the degradation of microcystin-LR (MC-LR), one of the most common and more toxic water soluble cyanotoxin compounds released by cyanobacteria blooms, was investigated using nitrogen doped TiO{sub 2} (N-TiO{sub 2}) photocatalyst, under UV-A, solar and visible light. Commercial Degussa P25 TiO{sub 2}, Kronos and reference TiO{sub 2} nanopowders were used for comparison. It was found that under UV-A irradiation, all photocatalysts were effective in toxin elimination. The higher MC-LR degradation (99%) was observed with Degussa P25 TiO{sub 2} followed by N-TiO{sub 2} with 96% toxin destruction after 20 min of illumination. Under solar light illumination, N-TiO{sub 2} nanocatalyst exhibits similar photocatalytic activity with that of commercially available materials such as Degussa P25 and Kronos TiO{sub 2} for the destruction of MC-LR. Upon irradiation with visible light Degussa P25 practically did not show any response, while the N-TiO{sub 2} displayed remarkable photocatalytic efficiency. In addition, it has been shown that photodegradation products did not present any significant protein phosphatase inhibition activity, proving that toxicity is proportional only to the remaining MC-LR in solution. Finally, total organic carbon (TOC) and inorganic ions (NO{sub 2}{sup -}, NO{sub 3}{sup -} and NH{sub 4}{sup +}) determinations confirmed that complete photocatalytic mineralization of MC-LR was achieved under both UV-A and solar light.

  12. Green Synthesis and Characterization of SmVO4 Nanoparticles in the Presence of Carbohydrates As Capping Agents with Investigation of Visible-Light Photocatalytic Properties

    Science.gov (United States)

    Eghbali-Arani, Mohammad; Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Pourmasoud, Saeid

    2018-03-01

    SmVO4 nanoparticles were synthesized through a fast and simple procedure (green method). The effects of three parameters including temperature, type of capping agent, and concentration on the size and morphology behavior of SmVO4 nanoparticles were explored. The analysis of SmVO4 nanoparticles was performed through some techniques including, Fourier transform infrared spectroscopy, x-ray diffraction, energy dispersive x-ray microanalysis, scanning electron microscopy, transmission electron microscopy, thermogravimetry, differential thermal analysis, ultraviolet-visible spectroscopy, and vibrating sample magnetometers. The study of photocatalytic behaviour of the SmVO4 nanoparticles in various conditions has been carried out. The impacts of different factors such as dosage, grain size, and kind of pollutant (methylene blue = MB and methyl orange = MO) on the photocatalytic property of SmVO4 nanoparticles were assessed. The photocatalytic activities of SmVO4 catalysts were studied for the degradation of dye under visible light (λ > 400 nm).

  13. Synergetic effect of Ag_2O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO_2

    International Nuclear Information System (INIS)

    Chu, Haipeng; Liu, Xinjuan; Liu, Junying; Li, Jinliang; Wu, Tianyang; Li, Haokun; Lei, Wenyan; Xu, Yan; Pan, Likun

    2016-01-01

    Graphical abstract: Ag_2O/N-TiO_2 composites were synthesized via a co-precipitation method for visible light photocatalytic degradation of organic pollutions with excellent photocatalytic activity. - Highlights: • Ag_2O/N-TiO_2 composites were synthesized via a facile precipitation method. • Ag_2O/N-TiO_2 composites exhibited enhanced photocatalytic activity. • Ag_2O acts as co-catalyst to separate the photo-generated electron-hole pairs. - Abstract: A facile precipitation method was developed to synthesize the Ag_2O/N-TiO_2 composites. Their morphology, structure and photocatalytic performance in the degradation of methylene blue (MB) and phenol under visible light irradiation were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence spectroscopy and UV–vis absorption spectroscopy, respectively. The results show that the Ag_2O/N-TiO_2 composites exhibit excellent photocatalytic performance. The maximum degradation rates of MB and phenol are about 8.9 and 2.9 times that of pure N-TiO_2, respectively. The excellent photocatalytic performance is mainly ascribed to the synergetic effects of Ag_2O and N-TiO_2 including the increased light absorption and the reduced electron-hole pair recombination in N-TiO_2 with the presence of Ag_2O.

  14. Synthesis, optical, and photocatalytic properties of a new visible-light-active ZnFe{sub 2}O{sub 4}-TiO{sub 2} nanocomposite material

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, E. [University of Lisbon, Department of Chemistry and Biochemistry, Faculty of Sciences (Portugal); Fraga, L. A. [Universidade da Coruna, Facultade de Ciencias (Spain); Mendonca, M. H.; Monteiro, O. C., E-mail: ocmonteiro@fc.ul.pt [University of Lisbon, Department of Chemistry and Biochemistry, Faculty of Sciences (Portugal)

    2012-06-15

    The synthesis of new ZnFe{sub 2}O{sub 4}-TiO{sub 2} crystalline nanocomposites with enhanced visible-light catalytic performance is reported. Zinc ferrite powders were prepared by a wet method through oxalate precursor at 400 Masculine-Ordinal-Indicator C during 12 h and the nanocomposite materials were obtained through TiO{sub 2} incorporation before (ZnFe{sub 2}O{sub 4}/TiO{sub 2}) and after (TiO{sub 2}/ZnFe{sub 2}O{sub 4}) the ZnFe{sub 2}O{sub 4} synthesis. The influence of the nanocomposite design in the structural, morphological, and optical properties of the composite oxide materials was studied, by XRD, SEM/TEM, BET measurements, and DRS. New and improved optical features were observed in the ZnFe{sub 2}O{sub 4}-TiO{sub 2} absorption spectra comparatively with the TiO{sub 2} and ZnFe{sub 2}O{sub 4} ones. These results are discussed based on the interface effect and a proposal for the photogenerated electron transitions in the ZnFe{sub 2}O{sub 4}-TiO{sub 2} is presented. The photocatalytic performance of the prepared samples was evaluated for the methyl orange (MO) degradation process. From all the tested materials, the TiO{sub 2}/ZnFe{sub 2}O{sub 4} was the one with the best photocatalytic activity, even superior to the nanocrystalline TiO{sub 2} one. 100 % reduction of the MO concentration was achieved after 10 min of UV-Vis irradiation on a 10 ppm dye aqueous solution with 0.43 g L{sup -1} of TiO{sub 2}/ZnFe{sub 2}O{sub 4} catalyst. By performing visible-light experiments, it was possible to discuss the influence of the visible-light absorption, charge separation, and photogenerated charge-carrier recombination in the TiO{sub 2}/ZnFe{sub 2}O{sub 4} photocatalytic performance.

  15. CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor

    International Nuclear Information System (INIS)

    Wang, Zimeng; Liu, Jing; Dai, Yuancan; Dong, Weiyang; Zhang, Shicheng; Chen, Jianmin

    2012-01-01

    Highlights: ► A CFD model is developed for a UV-LED based photocatalytic deodorization reactor. ► Radiation field model and Langmuir–Hinshelwood kinetics are integrated in the model. ► The model can predict the pollutant concentration profile and the reactor performance. ► LED distance is predicted to be a critical parameter in photocatalytic reactor design. - Abstract: This paper presents a model study of a UV light-emitting-diode (UV-LED) based photocatalytic odor abatement process. It integrated computational fluid dynamics (CFD) modeling of the gas flow in the reactor with LED-array radiation field calculation and Langmuir–Hinshelwood reaction kinetics. It was applied to simulate the photocatalytic degradation of dimethyl sulfide (DMS) in a UV-LED reactor based on experimentally determined chemical kinetic parameters. A non-linear power law relating reaction rate to irradiation intensity was adopted. The model could predict the steady state DMS concentration profiles by calculating the advection, diffusion and Langmuir–Hinshelwood reaction kinetics. By affecting the radiation intensity and uniformity, the position of the LED array relative to the catalyst appeared to be a critical parameter determining DMS removal efficiency. Too small distances might yield low quantum efficiency and consequently poor abatement performance. This study provided an example of LED-based photocatalytic process modeling and gave insights into the optimization of light source design for photocatalytic applications.

  16. Fabrication of porous silver/titania composite hollow spheres with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Li, Sa; Halperin, Shakked O.; Wang, Chang-An

    2015-01-01

    Silver/titania composite hollow spheres were first synthesized through an in-situ chemical reaction using functional-grouped carbon spheres as the template in this study. The prepared samples were characterized through an X-ray diffraction, N 2 adsorption–desorption, scanning electron microscopy, transmission electron microscopy and UV–Vis spectrophotometer. The photocatalytic activity of as-prepared samples was evaluated by photocatalytic decolorization of Methyl orange (MO) aqueous solution at ambient temperature under UV light. We found a structure with an optimal Ag:TiO 2 composition that exhibited a photodecomposition rate constant more than twice as high as titania hollow spheres lacking silver, and over three times higher than a commercial photocatalyst. - Highlights: • Ag/silver composites. • Hollow spheres. • Photocatalysis enhancement

  17. Thickness Dependent on Photocatalytic Activity of Hematite Thin Films

    Directory of Open Access Journals (Sweden)

    Yen-Hua Chen

    2012-01-01

    Full Text Available Hematite (Fe2O3 thin films with different thicknesses are fabricated by the rf magnetron sputtering deposition. The effects of film thicknesses on the photocatalytic activity of hematite films have been investigated. Hematite films possess a polycrystalline hexagonal structure, and the band gap decreases with an increase of film thickness. Moreover, all hematite films exhibit good photocatalytic ability under visible-light irradiation; the photocatalytic activity of hematite films increases with the increasing film thickness. This is because the hematite film with a thicker thickness has a rougher surface, providing more reaction sites for photocatalysis. Another reason is a lower band gap of a hematite film would generate more electron-hole pairs under visible-light illumination to enhance photocatalytic efficiency. Experimental data are well fitted with Langmuir-Hinshelwood kinetic model. The photocatalytic rate constant of hematite films ranges from 0.052 to 0.068 min-1. This suggests that the hematite film is a superior photocatalyst under visible-light irradiation.

  18. Nanocrystalline sol-gel TiO{sub 2}-SnO{sub 2} coatings: Preparation, characterization and photo-catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaleji, Behzad Koozegar [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Sarraf-Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer SnO{sub 2} additive enhanced significantly photo-catalytic properties of TiO{sub 2} based thin film for remove of organic compounds. Black-Right-Pointing-Pointer Structural and optical properties are dependent on dopant concentration. Black-Right-Pointing-Pointer TiO{sub 2}-SnO{sub 2} nanocrystalline thin film is promising for photocatalytic properties in visible light. -- Abstract: In this study, preparation of SnO{sub 2} (0-30 mol% SnO{sub 2})-TiO{sub 2} dip-coated thin films on glazed porcelain substrates via sol-gel process has been investigated. The effects of SnO{sub 2} on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films were examined by atomic force microscopy and X-ray photoelectron spectroscopy. XRD patterns showed an increase in peak intensities of the rutile crystalline phase by increasing the SnO{sub 2} content. The prepared Sn doped TiO{sub 2} photo-catalyst films showed optical absorption in the visible light area exhibited excellent photo-catalytic ability for the degradation of methylene blue under visible light irradiation. Best photo-catalytic activity of Sn doped TiO{sub 2} thin films was measured in the TiO{sub 2}-15 mol% SnO{sub 2} sample by the Sn{sup 4+} dopants presented substitution Ti{sup 4+} into the lattice of TiO{sub 2} increasing the surface oxygen vacancies and the surface hydroxyl groups.

  19. Preparation and characterization of graphene oxide/Ag{sub 2}CO{sub 3} photocatalyst and its visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiade; Wei, Longfu [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); School of Environment Engineering and Biology Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong Province (China); Fang, Wen [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002 (China); Xie, Yu, E-mail: xieyu_121@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi (China); Zhou, Wanqin; Zhu, Lihua [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China)

    2015-12-15

    Graphical abstract: - Highlights: • GO/Ag{sub 2}CO{sub 3} photocatalyst was prepared by liquid deposition process. • GO increase e{sup −}/h{sup +} pairs separation. • The production of ·OH and O{sub 2}·{sup −} radicals was promoted. • High photocatalytic activity and stability were obtained over GO/Ag{sub 2}CO{sub 3}. - Abstract: Graphene oxide (GO) was firstly fabricated from graphite powder by Hummers method. Then a series of GO/Ag{sub 2}CO{sub 3} composite photocatalysts (0.1% GO/Ag{sub 2}CO{sub 3}, 0.5%GO/Ag{sub 2}CO{sub 3}, 1%GO/Ag{sub 2}CO{sub 3}, 4%GO/Ag{sub 2}CO{sub 3}) were synthesized by a facile liquid deposition process. The produced products were characterized by powder X-ray diffraction (XRD), N{sub 2} physical adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscope (FT-IR), Raman spectra and UV–vis diffuse reflectance spectroscopy (UV–vis DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methyl orange (MO) under visible light irradiation. The influence of GO concentration on the photocatalytic activity of GO/Ag{sub 2}CO{sub 3} was investigated. The results showed that GO can be easily dispersed into Ag{sub 2}CO{sub 3}, producing well contacted GO/Ag{sub 2}CO{sub 3} composite. Coupling of trace GO largely enhanced the visible light absorption. Moreover, GO could suppress the growth of Ag{sub 2}CO{sub 3} grain crystals. With optimum GO content (0.5%), the degradation rate of MO is 85.37% after 120 min light irradiation, which Exhibits 1.53 times activity of that of pure Ag{sub 2}CO{sub 3}. More importantly, a large improvement in stability was obtained over the composite. The increase in photocatalytic activity and stability could be mainly attributed to the coupling of GO which increased the surface area and suppressed the recombination rate of e{sup −}/h{sup +} pairs.

  20. UV-visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites

    Science.gov (United States)

    Mavengere, Shielah; Kim, Jung-Sik

    2018-06-01

    In this study, a new novel composite photocatalyst of NaYF4:(Gd, Si)/TiO2 phosphor has been synthesized by two step method of solution combustion and sol-gel. The photocatalyst powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. Raman spectroscopy confirmed the anatase TiO2 phase which remarkably increased with existence of yttrium silicate compounds between 800 cm-1 and 900 cm-1. Double-addition of Gd3+-Si4+ ions in NaYF4 host introduced sub-energy band levels with intense absorption in the ultraviolet (UV) light region. Photocatalytic activity was examined by exposing methylene blue (MB) solutions mixed with photocatalyst powders to 254 nm UV-C fluorescent lamp and 200 W visible lights. The UV and visible photocatalytic reactivity of the NaYF4:(Gd, 1% Si)/TiO2 phosphor composites showed enhanced MB degradation efficiency. The coating of NaYF4:(Gd, 1% Si) phosphor with TiO2 nanoparticles creates energy band bending at the phosphor/TiO2 interfaces. Thus, these composites exhibited enhanced absorption of UV/visible light and the separation of electron and hole pairs for efficient photocatalysis.

  1. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Saoud, Khaled [Virginia Commonwealth University-Qatar, Doha (Qatar); Alsoubaihi, Rola [Virginia Commonwealth University, Richmond, VA (United States); Bensalah, Nasr [Qatar University, Doha (Qatar); Bora, Tanujjal [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman); Bertino, Massimo [Virginia Commonwealth University, Richmond, VA (United States); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman)

    2015-03-15

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescence and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.

  2. In situ solid-state fabrication of hybrid AgCl/AgI/AgIO3 with improved UV-to-visible photocatalytic performance.

    Science.gov (United States)

    Xie, Jing; Cao, Yali; Jia, Dianzeng; Li, Yizhao; Wang, Kun; Xu, Hui

    2017-09-28

    The AgCl/AgI/AgIO 3 composites were synthesized through a one-pot room-temperature in situ solid-state approach with the feature of convenient and eco-friendly. The as-prepared composites exhibit superior photocatalytic performance than pure AgIO 3 for the degradation of methyl orange (MO) under both UV and visible light irradiation. The photodegradation rate toward MO of the AgCl/AgI/AgIO 3 photocatalyst can reach 100% after 12 min irradiation under UV light, or 85.4% after 50 min irradiation under visible light, being significantly higher than AgCl, AgI, AgIO 3 and AgI/AgIO 3 . In addition, the AgCl/AgI/AgIO 3 photocatalyst possesses strong photooxidation ability for the degradation of rhodamine B (RhB), methylene blue (MB), phenol, bisphenol A (BPA) and tetracycline hydrochloride under visible light irradiation. The reactive species capture experiments confirmed that the h + and •O 2- play an essential role during the photocatalytic process under UV light or visible light irradiation. The enhanced effect may be beneficial from the enhanced light adsorption in full spectrum and increased separation efficiency of photogenerated hole-electron pairs, which can be ascribed to the synergistic effect among AgCl, AgI and AgIO 3 nanoplates in AgCl/AgI/AgIO 3 composites.

  3. Structural analysis and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Yusuke; Akiyama, Kazuhiko [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan); Kobzi, Balázs; Sinkó, Katalin; Homonnay, Zoltán [Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117 (Hungary); Kuzmann, Ernő [Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117 (Hungary); Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest 1512 (Hungary); Ristić, Mira; Krehula, Stjepko [Division of Materials Chemistry, RuđerBošković Institute, Bijenička cesta 54, Zagreb 10000 (Croatia); Nishida, Tetsuaki [Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555 (Japan); Kubuki, Shiro, E-mail: kubuki@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan)

    2015-10-05

    Highlights: • Hematite was precipitated by heat treatment of iron aluminosilicate glass. • The hematite phase shows visible light photocatalytic activity. • We could prepare an effective photocatalyst from ‘ubiquitous elements’. - Abstract: A relationship between structure and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate (15Na{sub 2}O⋅15CaO⋅40Fe{sub 2}O{sub 3}⋅xAl{sub 2}O{sub 3}⋅(30−x)SiO{sub 2}) glass (xNCFAS) was investigated by means of {sup 57}Fe-Mössbauer spectroscopy, X-ray diffractometry (XRD) and UV–visible light absorption spectroscopy (UV–VIS). The {sup 57}Fe-Mössbauer spectrum of 11NCFAS glass measured after heat-treatment at 1000 °C for 100 min was composed of a paramagnetic doublet due to Fe{sup III}(T{sub d}) and two magnetic sextets due to regular hematite (α-Fe{sub 2}O{sub 3}) and hematite with larger internal magnetic field. X-ray diffraction patterns of heat-treated xNCFAS samples resulted in decrease of α-Fe{sub 2}O{sub 3} and increase of Ca{sub 2}Fe{sub 22}O{sub 33} or CaFe{sub 2}O{sub 4} with alumina content. A quick decrease in methylene blue (MB) concentration from 15.6 to 4.7 μmol L{sup −1} was observed in the photocatalytic reaction test with 40 mg of heat-treated 11NCFAS glass under visible light-exposure. The largest first-order rate constant of MB decomposition (k) was estimated to be 9.26 × 10{sup −3} min{sup −1}. Tauc’s plot yielded a band gap energy (E{sub g}) of 1.88 eV for heat-treated 11NCFAS glass, which is smaller than previously reported E{sub g} of 2.2 eV for α-Fe{sub 2}O{sub 3}. These results prove that addition of Al{sub 2}O{sub 3} into iron-containing soda lime silicate glass is favorable for the preparation of improved visible light-photocatalyst with ‘ubiquitous’ elements.

  4. Rapid and efficient visible light photocatalytic dye degradation using AFe2O4 (A = Ba, Ca and Sr) complex oxides

    International Nuclear Information System (INIS)

    Vijayaraghavan, T.; Suriyaraj, S.P.; Selvakumar, R.; Venkateswaran, R.; Ashok, Anuradha

    2016-01-01

    Highlights: • Alkaline earth ferrites AFe 2 O 4 (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe 2 O 4 exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe 2 O 4 was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe 2 O 4 (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe 2 O 4 exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe 2 O 4 showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe 2 O 4 showed the highest dye adsorption (44% after 75 min).

  5. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    International Nuclear Information System (INIS)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua

    2016-01-01

    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu_2O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu_2O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu_2O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu_2O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu_2O nanoparticles), or two component systems (RGO/Cu_2O composite hydrogel and PANI/Cu_2O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu_2O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu_2O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  6. Facile Synthesis of Magnetic Photocatalyst Ag/BiVO4/Mn1−xZnxFe2O4 and Its Highly Visible-Light-Driven Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Taiping Xie

    2018-05-01

    Full Text Available Ag/BiVO4/Mn1−xZnxFe2O4 was synthesized with a dip-calcination in situ synthesis method. This work was hoped to provide a simple method to synthesis three-phase composite. The phase structure, optical properties and magnetic feature were confirmed by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectrometer (XPS, transmission electron microscopy (TEM, ultraviolet-visible diffuse reflectance spectrophotometer (UV-vis DRS, and vibrating sample magnetometer (VSM. The photocatalytic activity was investigated by Rhodamine B (RhB photo-degradation under visible light irradiation. The photo-degradation rate of RhB was 94.0~96.0% after only 60 min photocatalytic reaction under visible light irradiation, revealing that it had an excellent visible-light-induced photocatalytic activity. In the fifth recycle, the degradation rate of Ag/BiVO4/Mn1−xZnxFe2O4 still reached to 94.0%. Free radical tunnel experiments confirmed the dominant role of •O2− in the photocatalytic process for Ag/BiVO4/Mn1−xZnxFe2O4. Most importantly, the mechanism that multifunction Ag could enhance photocatalytic activity was explained in detail.

  7. Fabrication and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Liu Yutang; Zhang Xilin; Liu Ronghua; Yang Renbin; Liu Chengbin; Cai Qingyun

    2011-01-01

    A new ZnTe modified TiO 2 nanotube (NT) array catalyst was prepared by pulse potential electrodeposition of ZnTe nanoparticles (NPs) onto TiO 2 NT arrays, and its application for photocatalytic degradation of anthracene-9-carboxylic acid (9-AnCOOH) was investigated. The even distribution of ZnTe NPs was well-proportionately grown on the top surface of the TiO 2 NT while without clogging the tube entrances. Compared with the unmodified TiO 2 NT, the ZnTe modified TiO 2 NT (ZnTe/TiO 2 NT) showed significantly enhanced photocatalytic activity towards 9-AnCOOH under simulated solar light. After 70 min of irradiation, 9-AnCOOH was degraded with the removal ratio of 45% on the bare TiO 2 NT, much lower than 80%, 90%, and 100% on the ZnTe/TiO 2 NT with the ZnTe NPs prepared under the pulsed 'on' potentials of -0.8, -1.0, and -2.0 V, respectively. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor ZnTe. -- Graphical abstract: Surface-view SEM images of ZnTe/TiO 2 NT prepared under -2.0 V, and the inset is the corresponding enlarged drawings. Display Omitted Research highlights: → A new method to deposit chalcogenides of transition metals on the TiO 2 nanotubes. → The even distribution of ZnTe nanoparticles was well-proportionedly grown onto TiO 2 NT arrays. → ZnTe/TiO 2 NT showed remarkably increased photocurrent density. → ZnTe/TiO 2 NT showed good photocatalytic performance. → The prepared new catalyst has a promising application in practical systems.

  8. Hydrothermally Synthesized Zinc Sulphide Microspheres for Solar Light-Driven Photocatalytic Properties

    Science.gov (United States)

    Waghadkar, Yogesh; Arbuj, Sudhir; Shinde, Manish; Ballal, Reshma; Rane, Sunit B.; Gosavi, Suresh; Fouad, H.; Chauhan, Ratna

    2018-02-01

    In this work, we reported the synthesis of zinc sulphide microspheres using the hydrothermal method. ZnS microspheres were synthesized using water, zinc acetate, thiourea and ammonia solution at 150°C for 6 h, 12 h, and 24 h. The as-synthesized ZnS powders were characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and ultraviolet-visible (UV-Vis) spectroscopy. XRD indicates the cubic (major phase) as well as hexagonal (minor phase) crystalline phase with enhanced crystallinity increased gradually with more reaction time. UV-Vis spectra show the absorption peaks in the UV-Vis region for all the samples. The Tauc's plot was used to calculate the band gap energy of ZnS samples, which are found to be 3.39 eV, 3.4 eV, and 3.42 eV for the samples synthesized at reaction times of 6 h, 12 h, and 24 h, respectively. FESEM images confirm the formation of microspheres as aggregates of spherical nanoparticles. The as-synthesized ZnS microspheres have been explored for solar light-induced photo-catalytic dye degradation of methylene blue (MB), and the results confirm that such microspheres exhibit effectual photocatalytic properties.

  9. Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO2

    International Nuclear Information System (INIS)

    Wang, Xiaodong; Xue, Xiaoxiao; Liu, Xiaogang; Xing, Xing; Li, Qiuye; Yang, Jianjun

    2015-01-01

    Carbon-modified TiO 2 (CT) nanoparticles were prepared via a two-step method of heat treatment without the resorcinol-formaldehyde (RF) polymer. As-prepared CT nanoparticles were characterized by means of X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS), transmission electron microscopy (TEM), N 2 adsorption–desorption isotherms, thermal analysis (TA), electron spin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities were evaluated on the basis of the degradation of methyl orange (MO). The synergistic effect of single-electron-trapped oxygen vacancies (SETOVs) and the carbon species on the visible light photocatalytic activities of the CT nanoparticles were discussed. It was found that the crystalline phase, the morphology, and particle size of the CT nanoparticles depended on the second heat-treatment temperature instead of the first heat-treatment temperature. The visible light photocatalytic activities were attributed to the synergistic effect of SETOVs and the carbon species, and also depended on the specific surface area of the photocatalysts. - Highlights: • Carbon-modified TiO 2 particles have been prepared without RF polymer. • The visible light photocatalytic activities of the particles have been evaluated. • The band gap energy structure of the carbon-modified TiO 2 has been proposed. • Synergistic effect of SETOVs and carbon species has been discussed. • The activities also depend on the specific surface area of the catalysts

  10. In situ photoactivated plasmonic Ag{sub 3}PO{sub 4}@silver as a stable catalyst with enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongfang; Wang, Jiaxun, E-mail: zdfbb66@aliyun.com [College of Science, Huazhong Agricultural University, Wuhan (China)

    2017-05-15

    Silver orthophosphate (Ag{sub 3}PO{sub 4}) had been reported as an excellent candidate to split water or decompose pollutants with high efficiency in visible light region, yet is not stable due to the reduction of silver ion. In this work, an easy-fabricated method (in situ photoinduced reduction) was provided to enhance the stability of Ag{sub 3}PO{sub 4} for its possible application as a visible-light sensitive photocatalyst. The as-prepared samples were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra, photoluminescence spectra (PL) and Photoelectrochemical measurements. The Ag{sub 3}PO{sub 4}/Ag photocatalysts showed strong photocatalytic activity for decomposition of RhB dye or phenol-X-3B mixture under visible light irradiation (λ> 420 nm) and can be used repeatedly. The possible mechanism for the enhanced photocatalytic properties of the Ag{sub 3}PO{sub 4} /Ag hybrid was also discussed. It was found that •OH and holes take priority over •O{sub 2}{sup -} radicals in serving as the main oxidant in the Ag{sub 3}PO{sub 4}/Ag photocatalytic system. Especially, the experimental results indicate that the surface plasmon resonance of Ag nanoparticles and a large negative charge of PO{sub 4}{sup 3-} ions as well as high separation efficiency of {sup e-} --h{sup +} pairs, facilitated the enhancement of the photocatalytic activity of the Ag{sub 3} PO{sub 4} /Ag composite. The results indicated that Ag{sub 3} PO{sub 4} /Ag is an efficient and stable visible-light-driven photocatalyst. (author)

  11. High performance nano-titania photocatalytic paper composite. Part II: Preparation and characterization of natural zeolite-based nano-titania composite sheets and study of their photocatalytic activity

    International Nuclear Information System (INIS)

    Ko, Seonghyuk; Fleming, Paul D.; Joyce, Margaret; Ari-Gur, Pnina

    2009-01-01

    A novel paper composite with high photocatalytic performance was fabricated using natural zeolite (clinoptilolite)-based nanosized TiO 2 . Photocatalytic materials, from sol-gel derived TiO 2 colloids to its coupling with zeolite, have been designed, prepared and characterized. As-prepared anatase TiO 2 on zeolite particles were readily used in photocatalytic paper, which revealed zeolite-TiO 2 particles dispersed on a dense network of fibers with microvoids. Natural zeolite-based TiO 2 composite sheets described here decomposed gaseous toluene very effectively after UV irradiation and its removal efficiency was higher than that accomplished by photocatalytic paper made with Degussa P25 TiO 2 or Ahlstrom commercial photocatalytic non-woven paper.

  12. Hierarchical heterostructures of p-type bismuth oxychloride nanosheets on n-type zinc ferrite electrospun nanofibers with enhanced visible-light photocatalytic activities and magnetic separation properties.

    Science.gov (United States)

    Sun, Yucong; Shao, Changlu; Li, Xinghua; Guo, Xiaohui; Zhou, Xuejiao; Li, Xiaowei; Liu, Yichun

    2018-04-15

    P-type bismuth oxychloride (p-BiOCl) nanosheets were uniformly grown on n-type zinc ferrite (n-ZnFe 2 O 4 ) electrospun nanofibers via a solvothermal technique to form hierarchical heterostructures of p-BiOCl/n-ZnFe 2 O 4 (p-BiOCl/n-ZnFe 2 O 4 H-Hs). The density and loading amounts of the BiOCl nanosheets with exposed {0 0 1} facets were easily controlled by adjusting the reactant concentration in the solvothermal process. The p-BiOCl/n-ZnFe 2 O 4 H-Hs exhibited enhanced visible-light photocatalytic activities for the degradation of Rhodamine B (RhB). The apparent first-order rate of the p-BiOCl/n-ZnFe 2 O 4 H-Hs and its normalized constant were about 12.6- and 8-fold higher than pure ZnFe 2 O 4 nanofibers. This suggests that both the improved charge separation efficiency from the uniform p-n heterojunctions and the enlarged active surface sites from the hierarchical structures increase the photocatalytic performances. Furthermore, the p-BiOCl/n-ZnFe 2 O 4 H-Hs could be efficiently separated from the solution with an external magnetic field via the ferromagnetic behavior of ZnFe 2 O 4 nanofibers. The magnetic p-BiOCl/n-ZnFe 2 O 4 H-Hs with enhanced visible-light photocatalytic performances might have potential applications in water treatment. Copyright © 2018. Published by Elsevier Inc.

  13. Influence of inlet concentration and light intensity on the photocatalytic oxidation of nitrogen(II) oxide at the surface of Aeroxide{sup Registered-Sign} TiO{sub 2} P25

    Energy Technology Data Exchange (ETDEWEB)

    Dillert, Ralf, E-mail: dillert@iftc.uni-hannover.de [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany); Laboratorium fuer Nano- und Quantenengineering, Leibniz Universitaet Hannover, Schneiderberg 39, 30167 Hannover (Germany); Stoetzner, Julia [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany); Engel, Astrid [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany); Laboratorium fuer Nano- und Quantenengineering, Leibniz Universitaet Hannover, Schneiderberg 39, 30167 Hannover (Germany); Bahnemann, Detlef W. [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The photocatalytic oxidation of nitrogen(II) oxide at the TiO{sub 2} surface was studied. Black-Right-Pointing-Pointer The effect of the UV(A) light intensity on the reaction rate was evaluated. Black-Right-Pointing-Pointer The effect of the NO concentration on the reaction rate was evaluated. Black-Right-Pointing-Pointer A mechanistic model for the heterogeneous NO oxidation is presented. Black-Right-Pointing-Pointer A rate law describing the influence of NO concentration and light intensity is given. - Abstract: Air pollution by nitrogen oxides represents a serious environmental problem in urban areas where numerous sources of these pollutants are concentrated. One approach to reduce the concentration of these air pollutants is the light-induced oxidation in the presence of molecular oxygen and a photocatalytically active building material, e.g., paints, roof tiles, or pavement stones. Herein, results of an investigation concerning the photocatalytic oxidation of nitrogen(II) oxide (NO) in the presence of molecular oxygen and UV(A) irradiated TiO{sub 2} powder are presented. The standard operating procedure described in ISO 22197-1 which was developed to characterize the photocatalytic activity of air-cleaning products was successfully applied to determine the photocatalytic activity of a bare TiO{sub 2} powder. The experimental data reveal that at the light intensity stipulated by the operation procedure the amount of NO removed from the gas phase by photocatalytic oxidation is strongly affected by small changes of this light intensity as well as of the NO concentration in the gas stream in the photoreactor. Therefore, these parameters have to be controlled very carefully. Based upon the experimental data obtained in this study a rate law for the photocatalytic NO oxidation inside the photoreactor is derived.

  14. Synthesis of chemically bonded BiOCl@Bi{sub 2}WO{sub 6} microspheres with exposed (0 2 0) Bi{sub 2}WO{sub 6} facets and their enhanced photocatalytic activities under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongchao [Qingdao Agricultural University, Qingdao 266109 (China); Chen, Zhiwei [School of Life Sciences, Shandong University of Technology, Zibo 255049 (China); Qu, Dan [Qingdao Agricultural University, Qingdao 266109 (China); Shi, Jinsheng, E-mail: jsshiqn@aliyun.com [Qingdao Agricultural University, Qingdao 266109 (China)

    2016-01-15

    Graphical abstract: - Highlights: • BiOCl@Bi{sub 2}WO{sub 6} composites were prepared via a controlled anion exchange method. • The shell of composites was composed of Bi{sub 2}WO{sub 6} sheets with exposed (0 2 0) facets. • The BiOCl@Bi{sub 2}WO{sub 6} composites showed efficient photocatalytic activity. • A possible photocatalytic degradation mechanism is proposed. - Abstract: Bi{sub 2}WO{sub 6} photocatalysts has been extensively studied for its photocatalytic activity. However, few works have been conducted on hierarchical Bi{sub 2}WO{sub 6} composite photocatalysts with specifically exposed facets. In this work, we report a facile method to synthesize BiOCl@Bi{sub 2}WO{sub 6} hierarchical composite microspheres. Bi{sub 2}WO{sub 6} nanosheets with specifically exposed (0 2 0) facet were directly formed on the surface of BiOCl precursor microspheres via a controlled anion exchange route between BiOCl and Na{sub 2}WO{sub 4}. The visible-light photocatalytic activity of the BiOCl@Bi{sub 2}WO{sub 6} heterojunction with exposed (0 2 0) facets (denoted as BiOCl@Bi{sub 2}WO{sub 6}) was investigated by degradation of Rhodamine B (RhB) and ciprofloxacin (CIP) aqueous solution under visible light irradiation. The experimental results indicated that the BiOCl@Bi{sub 2}WO{sub 6} composite microsphere with intimate interfacial contacts exhibited improved efficiency for RhB photodegradation in comparison with pure BiOCl and Bi{sub 2}WO{sub 6}. The BiOCl@Bi{sub 2}WO{sub 6} composite microsphere also shows high photocatalytic activity for degradation of CIP under visible light irradiation. The enhanced photocatalytic performance of BiOCl@Bi{sub 2}WO{sub 6}-020 hierarchical microspheres can be ascribed to the improved visible light harvesting ability, high charge separation and transfer. This work will make significant contributions toward the exploration of novel heterostructures with high potential in photocatalytic applications.

  15. Highly efficient visible-light-induced photocatalytic activity of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chaiwichian, Saranyoo [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand); Inceesungvorn, Burapat [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Khatcharin [Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000 (Thailand); Phanichphant, Sukon [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Kangwansupamonkon, Wiyong [National Nanotechnology Center, Thailand Science Park, Phahonyotin Road, Klong 1, Klong Luang, Phathumthani 12120 (Thailand); Wetchakun, Natda, E-mail: natda_we@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand)

    2014-06-01

    Highlights: • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were obtained using hydrothermal method. • Physicochemical properties played a significant role on photocatalytic efficiency. • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterogeneous structures were greatly enhanced for degradation of MB. • A tentative mechanism of charge transfer process in MB degradation was proposed. - Abstract: The Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were synthesized by hydrothermal method. Physical properties of the heterojunction photocatalyst samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The XRD results indicated that BiVO{sub 4} retain monoclinic and tetragonal structures, while Bi{sub 2}WO{sub 6} presented as orthorhombic structure. The Brunauer, Emmett and Teller (BET) adsorption–desorption of nitrogen gas for specific surface area determination at the temperature of liquid nitrogen was performed on all samples. UV–vis diffuse reflectance spectra (UV–vis DRS) were used to identify the absorption range and band gap energy of the heterojunction photocatalysts. The photocatalytic performance of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts was studied via the photodegradation of methylene blue (MB) under visible light irradiation. The results indicated that the heterojunction photocatalyst at 0.5:0.5 mole ratio of Bi{sub 2}WO{sub 6}:BiVO{sub 4} shows the highest photocatalytic activity.

  16. Rational construction of Z-scheme Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jin, E-mail: lj328520504@126.com; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao

    2016-12-30

    Highlights: • Novel visible-light driven Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites were synthesized. • Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} exhibited enhanced visible-light photocatalytic activity. • The reasons for the enhanced photocatalytic activity were revealed. - Abstract: Novel visible-light driven Z-scheme Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites with different contents of Ag{sub 2}CrO{sub 4} were fabricated by a facile chemical precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy and photoelectrochemical measurements. Compared with individual g-C{sub 3}N{sub 4} and Ag{sub 2}CrO{sub 4}, the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites displayed much larger photocatalytic activities for the photocatalytic degradation of methyl orange (MO) solution at room temperature under visible light irradiation (λ > 420 nm). Importantly, the optimum photodegradation rate constant of the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composite at a theoretical weight content of 8.0% Ag{sub 2}CrO{sub 4} for the photodegradation of MO was 0.0068 min{sup −1}, which was 5.7 and 4.3 times higher than that of pure g-C{sub 3}N{sub 4} and Ag{sub 2}CrO{sub 4}, respectively. Such enormous enhancement in photocatalytic performance was predominantly ascribed to the efficient separation and transfer of photogenerated electrons and holes at the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} interface imparted through the Z-scheme electron transfer. Furthermore, radical trap experiments depicted that both the holes and superoxide radical anions were thought to dominate oxidative species of the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composite for MO degradation under visible light irradiation. Ultimately, a tentative Z-scheme photodegradation mechanism

  17. Visible light photocatalytic disinfection of E. coli with TiO_2–graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin

    International Nuclear Information System (INIS)

    Rahimi, Rahmatollah; Zargari, Solmaz; Yousefi, Azam; Yaghoubi Berijani, Marzieh; Ghaffarinejad, Ali; Morsali, Ali

    2015-01-01

    Graphical abstract: TiO_2–graphene nanocomposites with different content of graphene were synthesized via a facile one-step solvothermal method. Photoelectrochemical responses of prepared photocatalysts were measured to determine the optimum content of graphene in TG nanocomposites. The results show that the TG nanocomposite with 3% of graphene has the highest photoactivity. This compound was sensitized with tetrakis(4-carboxyphenyl)porphyrin (TGP). The prepared photocatalysts were used for photocatalytic disinfection of E. coli. The results showed that the photocatalytic disinfection of the TG nanocomposite was increased after sensitization with porphyrin. The enhanced photocatalytic performance could be attributed to the synergistic effect between TiO_2, graphene and porphyrin sensitizer in the TGP photocatalyst. - Highlights: • TiO_2–graphene nanocomposites (TG) were synthesized with different content of graphene. • The TG nanocomposite with different content of graphene was sensitized with porphyrin (TGP). • The disinfection of E. coli using TGP was investigated in the visible light. • Porphyrin sensitizer increases effectively the photocatalytic disinfection efficiency of TGP. - Abstract: The present research deals with the development of a new heterogeneous photocatalysis system for disinfection of bacteria from wastewater by using TiO_2–graphene (TG) nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The disinfection of wastewater using this photocatalyst is not reported in the literature yet. All the synthesized materials were thoroughly characterized by Raman, XRD, DRS, BET, and SEM analysis. The optimum content of graphene in the TiO_2–graphene nanocomposite was determined by photocurrent responses of prepared photocatalysts. Subsequently, the photocurrent measurements demonstrate that the TiO_2–graphene nanocomposite with 3% graphene content has higher photoactivity. Furthermore, sensitization of the TiO_2

  18. A visible-light-driven photocatalytic activity of vanadate garnet AgCa2Ni2V3O12 nanoparticles

    International Nuclear Information System (INIS)

    Lu, Yuting; Chen, Luyang; Li, Yuze; Huang, Yanlin; Cheng, Han; Seo, Hyo Jin

    2015-01-01

    A visible-light-driven photocatalyst of nanosized vanadate garnet AgCa 2 Ni 2 V 3 O 12 was prepared by a modified Pechini method. The nanoparticles were characterized with the measurements such as X-ray powder diffraction (XRD) and structural refinements, scanning electron microscope (SEM), and UV–visible (UV–Vis) absorption spectrum. The sample has an efficient absorption in the UV–Vis light region with a narrow band-gap energy of 2.16 eV and an indirect allowed electronic transition. Besides, the photocatalysis of AgCa 2 Ni 2 V 3 O 12 nanoparticles was evaluated by photo-degradation of methylene blue under visible-light irradiation, which shows excellent photocatalytic activity. The effective photocatalytic activity was discussed on the base of the garnet crystal structure such as the activated optical centers of Ni–O octahedron and V–O tetrahedral, highly distorted Ag–O dodecahedra, and long V–V distance in the lattices

  19. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates

    Directory of Open Access Journals (Sweden)

    Manoj A. Lazar

    2012-12-01

    Full Text Available Photocatalytic water treatment using nanocrystalline titanium dioxide (NTO is a well-known advanced oxidation process (AOP for environmental remediation. With the in situ generation of electron-hole pairs upon irradiation with light, NTO can mineralize a wide range of organic compounds into harmless end products such as carbon dioxide, water, and inorganic ions. Photocatalytic degradation kinetics of pollutants by NTO is a topic of debate and the mostly reporting Langmuir-Hinshelwood kinetics must accompanied with proper experimental evidences. Different NTO morphologies or surface treatments on NTO can increase the photocatalytic efficiency in degradation reactions. Wisely designed photocatalytic reactors can decrease energy consumption or can avoid post-separation stages in photocatalytic water treatment processes. Doping NTO with metals or non-metals can reduce the band gap of the doped catalyst, enabling light absorption in the visible region. Coupling NTO photocatalysis with other water-treatment technologies can be more beneficial, especially in large-scale treatments. This review describes recent developments in the field of photocatalytic water treatment using NTO.

  20. Facile synthesis of silver/silver thiocyanate (Ag@AgSCN plasmonic nanostructures with enhanced photocatalytic performance

    Directory of Open Access Journals (Sweden)

    Xinfu Zhao

    2017-12-01

    Full Text Available A nanostructured plasmonic photocatalyst, silver/silver thiocyanate (Ag@AgSCN, has been prepared by a simple precipitation method followed by UV-light-induced reduction. The ratio of Ag to silver thiocyanate (AgSCN can be controlled by simply adjusting the photo-induced reduction time. The formation mechanism of the product was investigated based on the time-dependent experiments. Further experiments indicated that the prepared Ag@AgSCN nanostructures with an atomic ratio of Ag/AgSCN = 0.0463 exhibited high photocatalytic activity and long-term stability for the degradation of oxytetracycline (84% under visible-light irradiation. In addition to the microstructure and high specific surface area, the enhanced photocatalytic activity was mainly caused by the surface plasmon resonance of Ag nanoparticles, and the high stability of AgSCN resulted in the long-term stability of the photocatalyst product.

  1. Photocatalytic paper using zinc oxide nanorods

    International Nuclear Information System (INIS)

    Baruah, Sunandan; Jaisai, Mayuree; Imani, Reza; Nazhad, Mousa M; Dutta, Joydeep

    2010-01-01

    Zinc oxide (ZnO) nanorods were grown on a paper support prepared from soft wood pulp. The photocatalytic activity of a sheet of paper with ZnO nanorods embedded in its porous matrix has been studied. ZnO nanorods were firmly attached to cellulose fibers and the photocatalytic paper samples were reused several times with nominal decrease in efficiency. Photodegradation of up to 93% was observed for methylene blue in the presence of paper filled with ZnO nanorods upon irradiation with visible light at 963 Wm -2 for 120 min. Under similar conditions, photodegradation of approximately 35% was observed for methyl orange. Antibacterial tests revealed that the photocatalytic paper inhibits the growth of Escherichia coli under room lighting conditions.

  2. One-Step Nickel Foam Assisted Synthesis of Holey G-Carbon Nitride Nanosheets for Efficient Visible-light Photocatalytic H2 Evolution.

    Science.gov (United States)

    Fang, Zhenyuan; Hong, Yuanzhi; Li, Di; Luo, Bifu; Mao, Baodong; Shi, Weidong

    2018-06-01

    Graphitic carbon nitride (g-C3N4) with layered structure represents one of the most promising metal-free photocatalysts. As yet, the direct one-step synthesis of ultrathin g-C3N4 nanosheets remains a challenge. Here, few-layered holey g-C3N4 nanosheets (CNS) were fabricated by simply introducing a piece of nickel foam over the precursors during the heating process. The as-prepared CNS with unique structural advantages exhibited superior photocatalytic water splitting activity (1871.09 µmol h-1 g-1) than bulk g-C3N4 (BCN) under visible light (λ>420 nm) (≈31 fold). Its outstanding photocatalytic performance originated from the high specific surface area (240.34 m2 g-1) and mesoporous structure, which endows CNS with more active sites, efficient exciton dissociation and prolonged charge carrier lifetime. Moreover, the obvious up-shift of the conduction band leads to a larger thermodynamic driving force for photocatalytic proton reduction. This methodology not only had the advantages for the direct and green synthesis of g-C3N4 nanosheets, but also paved a new avenue to modify molecular structure and textural of g-C3N4 for advanced applications.

  3. Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases

    International Nuclear Information System (INIS)

    Zhang Xi; Ai Zhihui; Jia Falong; Zhang Lizhi; Fan Xiaoxing; Zou Zhigang

    2007-01-01

    Tetragonal and monoclinic bismuth vanadate (BiVO 4 ) powders were selectively synthesized by aqueous processes. The characterizations of the as-prepared BiVO 4 powders were carried out by X-ray diffraction, nitrogen adsorption, scanning electron microscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities of different BiVO 4 samples were determined by degradation of methylene blue solution under visible-light irradiation (λ > 420 nm) and compared with that of TiO 2 (Degussa P25). The band gaps of the as-prepared BiVO 4 were determined from UV-vis diffuse reflectance spectra. It was found that monoclinic BiVO 4 with a band gap of 2.34 eV showed higher photocatalytic activity than that of tetragonal BiVO 4 with a band gap of 3.11 eV

  4. MoS{sub 2}-coated microspheres of self-sensitized carbon nitride for efficient photocatalytic hydrogen generation under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Quan [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 (China); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Sun, Huaming; Xie, Zunyuan; Gao, Ziwei [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 (China); Xue, Can, E-mail: cxue@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2017-02-28

    Highlights: • Successful coating of MoS{sub 2} onto self-sensitized carbon nitride microspheres. • The carbon nitride@MoS{sub 2} core-shell structure show enhanced H{sub 2} generation in visible light. • Synergistic effect of surface dyes and MoS{sub 2} coating enhances photocatalytic activities. - Abstract: We have successfully coated the self-sensitized carbon nitride (SSCN) microspheres with a layer of MoS{sub 2} through a facile one-pot hydrothermal method by using (NH{sub 4}){sub 2}MoS{sub 4} as the precursor. The resulted MoS{sub 2}-coated SSCN photocatalyst appears as a core-shell structure and exhibits enhanced visible-light activities for photocatalytic H{sub 2} generation as compared to the un-coated SSCN and the standard g-C{sub 3}N{sub 4} reference with MoS{sub 2} coating. The photocatalytic test results suggest that the oligomeric s-triazine dyes on the SSCN surface can provide additional light-harvesting capability and photogenerated charge carriers, and the coated MoS{sub 2} layer can serve as active sites for proton reduction towards H{sub 2} evolution. This synergistic effect of surface triazine dyes and MoS{sub 2} coating greatly promotes the activity of carbon nitride microspheres for vishible-light-driven H{sub 2} generation. This work provides a new way of future development of low-cost noble-metal-free photocatalysts for efficient solar-driven hydrogen production.

  5. Recyclable UV and visible light photocatalytically active amorphous TiO2 doped with M (III) ions (M = Cr and Fe)

    International Nuclear Information System (INIS)

    Buddee, Supat; Wongnawa, Sumpun; Sirimahachai, Uraiwan; Puetpaibool, Walailak

    2011-01-01

    Research highlights: → The low photocatalytic activity of amorphous TiO2 was enhanced by doping with Cr(III) or Fe(III) ions. → The doped catalysts performed close to P25 under UV light and better with visible light. → The doped catalysts can be recycled. - Abstract: Samples of amorphous TiO 2 doped with Cr(III) and Fe(III), designated as Cr-TiO 2 and Fe-TiO 2 , were prepared via modified impregnation method. The resulting products were characterized by X-ray diffraction, scanning electron microscopy, specific surface area by the Brunauer, Emmett and Teller method, UV-vis absorption and diffuse reflectance spectroscopy, and electron spin resonance spectroscopy. Experimental results revealed that the concentrations of dopants under studied, from 0.05 to 0.2 mol%, had no effect on the phase of products. The band gap energies shifted from 3.28 eV in the undoped amorphous TiO 2 to 2.50 eV and 2.86 eV for Fe-TiO 2 and Cr-TiO 2 , respectively. The doped amorphous TiO 2 showed photocatalytic activities under both UV and visible light with optimal results at 0.1 mol% dopants. Under UV irradiation, the 0.1 mol% doped samples decolorized methylene blue solutions to the same extent as the commercial TiO 2 samples (P25 and anatase) in 5 h. Under visible light, the doped samples decolorized dye solutions in 12 h while the commercial ones were much less active. The used catalysts can be recycled many times without any special treatment.

  6. Visible-light-driven N-(BiO)2CO3/Graphene oxide composites with improved photocatalytic activity and selectivity for NOx removal

    Science.gov (United States)

    Chen, Meijuan; Huang, Yu; Yao, Jie; Cao, Jun-ji; Liu, Yuan

    2018-02-01

    N-doped (BiO)2CO3 (NBOC)/graphene oxide (GO) composite obtained from three-dimensional hierarchical microspheres is successfully synthesized by one-pot hydrothermal method for the first time. In this synthesis, citrate ion plays a critical role in N doping. The obtained samples are used to degrade gaseous nitrogen oxides (NOx) at parts-per-billion (ppb) level under visible-light irradiation. NBOC-GO composite with 1.0 wt% graphene oxide (GO) displays the highest photocatalytic NO removal efficiency, which is 4.3 times higher than that of pristine (BiO)2CO3. Moreover, NBOC-GO composite significantly inhibits toxic NO2 intermediate production, indicating its high selectivity for NO conversion. Compared with regular GO, N doping considerably improves the catalytic performance of NBOC-GO composite, which increases NO removal by 74.6% and fully inhibits NO2 generation. The improved photocatalytic activity is mainly ascribed to extended optical absorption ability and enhanced separation efficiency of photogenerated charge carriers over NBOC-GO composite. Both results of electron spin resonance and theoretical analysis of band structure indicate that NO removal is dominated by oxidation with rad OH and rad O2- radicals. The photocatalytic activity improvement mechanism over the NBOC-GO composite is proposed accordingly based on systematic characterizations. This study demonstrates a feasible route to fabricating Bi-containing composites with high selectivity and stability for air pollution control and provides a new insight into the associated photocatalytic mechanisms.

  7. One pot hydrothermal synthesis of a novel BiIO4/Bi2MoO6 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation

    International Nuclear Information System (INIS)

    Huang, Hongwei; Liu, Liyuan; Zhang, Yihe; Tian, Na

    2015-01-01

    Graphical abstract: The efficient charge transfer occurred at the interface of BiIO 4 /Bi 2 MoO 6 heterojunction results in the efficient separation of photoexcited electron–hole pairs and promotes the photocatalytic activity. - Highlights: • BiIO 4 /Bi 2 MoO 6 composites were synthesized by a one-step hydrothermal method. • The BiIO 4 /Bi 2 MoO 6 composite exhibits much better photoelectrochemical performance. • The highly improved photocatalytic activity is attributed to heterojunction structure. • Holes (h + ) are the main active species in the photodegradation process of RhB. - Abstract: A novel BiIO 4 /Bi 2 MoO 6 heterojunction photocatalyst has been successfully developed by a one-step hydrothermal method for the first time. It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflection spectroscopy (DRS). Compared to pure BiIO 4 and Bi 2 MoO 6 , the BiIO 4 /Bi 2 MoO 6 composite exhibits the much better photoelectrochemical performance for Rhodamine B (RhB) degradation and photocurrent (PC) generation under visible light irradiation (λ > 420 nm). This enhancement on visible-light-responsive photocatalytic activity should be attributed to the fabrication of a BiIO 4 /Bi 2 MoO 6 heterojunction, thus resulting in the high separation and transfer efficiency of photogenerated charge carriers. The supposed photocatalytic mechanism dominated by holes (h + ) was verified by the photoluminescence (PL) spectroscopy, electrochemical impedance spectra (EIS) and active species trapping experiments

  8. Synthesis of Hollow CdS-TiO2 Microspheres with Enhanced Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Yuning Huo

    2012-01-01

    Full Text Available CdS-TiO2 composite photocatalyst in the shape of hollow microsphere was successfully synthesized via the hard-template preparation with polystyrene microspheres followed by ion-exchange approach. The hollow CdS-TiO2 microspheres significantly extended the light adsorption into visible light region, comparing to TiO2 microspheres. It led to much higher photocatalytic activities of hollow CdS-TiO2 microspheres than that of TiO2 during the photodegradation of rhodamine B under visible light irradiations. Furthermore, the well-remained hollow structure could achieve light multireflection within the interior cavities and the separation of photo-induced electrons and holes is efficient in CdS-TiO2, which were facilitated to improving the photoactivity.

  9. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua, E-mail: yhshen@ahu.edu.cn

    2016-01-01

    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu{sub 2}O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu{sub 2}O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu{sub 2}O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu{sub 2}O nanoparticles), or two component systems (RGO/Cu{sub 2}O composite hydrogel and PANI/Cu{sub 2}O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu{sub 2}O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  10. Graphitic-C(3)N(4)-hybridized TiO(2) nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity.

    Science.gov (United States)

    Gu, Liuan; Wang, Jingyu; Zou, Zhijuan; Han, Xijiang

    2014-03-15

    AnataseTiO(2)nanosheets with dominant {001} facets were hybridized with graphitic carbon nitride (g-C(3)N(4)) using a facile solvent evaporation method. On top of the superior photocatalytic performance of highly reactive {001} facets, the hybridization with g-C(3)N(4) is confirmed to further improve the reactivity through degrading a series of organic molecules under both UV- and visible-light irradiation. It is proposed that an effective charge separation between g-C(3)N(4) and TiO2 exists in the photocatalytic process, i.e., the transferring of photogenerated holes from the valence band (VB) of TiO(2) to the highest occupied molecular orbital (HOMO) of g-C(3)N(4), and the injecting of electrons from the lowest unoccupied molecular orbital (LUMO) of g-C(3)N(4) to the conduction band (CB) of TiO(2). Due to this synergistic effect, the enhancement of UV- and visible-light photoactivity over the hybrid is achieved. Furthermore, it has been revealed that holes were the main factor for the improved photoactivity under UV-light, while the OH radicals gained the predominance for degrading organic molecules under visible-light. Overall, this work would be significant for fabricating efficient UV-/visible-photocatalysts and providing deeper insight into the enhanced mechanisms of π-conjugated molecules hybridized semiconductors. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Preparation of reduced graphene oxide/meso-TiO_2/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    International Nuclear Information System (INIS)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong; Wang, Hefang; Fu, Nian

    2016-01-01

    Graphical abstract: Reduced graphene oxide/meso-TiO_2/AuNPs (RGO/meso-TiO_2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO_2/AuNPs under a hydrothermal condition. The RGO/meso-TiO_2/AuNPs ternary composites show high photocatalytic activity toward MB. - Highlights: • RGO/meso-TiO_2/AuNPs were obtained by addition of graphene oxide to meso-TiO_2/AuNPs. • Au NPs in the mesopores of meso-TiO_2 reduce the recombination of charge carriers. • RGO covered with the surface of the meso-TiO_2 enhance the adsorption of MB. • RGO/meso-TiO_2/AuNPs composites show high photocatalytic performance toward MB. - Abstract: Reduced graphene oxide/meso-TiO_2/AuNPs (RGO/meso-TiO_2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO_2/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO_2/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO_2/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO_2 and meso-TiO_2/AuNPs.

  12. Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity.

    Science.gov (United States)

    Chen, Yingzhi; Huang, Zheng-Hong; Yue, Mengbin; Kang, Feiyu

    2014-01-21

    Organic nanostructures in terms of porphyrin building blocks have shown great potential in visible-light photocatalytic applications because of their optical, electrical, and catalytic properties. Graphenes are known to provide a high-quality two-dimensional (2D) support for inorganic semiconductor nanostructures to increase the adsorption capability of the photocatalysts and an electron-transfer medium with attractive potential to enhance photogenerated charge separation. A combination of porphyrin nanostructures with graphene sheets, particularly in the form of free-standing films, is highly desirable due to its photocatalysing feasibility and convenience. Toward this aim, we demonstrate a facile method to integrate porphyrin (meso-tetra(p-hydroxyphenyl)porphyrin, p-THPP) nanoparticles (NPs) into macroscopic graphene (reduced graphene oxide, rGO) films through vacuum filtration of the co-colloids of graphene oxide (GO) and p-THPP nanoparticles (NPs) followed by gaseous reduction. The obtained p-THPP/rGO nanohybrid film exhibits enhanced visible-light photocatalytic activity compared to each moiety of the hybrid, and this photocatalyst can be easily separated and recycled for successive use with excellent stability. The results show that this facile fabrication of the p-THPP/rGO nanohybrid film makes it available for high-performance optoelectronic applications, as well as for device integration.

  13. Facile synthesis of surface N-doped Bi_2O_2CO_3: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    International Nuclear Information System (INIS)

    Zhou, Ying; Zhao, Ziyan; Wang, Fang; Cao, Kun; Doronkin, Dmitry E.; Dong, Fan; Grunwaldt, Jan-Dierk

    2016-01-01

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi_2O_2CO_3 surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi_2O_2CO_3 were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi_2O_2CO_3 surface was achieved at room temperature. • N-doped Bi_2O_2CO_3 exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi_2O_2CO_3. • The formation of localized states from N−O bond could account for the visible light activity of Bi_2O_2CO_3. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi_2O_2CO_3 nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi_2O_2CO_3, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi_2O_2CO_3, but also modifies the surface properties of Bi_2O_2CO_3 through the interaction between CTAB and Bi_2O_2CO_3. Nitrogen from CTAB as dopant interstitially incorporates in the Bi_2O_2CO_3 surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi_2O_2CO_3 nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). Both bidentate and monodentate nitrates were identified on the surface of catalysts during the photocatalytic reaction process. The application of this strategy to

  14. The highly efficient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes structure inspired from cicada wings.

    Science.gov (United States)

    Zada, Imran; Zhang, Wang; Zheng, Wangshu; Zhu, Yuying; Zhang, Zhijian; Zhang, Jianzhong; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di

    2017-12-08

    The negative replica of biomorphic TiO 2 with nano-holes structure has been effectively fabricated directly from nano-nipple arrays structure of cicada wings by using a simple, low-cost and highly effective sol-gel ultrasonic method. The nano-holes array structure was well maintained after calcination in air at 500 °C. The Ag nanoparticles (10 nm-25 nm) were homogeneously decorated on the surface and to the side wall of nano-holes structure. It was observed that the biomorphic Ag-TiO 2 showed remarkable photocatalytic activity by degradation of methyl blue (MB) under UV-vis light irradiation. The biomorphic Ag-TiO 2 with nano-holes structure showed superior photocatalytic activity compared to the biomorphic TiO 2 and commercial Degussa P25. This high-performance photocatalytic activity of the biomorphic Ag-TiO 2 may be attributed to the nano-holes structure, localized surface plasmon resonance (LSPR) property of the Ag nanoparticles, and enhanced electron-hole separation. Moreover, the biomorphic Ag-TiO 2 showed more absorption capability in the visible wavelength range. This work provides a new insight to design such a structure which may lead to a range of novel applications.

  15. Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xianghua; Ding, Shimin; Zhang, Lixian [Yangtze Normal Univ., Fuling (China)

    2012-11-15

    Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations results in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly.

  16. Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

    International Nuclear Information System (INIS)

    Feng, Xianghua; Ding, Shimin; Zhang, Lixian

    2012-01-01

    Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations results in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly

  17. Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation

    International Nuclear Information System (INIS)

    Zhou Liang; Deng Jian; Zhao Yubao; Liu Wanbing; An Lin; Chen Fei

    2009-01-01

    N-I co-doped TiO 2 nanoparticles were prepared by hydrolysis method, using ammonia and iodic acid as the doping sources and Ti(OBu) 4 as the titanium source. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS). XRD spectra show that N-I-TiO 2 samples calcined at 673 K for 3 h are of anatase structure. XPS analysis of N-I-TiO 2 samples indicates that some N atoms replace O atoms in TiO 2 lattice, and I exist in I 7+ , I - and I 5+ chemical states in the samples. UV-vis DRS results reveal that N-I-TiO 2 had significant optical absorption in the region of 400-600 nm. The photocatalytic activity of catalysts was evaluated by monitoring the photocatalytic degradation of methyl orange (MO). Compared with P25 and mono-doped TiO 2 , N-I-TiO 2 powder shows higher photocatalytic activity under both visible-light (λ > 420 nm) and UV-vis light irradiation. Furthermore, N-I-TiO 2 also displays higher COD removal rate under UV-vis light irradiation.

  18. Inductive effect of poly(vinyl pyrrolidone) on morphology and photocatalytic performance of Bi{sub 2}WO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang; Chen, Jinxing; Xie, Yunyun; Wang, Mozhen; Ge, Xuewu, E-mail: xwge@ustc.edu.cn

    2016-04-15

    Graphical abstract: - Highlights: • PVP molecular chains will induce the assembly of the primary Bi{sub 2}WO{sub 6} nanosheets. • The assembly of primary Bi{sub 2}WO{sub 6} nanosheets forms various 3D topological structure. • Sheet-like, flower-like, red-blood-cell-like and square-pillar-like Bi{sub 2}WO{sub 6} were formed. • Bi{sub 2}WO{sub 6} formed at low concentration or molecular weight of PVP has better activity. - Abstract: Bi{sub 2}WO{sub 6} has great potential applications in the field of photocatalyst due to its excellent visible-light photocatalytic performance. This work studied the detailed morphological evolution of Bi{sub 2}WO{sub 6} particles synthesized in a simple hydrothermal system induced by the stabilizer poly(vinyl pyrrolidone) (PVP). The XRD and HRTEM results show PVP would not change the crystal structure of Bi{sub 2}WO{sub 6}, but the distribution of PVP on the initially formed Bi{sub 2}WO{sub 6} nanosheets will induce the crystal growth, resulting in a distinct morphology evolution of Bi{sub 2}WO{sub 6} with the increase of the concentration of PVP. At the same time, with the increase of the molecular weight of PVP, the morphology of Bi{sub 2}WO{sub 6} varied from simple sheet-like (S-BWO) to some complicated morphology, such as flower-like (F-BWO), red blood cell-like (B-BWO), and square-pillar-like (SP-BWO). The photocatalytic performances of Bi{sub 2}WO{sub 6} with various morphologies on the decomposition of RhB under visible light irradiation reveal that S-BWO has the best photocatalytic performance, while SP-BWO has the worst. This work not only gives the explanation of the inductive effect of PVP molecular chains on the morphological formation of Bi{sub 2}WO{sub 6} particles, but also provides the controllable way to the preparation of Bi{sub 2}WO{sub 6} with various morphologies taking advantage of the stabilizer PVP.

  19. Fabrication of TiO{sub 2}/MoS{sub 2}@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiping; Xiao, Xinyan, E-mail: cexyxiao@scut.edu.cn; Zheng, Lili; Wan, Caixia

    2015-12-15

    Graphical abstract: A novel approach was developed for fabrication of TiO{sub 2}/MoS{sub 2}@zeolite photocatalyst using bulk MoS{sub 2} as a photosensitizer and zeolite as carrier. The as-prepared TiO{sub 2}/MoS{sub 2}@zeolite composite exhibited excellent photocatalytic performance for degradation of methyl orange under visible-light irradiation. - Highlights: • Ultrasound-exfoliation and hydrothermal reforming technique were employed for generating nano-MoS{sub 2} from micro-MoS{sub 2}. • The embedded sensitizer composite mode of (TiO{sub 2}/MoS{sub 2}/TiO{sub 2}) was used in the fabrication of TiO{sub 2}/MoS{sub 2}@zeolite composite photocatalyst. • The photocatalytic mechanism of TiO{sub 2}/MoS{sub 2}@zeolite photocatalyst was presented. - Abstract: TiO{sub 2}/MoS{sub 2}@zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl{sub 4} as Ti source, MoS{sub 2} as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM–EDS, TEM, XPS, UV–vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO{sub 2}/MoS{sub 2}@zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir–Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (k{sub app}) (2.304 h{sup −1}) is higher than that of Degussa P25 (0.768 h{sup −1}); (3) the heterostructure

  20. Nitrogen-Doped Graphene for Photocatalytic Hydrogen Generation.

    Science.gov (United States)

    Chang, Dong Wook; Baek, Jong-Beom

    2016-04-20

    Photocatalytic hydrogen (H2 ) generation in a water splitting process has recently attracted tremendous interest because it allows the direct conversion of clean and unlimited solar energy into the ideal energy resource of H2 . For efficient photocatalytic H2 generation, the role of the photocatalyst is critical. With increasing demand for more efficient, sustainable, and cost-effective photocatalysts, various types of semiconductor photocatalysts have been intensively developed. In particular, on the basis of its superior catalytic and tunable electronic properties, nitrogen-doped graphene is a potential candidate for a high-performance photocatalyst. Nitrogen-doped graphene also offers additional advantages originating from its unique two-dimensional sp(2) -hybridized carbon network including a large specific surface area and exceptional charge transport properties. It has been reported that nitrogen-doped graphene can play diverse but positive functions including photo-induced charge acceptor/meditator, light absorber from UV to visible light, n-type semiconductor, and giant molecular photocatalyst. Herein, we summarize the recent progress and general aspects of nitrogen-doped graphene as a photocatalyst for photocatalytic H2 generation. In addition, challenges and future perspectives in this field are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photocatalytic activity of Sulfer-doped TiO2 fiber under visible light illumination (Joint research)

    International Nuclear Information System (INIS)

    Takeyama, Akinori; Yamamoto, Shunya; Yoshikawa, Masahito; Hasegawa, Yoshio; Awatsu, Satoshi

    2007-03-01

    The Sol-Gel derived precursor fiber was annealed under hydrogen disulfeid (H 2 S) following oxygen atmosphere, Sulfur-doped TiO 2 fiber was obtained. Crystal structure of the fiber was identified as anatase phase of TiO 2 . The energy band gap of the fiber was narrower by about 0.06 eV than that of anatase, which showed that it could absorb visible light. The fiber contains about 0.58 atomic % of Sulfur, and they located at the oxygen lattice site of TiO 2 . Under visible light illumination, the fiber degraded Trichloroethylen (TCE) and produced carbon dioxide (CO 2 ). This shows Sulfur-doped TiO 2 fiber has the photocatalytic activity under visible light illumination. (author)

  2. Visible light photocatalytic disinfection of E. coli with TiO{sub 2}–graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Rahmatollah, E-mail: rahimi_rah@iust.ac.ir [Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Zargari, Solmaz [Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Yousefi, Azam [School of Chemical Engineering, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Yaghoubi Berijani, Marzieh; Ghaffarinejad, Ali [Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Morsali, Ali [Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175 (Iran, Islamic Republic of)

    2015-11-15

    Graphical abstract: TiO{sub 2}–graphene nanocomposites with different content of graphene were synthesized via a facile one-step solvothermal method. Photoelectrochemical responses of prepared photocatalysts were measured to determine the optimum content of graphene in TG nanocomposites. The results show that the TG nanocomposite with 3% of graphene has the highest photoactivity. This compound was sensitized with tetrakis(4-carboxyphenyl)porphyrin (TGP). The prepared photocatalysts were used for photocatalytic disinfection of E. coli. The results showed that the photocatalytic disinfection of the TG nanocomposite was increased after sensitization with porphyrin. The enhanced photocatalytic performance could be attributed to the synergistic effect between TiO{sub 2}, graphene and porphyrin sensitizer in the TGP photocatalyst. - Highlights: • TiO{sub 2}–graphene nanocomposites (TG) were synthesized with different content of graphene. • The TG nanocomposite with different content of graphene was sensitized with porphyrin (TGP). • The disinfection of E. coli using TGP was investigated in the visible light. • Porphyrin sensitizer increases effectively the photocatalytic disinfection efficiency of TGP. - Abstract: The present research deals with the development of a new heterogeneous photocatalysis system for disinfection of bacteria from wastewater by using TiO{sub 2}–graphene (TG) nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The disinfection of wastewater using this photocatalyst is not reported in the literature yet. All the synthesized materials were thoroughly characterized by Raman, XRD, DRS, BET, and SEM analysis. The optimum content of graphene in the TiO{sub 2}–graphene nanocomposite was determined by photocurrent responses of prepared photocatalysts. Subsequently, the photocurrent measurements demonstrate that the TiO{sub 2}–graphene nanocomposite with 3% graphene content has higher photoactivity. Furthermore

  3. Photocatalytic degradation of malachite green dye using Au/NaNbO_3 nanoparticles

    International Nuclear Information System (INIS)

    Baeissa, E.S.

    2016-01-01

    The morphology of sodium niobate, which was produced using a hydrothermal method, was studied by changing the hydrothermal temperature from 100 to 250 °C. Using 250 °C hydrothermal temperature resulted in sodium niobate with a nanocube structure. The sodium niobate nanocubes were doped with gold by impregnation with an aqueous solution of HAuCl_4. The band gap of sodium niobate is approximately 3.4 eV, and it was decreased to 2.45 eV by gold doping. The surface area of sodium niobate is higher than that of Au/NaNbO_3 due to blockage of some pores of sodium niobate by gold doping. The photocatalytic performance of gold-doped sodium niobate was studied by degradation of malachite green dye using visible light irradiation. The results demonstrate that the photocatalytic performance of gold-doped sodium niobate is higher than that of sodium niobate and TiO_2 Degussa under visible light irradiation. - Highlights: • Au/NaNbO_3 were used for photocatalytic degradation of malachite green dye. • Photocatalytic degradation was dependent on wt % of Au; reaction time, and weight of catalyst. • Catalyst re-use revealed the present photocatalyst remain effective and active after five cycles.

  4. Low-temperature solid-state preparation of ternary CdS/g-C{sub 3}N{sub 4}/CuS nanocomposites for enhanced visible-light photocatalytic H{sub 2}-production activity

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun, E-mail: xiangqj@mail.hzau.edu.cn

    2017-01-01

    Highlights: • CdS/g-C{sub 3}N{sub 4}/CuS composite were synthesized by low-temperature solid-state method. • CdS/g-C{sub 3}N{sub 4}/CuS show enhanced visible-light photocatalytic H{sub 2} evolution activity. • The enhanced photocatalytic H{sub 2} production activity is due to the heterojunction. • Heterojunction between the components promote charge separation/transfer property. - Abstract: Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C{sub 3}N{sub 4}/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C{sub 3}N{sub 4}/CuS composite exhibits a high visible-light photocatalytic H{sub 2}-production rate of 57.56 μmol h{sup −1} with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na{sub 2}S/Na{sub 2}SO{sub 3} mixed aqueous solution as sacrificial agent. The ternary CdS/g-C{sub 3}N{sub 4}/CuS composites show the enhanced visible-light photocatalytic H{sub 2}-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C{sub 3}N{sub 4} in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H{sub 2}-production activity.

  5. Well-defined copolymers synthesized by RAFT polymerization as effective modifiers to enhance the photocatalytic performance of TiO_2

    International Nuclear Information System (INIS)

    Vasilaki, E.; Kaliva, M.; Katsarakis, N.; Vamvakaki, M.

    2017-01-01

    Highlights: • Well-defined, random functional copolymers were synthesized by RAFT polymerization. • Novel TiO_2 particles in-situ modified with copolymers were synthesized. • The hybrid catalysts exhibited reduced aggregation and particle size. • The photocatalytic removal of methylene blue was higher for the hybrid catalysts. - Αbstract: The enhancement of the photocatalytic performance of anatase TiO_2 nanoparticles is demonstrated by a facile route, involving their in-situ surface modification with preformed polymer chains. Random copolymers of poly(ethylene glycol) methyl ether acrylate-co-methacrylic acid (PEGA-co-MAA) or poly(ethylene glycol) methyl ether acrylate-co-dopamine methacrylamide (PEGA-co-DMA) were synthesized by reversible addition−fragmentation chain-transfer (RAFT) polymerization and were bound onto the surface of anatase titania nanoparticles via the “grafting to” method. The hybrid nanocatalysts were characterized by fourier transform infrared spectroscopy, zeta-potential measurements, X-ray powder diffraction, thermogravimetric analysis and transmission electron microscopy. Their photocatalytic performance was evaluated by the decoloration of methylene blue (MB) dye in aqueous media under UV–vis light irradiation. The enhanced photoactivity and reusability of the polymer modified photocatalysts compared to that of bare TiO_2 nanoparticles was attributed to their improved dispersability and colloidal stability, the smaller particle size that leads to a larger surface area and the increased adsorption capacity of the dye onto the polymer modified nanoparticles.

  6. Enhanced photocatalytic activity of Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinjuan, E-mail: lxj669635@126.com [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Junying [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Chu, Haipeng [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Li, Jinliang; Yu, Wei [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Zhu, Guang [Anhui Key Laboratory of Spin Electron and Nanomaterials, Suzhou University, Suzhou 234000 (China); Niu, Lengyuan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Sun, Zhuo [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Sun, Chang Q. [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-08-30

    Graphical abstract: Bi{sub 2}O{sub 3}–Ag{sub 2}O composites were fabricated for visible light photocatalytic degradation of phenol with a high degradation rate of 92% for 60 min. - Highlights: • Bi{sub 2}O{sub 3}–Ag{sub 2}O composites were synthesized via a co-precipitation method. • The photocatalytic activity for the degradation of phenol is investigated. • A high degradation rate of 92% for 60 min is achieved under visible light irradiation. - Abstract: Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts were successfully synthesized via a co-precipitation method. The morphology, structure and photocatalytic performance in the degradation of phenol were characterized by using scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, electrochemical impedance spectra and UV–vis absorption spectroscopy, respectively. The results show that Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts exhibit enhanced photocatalytic performance in the degradation of phenol with a maximum degradation rate of 92% for 60 min under visible light irradiation compared with pure Bi{sub 2}O{sub 3} (57%), which is ascribed to the increase in light adsorption and the reduction in electron–hole pair recombination with the introduction of Ag{sub 2}O.

  7. Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO2

    Directory of Open Access Journals (Sweden)

    Zatil Amali Che Ramli

    2014-01-01

    Full Text Available This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC, TiO2/carbon (C, and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared (FTIR, thermogravimetric analysis (TG-DTA, Brunauer-Emmet-Teller (BET, and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m2 g−1. The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.

  8. Preparation and enhanced photocatalytic activity of carbon nitride/titania(001 vs 101 facets)/reduced graphene oxide (g-C{sub 3}N{sub 4}/TiO{sub 2}/rGO) hybrids under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Meina [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Yu, Jianhua [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Tobacoo Monopoly Bureau, Guangxi Zhuang Autonomous Rejion, Nanning, 530022 (China); Hu, Qun; Su, Wenli [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Fan, Minguang, E-mail: fanmg@gxu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory Petrochemical Rescource Processing and Process Intensification Technology, Nanning 530004 (China); Li, Bin [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Dong, Lihui, E-mail: donglihui2005@126.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China)

    2016-12-15

    Graphical abstract: Schematic for the enhanced photocatalytic activity of CN/T/rGO hybrids upon visible light irradiation. - Highlights: • g-C{sub 3}N{sub 4}/TiO{sub 2}(001 vs 101 Facets)/rGO were prepared via one-step solvothermal route. • Performance evaluation was carried out under visible light irradiation. • Samples show excellent photocatalytic activities and stablity. • A possible photocatalytic mechanism is proposed. • The structural effects of g-C{sub 3}N{sub 4}/TiO{sub 2}/rGO explain excellent performance. - Abstract: Herein, a novel photocatalyst, anatase TiO{sub 2} nanoparticles with both exposed (101) and (001) facets synchronously incorporated with g-C{sub 3}N{sub 4} and graphene, was successfully prepared via a simple one-step solvothermal route. The morphology and structure of as-prepared composites were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV–vis DRS). Efficiency of the prepared samples was investigated by monitoring the degradation of Methyl Orange (MO), Rhodamine B (RhB) and phenol under visible light irradiation. Improved photocatalytic activity in g-C{sub 3}N{sub 4}/TiO{sub 2}/rGO is observed owing to higher specific surface area and enhanced visible light absorption capability. Most importantly, the in situ g-C{sub 3}N{sub 4} and rGO doping might enhance the interaction among g-C{sub 3}N{sub 4}, TiO{sub 2} (001 vs 101) and rGO, which generates more synergistic heteroconjunctions in g-C{sub 3}N{sub 4}/TiO{sub 2}/rGO facilitating a fast electron transfer at the interface among them. This synergistic approach could prove useful for the design and development of other visible light active photocatalysts with high chemical stability.

  9. Facile synthesis of nanorod-type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Wang, Jiangpeng; Li, Changqing; Cong, Jingkun; Liu, Ziwei; Zhang, Hanzhuo; Liang, Mei; Gao, Junkuo; Wang, Shunli; Yao, Juming

    2016-01-01

    Here we report a facile synthesis of nanorod-type graphitic carbon nitride/Fe 2 O 3 composite (Fe 2 O 3 -g-C 3 N 4 ) by using Fe-melamine supramolecular framework as precursor. The chemical and optical properties of the nanocomposites are well-characterized. The Fe 2 O 3 -g-C 3 N 4 nanocomposite demonstrated excellent photocatalytic activities under visible light due to the efficient utilization of sunlight and the construction of Z-scheme electron transfer pathway. The results indicated that it could be a promising approach for the preparation of efficient g-C 3 N 4 nanocomposites photocatalysts by using metal-melamine supramolecular framework as precursors. - Graphical abstract: Nanorod-type graphitic carbon nitride/Fe 2 O 3 composite (Fe 2 O 3 -g-C 3 N 4 ) was synthesized by using Fe-melamine supramolecular framework as precursor. The Fe 2 O 3 -g-C 3 N 4 nanocomposite demonstrated excellent photocatalytic activities under visible light. Display Omitted - Highlights: • Nanorod-type graphitic carbon nitride/Fe 2 O 3 composite (Fe 2 O 3 -g-C 3 N 4 ) was synthesized. • Fe 2 O 3 -g-C 3 N 4 showed strong optical absorption in the visible-light region. • The Fe 2 O 3 -g-C 3 N 4 nanocomposite demonstrated excellent photocatalytic activities.

  10. Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate-Ag2S-CdS semiconductors

    Science.gov (United States)

    Kornarakis, I.; Lykakis, I. N.; Vordos, N.; Armatas, G. S.

    2014-07-01

    Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster anions with different reduction potentials, such as PW12O403-, SiW12O404- and PMo12O403-, were employed as electron acceptors in these ternary heterojunction photocatalysts. Characterization by small-angle X-ray scattering, X-ray diffraction, transmission electron microscopy and N2 physisorption measurements showed hexagonal arrays of POM-Ag2S-CdS hybrid nanorods with large internal BET surface areas and uniform mesopores. The Keggin structure of the incorporated POM clusters was also verified by elemental X-ray spectroscopy microanalysis, infrared and diffuse-reflectance ultraviolet-visible spectroscopy. These new porous materials were implemented as visible-light-driven photocatalysts, displaying exceptional high activity in aerobic oxidation of various para-substituted benzyl alcohols to the corresponding carbonyl compounds. Our experiments show that the spatial separation of photogenerated electrons and holes at CdS through the potential gradient along the CdS-Ag2S-POM interfaces is responsible for the increased photocatalytic activity.Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster

  11. Efficient visible light photocatalytic NO{sub x} removal with cationic Ag clusters-grafted (BiO){sub 2}CO{sub 3} hierarchical superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xin [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 40067 (China); Zhang, Wendong [Department of Scientific Research Management, Chongqing Normal University, Chongqing 401331 (China); Deng, Hua [State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Ni, Zilin [Department of Scientific Research Management, Chongqing Normal University, Chongqing 401331 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 40067 (China); Zhang, Yuxin, E-mail: zhangyuxin@cqu.edu.cn [College of Materials Science and Engineering, National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044 (China)

    2017-01-15

    Graphical abstract: The cationic Ag clusters-grafted (BiO){sub 2}CO{sub 3} hierarchical superstructures exhibits highly enhanced visible light photocatalytic air purification through an interfacial charge transfer process induced by Ag clusters. - Highlights: • Microstructural optimization and surface cluster-grafting were firstly combined. • Cationic Ag clusters were grafted on the surface of (BiO){sub 2}CO{sub 3} superstructures. • The Ag clusters-grafted BHS displayed enhanced visible light photocatalysis. • Direct interfacial charge transfer (IFCT) from BHS to Ag clusters was proposed. • The charge transfer process and the dominant reactive species were revealed. - Abstract: A facile method was developed to graft cationic Ag clusters on (BiO){sub 2}CO{sub 3} hierarchical superstructures (BHS) surface to improve their visible light activity. Significantly, the resultant Ag clusters-grafted BHS displayed a highly enhanced visible light photocatalytic performance for NOx removal due to the direct interfacial charge transfer (IFCT) from BHS to Ag clusters. The chemical and coordination state of the cationic Ag clusters was determined with the extended X-ray absorption fine structure (EXAFS) and a theoretical structure model was proposed for this unique Ag clusters. The charge transfer process and the dominant reactive species (·OH) were revealed on the basis of electron spin resonance (ESR) trapping. A new photocatalysis mechanism of Ag clusters-grafted BHS under visible light involving IFCT process was uncovered. In addition, the cationic Ag clusters-grafted BHS also demonstrated high photochemical and structural stability under repeated photocatalysis runs. The perspective of enhancing photocatalysis through combination of microstructural optimization and IFCT could provide a new avenue for the developing efficient visible light photocatalysts.

  12. Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation

    Science.gov (United States)

    Rao, Heng; Yu, Wen-Qian; Zheng, Hui-Qin; Bonin, Julien; Fan, Yao-Ting; Hou, Hong-Wei

    2016-08-01

    Earth-abundant metal complexes have emerged as promising surrogates of platinum for catalyzing the hydrogen evolution reaction (HER). In this study, we report the design and synthesis of two novel nickel quinolinethiolate complexes, namely [Ni(Hqt)2(4, 4‧-Z-2, 2‧-bpy)] (Hqt = 8-quinolinethiol, Z = sbnd H [1] or sbnd CH3 [2], bpy = bipyridine). An efficient three-component photocatalytic homogeneous system for hydrogen generation working under visible light irradiation was constructed by using the target complexes as catalysts, triethylamine (TEA) as sacrificial electron donor and xanthene dyes as photosensitizer. We obtain turnover numbers (TON, vs. catalyst) for H2 evolution of 5923/7634 under the optimal conditions with 5.0 × 10-6 M complex 1/2 respectively, 1.0 × 10-3 M fluorescein and 5% (v/v) TEA at pH 12.3 in EtOH/H2O (1:1, v/v) mixture after 8 h irradiation (λ > 420 nm). We discuss the mechanism of H2 evolution in the homogeneous photocatalytic system based on fluorescence spectrum and cyclic voltammetry data.

  13. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light.

    Science.gov (United States)

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.

  14. Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation

    Science.gov (United States)

    Dillert, Ralf; Taffa, Dereje H.; Wark, Michael; Bredow, Thomas; Bahnemann, Detlef W.

    2015-10-01

    The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFe2O4 and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochemical and photocatalytic properties of these compounds. It will be shown that the potential of this group of compounds in regard to the production of solar hydrogen has not been fully explored yet.

  15. Synergetic effect of Ag{sub 2}O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Haipeng [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Xinjuan, E-mail: lxj669635@126.com [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Junying [Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Jinliang [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Wu, Tianyang; Li, Haokun; Lei, Wenyan; Xu, Yan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China)

    2016-09-15

    Graphical abstract: Ag{sub 2}O/N-TiO{sub 2} composites were synthesized via a co-precipitation method for visible light photocatalytic degradation of organic pollutions with excellent photocatalytic activity. - Highlights: • Ag{sub 2}O/N-TiO{sub 2} composites were synthesized via a facile precipitation method. • Ag{sub 2}O/N-TiO{sub 2} composites exhibited enhanced photocatalytic activity. • Ag{sub 2}O acts as co-catalyst to separate the photo-generated electron-hole pairs. - Abstract: A facile precipitation method was developed to synthesize the Ag{sub 2}O/N-TiO{sub 2} composites. Their morphology, structure and photocatalytic performance in the degradation of methylene blue (MB) and phenol under visible light irradiation were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence spectroscopy and UV–vis absorption spectroscopy, respectively. The results show that the Ag{sub 2}O/N-TiO{sub 2} composites exhibit excellent photocatalytic performance. The maximum degradation rates of MB and phenol are about 8.9 and 2.9 times that of pure N-TiO{sub 2}, respectively. The excellent photocatalytic performance is mainly ascribed to the synergetic effects of Ag{sub 2}O and N-TiO{sub 2} including the increased light absorption and the reduced electron-hole pair recombination in N-TiO{sub 2} with the presence of Ag{sub 2}O.

  16. Study of photocatalytic activities of Bi2WO6 nanoparticles synthesized by fast microwave-assisted method

    International Nuclear Information System (INIS)

    Phu, Nguyen Dang; Hoang, Luc Huy; Chen, Xiang-Bai; Kong, Meng-Hong; Wen, Hua-Chiang; Chou, Wu Ching

    2015-01-01

    We present a study of photocatalytic activities of Bi 2 WO 6 nanoparticles synthesized by fast microwave-assisted method. The photocatalytic activities of the nanoparticles were evaluated by the decolorization of methylene-blue under visible-light-irradiation. Our results show that the surface area of Bi 2 WO 6 nanoparticles plays a major role for improving photocatalytic activity, while visible-light absorption has only a weak effect on photocatalytic activity. This suggests efficient transportation of photo-generated electrons and holes to the oxidation active sites on the surface of nanoparticles, indicating Bi 2 WO 6 nanoparticles synthesized by fast microwave-assisted method are promising for achieving high photocatalytic activity under visible-light-irradiation. - Highlights: • The Bi 2 WO 6 nanoparticles were synthesized via fast microwave-assisted method. • The obtained Bi 2 WO 6 nanoparticles exhibited visible-light absorbance. • The surface area of Bi 2 WO 6 nanoparticles plays major role for improving photocatalytic activity. • The Bi 2 WO 6 nanoparticles are promising for achieving high photocatalytic activity under visible-light-irradiation

  17. Surface modification and enhanced photocatalytic CO{sub 2} reduction performance of TiO{sub 2}: a review

    Energy Technology Data Exchange (ETDEWEB)

    Low, Jingxiang; Cheng, Bei [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2017-01-15

    Highlights: • Application of modified TiO{sub 2} for photocatalytic CO{sub 2} reduction is summarized. • Different surface modification strategies of TiO{sub 2} are highlighted. • Summary and future perspectives in photocatalytic CO{sub 2} reduction are presented. - Abstract: Recently, the excessive consumption of fossil fuels has caused high emissions of the greenhouse gases, CO{sub 2} into atmosphere and global energy crisis. Mimicking the natural photosynthesis by using semiconductor materials to achieve photocatalytic CO{sub 2} reduction into valuable solar fuels such as CH{sub 4}, HCO{sub 2}H, CH{sub 2}O, and CH{sub 3}OH is known as one of the best solutions for addressing the aforementioned issue. Among various proposed photocatalysts, TiO{sub 2} has been extensively studied over the past several decades for photocatalytic CO{sub 2} reduction because of its cheapness and environmental friendliness. Particularly, surface modification of TiO{sub 2} has attracted numerous interests due to its capability of enhancing the light absorption ability, facilitating the electron-hole separation, tuning the CO{sub 2} reduction selectivity and increasing the CO{sub 2} adsorption and activation ability of TiO{sub 2} for photocatalytic CO{sub 2} reduction. In this review, recent approaches of the surface modification of TiO{sub 2} for photocatalytic CO{sub 2} reduction, including impurity doping, metal deposition, alkali modification, heterojunction construction and carbon-based material loading, are presented. The photocatalytic CO{sub 2} reduction mechanism and pathways of TiO{sub 2} are discussed. The future research direction and perspective of photocatalytic CO{sub 2} reduction over surface-modified TiO{sub 2} are also presented.

  18. A facile fabrication of nitrogen-doped electrospun In2O3 nanofibers with improved visible-light photocatalytic activity

    Science.gov (United States)

    Lu, Na; Shao, Changlu; Li, Xinghua; Miao, Fujun; Wang, Kexin; Liu, Yichun

    2017-01-01

    Semiconductor photocatalysis demonstrates to be an effective approach for eliminating most types of environment contaminants and for producing hydrogen. Herein, a facile synthesis route combining electrospinning technique and thermal treatment method under NH3 atmosphere has been presented as a straightforward protocol for the fabrication of nitrogen-doped In2O3 (N-In2O3) nanofibers, the nitrogen content of which can be well controlled by adjusting the annealing temperature. Photocatalytic tests show that the N-In2O3 nanofibers demonstrate an improved degradation rate of Rhodamine B (RB) compared with pure In2O3 nanofibers under visible-light irradiation. This can be attributed to the nitrogen atom introducing at interstitial sites as well as the generation of oxygen vacancy on the surface of In2O3 nanofibers, resulting in the enhanced utilization of visible light for the N-In2O3 nanofibers. Furthermore, the obtained N-In2O3 nanofibers with the advantage of ultra-long one-dimensional nanostructures can be recycled several times by facile sedimentation and hence present almost no decrease in photocatalytic activity indicative of a well regeneration capability. Therefore, the as-fabricated nitrogen-doped In2O3 nanofibers as a promising photocatalyst present good photocatalytic degradation of organic pollutant in waste water for practical application.

  19. Heterojunctions of p-BiOI Nanosheets/n-TiO2 Nanofibers: Preparation and Enhanced Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Kexin Wang

    2016-01-01

    Full Text Available p-BiOI nanosheets/n-TiO2 nanofibers (p-BiOI/n-TiO2 NFs have been facilely prepared via the electrospinning technique combining successive ionic layer adsorption and reaction (SILAR. Dense BiOI nanosheets with good crystalline and width about 500 nm were uniformly assembled on TiO2 nanofibers at room temperature. The amount of the heterojunctions and the specific surface area were well controlled by adjusting the SILAR cycles. Due to the synergistic effect of p-n heterojunctions and high specific surface area, the obtained p-BiOI/n-TiO2 NFs exhibited enhanced visible-light photocatalytic activity. Moreover, the p-BiOI/n-TiO2 NFs heterojunctions could be easily recycled without decreasing the photocatalytic activity owing to their one-dimensional nanofibrous structure. Based on the above, the heterojunctions of p-BiOI/n-TiO2 NFs may be promising visible-light-driven photocatalysts for converting solar energy to chemical energy in environment remediation.

  20. Physicochemcial characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic degradation of crystal violet under UV and visible light irradiation

    Science.gov (United States)

    Vattikuti, S. V. Prabhakar; Ngo, Ich-Long; Byon, Chan

    2016-11-01

    In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV-visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.

  1. In situ growing Bi_2MoO_6 on g-C_3N_4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation

    International Nuclear Information System (INIS)

    Li, Juan; Yin, Yunchao; Liu, Enzhou; Ma, Yongning; Wan, Jun; Fan, Jun; Hu, Xiaoyun

    2017-01-01

    Graphical abstract: TEM image and schematic diagram of photocatalytic mechanism of Bi_2MoO_6/g-C_3N_4 composite. - Highlights: • BM/CNNs heterojunctions were obtained by an in situ solvothermal method. • 2D CNNs are superior to CN as photocatalysts and supporting materials. • The photocatalytic hydrogen evolution of BM/CNNs has been first studied. • The photocatalytic disinfection of bacteria by BM/CNNs has been first studied. • The photocatalytic mechanism of BM/CNNs heterojunction was described. - Abstract: Bi_2MoO_6/g-C_3N_4 heterojunctions were fabricated by an in situ solvothermal method using g-C_3N_4 nanosheets. The photocatalytic activities of as-prepared samples were evaluated by hydrogen evolution from water splitting and disinfection of bacteria under visible light irradiation. The results indicate that exfoliating bulk g-C_3N_4 to g-C_3N_4 nanosheets greatly enlarges the specific surface area and shortens the diffusion distance for photogenerated charges, which could not only promote the photocatalytic performance but also benefit the sufficient interaction with Bi_2MoO_6. Furthermore, intimate contact of Bi_2MoO_6 (BM) and g-C_3N_4 nanosheets (CNNs) in the BM/CNNs composites facilitates the transfer and separation of photogenetrated electron-hole pairs. 20%-BM/CNNs heterojunction exhibits the optimal photocatalytic hydrogen evolution as well as photocatalytic disinfection of bacteria. Furthermore, h"+ was demonstrated as the dominant reactive species which could make the bacteria cells inactivated in the photocatalytic disinfection process. This study extends new chance of g-C_3N_4-based photocatalysts to the growing demand of clean new energy and drinking water.

  2. Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Tian, Yanlong; Chang, Binbin; Fu, Jie; Zhou, Baocheng; Liu, Jiyang; Xi, Fengna; Dong, Xiaoping

    2014-01-01

    As a metal-free semiconductor material, graphitic carbon nitride (C 3 N 4 ), the high recombination rate of photogenerated charges and insufficient sunlight absorption limit its solar-based photocatalytic activity. Here, we reported the heterojunctions of C 3 N 4 –Cu 2 O with a p–n junction structure, which was synthesized by a hydrothermal method. The HR-TEM result revealed an intimate interface between C 3 N 4 and Cu 2 O in the heterojunction, and UV–vis diffuse reflection spectra showed their extended spectral response in the visible region compared with pure C 3 N 4 . These excellent structural and spectral properties, as well as p–n junction structures, endowed the C 3 N 4 –Cu 2 O heterojunctions with enhanced photocatalytic activities. The possible photocatalytic mechanism that photogenerated holes as the mainly oxidant species in photocatalysis was proposed base on the trapping experiments. - Highlights: • A hydrothermal method was used to prepare C3N 4 –Cu 2 O heterojunction. • The resulting heterojunction possesses broader absorption in the visible region. • The material owns a high visible light activity and stability for dye degradation

  3. Modification of g-C{sub 3}N{sub 4} nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kui; Su, Feng-Yun; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    2016-07-01

    Graphical abstract: Carbon quantum dots-modified graphitic carbon nitride nanosheets (CNNS/CQDs) catalysts with high and stable activity for photocatalytic generation of hydrogen through water splitting were successfully constructed. - Highlights: • Composite photocatalysts based on g-C{sub 3}N{sub 4} nanosheets and CQDs were prepared. • High visible light photocatalytic activity for H{sub 2} evolution. • Effective separation and transfer of charge carriers. - Abstract: Carbon quantum dots (CQDs) were deposited onto graphite-like carbon nitride nanosheets (CNNS) to form CNNS/CQDs composites. The prepared CNNS/CQDs composites exhibit much higher photocatalytic activity under visible light irradiation than pure CNNS do. The CNNS/CQDs-7 sample displays the highest photocatalytic performance, with H{sub 2} production rate of 116.1 μmol h{sup −1}, which is three times of that over pure CNNS (37.8 μmol h{sup −1}). Photoluminescence spectroscopy and photoelectrochemical (PEC) analysis reveal that the CQDs are favorable for trapping electrons and promoting the separation of photogenerated electron-hole pairs in CNNS. A possible photocatalytic mechanism of the enhanced photocatalytic performance for H{sub 2} generation over CNNS/CQDs will be proposed in this paper.

  4. Novel Bi/BiOBr/AgBr composite microspheres: Ion exchange synthesis and photocatalytic performance

    Science.gov (United States)

    Lyu, Jianchang; Li, Zhenlu; Ge, Ming

    2018-06-01

    Novel Bi/BiOBr/AgBr composite microspheres were prepared by a rational in situ ion exchange reaction between Bi/BiOBr microspheres and AgNO3. The characteristic of the as-obtained ternary microspheres was tested by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL). Under visible light irradiation, Bi/BiOBr/AgBr microspheres exhibited an excellent photocatalytic efficiency for rhodamine B (RhB) degradation, which was about 1.4 and 4.9 times as high as that of Bi/BiOBr and BiOBr/AgBr, demonstrating that the highest separation efficiency of charge carriers in the heterostructured Bi/BiOBr/AgBr. The photocatalytic activity of Bi/BiOBr/AgBr microspheres just exhibited a slight decrease after three consecutive cycles. The photocatalytic mechanism investigation confirmed that the superoxide radicals (O2•-) were the dominant reactive oxygen species for RhB degradation in Bi/BiOBr/AgBr suspension.

  5. Fabrication of AgFeO{sub 2}/g-C{sub 3}N{sub 4} nanocatalyst with enhanced and stable photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Dandan [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Hubei Provincial Collaborative Innovation Center for High Efficient Utilization of Vanadium Resources, Wuhan 430070 (China); Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Hubei Provincial Collaborative Innovation Center for High Efficient Utilization of Vanadium Resources, Wuhan 430070 (China)

    2017-01-01

    Highlights: • AgFeO{sub 2}/g-C{sub 3}N{sub 4} nanocatalyst was synthesized via a facile precipitation method. • The composite displays superior e{sup ∧}/h{sup +} pair separation compared to AgFeO{sub 2} and g-C{sub 3}N{sub 4}. • The composite shows high and stable photocatalytic activity both in water and air. • The active h{sup +} plays the dominate role in the degradation process. - Abstract: This work reported a novel AgFeO{sub 2}/g-C{sub 3}N{sub 4} composite with enhanced photocatalytic activity, which was fabricated by a simple precipitation method. The g-C{sub 3}N{sub 4} sheets with thickness of 2• 4 nm were successfully loaded on the surface of the AgFeO{sub 2} particles. As compared to pure AgFeO{sub 2} and pure g-C{sub 3}N{sub 4}, the as-prepared AgFeO{sub 2}/g-C{sub 3}N{sub 4} photocatalysts exhibited superior absorption in the visible-light region and displayed promising visible-light photocatalytic performance in the degradation of organic contaminations both in water and in air. About 94% of Acid red G (ARG) can be degraded by the optimized AgFeO{sub 2}/g-C{sub 3}N{sub 4} sample, which is ∱/47.5 and ∱/410.7 times higher than that by pure AgFeO{sub 2} and pure g-C{sub 3}N{sub 4}, respectively. Meanwhile, it can also effectively degrade ∱/487% of gaseous formaldehyde to CO{sub 2} within 9 h. The enhanced photocatalytic property and stability of the AgFeO{sub 2}/g-C{sub 3}N{sub 4} composite can be attributed to its specific nanostructure, effective electron-hole separation and the formation of Z-scheme heterostructure between AgFeO{sub 2} and g-C{sub 3}N{sub 4}. This work could provide new and helpful insights into the photocatalytic application of Ag-based delafossite materials.

  6. Tunable band alignment in two-phase-coexistence Nb3O7F nanocrystals with enhanced light harvesting and photocatalytic performance

    Science.gov (United States)

    Li, Zhen; Huang, Fei; Feng, Xin; Yan, Aihua; Dong, Haiming; Hu, Miao; Li, Qi

    2018-06-01

    A two-phase-coexistence technique offers intriguing variables to maneuver novel and enhanced functionality in a single-component material. Most importantly, new band alignment and perfect interfaces between two phases can strongly affect local photoelectronic properties. However, previous efforts to achieve two-phase coexistence were mainly restricted to specific systems and methods. Here we demonstrate a phase-transition route to acquire two-phase-coexistence niobium oxyfluoride (Nb3O7F) nanocrystals for the first time. Based on key distinguishing features of the experimental results and theoretical analysis, the phase transition of Nb3O7F involves an organic/inorganic hybrid, heat treating, Al-doping, lattice deformation and structural rearrangement. The band gap can be effectively tuned from 3.03 eV to 2.84 eV, and the VBM can be tuned from 1.49 eV to 1.69 eV according to the phase proportion. Benefiting from uniform nanocrystal size, tunable band alignment and an optimized interfacial structure, the two-phase coexistence markedly enhances visible-light harvesting and the photocatalytic performance of Nb3O7F nanocrystals. The results not only demonstrate an opportunity to explore two-phase coexistence of novel nanocrystals, but also illustrate the role of two-phase coexistence in achieving enhanced photoelectronic properties.

  7. Preparation of re-usable photocatalytic filter for degradation of Malachite Green dye under UV and vis-irradiation

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Arpac, E.; Sayilkan, H.

    2007-01-01

    Sn 4+ doped and undoped nano-TiO 2 particles easily dispersed in water were synthesized without using organic solvent by hydrothermal process. Nanostructure-TiO 2 based thin films were prepared on flyswatter substrate, made with stainless steel, by dip-coating technique. The structure, surface and optical properties of the particles and thin films were characterized by element analysis and XRD, BET, SEM and UV/vis/NIR techniques. The photocatalytic performance of the films were tested for degradation of Malachite Green dye in solution under UV and vis-lights. The results showed that the coated flyswatter has a very high photocatalytic performance for the photodegradation of Malachite Green irradiated with UV and vis-lights. The results also proved that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces are hydrophilic, and the doping of transition metal ion efficiently improved the degradation performance of TiO 2 -coated flyswatter. The photocatalytic performances determined at both irradiation conditions were very good and were almost similar to each other for Sn 4+ doped TiO 2 -coated flyswatter and it can be repeatedly used with increasing photocatalytic activity compared to undoped TiO 2 -coated flyswatter

  8. A Photocatalytic Active Adsorbent for Gas Cleaning in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Peter Pucher

    2008-01-01

    Full Text Available Efficient photocatalysis for gas cleaning purposes requires a large accessible, illuminated active surface in a simple and compact reactor. Conventional concepts use powdered catalysts, which are nontransparent. Hence a uniform distribution of light is difficult to be attained. Our approach is based on a coarse granular, UV-A light transparent, and highly porous adsorbent that can be used in a simple fixed bed reactor. A novel sol-gel process with rapid micro mixing is used to coat a porous silica substrate with TiO2-based nanoparticles. The resulting material posses a high adsorption capacity and a photocatalytic activity under UV-A illumination (PCAA = photocatalytic active adsorbent. Its photocatalytic performance was studied on the oxidation of trichloroethylene (TCE in a fixed bed reactor setup in continuous and discontinuous operation modes. Continuous operation resulted in a higher conversion rate due to less slip while discontinuous operation is superior for a total oxidation to CO2 due to a user-defined longer residence time.

  9. Novel β-C3N4/CuO nanoflakes: facile synthesis and unique photocatalytic performance

    Science.gov (United States)

    Zou, Lan-Rong; Huang, Gui-Fang; Li, Dong-Feng; Tian, Qing-Nan; Yang, Ke; Si, Yuan; Chang, Shengli; Zhang, Xue-Ao; Huang, Wei-Qing

    2017-09-01

    For the first time, novel β-C3N4/CuO composites with superior photocatalytic activity are successfully fabricated via a facile reflux method followed by a thermal process. The morphologies, particle size and microstructure of the synthesized β-C3N4/CuO composites largely depended upon copper chloride and the volume ratio of V water:V ethanol in the mixed precursors. The fabricated β-C3N4/CuO nanoflakes exhibited obviously enhanced visible light photocatalytic activity for the degradation of methylene blue (MB) with an  ˜3.4 and 1.9 fold increase in efficiency over that of pure g-C3N4 and commercial P25, respectively. The β-C3N4/CuO composite photocatalyst also showed photocatalytic activity for the degradation of methyl orange (MO). Moreover, the β-C3N4/CuO nanoflakes showed almost no loss of photocatalytic activity after three recycles of the degradation of the MB. A multiple synergetic mechanism in β-C3N4/CuO nanoflakes, which is featured by the highly reactive {0 0 2} facets, exposed many active sites of nanoflakes and the efficient charge separation are proposed to account for the distinguished photocatalytic activity. This work provides a facile and cost-effective strategy for designing novel β-C3N4/CuO photocatalysts for application in environmental purification.

  10. Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light

    International Nuclear Information System (INIS)

    Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.; Kamalakkannan, J.; Prabha, S.; Senthilvelan, S.

    2013-01-01

    Graphical abstract: The hetero-junctions that are formed between the ZnO and the Bi provide an internal electric field that facilitates separation of the electron-hole pairs and induces faster carrier migration. Thus they often enhanced photocatalytic reaction. - Highlights: • Bi-doped ZnO nanocomposite material was prepared by precipitation method. • Characterized by XRD, HR-SEM with EDX, UV–visible DRS and FT-RAMAN analysis. • Bi-doped ZnO nanocomposite material was used to photodegradation of Congo red. • Mechanism and photocatalytic effect of nanocomposite material have been discussed. - Abstract: Bismuth (Bi)-doped ZnO nanocomposite material was prepared by precipitation method with doping precursors of bismuth nitrate pentahydrate and oxalic acid, characterized by X-ray diffraction (XRD), High Resolution-Scanning Electron Microscopy (HR-SEM) with Energy Dispersive X-ray (EDX) analysis, UV–visible Diffuse Reflectance Spectroscopy (UV–visible DRS) and Fourier Transform-Raman (FT-RAMAN) analysis. The enhanced photocatalytic activity of the Bi-doped ZnO is demonstrated through photodegradation of Congo red under UV-light irradiation. The mechanism of photocatalytic effect of Bi-doped ZnO nanocomposite material has been discussed

  11. One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Lingling [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Luo, Zhijun, E-mail: lzj@ujs.edu.cn [School of the Environment, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Tang, Chao [Maple Leaf International High School, Zhenjiang 212013 (China)

    2013-11-15

    Graphical abstract: Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core–shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs). Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation. - Highlights: • One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres. • Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@CRCSs. • Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits enhanced photocatalytic activity under visible light irradiation. - Abstract: Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core-shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs) have been synthesized via a one-step method. The core–shell nanosturctures of the as-prepared samples were confirmed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Raman spectroscopy. The formation of Bi@Bi{sub 2}O{sub 3}@CRCSs core–shell nanosturctures should attribute to the synergetic roles of different functional groups of sodium gluconate. Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation (λ > 420 nm) and shows an O{sub 2}-dependent feature. According to trapping experiments of radicals and holes, hydroxyl radicals were not the main active oxidative species in the photocatalytic degradation of MB, but O{sub 2}·{sup −} are the main active oxidative species.

  12. Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles

    International Nuclear Information System (INIS)

    Shaterian, Maryam; Enhessari, Morteza; Rabbani, Davarkhah; Asghari, Morteza; Salavati-Niasari, Masoud

    2014-01-01

    Highlights: • Visible-light sensitive LaMnO3 nanoparticles were synthesized via sol–gel process. • Structural and optical properties of photocatalysts have been investigated. • The photocatalytic activity was evaluated by the degradation of methyl orange as a model of pollutant. • The prepared nanocrystals showed good visible-light photocatalytic activity for the degradation of methyl orange. - Abstract: Visible-light sensitive LaMnO 3 nanoparticles were synthesized via sol–gel process using stearic acid as complexing reagent. Characterizations of the resulting powders were carried out by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). Further, the photocatalytic activity of LaMnO 3 was evaluated by degradation of methyl orange in aqueous solution under visible-light irradiation. The prepared nanoparticles showed excellent visible-light photocatalytic ability for the degradation of methyl orange so that, 60 ppm of nanoparticles can decolorizes the methyl orange solution (6 ppm) up to 98% in 90 min

  13. Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang

    2017-01-01

    Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications.

  14. Synthesis of spindle-shaped AgI/TiO{sub 2} nanoparticles with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu; Gao, Minggang; Dai, Bin; Guo, Xuhong; Liu, Zhiyong; Peng, Banghua, E-mail: banghuapeng@hotmail.com

    2016-11-15

    Highlights: • Nanoporous spindle-shaped AgI/TiO{sub 2} was synthesized by the solvothermal approach. • The spindle-shaped TiO{sub 2} was an excellent support for loading nanoparticles, such as AgI, transferring electrons quickly from AgI, which is beneficial for stabilizing the AgI. • AgI/TiO{sub 2} nanoparticles showed enhanced absorption intensity in the visible region and exhibited excellent photocatalytic activity. - Abstract: A novel synthetic route has been developed to prepare silver iodide (AgI) loaded spindle-shaped TiO{sub 2} nanoparticles (NPs). The morphology and crystallinity characterization revealed that small AgI NPs, with an average diameter of 15 nm were dispersed on the surface and interior of nanoporous anatase TiO{sub 2} support. High-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET) surface area, Raman and X-ray photoelectron spectroscopy (XPS) were used to identify the nanoporous structure of TiO{sub 2} and the existence of AgI NPs. Diffuse reflectance spectra (DRS) showed that AgI/TiO{sub 2} composite exhibited a remarkable enhancement of visible light absorption, which is ascribed to the addition of AgI. For illustrating the superior property of this hybrid as photocatalyst, the degradation experiments were carried out for processing rhodamine B (RhB) solution under visible light irradiation and it was found that the photocatalytic activity was dramatically improved for AgI/TiO{sub 2} compared with nanoporous TiO{sub 2} and commercial P25 TiO{sub 2}. The enhanced photocatalytic properties could be attributed to the large surface area of porous TiO{sub 2}, good stability of AgI particles, and the effective charge separation due to the synergetic effect between AgI and TiO{sub 2} that can facilitate the separation of electron-hole pairs. Our novel composite based on nanoporous spindle-shaped TiO{sub 2} represents a promising new pathway for the design of high-performance photocatalysts for environmental

  15. Two-dimensional porous architecture of protonated GCN and reduced graphene oxide via electrostatic self-assembly strategy for high photocatalytic hydrogen evolution under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Chenchen; Wan, Jun; Liu, Enzhou; Yin, Yunchao; Li, Juan; Ma, Yongning [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Fan, Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Hu, Xiaoyun, E-mail: hxy3275@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710069 (China)

    2017-03-31

    Highlights: • The protonated GCN (pGCN) is prepared by acidic cutting and hydrothermal process. • The pGCN coupled with rGO are synthesized via electrostatic self-assembly strategy. • The pGCN-5 wt% rGO is obtained with a high specific surface area of 115.64 m{sup 2}g{sup −1}. • The pGCN-5 wt% rGO photocatalysts exhibit superb photocatalytic reduction capacity. - Abstract: Herein, porous protonated graphitic carbon nitride (pGCN) is prepared from bulk g-C{sub 3}N{sub 4} (GCN) directly by acidic cutting and hydrothermal process. The holey structure not only provides a lot of bounds on the accelerated and photo induced charge transfer and thus reduce the aggregation, but also endows the GCN with more exposure to the active site. The pGCN is obtained with an increased band gap of 2.91 eV together with a higher specific surface area of 82.76 m{sup 2}g{sup −1}. Meanwhile, the positively charged GCN resulted from the protonation pretreatment is beneficial for improving the interaction with negatively charged GO sheets. Compared with GCN, pGCN-rGO displays a significant decrease of PL intensities and an apparently enhancement of visible-light absorption, resulting a lower charge recombination rate and a better light absorption. Besides, the enhanced charge separation is demonstrated by photoluminescence emission spectroscopy and the transient photocurrent measurement. The photocatalytic performance studies for the degradation of MB indicate that pGCN-rGO exhibits the highest adsorption ability towards dye molecules. In addition, the pGCN-5 wt% rGO composite shows the optimal photocatalytic activity, the photodegradation rate of MB is 99.4% after 80 min of irradiation and the H{sub 2} evolution performance up to 557 μmol g{sup −1}h{sup −1} under visible light, which is much higher than the other control samples.

  16. Enhanced photocatalytic degradation of dye under visible light on mesoporous microspheres by defects in manganese- and nitrogen-co-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Lu; Jiang, Heng, E-mail: hjiang78@hotmail.com [Liaoning Shihua University, School of Chemistry and Materials Science (China); Zou, Mingming; Xiong, Fengqiang; Ganeshraja, Ayyakannu Sundaram; Pervaiz, Erum [Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (China); Liu, Yinan; Zou, Shunying [Dalian Environmental Protection Laboratory (China); Yang, Minghui, E-mail: myang@dicp.ac.cn [Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (China)

    2016-09-15

    Manganese- and nitrogen-co-doped mesoporous TiO{sub 2} microsphere photocatalysts are prepared by a simple sol–gel method with controllable sizes in the range of 400–500 nm and high surface area of 112 m{sup 2} g{sup −1}. Manganous acetate is the Mn source, and ammonia gas is the nitrogen source used. The dopants are found to be uniformly distributed in the TiO{sub 2} matrix. Interestingly, in (Mn,N)-co-doped TiO{sub 2}, we observe an effective indirect band gap of ~2.58 eV. (Mn,N)-co-doped mesoporous TiO{sub 2} microspheres show higher photocatalytic activity than Mn–TiO{sub 2} microspheres under visible light irradiation. Among the samples reported in this work, 0.2 at.% Mn doping and 500 °C 2-h nitriding condition give the highest photocatalytic activity. The observed photocatalytic activity in the (Mn,N)-co-doped TiO{sub 2} is attributed to the contribution from improved absorption due to trap levels of Mn, oxygen vacancies and N doping.Graphical AbstractManganese- and nitrogen-co-doped mesoporous TiO{sub 2} microspheres containing substitutional N, interstitial N and O vacancies show high visible light photocatalytic activity.

  17. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation

    Science.gov (United States)

    Shi, Jinwen; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin

    2015-06-01

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO2 was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H+ or Fe3+) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H2-production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H2-production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption.

  18. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation

    International Nuclear Information System (INIS)

    Shi, Jinwen; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin

    2015-01-01

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO 2 was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H + or Fe 3+ ) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H 2 -production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H 2 -production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption

  19. Photocatalytic degradation of malachite green dye using Au/NaNbO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Baeissa, E.S., E-mail: elhambaeissa@gmail.com

    2016-07-05

    The morphology of sodium niobate, which was produced using a hydrothermal method, was studied by changing the hydrothermal temperature from 100 to 250 °C. Using 250 °C hydrothermal temperature resulted in sodium niobate with a nanocube structure. The sodium niobate nanocubes were doped with gold by impregnation with an aqueous solution of HAuCl{sub 4}. The band gap of sodium niobate is approximately 3.4 eV, and it was decreased to 2.45 eV by gold doping. The surface area of sodium niobate is higher than that of Au/NaNbO{sub 3} due to blockage of some pores of sodium niobate by gold doping. The photocatalytic performance of gold-doped sodium niobate was studied by degradation of malachite green dye using visible light irradiation. The results demonstrate that the photocatalytic performance of gold-doped sodium niobate is higher than that of sodium niobate and TiO{sub 2} Degussa under visible light irradiation. - Highlights: • Au/NaNbO{sub 3} were used for photocatalytic degradation of malachite green dye. • Photocatalytic degradation was dependent on wt % of Au; reaction time, and weight of catalyst. • Catalyst re-use revealed the present photocatalyst remain effective and active after five cycles.

  20. Rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zai, Jiantao; Cao, Fenglei; Liang, Na; Yu, Ke; Tian, Yuan; Sun, Huai; Qian, Xuefeng, E-mail: xfqian@sjtu.edu.cn

    2017-01-05

    Highlights: • DFT reveals I{sup −} can partially substitute CO{sub 3}{sup 2−}to narrow the bandgap of Bi{sub 2}O{sub 2}CO{sub 3}. • Sodium citrate play a key role on the formation of rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3}. • Rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} show enhanced visible light response. • The catalyst has enhanced photocatalytic activity to organic and Cr(VI) pollutes. - Abstract: Based on the crystal structure and the DFT calculation of Bi{sub 2}O{sub 2}CO{sub 3}, I{sup −} can partly replace the CO{sub 3}{sup 2−}in Bi{sub 2}O{sub 2}CO{sub 3} to narrow its bandgap and to enhance its visible light absorption. With this in mind, rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres were prepared via a hydrothermal process. This method can also be extended to synthesize rose-like Cl- or Br-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres. Photoelectrochemical test supports the DFT calculation result that I- doping narrows the bandgap of Bi{sub 2}O{sub 2}CO{sub 3} by forming two intermediate levels in its forbidden band. Further study reveals that I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres with optimized composition exhibit the best photocatalytic activity. Rhodamine B can be completely degraded within 6 min and about 90% of Cr(VI) can be reduced after 25 min under the irradiation of visible light (λ > 400 nm).

  1. Room temperature synthesis and enhanced photocatalytic property of CeO2/ZnO heterostructures

    Science.gov (United States)

    Wang, Chao; Fan, Huiqing; Ren, Xiaohu; Fang, Jiawen

    2018-02-01

    To achieve better photocatalytic performance, we proposed a facile solid-state reaction method to produce CeO2/ZnO heterostructures. Ceria and zinc oxide were synthesized simultaneously by thoroughly grinding the mixture of zinc acetate dihydrate, cerium nitrate hexahydrate and sodium hydroxide. The morphology of the as-prepared heterostructures varies dramatically as different amount of ceria was introduced in the composition. The photocatalytic performance of CeO2/ZnO heterojunctions was 4.6 times higher than that of pure ZnO. The enhanced photocatalytic activity could be ascribed to that more electrons and holes could transport to the surface of catalysts and react with the pollution due to the extended light-responsive range, accelerated migration, increased specific surface area and suppressed recombination of photogenerated carriers.

  2. Facile preparation of novel organic–inorganic PI/Zn0.25Cd0.75S composite for enhanced visible light photocatalytic performance

    International Nuclear Information System (INIS)

    Yan, Tao; Li, Mengmeng; Wang, Xiaodong; Sun, Meng; Liu, Hongye; Wei, Qin; Xu, Wenguo; Du, Bin

    2015-01-01

    Graphical abstract: - Highlights: • Novel PI/Zn 0.25 Cd 0.75 S composite showed enhanced activity in dye degradation. • The composites PIZCS-30 exhibited the best activity. • The heterojunction was in situ fabricated between PI and Zn 0.25 Cd 0.75 S. • The PI/Zn 0.25 Cd 0.75 S heterojunction facilitated the separation of electron–hole pairs. - Abstract: Novel organic–inorganic polyimide (PI)–Zn 0.25 Cd 0.75 S composites with high-efficiency visible light performance was prepared by a facile and template free hydrothermal method. The obtained composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photo-electron spectroscopy (XPS), ultraviolet–visible diffuse reflection spectroscopy (DRS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD and SEM results revealed that the PI exhibited a high degree of polymerization. The DRS characterization showed that the light absorption exhibited regular shifts upon the change of PI/Zn 0.25 Cd 0.75 S mass ratio. The TEM results proved the in situ growth of finely distributed Zn 0.25 Cd 0.75 S nanoparticles on the surface of PI sheets. The as-prepared samples exhibited superior photocatalytic activity compared with PI and Zn 0.25 Cd 0.75 S toward the degradation of dyes under visible light irradiation. The electrochemical impedance spectroscopy (EIS) confirmed that the separation efficiency of electron–hole pairs was greatly improved for the formation of heterojunction. The activity enhancement of PI/Zn 0.25 Cd 0.75 S composites could be attributed to the interfacial electronic interaction and high migration efficiency of photo-induced carriers. A possible photodegradation mechanism was proposed for the degradation of dyes over PI/Zn 0.25 Cd 0.75 S composites

  3. Photocatalytic and Magnetic Behaviors Observed in BiFeO3 Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Xuehui Zhang

    2013-01-01

    Full Text Available Perovskite-type BiFeO3 nanofibers with wave nodes-like morphology were prepared by electrospinning. The nanofibers show a highly enhanced visible-light-active photocatalytic property. The results also showed that the diameter could affect the band gap and photocatalytic performances of nanofibers. Additionally, weak ferromagnetic behaviors can be observed at room temperature, which should be correlated to the size-confinement effect on the magnetic ordering of BiFeO3 structure.

  4. Effect of Sr/Ti Ratio on the Photocatalytic Properties of SrTiO3

    International Nuclear Information System (INIS)

    Sulaeman, U; Yin, S; Sato, T

    2011-01-01

    Since strontium titanate is a wide gap semiconductor, it requires UV light to generate the photocatalytic activities. Modification of strontium titanate to show photocatalytic activity under visible light irradiation is the essential work to efficiently utilize the sun light energy for environmental application. It is expected that the synthesis of SrTiO 3 with variation of Sr/Ti atomic ratio could induce the defect crystals having unique photocatalytic properties. The SrTiO 3 with various Sr/Ti atomic ratios were synthesized by microwave-assisted solvothermal reaction of SrCl 2 .6H 2 O and Ti(OC 3 H 7 ) 4 in KOH aqueous solutions with different atomic ratios of Sr/Ti. The products were characterized by TG-DTA, XRD and DRS. The photocatalytic activity was determined by DeNO x ability using LED lamps with the wavelengths of 627 nm (red), 530 nm (green), 445 nm (blue) and 390 nm (UV). The nanoparticles of perovskite type SrTiO 3 with the particle size of 30-40 nm were successfully synthesized. The visible light responsive photocatalytic activity was generated by adding excess amount of Sr. The photocatalytic activity in visible light could be enhanced by an increase in the Sr/Ti atomic ratio up to 1.25, indicating that the visible light responsive photocatalytic activity is due to the generation of new band gap between the conduction band and valence band of SrTiO 3 by the formation of oxygen vacancy.

  5. Synthesis, characterization and photocatalytic activity of ZnO-SnO2 nanocomposites

    International Nuclear Information System (INIS)

    Hamrouni, Abdessalem; Lachheb, Hinda; Houas, Ammar

    2013-01-01

    Highlights: • ZnO-SnO 2 photocatalysts were prepared successfully by the coprecipitation method. • The best conditions found are: calcination at 600 °C/2 h; molar ratio Zn/Sn = 1/0.05. • The lower tin content in the samples led to the higher photocatalytic activity. • Zn-Sn 0.05 photoactivity under solar light was better than visible lamps light. -- Abstract: Nanocomposites of coupled ZnO-SnO 2 photocatalysts were synthesized by the coprecipitation method and were characterized by X-ray diffraction, UV–vis diffuse reflectance spectroscopy, surface area analyzer and scanning electron microscopy. Their photocatalytic activity was investigated under UV, visible and solar light and evaluated using methylene blue (MB) as a model pollutant. The performance of the coupled ZnO-SnO 2 photocatalysts was found to be related to the Zn/Sn molar ratio and to the calcination conditions. The photocatalyst with a Zn/Sn molar ratio of 1:0.05 calcined at 600 °C for 2 h showed the maximum degradation rate of MB under different lights used. Its photocatalytic activity was found to be about two times that of ZnO and about 10 times that of SnO 2 which can be explained by the heterojunction effect. Charge separation mechanism has been studied

  6. Well-defined copolymers synthesized by RAFT polymerization as effective modifiers to enhance the photocatalytic performance of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vasilaki, E., E-mail: euavasilakh@gmail.com [Department of Chemistry, University of Crete, 710 03, Heraklion, Crete (Greece); Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Kaliva, M. [Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Department of Materials Science and Technology, University of Crete, 710 03, Heraklion, Crete (Greece); Katsarakis, N. [Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Vamvakaki, M. [Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Department of Materials Science and Technology, University of Crete, 710 03, Heraklion, Crete (Greece)

    2017-03-31

    Highlights: • Well-defined, random functional copolymers were synthesized by RAFT polymerization. • Novel TiO{sub 2} particles in-situ modified with copolymers were synthesized. • The hybrid catalysts exhibited reduced aggregation and particle size. • The photocatalytic removal of methylene blue was higher for the hybrid catalysts. - Αbstract: The enhancement of the photocatalytic performance of anatase TiO{sub 2} nanoparticles is demonstrated by a facile route, involving their in-situ surface modification with preformed polymer chains. Random copolymers of poly(ethylene glycol) methyl ether acrylate-co-methacrylic acid (PEGA-co-MAA) or poly(ethylene glycol) methyl ether acrylate-co-dopamine methacrylamide (PEGA-co-DMA) were synthesized by reversible addition−fragmentation chain-transfer (RAFT) polymerization and were bound onto the surface of anatase titania nanoparticles via the “grafting to” method. The hybrid nanocatalysts were characterized by fourier transform infrared spectroscopy, zeta-potential measurements, X-ray powder diffraction, thermogravimetric analysis and transmission electron microscopy. Their photocatalytic performance was evaluated by the decoloration of methylene blue (MB) dye in aqueous media under UV–vis light irradiation. The enhanced photoactivity and reusability of the polymer modified photocatalysts compared to that of bare TiO{sub 2} nanoparticles was attributed to their improved dispersability and colloidal stability, the smaller particle size that leads to a larger surface area and the increased adsorption capacity of the dye onto the polymer modified nanoparticles.

  7. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    International Nuclear Information System (INIS)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago

    2015-01-01

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO 3 in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH 4 F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO 2 with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl 2 ] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO 2 ), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO 2 –Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst

  8. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Li, Baoying; Huang, Hongwei; Guo, Yuxi; Zhang, Yihe

    2015-01-01

    Graphical abstract: - Highlights: • A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. • The diatomite-immobilized BiOI hybrid photocatalyst exhibits much better photocatalytic performance. • This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. • This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral. - Abstract: A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.

  9. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoying; Huang, Hongwei, E-mail: hhw@cugb.edu.cn; Guo, Yuxi; Zhang, Yihe, E-mail: zyh@cugb.edu.cn

    2015-10-30

    Graphical abstract: - Highlights: • A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. • The diatomite-immobilized BiOI hybrid photocatalyst exhibits much better photocatalytic performance. • This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. • This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral. - Abstract: A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.

  10. Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(III) porphyrin-sensitized TiO{sub 2} nanotube photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Meng [National Engineering Lab of Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Wan, Junmin, E-mail: wwjm2001@126.com [National Engineering Lab of Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018 (China); State Key Laboratory of advanced Textiles Materials and Manufacture Technology, MOE, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Hu, Zhiwen; Peng, Zhiqin; Wang, Bing [National Engineering Lab of Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Wang, Huigang [State Key Laboratory of advanced Textiles Materials and Manufacture Technology, MOE, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2017-01-01

    Highlights: • FeTCPP-TNT photocatalysts are synthesized. • FeTCPP and tube-like structure are helpful to induce interfacial charge transfer at surface junction. • FeTCPP and tube-like structure are favorable for enhancing photocatalytic activity. • The photocatalytic mechanism of FeTCPP-TNT is proposed. • The photocatalyst are proven to be effective and chemically-stable catalysts. - Abstract: Iron(III) meso-tetra(4-carboxyphenyl) porphyrin (FeTCPP) loaded on the surface of TiO{sub 2} nanotubes (TNTs) has been successfully prepared through improved hydrothermal and heating reflux process. The new photocatalyst has been characterized and analyzed by TEM/EDS, BET, XRD, FT-IR, DRS, PL, XPS and EPR. The photocatalytic activity of FeTCPP/TNT nanocomposite was evaluated by the photodegradation of MB under visible light irradiation. The degradation results showed a purification of more than 90% MB in simulating wastewater, and confirmed that the prepared FeTCPP/TNT nanocomposite has acquired superior photocatalytic activitiy. The 6 times cycled results suggested the great stability of the photocatalyst. These results confirmed the FeTCPP played an important role in capturing photons and expanding the absorption wavelength to the visible light region, and the FeTCPP/TNT photocatalyst is also beneficial for the electron transfer and long-distance transmission, and could efficiently increase the separation of the electron-hole pairs, and accelerate the decomposition of organic pollutants. In addition, nano-sized structures can increase adsorption capability.

  11. Fabrication of the heterostructured CsTaWO{sub 6}/Au/g-C{sub 3}N{sub 4} hybrid photocatalyst with enhanced performance of photocatalytic hydrogen production from water

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Junyu; Liu, Mengqing; Su, Yiguo; Yan, Lijuan; Wang, Xiaojing, E-mail: wang_xiao_jing@hotmail.com

    2015-12-15

    Graphical abstract: - Highlights: • A novel ternary CsTaWO{sub 6}/Au/g-C{sub 3}N{sub 4} hybrid photocatalyst was successfully fabricated. • Au particles act as an electron-conduction bridge between the heterostructure. • The photoctalytic hydrogen generation was promoted by the SPR of the Au. • CsTaWO{sub 6}/Au/g-C{sub 3}N{sub 4} shows significant photocatalytic activity in H{sub 2} generation. - Abstract: In this work, a novel CsTaWO{sub 6}/Au/g-C{sub 3}N{sub 4} hybrid photocatalyst is successfully fabricated. The photocatalytic performance of the heterostructured CsTaWO{sub 6}/Au/g-C{sub 3}N{sub 4} composite was investigated. Au nanoparticles were photo-deposited as the interlayer between g-C{sub 3}N{sub 4} and the surface of CsTaWO{sub 6}, which can facilitate the photoinduced electrons migration as an electron-conduction bridge as well as increase visible-light absorption via the surface plasmon resonance. This heterostructured interface bridging by Au particles may significantly retard the recombination of electron–holes, which is beneficial to promote the photocatalytic activity under visible-light irradiation. It is found the CsTaWO{sub 6}/Au/g-C{sub 3}N{sub 4} sample showed excellent photocatalytic activity of water splitting, even higher than the sum of g-C{sub 3}N{sub 4} and Au/CsTaWO{sub 6} samples, or the sum of CsTaWO{sub 6} and Au/g-C{sub 3}N{sub 4} samples. It indicates that the heterostructured combination of g-C{sub 3}N{sub 4} and CsTaWO{sub 6} bridging by Au particles provided the synergistic photocatalytic activity driving by solar light through an efficient electron transfer process.

  12. Efficient solar light harvesting CdS/Co{sub 9}S{sub 8} hollow cubes for Z-scheme photocatalytic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Bocheng; Zhu, Qiaohong; Du, Mengmeng; Fan, Linggang; Xing, Mingyang; Zhang, Jinlong [Key Lab. for Advanced Materials and Inst. of Fine Chemicals, School of Chemistry and Molecular Engineering, East China Univ. of Science and Technology, Shanghai (China)

    2017-03-01

    Hollow structures with an efficient light harvesting and tunable interior component offer great advantages for constructing a Z-scheme system. Controlled design of hollow cobalt sulfide (Co{sub 9}S{sub 8}) cubes embedded with cadmium sulfide quantum dots (QDs) is described, using hollow Co(OH){sub 2} as the template and a one-pot hydrothermal strategy. The hollow CdS/Co{sub 9}S{sub 8} cubes utilize multiple reflections of light in the cubic structure to achieve enhanced photocatalytic activity. Importantly, the photoexcited charge carriers can be effectively separated by the construction of a redox-mediator-free Z-scheme system. The hydrogen evolution rate over hollow CdS/Co{sub 9}S{sub 8} is 134 and 9.1 times higher than that of pure hollow Co{sub 9}S{sub 8} and CdS QDs under simulated solar light irradiation, respectively. Moreover, this is the first report describing construction of a hollow Co{sub 9}S{sub 8} based Z-scheme system for photocatalytic water splitting, which gives full play to the advantages of light-harvesting and charges separation. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Rapid and efficient visible light photocatalytic dye degradation using AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, T. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Suriyaraj, S.P.; Selvakumar, R. [Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Venkateswaran, R. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Ashok, Anuradha, E-mail: anu@psgias.ac.in [PSG Institute of Advanced Studies, Coimbatore 641004 (India)

    2016-08-15

    Highlights: • Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe{sub 2}O{sub 4} exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe{sub 2}O{sub 4} was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe{sub 2}O{sub 4} exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe{sub 2}O{sub 4} showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe{sub 2}O{sub 4} showed the highest dye adsorption (44% after 75 min).

  14. Effect of PdS on Photocatalytic Hydrogen Evolution of Nanostructured CdS under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Qingyun Chen

    2013-01-01

    Full Text Available To investigate the effect of PdS as a cocatalyst for photocatalytic hydrogen evolution, nanostructured PdS/CdS were prepared by an in situ coprecipitation and hydrothermal method, respectively. The as-prepared photocatalysts were characterized by transmission electron microscopy (TEM, X-ray diffraction (XRD, UV-visible absorption spectra, and photoluminescence spectra (PL. With PdS highly dispersed in the CdS nanostructures, the photoactivity was evaluated by hydrogen evolution from aqueous solution containing Na2S/Na2SO3 as sacrificial reagents under visible light irradiation. When the concentration of PdS was 1% by weight, PdS/CdS, prepared by the in situ coprecipitation, showed the highest photocatalytic activity, while that prepared by hydrothermal method showed the most stability for hydrogen evolution. The effect of highly dispersed PdS on the photoactivity was discussed.

  15. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    Science.gov (United States)

    Bustam, Mohamad Azmi; Chong, Fai Kait; Man, Zakaria B.; Khan, Muhammad Saqib; Shariff, Azmi M.

    2014-01-01

    Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI) method with TiO2 (Degussa-P25) as support and calcined at different temperatures (180, 200, and 300°C) for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR) and temperature programmed reduction (TPR). The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD) removal (86.82%). According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion. PMID:25105158

  16. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Nadia Riaz

    2014-01-01

    Full Text Available Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI method with TiO2 (Degussa-P25 as support and calcined at different temperatures (180, 200, and 300°C for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR and temperature programmed reduction (TPR. The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD removal (86.82%. According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion.

  17. Applied studies in solar photocatalytic detoxification: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Malato, S.; Blanco, J.; Vidal, A.; Alarcon, D.; Maldonado, M.I.; Caceres, J.; Gernjak, W. [CIEMAT - Plataforma Solar de Almeria, Tabernas (Spain)

    2003-10-01

    The technical feasibility and performance of photocatalytic degradation of four water-soluble pesticides (diuron, imidacloprid, formetanate and methomyl) have been studied at pilot scale in two well-defined systems which are of special interest because natural-solar UV light can be used for them: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. The pilot plant is made up of compound parabolic collectors specially designed for solar photocatalytic applications. The initial concentration tested with imidacloprid, formetanate and methomyl was 50 and 30 mg/l with diuron, and the catalyst concentrations were 200 mg/l and 0.05 mM with TiO{sub 2} and iron, respectively. Total disappearance of the parent compounds, 90% mineralisation and toxicity reduction below the threshold (EC{sub 50}) have been attained with all pesticides tested. All these results have contributed to an evaluation of photocatalytic treatment capacity and comments on the main parameters of TiO{sub 2} and Fe separation from the treated water. (author)

  18. ZnO quantum dots–decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances

    International Nuclear Information System (INIS)

    Wu, Jyh Ming; Tsay, Li-Yi

    2015-01-01

    We demonstrate highly antibacterial activities for killing off Staphylococcus aureus and Escherichia coli using ZnO nanowires decorated with ZnO quantum dots (so-called ZnO QDs/NWs) under visible-light irradiation and dark conditions. The average size of the ZnO QDs is in the range of 3–5 nm; these were uniformly dispersed on the ZnO nanowires’ surface to form the ZnO QDs/NWs. A significant blue-shift effect was observed using photoluminescence (PL) spectra. The size of the ZnO QDs is strongly dependent on the material’s synthesis time. The ZnO QDs/NWs exhibited an excellent photocatalytic activity under visible-light irradiation. The ZnO QDs’ active sites (i.e. the O–H bond and Zn"2"+) accelerate the photogenerated-carrier migration from the QDs to the NWs. As a consequence, the electrons reacted with the dissolved oxygen to form oxygen ions and produced hydroperoxyl radicals to enhance photocatalytic activity. The antibacterial activities (as indicated by R-factor-inhibiting activity) of the ZnO QDs/NWs for killing off Staphylococcus aureus and Escherichia coli is around 4.9 and 5.5 under visible-light irradiation and dark conditions, respectively. The hydroxyl radicals served as an efficient oxidized agent for decomposing the organic dye and microorganism species. The antibacterial activities of the ZnO QDs/NWs in the dark may be attributed to the Zn"2"+ ions that were released from the ZnO QDs and infused into the microbial solution against the growth of bacteria thus disrupting the microorganism. The highly antibacterial and photocatalytic activity of the ZnO QDs/NWs can be well implanted on a screen window, thus offering a promising solution to inhibit the spread of germs under visible-light and dark conditions. (paper)

  19. Real time, in situ observation of the photocatalytic inactivation of Saccharomyces cerevisiae cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingtao [School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Xiaoxin [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Qi, E-mail: qili@imr.ac.cn [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shang, Jian Ku [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-04-01

    An in situ microscopy technique was developed to observe in real time the photocatalytic inactivation process of Saccharomyces cerevisiae (S. cerevisiae) cells by palladium-modified nitrogen-doped titanium oxide (TiON/PdO) under visible light illumination. The technique was based on building a photocatalytic micro-reactor on the sample stage of a fluorescence/phase contrast microscopy capable of simultaneously providing the optical excitation to activate the photocatalyst in the micro-reactor and the illumination to acquire phase contrast images of the cells undergoing the photocatalytic inactivation process. Using TiON/PdO as an example, the technique revealed for the first time the vacuolar activities inside S. cerevisiae cells subjected to a visible light photocatalytic inactivation. The vacuoles responded to the photocatalytic attack by the first expansion of the vacuolar volume and then contraction, before the vacuole disappeared and the cell structure collapsed. Consistent with the aggregate behavior observed from the cell culture experiments, the transition in the vacuolar volume provided clear evidence that photocatalytic disinfection of S. cerevisiae cells started with an initiation period in which cells struggled to offset the photocatalytic damage and moved rapidly after the photocatalytic damage overwhelmed the defense mechanisms of the cells against oxidative attack. - Highlights: • Palladium-modified nitrogen-doped titanium oxidephotocatalyst (TiON/PdO) • Effective visible-light photocatalytic disinfection of yeast cells by TiON/PdO • Real time, in situ observation technique was developed for photocatalytic disinfection. • The fluorescence/phase contrast microscope with a photocatalytic micro-reactor • Yeast cell disinfection happened before the cell structure collapsed.

  20. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    Science.gov (United States)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  1. Fabrication of visible light-triggered photocatalytic materials from the coupling of n-type zinc oxide and p-type copper oxide

    Science.gov (United States)

    Gorospe, A. B.; Herrera, M. U.

    2017-04-01

    Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.

  2. Plasmonic Ag{sub 2}MoO{sub 4}/AgBr/Ag composite: Excellent photocatalytic performance and possible photocatalytic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongliao [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Zhang, Jinfeng, E-mail: zjf_y2004@126.com [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Lv, Jiali [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Liang, Changhao [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031 (China)

    2017-02-28

    Highlights: • Novel Ag{sub 2}MoO{sub 4}/AgBr/Ag photocatalyst was prepared. • Ag{sub 2}MoO{sub 4}/AgBr/Ag showed high photocatalytic activity. • Ag{sub 2}MoO{sub 4}/AgBr/Ag showed long reusable life. - Abstract: Plasmonic Ag{sub 2}MoO{sub 4}/AgBr/Ag composite is fabricated by in-situ ion exchange and reduction methods at room temperature. The samples are characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance (DRS), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM) and photoluminescence (PL) measurements. The results show that butterfly-like Ag{sub 2}MoO{sub 4} nanosheets served as the precursor, and Ag{sub 2}MoO{sub 4}/AgBr/Ag is formed in phase transformation with MoO{sub 4}{sup 2−} displaced by Br{sup −}. The ternary Ag{sub 2}MoO{sub 4}/AgBr/Ag composite photocatalysts show greatly enhanced photocatalytic activity in photodegrading methylene blue (MB) under visible light irradiation compared with AgBr and Ag{sub 2}MoO{sub 4}. The pseudo-first-order rate constant k{sub app} of Ag{sub 2}MoO{sub 4}/AgBr/Ag is 0.602 min{sup −1}, which is 11.6 and 18.3 times as high as that of AgBr and Ag{sub 2}MoO{sub 4}, respectively. Meanwhile, the efficiency of degradation still kept 90% after ten times cyclic experiments. Eventually, possible photocatalytic mechanism was proposed.

  3. Fe2O3/ZnO/ZnFe2O4 composites for the efficient photocatalytic degradation of organic dyes under visible light

    Science.gov (United States)

    Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin

    2018-06-01

    In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.

  4. Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays

    DEFF Research Database (Denmark)

    In, Su-il; Nielsen, Morten Godtfred; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    Vertically aligned transparent TiO2 nanotube arrays grown by the one-step anodic oxidation technique (on non-conductive supports such as Pyrex) and their photocatalytic performance for methane decomposition in a single-pass micro-fabricated reactor under UV light....

  5. Preparation of reduced graphene oxide/meso-TiO{sub 2}/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Wang, Hefang, E-mail: whf0618@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Fu, Nian, E-mail: funian3678@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); College of Physics Science and Technology of Hebei University, Baoding 071002 (China)

    2016-04-30

    Graphical abstract: Reduced graphene oxide/meso-TiO{sub 2}/AuNPs (RGO/meso-TiO{sub 2}/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO{sub 2}/AuNPs under a hydrothermal condition. The RGO/meso-TiO{sub 2}/AuNPs ternary composites show high photocatalytic activity toward MB. - Highlights: • RGO/meso-TiO{sub 2}/AuNPs were obtained by addition of graphene oxide to meso-TiO{sub 2}/AuNPs. • Au NPs in the mesopores of meso-TiO{sub 2} reduce the recombination of charge carriers. • RGO covered with the surface of the meso-TiO{sub 2} enhance the adsorption of MB. • RGO/meso-TiO{sub 2}/AuNPs composites show high photocatalytic performance toward MB. - Abstract: Reduced graphene oxide/meso-TiO{sub 2}/AuNPs (RGO/meso-TiO{sub 2}/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO{sub 2}/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO{sub 2}/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO{sub 2}/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO{sub 2} and meso-TiO{sub 2}/AuNPs.

  6. The highly enhanced visible light photocatalytic degradation of gaseous o-dichlorobenzene through fabricating like-flowers BiPO{sub 4}/BiOBr p-n heterojunction composites

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xuejun [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Dong, Yuying, E-mail: dongy@dlnu.edu.cn [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093 (China); Cui, Yubo; Ou, Xiaoxia [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Qi, Xiaohui [College of Life Science, Dalian Nationalities University, Dalian, 116600 (China)

    2017-01-01

    Highlights: • Like-flowers BiPO{sub 4}/BiOBr was fabricated by mixing in solvent method. • o-Dichlorobenzene removal efficiency was 53.6% using BiPO{sub 4}/BiOBr. • The p–n junction improved o-dichlorobenzene degradation activity. - Abstract: In this paper, in order to enhance photo-induced electron-hole pairs separation of BiOBr, flowers-like BiPO{sub 4}/BiOBr p-n heterojunction composites was fabricated by a mixing in solvent method. The as-prepared samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV–vis absorption spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and N{sub 2} adsorption-desorption. Meanwhile, their photocatalytic properties were investigated by the degradation of gaseous o-dichlorobenzene under visible light irradiation. Due to its strong adsorption capacity and the formation of p-n heterojunction, compared with BiPO{sub 4} and BiOBr, the BiPO{sub 4}/BiOBr composites showed higher photocatalytic activity in the degradation of gaseous o-DCB under visible light. Among them, 2% BiPO{sub 4}/BiOBr showed the maximum value of the activity, whose degradation rate was about 2.6 times as great as the pure BiOBr. Furthermore, the OH· was confirmed the main active species during the photocatalytic process by the trapping experiments. The outstanding performance indicated that the photocatalysts could be applied to air purification for chlorinated volatile organic compound.

  7. Metal-free hybrids of graphitic carbon nitride and nanodiamonds for photoelectrochemical and photocatalytic applications.

    Science.gov (United States)

    Zhou, Li; Zhang, Huayang; Guo, Xiaochen; Sun, Hongqi; Liu, Shaomin; Tade, Moses O; Wang, Shaobin

    2017-05-01

    Graphitic carbon nitride (g-C 3 N 4 ) has been considered as a metal-free, cost-effective, eco-friendly and efficient catalyst for various photoelectrochemical applications. However, compared to conventional metal-based photocatalysts, its photocatalytic activity is still low because of the low mobility of carriers restricted by the polymer nature. Herein, a series of hybrids of g-C 3 N 4 (GCN) and nanodiamonds (NDs) were synthesized using a solvothermal method. The photoelectrochemical performance and photocatalytic efficiency of the GCN/NDs were investigated by means of the generation of photocurrent and photodegradation of methylene blue (MB) solutions under UV-visible light irradiations. In this study, the sample of GCN/ND-33% derived from 0.1g GCN and 0.05g NDs displayed the highest photocatalytic activity and the strongest photocurrent density. The mechanism of enhanced photoelectrochemical and photocatalytic performances was also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Structural insights into photocatalytic performance of carbon nitrides for degradation of organic pollutants

    Science.gov (United States)

    Oh, Junghoon; Shim, Yeonjun; Lee, Soomin; Park, Sunghee; Jang, Dawoon; Shin, Yunseok; Ohn, Saerom; Kim, Jeongho; Park, Sungjin

    2018-02-01

    Degradation of organic pollutants has a large environmental impact, with graphitic carbon nitride (g-C3N4) being a promising metal-free, low cost, and environment-friendly photocatalyst well suited for this purpose. Herein, we investigate the photocatalytic performance of g-C3N4-based materials and correlate it with their structural properties, using three different precursors (dicyandiamide, melamine, and urea) and two heating processes (direct heating at 550 °C and sequential heating at 300 and 550 °C) to produce the above photocatalysts. We further demonstrate that sequential heating produces photocatalysts with grain sizes and activities larger than those of the catalysts produced by direct heating and that the use of urea as a precursor affords photocatalysts with larger surface areas, allowing efficient rhodamine B degradation under visible light.

  9. Hierarchical Layered WS2 /Graphene-Modified CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Xiang, Quanjun; Cheng, Feiyue; Lang, Di

    2016-05-10

    Graphene-based ternary composite photocatalysts with genuine heterostructure constituents have attracted extensive attention in photocatalytic hydrogen evolution. Here we report a new graphene-based ternary composite consisting of CdS nanorods grown on hierarchical layered WS2 /graphene hybrid (WG) as a high-performance photocatalyst for hydrogen evolution under visible light irradiation. The optimal content of layered WG as a co-catalyst in the ternary CdS/WS2 /graphene composites was found to be 4.2 wt %, giving a visible light photocatalytic H2 -production rate of 1842 μmol h(-1)  g(-1) with an apparent quantum efficiency of 21.2 % at 420 nm. This high photocatalytic H2 -production activity is due to the deposition of CdS nanorods on layered WS2 /graphene sheets, which can efficiently suppress charge recombination, improve interfacial charge transfer, and provide reduction active sites. The proposed mechanism for the enhanced photocatalytic activity of CdS nanorods modified with hierarchical layered WG was further confirmed by transient photocurrent response. This work shows that a noble-metal-free hierarchical layered WS2 /graphene nanosheets hybrid can be used as an effective co-catalyst for photocatalytic water splitting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ternary reduced-graphene-oxide/Bi2MoO6/Au nanocomposites with enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Bi, Jinhong; Fang, Wei; Li, Li; Li, Xiaofen; Liu, Minghua; Liang, Shijing; Zhang, Zizhong; He, Yunhui; Lin, Huaxiang; Wu, Ling; Liu, Shengwei; Wong, Po Keung

    2015-01-01

    A novel ternary nanocomposite photocatalyst consisted of reduced-graphene-oxide (RGO), Bi 2 MoO 6 and plasmonic Au nanoparticles were successfully fabricated by multiple steps including a simple solvothermal process and photochemical reduction process. RGO/Bi 2 MoO 6 /Au was characterized by X-ray powder diffraction patterns, transmission electron microscopy, UV–vis diffuse reflectance spectra, Raman spectroscopy and X-ray photoelectron spectroscopy. In comparison with Bi 2 MoO 6 , RGO/Bi 2 MoO 6 and Au/Bi 2 MoO 6 , RGO/Bi 2 MoO 6 /Au exhibits an enhanced photocatalytic activity for decomposition of Rhodamine B under visible light. The separation efficiency of the photogenerated holes and electrons on Bi 2 MoO 6 is promoted by the combined effect of both RGO and Au in the ternary composite, and thus enhances photocatalytic activity. The scavenger study revealed that both hole and superoxide are the major reactive species for the photocatalytic degradation of Rhodamine B using RGO/Bi 2 MoO 6 /Au photocatalyst. - Graphical abstract: A novel ternary nanocomposite photocatalyst consisted of reduced-graphene-oxide (RGO), Bi 2 MoO 6 and plasmonic Au nanoparticles were successfully fabricated by multiple steps including a simple solvothermal process and photochemical reduction process. The resulted ternary nanocomposites greatly enhanced the visible light photocatalytic properties compared to Bi 2 MoO 6 , RGO/Bi 2 MoO 6 or Au/Bi 2 MoO 6 binary systems. The improved photocatalytic activity was mainly attributed to the synergistic effect of Au and RGO with better separation of the photogenerated holes and electrons, resulting from the surface plasmonic resonance and extra strong electron magnetic field of Au nanoparticles and the high electron conductivity of RGO. - Highlights: • The ternary nanocomposites RGO/Bi 2 MoO 6 /Au were constructed for the first time. • RGO/Bi 2 MoO 6 /Au showed much higher visible photoactivity than RGO (Au)/Bi 2 MoO 6 . • The improved

  11. Synergistically enhanced photocatalytic hydrogen evolution performance of ZnCdS by co-loading graphene quantum dots and PdS dual cocatalysts under visible light

    Science.gov (United States)

    Wang, Fang; Su, Yanhong; Min, Shixiong; Li, Yanan; Lei, Yonggang; Hou, Jianhua

    2018-04-01

    Here, we report that the co-loading of graphene quantum dots (GQDs) and PdS dual cocatalysts on ZnCdS surface achieves a high efficiency photocatalytic H2 evolution under visible light (≥420 nm). The GQDs/ZnCdS/PdS photocatalyst was prepared by a facile two steps: hydrothermal coupling of GQDs on ZnCdS surface followed by an in-situ chemical deposition of PdS. The resulted GQDs/ZnCdS/PdS exhibits a H2 evolution rate of 517 μmol h-1, which is 15, 7, and 1.7 times higher than that of pure ZnCdS, GQDs/ZnCdS, and ZnCdS/PdS, respectively, demonstrating the synergistic effects of GQDs and PdS dual cocatalysts. A high apparent quantum efficiency (AQE) up to 22.4% can be achieved over GQDs/ZnCdS/PdS at 420 nm. GQDs/ZnCdS/PdS also has a relatively good stability. Such a considerable enhancement of photocatalytic activity was attributable to the co-loading of the GQDs and PdS as respective reduction and oxidation cocatalysts, leading to an efficient charge separation and surface reactions.

  12. Three-dimensional hollow graphene efficiently promotes electron transfer of Ag3PO4 for photocatalytically eliminating phenol

    Science.gov (United States)

    Song, Shaoqing; Meng, Aiyun; Jiang, Shujuan; Cheng, Bei

    2018-06-01

    The effective transport of photo-induced carriers over semiconductor photocatalyst is critical for enhancing the photocatalytic performance under light excitation. Although oxidized graphene (GO) and/or reduced graphene oxide (rGO) has been used as cocatalyst to promote the transfer and utilization of electrons, however, random diffusion and transfer of photo-induced charges are inevitable from all sides over these actual graphene owing to the limitation of the preparation process and theory. Herein, we utilized three-dimensional hollow carbon graphene (HCG) to promote the efficient electron transfer of Ag3PO4 in the photocatalytic process. Owing to the confinement-induced electron field of HCG, the constructed HCG-Ag3PO4 photocatalytic system demonstrated the enhanced visible-light adsorption, improved transfer of photo-induced charges, and suitable redox potentials as revealed by transient photo-current spectroscopic, surface photovoltage spectroscopy, and electron paramagnetic resonance (EPR). EPR spectra of oxygen species and gas chromatography-mass spectra exhibited high efficiency activity over HCG-Ag3PO4 with Z-scheme photocatalytic mechanism for phenol decomposition by reaction between hexanoic acid and radOH and radO2-. It is noteworthy that photocatalytic performance over optimal HCG-Ag3PO4 is 6, 3.43, 1.92 times of pristine Ag3PO4, GO-Ag3PO4, and rGO-Ag3PO4, respectively. The results may supply a novel perspective to enhance transfer of photo-induced charges for the promotion of photocatalytic technology.

  13. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Xiaofeng Wu

    2016-02-01

    Full Text Available Semiconductor TiO2 photocatalysis has attracted much attention due to its potential application in solving the problems of environmental pollution. In this paper, thiourea (CH4N2S modified anatase TiO2 nanorods were fabricated by calcination of the mixture of TiO2 nanorods and thiourea at 600 °C for 2 h. It was found that only N element was doped into the lattice of TiO2 nanorods. With increasing the weight ratio of thiourea to TiO2 (R from 0 to 8, the light-harvesting ability of the photocatalyst steady increases. Both the crystallization and photocatalytic activity of TiO2 nanorods increase first and then decrease with increase in R value, and R2 sample showed the highest crystallization and photocatalytic activity in degradation of Brilliant Red X3B (X3B and Rhodamine B (RhB dyes under visible light irradiation (λ > 420 nm. The increased visible-light photocatalytic activity of the prepared N-doped TiO2 nanorods is due to the synergistic effects of the enhanced crystallization, improved light-harvesting ability and reduced recombination rate of photo-generated electron-hole pairs. Note that the enhanced visible photocatalytic activity of N-doped nanorods is not based on the scarification of their UV photocatalytic activity.

  14. Synthesis and Visible-Light Photocatalytic Property of Bi2WO6Hierarchical Octahedron-Like Structures

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2008-01-01

    Full Text Available Abstract A novel octahedron-like hierarchical structure of Bi2WO6has been fabricated by a facile hydrothermal method in high quantity. XRD, SEM, TEM, and HRTEM were used to characterize the product. The results indicated that this kind of Bi2WO6crystals had an average size of ~4 μm, constructed by quasi-square single-crystal nanosheets assembled in a special fashion. The formation of octahedron-like hierarchical structure of Bi2WO6depended crucially on the pH value of the precursor suspensions. The photocatalytic activity of the hierarchical Bi2WO6structures toward RhB degradation under visible light was investigated, and it was found to be significantly better than that of the sample fabricated by SSR. The better photocatalytic property should be strongly associated with the high specific surface area and the abundant pore structure of the hierarchical octahedron-like Bi2WO6.

  15. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity

    Science.gov (United States)

    Li, Baoying; Huang, Hongwei; Guo, Yuxi; Zhang, Yihe

    2015-10-01

    A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron-hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.

  16. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.

    Science.gov (United States)

    Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng

    2017-02-08

    Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.

  17. Capture of atmospheric CO2 into (BiO)2CO3/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Zhang, Wendong; Dong, Fan; Zhang, Wei

    2015-01-01

    Graphical abstract: Self-assembly of (BiO) 2 CO 3 nanoflakes on graphene and graphene oxide nanosheets were realized by a one-pot efficient capture of atmospheric CO 2 at room temperature. - Highlights: • A facile one-step method was developed for graphene-based composites. • The synthesis was conducted by utilization of atmospheric CO 2 . • (BiO) 2 CO 3 -graphene and (BiO) 2 CO 3 -graphene oxide composites were synthesized. • The nanocomposites exhibited enhanced photocatalytic activity. - Abstract: Self-assembly of (BiO) 2 CO 3 nanoflakes on graphene (Ge) and graphene oxide (GO) nanosheets, as an effective strategy to improve the photocatalytic performance of two-dimensional (2D) nanostructured materials, were realized by a one-pot efficient capture of atmospheric CO 2 at room temperature. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS, UV–vis DRS, Time-resolved ns-level PL and BET-BJH measurement. The photocatalytic activity of the obtained samples was evaluated by the removal of NO at the indoor air level under simulated solar-light irradiation. Compared with pure (BiO) 2 CO 3 , (BiO) 2 CO 3 /Ge and (BiO) 2 CO 3 /GO nanocomposites exhibited enhanced photocatalytic activity due to their large surface areas and pore volume, and efficient charge separation and transfer. The present work could provide a simple method to construct 2D nanocomposites by efficient utilization of CO 2 in green synthetic strategy.

  18. Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Dong, Wenhao; Pan, Feng; Xu, Leilei; Zheng, Minrui; Sow, Chorng Haur; Wu, Kai; Xu, Guo Qin

    2015-01-01

    Graphical abstract: - Highlights: • CdS nanorods were coated with amorphous TiO 2 shells under a mild condition. • The TiO 2 shell thickness can be controlled from 3.5 to 40 nm. • CdS@TiO 2 nanorods exhibit enhanced photocatalytic activities under visible light. • Efficient charge carriers separation leads to the improved photocatalytic activity. - Abstract: Amorphous TiO 2 layers with a controllable thickness from 3.5 to 40 nm were coated on the one-dimensional CdS nanorods surface under mild conditions. Compared to the bare CdS nanorods, the as-prepared CdS@TiO 2 nanorods exhibit enhanced photocatalytic activities for phenol photodecomposition under visible light irradiation. The improved photoactivity is ascribed to the efficient separation of photogenerated electron and hole charge carriers between CdS cores and TiO 2 shells. This study promises a simple approach to fabricating CdS@TiO 2 core–shell structure nanocomposites, and can be applied for other semiconductor cores with TiO 2 shells

  19. Optical properties and visible-light-driven photocatalytic activity of Bi{sub 8}V{sub 2}O{sub 17} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Yinfu; Liu, Ting; Huang, Yanlin [Soochow University, College of Chemistry, Chemical Engineering and Materials Science (China); Chen, Cuili; Kim, Sun Il; Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering (Korea, Republic of)

    2015-05-15

    Bi{sub 8}V{sub 2}O{sub 17} (4Bi{sub 2}O{sub 3}·V{sub 2}O{sub 5}) nanoparticles with the uniform size of about 50 nm were fabricated through the Pechini method. The crystal structure was investigated by X-ray powder diffraction and the structural refinement. The surface of the as-synthesized samples was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy, and X-ray photoelectron spectroscopy. The optical properties, band structure, and the degradation mechanisms were discussed. The experimental results demonstrate that Bi{sub 8}V{sub 2}O{sub 17} nanoparticles have an efficient visible-light absorption with band-gap energy of 1.85 eV and a direct allowed electronic transition. The photocatalytic activity was evaluated by the photodegradation of the methylene blue (MB) under visible-light irradiation (λ > 420 nm) as a function of time. These results indicate that Bi{sub 8}V{sub 2}O{sub 17} could be a potential photocatalyst driven by visible light. The effective photocatalytic activity was discussed on the base of the crystal structure characteristic.

  20. Visible-light photocatalytic activity of the metastable Bi20TiO32 synthesized by a high-temperature quenching method

    International Nuclear Information System (INIS)

    Cheng Hefeng; Huang Baibiao; Dai Ying; Qin Xiaoyan; Zhang Xiaoyang; Wang Zeyan; Jiang Minhua

    2009-01-01

    Metastable Bi 20 TiO 32 samples were synthesized by a high-temperature quenching method using α-Bi 2 O 3 and anatase TiO 2 as raw materials. The photocatalytic activity of the as-prepared samples was measured with the photodegradation of methyl orange at room temperature under visible light irradiation. The Bi 20 TiO 32 samples exhibited good absorption in the visible light region with a band gap of about 2.38 eV and the band structure of Bi 20 TiO 32 was studied. Photodegradation against methyl orange was much better than α-Bi 2 O 3 prepared by the same way. The photocatalytic activity of Bi 20 TiO 32 samples is supposed to be associated with the hybridized Bi 6s and O 2p orbitals. In addition, the dispersive characteristic of Bi 6s orbital in the hybridized valence band facilitates the mobility of the photogenerated carriers and hampers their recombination. - Graphical abstract: Metastable Bi 20 TiO 32 samples were successfully synthesized by a quenching process. Photodegradation against methyl orange showed high visible-light activity and it was supposed to be associated with its corresponding band structure.

  1. In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Jian; Wang, Rong; Liu, Xin-Ling; Peng, Fu-Min [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Li, Chuan-Hao, E-mail: chuanhao.li@yale.edu [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Department of Chemical & Environmental Engineering, Yale University, New Haven 06511 (United States); Teng, Fei [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yuan, Yu-Peng, E-mail: yupengyuan@ahu.edu.cn [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-08-15

    Graphical abstract: Enhanced photocatalytic hydrogen generation was achieved though constructing the CdS/UiO-66 MOF hybrids. In addition, the resultant hybrids show excellent photostability for hydrogen generation. - Highlights: • CdS nanoparticles were hydrothermally grown on UiO-66 octahedrons. • The resultant CdS/UiO-66 hybrids show enhanced photocatalytic H{sub 2} generation under visible light irradiation. • CdS/UiO-66 hybrids possess excellent photostability for long-term hydrogen generation. - Abstract: CdS nanoparticles acting as photosensitizer was grown in situ upon UiO-66 metal-organic framework octahedrons through a hydrothermal process. The resultant CdS/UiO-66 hybrid photocatalysts show remarkably active hydrogen evolution under visible light irradiation as compared to CdS and UiO-66 alone. The optimum hybrid with 16 wt% CdS loading shows a hydrogen production rate of 235 μmol h{sup −1}, corresponding to 1.2% quantum efficiency at 420 nm. The improved photocatalytic hydrogen production over hybrid CdS/UiO-66 is ascribed to the efficient interfacial charge transfer from CdS to UiO-66, which effectively suppresses the recombination of photogenerated electron-hole pairs and thereby enhancing the photocatalytic efficiency.

  2. Enhanced photocatalytic activity of cadmium-doped Bi{sub 2}WO{sub 6} nanoparticles under simulated solar light

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xu Chun, E-mail: songxuchunfj@163.com; Li, Wen Ting [Fujian Normal University, Department of Chemistry (China); Huang, Wan Zhen; Zhou, Huan [Zhejiang University of Technology, Research Center of Analysis and Measurement (China); Yin, Hao Yong [Hangzhou Dianzi University, Institute of Environmental Science and Engineering (China); Zheng, Yi Fan [Zhejiang University of Technology, Research Center of Analysis and Measurement (China)

    2015-03-15

    Novel cadmium-doped Bi{sub 2}WO{sub 6} nanoparticles with different Cd contents have been synthesized by a one-step route using ethylene glycol and water as solvents at 180 °C for 12 h. The as-synthesized samples were characterized in detailed by SEM, XRD, EDS, HRTEM, UV–Vis DRS, BET techniques, and so on. The results shown that with the increase of the Cd{sup 2+} addition, the crystal structure, lattice space, and absorption edge were not significantly changed and the calculated band gap value was 2.58 eV. However, the flower-like Bi{sub 2}WO{sub 6} sphere was gradually destroyed. Simultaneously, the surface area and photocurrent responses of the catalysts were greatly increased. Photocatalytic activity of the Cd-doped Bi{sub 2}WO{sub 6} samples was determined by monitoring the change of RhB concentration under simulated solar light. The results revealed that cadmium doping greatly improved the photocatalytic efficiency of Bi{sub 2}WO{sub 6}. The Bi{sub 2}WO{sub 6} sample with R{sub Cd} = 0.05 displayed the highest photocatalytic activity, and the degradation rate is about two times greater than pure Bi{sub 2}WO{sub 6}. Moreover, the Cd–Bi{sub 2}WO{sub 6} photocatalyst remained stable even after five consecutive cycles. A possible mechanism of photocatalytic activity enhancement on basis of the experimental results was proposed.

  3. Preparation of 2D square-like Bi2S3-BiOCl heterostructures with enhanced visible light-driven photocatalytic performance for dye pollutant degradation

    Directory of Open Access Journals (Sweden)

    Jing-jing Xu

    2017-10-01

    Full Text Available A series of Bi2S3-BiOCl composites with two-dimensional (2D square-like structures were prepared via a two-step anion exchange route. X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and diffuse reflectance spectra (DRS were used to investigate the properties of the as-prepared Bi2S3-BiOCl heterostructures. The coupling of BiOCl and Bi2S3 induced enhanced photoabsorption efficiency and bandgap narrowing. A reactive brilliant red X-3B dye was used as a contaminant to test the photocatalytic activity of the obtained Bi2S3-BiOCl samples under visible light irradiation. The sample Bi2S3-BiOCl with a mass ratio of 8:4 exhibited the highest photodegradation efficiency, which was six times higher than that of pure BiOCl. In addition, a mechanism for the enhancement of photocatalytic activity is proposed.

  4. Synthesis, characterization and photocatalytic activity of LaMnO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shaterian, Maryam, E-mail: shaterian@znu.ac.ir [Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran (Iran, Islamic Republic of); Enhessari, Morteza [Department of Chemistry, Islamic Azad University, Naragh Branch, Naragh, Islamic Republic of Iran (Iran, Islamic Republic of); Rabbani, Davarkhah [Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Asghari, Morteza [Separation Processes Research Group (SPRG), Department of Engineering, University of Kashan, Kashan, PO Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, PO Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-11-01

    Highlights: • Visible-light sensitive LaMnO3 nanoparticles were synthesized via sol–gel process. • Structural and optical properties of photocatalysts have been investigated. • The photocatalytic activity was evaluated by the degradation of methyl orange as a model of pollutant. • The prepared nanocrystals showed good visible-light photocatalytic activity for the degradation of methyl orange. - Abstract: Visible-light sensitive LaMnO{sub 3} nanoparticles were synthesized via sol–gel process using stearic acid as complexing reagent. Characterizations of the resulting powders were carried out by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). Further, the photocatalytic activity of LaMnO{sub 3} was evaluated by degradation of methyl orange in aqueous solution under visible-light irradiation. The prepared nanoparticles showed excellent visible-light photocatalytic ability for the degradation of methyl orange so that, 60 ppm of nanoparticles can decolorizes the methyl orange solution (6 ppm) up to 98% in 90 min.

  5. Enhanced surface area, high Zn interstitial defects and band gap reduction in N-doped ZnO nanosheets coupled with BiVO{sub 4} leads to improved photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sonal [Deen Dayal Upadhyaya College, Dwarka, University of Delhi, New Delhi 110078 (India); Sharma, Rishabh, E-mail: rishabh.rammstien@gmail.com [Thin Film Laboratory, Department of Physics, Indian Institute of Technology, New Delhi 110016 (India); Mehta, Bodh Raj [Thin Film Laboratory, Department of Physics, Indian Institute of Technology, New Delhi 110016 (India)

    2017-07-31

    Highlights: • In this study, we report novel nitrogen doped ZnO (nanosheet)/BiVO{sub 4} nanocomposite with enhanced visible light photocatalytic activity tested on methylene blue dye. • In a typical composite synthesis process, individual metal oxides synthesized by chemical route were mixed through ultrasonication followed by annealing at the temperature of 400 °C. • To understand mechanism of action we carried out XRD, TEM, UV–vis spectroscopy, XPS, BET & PL of the samples. • Enhancement in photocatalytic performance of the composite was due to increased light absorption due to band gap reduction and formation intermediate band. • Also, charge exchange as per Z-scheme at the hetrojunction between N-ZnO and BiVO{sub 4} resulted in reduced charge recombination rate which is further responsible for enhancement in photocatalytic activity. - Abstract: For the first time, a series of Nitrogen-doped-ZnO nanosheet coupled with BiVO{sub 4} (N-ZnO/BiVO{sub 4}) heterojunctioned photocatalysts have been synthesized. The new N-ZnO/BiVO{sub 4} material has been prepared via a simple and effective method of precipitation followed by high temperature annealing process. The photocatalytic activities of the N-ZnO/BiVO{sub 4} composites were evaluated for the degradation of methylene blue (MB) a common organic pollutant under visible-light irradiation. The results revealed that photocatalytic activity of the coupled system was directly influenced by the percentage amount of BiVO{sub 4} in N-ZnO which affected the available exposed surface area for photoreactions. 30% N-ZnO/BiVO{sub 4} system exhibited remarkable performance than 10%N-ZnO/BiVO{sub 4}, 50%N-ZnO/BiVO{sub 4}, and also to their pristine counterparts. The composite demonstrated the degradation efficiency of 90% in 90 min which is 1.76 times the efficiency of pure ZnO for same time duration. This pronounced photocatalytic effect is ascribed to the reduced band gap and lowered recombination rate of ZnO due to

  6. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    Science.gov (United States)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the

  7. Simple method of preparing nitrogen - doped nanosized TiO2 powders of high photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Nguyen Van Hung; Dang Thi Thanh Le

    2014-01-01

    Nitrogen-doped nanosized TiO 2 powders were prepared by a simple thermal treatment method of the mixture of titanium dioxide and urea. The prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra (UV-Vis-DRS) and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the crystal structure of N-TiO 2 was a mixture of anatase and rutile phases, and the average particle size was 31 nm calculated from XRD results. The UV-vis spectra indicate an increase in absorption of visible light when compared to undoped TiO 2 . The photocatalytic activity of nitrogen-doped TiO 2 powder was evaluated by the decomposition of methylene blue under visible light irradiation. And it was found that nitrogen-doped TiO 2 powders exhibited much higher photocatalytic activity than undoped TiO 2 . Moreover, the study also showed that, the doping N atoms improve the growth of the TiO 2 crystal and phase transformation. (author)

  8. Synthesis and visible-light photocatalytic property of Ag/GO/g-C{sub 3}N{sub 4} ternary composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanxiang [Rural Environmental Engineering Center of Qingdao, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109 (China); College of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Wu, Juan; Deng, Yangyang; Xin, Yanjun [Rural Environmental Engineering Center of Qingdao, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109 (China); Liu, Huiling [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Ma, Dong, E-mail: madong8088@126.com [Rural Environmental Engineering Center of Qingdao, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109 (China); Bao, Nan [College of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

    2017-07-15

    Highlights: • The Ag/GO/g-C{sub 3}N{sub 4} composite photocatalyst was obtained. • The GO acts as the electron mediator in the composite photocatalyst. • The composite has much higher photocatalytic activity than that of pure one. • The matched Fermi level provides the favorable charge transfer in the composite. - Abstract: Ag/GO/g-C{sub 3}N{sub 4} composites were successfully synthesized by a sonochemical method. The structure and properties of the composites at various Ag loadings were characterized, and the Ag nanoparticles were confirmed by XRD, TEM and XPS measurements. UV–Vis diffuse reflectance spectra showed the presence of surface plasmon peak for Ag at 550 nm. The Ag/GO/g-C{sub 3}N{sub 4} composites demonstrated excellent activity in photocatalytic degradation of Rh B under visible light irradiation, and 5% of Ag nanoparticle was found to be the most suitable loading. The enhanced photocatalytic activity was ascribed to the role of GO nanosheets and Ag nanoparticles. The GO nanosheets acted as electrons transporter and acceptor in the composite and inhibited the charge recombination. The Ag nanoparticles acted as an electron traps to facilitate the separation of photogenerated electron-hole pairs and promoted interfacial electrons transfer. The {sup ·}OH{sub ads} and h{sup +} were the major radicals to be involved in the photocatalytic process.

  9. Facile synthesis of flower-like BiOI hierarchical spheres at room temperature with high visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Wang, Xiao-jing; Li, Fa-tang; Li, Dong-yan; Liu, Rui-hong; Liu, Shuang-jun

    2015-01-01

    Graphical abstract: - Highlights: • Flower-like BiOI hierarchical sphere is obtained in the presence of ethylene glycol. • A template free hydrolysis route is employed at room temperature. • Ethylene glycol plays an important role in assembling BiOI nanoflakes to form spheres. • The BiOI sphere shows high visible-light photocatalytic activity and good stability. - Abstract: Flower-like BiOI hierarchical spheres are prepared at room temperature via a template free route simply by dropping water into ethylene glycol (EG) solution containing reactants based on the hydrolysis and oriented assembly roles of water and EG, respectively. The BiOI samples are characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, emission scanning electron microscopy (SEM), UV–Vis diffuse reflectance spectra (UV–Vis DRS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The photocatalytic reaction rate constant of the as-prepared BiOI hierarchical spheres is 15.8, 13.3, and 2.0 times that of BiOI nanoflakes obtained in the absence of EG in degradation of anionic dye (methyl orange), cationic dye (methylene blue), and colorless target pollutant (phenol), respectively, under the visible-light irradiation, which can be attributed to its unique flower-like structure for utilization of light, small crystal size, and large specific surface area

  10. Synthesis of Bismuth Stannate Nanoparticles with High Photocatalytic Activity under the Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    G. Gnanamoorthy

    2017-06-01

    Full Text Available Malachite Green is one of the most important organic dye, it contains triphenylmethane groups and it has been widely used for many industries. The hazardous dyes were rapidly act on immune and reproductive systems with carcinogenic effect of human health. Different methods were used for the hazardous removal in various industries, such as photocatalysis, biological treatment and adsorption process. The bismuth stannate nanoparticles have special properties of the hydrogen storage, biomolecule detection, gas sensors and catalysis. The bismuth stannate nanoparticles can be used for the degradation of organic pollutants and bismuth stannate is an important ternary oxide semiconductor with a wide band gap material. The composites were synthesized by a hydrothermal method, the obtained product was characterized by XRD, Raman, the morphology structure was confirmed by scanning electron microscopy and optical properties were carried out by DRS-UV-Vis spectroscopy. The excellent photocatalytic performance of the catalyst was evaluated by malachite green under the visible light.

  11. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    Science.gov (United States)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in UV-A LEDs and semi

  12. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago, E-mail: santiago.gomez@urjc.es [Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET (Spain)

    2015-02-15

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO{sub 3} in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH{sub 4}F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO{sub 2} with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl{sub 2}] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO{sub 2}), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO{sub 2}–Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst.

  13. Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu{sub 2}O microspheres for degrading organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yahui, E-mail: chengyahui@nankai.edu.cn [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Lin, Yuanjing [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Xu, Jianping [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); He, Jie; Wang, Tianzhao; Yu, Guojun; Shao, Dawei; Wang, Wei-Hua; Lu, Feng [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Li, Lan [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); Du, Xiwen [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Weichao [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Liu, Hui, E-mail: liuhui@nankai.edu.cn [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Zheng, Rongkun [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-03-15

    Graphical abstract: - Highlights: • Cu NPs introduce the SPR and result in an increase of visible light absorption. • The photocatalytic activity of Cu{sub 2}O/Cu improves greatly due to the SPR effect. • A dark catalytic activity is observed stemming from the Fenton-like reaction. • The • O{sub 2}{sup −} and • OH radicals contribute to the photocatalytic process. • The • OH radicals contribute to the dark catalytic process. - Abstract: Micron-sized Cu{sub 2}O with different coverage of Cu nanoparticles (NPs) on the sphere has been synthesized by a redox procedure. The absorption spectra show that Cu NPs induce the surface plasmon resonance (SPR) at the wavelength of ∼565 nm. Methylene blue (MB) photodegrading experiments under visible-light display that the Cu{sub 2}O–Cu–H{sub 2}O{sub 2} system exhibits a superior photocatalytic activity to Cu{sub 2}O–H{sub 2}O{sub 2} or pure H{sub 2}O{sub 2} with an evident dependency on Cu coverage. The maximum photodegradation rate is 88% after visible-light irradiating for 60 min. The role of the Cu NPs is clarified through photodegradation experiments under 420 nm light irradiation, which is different from the SPR wavelength of Cu NPs (∼565 nm). By excluding the SPR effect, it proves that Cu SPR plays a key role in the photodegradation. Besides, a dark catalytic activity is observed stemming from the Fenton-like reaction with the aid of H{sub 2}O{sub 2}. The radical quenching experiments indicate that both • O{sub 2}{sup −} and • OH radicals contribute to the photocatalysis, while the dark catalysis is only governed by the • OH radicals, leading to a lower activity comparing with the photocatalysis. Therefore, with introducing Cu NPs and H{sub 2}O{sub 2}, the Cu{sub 2}O-based photocatalytic activity could be significantly improved due to the SPR effect and dark catalysis.

  14. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction

    International Nuclear Information System (INIS)

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Zeng, Guangming; Chen, Xiaohong; Leng, Lijian; Wu, Zhibin; Jiang, Longbo; Li, Hui

    2015-01-01

    Highlights: • NH 2 functionalized MIL-125(Ti) was fabricated by a facile solvothermal method. • The photocatalyst could reduce Cr(VI)–Cr(III) under visible light irradiation. • The Ti 3+ –Ti 4+ intervalence electron transfer is important for Cr(VI) reduction. • Used NH 2 -MIL-125(Ti) can be recycled for the photocatalytic reduction. - Abstract: Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH 2 -MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH 2 -MIL-125(Ti) were well characterized by XRD, SEM, XPS, N 2 adsorption–desorption measurements, thermogravimetric analysis and UV–vis diffuse reflectance spectra (DRS). It is revealed that the NH 2 -MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH 2 -MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti 3+ –Ti 4+ intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater

  15. Enhanced visible light photocatalytic activity in SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Hao; Zhao, Xiaoru, E-mail: xrzhao@nwpu.edu.cn; Duan, Libing; Liu, Ruidi; Li, Hui

    2017-04-15

    Highlights: • Novel SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized. • The core-shell structures exhibited enhanced visible light photocatalytic activity. • The enhanced photocatalytic activity was due to synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}. - Abstract: SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized by simple calcination of SnO{sub 2} microspheres and urea in a muffle furnace. The investigation of morphologies and microstructures showed that g-C{sub 3}N{sub 4} was wrapped tightly on the surface of SnO{sub 2} microspheres with large intimate interface contact areas between the g-C{sub 3}N{sub 4} shells and SnO{sub 2} cores. The X-ray photoelectron spectroscopy results and photoluminescence spectra demonstrated that the intimate interface contacts could facilitate the transfer and separation of the photogenerated charge carriers at their interface, thus the recombination of the photogenerated electron-hole pairs was impeded. The photocatalytic activity of the synthesized composites was evaluated by the photodegradation of methyl orange under visible light irradiation. It was found that SnO{sub 2}@g-C{sub 3}N{sub 4} exhibited higher photodegradation rate (k = 0.013 min{sup −1}) than that of g-C{sub 3}N{sub 4} (k = 0.008 min{sup −1}) and pure SnO{sub 2}. The enhanced photocatalytic activity could be attributed to the synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}.

  16. A low temperature situ precipitation route to designing Zn-doped SnO2 photocatalyst with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Jia, Xiaohua; Liu, Yingying; Wu, Xiangyang; Zhang, Zhen

    2014-01-01

    Highlights: • A new Zn doped SnO 2 photocatalyst was successfully achieved and characterized. • The Zn doped SnO 2 photocatalyst exhibited excellent photocatalytic activity and stability for the photodegradation RhB. • Photocatalytic mechanisms both under visible and UV–vis light irradiation were proposed. - Abstract: Zn doped SnO 2 nanoparticles have been fabricated through the low temperature situ precipitation technique. The morphology, structure and chemical composition of the nanoparticles are characterized using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), Thermogravimetric-differential scanning calorimetry (TG–DSC) and UV–vis absorption spectroscopy. The products were also characterized by X-ray diffraction (XRD) and X-photoelectron spectrum (XPS), and the results indicated that Sn 4+ ions were successfully substituted by Zn 2+ . Their photocatalytic activities were evaluated using rhodamine B (RhB) as a decomposition objective. The results show that the Zn doped SnO 2 display higher photocatalytic activities in the degradation of RhB than pure ZnO products by exposure to UV irradiation. A possible reason of the increased photocatalytic activity of Zn doped SnO 2 is attributed to intrinsic oxygen vacancies in nanoparticles and extrinsic defect due to Zn hole doping

  17. Integrated photocatalytic filtration array for indoor air quality control.

    Science.gov (United States)

    Denny, Frans; Permana, Eric; Scott, Jason; Wang, Jing; Pui, David Y H; Amal, Rose

    2010-07-15

    Photocatalytic and filtration technologies were integrated to develop a hybrid system capable of removing and oxidizing organic pollutants from an air stream. A fluidized bed aerosol generator (FBAG) was adapted to prepare TiO(2)-loaded ventilation filters for the photodegradation of gas phase ethanol. Compared to a manually loaded filter, the ethanol photodegradation rate constant for the FBAG coated filter increased by 361%. Additionally, the presence of the photogenerated intermediate product, acetaldehyde, was reduced and the time for mineralization to CO(2) was accelerated. These improvements were attributed to the FBAG system providing a more uniform distribution of TiO(2) particles across the filter surface leading to greater accessibility by the UV light. A dual-UV-lamp system, as opposed to a single-lamp system, enhanced photocatalytic filter performance demonstrating the importance of high light irradiance and light distribution across the filter surface. Substituting the blacklight blue lamps with a UV-light-emitting-diode (UV-LED) array led to further improvement as well as suppressed the electrical energy per order (EE/O) by a factor of 6. These improvements derived from the more uniform distribution of light irradiance as well as the higher efficiency of UV-LEDs in converting electrical energy to photons.

  18. CdS nanoparticles immobilized on porous carbon polyhedrons derived from a metal-organic framework with enhanced visible light photocatalytic activity for antibiotic degradation

    Science.gov (United States)

    Yang, Cao; Cheng, Jianhua; Chen, Yuancai; Hu, Yongyou

    2017-10-01

    The CdS/MOF-derived porous carbon (MPC) composite as an efficient visible-light-driven photocatalyst was prepared through the pyrolysis of ZIF-8 and subsequent growth of CdS. The porous and functionalized MPC enables intimate and discrete growth of CdS nanoparticles. This unique structure not only reduces the bulk recombination owing to nano-size effect of CdS, but also suppresses the surface recombination due to the discrete growth of CdS nanoparticles on MPC polyhedrons, which facilitates electron transfer and charge separation. Moreover, such a composite material possessed good adsorption ability toward the antibiotic pollutants because of the amino-functionalized surface. As a result, the as-prepared CdS/MPC composites showed excellent photocatalytic performance for the antibiotic degradation, significantly improving the photoactivity of CdS. Importantly, the CdS/MPC composite with the CdS loading of 20 wt% exhibited the highest photocatalytic efficiency of approximately 91% and apparent rate constant of 0.024 min-1.

  19. Visible light driven multifunctional photocatalysis in TeO2-based semiconductor glass ceramics

    Science.gov (United States)

    Kushwaha, Himmat Singh; Thomas, Paramanandam; Vaish, Rahul

    2017-01-01

    Photocatalytic xCaCu3Ti4O12-(100-x)TeO2 (x=0.25 mol% to 3 mol%), glass nanocomposites were fabricated and investigated for wastewater treatment, self-cleaning surfaces, and photocatalytic hydrogen evolution. Visible light active crystals of Cu-doped TiO2 and TiTe3O8 were grown by optimized crystallization of as-quenched glasses. The visible light photocatalytic activity of glass samples was investigated for estrogenic pharmaceutical pollutants, and the degradation rate was obtained as 168.56 min-1 m-2. A higher photocatalytic H2 production rate was observed (135 μmole h-1 g-1) for the crystallized CaCu3Ti4O12-TeO2 (x=3. 0) glass plate under visible light. The self-cleaning performance was observed using contact angle measurements for water under dark and light conditions. These visible light active glass ceramics are a cost effective sustainable solution for water treatment and self-cleaning applications.

  20. Reduced graphene oxide/CeO{sub 2} nanocomposite with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jasmeet, E-mail: jasmeet.dayal@gmail.com; Anand, Kanika; Singh, Gurpreet; Hastir, Anita; Virpal,; Singh, Ravi Chand [Laboratory For Sensors and Physics Education, Department of Physics, GND University, Amritsar-143005 (India); Anand, Kanica [Semiconductors Laboratory, Department of Physics, GND University, Amritsar– 143005 (India)

    2015-05-15

    In this work, reduced graphene oxide /cerium oxide (RGO/CeO{sub 2}) nanocomposite was synthesized by in situ reduction of cerium nitrate Ce(NO{sub 3}){sub 3}·6H{sub 2}O in the presence of graphene oxide by hydrazine hydrate (N{sub 2}H{sub 4}.H{sub 2}O). The intrinsic characteristics of as-prepared nanocomposite were studied using powder x-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy (FESEM). The photocatalytic degradation of methylene blue (MB) was employed as a model reaction to evaluate the photocatalytic activity of the RGO/CeO{sub 2} nanocomposite. The as-obtained RGO/CeO{sub 2} nanocomposite displays a significantly enhanced photocatalytic degradation of MB dye in comparison with bare CeO{sub 2} nanoparticles under sunlight irradiation, which can be attributed to the improved separation of electron-hole pairs and enhanced adsorption performance due to presence of RGO.