Sample records for light microscopic analysis

  1. Light microscopic evaluation and scanning electron microscopic analysis of horse eyes following deep anterior lamellar keratectomy.

    Martins, Bianca C; Brooks, Dennis E; Plummer, Caryn E; Samuelson, Don A; Mangan, Brendan G; Laus, José L


    OBJECTIVE  To describe the technique of deep anterior lamellar keratoplasty (DALK) with Descemet's membrane (DM) exposure in horse eyes. Also, to compare the efficacy and safety of viscodissection and big-bubble techniques for DALK. ANIMALS STUDIED  Thirty-four ex vivo horse eyes. PROCEDURE  Deep anterior lamellar keratoplasty was performed in 34 ex vivo horse eyes. Two groups (Group V--viscodissection--2% sodium hyaluronate; Group A--air--big-bubble) of 17 eyes were studied. Other than the substance used, the surgical technique was similar for both groups. Nonperforated eyes were submitted for light microscopic histologic evaluation and scanning electron microscopic (SEM) analysis. RESULTS  Group V--Perforations occurred in 18% of the eyes during surgery. Light microscopy revealed exposure of DM in 28% of the eyes with mean thickness of the remaining stroma being 70.4 μm. Group A--Perforations occurred in 42% of the eyes. Light microscopy revealed exposure of DM in 60% of the eyes with mean thickness of the remaining stroma being 23.3 μm. No significant differences in safety, efficacy and thickness of the remaining stroma (including all eyes or excluding those with DM exposure) were observed. SEM of the surgical site revealed a more even surface in those eyes with DM exposure compared to eyes with thicker remaining stroma in both groups. CONCLUSIONs  We describe two DALK techniques (viscodissection and big-bubble) for use in horses. No significant differences in safety, efficacy and thickness of the remaining stroma were observed. However, a nonsignificant trend toward the big-bubble technique being more efficacious but less safe was observed.

  2. Correlation analysis of couple optical paths for microstereovision with stereo light microscope

    WANG Yuezong; LI Desheng; YU Yaping


    A micro stereovision system with a stereo light microscope (SLM) has been applied in micromanipulation systems.There is a coupling connection between two optical paths of a stereo light microscope.The coupling intension corresponds with two factors:the structure of an SLM and the position of an object point in the view of an SLM.In this paper,a correlation function is proposed to describe the coupling intension between the couple optical paths of an SLM.The quantified results are applied to the error analysis of the imaging model.Experiments show that the correlation of the optical paths of a common main objective of stereo light microscope (CMO-SLM) is little more than that of a G-SLM,and the error must be considered when a pinhole imaging model is used to analyze its correlation.

  3. Microscopic vision modeling method by direct mapping analysis for micro-gripping system with stereo light microscope.

    Wang, Yuezong; Zhao, Zhizhong; Wang, Junshuai


    We present a novel and high-precision microscopic vision modeling method, which can be used for 3D data reconstruction in micro-gripping system with stereo light microscope. This method consists of four parts: image distortion correction, disparity distortion correction, initial vision model and residual compensation model. First, the method of image distortion correction is proposed. Image data required by image distortion correction comes from stereo images of calibration sample. The geometric features of image distortions can be predicted though the shape deformation of lines constructed by grid points in stereo images. Linear and polynomial fitting methods are applied to correct image distortions. Second, shape deformation features of disparity distribution are discussed. The method of disparity distortion correction is proposed. Polynomial fitting method is applied to correct disparity distortion. Third, a microscopic vision model is derived, which consists of two models, i.e., initial vision model and residual compensation model. We derive initial vision model by the analysis of direct mapping relationship between object and image points. Residual compensation model is derived based on the residual analysis of initial vision model. The results show that with maximum reconstruction distance of 4.1mm in X direction, 2.9mm in Y direction and 2.25mm in Z direction, our model achieves a precision of 0.01mm in X and Y directions and 0.015mm in Z direction. Comparison of our model with traditional pinhole camera model shows that two kinds of models have a similar reconstruction precision of X coordinates. However, traditional pinhole camera model has a lower precision of Y and Z coordinates than our model. The method proposed in this paper is very helpful for the micro-gripping system based on SLM microscopic vision.

  4. Semi-automated 3D leaf reconstruction and analysis of trichome patterning from light microscopic images.

    Henrik Failmezger


    Full Text Available Trichomes are leaf hairs that are formed by single cells on the leaf surface. They are known to be involved in pathogen resistance. Their patterning is considered to emerge from a field of initially equivalent cells through the action of a gene regulatory network involving trichome fate promoting and inhibiting factors. For a quantitative analysis of single and double mutants or the phenotypic variation of patterns in different ecotypes, it is imperative to statistically evaluate the pattern reliably on a large number of leaves. Here we present a method that enables the analysis of trichome patterns at early developmental leaf stages and the automatic analysis of various spatial parameters. We focus on the most challenging young leaf stages that require the analysis in three dimensions, as the leaves are typically not flat. Our software TrichEratops reconstructs 3D surface models from 2D stacks of conventional light-microscope pictures. It allows the GUI-based annotation of different stages of trichome development, which can be analyzed with respect to their spatial distribution to capture trichome patterning events. We show that 3D modeling removes biases of simpler 2D models and that novel trichome patterning features increase the sensitivity for inter-accession comparisons.

  5. Multiparameter breast cancer cell image analysis for objective estimation of nuclear grade: comparison with light microscopic observational data

    Berzins, Juris; Sneiders, Uldis; Plegere, Daina; Freivalds, Talivaldis; Grigalinovica, Romalda


    We performed a multi parameter image analysis assessment of breast cancer cell population nuclear grade (NG), which is regarded as one of the main prognostic factors for treatment efficacy and survival of the patients and compared it with light microscopic estimation of NG. Cytological imprint slides from 20 ductal carcinomas were stained according to Leischmann-AzureII-eosine method, and NG was estimated by light microscopic observation according to Black in Fisher's modification. Simultaneously, using specially elaborated software, in each patient 100 cancer cells were analyzed for nuclear perimeter, diameter, area, nucleolar area, and average intensity of staining. The chromatin structure was assessed using mean diameter of chromatin grains and relatively chromatic are within the nucleus. Light microscopic estimation revealed 4/15 grade 2 and 7/15 grade 3 tumors out of 15 filtrating ductal carcinomas, with 4/15 classified as intermediate between grade 2-3. Multifactoral linear correlation coefficient r equals 0.39, p < 0.001 for ductal cancer, higher NG comes with increasing nucleolar area, nuclear roundness factor, nuclear are, and chromatin area within the cell nucleus. Image analysis may yield precise information on NG as a prognostic factor in breast cancer patients.

  6. Confocal microscopic analysis of optical crosstalk from micro-pixel light-emitting diodes


    Self-illuminating displays comprising two-dimensional arrays of micro-emitters are superior over conventional backlight-illuminated liquid-crystal displays (LCD) in many aspects, including lower power consumptions, thinner profiles, higher image contrasts, wider viewing angles, and broader operating temperatures. There still are several technical challenges prevent self-illuminating organic light-emitting diodes (OLEDs) from becoming a dominant commercial product in the field of image display...

  7. Light and electron microscopic analysis of tattoos treated by Q-switched ruby laser

    Taylor, C.R.; Anderson, R.R.; Gange, R.W.; Michaud, N.A.; Flotte, T.J. (Massachusetts General Hospital, Boston (USA))


    Short-pulse laser exposures can be used to alter pigmented structures in tissue by selective photothermolysis. Potential mechanisms of human tattoo pigment lightening with Q-switched ruby laser were explored by light and electron microscopy. Significant variation existed between and within tattoos. Electron microscopy of untreated tattoos revealed membrane-bound pigment granules, predominantly within fibroblasts and macrophages, and occasionally in mast cells. These granules contained pigment particles ranging from 2-in diameter. Immediately after exposure, dose-related injury was observed in cells containing pigment. Some pigment particles were smaller and lamellated. At fluences greater than or equal to 3 J/cm2, dermal vacuoles and homogenization of collagen bundles immediately adjacent to extracellular pigment were occasionally observed. A brisk neutrophilic infiltrate was apparent by 24 h. Eleven days later, the pigment was again intracellular. Half of the biopsies at 150 d revealed a mild persistent lymphocytic infiltrate. There was no fibrosis except for one case of clinical scarring. These findings confirm that short-pulse radiation can be used to selectively disrupt cells containing tattoo pigments. The physial alteration of pigment granules, redistribution, and elimination appear to account for clinical lightening of the tattoos.

  8. Light and electron microscopic analysis of the somata and parent axons innervating the rat upper molar and lower incisor pulp.

    Paik, S K; Park, K P; Lee, S K; Ma, S K; Cho, Y S; Kim, Y K; Rhyu, I J; Ahn, D K; Yoshida, A; Bae, Y C


    The morphology of intradental nerve fibers of permanent teeth and of continuously growing rodent incisors has been studied in detail but little information is available on the parent axons that give rise to these fibers. Here we examined the axons and somata of trigeminal neurons that innervate the rat upper molar and lower incisor pulp using tracing with horseradish peroxidase and light and electron microscopic analysis. The majority (approximately 80%) of the parent axons in the proximal root of the trigeminal ganglion that innervated either molar or incisor pulp were small myelinated fibers (fibers were almost exclusively large myelinated for the molar pulp and unmyelinated for the incisor pulp. The majority of neuronal somata in the trigeminal ganglion that innervated either molar (48%) or incisor pulp (62%) were medium in size (300-600 microm(2) cross-sectional area). Large somata (>600 microm(2)) constituted 34% and 20% of the trigeminal neurons innervating molar and incisor pulp, respectively, while small somata (fiber function may be carried out differently in the molar and incisor pulp in the rat.

  9. Ultrastructure and Light Microscope Analysis of Intact Skin after a Varying Number of Low Level Laser Irradiations in Mice

    Mamie Mizusaki Iyomasa


    Full Text Available Low level laser therapy (LLLT has been used to relieve pain, inflammation, and wound healing processes. Thus, the skin is overexposed to laser and this effect is not completely understood. This study analyzed the effects of the number of laser applications (three, six, and 10 on the intact skin of the masseteric region in mice of strain HRS/J. The animals (n=30 were equally divided into control (0 J/cm2 and irradiated (20 J/cm2, and each of these groups was further equally divided according to the number of laser applications (three, six, and 10 and underwent LLLT on alternate days. Samples were analyzed by light microscopy and transmission electron microscope (TEM. The animals receiving applications exhibited open channels more dilated between the keratinocytes and photobiomodulation effect on endothelial cells and fibroblasts by TEM. Under the light microscope after 10 laser applications, the type I collagen decreased (P<0.05 compared to the three and six applications. Under these experimental conditions, all numbers of applications provided photobiomodulatory effect on the epidermis and dermis, without damage. More studies are needed to standardize the energy density and number of applications recommended for laser therapy to have a better cost-benefit ratio associated with treatment.

  10. Compressive microscopic imaging with "positive-negative" light modulation

    Yu, Wen-Kai; Yao, Xu-Ri; Liu, Xue-Feng; Lan, Ruo-Ming; Wu, Ling-An; Zhai, Guang-Jie; Zhao, Qing


    An experiment on compressive microscopic imaging with single-pixel detector and single-arm has been performed on the basis of "positive-negative" (differential) light modulation of a digital micromirror device (DMD). A magnified image of micron-sized objects illuminated by the microscope's own incandescent lamp has been successfully acquired. The image quality is improved by one more orders of magnitude compared with that obtained by conventional single-pixel imaging scheme with normal modulation using the same sampling rate, and moreover, the system is robust against the instability of light source and may be applied to very weak light condition. Its nature and the analysis of noise sources is discussed deeply. The realization of this technique represents a big step to the practical applications of compressive microscopic imaging in the fields of biology and materials science.

  11. Analysis of signal processing in vestibular circuits with a novel light-emitting diodes-based fluorescence microscope.

    Direnberger, Stephan; Banchi, Roberto; Brosel, Sonja; Seebacher, Christian; Laimgruber, Stefan; Uhl, Rainer; Felmy, Felix; Straka, Hans; Kunz, Lars


    Optical visualization of neural network activity is limited by imaging system-dependent technical tradeoffs. To overcome these constraints, we have developed a powerful low-cost and flexible imaging system with high spectral variability and unique spatio-temporal precision for simultaneous optical recording and manipulation of neural activity of large cell groups. The system comprises eight high-power light-emitting diodes, a camera with a large metal-oxide-semiconductor sensor and a high numerical aperture water-dipping objective. It allows fast and precise control of excitation and simultaneous low noise imaging at high resolution. Adjustable apertures generated two independent areas of variable size and position for simultaneous optical activation and image capture. The experimental applicability of this system was explored in semi-isolated preparations of larval axolotl (Ambystoma mexicanum) with intact inner ear organs and central nervous circuits. Cyclic galvanic stimulation of semicircular canals together with glutamate- and γ-aminobutyric acid (GABA)-uncaging caused a corresponding modulation of Ca(2+) transients in central vestibular neurons. These experiments revealed specific cellular properties as well as synaptic interactions between excitatory and inhibitory inputs, responsible for spatio-temporal-specific sensory signal processing. Location-specific GABA-uncaging revealed a potent inhibitory shunt of vestibular nerve afferent input in the predominating population of tonic vestibular neurons, indicating a considerable impact of local and commissural inhibitory circuits on the processing of head/body motion-related signals. The discovery of these previously unknown properties of vestibular computations demonstrates the merits of our novel microscope system for experimental applications in the field of neurobiology.

  12. Analysis of proton scattering of stable and exotic light nuclei using an energy-dependent microscopic optical potential

    Maridi H. M.


    Full Text Available The proton elastic scattering off the 9,10,11,12Be isotopes at a wide energy range from 3 to 200 MeV/nucleon is analyzed using the optical model with the partial-wave expansion method. The microscopic optical potential (OP is taken within the single-folding model. The density- and isospin-dependent M3YParis nucleon-nucleon (NN interaction is used for the real part and the NN-scattering amplitude of the highenergy approximation for the imaginary one. The cross-section data are reproduced well at energies up to 100 MeV/nucleon by use of the partial-wave expansion. For higher energies, the eikonal approximation is successfully used. The volume integrals of the OP parts have systematic energy dependencies and they can be parameterized as functions of energy. From these parametrization, an energy-dependent OP can be obtained.

  13. Morphometric Evaluation of Preeclamptic Placenta Using Light Microscopic Images

    Rashmi Mukherjee


    Full Text Available Deficient trophoblast invasion and anomalies in placental development generally lead to preeclampsia (PE but the inter-relationship between placental function and morphology in PE still remains unknown. The aim of this study was to evaluate the morphometric features of placental villi and capillaries in preeclamptic and normal placentae. The study included light microscopic images of placental tissue sections of 40 preeclamptic and 35 normotensive pregnant women. Preprocessing and segmentation of these images were performed to characterize the villi and capillaries. Fisher’s linear discriminant analysis (FLDA, hierarchical cluster analysis (HCA, and principal component analysis (PCA were applied to identify the most significant placental (morphometric features from microscopic images. A total of 10 morphometric features were extracted, of which the villous parameters were significantly altered in PE. FLDA identified 5 highly significant morphometric features (>90% overall discrimination accuracy. Two large subclusters were clearly visible in HCA based dendrogram. PCA returned three most significant principal components cumulatively explaining 98.4% of the total variance based on these 5 significant features. Hence, quantitative microscopic evaluation revealed that placental morphometry plays an important role in characterizing PE, where the villous is the major component that is affected.

  14. Effect of operating microscope light on brain temperature during craniotomy.

    Gayatri, Parthasarathi; Menon, Girish G; Suneel, Puthuvassery R


    Operating microscopes used during neurosurgery are fitted with xenon light. Burn injuries have been reported because of xenon microscope lighting as the intensity of xenon light is 300 W. We designed this study to find out if the light of operating microscope causes an increase in temperature of the brain tissue, which is exposed underneath. Twenty-one adult patients scheduled for elective craniotomies were enrolled. Distal esophageal temperature (T Eso), brain temperature under the microscope light (T Brain), and brain temperature under dura mater (T Dura) were measured continuously at 15-minute intervals during microscope use. The irrigation fluid temperature, room temperature, intensity of the microscope light, and the distance of the microscope from the brain surface were kept constant. The average age of the patients was 44±15 years (18 males and 3 females). The mean duration of microscope use was 140±39 minutes. There were no significant changes in T Brain and T Dura and T Eso over time. T Dura was significantly lower than T Brain both at time 0 and 60 minutes but not at 90 minutes. T Brain was significantly lower than T Eso both at time 0 and 60 minutes but not at 90 minutes. The T Dura remained significantly lower than T Eso at 0, 60, and 90 minutes. Our study shows that there is no significant rise in brain temperature under xenon microscope light up to 120 minutes duration, at intensity of 60% to 70%, from a distance of 20 to 25 cm from the brain surface.

  15. Scanning Electron Microscope Analysis System

    Federal Laboratory Consortium — This facility provides the capability to examine surfaces microscopically with high resolution (5 nanometers), perform micro chemical analyses of these surfaces, and...

  16. Light microscopic histology of quadriceps tendon ruptures.

    Maffulli, Nicola; Del Buono, Angelo; Spiezia, Filippo; Longo, Umile Giuseppe; Denaro, Vincenzo


    To assess histological changes and possible differences in the quadriceps of patients undergoing open repair of the tendon after spontaneous rupture, and subjects with no history of tendon pathology. Biopsies were harvested from the quadriceps tendon of 46 patients (34 men, 12 women) who had reported unilateral atraumatic quadriceps tendon rupture and had undergone surgical repair of the tendon. Samples were also harvested from both the tendons in 11 (N = 11 × 2) patients, nine males and two females, dying from cardiovascular disorders. For each tendon, three slides were randomly selected and examined under light microscopy, and assessed using a semiquantitative grading scale (range 0-21) which considers fibre structure, fibre arrangement, rounding of the nuclei, regional variations in cellularity, increased vascularity, decreased collagen stainability, and hyalinisation. The pathological sum-score averaged 19.2 ± 3.7 in ruptured tendons and 5.6 ± 2.0 in controls, and all variables considered were significantly different between the two groups, showing an association between tendon abnormalities and rupture (0.05 tendons increases the risk of rupture.

  17. Teaching Optics to Biology Students Through Constructing a Light Microscope

    Ross, Jennifer


    The microscope is familiar to many disciplines, including physics, materials science, chemistry, and the life sciences. It demonstrates fundamental aspects of ray and wave optics, making it an ideal system to help educate students in the basic concepts of optics and in measurement principles and techniques. We present an experimental system developed to teach students the basics of ray and wave optics. The students design, build, and test a light microscope made from optics components. We describe the equipment and the basic measurements that students can perform to develop experimental techniques to understand optics principles. Students measure the magnification and test the resolution of the microscope. The system is open and versatile to allow advanced projects such as epi-fluorescence, total internal reflection fluorescence, and optical trapping. We have used this equipment in an optics course, an advanced laboratory course, and graduate-level training modules.

  18. Standard guide for calibrating reticles and light microscope magnifications

    American Society for Testing and Materials. Philadelphia


    1.1 This guide covers methods for calculating and calibrating microscope magnifications, photographic magnifications, video monitor magnifications, grain size comparison reticles, and other measuring reticles. Reflected light microscopes are used to characterize material microstructures. Many materials engineering decisions may be based on qualitative and quantitative analyses of a microstructure. It is essential that microscope magnifications and reticle dimensions be accurate. 1.2 The calibration using these methods is only as precise as the measuring devices used. It is recommended that the stage micrometer or scale used in the calibration should be traceable to the National Institute of Standards and Technology (NIST) or a similar organization. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory lim...

  19. Volumetric Light-field Encryption at the Microscopic Scale

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu


    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  20. Volumetric Light-field Encryption at the Microscopic Scale

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu


    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale. PMID:28059149

  1. Volumetric Light-field Encryption at the Microscopic Scale

    Li, Haoyu; Muniraj, Inbarasan; Schroeder, Bryce C; Sheridan, John T; Jia, Shu


    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve spatially multiplexed discrete and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  2. Volumetric Light-field Encryption at the Microscopic Scale.

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C; Sheridan, John T; Jia, Shu


    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  3. Three-dimensional microscopic light field particle image velocimetry

    Truscott, Tadd T.; Belden, Jesse; Ni, Rui; Pendlebury, Jonathon; McEwen, Bryce


    A microscopic particle image velocimetry (μ {PIV}) technique is developed based on light field microscopy and is applied to flow through a microchannel containing a backward-facing step. The only hardware difference from a conventional μPIV setup is the placement of a microlens array at the intermediate image plane of the microscope. The method combines this optical hardware alteration with post-capture computation to enable 3D reconstruction of particle fields. From these particle fields, we measure three-component velocity fields, but find that accurate velocity measurements are limited to the two in-plane components at discrete depths through the volume (i.e., 2C-3D). Results are compared with a computational fluid dynamics simulation.

  4. A light and electron microscopic analysis of the convergent insular cortical and amygdaloid projections to the posterior lateral hypothalamus in the rat, with special reference to cardiovascular function.

    Tsumori, Toshiko; Yokota, Shigefumi; Qin, Yi; Oka, Tatsuro; Yasui, Yukihiko


    The synaptic organization between and among the insular cortex (IC) axons, central amygdaloid nucleus (ACe) axons and posterolateral hypothalamus (PLH) neurons was investigated in the rat using double anterograde tracing and anterograde tracing combined with postembedding immunogold analysis. After ipsilateral injections of biotinylated dextran amine (BDA) into the IC and Phaseolus vulgaris-leucoagglutinin (PHA-L) into the ACe, the conspicuous overlapping distribution of BDA-labeled axon terminals and PHA-L-labeled axon terminals was found in the PLH region just medial to the subthalamic nucleus ipsilateral to the injection sites. At the electron microscopic level, approximately two-thirds of the IC terminals made synapses with small-sized dendrites and the rest did with dendritic spines of the PLH neurons, whereas about 79%, 16% and 5% of the ACe terminals established synapses with small- to medium-sized dendrites, somata, and dendritic spines, respectively, of the PLH neurons. In addition, the IC axon terminals contained densely packed round clear vesicles and their synapses were of asymmetrical type. On the other hand, most of the ACe terminals contained not only pleomorphic clear vesicles but also dense-cored vesicles and their synapses were of symmetrical type although some ACe terminals contained densely packed round clear vesicles and formed asymmetrical synapses. Most of the postsynaptic elements received synaptic inputs from the IC or ACe terminals, and some of single postsynaptic elements received convergent synaptic inputs from both sets of terminals. Furthermore, almost all the ACe terminals were revealed to be immunoreactive for gamma-aminobutyric acid (GABA), by using the anterograde BDA tracing technique combined with immunohistochemistry for GABA. The present data suggest that single PLH neurons are under the excitatory influence of the IC and/or inhibitory influence of the ACe in the circuitry involved in the regulation of cardiovascular functions.

  5. Adding an Extra Dimension to What Students See through the Light Microscope: A Lab Exercise Demonstrating Critical Analysis for Microscopy Students

    Garrill, Ashley


    This article describes an undergraduate lab exercise that demonstrates the importance of students thinking critically about what they see through a microscope. The students are given growth data from tip-growing organisms that suggest the cells grow in a pulsatile manner. The students then critique this data in several exercises that incorporate…

  6. Microcircuit failure analysis using the SEM. [Scanning Electron Microscopes

    Nicolas, D. P.


    The scanning electron microscope adds a new dimension to the knowledge that can be obtained from a failed microcircuit. When used with conventional techniques, SEM assists and clarifies the analysis, but it does not replace light microscopy. The most advantageous features for microcircuit analysis are long working distances and great depth of field. Manufacturer related failure modes of microcircuits are metallization defects, poor bonding, surface and particle contamination, and design and fabrication faults. User related failure modes are caused by abuse, such as overstress. The Physics of Failure Procedure followed by the Astrionics Laboratory in failure analysis is described, which is designed to obtain maximum information available from each step.

  7. Light Microsopy Module, International Space Station Premier Automated Microscope

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Brown, Daniel F.; O'Toole, Martin A.; Foster, William M.; Motil, Brian J.; Abbot-Hearn, Amber Ashley; Atherton, Arthur Johnson; Beltram, Alexander; hide


    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese.

  8. Light microscope observations on the epididymis of paca (Agouti paca).

    Schimming, Bruno Cesar; Machado, Márcia Rita Fernandes; Simões, Karina; da Cruz, Claudinei; Domeniconi, Raquel Fantin


    The features of paca epididymis, based on its appearance in light microscope, is described in this paper. The cellular population of the epithelial lining comprises principal cells, basal cells, apical cells, narrows cells, and hallo cells. The epididymis is divided in five distinct and continuous regions, Zone I, or initial segment, and zone II, are both localized into the head. Zone III comprises the distal head and all the body. Zones IV and V are restricted to the tail, in the proximal and distal cauda epididymis respectively. Each zone can be readily distinguished on the basis of morphological characteristics. The height of epididymal epithelium is greater in zone I. There is a progressive increase in the diameter of the tubular lumen through the different areas, with the maximum in the zone V. The presence of a high epithelium, and the virtual absence of sperm in zone I suggest fast transit of spermatozoa in this region. Zone V comprises the distal tail, has smaller epithelial lining, greater luminal diameter, shorter stereocilia than the other zones, and contains spermatozoa packed inside the lumen, that characterizes this zone as a place of sperm storage. The findings are compared with other reports in rodents and other domestic animals, to contribute to the understanding of epididymal morphophysiology.

  9. Organoleptic and Microscopic Analysis of Gentiana Regeliana

    Raneev Thakur


    Full Text Available Organoleptic and microscopic examination revealed various diagnostic characters. Stem (dried, 30-40 cm long, light brown having characteristic odour with bitter taste and smooth texture, flower (dried, 3-5 cm long and crumpled, dark brown to blue in color having characteristic odour and bitter taste with smooth texture, leaf (dried, 7-8 cm long and broken, brownish green, characteristic odour, bitter in taste and smooth texture. The transverse section of the stem (hollow in between of Gentiana regeliana Gand. showed presence of epidermal cell and abundant xylem vessels. Stomata arrangement was anisocytic and anomoctic with numerous non glandular trichomes on both surfaces. These findings should be expedient for inclusion in the Pharmacopoeia of Medicinal plants.

  10. Observation of sperm-head vacuoles and sperm morphology under light microscope.

    Park, Yong-Seog; Park, Sol; Ko, Duck Sung; Park, Dong Wook; Seo, Ju Tae; Yang, Kwang Moon


    The presence of sperm-head vacuoles has been suspected to be deleterious to the outcomes of assisted reproductive technology (ART). It is difficult to accurately distinguish morphologically abnormal sperm with vacuoles under a light microscope. This study was performed to analyze the result of the observation of sperm-head vacuoles using Papanicolaou staining under a light microscope and whether the male partner's age affects these vacuoles. Sperm morphology with vacuoles was evaluated using Papanicolaou staining and observed under a light microscope (400×) in 980 men. The normal morphology was divided into three categories (group A, 14% of normal morphology). The criteria for the sperm-head vacuoles were those given in the World Health Organization manual. For the analysis of the age factor, the participants were divided into the following groups: 26-30 years, 31-35 years, 36-40 years, 41-45 years, and 46-50 years. The percentage of sperm-head vacuoles increased with normal sperm morphology (group A vs. groups B, C) (p<0.05). In the case of the age factor, a statistically significant difference was not observed across any of the age groups. A majority of the sperm-head vacuoles showed a statistically significant difference among normal morphology groups. Therefore, we should consider the probability of the percentage of sperm-head vacuoles not increasing with age but with abnormal sperm morphology. A further study is required to clarify the effect of the sperm-head vacuoles on ART outcomes.

  11. A microscopic analysis of shear acceleration

    Rieger, F M; Rieger, Frank M.; Duffy, Peter


    A microscopic analysis of the viscous energy gain of energetic particles in (gradual) non-relativistic shear flows is presented. We extend previous work and derive the Fokker-Planck coefficients for the average rate of momentum change and dispersion in the general case of a momentum-dependent scattering time $\\tau(p) \\propto p^{\\alpha}$ with $\\alpha \\geq 0$. We show that in contrast to diffusive shock acceleration the characteristic shear acceleration timescale depends inversely on the particle mean free path which makes the mechanism particularly attractive for high energy seed particles. Based on an analysis of the associated Fokker-Planck equation we show that above the injection momentum $p_0$ power-law differential particle number density spectra $n(p) \\propto p^{-(1+ \\alpha)}$ are generated for $\\alpha >0$ if radiative energy losses are negligible. We discuss the modifications introduced by synchrotron losses and determine the contribution of the accelerated particles to the viscosity of the background ...

  12. Light-microscopic observations of individual microtubules reconstituted from brain tubulin.

    Kuriyama, R; Miki-Noumura, T


    The course of polymerization of individual brain microtubules could be observed with a light microscope employing dark-field illumination. Statistical analysis of the increase in microtubule length during the polymerization was in accordance with the time course of viscosity change of the tubulin solution. After a plateau level in viscosity was attained, there was no significant change in histograms showing length distribution. These observations were confirmed with fixed and stained microtubules, using a phase-contrast microscope. Observations with dark-field illumination revealed that reconstituted microtubules depolymerized and disappeared immediately upon exposure to buffer containing CaCl2 or sulphydryl reagents such as p-chloromercuriphenyl sulphonic acid (PCMPS) and p-chloromercuribenzoic acid (PCMB). They were also cold-labile. The growth of heterogeneous microtubules which were assembled by mixing purified tubulin dimers with ciliary outer fibres could also be followed with these optical systems.

  13. Light and scanning electron microscopic investigations on MiteStop-treated poultry red mites.

    Locher, Nina; Klimpel, Sven; Abdel-Ghaffar, Fathy; Al Rasheid, Khaled A S; Mehlhorn, Heinz


    Recent studies of the neem seed product MiteStop showed that it has a good acaricidal effect against all developmental stages of the poultry red mite, Dermanyssus gallinae. In vitro tests proved an efficacy at direct contact, as well as by fumigant toxicity. Light and scanning electron microscopic (SEM) investigations showed no clear, morphologically visible signs of an effect caused by fumigant toxicity. Direct contact with the neem product, however, seemed to be of great impact. Chicken mites turned dark brown or even black after being treated with the neem product. SEM analysis showed damages along the body surface of the mites.

  14. Using a university characterization facility to educate the public about microscopes: light microscopes to SEM

    Healy, Nancy; Henderson, Walter


    The National Nanotechnology Infrastructure Network (NNIN)1is an integrated partnership of 14 universities across the US funded by NSF to support nanoscale researchers. The NNIN education office is located at the Institute of Electronics and Nanotechnology at the Georgia Institute of Technology. At Georgia Tech we offer programs that integrate the facility and its resources to educate the public about nanotechnology. One event that has proved highly successful involves using microscopes in our characterization suite to educate a diverse audience about a variety of imaging instruments. As part of the annual Atlanta Science Festival (ATLSF)2 we provided an event entitled: "What's all the Buzz about Nanotechnology?" which was open to the public and advertised through a variety of methods by the ATLSF. During the event, we provided hands-on demos, cleanroom tours, and activities with three of our microscopes in our recently opened Imaging and Characterization Facility: 1. Keyence VHX-600 Digital Microscope; 2. Hitachi SU823 FE-SEM; and 3. Hitachi TM 3000. During the two hour event we had approximately 150 visitors including many families with school-aged children. Visitors were invited to bring a sample for scanning with the TM-3000. This paper will discuss how to do such an event, lessons learned, and visitor survey results.

  15. Synovial membrane involvement in osteoarthritic temporomandibular joints - A light microscopic study

    Dijkgraaf, LC; Liem, RSB; deBont, LGM


    Objective. To study the light microscopic characteristics of the synovial membrane of osteoarthritic temporomandibular joints to evaluate synovial membrane involvement in the osteoarthritic process. Study design. Synovial membrane biopsies were obtained during unilateral arthroscopy in 40 patients.

  16. Enhancing the performance of the light field microscope using wavefront coding.

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc


    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

  17. Efficacy of oral exfoliative cytology in diabetes mellitus patients: a light microscopic and confocal microscopic study.

    Gopal, Deepika; Malathi, N; Reddy, B Thirupathi


    Diabetes mellitus (DM) has become a global problem. By monitoring the health status of these individuals, diabetic complications can be prevented. We aimed to analyze alterations in the morphology and cytomorphometry of buccal epithelial cells of type 2 DM patients using oral exfoliative cytology technique and determine its importance in public health screening, diagnosis and monitoring of diabetes mellitus. The study was carried out in 100 type 2 DM patients and 30 healthy individuals. Smears were taken from the right buccal mucosa and stained by the Papanicolaou technique. Staining with Acridine orange was carried out to view qualitative changes with confocal laser scanning microscope (LSM-510 Meta). The cytomorphometry was evaluated using IMAGE PRO PLUS 5.5 software with Evolution LC camera. All findings were statistically analyzed. The results showed that with increase in fasting plasma glucose levels, there is significant increase in nuclear area, decrease in cytoplasmic area, and increase in nuclear cytoplasmic ratio (p < 0.05) when compared to the control group. Various qualitative changes were noted, such as cell degeneration, micronuclei, binucleation, intracytoplasmic inclusion, candida and keratinization. In the present study, we found significant alterations in the cytomorphometry and cytomorphology of buccal epithelial cells of type 2 DM patients. This study supports and extends the view that these cellular changes can alert the clinician to the possibility of diabetes and aid in monitoring of diabetes throughout the lifetime of the patient.

  18. A correlative light microscopic, transmission and scanning electron microscopic study of the dorsum of human tongue.

    Boshell, J L; Wilborn, W H; Singh, B B


    The dorsum of the human tongue has three types of papillae, filiform, fungiform and circumvallate. Some investigators have studied these by light and transmission electron microscopy. Since knowledge of the morphology through studies by scanning of the morphology through studies by scanning electron microscopy (SEM) is scant, this investigation was started with the purpose of studying human tongues at different ages. One fetal tongue and portions of three tongues from newborns were removed. Additional specimens were biopsied from the anterior region of three adult tongues. Samples were processed routinely for light microscopy, transmission electron microscoy (TEM) and scanning electron microscopy (SEM). Two distinct features were evident on the fetal tongue. The first was that the surface epithelial layer of the tongue appeared to be periderm. The second was that fungiform papillae began their development earlier than filiform. At birth, the putative periderm had disappeared and a few filiform papillae were observed. On the adult tongue, filiform papillae were numerous and were comprised of two cell populations. One cell population contained numerous keratohyalin granules (KHG). The KHG were two types, eosinophilic and basophilic. Ultrastructurally, the eosinophilic granules were less electron dense and larger in size than the basophilic KHG.

  19. Quantitative methods for the analysis of electron microscope images

    Skands, Peter Ulrik Vallø


    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  20. Versatile microscope-coupled high-intensity pulsed light source for high-speed cine photomicrography of microactuators

    Krehl, Peter; Engemann, Stephan; Rembe, Christian; Hofer, Eberhard P.


    A compact high-intensity pulsed light source has been developed in order to match a microdynamic test facility for high-speed motion analysis of micromechanical components. The test stand encompasses a universal microscope Zeiss Axioplan, the new light source and an electronic ultra high- speed multiple framing camera Hadland Imacon 468. The light source consists of a narrow cylindrical Xe-filled discharge tube, thus providing a locally stable emission. Since the small-size flashlamp easily fits into a standard microscope lamphousing, it allows to maintain the advantages of Koehler illumination as well as switching to other types of lamphousings. The flash tube is operated via an artificial asymmetric transmission line and delivers a square light pulse with a flash duration of 110 microsecond(s) FWHM and a peak intensity of 50 Med. The light source illuminates the object uniformly within the interesting time window; image shuttering is provided in the camera by gated micro-channel- plate intensifiers. To test the efficiency of the total system for various standard visualization methods (transmitted light, reflected light and differential interference contrast), microscopic still images have been taken at magnification up to 500X and with exposure times down to 10 ns. In addition, two microscopic darkfield methods which provide a high contrast but a low light intensity of the image, have been selected to test their applicability down to an exposure time of 100 ns. Two examples for real-time cinematography of high-speed phenomena in microactuators are shown: the bouncing behavior of an electro-magnetic microrelay and the bubble/jet formation of a thermal ink jet printhead.

  1. Technique of Hadamard transform microscope fluorescence image analysis

    梅二文; 顾文芳; 曾晓斌; 陈观铨; 曾云鹗


    Hadamard transform spatial multiplexed imaging technique is combined with fluorescence microscope and an instrument of Hadamard transform microscope fluorescence image analysis is developed. Images acquired by this instrument can provide a lot of useful information simultaneously, including three-dimensional Hadamard transform microscope cell fluorescence image, the fluorescence intensity and fluorescence distribution of a cell, the background signal intensity and the signal/noise ratio, etc.

  2. The cancer nuclear microenvironment: interface between light microscopic cytology and molecular phenotype.

    True, Lawrence D; Jordan, C Diana


    A definitive diagnosis of cancer may be rendered by microscopic assessment of only a few cells in an appropriate clinical setting due to the distinctive nuclear structure of most cancer cells in comparison to nuclei of normal human cells. The molecular architecture of non-neoplastic human nuclei--of the nuclear matrix and of matrix-associated proteins and nucleic acids--is being characterized in exquisite molecular detail. What is missing is the application of the findings and tools of molecular biology to understanding the cytological structure of cancer nuclei. This article delves into the basis of nuclear structure at different levels of resolution--light microscopic, electron microscopic, and molecular.

  3. Analysis on enhanced depth of field for integral imaging microscope.

    Lim, Young-Tae; Park, Jae-Hyeung; Kwon, Ki-Chul; Kim, Nam


    Depth of field of the integral imaging microscope is studied. In the integral imaging microscope, 3-D information is encoded as a form of elemental images Distance between intermediate plane and object point decides the number of elemental image and depth of field of integral imaging microscope. From the analysis, it is found that depth of field of the reconstructed depth plane image by computational integral imaging reconstruction is longer than depth of field of optical microscope. From analyzed relationship, experiment using integral imaging microscopy and conventional microscopy is also performed to confirm enhanced depth of field of integral imaging microscopy.

  4. Isotope analysis in the transmission electron microscope

    Susi, Toma; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani


    The {\\AA}ngstr\\"om-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either $^{12}$C or $^{13}$C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method should be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  5. Light microscope observation of circulating human lymphocytes cultured in vitro

    Naila Francis Paulo de Oliveira


    Full Text Available The purpose of this work was to study the isolation and a light microscopy technique for cultured lymphocytes. Blood samples were obtained by venipuncture with an anticoagulant added and centrifuged in a Percoll density gradient to separate the leukocytes. Lymphocytes were placed in 25 cm ³ tissue culture flasks at 37ºC. After culturing, they were fixed and stained with the methods used for blood smears. Results showed that not all fixing solutions and stains were an equally good choice for cultured lymphocytes.Os linfócitos são células importantes do sistema imune e têm sido largamente utilizados em estudos morfológicos. Entretanto, a literatura sobre técnicas de preparação dessas células é escassa e antiga, especialmente para linfócitos cultivados in vitro. Portanto, o objetivo desse estudo foi relatar com detalhes as técnicas de isolamento e microscopia de luz de linfócitos mantidos em cultura. Amostras de sangue foram obtidas por punção venosa e centrifugadas em gradiente de densidade de Percoll, para separar os leucócitos. Os linfócitos foram mantidos em frascos de cultura de 25 cm³ a 37ºC. Após a cultura, as células foram fixadas e coradas de acordo com a metodologia utilizada para esfregaços sanguíneos. Nossos resultados mostraram que nem todos os fixadores e corantes utilizados para esfregaços sanguíneos são uma boa escolha para linfócitos cultivados in vitro.

  6. Light microscopic, electron microscopic, and immunohistochemical comparison of Bama minipig (Sus scrofa domestica) and human skin.

    Liu, Yu; Chen, Jun-ying; Shang, Hai-tao; Liu, Chang-e; Wang, Yong; Niu, Rong; Wu, Jun; Wei, Hong


    Here we sought to evaluate the possibility of using Chinese Bama miniature pig skin as a suitable animal model for human skin. Morphologic features of the skin of Bama miniature pigs resemble those of human skin, including skin layer thickness, development of a superficial vascular system, structure of the dermal-epidermal interface, and extracellular matrix. The characteristics and densities of Langerhans cells, fibroblasts, vascular endothelial cells, and mast cells were similar between Bama pig and human skin. Immunohistochemistry showed that miniature pigs and humans have the same antigenic determinants of human laminin, fibronectin, filaggrin, collagen I, collagen III, collagen IV, and keratin but not CD34, ICAM1, or S100. In addition, collagen type I from Bama miniature pig skin exhibited physicochemical characteristics resembling those of human skin, in regard to HPLC chromatography, UV spectroscopy, amino-acid composition, and SDS-PAGE analysis. Given these results, we concluded that Bama miniature pigs have great potential as a human skin model and for developing dermal substitute materials in wound repair. However, we also observed some disparities between the skin of Bama miniature pigs and humans, including pigment cell distribution, sweat gland types, and others. Therefore, further studies are needed to completely evaluate the effects of these interspecies differences on the actual application of the model.

  7. Light microscopical demonstration and zonal distribution of parasinusoidal cells (Ito cells) in normal human liver

    Horn, T; Junge, Jette; Nielsen, O;


    The parasinusoidal cells of the liver (Ito cells) were demonstrated light microscopically in autopsy specimens fixed in formalin and stained with Oil red O after dichromate treatment. The method allows examination of large samples containing numerous acini. Quantitative assessment showed a zonal...

  8. Carboxylic ester hydrolases in the thyroid gland of the guinea-pig. A light microscopic study

    Kirkeby, S


    The location of cholinesterase and non-specific esterase in the thyroid gland of the guniea-pig was studied with the light microscope. It was found that the idoxyl method for non-specific esterase activity under special conditions is superior to the cholinesterase method in a number of respects f...

  9. Light microscopical demonstration and zonal distribution of parasinusoidal cells (Ito cells) in normal human liver

    Horn, T; Junge, Jette; Nielsen, O


    The parasinusoidal cells of the liver (Ito cells) were demonstrated light microscopically in autopsy specimens fixed in formalin and stained with Oil red O after dichromate treatment. The method allows examination of large samples containing numerous acini. Quantitative assessment showed a zonal ...

  10. Tomographic incoherent phase imaging, a diffraction tomography alternative for any white-light microscope

    Bon, Pierre; Aknoun, Shérazade; Savatier, Julien; Wattellier, Benoit; Monneret, Serge


    In this paper, we discuss the possibility of making tomographic reconstruction of the refractive index of a microscopic sample using a quadriwave lateral shearing interferometer, under incoherent illumination. A Z-stack is performed and the acquired incoherent elecromagnetic fields are deconvoluted before to retrieve in a quantitative manner the refractive index. The results are presented on polystyrene beads and can easily be expanded to biological samples. This technique is suitable to any white-light microscope equipped with nanometric Z-stack module.

  11. Minimizing inter-microscope variability in dental microwear texture analysis

    Arman, Samuel D.; Ungar, Peter S.; Brown, Christopher A.; DeSantis, Larisa R. G.; Schmidt, Christopher; Prideaux, Gavin J.


    A common approach to dental microwear texture analysis (DMTA) uses confocal profilometry in concert with scale-sensitive fractal analysis to help understand the diets of extinct mammals. One of the main benefits of DMTA over other methods is the repeatable, objective manner of data collection. This repeatability, however, is threatened by variation in results of DMTA of the same dental surfaces yielded by different microscopes. Here we compare DMTA data of five species of kangaroos measured on seven profilers of varying specifications. Comparison between microscopes confirms that inter-microscope differences are present, but we show that deployment of a number of automated treatments to remove measurement noise can help minimize inter-microscope differences. Applying these same treatments to a published hominin DMTA dataset shows that they alter some significant differences between dietary groups. Minimising microscope variability while maintaining interspecific dietary differences requires then that these factors are balanced in determining appropriate treatments. The process outlined here offers a solution for allowing comparison of data between microscopes, which is essential for ongoing DMTA research. In addition, the process undertaken, including considerations of other elements of DMTA protocols also promises to streamline methodology, remove measurement noise and in doing so, optimize recovery of a reliable dietary signature.

  12. From Animaculum to single molecules: 300 years of the light microscope

    Wollman, Adam J. M.; Nudd, Richard; Hedlund, Erik G.; Leake, Mark C.


    Although not laying claim to being the inventor of the light microscope, Antonj van Leeuwenhoek (1632–1723) was arguably the first person to bring this new technological wonder of the age properly to the attention of natural scientists interested in the study of living things (people we might now term ‘biologists’). He was a Dutch draper with no formal scientific training. From using magnifying glasses to observe threads in cloth, he went on to develop over 500 simple single lens microscopes (Baker & Leeuwenhoek 1739 Phil. Trans. 41, 503–519. (doi:10.1098/rstl.1739.0085)) which he used to observe many different biological samples. He communicated his finding to the Royal Society in a series of letters (Leeuwenhoek 1800 The select works of Antony Van Leeuwenhoek, containing his microscopical discoveries in many of the works of nature, vol. 1) including the one republished in this edition of Open Biology. Our review here begins with the work of van Leeuwenhoek before summarizing the key developments over the last ca 300 years, which has seen the light microscope evolve from a simple single lens device of van Leeuwenhoek's day into an instrument capable of observing the dynamics of single biological molecules inside living cells, and to tracking every cell nucleus in the development of whole embryos and plants. PMID:25924631

  13. From Animaculum to single molecules: 300 years of the light microscope.

    Wollman, Adam J M; Nudd, Richard; Hedlund, Erik G; Leake, Mark C


    Although not laying claim to being the inventor of the light microscope, Antonj van Leeuwenhoek (1632-1723) was arguably the first person to bring this new technological wonder of the age properly to the attention of natural scientists interested in the study of living things (people we might now term 'biologists'). He was a Dutch draper with no formal scientific training. From using magnifying glasses to observe threads in cloth, he went on to develop over 500 simple single lens microscopes (Baker & Leeuwenhoek 1739 Phil. Trans. 41, 503-519. (doi:10.1098/rstl.1739.0085)) which he used to observe many different biological samples. He communicated his finding to the Royal Society in a series of letters (Leeuwenhoek 1800 The select works of Antony Van Leeuwenhoek, containing his microscopical discoveries in many of the works of nature, vol. 1) including the one republished in this edition of Open Biology. Our review here begins with the work of van Leeuwenhoek before summarizing the key developments over the last ca 300 years, which has seen the light microscope evolve from a simple single lens device of van Leeuwenhoek's day into an instrument capable of observing the dynamics of single biological molecules inside living cells, and to tracking every cell nucleus in the development of whole embryos and plants.

  14. Scanning tunneling microscope light emission: Effect of the strong dc field on junction plasmons

    Kalathingal, Vijith; Dawson, Paul; Mitra, J.


    The observed energies of the localized surface plasmons (LSPs) excited at the tip-sample junction of a scanning tunneling microscope, as identified by spectral peaks in the light output, are very significantly redshifted with respect to calculations that use standard optical data for the tip and sample material, gold in this case. We argue that this anomaly depends on the extreme field in the sub-nm tunneling proximity of the tip and the sample, across which a dc bias (1-2 V) is applied. Finite element modeling analysis is presented of a gold nanosphere-plane (NS-P) combination in tunneling proximity and, crucially, in the presence of a high static electric field (˜109V /m ). It is argued that the strong dc field induces nonlinear corrections to the dielectric function of the gold via the effect of a large background polarizability through the nonlinear, χ(3 ) susceptibility contribution. When fed into the model system the modified optical data alters the LSP cavity modes of the NS-P system to indeed reveal a large redshift in energy compared to those of the virgin gold NS-P system. The net outcome may be regarded as equivalent to lowering the bulk plasmon energy, the physical interpretation being that the intense field of the tunneling environment leads to surface charge screening, effectively reducing the density of free electrons available to participate in the plasmon oscillations.

  15. Developmental morphology of the human fetus kidney : Observation by light and electron microscope


    The author observed the human fetus kidney at the fetal age of 3 weeks, 5 weeks and 6 month in utero by means of light and electron microscope in order to add some new findings to the already known knowledge. Especially, the metanephros, metanephric blastema, nephrogenic zone of the cortex and blood-urine barrier which consists of glomerulus, capillary vessel, basement membrane, podocyte and mesangium cells are observed and then physiological significance of the kidney are also discussed. On ...

  16. Energy dispersive X-ray analysis in the electron microscope

    Bell, DC


    This book provides an in-depth description of x-ray microanalysis in the electron microscope. It is sufficiently detailed to ensure that novices will understand the nuances of high-quality EDX analysis. Includes information about hardware design as well as the physics of x-ray generation, absorption and detection, and most post-detection data processing. Details on electron optics and electron probe formation allow the novice to make sensible adjustments to the electron microscope in order to set up a system which optimises analysis. It also helps the reader determine which microanalytical me

  17. Glomus tumor (golomangioma) of the tongue. A light and electron microscopic study.

    Tajima, Y; Weather, D R; Neville, B W; Benoit, P W; Pedley, D M


    A rare case of an intraoral glomus tumor on the ventral surface on the tongue was studied by light and electron microscopy. With light microscopy, the tumor was composed of dilated vascular channels surrounded by "epithelioid" glomus cells exhibiting large round nuclei and abundant eosinophilic cytoplasm. Bodian stains showed significant staining for nerve fibers among the tumor cells. Electron microscopic study demonstrated that the tumor cells had ultrastructural features which were similar to both smooth muscle cells and endothelial cells, suggesting that a "transitional" cell may give rise to glomus tumor. The literature on oral glomus tumors is briefly reviewed.

  18. Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.

    Toshchevikov, V; Saphiannikova, M; Heinrich, G


    We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.

  19. Microscopic evaluation and physiochemical analysis of Dillenia indica leaf

    S Kumar; V Kumar; Om Prakash


    Objective: To study detail microscopic evaluation and physiochemical analysis of Dillenia indica (D. indica) leaf. Methods: Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically. Preliminary phytochemical investigation of plant material was done. Other WHO recommended parameters for standardizations were also performed. Results: The detail microscopy revealed the presence of anomocytic stomata, unicellular trichome, xylem fibres, calcium oxalate crystals, vascular bundles, etc. Leaf constants such as stomatal number, stomatal index, vein-islet number and veinlet termination numbers were also measured. Physiochemical parameters such as ash values, loss on drying, extractive values, percentage of foreign matters, swelling index, etc. were also determined. Preliminary phytochemical screening showed the presence of steroids, terpenoids, glycosides, fatty acids, flavonoids, phenolic compounds and carbohydrates. Conclusions: The microscopic and physiochemical analysis of the D. indica leaf is useful in standardization for quality, purity and sample identification.


    Aryo Tedjo


    Full Text Available Typical clinical symptoms and chest X-ray is a marker of Tuberculosis (TB sufferers. However, the diagnosis of TB in adults should be supported by microscopic examination. Currently, Bacilli microscopic examination of acid-fast bacilli (AFB in sputum by Ziehl-Neelsen (ZN coloring is the most widely used. However, for reasons of convenience, especially for laboratories with a considerable amount of smear samples, and due to higher sensitivity compared withZN staining, the World Health Organization (WHO has recommended the use of auramine-O-staining (fluorochrome staining, which is visualized by light emitting diode (LED fluorescence microscopy. The aim of this study was to evaluate the performance of modified light microscope with homemade LED additional attachment for examination ofAFB in sputum using auramine-O-staining method. We compared the sensitivity and specificity of 2 kinds of AFB in sputum methods: ZN and fluorochrome, using culture on Lowenstein-Jensen media as the gold standard. The results showed auramine-O-staining gives more proportion of positive findings (81% compared to the ZN method (70%. These results demonstrated that the sensitivity of auramine-O-staining was higher than ZN, however it gives more potential false positive results than ZN. The sensitivity of auramine-O-staining in detecting AFB in sputum was 100% while the specificity was 88%.

  1. Development of a Hybrid Atomic Force Microscopic Measurement System Combined with White Light Scanning Interferometry

    Xiaotang Hu


    Full Text Available A hybrid atomic force microscopic (AFM measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method.

  2. Erythropoietic Protoporphyria (A Light, Polarization and Electron Microscopical Study of the Liver in One Patient)

    陈锦飞; 张平


    Objective To explore the hepatic pathology of a patient with erythropoietic protoporphyria ( EPP ). Methods Percutaneous liver biopsy was performed with a Chiba needle in a 31year-old man suffering from EPP. The sample was fixed in 10% formalin solution, and the paraffin-embedded section was stained with H-E, PAS, etc. Unstained paraffin-errbedded and H-E stained paraffin embedded sections were examined under polarization microscope. Ultrathin sections were examined in a transmission electron microscope. Results In H-E stained sections, deposits of dark reddish brown pigment were seen in the hepatocytes, Kupffer cells, portal macrophages and plugs in the lumen of bile canaliculi and ducts. Under light microscope, such deposits, with rare exception, exhigoited strikin g birefringence with tie unique shape of "Maltese cross". Non-membrane limited compact masses of crystals were straight or slightly curved and their dimensions (40-640 nm in length and 6-22 nm in width ) were different under tie transmission electron microscope. Conclusion Microscolpy, especially polarization microscopy, provides a highly sensitive and specific technique for the diagnosis of EPP.

  3. Microscopical characterization of known postmortem root bands using light and scanning electron microscopy.

    Hietpas, Jack; Buscaglia, JoAnn; Richard, Adam H; Shaw, Stephen; Castillo, Hilda S; Donfack, Joseph


    A postmortem root band (PMRB) is a distinct microscopic feature that is postulated to occur in hair remaining in the follicle during the postmortem interval [1] (Petraco et al., 1998). The scientific validity of this premise has been highlighted in two recent high-profile criminal cases involving PMRBs [2,3] (State of Florida v. Casey Marie Anthony, 2008; People v. Kogut, 2005). To better understand the fundamental aspects of postmortem root banding, the microscopical properties of known PMRBs(1) were characterized by light microscopy, and scanning electron microscope (SEM) imaging of microtomed sections of hairs showing root banding. The results from this study show that the appearance of the PMRB may be due to the degradation of the chemically labile, non-keratin intermacrofibrillar matrix (IMM) in the pre-keratin/keratogenous region of anagen hairs. In addition, this degradation is confined to the cortex of the hair, with no apparent damage to the layers of the cuticle. These results could provide valuable information for determining the mechanism of band formation, as well as identify a set of microscopic features that could be used to distinguish hairs with known PMRBs from similarly looking environmentally degraded hairs. Published by Elsevier Ireland Ltd.

  4. The HVAC Challenges of Upgrading an Old Lab for High-end Light Microscopes

    Richard, R.; Martone, P.; Callahan, L.M.


    The University of Rochester Medical Center forms the centerpiece of the University of Rochester's health research, teaching, patient care, and community outreach missions. Within this large facility of over 5 million square feet, demolition and remodeling of existing spaces is a constant activity. With more than $145 million in federal research funding, lab space is frequently repurposed and renovated to support this work. The URMC Medical Center Facilities Organization supporting small to medium space renovations is constantly challenged and constrained by the existing mechanical infrastructure and budgets to deliver a renovated space that functions within the equipment environmental parameters. One recent project, sponsored by the URMC Shared Resources Laboratory, demonstrates these points. The URMC Light Microscopy Shared Resource Laboratory requested renovation of a 121 sq. ft. room in a 40 year old building which would enable placement of a laser capture microdissection microscope and a Pascal 5 laser scanning confocal microscope with the instruments separated by a blackout curtain. This poster discusses the engineering approach implemented to bring an older lab into the environmental specifications needed for the proper operation of the high-end light microscopes.

  5. From Animaculum to single-molecules: 300 years of the light microscope

    Wollman, Adam J M; Hedlund, Erik G; Leake, Mark C


    Although not laying claim to being the inventor of the light microscope, Antonj van Leeuwenhoek, (1632-1723) was arguably the first person to bring this new technological wonder of the age properly to the attention of natural scientists interested in the study of living things (people we might now term biologists). He was a Dutch draper with no formal scientific training. From using magnifying glasses to observe threads in cloth, he went on to develop over 500 simple single lens microscopes with which he used to observe many different biological samples. He communicated his finding to the Royal Society in a series of letters including the one republished in this edition of Open Biology. Our review here begins with the work of van Leeuwenhoek before summarising the key developments over the last ca. 300 years which has seen the light microscope evolve from a simple single lens device of van Leeuwenhoek's day into an instrument capable of observing the dynamics of single biological molecules inside living cells...

  6. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator

    Förster, Ronny; Jost, Aurélie; Kielhorn, Martin; Wicker, Kai; Heintzmann, Rainer


    We describe a two-beam interference structured illumination fluorescence microscope. The novelty of the presented system lies in its simplicity. A programmable electro-optical spatial light modulator in an intermediate image plane enables precise and rapid control of the excitation pattern in the specimen. The contrast of the projected light pattern is strongly influenced by the polarization state of the light entering the high NA objective. To achieve high contrast, we use a segmented polarizer. Furthermore, a mask with six holes blocks unwanted components in the spatial frequency spectrum of the illumination grating. Both these passive components serve their purpose in a simpler and almost as efficient way as active components. We demonstrate a lateral resolution of 114.2 +- 9.5 nm at a frame rate of 7.6 fps per reconstructed 2D slice.

  7. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator.

    Förster, Ronny; Lu-Walther, Hui-Wen; Jost, Aurélie; Kielhorn, Martin; Wicker, Kai; Heintzmann, Rainer


    We describe a two-beam interference structured illumination fluorescence microscope. The novelty of the presented system lies in its simplicity. A programmable spatial light modulator (ferroelectric LCoS) in an intermediate image plane enables precise and rapid control of the excitation pattern in the specimen. The contrast of the projected light pattern is strongly influenced by the polarization state of the light entering the high NA objective. To achieve high contrast, we use a segmented polarizer. Furthermore, a mask with six holes blocks unwanted components in the spatial frequency spectrum of the illumination grating. Both these passive components serve their purpose in a simpler and almost as efficient way as active components. We demonstrate a lateral resolution of 114.2 ± 9.5 nm at a frame rate of 7.6 fps per reconstructed 2D slice.

  8. A compact light-sheet microscope for the study of the mammalian central nervous system

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan


    Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca2+ signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community.

  9. Kaleidoscope of oral artifacts: A vivid picture through light and polarizing microscope

    Priyanka Kardam


    Full Text Available Background: This study is based on finding of an inexplicable artifact that was seen in the tissue received as periapical granuloma. Aim: To observe the histological appearance of different commonly implanted food particles and easily incorporated substances from a laboratory in the oral biopsy tissues. Materials and Methods: Various food particles such as wheat chapatti, beans, peas, pulses, and coriander leaves and substances such as a suture, cotton, and paper that can easily gain entry during biopsy and histotechnical procedures were intentionally introduced in the tissue specimens of a uterus from outside. Both light and polarizing microscopes were utilized to view them. Results: Different food particles and substances gave different appearances that could lead to misdiagnosis. Some of these also exhibited positive birefringence under the polarizing microscope. Conclusion: Knowledge and familiarity with probable foreign substances which can appear in tissues may help prevent misdiagnosis or erroneous diagnosis of biopsy specimens.

  10. Kaleidoscope of oral artifacts: A vivid picture through light and polarizing microscope.

    Kardam, Priyanka; Jain, Kanu; Mehendiratta, Monica; Mathias, Yulia


    This study is based on finding of an inexplicable artifact that was seen in the tissue received as periapical granuloma. To observe the histological appearance of different commonly implanted food particles and easily incorporated substances from a laboratory in the oral biopsy tissues. Various food particles such as wheat chapatti, beans, peas, pulses, and coriander leaves and substances such as a suture, cotton, and paper that can easily gain entry during biopsy and histotechnical procedures were intentionally introduced in the tissue specimens of a uterus from outside. Both light and polarizing microscopes were utilized to view them. Different food particles and substances gave different appearances that could lead to misdiagnosis. Some of these also exhibited positive birefringence under the polarizing microscope. Knowledge and familiarity with probable foreign substances which can appear in tissues may help prevent misdiagnosis or erroneous diagnosis of biopsy specimens.

  11. Sub-diffuse structured light imaging provides macroscopic maps of microscopic tissue structure (Conference Presentation)

    Kanick, Stephen C.


    The onset and progression of cancer introduces changes to the intra-cellular ultrastructural components and to the morphology of the extracellular matrix. While previous work has shown that localized scatter imaging is sensitive to pathology-induced differences in these aspects of tissue microstructure, wide adaptation this knowledge for surgical guidance is limited by two factors. First, the time required to image with confocal-level localization of the remission signal can be substantial. Second, localized (i.e. sub-diffuse) scatter remission intensity is influenced interchangeably by parameters that define scattering frequency and anisotropy. This similarity relationship must be carefully considered in order to obtain unique estimates of biomarkers that define either the scatter density or features that describe the distribution (e.g. shape, size, and orientation) of scatterers. This study presents a novel approach that uses structured light imaging to address both of these limitations. Monte Carlo data were used to model the reflectance intensity over a wide range of spatial frequencies, reduced scattering coefficients, absorption coefficients, and a metric of the scattering phase function that directly maps to the fractal dimension of scatter sizes. The approach is validated in tissue-simulating phantoms constructed with user-tuned scattering phase functions. The validation analysis shows that the phase function can be described in the presence of different scatter densities or background absorptions. Preliminary data from clinical tissue specimens show quantitative images of both the scatter density and the tissue fractal dimension for various tissue types and pathologies. These data represent a novel wide-field quantitative approach to mapping microscopic structural biomarkers that cannot be obtained with standard diffuse imaging. Implications for the use of this approach to assess surgical margins will be discussed.

  12. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei


    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage.

  13. The Pocketscope: a spatial light modulator based epi-fluorescence microscope for optogenetics

    Linnenberger, Anna; Peterka, Darcy S.; Quirin, Sean; Yuste, Rafael


    Microscopy incorporating spatial light modulators (SLMs) enables three dimensional (3D) excitation and monitoring of the activity of neuronal ensembles, enabling studies of neuronal circuit activity both in vitro and in vivo. In this paper we present a portable (22 cm x 42.5 cm x 30 cm), SLM-based epi-fluorescence upright microscope ("Pocketscope") that enables 3D calcium imaging and photoactivation of neurons in brain slices. Here we describe the implementation of the instrument; quantify the volume over which neural activity can be excited; and demonstrate the use of the system for mapping neural circuits in brain slices.

  14. Rapid imaging of mammalian brain slices with a compact light sheet fluorescent microscope

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan


    Light sheet fluorescent microscopy is able to provide high acquisition speed and high contrast images, as well as the low photo-bleaching and photo-damage brought to the sample. Here we describe a compact setup design optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We report this prototype instrument is capable of rapid imaging wide area of the dendritic or axonal arbor of a dye-filled neuron in hippocampal slice. We also show several applications of this compact light sheet fluorescent microscope, to demonstrate that our approach offers a powerful functionality to the neuroscience community that is not achievable with traditional imaging methods.

  15. HPV involvement in OSCC: Correlation of PCR results with light microscopic features

    Rajbir Kaur Khangura


    Full Text Available Objectives: The study evaluated pathognomic histopathological features with the help of light microscopy for detecting the integration of human papillomavirus (HPV (type 16 and 18 in oral squamous cell carcinoma (OSCC. Materials and Methods: Forty-five histopathologically diagnosed cases of OSCC were evaluated for the presence of E6/E7 protein of HPV (16 + 18 with the help of nested multiplex polymerase chain reaction. Both HPV-positive and -negative cases were evaluated for four histological features: Koilocytes, dyskeratosis, invasion, and alteration of collagen. Results: Fischer′s exact test showed significant difference (P < 0.01% for the presence of koilocytes and dyskeratosis, whereas no difference was observed for invasion and alteration in collagen between HPV-positive and -negative OSCC. Conclusion: The presence of koilocytes and dyskeratosis at light microscopic level can be used as a marker for the presence of HPV (type 16 and 18 in OSCC.

  16. Hyperspectral microscopic analysis of normal, benign and carcinoma microarray tissue sections

    Maggioni, Mauro; Davis, Gustave L.; Warner, Frederick J.; Geshwind, Frank B.; Coppi, Andreas C.; DeVerse, Richard A.; Coifman, Ronald R.


    We apply a unique micro-optoelectromechanical tuned light source and new algorithms to the hyper-spectral microscopic analysis of human colon biopsies. The tuned light prototype (Plain Sight Systems Inc.) transmits any combination of light frequencies, range 440nm 700nm, trans-illuminating H and E stained tissue sections of normal (N), benign adenoma (B) and malignant carcinoma (M) colon biopsies, through a Nikon Biophot microscope. Hyper-spectral photomicrographs, randomly collected 400X magnication, are obtained with a CCD camera (Sensovation) from 59 different patient biopsies (20 N, 19 B, 20 M) mounted as a microarray on a single glass slide. The spectra of each pixel are normalized and analyzed to discriminate among tissue features: gland nuclei, gland cytoplasm and lamina propria/lumens. Spectral features permit the automatic extraction of 3298 nuclei with classification as N, B or M. When nuclei are extracted from each of the 59 biopsies the average classification among N, B and M nuclei is 97.1%; classification of the biopsies, based on the average nuclei classification, is 100%. However, when the nuclei are extracted from a subset of biopsies, and the prediction is made on nuclei in the remaining biopsies, there is a marked decrement in performance to 60% across the 3 classes. Similarly the biopsy classification drops to 54%. In spite of these classification differences, which we believe are due to instrument and biopsy normalization issues, hyper-spectral analysis has the potential to achieve diagnostic efficiency needed for objective microscopic diagnosis.

  17. UV-visible microscope spectrophotometric polarization and dichroism with increased discrimination power in forensic analysis

    Purcell, Dale Kevin

    Microanalysis of transfer (Trace) evidence is the application of a microscope and microscopical techniques for the collection, observation, documentation, examination, identification, and discrimination of micrometer sized particles or domains. Microscope spectrophotometry is the union of microscopy and spectroscopy for microanalysis. Analytical microspectroscopy is the science of studying the emission, reflection, transmission, and absorption of electromagnetic radiation to determine the structure or chemical composition of microscopic-size materials. Microscope spectrophotometry instrument designs have evolved from monochromatic illumination which transmitted through the microscope and sample and then is detected by a photometer detector (photomultiplier tube) to systems in which broad-band (white light) illumination falls incident upon a sample followed by a non-scanning grating spectrometer equipped with a solid-state multi-element detector. Most of these small modern spectrometers are configured with either silicon based charged-couple device detectors (200-950 nm) or InGaAs based diode array detectors (850-2300 nm) with computerized data acquisition and signal processing being common. A focus of this research was to evaluate the performance characteristics of various modern forensic (UV-Vis) microscope photometer systems as well as review early model instrumental designs. An important focus of this research was to efficiently measure ultraviolet-visible spectra of microscopically small specimens for classification, differentiation, and possibly individualization. The first stage of the project consisted of the preparation of microscope slides containing neutral density filter reference materials, molecular fluorescence reference materials, and dichroic reference materials. Upon completion of these standard slide preparations analysis began with measurements in order to evaluate figures of merit for comparison of the instruments investigated. The figures of

  18. Light and electron microscopic examination of human subungual tissue. Glomus and lamellated bodies.

    Sargon, Mustafa F; Celik, H Hamdi; Denk, C Cem; Dagdeviren, Attila; Leblebicioglu, Gursel


    There is only limited data related to the subungual glomus body. We therefore studied the structure of this organ, aiming to obtain further evidence. Additionally, we encountered undefined receptor like structures in close association with these glomus cells, named them as lamellated bodies and examined both of the structures at light and electron microscopic levels. This study was carried out at the Faculty of Medicine, Hacettepe University, Ankara, Turkey, during the time period May 2001 to March 2002. In this study, the subungual tissues of 4 patients were examined. Within subungual tissue, 2 groups of morphologically significant structures were determined by light microscopy. The first structure was described as glomus body. It was characterized as an encapsulated structure, rich in rounded clear cells filling its central compartment. The latter structure having a lamellated appearance was described as lamellated body. In the electron microscopic examination, lamellated bodies were characterized by central filament rich large cells and surrounding cytoplasmic processes of ensheathing cells, some of which were vacuolated. Glomus bodies were surrounded by a capsule and centrally located numerous rounded cells which reflected the structural features of an active cell. The lamellated bodies are very unusual structures and they are not found in any other part of the body. The structural organization of the ensheathing cells in the lamellated bodies greatly resembles many skin associated receptors. Therefore, we planned future studies by using immunohistochemistry, to reveal nervous elements for structural contribution.

  19. Ultraviolet Laser SQUID Microscope for GaN Blue Light Emitting Diode Testing

    Daibo, M [Department of Electrical and Electronic Engineering, Faculty of Engineering, Iwate University, Morioka 020-8551 (Japan); Kamiwano, D [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Kurosawa, T [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Yoshizawa, M [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Tayama, N [Department of Electrical and Electronic Engineering, Faculty of Engineering, Iwate University, Morioka 020-8551 (Japan)


    We carried out non-contacting measurements of photocurrent distributions in GaN blue light emitting diode (LED) chips using our newly developed ultraviolet (UV) laser SQUID microscope. The UV light generates the photocurrent, and then the photocurrent induces small magnetic fields around the chip. An off-axis arranged HTS-SQUID magnetometer is employed to detect a vector magnetic field whose typical amplitude is several hundred femto-tesla. Generally, it is difficult to obtain Ohmic contacts for p-type GaN because of the low hole concentration in the p-type epitaxial layer and the lack of any available metal with a higher work function compared with the p-type GaN. Therefore, a traditional probecontacted electrical test is difficult to conduct for wide band gap semiconductors without an adequately annealed electrode. Using the UV-laser SQUID microscope, the photocurrent can be measured without any electrical contact. We show the photocurrent vector map which was reconstructed from measured magnetic fields data. We also demonstrate how we found the position of a defect of the electrical short circuits in the LED chip.

  20. Real-time whole slide mosaicing for non-automated microscopes in histopathology analysis

    Alessandro Gherardi


    Full Text Available Context: Mosaics of Whole Slides (WS are a valuable resource for pathologists to have the whole sample available at high resolution. The WS mosaic provides pathologists with an overview of the whole sample at a glance, helping them to make a reliable diagnosis. Despite recent solutions exist for creating WS mosaics based, for instance, on automated microscopes with motorized stages or WS scanner, most of the histopathology analysis are still performed in laboratories endowed with standard manual stage microscopes. Nowadays, there are lots of dedicated devices and hardware to achieve WS automatically and in batch, but only few of them are conceived to work tightly connected with a microscope and none of them is capable of working in real-time with common light microscopes. However, there is a need of having low-cost yet effective mosaicing applications even in small laboratories to improve routine histopathological analyses or to perform remote diagnoses. Aims: The purpose of this work is to study and develop a real-time mosaicing algorithm working even using non-automated microscopes, to enable pathologists to achieve WS while moving the holder manually, without exploiting any dedicated device. This choice enables pathologists to build WS in real-time, while browsing the sample as they are accustomed to, helping them to identify, locate, and digitally annotate lesions fast. Materials and Methods: Our method exploits fast feature tracker and frame to frame registration that we implemented on common graphics processing unit cards. The system work with common light microscopes endowed with a digital camera and connected to a commodity personal computer. Result and Conclusion: The system has been tested on several histological samples to test the effectiveness of the algorithm to work with mosaicing having different appearances as far as brightness, contrast, texture, and detail levels are concerned, attaining sub-pixel registration accuracy at real

  1. A light sheet confocal microscope for image cytometry with a variable linear slit detector

    Hutcheson, Joshua A.; Khan, Foysal Z.; Powless, Amy J.; Benson, Devin; Hunter, Courtney; Fritsch, Ingrid; Muldoon, Timothy J.


    We present a light sheet confocal microscope (LSCM) capable of high-resolution imaging of cell suspensions in a microfluidic environment. In lieu of conventional pressure-driven flow or mechanical translation of the samples, we have employed a novel method of fluid transport, redox-magnetohydrodynamics (redox-MHD). This method achieves fluid motion by inducing a small current into the suspension in the presence of a magnetic field via electrodes patterned onto a silicon chip. This on-chip transportation requires no moving parts, and is coupled to the remainder of the imaging system. The microscopy system comprises a 450 nm diode 20 mW laser coupled to a single mode fiber and a cylindrical lens that converges the light sheet into the back aperture of a 10x, 0.3 NA objective lens in an epi-illumination configuration. The emission pathway contains a 150 mm tube lens that focuses the light onto the linear sensor at the conjugate image plane. The linear sensor (ELiiXA+ 8k/4k) has three lateral binning modes which enables variable detection aperture widths between 5, 10, or 20 μm, which can be used to vary axial resolution. We have demonstrated redox-MHD-enabled light sheet microscopy in suspension of fluorescent polystyrene beads. This approach has potential as a high-throughput image cytometer with myriad cellular diagnostic applications.

  2. Visualization and Analysis of 3D Microscopic Images

    Long, Fuhui; Zhou, Jianlong; Peng, Hanchuan


    In a wide range of biological studies, it is highly desirable to visualize and analyze three-dimensional (3D) microscopic images. In this primer, we first introduce several major methods for visualizing typical 3D images and related multi-scale, multi-time-point, multi-color data sets. Then, we discuss three key categories of image analysis tasks, namely segmentation, registration, and annotation. We demonstrate how to pipeline these visualization and analysis modules using examples of profiling the single-cell gene-expression of C. elegans and constructing a map of stereotyped neurite tracts in a fruit fly brain. PMID:22719236

  3. Microscopic description of octupole shape-phase transitions in light actinides and rare-earth nuclei

    Nomura, K; Niksic, T; Lu, Bing-Nan


    A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the $sdf$ interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of $\\beta_{2}$-$\\beta_{3}$ energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition be...

  4. Nerve sheath myxoma (neurothekeoma) of the skin: light microscopic and immunohistochemical reappraisal of the cellular variant.

    Argenyi, Z B; LeBoit, P E; Santa Cruz, D; Swanson, P E; Kutzner, H


    Nerve sheath myxoma (NSM) is a rare cutaneous neoplasm, the histogenesis of which is controversial. Fifteen cases of NSM were studied by routine light microscopy and with a broad panel of immunohistochemical stains. NSM were classified into three groups based on cellularity, mucin content and growth pattern. 1) The hypocellular (myxoid) type (5/15 cases) showed frequent encapsulation or sharp circumscription. Immunohistochemically this type was strongly positive for S-100 protein and collagen type IV and variably positive for epithelial membrane antigen. 2) The cellular type (4/15 cases) had scant mucin and ill-defined nodular or infiltrating growth. Immunostaining showed positive reaction for neuron specific enolase (2/4), Leu-7 (1/4) and smooth muscle specific actin (2/4), and was negative with the other antibodies. 3) The "mixed type" (6/15 cases) had variable cellularity and mucin content with poor demarcation and variable immunolabeling. We conclude that: 1) there are major light microscopic and immunohistochemical differences between the classical hypocellular (myxoid) and the cellular forms of NSM (neurothekeoma); 2) while the immunohistochemical results support the presence of nerve sheath differentiation in the classical forms of NSM, and to some extent in the mixed forms, there is an absence of convincing evidence of neural differentiation in the cellular variant by either light microscopy or immunohistochemistry; 3) the variable immunophenotypes suggest that differentiation other than neural may take place in CNT.

  5. Stray light analysis and control

    Fest, Eric


    Stray light is defined as unwanted light in an optical system, a familiar concept for anyone who has taken a photograph with the sun in or near their camera's field of view. This book addresses stray light terminology, radiometry, and the physics of stray light mechanisms, such as surface roughness scatter and ghost reflections. The most-efficient ways of using stray light analysis software packages are included. The book also demonstrates how the basic principles are applied in the design, fabrication, and testing phases of optical system development.

  6. A depth estimation method based on geometric transformation for stereo light microscope.

    Fan, Shengli; Yu, Mei; Wang, Yigang; Jiang, Gangyi


    Stereo light microscopes (SLM) with narrow vision and shallow depth of field are widely used in micro-domain research. In this paper, we propose a depth estimation method of micro objects based on geometric transformation. By analyzing the optical imaging geometry, the definition of geometric transformation distance is given and the depth-distance relation express is obtained. The parameters of geometric transformation and express are calibrated with calibration board images captured in aid of precise motorized stage. The depth of micro object can be estimated by calculating the geometric transformation distance. The proposed depth-distance relation express is verified using an experiment in which the depth map of an Olanzapine tablet surface is reconstructed.

  7. Scanning tunneling microscope light emission spectra of polycrystalline GeSbTe and SbTe

    Uehara, Y.; Kuwahara, M.; Katano, S.; Ushioda, S.


    We have observed scanning tunneling microscope light emission (STM-LE) spectra of Ge 2Sb 2Te 5 and Sb 2Te 3. Although these chalcogenide alloys exhibit band gaps less than 0.5 eV, the STM-LE was observed with a narrow spectral width at a photon energy of 1.5 eV for both materials. By analyzing its bias voltage, polarity, and temperature dependencies combined with recently reported theoretical electronic structures, we concluded that the STM-LE is excited by electronic transitions taking place in the local electronic structure having a direct gap-like shape with a band gap of 1.5 eV, commonly found in the electronic structures of both materials.

  8. An Aberration Corrected Photoemission Electron Microscope at the Advanced Light Source

    Feng, J.; MacDowell, A. A.; Duarte, R.; Doran, A.; Forest, E.; Kelez, N.; Marcus, M.; Munson, D.; Padmore, H.; Petermann, K.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stöhr, J.; Wan, W.; Wei, D. H.; Wu, Y.


    Design of a new aberration corrected Photoemission electron microscope PEEM3 at the Advanced Light Source is outlined. PEEM3 will be installed on an elliptically polarized undulator beamline and will be used for the study of complex materials at high spatial and spectral resolution. The critical components of PEEM3 are the electron mirror aberration corrector and aberration-free magnetic beam separator. The models to calculate the optical properties of the electron mirror are discussed. The goal of the PEEM3 project is to achieve the highest possible transmission of the system at resolutions comparable to our present PEEM2 system (50 nm) and to enable significantly higher resolution, albeit at the sacrifice of intensity. We have left open the possibility to add an energy filter at a later date, if it becomes necessary driven by scientific need to improve the resolution further.

  9. Light and electron microscopic study of the medial collateral ligament epiligament tissue in human knees.

    Georgiev, Georgi P; Iliev, Alexandar; Kotov, Georgi; Kinov, Plamen; Slavchev, Svetoslav; Landzhov, Boycho


    To examine the normal morphology of the epiligament tissue of the knee medial collateral ligament (MCL) in humans. Several samples of the mid-substance of the MCL of the knee joint from 7 fresh human cadavers (3 females and 4 males) were taken. Examination of the epiligament tissue was conducted by light microscopy and photomicrography on semi-thin sections of formalin fixed paraffin-embedded blocks that were routinely stained with haematoxylin and eosin, Mallory stain and Van Gieson's stain. Electron microscopy of the epiligament tissue was performed on ultra-thin sections incubated in 1% osmium tetroxide and contrasted with 2.5% uranyl acetate, lead nitrate, and sodium citrate. The current light microscopic study demonstrated that the epiligament of the MCL consisted of fibroblasts, fibrocytes, adipocytes, neuro-vascular bundles and numerous multidirectional collagen fibers. In contrast, the ligament body was poorly vascularised, composed of hypo-cellular fascicles which were formed of longitudinal groups of collagen fibers. Moreover, most of the vessels of the epiligament-ligament complex were situated in the epiligament tissue. The electron microscopic study revealed fibroblasts with various shapes in the epiligament substance. All of them had the ultrastructural characteristics of active cells with large nuclei, well developed rough endoplasmic reticulum, multiple ribosomes, poorly developed Golgi apparatus, elliptical mitochondria and oval lysosomes. The electron microscopy also confirmed the presence of adipocytes, mast cells, myelinated and unmyelinated nerve fibers and chaotically oriented collagen fibers. Significant differences exist between the normal structure of the ligament and the epiligament whose morphology and function is to be studied further.

  10. Morphologic alterations in rat brain following systemic and intraventricular methotrexate injection: light and electron microscopic studies.

    Gregorios, J B; Gregorios, A B; Mora, J; Marcillo, A; Fojaco, R M; Green, B


    To determine the morphological substrate of acute methotrexate (MTX) encephalopathy, light and electron microscopic studies were performed on rat brains after short-term intraperitoneal (IP) and intraventricular (IV) injections of MTX. In both models, Alzheimer type II astrocytosis was the initial and major pathologic alteration seen by light microscopy. The neurons, oligodendrocytes, myelin and endothelial cells were relatively spared. Ultrastructural studies showed pleomorphism and condensation of mitochondria, membrane-bound vacuoles, prominent stacks of sparsely granular, rough endoplasmic reticulum and progressive hydropic swelling of astrocytic perikarya and their processes. The astroglial alterations were reversible after cessation of the drug but persisted for a longer time with repeated IP administration. Gastrointestinal complications and overall mortality were also greater with higher doses and increasing frequency of IP MTX injection. White matter necrosis was noted only after IV injection of high-dose MTX. The neuropathologic changes of MTX leukoencephalopathy can be replicated in an animal model by IV injection of the drug. The reversibility of the changes that were seen following IP administration correlates with the transient neurologic deficits observed in some patients after high-dose systemic MTX therapy. The initially selective astroglial effect suggests that astrocytes might be a target for MTX toxicity, although other central nervous system components may also be adversely affected by the drug.

  11. Automated, highly reproducible, wide-field, light-based cortical mapping method using a commercial stereo microscope and its applications

    Jiang, Su; Liu, Ya-Feng; Wang, Xiao-Min; Liu, Ke-Fei; Zhang, Ding-Hong; Li, Yi-Ding; Yu, Ai-Ping; Zhang, Xiao-Hui; Zhang, Jia-Yi; Xu, Jian-Guang; Gu, Yu-Dong; Xu, Wen-Dong; Zeng, Shao-Qun


    We introduce a more flexible optogenetics-based mapping system attached on a stereo microscope, which offers automatic light stimulation to individual regions of interest in the cortex that expresses light-activated channelrhodopsin-2 in vivo. Combining simultaneous recording of electromyography from specific forelimb muscles, we demonstrate that this system offers much better efficiency and precision in mapping distinct domains for controlling limb muscles in the mouse motor cortex. Furthermore, the compact and modular design of the system also yields a simple and flexible implementation to different commercial stereo microscopes, and thus could be widely used among laboratories. PMID:27699114

  12. Classical microscopic theory of dispersion, emission and absorption of light in dielectrics. Classical microscopic theory of dielectric susceptibility

    Carati, Andrea; Galgani, Luigi


    This paper is a continuation of a recent one in which, apparently for the first time, the existence of polaritons in ionic crystals was proven in a microscopic electrodynamic theory. This was obtained through an explicit computation of the dispersion curves. Here the main further contribution consists in studying electric susceptibility, from which the spectrum can be inferred. We show how susceptibility is obtained by the Green-Kubo methods of Hamiltonian statistical mechanics, and give for it a concrete expression in terms of time-correlation functions. As in the previous paper, here too we work in a completely classical framework, in which the electrodynamic forces acting on the charges are all taken into account, both the retarded forces and the radiation reaction ones. So, in order to apply the methods of statistical mechanics, the system has to be previously reduced to a Hamiltonian one. This is made possible in virtue of two global properties of classical electrodynamics, namely, the Wheeler-Feynman identity and the Ewald resummation properties, the proofs of which were already given for ordered system. The second contribution consists in formulating the theory in a completely general way, so that in principle it applies also to disordered systems such as glasses, or liquids or gases, provided the two general properties mentioned above continue to hold. A first step in this direction is made here by providing a completely general proof of the Wheeler-Feynman identity, which is shown to be the counterpart of a general causality property of classical electrodynamics. Finally it is shown how a line spectrum can appear at all in classical systems, as a counterpart of suitable stability properties of the motions, with a broadening due to a coexistence of chaoticity. The relevance of some recent results of the theory of dynamical systems in this connection is also pointed out.

  13. Analysis of a copper sample for the CLIC ACS study in a field emission scanning microscope

    Muranaka, Tomoko; Leifer, Klaus; Ziemann, Volker; Navitski, Aliaksandr; Müller, Günter


    We report measurements on a diamond turned Copper sample of material intended for the CLIC accelerating structures. The first part of the measurements was performed at Bergische Universität Wuppertal using a field emission scanning microscope to localize and characterize strong emission sites. In a second part the sample was investigated in an optical microscope, a white-light profilometer and scanning electron microscope in the microstructure laboratory in Uppsala to attempt to identify the features responsible for the field emission.

  14. In situ light spectroscopy in the environmental transmission electron microscope (ETEM)

    Cavalca, Filippo; Langhammer, C.; Pedersen, Thomas


    and can be employed with a variety of other methods that require light input and/or output. The two fibers can be used as parallel light inlets to activate a photoinduced reaction, e.g. photoinduced reduction of particles or nanoparticle photodeposition [7]. Alternatively, both fibers can be used...... the LSPR signal coming from the whole specimen, providing information complementary to the TEM analysis. During any ETEM experiment the electron beam effect on the sample is a difficult issue to address and rule out. In addition, if a reaction has to be followed in situ in the ETEM, the information...... electrical contacts, a fixed miniaturized optical bench for light handling and a heating element (Fig. 1) has been designed. A system of pre-aligned mirrors and a MEMS heater are implemented in the holder. The system is primarily designed for use in combination with LSPR spectroscopy, but it is flexible...

  15. Light and electron microscope observations on Nephroselmis gaoae sp. nov. (Prasinophyceae)

    Tseng, C. K.; Jiao-Fen, Chen; Zhe-Fu, Zhang; Hui-Qi, Zhang


    Nephroselmis gaoae sp. nov. is described on the basis of light and electron microscope observations of cultured material originally collected and isolated from seawater of Jiaozhou Bay, Qingdao, China. The periplasts on the cell body and flagella are covered by five types of scales, two types on the flagella and three on the body. Among these, the morphology and the number of spines of large stellate body scales differ remarkably from those of previously described species of Nephroselmis. Apart from these, the unusual fine structure of the eyespot (stigma) is very characteristic. As in the other species of Nephroselmis, the eyespot lies immediately under the two-membraned chloroplast envelope; unlike the others, however, it is not composed of a number of osmiophilic globules, but consists of about 14 curved rod-shaped osmiophilic bodies arranged loosely and randomly. This feature distinguishes the present new species not only from the other species of Nephroselmis but also from the other motile algal species, the eyespots structure of which had been previously described.

  16. Quantitative characterization of the carbon/carbon composites components based on video of polarized light microscope.

    Li, Yixian; Qi, Lehua; Song, Yongshan; Chao, Xujiang


    The components of carbon/carbon (C/C) composites have significant influence on the thermal and mechanical properties, so a quantitative characterization of component is necessary to study the microstructure of C/C composites, and further to improve the macroscopic properties of C/C composites. Considering the extinction crosses of the pyrocarbon matrix have significant moving features, the polarized light microscope (PLM) video is used to characterize C/C composites quantitatively because it contains sufficiently dynamic and structure information. Then the optical flow method is introduced to compute the optical flow field between the adjacent frames, and segment the components of C/C composites from PLM image by image processing. Meanwhile the matrix with different textures is re-segmented by the length difference of motion vectors, and then the component fraction of each component and extinction angle of pyrocarbon matrix are calculated directly. Finally, the C/C composites are successfully characterized from three aspects of carbon fiber, pyrocarbon, and pores by a series of image processing operators based on PLM video, and the errors of component fractions are less than 15%.

  17. Microscopic study of stress effects around micro-crack tips using a non-contact stress-induced light scattering method

    Sakata, Y.; Terasaki, N.; Nonaka, K.


    Fine-polishing techniques may cause micro-cracks under glass substrate surfaces. According to highly requirement from production field, a thermal stress-induced light scattering method (T-SILSM) was successfully developed for a non-contact inspection to detect the micro-cracks through changing in the intensity of light scattering accompanied by applying thermal stress at the responding position of the micro-cracks. In this study, in order to investigate that the origin of the measuring principle in microscopic order, a newly developed microscopic T-SILSM system with a rotation stage and a numerical simulation analysis were used to investigate the following; (1) the scattering points and surface in the micro-crack, (2) the stress concentration points in the micro-crack, and (3) the relationship between these information and the point in which intensity of the light scattering changes in the micro-crack through T-SILSM. Light scattering was observed at the responding position of the micro-crack with selectivity in the direction of laser irradiation even in the microscopic order. In addition, the position of the changes in the light scattering in was at both tips in the micro-crack, and it was consistent with the stress concentration point in the micro-crack. Therefore, it can be concluded that the intentional change in light scattering though T-SILSM is originated from light scattering at micro-crack and also from stress concentration and consecutive change in refractive index at both tips in micro-crack.

  18. Human vaginal epithelium and the epithelial lining of a cyst model constructed from it: a comparative light microscopic and electron microscopic study.

    Thompson, I O; van Wyk, C W; Darling, M R


    The light microscopic features and keratin filament distribution of human vaginal epithelium resemble those of buccal mucosa. We used vaginal epithelium to establish a human cyst model in immunodeficient mice. To strengthen the view that this experimental cyst is a suitable model to study mucosal diseases, we compared specific light microscopic and ultra-structural features of vaginal epithelium and the epithelial lining of the cyst. Nineteen cyst walls and 6 specimens of vaginal mucosa, which had been used to establish the cysts, were examined. We counted the number of cell layers of 17 cyst linings and the 6 vaginal specimens. Surface keratinisation was evaluated on sections stained with the Picro-Mallory method. To demonstrate intercellular lamellae and membrane coating granules 2 cyst linings were examined ultra-structurally. The epithelium lining of the cyst wall was thinner than that of vaginal mucosa but the surface keratinisation and ultra-structural features of the intercellular lamellae and membrane coating granules were similar. We concluded that vaginal mucosa is a useful substitute for oral mucosa in the cyst model.

  19. Automated pollen identification using microscopic imaging and texture analysis.

    Marcos, J Víctor; Nava, Rodrigo; Cristóbal, Gabriel; Redondo, Rafael; Escalante-Ramírez, Boris; Bueno, Gloria; Déniz, Óscar; González-Porto, Amelia; Pardo, Cristina; Chung, François; Rodríguez, Tomás


    Pollen identification is required in different scenarios such as prevention of allergic reactions, climate analysis or apiculture. However, it is a time-consuming task since experts are required to recognize each pollen grain through the microscope. In this study, we performed an exhaustive assessment on the utility of texture analysis for automated characterisation of pollen samples. A database composed of 1800 brightfield microscopy images of pollen grains from 15 different taxa was used for this purpose. A pattern recognition-based methodology was adopted to perform pollen classification. Four different methods were evaluated for texture feature extraction from the pollen image: Haralick's gray-level co-occurrence matrices (GLCM), log-Gabor filters (LGF), local binary patterns (LBP) and discrete Tchebichef moments (DTM). Fisher's discriminant analysis and k-nearest neighbour were subsequently applied to perform dimensionality reduction and multivariate classification, respectively. Our results reveal that LGF and DTM, which are based on the spectral properties of the image, outperformed GLCM and LBP in the proposed classification problem. Furthermore, we found that the combination of all the texture features resulted in the highest performance, yielding an accuracy of 95%. Therefore, thorough texture characterisation could be considered in further implementations of automatic pollen recognition systems based on image processing techniques.

  20. Microscopic analysis of an opacified OFT CRYL® hydrophilic acrylic intraocular lens

    Bruna Vieira Ventura

    Full Text Available ABSTRACT A 51-year-old patient underwent posterior vitrectomy with perfluoropropane gas injection, phacoemulsification, and implantation of an Oft Cryl® hydrophilic acrylic intraocular lens (IOL because of traumatic retinal detachment and cataract in the right eye. On the first postoperative day, gas was filling the anterior chamber because of patient's non-compliance in terms of head positioning, and was reabsorbed within one week. Eight months later, the patient returned complaining of a significant decrease in vision. IOL opacification was noticed by slit-lamp examination. The lens was explanted to undergo gross and light microscopic analysis. The lens was also stained with the alizarin red method for calcium identification. Light microscopic analysis confirmed the presence of granular deposits, densely distributed in an overall circular pattern in the central part of the lens optic. The granules stained positive for calcium. This is the first case of the opacification of this type of hydrophilic lens. Surgeons should be aware of this potential postoperative complication, and the use of hydrophilic IOLs should be avoided in procedures involving intracameral gas because of the risk of IOL opacification.

  1. Microscopic analysis of an opacified OFT CRYL® hydrophilic acrylic intraocular lens.

    Ventura, Bruna Vieira; MacLean, Kyle Douglas; Lira, Wagner; Oliveira, Daniele Mendes de; Ventura, Camila Vieira; Werner, Liliana


    A 51-year-old patient underwent posterior vitrectomy with perfluoropropane gas injection, phacoemulsification, and implantation of an Oft Cryl® hydrophilic acrylic intraocular lens (IOL) because of traumatic retinal detachment and cataract in the right eye. On the first postoperative day, gas was filling the anterior chamber because of patient's non-compliance in terms of head positioning, and was reabsorbed within one week. Eight months later, the patient returned complaining of a significant decrease in vision. IOL opacification was noticed by slit-lamp examination. The lens was explanted to undergo gross and light microscopic analysis. The lens was also stained with the alizarin red method for calcium identification. Light microscopic analysis confirmed the presence of granular deposits, densely distributed in an overall circular pattern in the central part of the lens optic. The granules stained positive for calcium. This is the first case of the opacification of this type of hydrophilic lens. Surgeons should be aware of this potential postoperative complication, and the use of hydrophilic IOLs should be avoided in procedures involving intracameral gas because of the risk of IOL opacification.

  2. [The evaluation of acrylic resins for the study of nondecalcified human teeth with the light and electronic microscopes].

    Botti, F; Martignoni, M; Scala, C; Cocchia, D


    Resin embedding of human teeth for light and transmission electron microscopic studies becomes difficult without previous decalcification. The limited and slow infiltration of the resin into hard tissues may cause problems during preparation and observation of the samples. Moreover the type of resin that is used may affect the morphologic preservation of both tissues and cellular elements. Recently there has been an increasing number of studies on the application of acrylic resins in light and electron microscopy, in order to overcome problems encountered with the use of epoxy resins still utilized in morphologic studies. We compared different acrylic resins (Technovit 7200 VLC, LR White, LR Gold, Bioacryl) in order to understand which one was more suitable for undecalcified human dental tissues under light and transmission electron microscope. Evaluation of such resins was performed using the following criteria: ease of cutting with ultramicrotome, soft and hard tissues infiltration, uptake of tissue stains for both light and electron microscopy, morphologic preservation and stability under electron beam. This study, carried out on the pulp area comprising predentin and dentin, showed excellent quality of Bioacryl and LR Gold, the two resins presenting, by far, the best results among all the different types tested. The optimal morphologic preservation obtained with such resins is indicated for light and electron microscopic studies, allowing their application in different fields of dental research.

  3. Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning laser MACROscope/microscope

    Ribes, A.C.; Damaskinos, S.; Tiedje, H.F.; Dixon, A.E.; Brodie, D.E. [Guelph-Waterloo Program for Graduate Work in Physics, Waterloo Campus, University of Waterloo, Waterloo, ON (Canada)


    This paper describes a confocal scanning beam MACROscope/Microscope which can image specimens up to 7x7 cm in size using reflected light, photoluminescence and optical beam induced current. The MACROscope provides a 10{mu}m spot size at various wavelengths and generates 512x512 pixel images in less than 5 s. When used in combination with a conventional confocal scanning laser microscope sub-micron spot sizes become possible providing resolutions as high as 0.25{mu}m laterally and 0.5{mu}m axially in reflected light. The main function of this imaging system is to spatially resolve any defects within solar cells and similar devices. Several reflected-light, photoluminescence and OBIC images of CdS/CuInSe{sub 2} and CdZnS/CuInSe{sub 2} thin film solar cells are presented

  4. Automated morphological analysis approach for classifying colorectal microscopic images

    Marghani, Khaled A.; Dlay, Satnam S.; Sharif, Bayan S.; Sims, Andrew J.


    Automated medical image diagnosis using quantitative measurements is extremely helpful for cancer prognosis to reach a high degree of accuracy and thus make reliable decisions. In this paper, six morphological features based on texture analysis were studied in order to categorize normal and cancer colon mucosa. They were derived after a series of pre-processing steps to generate a set of different shape measurements. Based on the shape and the size, six features known as Euler Number, Equivalent Diamater, Solidity, Extent, Elongation, and Shape Factor AR were extracted. Mathematical morphology is used firstly to remove background noise from segmented images and then to obtain different morphological measures to describe shape, size, and texture of colon glands. The automated system proposed is tested to classifying 102 microscopic samples of colorectal tissues, which consist of 44 normal color mucosa and 58 cancerous. The results were first statistically evaluated, using one-way ANOVA method in order to examine the significance of each feature extracted. Then significant features are selected in order to classify the dataset into two categories. Finally, using two discrimination methods; linear method and k-means clustering, important classification factors were estimated. In brief, this study demonstrates that abnormalities in low-level power tissue morphology can be distinguished using quantitative image analysis. This investigation shows the potential of an automated vision system in histopathology. Furthermore, it has the advantage of being objective, and more importantly a valuable diagnostic decision support tool.

  5. Microscopic evaluation and physicochemical analysis of Origanum majorana Linn leaves

    BP Pimple


    Full Text Available Objective: To study the microscopic evaluation and physicochemical analysis of Origanum majorana Linn leaves. Methods: Fresh and dried powdered leaf samples was studies for its morphology, microscopy, organoleptic characters, fluorescence analysis and various other WHO recommended methods for standardisation. Results: Leaves are simple, petiolated, ovate to oblong-ovate, (0.5-1.5 cm long, (0.2-0.8 cm wide, with obtuse apex, entire margin, reticulate veination and symmetrical but tapering base. The microscopy revealed the dorsiventral nature of the leaf. Both the surfaces show presence of numerous covering trichomes, diacytic stomata and thin walled, wavy epidermal cells. The covering trichomes are multicellular, uniseriate, thin walled and pointed. In the midrib region, the epidermis is followed by collenchyma and vascular bundle (xylem and phloem. Whereas; the mesophyll exhibited only palisade cells and spongy parenchyma. Conclusions: It can be concluded that the pharmacognostic profile can serve as tool for developing standards for identification, quality and purity of Origanum majorana Linn leaves.

  6. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    Hansen, Gert Helge; Hösli, E; Belhage, B


    . At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling...... of GABAA-receptors was observed in the plasma membrane of both the cell bodies and processes in dissociated primary cultures of cerebellar granule cells using an indirect preembedding immunogold staining technique which in contrast to the classical PAP technique allows quantitative estimations...

  7. Light and electron microscopic study on the pineal complex of the coelacanth, Latimeria chalumnae Smith.

    Hafeez, M A; Merhige, M E


    The pineal complex of the coelacanth, Latimeria chalumnae was studied light and electron microscopically. It consists of two vesicles representing parapineal and pineal organs. Both occur intracranially and openly communicate with each other and the brain ventricle. The entire complex shows a striking photoreceptor morphology with sensory, ependymal and nerve cells. The last cell type is more abundant in the parapineal vesicle than in the pineal organ. The following ultrastructural details of the parapineal are noteworthy: 1. The sensory cells possess large inner and outer segments protruding freely in the vesicular cavity. The outer segments measure 8-10 mum in length and consist of as many as 275 lamellae. The basal processes of these cells terminate in neuropil-like regions. Occasionally, dense granules (500-1000 A) of uncertain identity occur in the perinuclear and inner segment cytoplasm of the cells. 2. The supporting cells are of the ependymal type. Their cytoplasm contains a filamentous feltwork and pinocytotic vesicles, but lacks secretory granules. Cytosomes are particularly abundant in cell processes in the neuropil-like zones. The basal end-feet of these cells isolate the receptor and nerve cells from the perivascular space. 3. In the neuropil-like regions, terminals of sensory cells make synaptic contacts with neuronal dendrites. Synaptic ribbon-like profiles in the terminals characterize the contact zones. Only unmyelinated nerve fibers could be observed in the small area of the tissue examined. The results are discussed with regard to photoreceptive and secretory functions of the pineal complex and its evolution in lower vertebrates.

  8. Histological changes in kidneys of adult rats treated with Monosodium glutamate: A light microscopic study

    Singh BR, Ujwal Gajbe, Anil Kumar Reddy, Vandana Kumbhare


    Full Text Available Introduction: Monosodium Glutamate (MSG, which is chemically known as AJI-NO-MOTO also familiar as MSG in routine life. MSG is always considered to be a controversial food additive used in the world. It is a natural excitatory neurotransmitter, helps in transmitting the fast synaptic signals in one third of CNS. Liver and kidney play a crucial role in metabolism as well as elimination of MSG from the body. Present study is to detect structural changes in adult rat kidney tissue treated with MSG; observations are done with a light microscope. Materials & Methods: The study was conducted in the department of Anatomy, J.N.M.C, Sawangi (M Wardha. Thirty (30 adult Wistar rats (2-3 months old weighing about (200 ± 20g were used in the current study, animals were divided into three groups (Group – A, B, C. Group A: Control, Group B: 3 mg /gm body weight, Group C: 6 mg /gm body weight, MSG were administered orally daily for 45 days along with the regular diet. Observations & Results: The Mean values of animals weight at the end of experiment (46th day respectively were 251.2 ± 13, 244.4 ± 19.9 and 320 ± 31.1. Early degenerative changes like, Glomerular shrinkage (GSr, loss of brush border in proximal convoluted tubules and Cloudy degeneration was observed in sections of kidney treated with 3 mg/gm body weight of MSG. Animals treated with 6 mg/gm body weight of MSG showed rare changes like interstitial chronic inflammatory infiltrate with vacuolation in some of the glomeruli, and much glomerular shrinkage invaginated by fatty lobules. Conclusion: The effects of MSG on kidney tissues of adult rats revealed that the revelatory changes are directly proportional to the doses of MSG.

  9. Prevalence of discordant microscopic changes with automated CBC analysis

    Fabiano de Jesus Santos


    Full Text Available Introduction:The most common cause of diagnostic error is related to errors in laboratory tests as well as errors of results interpretation. In order to reduce them, the laboratory currently has modern equipment which provides accurate and reliable results. The development of automation has revolutionized the laboratory procedures in Brazil and worldwide.Objective:To determine the prevalence of microscopic changes present in blood slides concordant and discordant with results obtained using fully automated procedures.Materials and method:From January to July 2013, 1,000 hematological parameters slides were analyzed. Automated analysis was performed on last generation equipment, which methodology is based on electrical impedance, and is able to quantify all the figurative elements of the blood in a universe of 22 parameters. The microscopy was performed by two experts in microscopy simultaneously.Results:The data showed that only 42.70% were concordant, comparing with 57.30% discordant. The main findings among discordant were: Changes in red blood cells 43.70% (n = 250, white blood cells 38.46% (n = 220, and number of platelet 17.80% (n = 102.Discussion:The data show that some results are not consistent with clinical or physiological state of an individual, and cannot be explained because they have not been investigated, which may compromise the final diagnosis.Conclusion:It was observed that it is of fundamental importance that the microscopy qualitative analysis must be performed in parallel with automated analysis in order to obtain reliable results, causing a positive impact on the prevention, diagnosis, prognosis, and therapeutic follow-up.

  10. A desktop extreme ultraviolet microscope based on a compact laser-plasma light source

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Węgrzyński, Ł.; Fok, T.; Fiedorowicz, H.


    A compact, desktop size microscope, based on laser-plasma source and equipped with reflective condenser and diffractive Fresnel zone plate objective, operating in the extreme ultraviolet (EUV) region at the wavelength of 13.8 nm, was developed. The microscope is capable of capturing magnified images of objects with 95-nm full-pitch spatial resolution (48 nm 25-75% KE) and exposure time as low as a few seconds, combining reasonable acquisition conditions with stand-alone desktop footprint. Such EUV microscope can be regarded as a complementary imaging tool to already existing, well-established ones. Details about the microscope, characterization, resolution estimation and real sample images are presented and discussed.

  11. Special pattern of endochondral ossification in human laryngeal cartilages: X-ray and light-microscopic studies on thyroid cartilage.

    Claassen, Horst; Schicht, Martin; Sel, Saadettin; Paulsen, Friedrich


    Endochondral ossification is a process that also occurs in the skeleton of the larynx. Differences in the ossification mechanism in comparison to growth plates are not understood until now. To get deeper insights into this process, human thyroid cartilage was investigated by the use of X-rays and a series of light-microscopic stainings. A statistical analysis of mineralization was done by scanning areas of mineralized cartilage and of ossification. We detected a special mode of endochondral ossification which differs from the processes in growth plates. Thyroid cartilage ossifies very slowly and in a gender-specific manner. Compared with age-matched women, bone formation in thyroid cartilage of men is significantly higher in the age group 41-60 years. Endochondral ossification is prepared by internal changes of extracellular matrix leading to areas of asbestoid fibers with ingrowing cartilage canals. In contrast to growth plates, bone is deposited on large areas of mineralized cartilage, which appear at the rims of cartilage canals. Furthermore, primary parallel fibered bone was observed which was deposited on woven bone. The predominant bone type is cancellous bone with trabeculae, whereas compact bone with Haversian systems was seldom found. Trabeculae contain a great number of reversal and arresting lines meaning that the former were often reconstructed and that bone formation was arrested and resumed again with advancing age. It is hypothesized that throughout life trabeculae of ossified thyroid cartilage undergo adaptation to different loads due to the use of voice.

  12. Reflection of resonant light from a plane surface of an ensemble of motionless point scatters: Quantum microscopic approach

    Kuraptsev, A S


    On the basis of general theoretical results developed previously in [JETP 112, 246 (2011)], we analyze the reflection of quasiresonant light from a plane surface of dense and disordered ensemble of motionless point scatters. Angle distribution of the scattered light is calculated both for s and p polarizations of the probe radiation. The ratio between coherent and incoherent (diffuse) components of scattered light is calculated. We analyze the contributions of scatters located at different distances from the surface and determine on this background the thickness of surface layer responsible for reflected beam generation. The inhomogeneity of dipole-dipole interaction near the surface is discussed.We study also dependence of total reflected light power on the incidence angle and compare the results of the microscopic approach with predictions of the Fresnel reflection theory. The calculations are performed for different densities of scatters and different frequencies of a probe radiation.

  13. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    Reffner, J.A.; Martoglio, P.A. [Spectra-Tech, Inc., Shelton, CT (United States); Williams, G.P. [Brookhaven National Lab., Upton, NY (United States)


    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  14. CUSUM analysis of learning curves for the head-mounted microscope in phonomicrosurgery.

    Chen, Ting; Vamos, Andrew C; Dailey, Seth H; Jiang, Jack J


    To observe the learning curve of the head-mounted microscope in a phonomicrosurgery simulator using cumulative summation (CUSUM) analysis, which incorporates a magnetic phonomicrosurgery instrument tracking system (MPTS). Retrospective case series. Eight subjects (6 medical students and 2 surgeons inexperienced in phonomicrosurgery) operated on phonomicrosurgical simulation cutting tasks while using the head-mounted microscope for 400 minutes total. Two 20-minute sessions occurred each day for 10 total days, with operation quality (Qs ) and completion time (T) being recorded after each session. Cumulative summation analysis of Qs and T was performed by using subjects' performance data from trials completed using a traditional standing microscope as success criteria. The motion parameters from the head-mounted microscope were significantly better than the standing microscope (P microscope (P microscope, as assessed by CUSUM analysis. Cumulative summation analysis can objectively monitor the learning process associated with a phonomicrosurgical simulator system, ultimately providing a tool to assess learning status. Also, motion parameters determined by our MPTS showed that, although the head-mounted microscope provides better motion control, worse Qs and longer T resulted. This decrease in Qs is likely a result of the relatively unstable visual environment that it provides. Overall, the inexperienced surgeons participating in this study failed to adapt to the head-mounted microscope in our simulated phonomicrosurgery environment. 4 Laryngoscope, 126:2295-2300, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Microscopic Analysis of Plankton, Periphyton, and Activated Sludge. Training Manual.

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This manual is intended for professional personnel in the fields of water pollution control, limnology, water supply and waste treatment. Primary emphasis is given to practice in the identification and enumeration of microscopic organisms which may be encountered in water and activated sludge. Methods for the chemical and instrumental evaluation…

  16. Theory of nanolaser devices: Rate equation analysis versus microscopic theory

    Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels;


    A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input...

  17. Microscopic Analysis of Plankton, Periphyton, and Activated Sludge. Training Manual.

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This manual is intended for professional personnel in the fields of water pollution control, limnology, water supply and waste treatment. Primary emphasis is given to practice in the identification and enumeration of microscopic organisms which may be encountered in water and activated sludge. Methods for the chemical and instrumental evaluation…

  18. Microscopic structured light 3D profilometry: Binary defocusing technique vs. sinusoidal fringe projection

    Li, Beiwen; Zhang, Song


    This paper compares the binary defocusing technique with conventional sinusoidal fringe projection under two different 3D microscopic profilometry systems: (1) both camera and projector use telecentric lenses and (2) only camera uses a telecentric lens. Our simulation and experiments found that the binary defocusing technique is superior to the traditional sinusoidal fringe projection method by improving the measurement resolution approximately 19%. Finally, by taking the speed advantage of the binary defocusing technique, we presented a high-speed (500 Hz) and high-resolution (1600×1200) 3D microscopic profilometry system that could reach kHz.

  19. A compact two photon light sheet microscope for applications in neuroscience

    Piksarv, Peeter; Marti, Dominik; Le, Tuan


    We present a compact setup for two photon light sheet microscopy. By using pulsed Airy beam illumination we demonstrate eight-fold increase of the FOV compared to Gaussian light sheet with the same axial resolution....

  20. Microscopic analysis of a native Bacillus thuringiensis strain from Malaysia that produces exosporium-enclosed parasporal inclusion.

    Chai, Pui Fun; Rathinam, Xavier; Solayappan, Maheswaran; Ahmad Ghazali, Amir Hamzah; Subramaniam, Sreeramanan


    The current study focused on the microscopic studies of a native Bacillus thuringiensis strain isolated from Malaysia, Bt-S84-13a, that produced an unusual crystal type. Primary detection of parasporal inclusions using a phase contrast microscope presented one to two small crystal proteins in the sporulating cells of Bt-S84-13a. Compound light microscopic examination of autolysed Bt-S84-13a cells stained with 0.133% Coomassie Brilliant Blue showed two types of crystal morphology: small crystals independent of spores and spore-associated crystals. Surface structure analysis with a scanning electron microscope revealed spherical-like, coarse and wrinkled-looking crystal in Bt-S84-13a. A close-up observation of the crystal morphology using a transmission electron microscope also demonstrated two parasporal inclusions in Bt-S84-13a. One inclusion was deposited against the forespore and was in a shape of incomplete rectangular. Another smaller inclusion was developed within the exosporium and was rectangular in shape. However, the latter inclusion was found lack in another bacterial cell which was still in the early stages of sporulation. This unique crystal morphology may imply some biological potential in Bt-S84-13a.

  1. Microscopic analysis of quadrupole-octupole shape evolution

    Nomura Kosuke


    Full Text Available We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson model (IBM, that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in large sets of nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 – β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  2. Microscopic methods in analysis of submicron phospholipid dispersions

    Płaczek Marcin


    Full Text Available Microscopy belongs to the group of tests, used in pharmaceutical technology, that despite the lapse of time and the development of new analytical methods, still remain irreplaceable for the characterization of dispersed drug dosage forms (e.g., suspensions and emulsions. To obtain complete description of a specific drug formulation, such as parenteral colloidal products, a combination of different microscopic techniques is sometimes required. Electron microscopy methods are the most useful ones; however, even such basic methods as optical microscopy may be helpful for determination of some properties of a sample. The publication explicates the most popular microscopical techniques used nowadays for characterization of the morphology of nanoparticles suspended in pharmaceutical formulations; ad vantages and disadvantages of these methods are also discussed. Parenteral submicron formulations containing lecithin or a particular phospholipid were chosen as examples.

  3. Light and electron microscopic lesions in peripheral nerves of broiler chickens due to roxarsone and lasalocid toxicoses.

    Gregory, D G; Vanhooser, S L; Stair, E L


    This paper characterizes the light microscopic and ultrastructural lesions in peripheral nerves caused by feeding lasalocid and roxarsone to broiler chickens. The birds were given three different doses of each compound: the standard industrial dose, 150% of the standard dose, and 200% of the standard dose. It was necessary to deprive the birds of water for 4 hours daily and heat-stress them in order to reproduce the lesion. Each compound caused mild microscopic lesions of swollen axons, digestion chambers, shrunken axons, or vacuoles where axons were missing. Ultrastructural changes included formation of myelin ellipsoids, vacuoles within or beneath the myelin sheath, and unraveling of myelin. These lesions were most frequently found in the birds receiving lasalocid.

  4. Microscopic analysis of MTT stained boar sperm cells

    B.M. van den Berg


    The ability of sperm cells to develop colored formazan by reduction of MTT was used earlier to develop a spectrophotometric assay to determine the viability of sperm cells for several mammalian species. It was the objective of the present study to visualize microscopically the location of the formazan in boar sperm cells. The MTT staining process of boar sperm cells can be divided into a series of morphological events. Incubation of the sperm cells in the presence of MTT resulted after a few ...

  5. Low Efficiency Upconversion Nanoparticles for High-Resolution Coalignment of Near-Infrared and Visible Light Paths on a Light Microscope.

    Sundaramoorthy, Sriramkumar; Garcia Badaracco, Adrian; Hirsch, Sophia M; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C; Canman, Julie C


    The combination of near-infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro(540)-UCPs and lower efficiency nano(545)-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25 000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically encoded fluorophore. However, the high efficiency micro(540)-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long-lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (∼2 μm versus ∼8 μm beam broadening, respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast Saccharomyces cerevisiae. In summary, nano-UCPs are powerful new tools

  6. Assembly of ovarian follicles in the caecilians Ichthyophis tricolor and Gegeneophis ramaswamii: light and transmission electron microscopic study.

    Beyo, R S; Sreejith, P; Divya, L; Oommen, O V; Akbarsha, M A


    Though much is known about various aspects of reproductive biology of amphibia, there is little information on the cellular and mechanistic basis of assembly of ovarian follicles in this group. This is especially true of the caecilians. Therefore, taking advantage of the abundant distribution of caecilians in the Western Ghats of India, two species of caecilians, Ichthyophis tricolor and Gegeneophis ramaswamii, were subjected to light and transmission electron microscopic analysis to trace the sequential changes during the assembly of ovarian follicles. The paired ovaries of these caecilians are elongated sac-like structures each including numerous vitellogenic follicles. The follicles are connected by a connective tissue stroma. This stroma contains nests of oogonia, primary oocytes and pregranulosa cells as spatially separated nests. During assembly of follicles the oocytes increase in size and enter the meiotic prophase when the number of nucleoli in the nucleus increases. The mitochondrial cloud or Balbiani vitelline body, initially localized at one pole of the nucleus, disperses through out the cytoplasm subsequently. Synaptonemal complexes are prominent in the pachytene stage oocytes. The pregranulosa cells migrate through the connective tissue fibrils of the stroma and arrive at the vicinity of the meiotic prophase oocytes. On contacting the oocyte, the pregranulosa cells become cuboidal in shape, wrap the diplotene stage oocyte as a discontinuous layer and increase the content of cytoplasmic organelles and inclusions. The oocytes increase in size and are arrested in diplotene when the granulosa cells become flat and form a continuous layer. Soon a perivitelline space appears between the oolemma and granulosa cells, completing the process of assembly of follicles. Thus, the events in the establishment of follicles in the caecilian ovary are described.

  7. Expression of calcium channel CaV1.3 in cat spinal cord: light and electron microscopic immunohistochemical study

    Zhang, Mengliang; Møller, Morten; Broman, Jonas;


    in the cat spinal cord by light and electron microscopic immunohistochemistry. The results show that Ca(V)1.3-like immunoreactivity is widely distributed in all segments of the spinal cord but that the distribution in the different laminae of the spinal gray matter varies, with the highest density of labeled...... associated with the rough endoplasmic reticulum but some also with the plasma membrane. In dendrites, they were associated with both intracellular organelles, including microtubules and microchondria, and the plasma membrane. These results indicate that significant proportions of the neurons in cat spinal...

  8. A compact Airy beam light sheet microscope with a tilted cylindrical lens

    Yang, Zhengyi; Prokopas, Martynas; Nylk, Jonathan; Coll Llado, Clara; Gunn-Moore, Frank J.; Ferrier, David Ellard Keith; Vettenburg, Tom; Dholakia, Kishan


    We thank the UK Engineering and Physical Sciences Research Council under grant EP/J01771X/1, the ’BRAINS’ 600th anniversary appeal and Dr. E. Killick for funding. Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies...

  9. Microscopic calculations of elastic scattering between light nuclei based on a realistic nuclear interaction

    Dohet-Eraly, Jeremy [F.R.S.-FNRS (Belgium); Sparenberg, Jean-Marc; Baye, Daniel, E-mail:, E-mail:, E-mail: [Physique Nucleaire et Physique Quantique, CP229, Universite Libre de Bruxelles (ULB), B-1050 Brussels (Belgium)


    The elastic phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions are calculated in a cluster approach by the Generator Coordinate Method coupled with the Microscopic R-matrix Method. Two interactions are derived from the realistic Argonne potentials AV8' and AV18 with the Unitary Correlation Operator Method. With a specific adjustment of correlations on the {alpha} + {alpha} collision, the phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions agree rather well with experimental data.

  10. The Effect of Citrullus colocynthis Pulp Extract on the Liver of Diabetic Rats a Light and Scanning Electron Microscopic Study

    Mohammad Khalil


    Full Text Available Problem statement: The goal of the current investigation was to clarify the effects of Citrullus colocynthis pulp extract on the structure of the liver of diabetic rats at both light and scanning electron microscopic levels. Approach: Forty-eight adult male albino rats were equally allocated into four groups: Group1: control, Group 2: Citrullus colocynthis-treated, Group 3: diabetic rats and Group4: diabetic rats treated with Citrullus colocynthis. All treatments were administered via an intragastric tube. Diabetes was induced in the rats of groups 3 and 4 by an intraperitoneal injection with alloxan. Results: The liver of Citrullus colocynthis-treated rats revealed minor histological changes versus the control animals. In group 3 animals, diabetes caused degenerative alterations in the form of disorganization of the hepatic cords, cytoplasmic vacuolization and pyknosis of the nuclei of hepatocytes and inflammatory cell infiltration. Scanning electron microscope examination of these livers revealed numerous lipid droplets within hepatocytes, damaged blood sinusoids and hemorrhage of erythrocytes between hepatocytes and inside Disse’s spaces. On the other hand, the normal histological and scanning ultrastructural features were nearly resumed in the liver of diabetic rats treated with Citrullus colocynthis pulp extract. Conclusion: The present study proved a lessening effect of Citrullus colocynthis pulp extract on the liver of diabetic rats. In light of these advantageous influences, it is advisable to widen the scale of its use in a trial to alleviate the diabetic hepatic adverse effects.

  11. Analysis of Zebrafish Kidney Development with Time-lapse Imaging Using a Dissecting Microscope Equipped for Optical Sectioning.

    Perner, Birgit; Schnerwitzki, Danny; Graf, Michael; Englert, Christoph


    In order to understand organogenesis, the spatial and temporal alterations that occur during development of tissues need to be recorded. The method described here allows time-lapse analysis of normal and impaired kidney development in zebrafish embryos by using a fluorescence dissecting microscope equipped for structured illumination and z-stack acquisition. To visualize nephrogenesis, transgenic zebrafish (Tg(wt1b:GFP)) with fluorescently labeled kidney structures were used. Renal defects were triggered by injection of an antisense morpholino oligonucleotide against the Wilms tumor gene wt1a, a factor known to be crucial for kidney development. The advantage of the experimental setup is the combination of a zoom microscope with simple strategies for re-adjusting movements in x, y or z direction without additional equipment. To circumvent focal drift that is induced by temperature variations and mechanical vibrations, an autofocus strategy was applied instead of utilizing a usually required environmental chamber. In order to re-adjust the positional changes due to a xy-drift, imaging chambers with imprinted relocation grids were employed. In comparison to more complex setups for time-lapse recording with optical sectioning such as confocal laser scanning or light sheet microscopes, a zoom microscope is easy to handle. Besides, it offers dissecting microscope-specific benefits such as high depth of field and an extended working distance. The method to study organogenesis presented here can also be used with fluorescence stereo microscopes not capable of optical sectioning. Although limited for high-throughput, this technique offers an alternative to more complex equipment that is normally used for time-lapse recording of developing tissues and organ dynamics.

  12. Imaging spectroscopic analysis at the Advanced Light Source

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.


    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  13. Macrophages and mast cells in dystrophic masseter muscle: a light and electron microscopic study

    Kirkeby, S; Mikkelsen, H


    Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle, the num......Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle...

  14. Double-lambda microscopic model for entangled light generation by four-wave-mixing

    Glorieux, Q; Guibal, S; Guidoni, L; Likforman, J -P; Coudreau, T; Arimondo, E


    Motivated by recent experiments, we study four-wave-mixing in an atomic double-{\\Lambda} system driven by a far-detuned pump. Using the Heisenberg-Langevin formalism, and based on the microscopic properties of the medium, we calculate the classical and quantum properties of seed and conju- gate beams beyond the linear amplifier approximation. A continuous variable approach gives us access to relative-intensity noise spectra that can be directly compared to experiments. Restricting ourselves to the cold-atom regime, we predict the generation of quantum-correlated beams with a relative-intensity noise spectrum well below the standard quantum limit (down to -6 dB). Moreover entanglement between seed and conjugate beams measured by an inseparability down to 0.25 is expected. This work opens the way to the generation of entangled beams by four-wave mixing in a cold atomic sample.

  15. Light amplification by stimulated emission from an optically pumped molecular junction in a scanning tunneling microscope

    Braun, K; Wang, X; Adler, H; Peisert, H; Chasse, T; Zhang, D; Meixner, A J


    Here, we introduce and experimentally demonstrate optical amplification and stimulated emission from a single optically pumped molecular tunneling junction of a scanning tunneling microscope. The gap between a sharp gold tip and a flat gold substrate covered with a self-assembled monolayer of 5-chloro-2-mercaptobenzothiazole molecules forms an extremely small optical gain medium. When electrons tunnel from the molecules highest occupied molecular orbital to the tip, holes are left behind. These can be repopulated by hot electrons induced by the laser-driven plasmon oscillation on the metal surfaces enclosing the cavity. Solving the laser-rate equations for this system shows that the repopulation process can be efficiently stimulated by the gap modes near field, TERS scattering from neighboring molecules acting as an optical seed. Our results demonstrate how optical enhancement inside the plasmonic cavity can be further increased by a stronger localization via tunneling through molecules. We anticipate that st...

  16. Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots

    Giepmans, Ben N G; Deerinck, Thomas J; Smarr, Benjamin L; Jones, Ying Z; Ellisman, Mark H


    The importance of locating proteins in their context within cells has been heightened recently by the accomplishments in molecular structure and systems biology. Although light microscopy (LM) has been extensively used for mapping protein localization, many studies require the additional resolution

  17. Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots

    Giepmans, Ben N G; Deerinck, Thomas J; Smarr, Benjamin L; Jones, Ying Z; Ellisman, Mark H


    The importance of locating proteins in their context within cells has been heightened recently by the accomplishments in molecular structure and systems biology. Although light microscopy (LM) has been extensively used for mapping protein localization, many studies require the additional resolution

  18. Light and electron microscopic localization of multiple proteins using quantum dots

    Deerinck, Thomas J; Giepmans, Ben N G; Smarr, Benjamin L; Martone, Maryann E; Ellisman, Mark H


    Our understanding of basic cell structure and function has been greatly aided by the identification of proteins at the ultrastructural level. However, the current methods for high-resolution labeling of proteins in situ, and for directly correlating observations made by light microscopy (LM) and ele

  19. Light and electron microscopic localization of multiple proteins using quantum dots

    Deerinck, Thomas J; Giepmans, Ben N G; Smarr, Benjamin L; Martone, Maryann E; Ellisman, Mark H


    Our understanding of basic cell structure and function has been greatly aided by the identification of proteins at the ultrastructural level. However, the current methods for high-resolution labeling of proteins in situ, and for directly correlating observations made by light microscopy (LM) and

  20. Microscopic analysis of MTT stained boar sperm cells

    B.M. van den Berg


    Full Text Available The ability of sperm cells to develop colored formazan by reduction of MTT was used earlier to develop a spectrophotometric assay to determine the viability of sperm cells for several mammalian species. It was the objective of the present study to visualize microscopically the location of the formazan in boar sperm cells. The MTT staining process of boar sperm cells can be divided into a series of morphological events. Incubation of the sperm cells in the presence of MTT resulted after a few min in a diffuse staining of the midpiece of the sperm cells. Upon further incubation the staining of the midpiece became more intense, and gradually the formation of packed formazan granules became more visible. At the same time, a small formazan stained granule appeared medially on the sperm head, which increased in size during further incubation. After incubation for about 1 h the midpiece granules were intensely stained and more clearly distinct as granules, while aggregation of sperm cells occurred. Around 90% of the sperm cells showed these staining events. At the end of the staining the formazan granules have disappeared from both the sperm cells and medium, whereas formazan crystals appeared as thin crystal threads, that became heavily aggregated in the incubation medium. It was concluded that formazan is taken up by lipid droplets in the cytoplasm. Further, the use of the MTT assay to test for sperm viability should be regarded as a qualitative assay, whereas its practical use at artificial insemination (AI Stations is limited.

  1. Microscopic analysis of MTT stained boar sperm cells.

    van den Berg, B M


    The ability of sperm cells to develop colored formazan by reduction of MTT was used earlier to develop a spectrophotometric assay to determine the viability of sperm cells for several mammalian species. It was the objective of the present study to visualize microscopically the location of the formazan in boar sperm cells. The MTT staining process of boar sperm cells can be divided into a series of morphological events. Incubation of the sperm cells in the presence of MTT resulted after a few min in a diffuse staining of the midpiece of the sperm cells. Upon further incubation the staining of the midpiece became more intense, and gradually the formation of packed formazan granules became more visible. At the same time, a small formazan stained granule appeared medially on the sperm head, which increased in size during further incubation. After incubation for about 1 h the midpiece granules were intensely stained and more clearly distinct as granules, while aggregation of sperm cells occurred. Around 90% of the sperm cells showed these staining events. At the end of the staining the formazan granules have disappeared from both the sperm cells and medium, whereas formazan crystals appeared as thin crystal threads, that became heavily aggregated in the incubation medium. It was concluded that formazan is taken up by lipid droplets in the cytoplasm. Further, the use of the MTT assay to test for sperm viability should be regarded as a qualitative assay, whereas its practical use at artificial insemination (AI) Stations is limited.

  2. A light- and electron microscopic study of primordial germ cells in the zebra fish (Danio rerio).

    Deniz Koç, Nazan; Yüce, Rikap


    In sexually reproducing organisms, primordial germ cells (PGCs) give rise to the cells of the germ line, the gametes. In many animals, PGCs are set apart from somatic cells early during embryogenesis. This study explores the origin of primordial germ cells (PGCs) of the zebra fish and examines their morphology during early development (1st day-15th day). PGCs were selectively stained by the alkaline phosphatase histochemical reaction and viewed by light and electron microscopy from the time they are first detectable in the yolk sac endoderm. PGCs occurred in the subendodermal space on the syncytial periblast; differing from the surrounding endodermal cells. Later the PGCs moved to between the blastoderm and yolk sac and transferred to the dorsal mesentery where they formed gonadal anlage with mesoderm cells. PGCs were easily distinguished from somatic cells by their morphology and low electron density of their nuclei. Under light microscopy, PCGs were rounded with a distinct cytoplasmic membrane.

  3. A customized light sheet microscope to measure spatio-temporal protein dynamics in small model organisms.

    Matthias Rieckher

    Full Text Available We describe a customizable and cost-effective light sheet microscopy (LSM platform for rapid three-dimensional imaging of protein dynamics in small model organisms. The system is designed for high acquisition speeds and enables extended time-lapse in vivo experiments when using fluorescently labeled specimens. We demonstrate the capability of the setup to monitor gene expression and protein localization during ageing and upon starvation stress in longitudinal studies in individual or small groups of adult Caenorhabditis elegans nematodes. The system is equipped to readily perform fluorescence recovery after photobleaching (FRAP, which allows monitoring protein recovery and distribution under low photobleaching conditions. Our imaging platform is designed to easily switch between light sheet microscopy and optical projection tomography (OPT modalities. The setup permits monitoring of spatio-temporal expression and localization of ageing biomarkers of subcellular size and can be conveniently adapted to image a wide range of small model organisms and tissue samples.

  4. End-Crosslinking Gelation of Poly(amide acid) Gels studied with Scanning Microscopic Light Scattering

    Furukawa, Hidemitsu; Kobayashi, Mizuha; Miyashita, Yoshiharu; HORIE, Kazuyuki


    Network formation in the gelation process of end-crosslinked poly(amide acid) gels, which are the precursor of end-crosslinked polyimide gels, was studied by scanning dynamic light scattering. The gelation process is essentially non-reversible due to the formation of covalent bonds. The molecular structure formed in the gelation process is controlled by varying the equivalence ratio of end-crosslinker to oligomer during the preparation. It was found that a couple of relaxation modes are obser...

  5. Cell Aging of Mouse Gastrointestinal Tract Observed by Light and Electron Microscopic Radioautography

    Nagata, Tetsuji


    The term “cell aging” initially means how the cells change due to their aging. There are two meanings, i.e. how a cell changes when it is isolated from original animals such as in vitro cells in cell culture, otherwise how all the cells of an animal change in vivo due to the aging of the individual animal. We have been studying the latter changes from the viewpoint of the cell nutrients, the precursors for the macromolecular synthesis such as deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins, glucides and lipids, which are incorporated and synthesized into various cells of individual animals. Therefore, this article deals with only the cell aging of animal cells in vivo, how the metabolism, i.e. incorporations and syntheses of respective nutrient precursors in various kinds of cells change due to the aging of individual experimental animals such as mice by means of microscopic radioautography to localize the RI-labeled precursors. The incorporations and syntheses of various precursors for macromolecules such as DNA, RNA, proteins, glucides, lipids and others in various kinds of cells of various organs in the gastrointestinal tract such as the mouth, esophagus, stomach and intestines are reviewed referring many original papers already published from our laboratory during these 60 years since the late 20th century. PMID:27785275

  6. Opisthorchiasis-associated biliary stones:Light and scanning electron microscopic study

    Banchob Sripa; Pipatphong Kanla; Poonsiri Sinawat; Melissa R. Haswell-Elkins


    AIM: Biliary stones are frequentty encountered in areas endemic for opisthorchiasis in Thailand. The present study was to describe the prevalence and pathogenesis of these stones.METHODS: Gallstones and/or common bile duct stones and bile specimens from 113 consecutive cholecystectomies were included. Bile samples, including sludge and/or microcalculi, were examined for Opisthorchis viverrini eggs,calcium and bilirubin. The stones were also processed for scanning electron microscopic (SEM) study.RESULTS: Of the 113 cases, 82 had pigment stones, while one had cholesterol stones. The other 30 cases had no stones. Most of the stone cases (76%, 63/83) had multiple stones, while the remainder had a single stone. Stones were more frequently observed in females. Bile examination was positive for O. viverrini eggs in 50% of the cases studied. Aggregates of calcium bilirubinate precipitates were observed in all cases with sludge. Deposition of calcium bilirubinate on the eggshell was visualized by special staining. A SEM study demonstrated the presence of the parasite eggs in the stones. Numerous crystals,morphologically consistent with calcium derivatives and cholesterol precipitates, were seen.CONCLUSION: Northeast Thailand has a high prevalence of pigment stones, as observed at the cholecystectomy, and liver fluke infestation seems involved in the pathogenesis of stone formation.

  7. [Comparative light microscopic, scanning-electron microscopic and electron microscopic studies of the effect of experimental interventions by surgical scalpel, electrocautery and CO2-laser beam in the oral cavity].

    Gáspár, L; Sudár, F; Tóth, J; Madarász, B


    Tissue effect interventions by means of surgical scalpel, elecrtokauter and CO2-laser ray in the mouth cavity of 20 white rats has been examined. According to their light microscopical examinations both the laser and the electrokauter caused thermal injuries taking place in typical zones while by the scalpel the cut surface in rendered ragged. The band-width of the thermoinjury caused by the kauter is a multiple of that caused by the laser. It has been proved by means of scanning electronmicroscopical examinations that interventions by means of laser result in sharp wound borders, the wounds cut by means of kauter are characterised by the presence of a great number of carbonized specks while by means of the scalpel a mechanical tear of the tissues is brought about. By means of electronmicroscopical examination the characteristics of the typical thermoinjured zones are described. It has been established that in the case of laser the injury of the ultra-structure extends to 400 microns while in case of electrokauter it reaches a width of 1500 microns. The excellent haemostatic effect brought about by the thermoeffect by means of the laser, in contrast to the broad thermoinjured zone caused by the kauter, is obtained at a very mild thermoinjury.

  8. Improvement of light collection efficiency of lens-coupled YAG screen TV system for a high-voltage electron microscope.

    Yamamoto, K; Tanji, T; Hibino, M; Schauer, P; Autrata, R


    A new lens coupling television (TV) system using a YAG (Yttrium Aluminum Garnet: Y(3)Al(5)O(12) : Ce(3+)) single crystal screen has been developed for a high-voltage electron microscope (HVEM), and its performance is examined. The system, using a combination of YAG and lenses, is less damaged by high-energy electron irradiation and reduces the influence of X-rays on the image. YAG screens have not been used for lens-coupling systems, because the high refractive index (n = 1.84) of YAG results in a low light collection efficiency for emitted light. This disadvantage is overcome by combining a thin YAG disk screen (thickness; 100 microm) with a glass hemisphere whose refractive index is 1.81. We found that the light intensity is almost the same as that obtained with a conventional P22 powder screen and lenses system. The resolution is about 55 microm on the YAG screen, and this value is 1.3 times higher than that measured by the conventional system. Shading and distortion do not affect TV observation. Detection quantum efficiency, obtained after correction of the channel mixing effect, is about 0.1.

  9. A light, transmission and scanning electron microscope study of snuff-treated hamster cheek pouch epithelium.

    Ashrafi, S H; Das, A; Worowongvasu, R; Mehdinejad, B; Waterhouse, J P


    The effects of smokeless tobacco (snuff) on hamster cheek mucosa were studied by light microscopy, transmission (TEM) and scanning electron microscopy (SEM). Two grams of commercially available smokeless tobacco were placed into the blind end of the right cheek pouch of each experimental animal, once a day and five days a week for 24 months. The control animals did not receive smokeless tobacco. After 24 months treatment with smokeless tobacco, hamster cheek mucosal epithelium lost its translucency and had become whitish in color. By light microscopy hyperorthokeratosis, prominent granular cell layers with increased keratohyalin granules and hyperplasia were seen. At the ultrastructural level, wider intercellular spaces filled with microvilli, numerous shorter desmosomes, many thin tonofilament bundles, increased number of mitochondria, membrane coating granules and keratohyalin granules were seen in snuff-treated epithelium. The changes in the surface of the epithelium as seen by SEM were the development of an irregular arrangement of the microridges and the disappearance of the normal honeycomb pattern. The microridges were irregular, widened and surrounded the irregular elongated pits. Some smooth areas without microridges and pits were also seen. The long-term histological, TEM and SEM changes induced by smokeless tobacco treatment of the epithelium are well correlated with each other and were similar to those reported in human leukoplakia without dyskeratosis. They imply changes of pathological response resulting from topically applied snuff.

  10. Microscopic Analysis and Modeling of Airport Surface Sequencing Project

    National Aeronautics and Space Administration — The complexity and interdependence of operations on the airport surface motivate the need for a comprehensive and detailed, yet flexible and validated analysis and...

  11. Microscopic Analysis and Modeling of Airport Surface Sequencing Project

    National Aeronautics and Space Administration — Although a number of airportal surface models exist and have been successfully used for analysis of airportal operations, only recently has it become possible to...

  12. Microscopic Observation of the Light-Cone-Like Thermal Correlations in Cracking Excitations

    Ghaffari, H O


    Many seemingly intractable systems can be reduced to a system of interacting spins. Here, we introduce a system of artificial acoustic spins which are manipulated with ultrasound excitations associated with micro-cracking sources in thin sheets of crystals. Our spin-like system shows a peculiar relaxation mechanism after inducing an impulsive stress-ramp akin to splitting, or rupturing, of the system. Using real-time construction of correlations between spins states, we observe a clear emergence of the light cone effect. It has been proposed that equilibration horizon occurs on a local scale in systems where correlations between distant sites are established at a finite speed. The observed equilibration horizon in our observations defines a region where elements of the material are in elastic communication through excited elementary excitations. These results yield important insights into dynamic communication between failing elements in brittle materials during processes such as brittle fragmentation and dyn...

  13. A Differential Interference Contrast-Based Light Microscopic System for Laser Microsurgery and Optical Trapping of Selected Chromosomes during Mitosis In Vivo

    Cole, Richard W.; Khodjakov, Alexey; Wright, William H.; Rieder, Conly L.


    Laser microsurgery and laser-generated optical force traps (optical tweezers) are both valuable light microscopic-based approaches for studying intra- and extracellular motility processes, including chromosome segregation during mitosis. Here we describe a system in use in our laboratory that allows living cells to be followed by high-resolution differential interference contrast (DIC) video-enhanced time-lapse light microscopy while selected mitotic organelles and spindle components are subjected to laser microsurgery and/or manipulation with an optical force trap. This system couples the output from two different Neodymium-YAG lasers to the same inverted light microscope equipped with both phase-contrast and de Senarmont compensation DIC optics, a motorized stage, and a high-resolution low-light-level CCD camera. Unlike similar systems using phase-contrast optics, our DIC-based system can image living cells in thin optical sections without contamination due to phase halos or out-of-focus object information. These advantages greatly facilitate laser-based light microscopic studies on mitotic organelles and components, including spindle poles (centrosomes) and kinetochores, which are at or below the resolution limit of the light microscope and buried within a large complex structure. When used in conjunction with image processing and high-resolution object-tracking techniques, our system provides new information on the roles that kinetochores and spindle microtubules play during chromosome segregation in plant and animal cells.

  14. Light and scanning electron microscopic and immunohistochemical studies on permeability of hypertensive rat mesenteric arteries.

    Suzuki, K; Kawaharada, U; Takatama, M; Ooneda, G


    Experimental hypertensive rats were intravenously injected with carbon and iron as tracers, and their mesenteric arteries exhibiting hypertensive arterial lesions were observed by light and scanning electron microscopy and immunohistochemistry. Early arterial lesions showing intense medial damages, deposition of fibrinoid substance consisting of fibrin in the intima and/or media, and granulation tissue in the adventitia were characterized by marked insudation of intravenously injected tracers. Scanning electron microscopy demonstrated numerous leukocytes and platelets adhering to endothelial surface, opened endothelial cell junctions, and desquamation of these cells. Immunohistochemistry revealed laminin and low stainability of fibronectin in the subendothelium. Advanced lesions showed deposition of a large amount of fibrinoid substance and no insudation of tracers in the intima, but scanning electron microscopy manifested opening of endothelial cell junctions, desquamation of endothelial cells, and adherence of leukocytes and platelets. Immunohistochemistry revealed fibronectin in the intima and laminin just beneath the endothelium. In the healed lesions disclosing fibrocellular intimal thickening, there was no insudation of tracers. Scanning electron microscopy showed opened endothelial cell junctions, endothelial cell defects, and adherence of leukocytes and platelets. There were fibronectin in the intima and laminin beneath the endothelium. It was suggested that the opening of endothelial cells junctions and desquamation of endothelial cells would be necessary for the arterial increased permeability in hypertensive rats, and that fibrin-fibronectin complex, fibronectin-acid mucopolysaccharide complex, and basement membrane would together inhibit the increased permeability in the mesenteric arteries of hypertensive rats in spite of endothelial cell injuries and their defects.

  15. Histogenesis of the stomach of the pre-hatching quail: a light microscopic study.

    Soliman, Soha A; Ahmed, Yasser A; Abdelsabour-Khalaf, Mohammed


    The current study conducted a careful description of the histological events during the embryonic development of quail stomach. Daily histological specimens from the quail stomach from day 4 to day 17 post incubation were examined by light microscopy. The primitive gut tube of the embryonic quail appeared at day 4 post incubation. The gut tube consisted of an endodermal epithelium of pseudostratified type, surrounded by splanchnic mesenchyme. The prospective glandular epithelium invaginated at day 5 in the proventriculus and gradually developed to prospective proventricular glands. The muscular coat became distinguished at day 7 and day 8 in the proventriculus and gizzard, respectively. Transformation into simple columnar epithelium occurred in both proventriculus and the gizzard at day 12. The gizzard epithelium gave rise to tubular invaginations also at day 12. Canalization of the gizzard tubular glands was recognized at day 14. By day 15, the proventricular surface epithelium invaginated in a concentric manner around a central cavity to form immature secretory units that contained inactive oxyntico-peptic cells. The mucosal folding in the gizzard appeared at day 15 to form plicae and sulci. The wall of the proventriculus and gizzard at day 17 acquired histological features of post-hatching birds.

  16. Light and scanning electron microscopic study of the tongue in the cormorant Phalacrocorax carbo (Phalacrocoracidae, Aves).

    Jackowiak, Hanna; Andrzejewski, Wojciech; Godynicki, Szymon


    The tongue of the cormorant Phalacrocorax carbo is a small, immobile structure with a length of 1.4 cm, situated in the middle part of the elongated lower bill. The uniquely shaped tongue resembles a mushroom, with a short base and an elongated dorsal part with sharpened anterior and posterior tips. A median crest can be observed on the surface of the tongue. Examination by light and scanning electron microscopy revealed that the whole tongue is formed by a dense connective tissue with many bundles of elastic fibers. The lingual mucosa is covered by a multilayered keratinized epithelium. The thickest, horny layer of the lingual epithelium was observed on the surface of the median crest and on the posterior tip of the tongue. Lingual glands are absent in cormorants. The framework of the tongue is composed of a hyoid cartilage incorporated into the base. The localization and structure of the tongue in the cormorant show that it is a rudimentary organ and that the lingual body, usually well-developed in birds, is conserved.

  17. Error analysis of the parameters for non-coaxial grazing X-ray microscope

    ZHAO Lingling; HU Jiasheng; LI Xiang


    A non-coaxial grazing X-ray microscope,consisting of four spherical mirrors,is designed for diagnosis of inertial confinement fusion (ICF).The aberrations and imaging quality of the microscope are analyzed.To acquire excellent imaging quality,suitable tolerances for manufacturing and assembling the microscope are necessary.This paper researches the changes of Gauss parameters and aberrations due to component and subsystem parameters (such as the radius of the mirror,angle between mirrors,grazing angle,object distance,etc.).Here,spot diagrams and modulation transfer function (MTF) are first adopted to quantitatively evaluate the imaging quality of the microscope.Suitable manufacturing tolerances of components and assembly tolerances of the system are established on the basis of the discussion and analysis.A set of non-coaxial grazing X-ray microscopes is manufactured based on the tolerances.In site tests of ICF,the images with high resolution are obtained by the microscope.

  18. Coarse Analysis of Microscopic Models using Equation-Free Methods

    Marschler, Christian

    -dimensional models. The goal of this thesis is to investigate such high-dimensional multiscale models and extract relevant low-dimensional information from them. Recently developed mathematical tools allow to reach this goal: a combination of so-called equation-free methods with numerical bifurcation analysis....... Applications include the learning behavior in the barn owl’s auditory system, traffic jam formation in an optimal velocity model for circular car traffic and oscillating behavior of pedestrian groups in a counter-flow through a corridor with narrow door. The methods do not only quantify interesting properties...... factor for the complexity of models, e.g., in real-time applications. With the increasing amount of data generated by computer simulations a challenge is to extract valuable information from the models in order to help scientists and managers in a decision-making process. Although the dynamics...

  19. Protein conjugation with PAMAM nanoparticles: Microscopic and thermodynamic analysis.

    Chanphai, P; Froehlich, E; Mandeville, J S; Tajmir-Riahi, H A


    PAMAM dendrimers form strong protein conjugates that are used in drug delivery systems. We report the thermodynamic and binding analysis of polyamidoamine (PAMAM-G4) conjugation with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in PAMAM-protein interactions with more hydrophobic b-LG forming stronger polymer-protein conjugates. Thermodynamic parameters showed PAMAM-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der waals and H-bonding interactions prevail in HSA and BSA-polymer conjugates. The protein loading efficacy was 45-55%. PAMAM complexation induced major alterations of protein conformation. TEM images show major polymer morphological changes upon protein conjugation.

  20. Microscopic and spectroscopic analysis of chitosan-DNA conjugates.

    Agudelo, D; Kreplak, L; Tajmir-Riahi, H A


    Conjugations of DNA with chitosans 15 kD (ch-15), 100 kD (ch-100) and 200 kD (ch-200) were investigated in aqueous solution at pH 5.5-6.5. Multiple spectroscopic methods and atomic force microscopy (AFM) were used to locate the chitosan binding sites and the effect of polymer conjugation on DNA compaction and particle formation. Structural analysis showed that chitosan-DNA conjugation is mainly via electrostatic interactions through polymer cationic charged NH2 and negatively charged backbone phosphate groups. As polymer size increases major DNA compaction and particle formation occurs. At high chitosan concentration major DNA structural changes observed indicating a partial B to A-DNA conformational transition.

  1. Color Laser Microscope

    Awamura, D.; Ode, T.; Yonezawa, M.


    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  2. HSI colour-coded analysis of scattered light of single plasmonic nanoparticles

    Zhou, Jun; Lei, Gang; Zheng, Lin Ling; Gao, Peng Fei; Huang, Cheng Zhi


    Single plasmonic nanoparticles (PNPs) analysis with dark-field microscopic imaging (iDFM) has attracted much attention in recent years. The ability for quantitative analysis of iDFM is critical, but cumbersome, for characterizing and analyzing the scattered light of single PNPs. Here, a simple automatic HSI colour coding method is established for coding dark-field microscopic (DFM) images of single PNPs with localized surface plasmon resonance (LSPR) scattered light, showing that hue value in the HSI system can realize accurate quantitative analysis of iDFM and providing a novel approach for quantitative chemical and biochemical imaging at the single nanoparticle level.Single plasmonic nanoparticles (PNPs) analysis with dark-field microscopic imaging (iDFM) has attracted much attention in recent years. The ability for quantitative analysis of iDFM is critical, but cumbersome, for characterizing and analyzing the scattered light of single PNPs. Here, a simple automatic HSI colour coding method is established for coding dark-field microscopic (DFM) images of single PNPs with localized surface plasmon resonance (LSPR) scattered light, showing that hue value in the HSI system can realize accurate quantitative analysis of iDFM and providing a novel approach for quantitative chemical and biochemical imaging at the single nanoparticle level. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c6nr01089j

  3. Plexus muscularis profundus and associated interstitial cells. I. Light microscopical studies of mouse small intestine

    Rumessen, J J; Thuneberg, L


    The zinc iodide/osmic acid (ZIO) method was used in a modification that selectively stained nerves and associated interstitial cells of Cajal (ICC) of muscularis externa. Due to its selectivity the method allowed a detailed stereoscopical analysis of whole mounts with respect to the topography...... muscularis profundus (PMP). PMP was revealed throughout the small intestine as a continuous network of elongated, circularly oriented meshes. The pattern of connections between PMP and the other enteric plexuses was studied stereoscopically. Ganglion cells intrinsic to PMP occurred widely scattered...

  4. In vivo remineralization of artificial enamel carious lesions using a mineral-enriched mouthrinse and a fluoride dentifrice: A polarized light microscopic comparative evaluation

    Bansal K


    Full Text Available Background: Remineralization process is accelerated by the presence of fluoride ions in the oral environment, but this mechanism of caries reversal will be further enhanced if the concentration of calcium, phosphate and fluoride ions is supersaturated with respect to that of oral fluids. Aim: This in vivo study was carried out to evaluate and compare the remineralizing efficacy of a urea-based mineral-enriched mouthrinse and a fluoridated dentifrice using an in vivo intraoral appliance model and polarized light microscopic evaluation technique. Materials and Methods: The specimens were prepared from sound teeth and artificial caries was produced using an artificial caries medium in vitro and enamel specimens were inserted in removable orthodontic appliances that were to be worn by 14 children of 10-15 years of age. They were divided into three groups - nonfluoridated dentifrice, fluoridated dentifrice and mineral-enriched mouthrinse groups. After the 6-month experimental period, during which the enamel specimens inserted in the intraoral appliance were subjected to one of the agents (either fluoride, nonfluoride dentifrice or mouthrinse in vivo, the specimens were retrieved from the patients and were evaluated using the polarized light microscopic technique. Observations and Results: On analysis, mineral gain occurred in all groups, viz. nonfluoride dentifrice group, fluoride dentifrice and mineral-enriched mouthrinse group. However, it was found to be complete in the mouthrinse group, i.e. both at the surface and at the subsurface (67%, while in the fluoridated dentifrice group, 43% of the samples showed mineral gain in both zones. In the nonfluoridated dentifrice group also, remineralization occurred but was limited either to the surface or the subsurface zone. Conclusions: Urea-based mineral-enriched mouthrinse was shown to be more efficacious in the process of remineralization of artificial carious lesions.

  5. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    Scott Ploger; Paul Demkowicz; John Hunn; Robert Morris


    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak burnup of 19.5% FIMA with no in-pile failures observed out of 3×105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Five compacts have been examined so far, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose between approximately 40-80 individual particles on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer-IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, over 800 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in approximately 23% of the particles, and these fractures often resulted in unconstrained kernel swelling into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer-IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only three particles, all in conjunction with IPyC-SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures, IPyC-SiC debonds, and SiC fractures.

  6. In vivo corneal confocal microscopic analysis in patients with keratoconus

    Gulfidan; Bitirgen; Ahmet; Ozkagnici; Banu; Bozkurt; Rayaz; A; Malik


    AIM: To quantify corneal ultrastructure using laser scanning in vivo confocal microscopy(IVCM) in patients with keratoconus and control subjects. METHODS: Unscarred corneas of 78 keratoconic subjects without a history of contact lens use and 36age-matched control subjects were evaluated with slit-lamp examination(SLE), corneal topography and laser scanning IVCM. One eye was randomly chosen for analysis. Anterior and posterior stromal keratocyte,endothelial cell and basal epithelial cell densities and sub-basal nerve structure were evaluated.RESULTS: IVCM qualitatively demonstrated enlarged basal epithelial cells, structural changes in sub-basal and stromal nerve fibers, abnormal stromal keratocytes and keratocyte nuclei, and pleomorphism and enlargement of endothelial cells. Compared with control subjects, significant reductions in basal epithelial cell density( 5817 ± 306 cells / mm2 vs 4802 ±508 cells/mm2,P < 0. 001), anterior stromal keratocyte density(800 ±111 cells/mm2 vs 555 ±115 cells/mm2, P <0.001),posterior stromal keratocyte density(333±34 cells/mm2vs270 ±47 cells/mm2, P <0.001), endothelial cell density(2875 ±223 cells/mm2 vs 2686 ±265 cells/mm2, P <0.001),sub-basal nerve fiber density(31.2 ±8.4 nerves/mm2vs18.1 ±9.2 nerves/mm2, P <0.001), sub-basal nerve fiber length(21.4±3.4 mm/mm2 vs 16.1±5.1 mm/mm2, P <0.001),and sub-basal nerve branch density(median 50.0(first quartile 31.2- third quartile 68.7) nerve branches/mm2 vs median 25.0(first quartile 6.2- third quartile 45.3) nerve branches/mm2, P <0.001) were observed in patients with keratoconus.CONCLUSION: Significant microstructural abnormalities were identified in all corneal layers in the eyes of subjects with keratoconus using IVCM. This non-invasive in vivo technique provides an important means to define and follow progress of microstructural changes in patients with keratoconus.

  7. Adulteration of honey : relation between microscopic analysis and delta C-13 measurements

    Kerkvliet, JD; Meijer, HAJ


    Upon routine microscopic analysis of some honey samples, parenchyma cells, single rings of ring vessels and epidermal cells are found. These cells originate from the sugar cane stem. We investigated whether there was a relation between these plant fragments and the delta C-13 value of honey. 17 hone

  8. Pathology of post-kala-azar dermal leishmaniasis: a light microscopical, immunohistochemical, and ultrastructural study of skin lesions and draining lymph nodes

    Ismail, Ahmed; Gadir, A Fattah A; Theander, Thor G


    cells. Degenerating basal keratinocytes expressed HLA-DR, ICAM-1 and Leishmania antigen and closely interacted with CD4 T cells. Regional lymph nodes showed hyperplasia of the B- and T-cell zones. Conclusions: The inflammatory reaction in PKDL lesions is in response to Leishmania parasites and...... leishmaniasis: a light microscopical, immunohistochemical, and ultrastructural study of skin lesions and draining lymph nodes....

  9. Microscopic air void analysis of hardened Portland cement concrete by the isolated shadow technique

    Harris, Basil Mark

    The Isolated Shadow Technique is an image processing and analysis procedure for identifying and characterizing surface voids dispersed on an otherwise flat plane of heterogeneous solids. The objective of the Isolated Shadow Technique is to capture, process, and analyze images of a flat surface in which all of the features, save the boundary outlines of any surface voids, are eliminated. In short, the technique utilizes a series of digital images of the subject planar surface; where each image of the series is subjected to a unique lighting condition. By positioning the lights such that the shadows cast into the craters vary between images, these variations can be sequestered and the edges of the voids can subsequently be reconstructed from the isolated shadows. The primary purpose of this work was the development of the Isolated Shadow Technique for the particular application of quantitatively describing the microscopic voids in hardened Portland cement concrete. The Isolated Shadow System was developed for this application of the technique. The hardware and software of the system are described and the function is demonstrated. The system was found to have an average accuracy of 2.7% with a maximum deviation of 5.0% when compared to physical measurements. The results of polished sections of concrete specimens characterized by the Isolated Shadow System are compared to the results obtained with the commonly used standard methods (ASTM C 457; A and B). The coefficients of variation of parameters calculated to describe the air-void system (according to the ASTM C 457 formulations) are shown to be in the neighborhood of one percent when the observed test area includes at least 7,830 mmsp2 of polished concrete (with paste contents ranging from approximately 28% to 32%). The sensitivity of the air-void system parameters (as computed by the system) to changes in magnification and mosaic size are evaluated. A critical analysis of the underlying assumptions of the ASTM C

  10. Structural Alterations of the Glomerular Wall And Vessels in Early Stages of Diabetes Mellitus: Light and Transmission Electron Microscopic Study

    Dkhil MA


    Full Text Available Objective: The capillary changes at the initial stage of diabetes may show an angioarchitecture clearly different from those of later stages and,/or very severe glomerular change. However, the onset of alterations in the early phases is unclear. This study attempts to determine the functional and structural alterations of the glomerular wall and vesicles in the early stage of diabetes.Material and Methods: Twenty-five adult rats were used in this study. They were divided into two groups: the first group of five was used as a control .The second group of 20 (the experimental group was injected intraperitoneally by a single dose of streptozotocin to induce hyperglycemia. Rats were sacrificed after ten days, two months, and four months.Five rats at two months of age with hyperglycemia were treated with insulin for eight weeks. Renal tissues were prepared by routine technique for light and transmission electron microscopic evaluation. Results: By light microscopy after ten days of induced hyperglycemia, there were no structural modifications detected either in renal glomerular fine vessels or in the glomerular basement membrane of the glomerular capillaries. After two months, there was a moderate glomerular enlargement and dilatation of glomerular capillaries, afferent, and efferent arterioles. After four months, glomerular basement membrane thickening was the only structural alteration observed. Recovery of the glomerular alterations was observed after two months of treatment with insulin. Conclusion: In early stages of diabetes mellitus in rats, there was an increase in the diameter of glomerular vessels. In later stages of the disease, the reverse was seen, but insulin treatment had a positive role in reversing these changes in the study subjects.

  11. Per-Pixel Lighting Data Analysis

    Inanici, Mehlika


    This report presents a framework for per-pixel analysis of the qualitative and quantitative aspects of luminous environments. Recognizing the need for better lighting analysis capabilities and appreciating the new measurement abilities developed within the LBNL Lighting Measurement and Simulation Toolbox, ''Per-pixel Lighting Data Analysis'' project demonstrates several techniques for analyzing luminance distribution patterns, luminance ratios, adaptation luminance and glare assessment. The techniques are the syntheses of the current practices in lighting design and the unique practices that can be done with per-pixel data availability. Demonstrated analysis techniques are applicable to both computer-generated and digitally captured images (physically-based renderings and High Dynamic Range photographs).

  12. Modulation of the pupil function of microscope objective lens for multifocal multi-photon microscopy using a spatial light modulator

    Matsumoto, Naoya; Okazaki, Shigetoshi; Takamoto, Hisayoshi; Inoue, Takashi; Terakawa, Susumu


    We propose a method for high precision modulation of the pupil function of a microscope objective lens to improve the performance of multifocal multi-photon microscopy (MMM). To modulate the pupil function, we adopt a spatial light modulator (SLM) and place it at the conjugate position of the objective lens. The SLM can generate an arbitrary number of spots to excite the multiple fluorescence spots (MFS) at the desired positions and intensities by applying an appropriate computer-generated hologram (CGH). This flexibility allows us to control the MFS according to the photobleaching level of a fluorescent protein and phototoxicity of a specimen. However, when a large number of excitation spots are generated, the intensity distribution of the MFS is significantly different from the one originally designed due to misalignment of the optical setup and characteristics of the SLM. As a result, the image of a specimen obtained using laser scanning for the MFS has block noise segments because the SLM could not generate a uniform MFS. To improve the intensity distribution of the MFS, we adaptively redesigned the CGH based on the observed MFS. We experimentally demonstrate an improvement in the uniformity of a 10 × 10 MFS grid using a dye solution. The simplicity of the proposed method will allow it to be applied for calibration of MMM before observing living tissue. After the MMM calibration, we performed laser scanning with two-photon excitation to observe a real specimen without detecting block noise segments.

  13. Visualization and Characterization of High-Order Chromatin Fibers under Light Microscope during Interphase and Mitotic Stages in Plants


    Using genomic in situ hybridization with genomic DNA.high-order chromatin fibers were successfully exhibited under a light microscope through the cell cycle in barley,rice,maize and field bean.From the interphase to prophase and metaphase of mitosis,the fibers were basically similar.Each was estimated to be around 200 nm in diameter,but the strength of signals was not the same along the fiber length.Through the cell cycle a series of dynamic distribution changes occurred in the fibers.In the interphase,they were unraveled.At the early prophase they were arranged with parallel and mirror symmetry.During late-prophase and metaphase,the fibers were bundled and became different visible chromosomes.The parallel coiling and mirror symmetry structures were visible clearly until the metaphase.In anaphase they disappeared.During telophase,in peripheral regions of congregated chromosome group,borderlines of the chromosomes disappeared and the fibers were unraveled.This demonstrated that mitotic chromosomes are assembled and organized by parallel and adjacent coiling of the fibers and the fibers should be the highest order structure for DNA coiling.

  14. Light microscopic immunocytochemical localization of hepatic and intestinal types of fatty acid-binding proteins in rat small intestine.

    Shields, H M; Bates, M L; Bass, N M; Best, C J; Alpers, D H; Ockner, R K


    Monospecific antisera to purified hepatic fatty acid-binding protein (hFABP) and gut fatty acid-binding protein (gFABP) have been used to localize these two proteins in the small intestine of fed rats at the light microscopic level. Pieces of duodenum, jejunum, and ileum were removed from 4-, 10-, 20-, 22-, and 60-day-old Sprague-Dawley rats. Both cryostat and paraffin sections were studied for the presence of hFABP or gFABP by the avidin-biotin immunoperoxidase method. Slides were graded blind for the intensity of staining. Despite the structural and immunological differences between these two proteins, we showed no major differences between their staining patterns or their staining intensity throughout the intestine during postnatal development. The staining for both fatty acid-binding proteins was cytoplasmic. No brush border staining was found. Staining was more intense in the proximal rather than distal intestine, in the villus rather than crypt cells, and in the apex rather than the base of intestinal cells. Shifts in staining patterns, and staining intensity occurring during development may be related to variations in dietary fat intake, rates of cell proliferation, intestinal anatomy, and mechanisms for fat absorption.

  15. Electron microscopic and autoradiographic analysis of the distribution of the vagus nerve in the ferret stomach

    Al Muhtaseb, M. H. [محمد هاشم المحتسب; Kittani, H. F.


    In this study, tritiated leucine was injected into the vagal dorsal motor nucleus after acute and chronic partial vagotomy. The method of sampling of the stomach, application of % 2 test and the analysis of the electron microscopic autoradiographs revealed that the distribution of silver grains over the axon profiles were uniformly distributed over the body and pyloric areas of the stomach. Also a % test showed that the number of grains is independent of the area chosen. Statistical analysis ...

  16. Light-microscopic and electron-microscopic evaluation of short-term nerve regeneration using a biodegradable poly(DL-lactide-epsilon-caprolacton) nerve guide

    denDunnen, WFA; Stokroos, [No Value; Blaauw, EH; Holwerda, A; Pennings, AJ; Robinson, PH; Schakenraad, JM


    The aim of this study was to evaluate short-term peripheral nerve regeneration across a IO-mm gap, using a biodegradable poly(DL-lactide-epsilon-caprolacton) nerve guide, with an internal diameter of 1.5 mm and a wall thickness of 0.30 mm. To do so, we evaluated regenerating nerves using light micro

  17. Synchrotron radiation micro-X-ray fluorescence analysis: A tool to increase accuracy in microscopic analysis

    Adams, F


    Microscopic X-ray fluorescence (XRF) analysis has potential for development as a certification method and as a calibration tool for other microanalytical techniques. The interaction of X-rays with matter is well understood and modelling studies show excellent agreement between experimental data and calculations using Monte Carlo simulation. The method can be used for a direct iterative calculation of concentrations using available high accuracy physical constants. Average accuracy is in the range of 3-5% for micron sized objects at concentration levels of less than 1 ppm with focused radiation from SR sources. The end-station ID18F of the ESRF is dedicated to accurate quantitative micro-XRF analysis including fast 2D scanning with collection of full X-ray spectra. Important aspects of the beamline are the precise monitoring of the intensity of the polarized, variable energy beam and the high reproducibility of the set-up measurement geometry, instrumental parameters and long-term stability.

  18. Small intestinal mucosal injury in the experimental blind loop syndrome. Light- and electron-microscopic and histochemical studies.

    Toskes, P P; Giannella, R A; Jervis, H R; Rout, W R; Takeuchi, A


    Microscopic (light and electron) and histochemical abnormalities have been demonstrated in the jejunum of rats with the blind loop syndrome. Three groups of animals were studied: normal control animals, and animals with either self-filling (SF) or self-emptying (SE) blind loops. Vitamin B12 malabsorption and bacterial overgrowth occurred only in those animals with SF blind loops. Three jejunal segments were studied: the blind loop segment and the jejunal segments proximal and distal to the blind loop. In the animals with the blind loop syndrome, those with SF blind loops, the most striking findings occurred in the blind loop itself, with similar but less marked changes in the jejunum distal but not proximal to the blind loop segment. Hypertrophy of both crypts and villi was evident with focal abnormalities of villus architecture. Approximately 10 to 20% of the columnar cells in the upper half of the villi were swollen and vesiculated. By electron microscopy microvilli demonstrated a variety of degeneration changes and the glycocalyx and terminal web were disrupted. Mitochondria and endoplasmic reticulum (ER), both smooth and rough, were swollen. Concentric whorls of parallel membranes and long, curvilinear rough ER were present in the cytoplasm. Histochemically, there was loss of enzymatic activity in the epithelial brush border, mitochondria and ER. Inasmuch as bacterial invasion of the jejunal mucosa was not seen, the etiology of these changes is not known but may involve bacterial "toxins" or products of bacterial metabolism. These morphological observations demonstrate that both brush border and intracellular injury occur in the jejunal epithelial cell of rats with the experimental blind loop syndrome.

  19. High-speed video imaging and digital analysis of microscopic features in contracting striated muscle cells

    Roos, Kenneth P.; Taylor, Stuart R.


    The rapid motion of microscopic features such as the cross striations of single contracting muscle cells are difficult to capture with conventional optical microscopes, video systems, and image processing approaches. An integrated digital video imaging microscope system specifically designed to capture images from single contracting muscle cells at speeds of up to 240 Hz and to analyze images to extract features critical for the understanding of muscle contraction is described. This system consists of a brightfield microscope with immersion optics coupled to a high-speed charge-coupled device (CCD) video camera, super-VHS (S- VHS) and optical media disk video recording (OMDR) systems, and a semiautomated digital image analysis system. Components are modified to optimize spatial and temporal resolution to permit the evaluation of submicrometer features in real physiological time. This approach permits the critical evaluation of the magnitude, time course, and uniformity of contractile function throughout the volume of a single living cell with higher temporal and spatial resolutions than previously possible.

  20. Supercontinuum light sources for food analysis

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis


    . One track of Light & Food will target the mid-infrared spectral region. To date, the limitations of mid-infraredlight sources, such as thermal emitters, low-power laser diodes, quantum cascade lasers and synchrotron radiation, have precluded mid-IR applications where the spatial coherence, broad...... and in the factory. These solutions will combine bright and broadband infrared light sources, so-called supercontinuum light sources,with spectroscopy, chemometrics and processing expertise and thereby contribute to increased food quality through faster and more precise analysis of grains, soils and dairy products...

  1. Macroscopic and microscopic analysis of knife stab wounds on fleshed and clothed ribs.

    Ferllini, Roxana


    Stab wounds upon bone are analyzed to interpret the weapon used and the physical context in which the attack occurred. The literature demonstrates that most research conducted pertaining to wound patterns has been carried out on defleshed and unclothed bone samples, not adequately replicating actual circumstances. For this research, six half pig torsos (Sus scrofa), fleshed (including muscle, fat, epidermis, and dermis layers) and clothed, were stabbed using three knife types, applying both straight and downward thrusts. Analysis conducted macroscopically and through a scanning electron microscope with an environmental secondary electron detector revealed a general lack of consistency in wound pattern and associated secondary effects. Consequently, it was not possible to establish wound pattern per knife type as suggested in previous research or relate it to stab motion. Advantage of microscopic analysis was evident in recognizing wound traits and observation of trace evidence not visible macroscopically.

  2. Microscopic Polyangiitis

    ... are here: Home / Types of Vasculitis / Microscopic Polyangiitis Microscopic Polyangiitis First Description Who gets Microscopic Polyangiitis (the “ ... differences as to justify separate classifications. Who gets Microscopic Polyangiitis? A typical patient MPA can affect individuals ...

  3. Endoscopic vs. Microscopic Resection of Sellar Lesions-A Matched Analysis of Clinical and Socioeconomic Outcomes.

    Azad, Tej D; Lee, Yu-Jin; Vail, Daniel; Veeravagu, Anand; Hwang, Peter H; Ratliff, John K; Li, Gordon


    Direct comparisons of microscopic and endoscopic resection of sellar lesions are scarce, with conflicting reports of cost and clinical outcome advantages. To determine if the proposed benefits of endoscopic resection are realized on a population level. We performed a matched cohort study of 9,670 adult patients in the MarketScan database who underwent either endoscopic or microscopic surgery for sellar lesions. Coarsened matching was applied to estimate the effects of surgical approach on complication rates, length of stay (LOS), costs, and likelihood of postoperative radiation. We found that LOS, readmission, and revision rates did not differ significantly between approaches. The overall complication rate was higher for endoscopy (47% compared to 39%, OR 1.37, 95% CI 1.22-1.53). Endoscopic approach was associated with greater risk of neurological complications (OR 1.32, 95% CI 1.11-1.55), diabetes insipidus (OR 1.65, 95% CI 1.37-2.00), and cerebrospinal fluid rhinorrhea (OR 1.83, 95% CI 1.07-3.13) compared to the microscopic approach. Although the total index payment was higher for patients receiving endoscopic resection ($32,959 compared to $29,977 for microscopic resection), there was no difference in long-term payments. Endoscopic surgery was associated with decreased likelihood of receiving post-resection stereotactic radiosurgery (OR 0.67, 95% CI 0.49-0.90) and intensity-modulated radiation therapy (OR 0.78, 95% CI 0.65-0.93). Our results suggest that the transition from a microscopic to endoscopic approach to sellar lesions must be subject to careful evaluation. Although there are evident advantages to transsphenoidal endoscopy, our analysis suggests that the benefits of the endoscopic approach are yet to be materialized.

  4. Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation

    Gomez-Tames, Jose; Sugiyama, Yukiya; Laakso, Ilkka; Tanaka, Satoshi; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa


    Transcranial direct current stimulation (tDCS) is a neuromodulation scheme where a small current is delivered to the brain via two electrodes attached to the scalp. The electrode design is an important topic, not only as regards efficacy, but also from a safety perspective, as tDCS may be related to skin lesions that are sometimes observed after stimulation. Previous computational models of tDCS have omitted the effects of microscopic structures in the skin, and the different soak conditions of the electrodes, and model validation has been limited. In this study, multiphysics and multiscale analysis are proposed to demonstrate the importance of microscopic modeling of the skin, in order to clarify the effects of the internal electric field, and to examine temperature elevation around the electrodes. This novel microscopic model of the skin layer took into consideration the effect of saline/water penetration in hair follicles and sweat ducts on the field distribution around the electrodes. The temperature elevation in the skin was then computed by solving the bioheat equation. Also, a multiscale model was introduced to account for macroscopic and microscopic tissues of the head and skin, which was validated by measurement of the head resistance during tDCS. As a result, the electric field in the microscopic model of the skin was less localized when the follicles/ducts were filled with saline instead of hair or tap water. Temperature elevation was also lessened with saline, in comparison with other substances. Saline, which may penetrate the hair follicles and sweat ducts, suppressed the field concentration around the electrodes. For conventional magnitudes of current injection, and a head resistance of less than 10 kΩ, the temperature elevation in the skin when using saline-soaked electrodes was low, less than 0.1 °C, and unlikely to cause adverse thermal effects.

  5. Analysis of light regime in continuous light distributions in photobioreactors.

    Brindley, Celeste; Fernández, F G Acién; Fernández-Sevilla, J M


    Maximum photobioreactor (PBR) efficiency is a must in applications such as the obtention of microalgae-derived fuels. Improving PBR performance requires a better understanding of the "light regime", the varying irradiance that microalgal cells moving in a dense culture are exposed to. We propose a definition of light regime that can be used consistently to describe the continuously varying light patterns in PBRs as well as in light/dark cycles. Equivalent continuous and light/dark regimes have been experimentally compared and the results show that continuous variations are not well represented by light/dark cycles, as had been widely accepted. It has been shown that a correct light regime allows obtaining photosynthetic rates higher than the corresponding to continuous light, the so-called "flashing light effect" and that this is possible in commercial PBRs. A correct PBR operation could result in photosynthetic efficiency close to the optimum eight quanta per O(2).

  6. Regression of blood vessels in the ventral velum of Xenopus laevis Daudin during metamorphosis: light microscopic and transmission electron microscopic study.

    Bartel, H; Lametschwandtner, A


    Structural changes of the ventral velum of Xenopus laevis tadpoles from late prometamorphosis (stage 58) to the height of metamorphic climax (stage 62) were examined by light and transmission electron microscopy. Special emphasis was given to the blood vessel regression. Early changes of velar capillaries were formation of luminal and abluminal endothelial cell processes, vacuolation, and cytoplasmic and nuclear chromatin condensation. At the height of metamorphic climax, transmission electron microscopy revealed apoptotic endothelial cells with nuclear condensation and fragmentation, intraluminal bulging of rounded endothelial cells which narrowed or even plugged the capillary, and different stages of endothelial cell detachment ('shedding') into the vessel lumen. These changes explain the 'miniaturisation' of the velar microvascular bed as well as the typical features found in resin-casts of regressing velar vessels which have been observed in a previous scanning electron microscopy study of the ventral velum.

  7. Implicit methods for equation-free analysis: convergence results and analysis of emergent waves in microscopic traffic models

    Marschler, Christian; Sieber, Jan; Berkemer, Rainer


    against the direction of traffic. Equation-free analysis enables us to investigate the behavior of the microscopic traffic model on a macroscopic level. The standard deviation of cars' headways is chosen as the macroscopic measure of the underlying dynamics such that traveling wave solutions correspond...

  8. Evaluation of Malaria Diagnoses Using a Handheld Light Microscope in a Community-Based Setting in Rural Côte d'Ivoire.

    Coulibaly, Jean T; Ouattara, Mamadou; Keiser, Jennifer; Bonfoh, Bassirou; N'Goran, Eliézer K; Andrews, Jason R; Bogoch, Isaac I


    Portable microscopy may facilitate quality diagnostic care in resource-constrained settings. We compared a handheld light microscope (Newton Nm1) with a mobile phone attachment to conventional light microscopy for the detection of Plasmodium falciparum in a cross-sectional study in rural Côte d'Ivoire. Single Giemsa-stained thick blood film from 223 individuals were prepared and read by local laboratory technicians on both microscopes under 1,000× magnification with oil. Of the 223 samples, 162 (72.6%) were P. falciparum positive, and the overall mean parasite count was 1,392/μL of blood. Sensitivity and specificity of the handheld microscope was 80.2% (95% confidence interval [CI]: 73.1-85.9%) and 100.0% (95% CI: 92.6-100.0%), respectively, with a positive and negative predictive value of 100.0% (95% CI: 96.4-100.0%) and 65.6% (95% CI: 54.9-74.9%), respectively. If sensitivity can be improved, handheld light microscopy may become a valuable public health tool for P. falciparum diagnosis.

  9. Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

    Nakanishi, Hidetoshi, E-mail:; Ito, Akira, E-mail: [SCREEN Holdings Co., Ltd., Kyoto, 612-8486 (Japan); Takayama, Kazuhisa, E-mail:; Kawayama, Iwao, E-mail:; Murakami, Hironaru, E-mail:; Tonouchi, Masayoshi, E-mail: [Institute of Laser Engineering, Osaka University, Suita, 565-0871 (Japan)


    A laser terahertz emission microscope (LTEM) can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL), photoluminescence (PL), and laser beam induced current (LBIC), as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

  10. Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

    Hidetoshi Nakanishi


    Full Text Available A laser terahertz emission microscope (LTEM can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL, photoluminescence (PL, and laser beam induced current (LBIC, as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

  11. A light and electron microscopic study of the inferior olivary nucleus of the squirrel monkey, Saimiri sciureus.

    Rutherford, J G; Gwyn, D G


    This study provides a description of the normal morphology of the inferior olive of the squirrel monkey, Saimiri sciureus, at the light and electron imcroscopic level. The cytoarchitecture of the inferior olive was maped from serial transverse sections stained with cresyl violet. In common with other mammals, the inferior olive of the squirrel monkey consists of three subdivisions. The medial accessory olive includes seven subnuclei. Both the dorsal and medial accessory olives extend through approximately 90% of the total length of the inferior olivary complex. The principal olive, consisting of a dorsal and ventral lamella continuous with one another laterally, extends through the rostral 55% of the inferior olive. It is somewhat less convoluted than the principal olive of the macaque (Bowman and Sladek, '73). In most other respects, the inferior olive of the two primates is quite similar. Two patterns of dendritic arborization are noted in Golgi preparations from the caudal principal and accessory olives. Dendrites streaming away from the soma, and dendrites curling around the soma in a "ball-like" pattern were observed in all three subdivisions of the inferior olive caudally. Simple spines are occasionally seen on the soma, and a few simple or club-shaped spines were noted on the proximal portion of the dendritic arborization. Spines are more numerous on distal portions of the dendritic tree, however, and include simple, filiform, club-shaped and occasionally complex, or racemous, spiny appendages. Viewed in the electron microscope, most inferior olivary neurons are seen to contain the typical organelles with the usual conformation and distribution. Rarely, a neuron with an indented nucleus and a thin rim of cytoplasm containing a paucity of organelles and a wispy endoplasmic reticulum is encountered. Axon terminals containing either clear round or clear pleomorphic vesicles are seen in all three olivary subdivisions. In a random survey of 706 axon terminals, 54

  12. Light and electron microscopic cytochemistry of glycoconjugates in the rectosigmoid colonic epithelium of the mouse and rat.

    Thomopoulos, G N; Schulte, B A; Spicer, S S


    The several cell types in mouse and rat rectosigmoid colon have been examined with light and electron microscopic methods for localizing and characterizing complex carbohydrates. Mucous cells, also termed vacuolated cells, and goblet cells comprised most of the deep crypt epithelium in both species, and absorptive columnar cells and goblet cells mainly populated the more superficial epithelium of the upper crypts and main lumen. Occasional tuft cells and enteroendocrine cells were also encountered. Transitional cells structurally intermediate between mucous cells and absorptive cells contained granules characteristic of mucous cells and vesicles like those of columnar absorptive cells. These intermediate cells supported the concept of replacement of mucous by absorptive cells through transformation of mucous into absorptive cells. The intermediate cells also contained numerous lysosomes often in apparent fusion with mucous granules, indicating crinophagic disposal of mucous granules as a mechanism in the cell transformation. Glycoconjugate in absorptive cell vesicles resembled that coating the apical plasmalemma and appeared to represent the source of the glycocalyx of the brush border. Complex carbohydrate in these vesicles differed cytochemically from that of the mucous cell granules, which release their content into the crypt lumen. The absorptive cell vesicles, therefore, constitute an organelle distinct from the mucous cell granules rather than an atrophic form of the latter in a more mature cell. Goblet cells differed in failing to transform morphologically with age but changed in the cytochemical characteristic of their secretion during migration up the crypts. Terminal N-acetylglucosamine residues diminished, while terminal sialic acid-galactose dimers increased during the upward migration, indicating activation of glycosyl transferase synthesis in relation to goblet cell maturation. Glycoconjugate in secretion of mucous cell granules differed markedly from

  13. Anisotropic Contrast Optical Microscope

    Peev, D; Kananizadeh, N; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M


    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. We demonstrate the anisotropic contrast optical microscope by mea...

  14. Thermal and microscope analysis as a tool in the characterisation of ancient papyri

    Franceschi, E.; Luciano, G.; Carosi, F.; Cornara, L.; Montanari, C


    Analyses of papyrus plants (Cyperus papyrus L.) from the Botanical Garden of the University of Genova and Ciane River (Siracusa) were used as a basis for the detection of histological features in papyrus paper. Both modern and ancient papyrus papers were analysed. Modern papyrus were manufactured at 'Museo del Papiro di Siracusa'; two types of ancient papyrus (Egyptian and Greek-Roman, from Cairo Archaeological Museum) were studied. Sections of paper and plant stalks, taken 20 cm from the top, were examined under a scanning electron microscopy (SEM) and optical microscope (OM). The lignificated parts of both the plant and paper were either red (using acid flouroglucine) or blue-green (using Toluidine Blue) and were refracting under polarised light microscopy. Calcium oxalate crystals and starch granules were also detected. It was clear that the ancient Egyptian paper is richer in starch in comparison to the Roman one. It could be presumed that the Egyptian paper contains starch, a material which naturally occurs in the plant as a reserve. It was, in fact, preferably found in the residuals of the vascular bundle sheath. Microscope observations were compared with the results obtained by thermal and calorimetric analyses (TG and DSC). Thermal curves were different depending on which part of the plant was used to manufacture the papyrus and probably depend on the amount of cellulose and lignin present. Moreover, the Egyptian and Greek-Roman were also different in thermal behaviour.

  15. Analysis of Microvascular Free Flap Failure Focusing on the Microscopic Findings of the Anastomosed Vessels.

    Seo, Mi Hyun; Kim, Soung Min; Huan, Fan; Myoung, Hoon; Lee, Jong Ho; Lee, Suk Keun


    Microvascular flap reconstruction is known as successful technique, although vascular thrombosis can cause free flap failure. To analyze the histologic characteristics and causes of free flap failure, this clinical study examined failed free flaps, including the microanastomosed sites. This study included a total of 5 failed flaps, including 3 radial forearm free flaps, 1 latissimus dorsi free flap, and 1 fibular free flap, all performed with microvascular reconstruction surgery from 2009 to 2011 at Seoul National University Dental Hospital. At the resection surgeries of the failed nonviable flaps, histologic specimens including the microanastomosed vessels were acquired. For light microscope observation, the slides were stained with hematoxylin and eosin (HE), and also with Masson trichrome. Selected portions of graft tissue were also observed under transmission electron microscope (TEM). It was found that the cause of flap failure was the occlusion of vessels because of thrombi formation. During the microanastomosis, damage to the vessel endothelium occurred, followed by intimal hyperplasia and medial necrosis at the anastomosed site. In the TEM findings, some smooth muscle cells beneath endothelium were atrophied and degenerated. The formation of thrombi and the degeneration of the smooth muscle cells were coincident with vascular dysfunction of graft vessel. The damaged endothelium and the exposed connective tissue elements might initiate the extrinsic pathway of thrombosis at the microanastomotic site. Therefore, it is suggested that accurate surgical planning, adequate postoperative monitoring, and skillful technique for minimizing vascular injury are required for successful microvascular transfer.

  16. Scanning electron microscopic analysis of incinerated teeth: An aid to forensic identification

    Chetan A Pol


    Full Text Available Background: Forensic dental identification of victims involved in fire accidents is often a complex and challenging endeavor. Knowledge of the charred human dentition and residues of restorative material can help in the recognition of bodies burned beyond recognition. Aim: To observe the effects of predetermined temperatures on healthy unrestored teeth and different restorative materials in restored teeth, by scanning electron microscope, for the purpose of identification. Materials and Methods: The study was conducted on 135 extracted teeth, which were divided into four groups. Group 1-healthy unrestored teeth, group 2-teeth restored with all ceramic crowns, group 3-teeth restored with class I composite resin and group 4-teeth restored with class I glass ionomer cement (GIC. Results: The scanning electron microscope is useful in the analysis of burned teeth, as it gives fine structural details, requires only a small sample and does not destroy the already fragile specimen. Conclusion: Scanning electron microscope can be a useful tool for the characterization and study of severely burnt teeth for victim identification.

  17. Observing Fluorescent Probes in Living Cells using a Low-Cost LED Flashlight Retrofitted to a Common Vintage Light Microscope

    G. A. Babbitt


    Full Text Available While the application of molecular biological techniques based upon fluorescent probes has rapidly expanded over recent decades, the equipment cost of fluorescent microscopy has largely prevented its adoption in the college and high school classroom. We offer a simple solution to this problem by describing in detail how to build with simple tools, a fluorescent microscope using a common brand of colored LED flashlights and second-hand components of vintage Nikon microscopes. This extremely low cost solution is qualitatively compared to an expensive modern Zeiss system.

  18. Microscopic colitis.

    Ianiro, Gianluca; Cammarota, Giovanni; Valerio, Luca; Annicchiarico, Brigida Eleonora; Milani, Alessandro; Siciliano, Massimo; Gasbarrini, Antonio


    Microscopic colitis may be defined as a clinical syndrome, of unknown etiology, consisting of chronic watery diarrhea, with no alterations in the large bowel at the endoscopic and radiologic evaluation. Therefore, a definitive diagnosis is only possible by histological analysis. The epidemiological impact of this disease has become increasingly clear in the last years, with most data coming from Western countries. Microscopic colitis includes two histological subtypes [collagenous colitis (CC) and lymphocytic colitis (LC)] with no differences in clinical presentation and management. Collagenous colitis is characterized by a thickening of the subepithelial collagen layer that is absent in LC. The main feature of LC is an increase of the density of intra-epithelial lymphocytes in the surface epithelium. A number of pathogenetic theories have been proposed over the years, involving the role of luminal agents, autoimmunity, eosinophils, genetics (human leukocyte antigen), biliary acids, infections, alterations of pericryptal fibroblasts, and drug intake; drugs like ticlopidine, carbamazepine or ranitidine are especially associated with the development of LC, while CC is more frequently linked to cimetidine, non-steroidal antiinflammatory drugs and lansoprazole. Microscopic colitis typically presents as chronic or intermittent watery diarrhea, that may be accompanied by symptoms such as abdominal pain, weight loss and incontinence. Recent evidence has added new pharmacological options for the treatment of microscopic colitis: the role of steroidal therapy, especially oral budesonide, has gained relevance, as well as immunosuppressive agents such as azathioprine and 6-mercaptopurine. The use of anti-tumor necrosis factor-α agents, infliximab and adalimumab, constitutes a new, interesting tool for the treatment of microscopic colitis, but larger, adequately designed studies are needed to confirm existing data.

  19. Microscopic colitis

    Gianluca Ianiro; Giovanni Cammarota; Luca Valerio; Brigida Eleonora Annicchiarico; Alessandro Milani; Massimo Siciliano; Antonio Gasbarrini


    Microscopic colitis may be defined as a clinical syndrome,of unknown etiology,consisting of chronic watery diarrhea,with no alterations in the large bowel at the endoscopic and radiologic evaluation.Therefore,a definitive diagnosis is only possible by histological analysis.The epidemiological impact of this disease has become increasingly clear in the last years,with most data coming from Western countries.Microscopic colitis includes two histological subtypes [collagenous colitis (CC) and lymphocytic colitis (LC)] with no differences in clinical presentation and management.Collagenous colitis is characterized by a thickening of the subepithelial collagen layer that is absent in LC.The main feature of LC is an increase of the density of intra-epitll lial lymphocytes in the surface epithelium.A number of pathogenetic theories have been proposed over the years,involving the role of luminal agents,autoimmunity,eosinophils,genetics (human leukocyte antigen),biliary acids,infections,alterations of pericryptal fibroblasts,and drug intake; drugs like ticlopidine,carbamazepine or ranitidine are especially associated with the development of LC,while CC is more frequently linked to cimetidine,non-steroidal antiinflammatory drugs and lansoprazole.Microscopic colitis typically presents as chronic or intermittent watery diarrhea,that may be accompanied by symptoms such as abdominal pain,weight loss and incontinence.Recent evidence has added new pharmacological options for the treatment of microscopic colitis:the role of steroidal therapy,especially oral budesonide,has gained relevance,as well as immunosuppressive agents such as azathioprine and 6-mercaptopurine.The use of anti-tumor necrosis factor-α agents,infliximab and adalimumab,constitutes a new,interesting tool for the treatment of microscopic colitis,but larger,adequately designed studies are needed to confirm existing data.

  20. Microscopic analysis of Spodoptera frugiperda (Lepidoptera: Noctuidae) embryonic development before and after treatment with azadirachtin, lufenuron, and deltamethrin.

    Correia, Alicely A; Wanderley-Teixeira, Valéria; Teixeira, Alvaro A C; Oliveira, José V; Gonçalves, Gabriel G A; Cavalcanti, MaríIia G S; Brayner, Fábio A; Alves, Luiz C


    The botanical insecticides, growth regulators, and pyrethroids have an effect on the biology of Spodoptera frugiperda (Smith). However, no emphasis has been given to the effect of these insecticides on embryonic development of insects, in histological level. Thus, this research aimed to examine by light and scanning electron microscopy S. frugiperda eggs and to describe the embryonic development, before and after immersion treatment, using commercial concentrations and lower concentrations than commercial ones, of the compounds lufenuron (Match), azadirachtin (AzaMax), and deltamethrin (Decis-positive control). For light microscopy semithin sections of eggs were used, and for scanning electron microscopy, images of the surface of eggs, treated and untreated with insecticides. The morphological characteristics of S. frugiperda eggs, in general, were similar to those described in the literature for most of the insects in the order Lepidoptera. Spherical eggs slightly flattened at the poles, with chorion, yolk, vitelline membrane, and embryo formation. In both microscopic analysis, we observed that insecticides acted immediately and independent of concentration, resulting absence, or incomplete embryo, presented yolk granules widely dispersed, without vitellophage formation, chorion disintegration, disorganized blastoderm, presenting vacuoles, yolk region with amorphous cells, and formation of completely uncharacterized appendages. Thus, we conclude that the compounds lufenuron and azadirachtin interfere on S. frugiperda embryonic development.

  1. Estimation of safe exposure time from an ophthalmic operating microscope with regard to ultraviolet radiation and blue-light hazards to the eye

    Michael, Ralph; Wegener, Alfred


    Hazards from the optical radiation of an operating microscope that cause damage at the corneal, lenticular, and retinal levels were investigated; we considered, in particular, ultraviolet radiation (UVR) and blue light. The spectral irradiance from a Zeiss operation microscope OPMI VISU 200 was measured in the corneal plane between 300 and 1100 nm. Effective irradiance and radiance were calculated with relative spectral effectiveness data from the American Conference for Governmental and Industrial Hygienists. Safe exposure time to avoid UVR injury to the lens and cornea was found to be 2 h without a filter, 4 h with a UVR filter, 200 h with a yellow filter, and 400 h with a filter combination. Safe exposure time to avoid retinal photochemical injury was found to be 3 min without a filter and with a UVR filter, 10 min with a yellow filter, and 49 min with a filter combination. The effective radiance limit for retinal thermal injury was not exceeded. The hazard due to the UVR component from the operating microscope is not critical, and operation time can be safely prolonged with the use of appropriate filters. The retinal photochemical hazard appears critical without appropriate filters, permitting only some minutes of safe exposure time. The calculated safe exposure times are for worst-case conditions and maximal light output and include a safety factor.

  2. Analysis of membrane electrode assembly (MEA) by environmental scanning electron microscope (ESEM)

    Yu, H.M.; Schumacher, J.O.; Zobel, M.; Hebling, C. [Fraunhofer Institute of Solar Energy System, Heidenhofstrasse 2, D-79110 Freiburg (Germany)


    To date, the available equipment for characterising the microstructure of membrane electrode assembly (MEA) is still not well developed. For example, applying the normal scanning electron microscope (SEM) only provides information on the dry structure of MEAs. This paper presents a microstructure analysis method of MEAs in proton exchange membrane fuel cells (PEMFC). The microstructure analysis in this paper utilises the environmental scanning electron microscope (ESEM), which shows its advantage on the sample microstructure analysis in wet mode. When water is present, the characteristics of the MEA, especially the hydrophobic and/or hydrophilic properties, are distinguishable on the ESEM images. With proper temperature and pressure control, the water distribution within both the membrane and the catalyst layer can be viewed by ESEM. Based on ESEM measurement and mercury porosity measurement, the distributions of hydrophobic and hydrophilic pores in MEA have been analyzed. By means of ESEM and energy dispersive X-ray (EDX), a degraded MEA is characterized. The microstructure change of the degraded MEA has been discussed. The results provide helpful information for the understanding of MEAs in PEMFC. (author)

  3. Short-term outcome of endoscopic versus microscopic pituitary adenoma surgery: a systematic review and meta-analysis.

    Ammirati, Mario; Wei, Lai; Ciric, Ivan


    Endoscopic transsphenoidal pituitary surgery has become increasingly more popular for the removal of pituitary adenomas. It is also widely recognised that transsphenoidal microscopic removal of pituitary adenomas is a well-established procedure with good outcomes. Our objective was to meta-analyse the short-term results of endoscopic and microscopic pituitary adenoma surgery. We undertook a systematic review of the English literature on results of transsphenoidal surgery, both microscopic and endoscopic from 1990 to 2011. Series with less than 10 patients were excluded. Pooled data were analysed using meta-analysis techniques to obtain estimate of death, complication rates and extent of tumour removal. Complications evaluated included cerebrospinal fluid leak, meningitis, vascular complications, visual complications, diabetes insipidus, hypopituitarism and cranial nerve injury. Data were also analysed for tumour size and sex. 38 studies met the inclusion criteria yielding 24 endoscopic and 22 microscopic datasets (eight studies included both endoscopic and microscopic series). Meta-analysis of the available literature showed that the endoscopic transsphenoidal technique was associated with a higher incidence of vascular complications (pmicroscopic technique and the incidence of reported vascular complications was higher with endoscopic than with microscopic removal of pituitary adenomas. While we recognise the limitations of meta-analysis, our study suggests that a multicentre, randomised, comparative effectiveness study of the microscopic and endoscopic transsphenoidal techniques may be a reasonable approach towards establishing a true valuation of these techniques.

  4. Microscopic analysis of subcutaneous reactions to endodontic sealer implants in rats.

    Batista, Renata F C; Hidalgo, Miriam M; Hernandes, Luzmarina; Consolaro, Alberto; Velloso, Tânia R G; Cuman, Roberto K N; Caparroz-Assef, Silvana M; Bersani-Amado, Ciomar A


    The reaction of subcutaneous tissues to Endofill, Endomethasone, Sealer 26, and AH-Plus was investigated microscopically after implantation of in rats polyethylene cannulae, obturated with gutta-percha cones and sealers, in rats. Empty polyethylene cannulae and cannulae filled with gutta-percha cones alone were used as controls. The inflammatory reactions caused by the sealers were evaluated 7, 14, and 30 days after implantation using a descriptive, histopathological analysis. Inflammatory reactions at each implant site were gauged as either absent, discreet, moderate, or intense, and scores from 0 to 3 were attributed, respectively. Microscopic analysis revealed that Endomethasone showed the best biological behavior for all postimplant periods, followed by Sealer 26 and AH Plus, which produced an irritating effect only during the initial pos-implant period. Endofill caused the severest irritation, producing an inflammatory reaction that ranged from moderate to intense over the entire experimental period. Reactions were more intense near those parts of the cannulae containing more sealer. These results reveal that the root canal sealers tested cause inflammation in rat, subcutaneous conjunctive tissue, the intensity of which may be related to the type and quantity of sealer used, and to postimplant period.

  5. Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue: A hyperspectral microscopic imaging analysis

    Li, Qingli; Liu, Hongying; Wang, Yiting; Sun, Zhen; Guo, Fangmin; Zhu, Jianzhong


    Histological observation of dual-stained colon sections is usually performed by visual observation under a light microscope, or by viewing on a computer screen with the assistance of image processing software in both research and clinical settings. These traditional methods are usually not sufficient to reliably differentiate spatially overlapping chromogens generated by different dyes. Hyperspectral microscopic imaging technology offers a solution for these constraints as the hyperspectral microscopic images contain information that allows differentiation between spatially co-located chromogens with similar but different spectra. In this paper, a hyperspectral microscopic imaging (HMI) system is used to identify methyl green and nitrotetrazolium blue chloride in dual-stained colon sections. Hyperspectral microscopic images are captured and the normalized score algorithm is proposed to identify the stains and generate the co-expression results. Experimental results show that the proposed normalized score algorithm can generate more accurate co-localization results than the spectral angle mapper algorithm. The hyperspectral microscopic imaging technology can enhance the visualization of dual-stained colon sections, improve the contrast and legibility of each stain using their spectral signatures, which is helpful for pathologist performing histological analyses.

  6. Analysis of confocal microscopy under ultrashort light-pulse illumination

    Kempe, M.; Rudolph, W. (Univ. of New Mexico, Albuquerque (United States))


    The resolution of confocal laser scanning microscopes is analyzed if they are used in measurements that are to combine high spatial and high temporal resoltuion. A generalized Fourier-optical treatment is developed in which the system characteristics contain all necessary information regarding the optical arrangement and the illuminating light pulses. Coherent and incoherent imaging are considered in detail. 10 refs., 8 figs.

  7. Development of olfactory epithelium and associated structures in the green iguana, Iguana iguana—light and scanning electron microscopic study

    Olga Sapoznikov; Petr Cizek; Frantisek Tichy


    The ontogenesis of the nasal cavity has been described in many mammalian species. The situation is different with reptiles, despite the fact that they have become relatively common as pets. In this study we focused on the ontogenesis of the olfactory epithelium, as well as other types of epithelia in the nasal cavity of pre-hatched green iguanas (Iguana iguana). Collection of samples began from day 67 of incubation and continued every four days until hatching. Microscopic examination revealed...

  8. Microscope-based imaging platform for large-scale analysis of oral biofilms.

    Karygianni, L; Follo, M; Hellwig, E; Burghardt, D; Wolkewitz, M; Anderson, A; Al-Ahmad, A


    A microscopic method for noninvasively monitoring oral biofilms at the macroscale was developed to describe the spatial distribution of biofilms of different bacterial composition on bovine enamel surfaces (BES). For this purpose, oral biofilm was grown in situ on BES that were fixed at approximal sites of individual upper jaw acrylic devices worn by a volunteer for 3 or 5 days. Eubacteria, Streptococcus spp., and Fusobacterium nucleatum were stained using specific fluorescence in situ hybridization (FISH) probes. The resulting fluorescence signals were subsequently tested by confocal laser scanning microscopy (CLSM) and monitored by an automated wide-field microscope-based imaging platform (Scan∧R). Automated image processing and data analysis were conducted by microscope-associated software and followed by statistical evaluation of the results. The full segmentation of biofilm images revealed a random distribution of bacteria across the entire area of the enamel surfaces examined. Significant differences in the composition of the microflora were recorded across individual as well as between different enamel surfaces varying from sparsely colonized (47.26%) after 3 days to almost full surface coverage (84.45%) after 5 days. The enamel plates that were positioned at the back or in the middle of the oral cavity were found to be more suitable for the examination of biofilms up to 3 days old. In conclusion, automated microscopy combined with the use of FISH can enable the efficient visualization and meaningful quantification of bacterial composition over the entire sample surface. Due to the possibility of automation, Scan∧R overcomes the technical limitations of conventional CLSM.

  9. The Correlation Confocal Microscope

    Simon, D S


    A new type of confocal microscope is described which makes use of intensity correlations between spatially correlated beams of light. It is shown that this apparatus leads to significantly improved transverse resolution.

  10. Confocal laser scanning microscopic analysis of ectopic sublingual gland-like tissue inside the hamster submandibular gland.

    Moriguchi, Keiichi; Utsumi, Michiya; Ohno, Norikazu


    Based on its histochemical properties, the secretory portion of the hamster submandibular gland has been classified as seromucous cells. The presence of endogenous peroxidase (PO) reaction was shown in the nuclear envelope, cisternae of endoplasmic reticulum and Golgi apparatus. The 3,3'-diaminobenzidene, tetrahydrochloride (DAB) method revealed bipartite secretory granules containing a PO-positive dense core surrounded by a less dense halo in these cells. In the present investigation, serous and mucous-like cells were found in resin-embedded semi-thin sections of the DAB-reacted hamster submandibular gland. These sections were already on glass slides for routine light microscopic observations, therefore electron microscopic analysis could be unrealizable. We then used reflectance-mode confocal laser scanning microscopy to visualize additional sites of PO activity as detected in these sections. Using this approach, we found mucous cells with PO activity-negative secretory granules and seromucous cells with PO activity-positive spot-like secretory granules of the regular sublingual gland most frequently adjacent to the serous cells with typical electron-dense secretory granules. These cells clearly differ from the seromucous cells with bipartite secretory granules and the granular duct cells with typical electron-dense secretory granules of the hamster submandibular gland. Additionally, secretory endpieces of the ectopic sublingual gland-like tissue empty into the duct of the hamster submandibular gland lobule. Thus, our findings suggest that a mass of sublingual gland tissue extends into the hamster submandibular gland during its development, and PO may be synthesized and secreted into the same duct.

  11. Characterization of process-induced damage in Cu/low-k interconnect structure by microscopic infrared spectroscopy with polarized infrared light

    Seki, Hirofumi; Hashimoto, Hideki; Ozaki, Yukihiro


    Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopic IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH3 bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.

  12. Quantitative interferometric microscopic flow cytometer with expanded principal component analysis method

    Wang, Shouyu; Jin, Ying; Yan, Keding; Xue, Liang; Liu, Fei; Li, Zhenhua


    Quantitative interferometric microscopy is used in biological and medical fields and a wealth of applications are proposed in order to detect different kinds of biological samples. Here, we develop a phase detecting cytometer based on quantitative interferometric microscopy with expanded principal component analysis phase retrieval method to obtain phase distributions of red blood cells with a spatial resolution ~1.5 μm. Since expanded principal component analysis method is a time-domain phase retrieval algorithm, it could avoid disadvantages of traditional frequency-domain algorithms. Additionally, the phase retrieval method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological cells are scanned in the field of view. We believe this method can be a powerful tool to quantitatively measure the phase distributions of different biological samples in biological and medical fields.

  13. Macroscopic and microscopic analysis of mass transfer in reversed phase liquid chromatography.

    Bacskay, Ivett; Felinger, Attila


    For the correct description of a chromatographic process, the determination of mass-transfer kinetics in the column is required because the influence of the mass-transfer kinetics on the shape of chromatographic band profiles is crucial. Several sources of mass transfer in a chromatographic bed have been identified and studied: the axial dispersion in the stream of mobile phase, the external mass-transfer resistance, intraparticle diffusion, and the kinetics of adsorption-desorption In this study we compare mass-transfer coefficients obtained in a reversed phase chromatographic column using macroscopic and microscopic approaches. The general rate model, the plate height equation, moment analysis, and stochastic analysis were used to assess chromatographic process during the separation of alkylbenzenes.

  14. Regression analysis with missing data and unknown colored noise: application to the MICROSCOPE space mission

    Baghi, Q; Bergé, J; Christophe, B; Touboul, P; Rodrigues, M


    The analysis of physical measurements often copes with highly correlated noises and interruptions caused by outliers, saturation events or transmission losses. We assess the impact of missing data on the performance of linear regression analysis involving the fit of modeled or measured time series. We show that data gaps can significantly alter the precision of the regression parameter estimation in the presence of colored noise, due to the frequency leakage of the noise power. We present a regression method which cancels this effect and estimates the parameters of interest with a precision comparable to the complete data case, even if the noise power spectral density (PSD) is not known a priori. The method is based on an autoregressive (AR) fit of the noise, which allows us to build an approximate generalized least squares estimator approaching the minimal variance bound. The method, which can be applied to any similar data processing, is tested on simulated measurements of the MICROSCOPE space mission, whos...

  15. Scholarly metrics under the microscope from citation analysis to academic auditing

    Sugimoto, Cassidy R


    Interest in bibliometrics the quantitative analysis of publications, authors, bibliographic references, and related concepts has never been greater, as universities, research councils, national governments, and corporations seek to identify robust indicators of research effectiveness. In Scholarly Metrics Under the Microscope, editors Blaise Cronin and Cassidy R. Sugimoto bring together and expertly annotate a wealth of previously published papers, harvested from a wide range of journals and disciplines, that provide critical commentary on the use of metrics, both established and emerging, to assess the quality of scholarship and the impact of research. The expansive overview and analysis presented in this remarkable volume will be welcomed by any scholar or researcher who seeks a deeper understanding of the role and significance of performance metrics in higher education, research evaluation, and science policy.

  16. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun


    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  17. A scanning electron microscope method for automated, quantitative analysis of mineral matter in coal

    Creelman, R.A.; Ward, C.R. [R.A. Creelman and Associates, Epping, NSW (Australia)


    Quantitative mineralogical analysis has been carried out in a series of nine coal samples from Australia, South Africa and China using a newly-developed automated image analysis system coupled to a scanning electron microscopy. The image analysis system (QEM{asterisk}SEM) gathers X-ray spectra and backscattered electron data from a number of points on a conventional grain-mount polished section under the SEM, and interprets the data from each point in mineralogical terms. The cumulative data in each case was integrated to provide a volumetric modal analysis of the species present in the coal samples, expressed as percentages of the respective coals` mineral matter. Comparison was made of the QEM{asterisk}SEM results to data obtained from the same samples using other methods of quantitative mineralogical analysis, namely X-ray diffraction of the low-temperature oxygen-plasma ash and normative calculation from the (high-temperature) ash analysis and carbonate CO{sub 2} data. Good agreement was obtained from all three methods for quartz in the coals, and also for most of the iron-bearing minerals. The correlation between results from the different methods was less strong, however, for individual clay minerals, or for minerals such as calcite, dolomite and phosphate species that made up only relatively small proportions of the mineral matter. The image analysis approach, using the electron microscope for mineralogical studies, has significant potential as a supplement to optical microscopy in quantitative coal characterisation. 36 refs., 3 figs., 4 tabs.

  18. Microbiological and microscopic analysis of the pulp of non-vital traumatized teeth with intact crowns

    Kely Firmino Bruno


    Full Text Available OBJECTIVE: This study evaluated the presence of microorganisms and analyzed microscopically the pulp of 20 traumatized human teeth with intact crowns and clinical diagnosis of pulp necrosis, based on the association of at least three of the clinical criteria: crown discoloration, negative response to thermal and electric pulp vitality tests, positive response to vertical and horizontal percussion, pain on palpation or mobility. MATERIAL AND METHODS: Microbiological collection was performed from the root canals to evaluate the presence of microorganisms. The pulp samples were stained with hematoxylin and eosin (H.E. for histological evaluation of possible morphological alterations. RESULTS: Analysis of results was performed by statistical tests (linear regression test and diagnostic analysis and subjective analysis of the sections stained with H.E. and revealed that only 15% of the sample did not exhibit microbial development. The time elapsed between dental trauma and onset of endodontic intervention ranged from 15 days to 31 months; the percussion test presented high sensitivity (80% for detection of microorganisms in the root canal of traumatized teeth; 3 teeth (15% did not present pulp tissue, being characterized as complete autolysis; analysis of pulp samples was performed on the other 17 cases, among which 3 (15% exhibited partial necrosis without possibility of repair and 14 presented complete necrosis; none of the clinical criteria employed for the diagnosis of pulp necrosis in traumatized teeth was pathognomonic. CONCLUSIONS: The present results allowed the following conclusions: with regard to microbiological findings, 85% of teeth presented microorganisms in the root canal, despite the presence of an intact crown. Concerning the microscopic findings, 100% of traumatized teeth presented pulp necrosis; the pulp vitality tests based on pulp response to heat, cold and vertical percussion were the most reliable to diagnose pulp necrosis in

  19. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright


    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  20. Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using (/sup 3/H)pirenzepine

    Yamamura, H.I.; Deshmukh, P.; Roeske, W.R. (Arizona Univ., Tucson (USA). Health Sciences Center); Wamsley, J.K. (Utah Univ., Salt Lake City (USA). Medical Center)


    Recently, the authors demonstrated that radiolabelled pirenzepine ((/sup 3/H)PZ) bound to a high affinity population of muscarinic binding sites in the rat cerebral cortex, hippocampus, and corpus striatum. However, in the heart, cerebellum and ileum they found little or no (/sup 3/H)PZ binding. These data suggest that (/sup 3/H)PZ labels a subpopulation of muscarinic receptors. The present study examines the light microscopic autoradiographic localization of 3-(/sup 3/H)quinuclidinyl benzilate, (-)(/sup 3/H)QNB, an antagonist which labels muscarinic receptors with equal affinity and compares its localization to (/sup 3/H)PZ in the rat brainstem and spinal cord.

  1. Frequency of apoptotic keratinocytes in the feline epidermis: a retrospective light-microscopic study of skin-biopsy specimens from 327 cats with normal skin or inflammatory dermatoses.

    Vogel, Jeff W; Scott, Danny W; Erb, Hollis N


    A retrospective light-microscopic study was performed on 294 biopsy specimens of haired skin from cats with various feline inflammatory dermatoses and specimens from cats with normal skin. Conditions expected to frequently have apoptotic epidermal keratinocytes (AKs) (including erythema multiforme, systemic lupus erythematosus, thymoma-associated exfoliative dermatitis, solar dermatitis, and viral dermatopathies) were found to have significantly more AKs than other types of inflammatory dermatoses. Nevertheless, we found more than two AKs in many skin-biopsy specimens from inflammatory conditions not expected to have frequent AKs (especially those from ectoparasitic dermatoses). Only a single AK was found in 1/33 cats with normal skin.

  2. Nanometer scale elemental analysis in the helium ion microscope using time of flight spectrometry.

    Klingner, N; Heller, R; Hlawacek, G; von Borany, J; Notte, J; Huang, J; Facsko, S


    Time of flight backscattering spectrometry (ToF-BS) was successfully implemented in a helium ion microscope (HIM). Its integration introduces the ability to perform laterally resolved elemental analysis as well as elemental depth profiling on the nm scale. A lateral resolution of ≤54nm and a time resolution of Δt≤17ns(Δt/t≤5.4%) are achieved. By using the energy of the backscattered particles for contrast generation, we introduce a new imaging method to the HIM allowing direct elemental mapping as well as local spectrometry. In addition laterally resolved time of flight secondary ion mass spectrometry (ToF-SIMS) can be performed with the same setup. Time of flight is implemented by pulsing the primary ion beam. This is achieved in a cost effective and minimal invasive way that does not influence the high resolution capabilities of the microscope when operating in standard secondary electron (SE) imaging mode. This technique can thus be easily adapted to existing devices. The particular implementation of ToF-BS and ToF-SIMS techniques are described, results are presented and advantages, difficulties and limitations of this new techniques are discussed.

  3. Microscopic analysis of electron noise in GaAs Schottky barrier diodes

    Gonzalez, T.; Pardo, D. [Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Reggiani, L. [Istituto Nazionale di Fisica della Materia, Dipartimento di Scienza dei Materiali, Universita di Lecce, Via Arnesano, 73100 Lecce (Italy); Varani, L. [Centre dElectronique et de Micro-Optoelectronique de Montpellier (CNRS UMR 5507), Universite Montpellier II, F-34095 Montpellier Cedex 5 (France)


    A microscopic analysis of current and voltage fluctuations in GaAs Schottky barrier diodes under forward-bias conditions in the absence of 1/f contributions is presented. Calculations are performed by coupling self-consistently an ensemble Monte Carlo simulator with a one-dimensional Poisson solver. By using current- and voltage-operation modes the microscopic origin and the spatial location of the noise sources, respectively, is provided. At different voltages the device exhibits different types of noise (shot, thermal, and excess), which are explained as a result of the coupling between fluctuations in carrier velocity and self-consistent field. The essential role of the field fluctuations to correctly determine the noise properties in these diodes is demonstrated. The results obtained for the equivalent noise temperature are found to reproduce the typical behavior of experimental measurements. An equivalent circuit is proposed to predict and explain the noise spectra of the device under thermionic emission-based operation. {copyright} {ital 1997 American Institute of Physics.}

  4. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng


    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy. PMID:26819828

  5. Light and electron microscopic immunocytochemistry of neurons in the blowfly optic lobe reacting with antisera to RFamide and FMRFamide

    Nässel, D R; Ohlsson, Lisbeth; Johansson, K U


    medulla. Each of these amacrines supplies the entire mosaic with fine processes. The remaining local RF-like immunoreactive neurons are present in relatively large numbers (one type in more than 2000 copies in each medulla) and-supply the medulla, lobula and lobula plate neuropils with fine varicose...... processes. In the medulla the RF-like immunoreactive processes are arranged in strict layers whereas in the lobula complex the distribution is diffuse. Electron microscopic immunocytochemistry, using both pre-embedding immuno peroxidase-antiperoxidase and post-embedding protein A-gold labeling, was employed...

  6. Effects of C8 ventral root avulsion or transection on spinal alpha motoneurons in adult rats A qualitative light and electron microscopic study

    Khulood M.AL-Khater; Bassem Y.Sheikh


    BACKGROUND:Nerve root avulsion is a frequent finding in patients with brachial plexus injury following road traffic accidents or as a result of severe arm traction during complicated deliveries.This injury constitutes a challenging clinical and surgical problem.The orphological characteristics of motoneurons after nerve root avulsion deserve further analysis.OBJECTIVE:To study the different morphological changes of u -motoneurons under light and electron microscopy after C8 spinal ventral rootlets avulsion and transection at various stages.DESIGN:Controlled animal study.SETTING:Department of Anatomy,King Faisal University.MATERIALS:The experiment was carried out at the Department of Anatomy,College of Medicine,King Faisal University between January 2005 and March 2006.Six adult Sprague Dawley rats weighing 200-350 g, irrespective of gender,were used for this study.The animals were bred at the animal house,College of Medicine,King Faisal University,and fed on rat maintenance diet.Water and standard diet were supplied ad libitum.Animal interventions were carried out according to animal ethical standards.METHODS:Three animals were randomly chosen for avulsion of the right ventral rootlets of C8 spinal nerves.The other three received transection of the right ventral rootlets of C8 spinal nerves.①Avulsion experiment:After rats were anesthetized,the right ventral rootlets of C8 spinal nerves were identified.The ventral rootlets were avulsed from the spinal cord by traction with a fine hook(Fine Science Tools Inc.,No. 10031-13,Germany).Traction was exerted in a direction parallel to the course of the spinal root.Under the operating microscope,the Cs segment was exactly located.After checking the successfulness of the surgical procedure,the Ca segment was separated from the spinal cord.The outcome of the avulsion procedure was as follows:two animals had true avulsion,i.e.,no remaining stump was attached to the spinal cord surface.One rat had a stump still attached

  7. Silica Fume and Fly Ash Admixed Can Help to Improve the PRC Durability Combine Microscopic Analysis

    Xiao Li-guang


    Full Text Available Silica fume/Fly ash RPC can greatly improve durability. When Silica fume to replace the same amount of 8% of the proportion of cement, re-mixed 15min of mechanically activated Fly ash content of 10%, by chloride ion flux detector measuring, complex doped than the reference RPC impermeability improved significantly; In addition, by using static nitrogen adsorption method showed, RPC internal pore structure determination, the hole integral volume was lower than the reference admixed RPC integral pore volume significantly; And combined SEM microscopic experimental methods, mixed of RPC internal structure and the formation mechanism analysis showed that, SF/FA complex fully embodies the synergy doped composites “Synergistic” principle.

  8. Marginal Vertical Fit along the Implant-Abutment Interface: A Microscope Qualitative Analysis

    Nicola Mobilio


    Full Text Available The aim of this study was to qualitatively evaluate the marginal vertical fit along two different implant-abutment interfaces: (1 a standard abutment on an implant and (2 a computer-aided-design/computer-aided-machine (CAD/CAM customized screw-retained crown on an implant. Four groups were compared: three customized screw-retained crowns with three different “tolerance” values (CAD-CAM 0, CAD-CAM +1, CAD-CAM −1 and a standard titanium abutment. Qualitative analysis was carried out using an optical microscope. Results showed a vertical gap significantly different from both CAD-CAM 0 and CAD-CAM −1, while no difference was found between standard abutment and CAD-CAM +1. The set tolerance in producing CAD/CAM screw-retained crowns plays a key role in the final fit.

  9. Maximum probability domains for the analysis of the microscopic structure of liquids

    Agostini, Federica; Savin, Andreas; Vuilleumier, Rodolphe


    We introduce the concept of maximum probability domains, developed in the context of the analysis of electronic densities, in the study of the microscopic spatial structures of liquids. The idea of locating a particle in a three dimensional region, by determining the domain where the probability of finding that, and only that, particle is maximum, gives an interesting characterisation of the local structure of the liquid. The optimisation procedure, required for the search of the domain of maximum probability, is carried out by the implementation of the level set method. Some results for few case studies are presented. In particular by looking at liquid water at different densities or at the solvation shells of Na$^+$ always in liquid water.

  10. Slit-scanning microscope with a high-NA objective lens for analysis of synaptic function

    Sakurai, Takashi; Wakazono, Yoshihiko; Yamamoto, Seiji; Terakawa, Susumu


    By employing the total internal reflection fluorescence (TIRF) microscope with an ultra high NA (1.65) objective lens, we demonstrated detailed dynamics of exocytosis in various types of secretory vesicles. However, the TIRF microscopy could be applied to observations only on the plasma membrane and its immediate vicinity. To observe the vesicles in the deeper region of cytoplasm, we modified the TIRF optics to project a slit beam thinner than 1 μm in width to the cell. The slit beam illumination spotted single secretory vesicles inside the cell better and their movement and exocytosis easier. By scanning the slit beam, a fluorescence microscopy was possible at a high signal-to-noise ratio useful for measurement and analysis of single exocytosis in neurons and endocrine cells.

  11. A Polarized Light Microscopic Study to Comparatively evaluate Four Remineralizing Agents on Enamel viz CPP-ACPF, ReminPro, SHY-NM and Colgate Strong Teeth.

    Rajan, Reshma; Krishnan, Ramesh; Bhaskaran, Bibin; Kumar, Suresh V


    To compare and evaluate the remineralizing potential of four commercially available products namely SHY-NM, GC Tooth Mousse Plus, ReminPro and Colgate strong teeth on demineralized human teeth. The study included 50 extracted premolars having 3 × 3 mm window prepared on the middle third of the tooth, which was then subjected to demineralization for 48 hours at 37°C. Teeth were randomly selected and grouped into five study groups of 10 teeth in each. Each group was treated with respective remineralizing agent and sectioned using hard-tissue microtome. Each section obtained was visualized under polarized light microscope and analyzed using Image J software. The statistically evaluated results revealed that SHY-NM has the most remineralizing potential followed by ReminPro, GC Tooth Mousse Plus and fluoridated toothpaste. Based on the study, the SHY-NM was superior to the GC Tooth Mousse Plus, ReminPro and Colgate strong teeth on demineralized human teeth. How to cite this article: Rajan R, Krishnan R, Bhaskaran B, Kumar SV. A Polarized Light Microscopic Study to Comparatively evaluate Four Remineralizing Agents on Enamel viz CPP-ACPF, ReminPro, SHY-NM and Colgate Strong Teeth. Int J Clin Pediatr Dent 2015;8(1):42-47.

  12. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun


    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  13. Comparison of the efficacy of endoscopic tympanoplasty and microscopic tympanoplasty: A systematic review and meta-analysis.

    Tseng, Chih-Chieh; Lai, Ming-Tang; Wu, Chia-Che; Yuan, Sheng-Po; Ding, Yi-Fang


    Microscopic tympanoplasty has been the standard surgery for repairing perforated tympanic membranes since the 1950s, but endoscopic tympanoplasty has been increasingly practiced since the late 1990s. In this study, we compared the efficacies of endoscopic and microscopic tympanoplasty. PubMed, Embase, MEDLINE, and the Clinical Trial Register. We conducted a systematic review and meta-analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. We included clinical studies that compared the efficacies of endoscopic and microscopic tympanoplasty. We assessed the risk of bias and calculated the pooled relative risk (RR) estimates with 95% confidence interval (CI). We identified four studies (involving 266 patients in total) that met the inclusion criteria. The pooled tympanic membrane closure rates and hearing results of endoscopic and microscopic tympanoplasty were comparable (85.1% vs. 86.4%, respectively; RR: 0.98; 95% CI: 0.85 to 1.11; I(2) = 0) (mean difference of improvements of air-bone gaps: -2.73; 95% CI: -6.73 to 1.28; I(2) = 80%). The pooled canalplasty rate of endoscopic tympanoplasty was significantly lower than that of microscopic tympanoplasty. Patients receiving endoscopic tympanoplasty had a more desirable cosmetic result than did those receiving microscopic tympanoplasty. Our up-to-date review evidences the comparable tympanic membrane closure rates and hearing results for endoscopic and microscopic tympanoplasty. Patients receiving endoscopic tympanoplasty have a lower canalplasty rate and more desirable cosmetic result than do those receiving microscopic tympanoplasty. Laryngoscope, 127:1890-1896, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Development of olfactory epithelium and associated structures in the green iguana, Iguana iguana—light and scanning electron microscopic study

    Olga Sapoznikov


    Full Text Available The ontogenesis of the nasal cavity has been described in many mammalian species. The situation is different with reptiles, despite the fact that they have become relatively common as pets. In this study we focused on the ontogenesis of the olfactory epithelium, as well as other types of epithelia in the nasal cavity of pre-hatched green iguanas (Iguana iguana. Collection of samples began from day 67 of incubation and continued every four days until hatching. Microscopic examination revealed that significant morphological changes in the nasal cavity began approximately at day 91 of ontogenesis. Approximately at this same stage, the nasal cavity epithelium began to differentiate. The cavity was divided into two compartments by a cartilaginous disc. The ventral compartment bulged rostrally and eventually opened up into the external environment. Three clearly demarcated areas of epithelium in the nasal cavity were visible at day 107.

  15. Analysis of disruptive events and precarious situations caused by interaction with neurosurgical microscope.

    Eivazi, Shahram; Afkari, Hoorieh; Bednarik, Roman; Leinonen, Ville; Tukiainen, Markku; Jääskeläinen, Juha E


    Developments in micro-neurosurgical microscopes have improved operating precision and ensured the quality of outcomes. Using the stereoscopic magnified view, however, necessitates frequent manual adjustments to the microscope during an operation. This article reports on an investigation of the interaction details concerning a state-of-the-art micro-neurosurgical microscope. The video data from detailed observations of neurosurgeons' interaction patterns with the microscope were analysed to examine disruptive events caused by adjusting the microscope. The primary findings show that interruptions caused by adjusting the microscope handgrips and mouth switch prolong the surgery time up to 10%. Surgeons, we observed, avoid interaction with the microscope's controls, settings, and configurations by working at the edge of the view, operating on a non-focused view, and assuming unergonomic body postures. The lack of an automatic method for adjusting the microscope is a major problem that causes interruptions during micro-neurosurgery. From this understanding of disruptive events, we discuss the opportunities and limitations of interactive technologies that aim to reduce the frequency or shorten the duration of interruptions caused by microscope adjustment.

  16. Light Curve Analysis of Neon Novae

    Hachisu, Izumi


    We analyzed light curves of five neon novae, QU Vul, V351 Pup, V382 Vel, V693 CrA, and V1974 Cyg, and determined their white dwarf (WD) masses and distance moduli on the basis of theoretical light curves composed of free-free and photospheric emission. For QU Vul, we obtained a distance of d~2.4 kpc, reddening of E(B-V)~0.55, and WD mass of M_WD=0.82-0.96 M_sun. This suggests that an oxygen-neon WD lost a mass of more than ~0.1 M_sun since its birth. For V351 Pup, we obtained d~5.5 kpc, E(B-V)~0.45, and M_WD=0.98-1.1 M_sun. For V382 Vel, we obtained d~1.6 kpc, E(B-V)~0.15, and M_WD=1.13-1.28 M_sun. For V693 CrA, we obtained d~7.1 kpc, E(B-V)~0.05, and M_WD=1.15-1.25 M_sun. For V1974 Cyg, we obtained d~1.8 kpc, E(B-V)~0.30, and M_WD=0.95-1.1 M_sun. For comparison, we added the carbon-oxygen nova V1668 Cyg to our analysis and obtained d~5.4 kpc, E(B-V)~0.30, and M_WD=0.98-1.1 M_sun. In QU Vul, photospheric emission contributes 0.4-0.8 mag at most to the optical light curve compared with free-free emission only....

  17. Microscopic Omental Metastasis in Clinical Stage I Endometrial Cancer: A Meta-analysis.

    Joo, Won Duk; Schwartz, Peter E; Rutherford, Thomas J; Seong, Seok Ju; Ku, Junbeom; Park, Hyun; Jung, Sang Geun; Choi, Min Chul; Lee, Chan


    A patient with early-stage endometrial cancer may possibly have microscopic metastasis in the omentum, which is associated with a poor prognosis. The purpose of this study was to identify risk factors for microscopic omental metastasis in patients with clinical stage I endometrial cancer to establish the indications for selective omentectomy. We searched the PubMed, EMBASE, and Cochrane Library databases for published studies from inception to August 2014, using terms such as 'endometrial cancer' or 'uterine cancer' for disease, 'omentectomy' or 'omental biopsy' for intervention, and 'metastasis' for outcome. Two reviewers independently identified the studies that matched the selection criteria. We calculated the pooled risk ratios (RRs) with 95 % confidence intervals (CI) of each surgicopathologic finding for microscopic omental metastases in clinical stage I endometrial cancer. We also calculated the prevalence of microscopic omental metastases. Among 1163 patients from ten studies, 22 cases (1.9 %) of microscopic omental metastases were found, which accounted for 26.5 % of all omental metastases. Positive lymph nodes (RR 8.71, 95 % CI 1.38-54.95), adnexal metastases (RR 16.76, 95 % CI 2.60-107.97), and appendiceal implants (RR 161.67, 95 % CI 5.16-5061.03) were highly associated with microscopic omental metastases. Microscopic omental metastases were not negligible in patients with clinical stage I endometrial cancer. Those with a risk factor of microscopic omental metastases were recommended for selective omentectomy.

  18. Microscopic method in processed animal proteins identification in feed: applications of image analysis

    Savoini G


    Full Text Available Processed animal proteins (PAP detection and identification in feedstuffs can be difficult in distinguishing among land animals, i.e. poultry and mammals. Thus, the aim of this study was to evaluate the potential application of image analysis in PAP identification. For this purpose four reference samples containing poultry meals and four reference samples containing mammalian meat and bone meals were used. Each sample was analyzed using the microscopic method (98/88/EC. Bone fragments are characterized by similar morphological features (colours, shape, lacunae shape, lacunae distribution, etc. that make it diff i c u l t to distinguish between poultry and mammals. Through a digital camera and an image analysis software a total of 30 bone fragment lacunae images at X400 were obtained. For each image 29 geometric parameters related to the lacunae and 3 geometric parameters related to the canaliculae of lacunae, were measured using the image analysis software obtaining 960 observations. Of the 32 descriptors used two, the area of the lacunae and their perimeter, were able to explain 96.15% of the total variability of the data, even though their contribution was different (83.97% vs. 12.18%, respectively. Through these two descriptors it was possible to distinguish between mammalian and poultry lacunae, except in two cases (6.6%, in which poultry lacunae were wrongly classified as mammalian. This latter can be related with higher variability in the lacunae area recorded for mammals compared to poultry. On the basis of the present study, it can be concluded that image analysis represents a promising potential tool in PAP identification, that may provide accurate and reliable results in feedstuffs characterisation, analysis and control.

  19. Light microscopic identification and semiquantification of polyethylene particles in methylmethacrylate and paraffin-embedded experimental bone implant specimens

    Rahbek, O; Kold, S; Overgaard, S;


    The aim of this study was to evaluate the identification of polyethylene (PE) particles in relatively thick methylmethacrylate (MMA) sections widely used in bone implant research. The sensitivity and specificity were compared between decalcified paraffin-embedded oil red O (ORO) stained and MMA......-embedded sections using polarized light. Furthermore, we introduced a grading system to semiquantify the level of PE particles in peri-implant tissue. Paraffin-embedded and MMA-embedded sections were compared concerning intra-observer agreement of the grading system. Moreover, the semiquantitative assessment...... of particle level was compared between the two section types. We found a sensitivity and specificity of polarized light of 100% for both paraffin ORO-stained and MMA sections. The intra-observer agreement on both types was comparable and acceptable. The ratings of differently processed blocks (MMA...

  20. Light water reactor lower head failure analysis

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others


    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  1. Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis

    Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.


    NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.

  2. Microscopic analysis of the quality of obturation and physical properties of MTA Fillapex.

    Amoroso-Silva, Pablo Andrés; Guimarães, Bruno Martini; Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Cavenago, Bruno Cavalini; Ordinola-Zapata, Ronald; Almeida, Marcela Milanezi de; Moraes, Ivaldo Gomes de


    This study analyzed the quality of obturation and physical properties of MTA Fillapex and AH Plus sealer. A sample of 30 human maxillary central incisors were instrumented with Protaper until a F5 (50/05) file. Both sealers were mixed with Rhodamine-B dye to allow visualization on a confocal laser-scanning microscope (CLSM). Next, the canals were filled using the single cone technique. After setting, all samples were sectioned at 2, 4, and 6 mm from the apex. CLSM was used to analyze the gaps and sealer penetration into the dentinal tubules. All samples were scanned 10 µm below the dentin surface and images were recorded at 100× magnification using the fluorescent mode. Additionally, the solubility, flowability and setting time of the sealers were evaluated. All the measured quantities of the examined materials were evaluated for significant differences by means of statistical analysis. The CLSM analysis of the MTA Fillapex showed the highest percentage of gaps at all sections (P = 0.0001). Physical tests revealed adequate properties for both sealers except for a higher solubility of the MTA Fillapex (P = 0.0001). The MTA Fillapex presented flowability and intratubular penetration similar to the AH Plus. Nevertheless, the MTA Fillapex sealer presented a higher solubility and considerable quantity of gaps between the sealer/dentin interface in relation to the AH Plus sealer. Clinicians must take into consideration, the quality of endodontic sealers as it is essential in the outcome of the root canal filling.

  3. Common tasks in microscopic and ultrastructural image analysis using ImageJ.

    Papadopulos, Francesca; Spinelli, Matthew; Valente, Sabrina; Foroni, Laura; Orrico, Catia; Alviano, Francesco; Pasquinelli, Gianandrea


    Cooperation between research communities and software-development teams has led to the creation of novel software. The purpose of this paper is to show an alternative work method based on the usage of ImageJ (, which can be effectively employed in solving common microscopic and ultrastructural image analysis tasks. As an open-source software, ImageJ provides the possibility to work in a free-development/sharing world. Its very "friendly" graphical user interface helps users to manage and edit biomedical images. The on-line material such as handbooks, wikis, and plugins leads users through various functions, giving clues about potential new applications. ImageJ is not only a morphometric analysis software, it is sufficiently flexible to be adapted to the numerous requirements tasked in the laboratories as routine as well as research demands. Examples include area measurements on selectively stained tissue components, cell count and area measurements at single cell level, immunohistochemical antigen quantification, and immunoelectron microscopy gold particle count.

  4. Novel microfabrication stage allowing for one-photon and multi-photon light assisted molecular immobilization and for multi-photon microscope

    Gonçalves, Odete; Snider, Scott; Zadoyan, Ruben; Nguyen, Quoc-Thang; Vorum, Henrik; Petersen, Steffen B.; Neves-Petersen, Maria Teresa


    Light Assisted Molecular Immobilization (LAMI) results in spatially oriented and localized covalent coupling of biomolecules onto thiol reactive surfaces. LAMI is possible due to the conserved spatial proximity between aromatic residues and disulfide bridges in proteins. When aromatic residues are excited with UV light (275-295nm), disulphide bridges are disrupted and the formed thiol groups covalently bind to surfaces. Immobilization hereby reported is achieved in a microfabrication stage coupled to a fs-laser, through one- or multi-photon excitation. The fundamental 840nm output is tripled to 280nm and focused onto the sample, leading to one-photon excitation and molecular immobilization. The sample rests on a xyz-stage with micrometer step resolution and is illuminated according to a pattern uploaded to the software controlling the stage and the shutter. Molecules are immobilized according to such pattern, with micrometer spatial resolution. Spatial masks inserted in the light path lead to light diffraction patterns used to immobilize biomolecules with submicrometer spatial resolution. Light diffraction patterns are imaged by an inbuilt microscope. Two-photon microscopy and imaging of the fluorescent microbeads is shown. Immobilization of proteins, e.g. C-reactive protein, and of an engineered molecular beacon has been successfully achieved. The beacon was coupled to a peptide containing a disulfide bridge neighboring a tryptophan residue, being this way possible to immobilize the beacon on a surface using one-photon LAMI. This technology is being implemented in the creation of point-of-care biosensors aiming at the detection of cancer and cardiovascular disease markers.

  5. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling.

    Daniel P Riordan

    Full Text Available Characterization of the molecular attributes and spatial arrangements of cells and features within complex human tissues provides a critical basis for understanding processes involved in development and disease. Moreover, the ability to automate steps in the analysis and interpretation of histological images that currently require manual inspection by pathologists could revolutionize medical diagnostics. Toward this end, we developed a new imaging approach called multidimensional microscopic molecular profiling (MMMP that can measure several independent molecular properties in situ at subcellular resolution for the same tissue specimen. MMMP involves repeated cycles of antibody or histochemical staining, imaging, and signal removal, which ultimately can generate information analogous to a multidimensional flow cytometry analysis on intact tissue sections. We performed a MMMP analysis on a tissue microarray containing a diverse set of 102 human tissues using a panel of 15 informative antibody and 5 histochemical stains plus DAPI. Large-scale unsupervised analysis of MMMP data, and visualization of the resulting classifications, identified molecular profiles that were associated with functional tissue features. We then directly annotated H&E images from this MMMP series such that canonical histological features of interest (e.g. blood vessels, epithelium, red blood cells were individually labeled. By integrating image annotation data, we identified molecular signatures that were associated with specific histological annotations and we developed statistical models for automatically classifying these features. The classification accuracy for automated histology labeling was objectively evaluated using a cross-validation strategy, and significant accuracy (with a median per-pixel rate of 77% per feature from 15 annotated samples for de novo feature prediction was obtained. These results suggest that high-dimensional profiling may advance the

  6. Microscope basics.

    Sluder, Greenfield; Nordberg, Joshua J


    This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter. Copyright © 2003 Elsevier Inc. All rights reserved.

  7. LED intense headband light source for fingerprint analysis

    Villa-Aleman, Eliel


    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  8. LED intense headband light source for fingerprint analysis

    Villa-Aleman, Eliel


    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  9. Electron microscopic and preparative methods for the analysis of isopod cuticle

    Bastian Hans Michael Seidl


    Full Text Available The crustacean cuticle consists of a complex organic matrix and a mineral phase. The physical and chemical properties of the cuticle are corellated to the specific functions of cuticular elements, leading to a large variety in its structure and composition. Investigation of the structure-function relationship in crustacean cuticle requires sophisticated methodological tools for the analysis of different aspects of the cuticular architecture. In the present paper we report improved preparation methods that, in combination with various electron microscopic techniques, have led to new insights of cuticle structure and composition in the tergite cuticle of Porcellio scaber. We used thin sections of non-decalcified tergites and decalcified resin embedded material for transmission electron microscopy and scanning transmission electron microscopy. Etched sagittal planes of bulk tergite samples were analysed with field emission scanning electron microscopy. We have found a distinct distal region within the exocuticle that differs from the subjacent proximal exocuticle in the arrangement of fibres. Within this distal exocuticle chitin-protein fibrils assemble to fibres with diameters between 15 and 50 nm that are embedded in a mineral matrix. In the proximal exocuticle and the endocuticle fibrils do not assemble to fibres and are surrounded by mineral individually. Furthermore, we show that the pore canals are filled with mineral, and demonstrate that mild etching of polished sagittal cuticle surfaces reveals regions containing mineral of diverse solubility.

  10. Measurement of RBC agglutination with microscopic cell image analysis in a microchannel chip.

    Cho, Chi Hyun; Kim, Ju Yeon; Nyeck, Agnes E; Lim, Chae Seung; Hur, Dae Sung; Chung, Chanil; Chang, Jun Keun; An, Seong Soo A; Shin, Sehyun


    Since Landsteiner's discovery of ABO blood groups, RBC agglutination has been one of the most important immunohematologic techniques for ABO and RhD blood groupings. The conventional RBC agglutination grading system for RhD blood typings relies on macroscopic reading, followed by the assignment of a grade ranging from (-) to (4+) to the degree of red blood cells clumping. However, with the new scoring method introduced in this report, microscopically captured cell images of agglutinated RBCs, placed in a microchannel chip, are used for analysis. Indeed, the cell images' pixel number first allows the differentiation of agglutinated and non-agglutinated red blood cells. Finally, the ratio of agglutinated RBCs per total RBC counts (CRAT) from 90 captured images is then calculated. During the trial, it was observed that the agglutinated group's CRAT was significantly higher (3.77-0.003) than that of the normal control (0). Based on these facts, it was established that the microchannel method was more suitable for the discrimination between agglutinated RBCs and non-agglutinated RhD negative, and thus more reliable for the grading of RBCs agglutination than the conventional method.

  11. Simulations of optical microscope images

    Germer, Thomas A.; Marx, Egon


    The resolution of an optical microscope is limited by the optical wavelengths used. However, there is no fundamental limit to the sensitivity of a microscope to small differences in any of a feature's dimensions. That is, those limits are determined by such things as the sensitivity of the detector array, the quality of the optical system, and the stability of the light source. The potential for using this nearly unbounded sensitivity has sparked interest in extending optical microscopy to the characterization of sub-wavelength structures created by photolithography and using that characterization for process control. In this paper, an analysis of the imaging of a semiconductor grating structure with an optical microscope will be presented. The analysis includes the effects of partial coherence in the illumination system, aberrations of both the illumination and the collection optics, non-uniformities in the illumination, and polarization. It can thus model just about any illumination configuration imaginable, including Koehler illumination, focused (confocal) illumination, or dark-field illumination. By propagating Jones matrices throughout the system, polarization control at the back focal planes of both illumination and collection can be investigated. Given a detailed characterization of the microscope (including aberrations), images can be calculated and compared to real data, allowing details of the grating structure to be determined, in a manner similar to that found in scatterometry.

  12. Study on microscope hyperspectral medical imaging method for biomedical quantitative analysis

    LI QingLi; XUE YongQi; XIAO GongHai; ZHANG JingFa


    A microscopic pushbroom hyperspectral imaging system was developed based on the microscopic technology and spectral imaging technology according to the principle of spectral imager in remote sensing. The basic principle and key technologies of this system were presented and the system per-formance was also analyzed. Some methods and algorithms were proposed to preprocess and nor-malize the microscopic hyperspectral data and retrieve the transmittance spectrum of samples. As a case study, the microscopic hyperspectral imaging system was used to image the retina sections of different rats and get some significant results. Experiment results show that the system can be used for the quantitative assessment and evaluating the effect of medication in biomedical research.

  13. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations

    Muñetón-Gómez, Vilma C.; Doncel-Pérez, Ernesto; Fernandez, Ana P.; Serrano, Julia; Pozo-Rodrigálvarez, Andrea; Vellosillo-Huerta, Lara; Taylor, Julian S.; Cardona-Gómez, Gloria P.; Nieto-Sampedro, Manuel; Martínez-Murillo, Ricardo


    The increased risk and prevalence of lacunar stroke and Parkinson's disease (PD) makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra (SN) of the rat after stereotaxic administration of endothelin-1 (ET-1), a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs) with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize GFP-positive neurons derived from the transplants. 48 h after ET-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterized with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive) and neuron types present in the normal striatum. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting a possible role in the regulation of the blood brain barrier and angiogenesis. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism. PMID:22876219

  14. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations

    Vilma Consuelo Muñeton-Gomez


    Full Text Available The increased risk and prevalence of lacunar stroke and Parkinson's disease makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra of the rat after stereotaxic administration of endothelin-1, a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize green fluorescent-derived neurons. 48h after endothelin-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterised with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive and into neurons of diverse neurotransmitter-striatal subtypes, suggesting that they were functional. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting their implication in angiogenesis during recovery from stroke. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism.

  15. Endoscopic versus microscopic transsphenoidal pituitary adenoma surgery: a meta-analysis


    Background Endoscopic transsphenoidal surgery has gradually come to be regarded as a preferred option in the treatment of pituitary adenomas because of its advantages of improved visualization and its minimal invasiveness. The aim of this study was to compare and evaluate the outcomes and complications of endoscopic and microscopic transsphenoidal surgery in the treatment of pituitary adenomas. Methods We performed a systematic literature search of MEDLINE, EMBASE, the Cochrane Library and the Web of Science between January 1992 and May 2013. Studies with consecutive patients that explicitly and fully compared endoscopic and microscopic approaches in the treatment of pituitary adenomas were included. Results A total of 15 studies (n = 1,014 patients) met the inclusion criteria among 487 studies that involved endoscopic surgery and 527 studies that dealt with microscopic surgery. The rate of gross tumor removal was higher in the endoscopic group than in the microscopic group. The post-operative rates of septal perforation were less frequent in patients who underwent endoscopic surgery. There was no significant difference between the two techniques in the incidence rates of meningitis, diabetes insipidus, cerebrospinal fluid leak, epistaxis or hypopituitarism. The post-operative hospital stay was significantly shorter for the endoscopic surgery group compared with the microscopic surgery group (P  0.05). Conclusions The present study indicates that the endoscopic transsphenoidal approach is safer and more effective than microscopic surgery in the treatment of pituitary adenomas. PMID:24721812

  16. Microwave Microscope

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  17. SU-E-T-293: Dosimetric Analysis of Microscopic Disease in SBRT for Lung Cancers

    Mao, R; Tian, L; Ge, H [The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, henan (China); Zhang, Y; Ren, L; Gao, R; Yin, F [Duke University Medical Center, Durham, NC (United States)


    Purpose: To evaluate the dosimetry of microscopic disease (MD) region of lung cancer in stereotactic body radiation therapy (SBRT). Methods: For simplicity, we assume organ moves along one dimension. The probability distribution function of tumor position was calculated according to the breathing cycle. The dose to the MD region was obtained through accumulating the treatment planning system calculated doses at different positions in a breathing cycle. A phantom experiment was then conducted to validate the calculated results using a motion phantom (The CIRS ‘Dynamic’ Thorax Phantom). The simulated breathing pattern used a cos4(x) curve with an amplitude of 10mm. A 3-D conformal 7-field plan with 6X energy was created and the dose was calculated in the average intensity projection (AIP) simulation CT images. Both films (EBT2) and optically stimulated luminescence (OSL) detectors were inserted in the target of the phantom to measure the dose during radiation delivery (Varian Truebeam) and results were compared to planning dose parameters. Results: The Gamma analysis (3%/3mm) between measured dose using EBT2 film and calculated dose using AIP was 80.5%, indicating substantial dosimetric differences. While the Gamma analysis (3%/3mm) between measured dose using EBT2 and accumulated dose using 4D-CT was 98.9%, indicating the necessity of dose accumulation using 4D-CT. The measured doses using OSL and theoretically calculated doses using probability distribution function at the corresponding position were comparable. Conclusion: Use of static dose calculation in the treatment planning system could substantially underestimate the actually delivered dose in the MD region for a moving target. Funding Supported by NSFC, No.81372436.

  18. Scanning electron microscope and statistical analysis of suspended heavy metal particles in San Luis Potosi, Mexico

    Piña, A. Aragón; Villaseñor, G. Torres; Fernández, M. Monroy; Luszczewski Kudra, A.; Leyva Ramos, R.

    Three hundred samples of urban aerosol were collected in high-volume samplers from five urban locations situated near an important metallurgical plant in the city of San Luis Potosi, Mexico. Whole samples were analyzed by atomic absorption (AA) for Pb, Cd, As, Cu, Ni, Fe and Cr. One hundred eighty of these samples were subjected to X-ray microanalysis (EDS) coupled with a scanning electron microscope to classify individual particles according to their chemical or mineralogical composition. The principal component analysis (PCA) obtained from the bulk sample analysis, and X-ray microanalysis from individual particles, confirmed chemical associations among elements directly and indirectly. PCA from bulk assays made the most effective use of X-ray microanalysis to characterize major particle types. Some chemical associations would be difficult to detect using microanalysis, alone, for example, in anthropogenic complex phases. In this work, the combined use of microanalysis and statistical methods permitted identification of associations among elements. We observed an association of Pb-As-Cd and Fe-Mn among the samples. In a second order, Pb-Fe, Pb-Mn, Fe-As, Fe-Cd, Cd-Mn and As-Mn showed a lower association. Only Ni and Cu appeared unassociated with any other element analyzed by AA. We characterized the mineral phases by size range, morphology and chemical composition using SEM-EDS to obtain a compositional approach of anthropogenic phases and peculiar morphology and size. A high percentage of heavy metal particles smaller than 2 μm were detected.

  19. Texture analysis of liver fibrosis microscopic images: a study on the effect of biomarkers

    Amr Amin; Doaa Mahmoud-Ghoneim


    Chronic hepatic injury results in liver fibrosis with eventual progression to irreversible cirrhosis. Liver fibrogenesis involves the activation of the quiescent hepatic stellate cell into an activated myofibroblast that is characterized by α-smooth muscle actin (α-SMA) expression and the production of collagens (types Ⅰ and Ⅲ). In the present study,rats were randomly divided into three groups: (i) control group, where rats were only treated with a vehicle; (ii) fibrosis group, where rats were treated with carbon tetrachloride (CCl4) to induce liver fibrosis; and (iii) silymarin group,where rats were protected with silymarin during CCl4 treatment. Rats were sacrificed and sections of liver tissue were counterstained with hematoxylin and eosin and Masson's trichrome. Other sections were immunostained using collagens and α-SMA primary antibodies. Fibrosis was confirmed using serum marker measurements. Microscopic images of the stained sections were acquired and digitized.The Biomarker Index of Fibrosis (BIF) was calculated from the images by quantifying the percentage of stained fibers.Statistical methods of texture analysis (TA), namely cooccurrence and run-length matrices, were applied on the digital images followed by classification using agglomerative hierarchical clustering and linear discriminant analysis with cross validation. TA applied on different biomarkers was successful in discriminating between the groups,showing 100% sensitivity and specificity for classification between the control and fibrosis groups using any biomarker. Some classification attempts showed dependence on the biomarker used, especially for classification between the silymarin and fibrosis groups, which showed optimal results using Masson's trichrome. TA results were consistent with both BIF and serum marker measurements.

  20. Empirical investigation on safety constraints of merging pedestrian crowd through macroscopic and microscopic analysis.

    Shi, Xiaomeng; Ye, Zhirui; Shiwakoti, Nirajan; Tang, Dounan; Wang, Chao; Wang, Wei


    A recent crowd stampede during a New Year's Eve celebration in Shanghai, China resulted in 36 fatalities and over 49 serious injuries. Many of such tragic crowd accidents around the world resulted from complex multi-direction crowd movement such as merging behavior. Although there are a few studies on merging crowd behavior, none of them have conducted a systematic analysis considering the impact of both merging angle and flow direction towards the safety of pedestrian crowd movement. In this study, a series of controlled laboratory experiments were conducted to examine the safety constraints of merging pedestrian crowd movements considering merging angle (60°, 90° and 180°) and flow direction under slow running and blocked vision condition. Then, macroscopic and microscopic properties of crowd dynamics are obtained and visualized through the analysis of pedestrian crowd trajectory data derived from video footage. It was found that merging angle had a significant influence on the fluctuations of pedestrian flows, which is important in a critical situation such as emergency evacuation. As the merging angle increased, mean velocity and mean flow at the measuring region in the exit corridors decreased, while mean density increased. A similar trend was observed for the number of weaving and overtaking conflicts, which resulted in the increase of mean headway. Further, flow direction had a significant impact on the outflow of the individuals while blocked vision had an influence on pedestrian crowd interactions and merging process. Finally, this paper discusses safety assessments on crowd merging behaviors along with some recommendations for future research. Findings from this study can assist in the development and validation of pedestrian crowd simulation models as well as organization and control of crowd events.

  1. Distinguishing Structure Change of Cells Based on Analysis of Light Scattering Patterns

    JIN Yong-Long; YANG Fang; WANG Meng; ZHANG Yu; GU Ning


    We develop a new method to distinguish structural change of cells based on light scattering and Fourier spectra analysis. The light scattering detection system is composed of a laser source, an optical microscope, a CCD with high resolution and low distortion. After the scattering patterns of cells are recorded by the CCD, the Fourier spectra are obtained by the intensity distribution of scattered light. In the experiment, the change of cell structure is designed by sonication treatment. It is found that different typical peaks can be shown in the Fourier spectra of MCF7 cells with and without sonication treatment, which indicates that this method can be used to distinguish the structural change of cells.

  2. Light Microscopic Evaluation of Cardio-vasculare System in Alloksan-induced Diabetic Rats in Acute Period

    Selen Bahçeci


    Full Text Available Diabetic cardiomyopathy is one of the chronic complication of diabetes and acute effects of diabetes on heart and aorta is not clear. We aimed to determine acute effects of diabetes on cardio-vasculare system with light microscopy. We used 20 Spraque-Dawley rats and applied 150 mg/kg alloxan, intraperitoneally for inducing diabetes and 1 ml SF in control group. After 24 hours, venous blood samples were measured. Blood glucose levels higher than 250 mg/dl were accepted as DM and treated with 4 IU/d human insülin. After 7 days rats were sacrified under ketamin anaesthesia. Heart and aorta were fixed in 10 % buffered formalin. The sectiones were embedded in paraffin and were serially sectioned at 5 m thickness, then stained with Hematoxyline-Eosine (H&E and Heidenhein’s Azan modification.There was no histopathological changes in cardiac muscle cells in control group. But there was a heterogen appearance in cardiac muscle cells and we determined some hydropic degenerations in some of the cardiac muscle cells and a minimal fibrosis in perivasculare and interstitial area in diabetic group. All histological stratums of aorta were seen normally in control group. In diabetic group, there was a clear anisostosis in smooth muscle cells and decreased in nucleus of smooth muscle cells in tunica media. We concluted that DM is caused degeneration and fibrosis in cardiac muscle cells and effective on smooth muscle cells in aorta in acute period.

  3. Light and scanning electron microscope examination of the digestive tract in peppered moray eel, Gymnothorax pictus (Elopomorpha).

    Takiue, Shunpei; Akiyoshi, Hideo


    The morphology of the digestive tract of the peppered moray eel, Gymnothorax pictus (G. pictus) (Elopomorpha: Anguilliformes) was examined using both light and scanning electron microscopy. The digestive tract is composed of the esophagus, the stomach, and the intestines; pyloric caeca were absent. The stomach was divided into a cardiac region that was continuous with the esophagus, a body which terminated in a long blind sac, and a pyloric region that was continuous with the intestine. The short intestine possessed several partitions that were created by the mucosal folds within the posterior region. The terminal region of the stomach was characterized by the thick longitudinal muscularis and subserosa, and the gastric glands and microvilli were absent. Ciliary tufts of ciliated cells were observed on the surface of the partition-like mucosal folds within the intestinal wall. Acidic mucus was secreted throughout the digestive tract. It was suggested that the terminal region of the stomach is specialized for storage of large food items. In addition, it is possible that the partition-like mucosal folds within the intestine perform a function similar to that of the spiral valve and, and along with ciliated cells, facilitated digestion and absorption. The acidic mucus likely maintained surface epithelium pH and protease activity. Within a phylogenetic context, the absence of a pyloric caeca in G. pictus while possessing an intestine implies that this species is affiliated to groups that had branched off earlier than basal teleosts. Inc.

  4. Protective effects of melatonin against carbon tetrachloride-induced hepatotoxicity in rats: a light microscopic and biochemical study.

    Kus, Ilter; Ogeturk, Murat; Oner, Hakan; Sahin, Semsettin; Yekeler, Hayrettin; Sarsilmaz, Mustafa


    The aim of this study was to examine the protective effects of melatonin against CCl4-induced hepatotoxicity in the rat. Twenty-four male Wistar rats were divided into three groups. Group I was used as a control. Rats in group II were injected every other day with CCl4 for 1 month, whereas rats in group III were injected every other day with CCl4 and melatonin for 1 month. At the end of the experiment, all animals were killed by decapitation and blood samples were obtained. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total and conjugated bilirubin levels were determined. For histopathological evaluation, livers of all rats were removed and processed for light microscopy. All serum biochemical parameters were significantly higher in animals treated with CCl4 than in the controls. When rats injected with CCl4 were treated with melatonin, significantly reduced elevations in serum biochemical parameters were found. In liver sections of the CCl4-injected group, necrosis, fibrosis, mononuclear cell infiltration, haemorrhage, fatty degeneration and formation of regenerative nodules were observed. Additionally, apoptotic figures, microvesicular steatosis and hydropic degeneration in hepatocytes were seen in this group. In contrast, the histopathological changes observed after administration of CCl4 were lost from rats treated with CCl4 and melatonin. Except for mild hydropic degeneration of the hepatocytes, a normal lobular appearance was seen in the livers of this group. The results of our study indicate that melatonin treatment prevents CCl4-induced liver damage in rats.

  5. Light and scanning electron microscopic study on the tongue and lingual papillae of the common hippopotamus, Hippopotamus amphibius amphibius.

    Yoshimura, Ken; Hama, Natsuki; Shindo, Junji; Kobayashi, Kan; Kageyama, Ikuo


    We observed the three-dimensional structures of the external surface and connective tissue cores CTCs, after exfoliation of the epithelium of the lingual papillae (filiform, fungiform, and foliate papillae) of the common hippopotamus (Hippopotamus amphibius amphibius) using scanning electron microscopy and conventional light microscopy. Following unique features were found; typical vallate papillae with a circumferential furrow were not observable. Instead, numerous large fungiform papillae were rather densely distributed on the posterior of the lingual prominence. Taste buds were observable only on the dorsal epithelium. Serous lingual gland was not seen in the lamina propria; however, mucous-rich mixed lingual glands were found and in a few of orifices were seen on the large fungiform tops. Lingual prominence was diminished their width. Rather long and slender conical papillae were distributed on the lingual prominence and were similar to nonruminant herbivore, that is donkey. Beside this narrow lingual prominence, lateral slopes were situated with numerous short spine-like protrusions. After removal of the epithelium, CTCs of lateral slopes exhibited attenuated flower bud structures. Large-conical papillae were situated on the root of the tongue. These large conical papillae were not seen among ruminants and seen on the lingual root of omnivores and carnivores. It implies that lingual structure of common hippopotamus possessed mixed characteristics between Perissodactyls, Ruminantia, and nonherbivores such as Suiformes because of their unique evolutionally taxonomic position. Moreover, adaptation for soft grass diet and associating easier mastication may be also affecting these mixed morphological features of the tongue.

  6. Evaluation of the relationship between fungal infection, neutrophil leukocytes and macrophages in cervicovaginal smears: Light microscopic examination

    Demirezen, Şayeste; Dönmez, Hanife Güler; Özcan, Merve; Beksaç, Mehmet Sinan


    Background: Right after opportunistic fungi become pathogenic, they face immune system cells including macrophages and neutrophil leukocytes. Although the relationship between fungi and immune cells are being widely studied by using animal models and culture techniques, cervicovaginal smears have not been used to evaluate this interaction yet. Aim: The aim of this study was to investigate the interactions between fungal infection, macrophages and neutrophil leukocytes in cervicovaginal smear. Materials and Methods: Papanicolaou-stained cervicovaginal smears from 2307 women, aged between 18 and 73 years, were examined by light microscopy. Periodic acid–Schiff stain was also used to confirm the presence of fungal cell walls. Results: Fungal infections were detected in 239 of 2307 patients (10.4%), and these cases were taken as the study group. Cases without any infectious agents (n = 1800, 78%) were considered as the control group. When the study and control groups were statistically compared in view of macrophages and neutrophil leukocytes, a significant relationship between presence of fungal infection, macrophages and neutrophil leukocytes was detected (P 0.05). Conclusions: Our findings indicate that macrophages and neutrophils may play a determining role in host defense against fungal infection together, but neither yeast nor filamentous forms affect the presence of neutrophil leukocytes and macrophages. As a result of this, both yeast and filamentous forms may have pathogenic effects. PMID:26229242

  7. Transcranial light-tissue interaction analysis

    Aulakh, Kavleen; Zakaib, Scott; Willmore, William G.; Ye, Winnie N.


    The penetration depth of light plays a crucial role in therapeutic medical applications. In order to design effective medical photonic devices, an in-depth understanding of light's ability to penetrate tissues (including bone, skin, and fat) is necessary. The amount of light energy absorbed or scattered by tissues affects the intensity of light reaching an intended target in vivo. In this study, we examine the transmittance of light through a variety of cranial tissues for the purpose of determining the efficacy of neuro stimulation using a transcranial laser. Tissue samples collected from a pig were irradiated with a pulsed laser. We first determine the optimal irradiation wavelength of the laser to be 808nm. With varying peak and average power of the laser, we found an inverse and logarithmic relationship between the penetration depth and the intensity of the light. After penetrating the skin and skull of the pig, the light decreases in intensity at a rate of approximately 90.8 (+/-0.4) percent for every 5 mm of brain tissue penetrated. We also found the correlation between the irradiation time and dosage, using three different lasers (with peak power of 500, 1000, and 1500mW respectively). These data will help deduce what laser power is required to achieve a clinically-realistic model for a given irradiation time. This work is fundamental and the experimental data can be used to supplement existing and future research on the effects of laser light on brain tissue for the design of medical devices.

  8. Light and scanning electron microscopic study on the tongue and lingual papillae of the common raccoon, Procyon lotor.

    Miyawaki, Yoshiko; Yoshimura, Ken; Shindo, Junji; Kageyama, Ikuo


    We observed the external surface and connective tissue cores (CTCs), after exfoliation of the epithelium of the lingual papillae (filiform, fungiform, foliate and vallate papillae) of the common raccoon (Procyon lotor) using scanning electron microscopy and light microscopy. The tongue was elongated and their two-third width was almost fixed. Numerous filiform papillae were distributed along the anterior two-thirds of the tongue and fungiform papillae were distributed between the filiform papillae. Eight vallate papillae that had a weak circumferential ridge were distributed in a V-shape in the posterior part of the tongue and numerous taste buds were observable in the circumferential furrows of vallate papillae. Weak fold-like foliate papillae were observable at the lateral edge in the posterior part of the tongue and a few salivary duct orifices were observable beneath the foliate papillae. An islet-like structure with numerous taste buds, was observable on the deep part of the salivary duct of foliate papillae. Large conical papillae were distributed at the posterior part and root of the tongue. After removal of epithelium, filiform papillae of CTCs were appeared to be a thumb or cone-like main core and associating several finger-like short accessory cores. These cores were surrounded an oval concavity. The main core was situated behind the concavity and associated with accessory cores. CTCs of fungiform papillae were cylinder-like with numerous vertically running ridges and with a few concavities seen at the top of the cores. CTCs of vallate papillae and their surrounded circumferential ridge were covered with numerous pimple-like protrusions. The lingual papillae of Common raccoon's tongue had morphological feature of carnivore species.

  9. Analysis of reactive oxygen species in the guard cell of wheat stoma with confocal microscope.

    Liu, Dongwu; Chen, Zhiwei; Shi, Peiguo; Wang, Xue; Cai, Weiwei


    Recently, the laser-scanning confocal microscope has become a routine technique and indispensable tool for cell biological studies. Previous studies indicated that reactive oxygen species (ROS) were generated in tobacco epidermal cells with confocal microscope. In the present studies, the probe 2',7'-dichlorof luorescein diacetate (H₂DCF-DA) was used to research the change of ROS in the guard cell of wheat stoma, and catalase (CAT) was used to demonstrate that ROS had been labeled. The laser-scanning mode of confocal microscope was XYT, and the time interval between two sections was 1.6351 s. Sixty optical sections were acquired with the laser-scanning confocal microscope, and CAT (60,000 U mg⁻¹) was added after four optical sections were scanned. Furthermore, the region of interest (ROI) was circled and the fluorescence intensity of ROS was quantified with Leica Confocal Software. The quantitative data were exported and the trend chart was made with software Excell. The results indicated that ROS were produced intracellularly in stomatal guard cells, and the quantified fluorescence intensity of ROS was declined with CAT added. It is a good method to research the instantaneous change of ROS in plant cells with confocal microscope and fluorescence probe H₂DCF-DA. Copyright © 2010 Wiley-Liss, Inc.

  10. Imaging arrangement and microscope

    Pertsinidis, Alexandros; Chu, Steven


    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  11. Early prognosis of metastasis risk in inflammatory breast cancer by texture analysis of tumour microscopic images.

    Kolarevic, Daniela; Tomasevic, Zorica; Dzodic, Radan; Kanjer, Ksenija; Vukosavljevic, Dragica Nikolic; Radulovic, Marko


    Inflammatory breast cancer (IBC) is a rare and aggressive type of locally advanced breast cancer. The purpose of this study was to determine the value of microscopic tumour histomorphology texture for prognosis of local and systemic recurrence at the time of initial IBC diagnosis. This retrospective study included a group of 52 patients selected on the basis of non-metastatic IBC diagnosis, stage IIIB. Gray-Level-Co-Occurrence-Matrix (GLCM) texture analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Obtained values were categorized by use of both data- and outcome-based methods. All five acquired GLCM texture features significantly associated with metastasis outcome. By accuracies of 69-81% and AUCs of 0.71-0.81, prognostic performance of GLCM parameters exceeded that of standard major IBC clinical prognosticators such as tumour grade and response to induction chemotherapy. Furthermore, a composite score consisting of tumour grade, contrast and correlation as independent features resulted in further enhancement of prognostic performance by accuracy of 89%, discrimination efficiency by AUC of 0.93 and an outstanding hazard ratio of 71.6 (95%CI, 41.7-148.4). Internal validation was successfully performed by bootstrap and split-sample cross-validation, suggesting that the model is generalizable. This study indicates for the first time the potential use of primary breast tumour histology texture as a highly accurate, simple and cost-effective prognostic indicator of metastasis risk in IBC. Clinical relevance of the obtained results rests on the role of prognosis in decisions on induction chemotherapy and the resulting impact on quality of life and survival.

  12. Spatially resolved confocal resonant Raman microscopic analysis of anode-grown Geobacter sulfurreducens biofilms.

    Lebedev, Nikolai; Strycharz-Glaven, Sarah M; Tender, Leonard M


    When grown on the surface of an anode electrode, Geobacter sulfurreducens forms a multi-cell thick biofilm in which all cells appear to couple the oxidation of acetate with electron transport to the anode, which serves as the terminal metabolic electron acceptor. Just how electrons are transported through such a biofilm from cells to the underlying anode surface over distances that can exceed 20 microns remains unresolved. Current evidence suggests it may occur by electron hopping through a proposed network of redox cofactors composed of immobile outer membrane and/or extracellular multi-heme c-type cytochromes. In the present work, we perform a spatially resolved confocal resonant Raman (CRR) microscopic analysis to investigate anode-grown Geobacter biofilms. The results confirm the presence of an intra-biofilm redox gradient whereby the probability that a heme is in the reduced state increases with increasing distance from the anode surface. Such a gradient is required to drive electron transport toward the anode surface by electron hopping via cytochromes. The results also indicate that at open circuit, when electrons are expected to accumulate in redox cofactors involved in electron transport due to the inability of the anode to accept electrons, nearly all c-type cytochrome hemes detected in the biofilm are oxidized. The same outcome occurs when a comparable potential to that measured at open circuit (-0.30 V vs. SHE) is applied to the anode, whereas nearly all hemes are reduced when an exceedingly negative potential (-0.50 V vs. SHE) is applied to the anode. These results suggest that nearly all c-type cytochrome hemes detected in the biofilm can be electrochemically accessed by the electrode, but most have oxidation potentials too negative to transport electrons originating from acetate metabolism. The results also reveal a lateral heterogeneity (x-y dimensions) in the type of c-type cytochromes within the biofilm that may affect electron transport to the


    Abdullahi Alanamu ABDULRAHAMAN


    Full Text Available Turmeric and ginger are spices derived from the rhizomes of Curcuma longa and Zingiber officinale respectively. The rhizomes of C. longa and Z. officinale were extracted in hexane, ethyl acetate, methanol and water. Phytochemical screening was carried out on each of the extracts. Proximate analysis to determine the extractive values, moisture content, total ash, crude fibre, acid insoluble ash and water soluble ash were carried out on the rhizomes of fresh and dried turmeric and ginger. The rhizomes of C. longa revealed alcohol extractive value 22.79%, water extractive value 26.44%, moisture content 11.56 ± 0.04%, total ash 13.24±0.03%, crude fiber 6.40±0.20%, acid insoluble ash 1.02±0.02% and water soluble ash 4.32±0.07%. Extractive values for ginger were recorded as alcohol 2.7% and water 2.1%, fresh and dried ginger rhizomes afforded, moisture content 72.63 ±0.09%, 10.03±0.09%, total ash 2.50 ±0.06%, 7.30±0.10%, acid insoluble ash 0.57±0.03%, 2.03±0.09%, and water soluble ash 1.23±0.03%, 3.87±0.09% respectively. Observations on the microscopic studies of the fresh rhizomes of turmeric and ginger revealed possession of oil duct and spiral xylem vessels. Similarly phytomorphology of the powdered rhizomes of ginger and turmeric revealed the presence of tracheid and compartment of vessels. Presence of similar anatomical features in both the fresh and ground samples confirmed the authenticity or adulterous of the powdered samples.

  14. Spectroscopic, microscopic, and internal stress analysis in cadmium telluride grown by close-space sublimation

    Manciu, Felicia S., E-mail: [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Salazar, Jessica G. [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Diaz, Aryzbe; Quinones, Stella A. [Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX 79968 (United States)


    High quality materials with excellent ordered structure are needed for developing photovoltaic and infrared devices. With this end in mind, the results of our research prove the importance of a detailed, comprehensive spectroscopic and microscopic analysis in assessing cadmium telluride (CdTe) characteristics. The goal of this work is to examine not only material crystallinity and morphology, but also induced stress in the deposit material. A uniform, selective growth of polycrystalline CdTe by close-space sublimation on patterned Si(111) and Si(211) substrates is demonstrated by scanning electron microscopy images. Besides good crystallinity of the samples, as revealed by both Raman scattering and Fourier transform infrared absorption investigations, the far-infrared transmission data also show the presence of surface optical phonon modes, which is direct evidence of confinement in such a material. The qualitative identification of the induced stress was achieved by performing confocal Raman mapping microscopy on sample surfaces and by monitoring the existence of the rock-salt and zinc-blende structural phases of CdTe, which were associated with strained and unstrained morphologies, respectively. Although the induced stress in the material is still largely due to the high lattice mismatch between CdTe and the Si substrate, the current results provide a direct visualization of its partial release through the relaxation effect at crystallite boundaries and of preferential growth directions of less strain. Our study, thus offers significant value for improvement of material properties, by targeting the needed adjustments in the growth processes. - Highlights: • Assessing the characteristics of CdTe deposited on patterned Si substrates • Proving the utility of confocal Raman microscopy in monitoring the induced stress • Confirming the partial stress release through the grain boundary relaxation effect • Demonstrating the phonon confinement effect in low

  15. Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems

    Lucia, Umberto


    The relation between macroscopic irreversibility and microscopic reversibility is a present unsolved problem. Constructal law is introduced to develop analytically the Einstein’s, Schrödinger’s, and Gibbs’ considerations on the interaction between particles and thermal radiation (photons). The result leads to consider the atoms and molecules as open systems in continuous interaction with flows of photons from their surroundings. The consequent result is that, in any atomic transition, the energy related to the microscopic irreversibility is negligible, while when a great number of atoms (of the order of Avogadro’s number) is considered, this energy related to irreversibility becomes so large that its order of magnitude must be taken into account. Consequently, macroscopic irreversibility results related to microscopic irreversibility by flows of photons and amount of atoms involved in the processes.

  16. Role of l-carnitine in the prevention of seminiferous tubules damage induced by gamma radiation: a light and electron microscopic study

    Topcu-Tarladacalisir, Yeter; Kanter, Mehmet [Trakya University, Department of Histology and Embryology, Faculty of Medicine, Edirne (Turkey); Uzal, Mustafa Cem [Trakya University, Department of Radiation Oncology, Faculty of Medicine, Edirne (Turkey)


    The present study, we hypothesized that l-carnitine can minimize germ-cell depletion and morphological features of late cell damage in the rat testis following gamma ({gamma})-irradiation. Wistar albino male rats were divided into three groups. Control group received physiological saline 0.2 ml intraperitoneally (i.p.), as placebo. Radiation group received scrotal {gamma}-irradiation of 10 Gy as a single dose plus physiological saline. Radiation + l-carnitine group received scrotal {gamma}-irradiation plus 200 mg/kg i.p. l-carnitine. l-carnitine starting 1 day before irradiation and 21 days (three times per week) after irradiation. Testis samples of the all groups were taken at day 21, 44 and 70 post-irradiation. All samples were processed at the light and electron microscopic levels. Morphologically, examination of {gamma}-irradiated testis revealed presence of marked disorganization and depletion of germ cells, arrest of spermatogenesis, formation of multinucleated giant cells, and vacuolization in the germinal epithelium. The type and extent of these changes varied at different post-treatment intervals. The damage was evident at the 21st day and reached maximum level by the 44th day. By day 44 post-irradiation, the changes were most advanced, and were associated with atrophied seminiferous tubules without germ cells, the increase in the number and size of vacuolizations in germinal epithelium, and the absent multinucleated giant cells due to spermatids had completely disappeared. The increase in nucleus invaginations, the dilatation of smooth endoplasmic reticulum cysternas and the increase in the number and size of lipid droplets in the Sertoli cells were determined at the electron microscopic level. In conclusion, l-carnitine supplementation during the radiotherapy would be effective in protecting against radiation-induced damages in rat testis, and thereby may improve the quality of patient's life after the therapy. (orig.)

  17. Automatic Recognition of Human Parasite Cysts on Microscopic Stools Images using Principal Component Analysis and Probabilistic Neural Network

    Beaudelaire Saha Tchinda


    Full Text Available Parasites live in a host and get its food from or at the expensive of that host. Cysts represent a form of resistance and spread of parasites. The manual diagnosis of microscopic stools images is time-consuming and depends on the human expert. In this paper, we propose an automatic recognition system that can be used to identify various intestinal parasite cysts from their microscopic digital images. We employ image pixel feature to train the probabilistic neural networks (PNN. Probabilistic neural networks are suitable for classification problems. The main novelty is the use of features vectors extracted directly from the image pixel. For this goal, microscopic images are previously segmented to separate the parasite image from the background. The extracted parasite is then resized to 12x12 image features vector. For dimensionality reduction, the principal component analysis basis projection has been used. 12x12 extracted features were orthogonalized into two principal components variables that consist the input vector of the PNN. The PNN is trained using 540 microscopic images of the parasite. The proposed approach was tested successfully on 540 samples of protozoan cysts obtained from 9 kinds of intestinal parasites.

  18. Microscopic approach to polaritons

    Skettrup, Torben


    contrary to experimental experience. In order to remove this absurdity the semiclassical approach must be abandoned and the electromagnetic field quantized. A simple microscopic polariton model is then derived. From this the wave function for the interacting exciton-photon complex is obtained...... of light of the crystal. The introduction of damping smears out the excitonic spectra. The wave function of the polariton, however, turns out to be very independent of damping up to large damping values. Finally, this simplified microscopic polariton model is compared with the exact solutions obtained...... for the macroscopic polariton model by Hopfield. It is seen that standing photon and exciton waves must be included in an exact microscopic polariton model. However, it is concluded that for practical purposes, only the propagating waves are of importance and the simple microscopic polariton wave function derived...

  19. Tracking of colloidal particles using microscopic image sequence analysis - Application to particulate microelectrophoresis and particle deposition

    Wit, PJ; Busscher, HJ


    A method for colloidal particle tracking in microscopic video image sequences is presented, based upon minimization of a matrix containing the distances between predicted and measured particle positions within a field of view. The software required for particle tracking can be easily implemented in

  20. Rapid and early detection of salmonella serotypes with hyperspectral microscope and multivariate data analysis

    This study was designed to evaluate hyperspectral microscope images for early and rapid detection of Salmonella serotypes: S. Enteritidis, S. Heidelberg, S. Infantis, S. Kentucky, and S. Typhimurium at incubation times of 6, 8, 10, 12, and 24 hours. Images were collected by an acousto-optical tunab...

  1. Staging of Alzheimer's Pathology in Triple Transgenic Mice: A Light and Electron Microscopic Analysis

    Kwang-Jin Oh


    , and TauP301L gene mutations, remains unclear. At 3 weeks of age, AT180, Alz50, MC1, AT8, and PHF-1 intraneuronal immunoreactivity appeared in the amygdala and hippocampus and at later ages in the cortex of 3xTg-AD mice. AT8 and PHF-1 staining was fixation dependent in young mutant mice. 6E10 staining was seen at all ages. Fluorescent immunomicroscopy revealed CA1 neurons dual stained for 6E10 and Alz50 and single Alz50 immunoreactive neurons in the subiculum at 3 weeks and continuing to 20 months. Although electron microscopy confirmed intraneuronal cytoplasmic Alz50, AT8, and 6E10 reaction product in younger 3xTg-AD mice, straight filaments appeared at 23 months of age in female mice. The present data suggest that other age-related biochemical mechanisms in addition to early intraneuronal accumulation of 6E10 and tau underlie the formation of tau filaments in 3xTg-AD mice.

  2. Analysis of frequency dependent pump light absorption

    Wohlmuth, Matthias; Pflaum, Christoph


    Simulations have to accurately model thermal lensing in order to help improving resonator design of diode pumped solid state lasers. To this end, a precise description of the pump light absorption is an important prerequisite. In this paper, we discuss the frequency dependency of the pump light absorption in the laser crystal and its influence on the simulated laser performance. The results show that the pump light absorption has to include the spectral overlap of the emitting pump source and the absorbing laser material. This information can either be used for a fully frequency dependent absorption model or, at least in the shown examples, to compute an effective value for an exponential Beer-Lambert law of absorption. This is particularly significant at pump wavelengths coinciding with a peak of absorption. Consequences for laser stability and performance are analyzed for different pump wavelengths in a Nd:YAG laser.

  3. Scanning electron microscopic analysis of skin resolution as an aid in identifying trauma in forensic investigations.

    Rawson, R B; Starich, G H; Rawson, R D


    The forensic investigator is frequently confronted with cases that present with wounds and blunt force trauma. Presently, the forensic investigator depends upon previous experience and further investigative deduction of the crime scene to analyze these injuries. Although not readily apparent to the naked eye, many skin tissue injuries can be visualized with scanning electron microscopy (SEM). This study was designed to establish skin trauma resolution using SEM in various skin preparations. Tissue trauma was induced on leather, preserved skin, fresh skin, and living skin using dies of varying thread size. Calibrated pressure forces in pounds per square inch (psi) were applied and impressions made using vinyl polysiloxane. Positive replicas of the tissues were prepared for SEM using isocyanate resin. After sputter coating the cast with 35 nm of gold-palladium, electron micrographs were generated using a Jeol JSM-5310LV scanning electron microscope. To establish resolution, thread widths of 52, 104, and 208 threads per inch (tpi) and trauma forces of 150, 200, and 250 psi were used to produce the impressions. Microgrooves that were identified on the die threads were analyzed. The optimum pressure for resolution studies was 150 psi using the 52 tpi die on the leather sample (4.67 +/- 0.88 microm, p = 0.046 and 0.025, respectively, by ANOVA). The resolution was compared to that of leather using preserved, fresh, and living skin. The resolution in preserved and fresh skin was less than for leather (9.00 +/- 1.73 and 10.5 +/- 4.5 versus 4.67 +/- 0.88 microm, p = 0.09 and p = 0.20, respectively). Living skin resolution was 3 microm at 52 tpi and 100 psi. Various implements of blunt force trauma were also examined using the leather sample. Time after trauma resolution was examined at 0 (3 microm), 5 (6 microm), 10 (8 microm), and 20 (9 microm) min in living tissue. A comparison between the microgrooves on the die replicas and the tissue trauma impressions revealed striking




    The light microscopical demonstration of D-amino acid oxidase (AAOX) activity with cerium (Ce III) as the capturing agent was improved. The incubation medium was stabilized by the employment of triethanolamine and detrane complexed cerium. A considerable increase in intensity of the reaction was



    The cerium-based method of Kobayashi et al. for the histochemical demonstration of K-NPPase activity was improved. Besides Ce3+ additionally Mg2+ ions as orthophosphate capture were employed (double capture technique). For light microscopical purposes the Mg-phosphate was converted into Ce-phosphate

  6. Endoscopic Versus Microscopic Transsphenoidal Surgery in the Treatment of Pituitary Adenoma: A Systematic Review and Meta-Analysis.

    Li, Aijun; Liu, Weisheng; Cao, Peicheng; Zheng, Yuehua; Bu, Zhenfu; Zhou, Tao


    Inconsistent findings have been reported regarding the efficacy and safety of endoscopic and microscopic transsphenoidal surgery for pituitary adenoma. This study aimed to assess the benefits and shortcomings of these surgical methods in patients with pituitary adenoma. The electronic databases PubMed, Embase, and the Cochrane Library were systematically searched, as well as proceedings of major meetings. Eligible studies with a retrospective or prospective design that evaluated endoscopic versus microscopic methods in patients with pituitary adenoma were included. Primary outcomes included gross tumor removal, cerebrospinal fluid leak, diabetes insipidus, and other complications. Overall, 23 studies (4 prospective and 19 retrospective) assessing 2272 patients with pituitary adenoma were included in the final analysis. Endoscopic transsphenoidal surgery was associated with a higher incidence of gross tumor removal (odds ratio, 1.52; 95% confidence interval, 1.11-2.08; P = 0.009) than those with microscopic transsphenoidal surgery. In addition, endoscopic transsphenoidal surgery had no significant effect on the risk of cerebrospinal fluid leak, compared with microscopic transsphenoidal surgery. Furthermore, endoscopic transsphenoidal surgery was associated with a 22% reduction in risk of diabetes insipidus compared with microscopic transsphenoidal surgery, but the difference was not statistically significant. Endoscopic transsphenoidal surgery significantly reduced the risk of septal perforation (odds ratio, 0.29; 95% confidence interval, 0.11-0.78; P = 0.014) and was not associated with the risk of meningitis, epistaxis, hematoma, hypopituitarism, hypothyroidism, hypocortisolism, total mortality, and recurrence. Endoscopic transsphenoidal surgery is associated with higher gross tumor removal and lower incidence of septal perforation in patients with pituitary adenoma. Future large-scale prospective randomized controlled trials are needed to verify these findings

  7. The connective tissue and glial framework in the optic nerve head of the normal human eye: light and scanning electron microscopic studies.

    Oyama, Tokuhide; Abe, Haruki; Ushiki, Tatsuo


    The arrangement of connective tissue components (i.e., collagen, reticular, and elastic fibers) and glial elements in the optic nerve head of the human eye was investigated by the combined use of light microscopy and scanning electron microscopy (SEM). Light-microscopically, the optic nerve head could be subdivided into four parts from the different arrangements of the connective tissue framework: a surface nerve fiber layer, and prelaminar, laminar, and postlaminar regions. The surface nerve fiber layer only possessed connective tissue elements around blood vessels. In the prelaminar region, collagen fibrils, together with delicate elastic fibers, formed thin interrupted sheaths for accommodating small nerve bundles. Immunohistochemistry for the glial fibrillary acidic protein (GFAP) showed that GFAP-positive cells formed columnar structures (i.e., glial columns), with round cell bodies piled up into layers. These glial columns were located in the fibrous sheaths of collagen fibrils and elastic fibers. In the laminar region, collagen fibrils and elastic fibers ran transversely to the optic nerve axis to form a thick membranous layer - the lamina cribrosa - which had numerous round openings for accommodating optic nerve fiber bundles. GFAP-positive cellular processes also ran transversely in association with collagen and elastin components. The postlaminar region had connective tissues which linked the lamina cribrosa with fibrous sheaths for accommodating nerve bundles in the extraocular optic nerve, where GFAP-positive cells acquired characteristics typical of fibrous astrocytes. These findings indicate that collagen fibrils, as a whole, form a continuous network which serves as a skeletal framework of the optic nerve head for protecting optic nerve fibers from mechanical stress as well as for sustaining blood vessels in the optic nerve. The lamina cribrosa containing elastic fibers are considered to be plastic against the mechanical force affected by elevation

  8. Evaluating office lighting environments: Second-level analysis

    Collins, B.L.; Fisher, W.S.; Gillette, G.L.; Marans, R.W.


    Data from a post-occupancy evaluation (POE) of 912 work stations with lighting power density (LPD), photometric, and occupant-response measures were examined in a detailed, second-level analysis. Seven types of lighting systems were identified with different combinations of direct and indirect ambient lighting, and task lighting and daylight. The mean illuminances at the primary task location were within the IES target values for office task with a range of mean illuminances from 32 to 75 fc, depending on the lighting system. The median LPD was about 2.36 watts/sq ft, with about one-third the work stations having LPD's at or below 2.0 watts/sq ft. Although a majority of the occupants (69%) were satisfied about their lighting, the highest percentage of those expressing dissatisfaction (37%) with lighting had an indirect fluorescent furniture-mounted (IFFM) system. The negative reaction of so many people to the IFFM system suggests that the combination of task lighting with an indirect ambient system had an important influence on lighting satisfaction, even though task illuminances tended to be higher with the IFFM system. Concepts of lighting quality, visual health, and control were explored, as well as average luminance to explain the negative reactions to the combination of indirect lighting with furniture-mounted lighting.

  9. Prevalence of apoptotic epidermal keratinocytes in eosinophilic dermatoses of the cat: a retrospective light-microscopic study of 145 skin-biopsy specimens.

    Griffin, Joya S; Scott, Danny W; Erb, Hollis N


    A retrospective light-microscopic study was performed on skin-biopsy specimens from 145 cats with eosinophilic inflammatory dermatoses in order to determine the prevalence of apoptotic epidermal keratinocytes (AKs), the prevalence of eosinophils in close proximity to AKs, and whether there was a difference in the prevalence of AKs or the prevalence of eosinophils in close proximity to AKs based on histopathological reaction pattern. Overall, 62/145 (43%) specimens had AKs. Of the cases in which AKs were seen, 18% had eosinophils in close proximity to the AKs. The specimens were divided into three groups based on histopathological reaction pattern: perivascular-to-interstitial, diffuse, and nodular. No difference in the prevalence of AKs was found among the three histological groups. Because the sample size containing eosinophils in close proximity to AKs was too small to compare the three histological patterns individually, nodular and non-nodular patterns were compared. No difference in the presence of eosinophils in close proximity to AKs was found in these two subsets. More AKs were present if eosinophils were in close proximity to the AKs (range 1-9 with eosinophils near compared to 0-7 without).

  10. Light and electron microscopic studies of the intestinal epithelium in Notoplana humilis (Platyhelminthes, Polycladida): the contribution of mesodermal/gastrodermal neoblasts to intestinal regeneration.

    Okano, Daisuke; Ishida, Sachiko; Ishiguro, Sei-ichi; Kobayashi, Kazuya


    Some free-living flatworms in the phylum Platyhelminthes possess strong regenerative capability that depends on putative pluripotent stem cells known as neoblasts. These neoblasts are defined based on several criteria, including their proliferative capacity and the presence of cellular components known as chromatoid bodies. Polyclads, which are marine flatworms, have the potential to be a good model system for stem cell research, yet little information is available regarding neoblasts and regeneration. In this study, transmission electron microscopy and immunostaining analyses, using antibodies against phospho-histone H3 and BrdU, were used to identify two populations of neoblasts in the polyclad Notoplana humilis: mesodermal neoblasts (located in the mesenchymal space) and gastrodermal neoblasts (located within the intestine, where granular club cells and phagocytic cells are also located). Light and electron microscopic analyses also suggested that phagocytic cells and mesodermal/gastrodermal neoblasts, but not granular club cells, migrated into blastemas and remodeled the intestine during regeneration. Therefore, we suggest that, in polyclads, intestinal regeneration is accomplished by mechanisms underlying both morphallaxis (remodeling of pre-existing tissues) and epimorphosis (de novo tissue formation derived from mesodermal/gastrodermal neoblasts). Based on the assumption that gastrodermal neoblasts, which are derived from mesodermal neoblasts, are intestinal stem cells, we propose a model to study intestinal regeneration.

  11. The possible protective role of pumpkin seed oil in an animal model of acid aspiration pneumonia: Light and electron microscopic study.

    Omar, Nesreen Moustafa; Sarhan, Nahla Reda


    Aspiration pneumonitis is a common problem occurring in many clinical disorders. Pumpkin seed oil (PO) is a rich source of antioxidants. This work aimed to assess the effect of PO on the lung histopathological changes induced by acid aspiration. Forty male albino rats assigned to four groups were used. Rats of control group were instilled intratracheally with normal saline 2mL/kg. HCL group instilled with 2mL/kg of HCL 0.1N, pH 1.25. PO group received pumpkin seed oil (PO) orally (∼1375mg/kgbw/day) for 7days. HCL+PO group instilled with 2mL/kg of HCL 0.1N, pH 1.25 and received PO at the same dose of PO group. Lung tissue samples were processed for light, electron microscopic and immunohistochemical study using anti inducible NO synthase (iNOS). The lung of HCL group demonstrated thickened interalveolar septa, inflammatory cell infiltration and significant increase in the area percent of collagenous fibers and immune expression of iNOS. Ultra structurally, disrupted alveolocapillay membrane, degenerated type II pneumocytes and plentiful alveolar macrophages were evident. PO administration partially attenuated these histological and ultra structural alterations and reduced iNOS immune-expression in lung tissue. In conclusion, PO has a protective effect against HCL aspiration lung injury most probably through its antioxidant activity.

  12. Light and scanning electron microscopic study of the filiform papillae of the tongue in adult rabbit (Oryctolagus cuniculus f. domestica, Linnaeus 1758

    Mirosława Kulawik


    Full Text Available This study was conducted on 10 tongues of adult rabbits (Oryctolagus cuniculus. domestica, of both sexes (five females and five males. The filiform papillae of the tongue were studied, using light and scanning electron microscope. The filiform papillae were arranged on the dorsal surface of the apex and body of the tongue and on its margins. The investigation showed that there were single and complex filiform papillae on the rabbit tongue. These single filiform papillae were cone-shaped, similarly as their connective tissue cores. Complex papillae were palm-shaped and cone-shaped with three to seven processes. However, the number of processes towards the throat diminished. Connective tissue cores of these papillae had also processes. The filiform papillae consisted of an anterior and posterior epithelial cell column. The anterior epithelial cell column showed signs of parakeratinization or soft keratinization whereas the posterior epithelial cell column – hard keratinization. Between filiform papillae there was interpapillary epithelium which did not have any signs of keratinization.

  13. Raphe of the posterior neural tube in the chick embryo: its closure and reopening as studied in living embryos with a high definition light microscope.

    van Straaten, H W; Jaskoll, T; Rousseau, A M; Terwindt-Rouwenhorst, E A; Greenberg, G; Shankar, K; Melnick, M


    Chick embryos cultured on a curved substratum show a transient enlargement of the posterior neuropore (PN), mimicking the temporary delay of PN closure as seen in the curly tail (ct) mouse mutant (van Straaten et al. [1993] Development 117:1163-1172). In the present study the PN enlargement in the chick embryo was investigated further with a high definition light microscope (HDmic), allowing high resolution viewing of living embryos in vitro. The temporary PN enlargement appeared due to considerable reopening of the raphe of the posterior neural tube, which was followed by reclosure after several hours. The raphe was subsequently studied in detail. It appeared very irregular, with small zones of apposed, open and fused neural folds. During closure, these raphe features shifted posteriorly. A distinct fusion sequence between surface epithelium and neuroepithelium was not seen. During experimental reopening of the raphe in vitro, small bridges temporarily arose, broke and disappeared quickly; they likely represented the first adhesion sites between the neural folds. More prominent adhesion sites partly detached, resulting in bridging filopodia-like connections; they probably represented the first anteroposterior locations of neural fold fusion. Our observations in the living chick embryo in vitro thus show that the caudal neural tube has an irregular raphe with few adhesion sites, which can be readily reopened. As a result of the irregularity, the PN does not close zipper-like, but button-like by forming multiple closure sites.

  14. Hybrid Al/steel-joints manufactured by ultrasound enhanced friction stir welding (USE-FSW): Process comparison, nondestructive testing and microscopic analysis

    Thomä, M.; Wagner, G.; Straß, B.; Wolter, B.; Benfer, S.; Fürbeth, W.


    The process of friction stir welding (FSW) is an innovative joining technique, which proved its potential in joining dissimilar metals that are poorly fusion weldable. This ability opens a wide range for applications in industrial fields, where weight reduction by partial substitution of conventional materials through lightweight materials is a current central aim. As a consequence of this, the realization of aluminum / steel-joints is of great interest. For this material compound, several friction stir welds were carried out by different researchers for varying Al/steel-joints, whereas the definition of optimal process parameters as well as the increase of mechanical properties was in the focus of the studies. To achieve further improved properties for this dissimilar joint a newly developed hybrid process named “ultrasound enhanced friction stir welding (USE-FSW)” was applied. In this paper the resulting properties of Al/steel-joints using FSW and USE-FSW will be presented and compared. Furthermore, first results by using the nondestructive testing method “computer laminography” to analyze the developed joining area will be shown supplemented by detailed light-microscopic investigations, scanning electron microscopic analysis, and EDX.

  15. Clinical effect analysis of microscopic surgery for epiglottis cysts with coblation.

    Sun, Bao-Chun; Dai, Zhi-Yao; Han, Ze-Li; Wang, Feng; Yang, Shu-Zhi; Han, Jia-Hong; Chen, Mao-Mao; Ye, Bao-Zhu; Yan, Qing-Hong; Zhou, Chen-Yong


    This study aims to explore the effects and advantages of coblation combined with microscopy to treat epiglottis cysts. Ninety patients with epiglottis cysts were randomly assigned to three groups: the first group: marsupialisation + electric coagulation group, n = 30; the second group: marsupialisation + coblation, n = 30; and the third group: marsupialisation + coblation + microsurgery, n = 30. To compare the cure rate, intraoperative bleeding volume, postoperative pain, operation time and postoperative complications were investigated among these three groups. The comparison among three procedures showed a significant difference for intraoperative bleeding volume, operation time and postoperative pain (P  0.05). These three procedures are effective in treating epiglottis cysts. Microscopic surgery with coblation has the advantages of less bleeding, short procedure duration, less pain and few complications. Thus, microscopic surgery is worthy of clinical application.

  16. Analysis of microscopic pore structures of rocks before and after water absorption

    Li Dejian; Wang Guilian; Han Liqiang; Liu Peiyu; He Manchao; Yang Guoxing; Tai Qimin; Chen Cheng


    Hydrophilic characteristics of rocks are affected by their microscopic pore structures, which clearly change after water absorption. Water absorption tests and scanning electron microscopic (SEM) experiments on rock samples, located at a site in Tibet, China, were carried out. Changes of rock pore structures before and after water absorption were studied with the distribution of pore sizes and fractal characteristics of pores. The results show that surface porosities, fractal dimensions of pores and the complexity of pore structures increased because the number of new small pores produced increased or the original macropore flow channels were expanded after rocks absorbed water. There were points of inflection on their water absorption curves. After water absorption of other rocks, surface porosities and fractal dimensions of pores and complexity of pore structures decreased as the original pore flow channels became filled. Water absorption curves did not change. Surface porosity and the pore fractal dimensions of rocks have good linear relationships before and after water absorption.

  17. Microscopic analysis of sharp force trauma in bone and cartilage: a validation study.

    Crowder, Christian; Rainwater, Christopher W; Fridie, Jeannette S


    Sharp force trauma research lacks agreement on reported error rates for correctly identifying toolmark characteristics on bone and cartilage. This study provides error rates for determining blade class (serrated, partially serrated, nonserrated) and type of edge bevel (left, right, even). Three analysts examined cuts to a wax medium, cartilage, and bone using two types of microscopes. Additionally, the observers examined impressions taken from the wax medium and the cartilage. Overall, a total of 504 observations were performed. Serrated blades were distinguishable from nonserrated blades due to their patterned striations. Some difficulties were encountered in distinguishing serrated and partially serrated blades; however, when these groups were considered together as one classification type (serrated), classification accuracy improved from 79% to 96%. Classification accuracy for edge bevel was 65%. Error rates were similar when comparing direct observation of the cut marks versus indirect observation (impressions). Additionally, the type of microscope used did not affect error rates.

  18. Quantum theory analysis on microscopic mechanism of the interaction of laser with cell membrane

    XU Lin; ZHANG Can-bang; WANG Sheng-yu; LI Ling; WANG Rui-li; ZHOU Ling-yun


    On the basis of liquid crystal model with the electric dipole moment of cell membrane,the microscopic mechanism of the electricity and thermology effects of interaction of laser with cell membrane is researched by electromagnetic, quantum mechanics and quantum statistics. We derive the formulas on the polarization effects and "temperature-rising effect" of laser-cell membrane interaction. The results of the theoretical research can explain some experiments.

  19. Analysis of macroscopic and microscopic rotating motions in rotating jets: A direct numerical simulation

    Xingtuan Yang


    Full Text Available A direct numerical simulation study of the characteristics of macroscopic and microscopic rotating motions in swirling jets confined in a rectangular flow domain is carried out. The different structures of vortex cores for different swirl levels are illustrated. It is found that the vortex cores of low swirl flows are of regular cylindrical-helix patterns, whereas those of the high swirl flows are characterized by the formation of the bubble-type vortex breakdown followed by the radiant processing vortex cores. The results of mean velocity fields show the general procedures of vortex origination. Moreover, the effects of macroscopic and microscopic rotating motions with respect to the mean and fluctuation fields of the swirling flows are evaluated. The microscopic rotating effects, especially the effects with respect to the turbulent fluctuation motion, are increasingly intermittent with the increase in the swirl levels. In contrast, the maximum value of the probability density functions with respect to the macroscopic rotating effects of the fluctuation motion occurs at moderate swirl levels since the macroscopic rotating effects are attenuated by the formation of the bubble vortex breakdown with a region of stagnant fluids at supercritical swirl levels.

  20. A quantitative electron microscopic analysis of the keratinizing epithelium of noral human hard palate.

    Meyer, M; Schroeder, H E


    The epithelium of normal human hard palate was subjected to sterologic analysis. Ten biosies were selected from a total of twenty specimens collected from 9 to 16 year old females, and processed for light- and electron microscopy. At two levels of magnification, electron micrographs were sampled from three strata (basale, spinosum, granulosum) in two locations (epithelial ridges and portions over connective tissue papillae). Stereologic point counting procedures were employed to analyse a total 1560 electron micrographs. In general, the thickness of the palate epithelium was 0.12 mm (over papillae) and 0.31 mm (in ridges), the epithelium is distinctly stratified, and homogeneously ortho-keratinized. From basal to granular layers, the composition of strata revealed decreasing densities of nuclei, mitochondria, membrane-bound organelles and aggregates of free ribosomes. Keratohyalin bodies and membrane coating granules increased, and cytoplasmic filaments with a constant diameter of about 85 A increased from 14 to 30% of cytoplasmic unit volume. The cytoplasmic ground substance occupied a stable 50% of the epithelial cytoplasm in all strata. The composition of basal layers in ridges differed from that over connective tissue papillae. The data are discussed in relation to the observations that (1) an increasing gradient of filament density is not the most characteristic feature of ortho-keratinizing oral epithelium and (2) differences in the degree of differentiation in cells of the stratum basale coincided with the comparable frequency distribution pattern of dividing cells.

  1. Quantitative electron microscopic analysis of the epithelium of normal human alveolar mucosa.

    Bernimoulin, J P; Schroeder, H E


    The epithelium of normal human alveolar mucosa originating from the anterior vestibulum was subjected to stereologic analysis. Eight biopsies were collected half-way between the muco gingival junction and the vestibular fornix from 20 to 50 year-old females, and processed for light and electron microscopy. At two levels of magnification, electron micrographs were sampled from four artificially selected strata in regions of epithelial ridges. Stereologic point counting based on a computer-aided system for analyzing stratified epithelia served for examining a total of about 860 electron micrographs. The alveolar epithelium was 0.26 mm thick, occasionally interdigitated by short, slender connective tissue papillae, and consisted of (1) a narrow basal and suprabasal, and (2) a broad spinous and surface compartment. It displayed a differentiation pattern which, in most subjects studied, was similar to that of normal human buccal epithelium, however, on the average, produced less mature surface cells. This pattern was expressed mainly by a density increase of cytoplasmic filaments (98 A in diameter), a concomitant decrease of the cytoplasmic ground substance, the formation of dark-cored membrane coating granules, and invividually variable amounts of glycogen deposition. In some subjects, a mixed differentiation pattern was found. The structural organization of alveolar epithelium, in analogy to cheek epithelium, was compatible with the function of distensibility.

  2. Seasonal Variation, Microscopic and Chromatographic Analysis of Leaves in Malus hupehensis: A Protocol for Its Quality Control

    SHEN Tao; XIANG Lan; REN Dong-mei; WANG Shu-qi; YANG Ming-ren; LOU Hong-xiang


    Objective To establish a quality control protocol based on microscopic,TLC,and HPLC methods,and to verify the optimal harvesting time for the leaves of Malus hupehensis (LMH).Methods The LMH were pulverized into powder for microscopic identification or TLC and HPLC analysis after ultrasonic extraction with methanol.Seasonal variations of the phlorizin content and average leaf weight were determined by HPLC analysis and weighing up the leaves collected from May to October.Results Microscopic and macromorphologic characteristics have been described for the leaf identification.A qualitative TLC assay and a quantitative HPLC method have been established for the quality control of LMH.Phlorizin was selected as a reference marker,which resolved at Rf0.53 in TLC assay and at 14.0 min in HPLC assay.The content of phlorizin decreased gradually from 17.0% in leaves collected in May to 7.5% in October.The average leaf weight reached the level of 0.6 g in August and maintained until its falling.Conclusion These methods are simple,selective,accurate,and reliable for the quality control of LMH.The period from late August to early September is suggested as the optimal harvesting time of the LMH.

  3. Microscopic Colitis with Macroscopic Endoscopic Findings

    Atif Saleem; Brahmbhatt, Parag A.; Sarah Khan; Mark Young; LeSage, Gene D.


    Microscopic Colitis (MC) is characterized by chronic watery diarrhea, grossly normal appearing colonic mucosa during conventional white light endoscopy, and biopsy showing microscopic inflammation. We report a case of collagenous colitis with gross endoscopic findings.

  4. SS433 Trek 2: light curve analysis.

    Fukue, J.; Obana, Y.; Okugami, M.

    The authors have calculated theoretical light curves of SS433 during eclipse and precession, using a model in which SS433 consists of a geometrically thick torus around a compact star and a companion star filling the Roche lobe. The favorite combination is that the mass ratio is about 2 (a compact star is a black hole) and the surface temperature of the companion is around 17000K.

  5. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.

    Xie, Linyan; Yang, Yan; Sun, Xuming; Qiao, Xu; Liu, Qiao; Song, Kun; Kong, Beihua; Su, Xuantao


    Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics.

  6. Synthesis, spectral characterization, electron microscopic study and thermogravimetric analysis of a phosphorus containing dendrimer with diphenylsilanediol as core unit

    E. Dadapeer


    Full Text Available A phosphorus containing dendrimer with a diphenylsilanediol core was synthesized using a divergent method. Several types of reactions were performed on dendrons of several sizes, either at the level of the core or the surface. The giant Schiff’s base macro molecule possesses 12 imine bonds and 8 hydroxy groups on the terminal phenyl groups. The structures of the intermediate compounds were confirmed by IR, GCMS and 31P NMR. The final compound was characterized by 1H, 13C, 31P NMR, MALDI-TOF MS and CHN analysis. Scanning electron microscopic and thermogravimetric analysis/differential scanning calorimetric studies were also performed on the final dendritic molecule.

  7. CBS - A program for close binary system light curve analysis

    Solmi, L.; Galli, M.

    CBS is a new program for binary system light curve analysis, it generates synthetic light curves for a binary system, accounting for eclipses, tidal distortion, limb darkening, gravity darkening and reflection; it is also possible to compute the light contribution and eclipses of an accretion disk. The bolometric light curve is generated, as well as curves for the U,B,V,R,I colour bands. In the following we give a brief description of the first version of the program and show some preliminary results.

  8. Martian Microscope


    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  9. Microscopic colitis

    Münch, A; Aust, D; Bohr, Jakob


    Microscopic colitis (MC) is an inflammatory bowel disease presenting with chronic, non-bloody watery diarrhoea and few or no endoscopic abnormalities. The histological examination reveals mainly two subtypes of MC, lymphocytic or collagenous colitis. Despite the fact that the incidence in MC has...... been rising over the last decades, research has been sparse and our knowledge about MC remains limited. Specialists in the field have initiated the European Microscopic Colitis Group (EMCG) with the primary goal to create awareness on MC. The EMCG is furthermore a forum with the intention to promote...

  10. Martian Microscope


    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  11. Miniaturized 3D microscope imaging system

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi


    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  12. SEM analysis of ionizing radiation effects in linear integrated circuits. [Scanning Electron Microscope

    Stanley, A. G.; Gauthier, M. K.


    A successful diagnostic technique was developed using a scanning electron microscope (SEM) as a precision tool to determine ionization effects in integrated circuits. Previous SEM methods radiated the entire semiconductor chip or major areas. The large area exposure methods do not reveal the exact components which are sensitive to radiation. To locate these sensitive components a new method was developed, which consisted in successively irradiating selected components on the device chip with equal doses of electrons /10 to the 6th rad (Si)/, while the whole device was subjected to representative bias conditions. A suitable device parameter was measured in situ after each successive irradiation with the beam off.

  13. Field enhancement analysis of an apertureless near field scanning optical microscope probe with finite element method

    Weibin Chen; Qiwen Zhan


    Plasmonic field enhancement in a fully coated dielectric near field scanning optical microscope (NSOM)probe under radial polarization illumination is analyzed using an axially symmetric three-dimensional (3D)finite element method (FEM) model. The enhancement factor strongly depends on the illumination spot size, taper angle of the probe, and the metal film thickness. The tolerance of the alignment angle is investigated. Probe designs with different metal coatings and their enhancement performance are studied as well. The nanometric spot size at the tip apex and high field enhancement of the apertureless NSOM probe have important potential application in semiconductor metrology.

  14. Theoretical analysis of microscopic oil displacement mechanism by viscoelastic polymer solution


    The microscopic oil displacement mechanism in viscoelastic polymer flooding is theoretically analyzed with mechanical method.The effects of viscoelasticity of polymer solution on such three kinds of residual oil as in pore throat,in sudden expansion pore path,and in dead end are analyzed.Results show that the critical radius of mobile residual oil for viscoelastic polymer solution is larger than that for viscous polymer solution,which makes the oil that is immobile in viscous polymer flooding displaced u...

  15. Study of erythrocyte membrane fluctuation using light scattering analysis

    Lee, Hoyoon; Lee, Sangyun; Park, YongKeun; Shin, Sehyun


    It is commonly known that alteration of erythrocyte deformability lead to serious microcirculatory diseases such as retinopathy, nephropathy, etc. Various methods and technologies have been developed to diagnose such membrane properties of erythrocytes. In this study, we developed an innovative method to measure hemorheological characteristics of the erythrocyte membrane using a light scattering analysis with simplified optic setting and multi-cell analysis as well. Light scattering intensity through multiple erythrocytes and its power density spectrum were obtained. The results of light scattering analyses were compared in healthy control and artificially hardened sample which was treated with glutaraldehyde. These results were further compared with conventional assays to measure deformable property in hemorheology. We found that light scattering information would reflect the disturbance of membrane fluctuation in artificially damaged erythrocytes. Therefore, measuring fluctuation of erythrocyte membrane using light scattering signal could facilitate simple and precise diagnose of pathological state on erythrocyte as well as related complications.

  16. Proper alignment of the microscope.

    Rottenfusser, Rudi


    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights

  17. Dual projections of single orexin- or CART-immunoreactive, lateral hypothalamic neurons to the paraventricular thalamic nucleus and nucleus accumbens shell in the rat: Light microscopic study.

    Lee, Eun Y; Lee, Hyun S


    The paraventricular thalamic nucleus (PVT) is a major relay station to the limbic forebrain areas such as the nucleus accumbens shell (AcbSh). Both PVT and AcbSh are known to receive feeding/arousal-related peptidergic fibers including orexin (ORX) and cocaine- and amphetamine-regulated transcript (CART) peptide. In the first series of experiments, we examined the peptidergic fiber distribution in the AcbSh; the density of ORX (or CART) fibers in the AcbSh was substantially lower than that in the PVT. At the light microscopic level, ORX (or CART) terminals formed close appositions to choline acetyltransferase (ChAT)-, glutamate decarboxylase (GAD)-, or enkephalin (Enk)-immunoreactive neuronal elements in the AcbSh. In the second series of experiments, we addressed the question of whether single ORX (or CART) cells in the hypothalamus provided divergent axon collaterals to the PVT and AcbSh. ORX neurons with dual projections were found in the medial, central, and lateral subdivisions of the lateral hypothalamus (LH), which amounted to an average of 1.6% of total ORX cells. CART neurons with divergent axon collaterals were observed in the LH, zona incerta, dorsal hypothalamic area, and retrochiasmatic nucleus, which represented a mean of 2.5% of total CART cells. None of arcuate CART cells sent dual projections. These data suggested that a portion of ORX (or CART) neurons in the hypothalamus, via divergent axon collaterals, might concurrently modulate the activity of PVT and AcbSh cells to affect feeding and drug-seeking behaviors.

  18. Light and electron microscopic features of surgically excised left atrial appendage in rheumatic heart disease patients with atrial fibrillation and sinus rhythm.

    Sharma, Shruti; Sharma, Gautam; Hote, Milind; Devagourou, V; Kesari, Vikas; Arava, Sudhir; Airan, Balram; Ray, Ruma


    There are few studies comparing the pathology of the remodeled substrate in patients of rheumatic heart disease with atrial fibrillation (AF) and normal sinus rhythm (NSR). The study group comprised 30 patients with rheumatic heart disease undergoing mitral valve replacement. Excised left atrial appendages of these patients [17 with persistent AF and 13 NSR (control group)] were subjected to light and electron microscopic examination. The histopathological findings of the myocardium were characterized by cardiomyocyte hypertrophy (CH), nuclear enlargement (NE), perinuclear clearing (PC), sarcoplasmic vacuolation (SV), fibrosis, and inflammation in the patients with AF and NSR. NE (17/17 vs. 4/13; P=.004), PC (17/17 vs. 4/13; P=.004), SV (17/17 vs. 9/13; P=.06), and fibrosis (15/17 vs. 3/13; P=.001) were all significantly more common in patients with AF. Inflammatory cells were observed in 9/17 patients of AF as compared to 1 in NSR patients (9/17 vs. 1/13; P=.02). CH was common in the patients with AF as compared with those in NSR (17/17 vs. 10/13; P=.103). In AF patients, electron microscopy revealed cardiomyocytes with depletion of the contractile elements (Z-bands), glycogen particle accumulation, and an increase in mitochondria. Cells severely affected by AF showed loss of contractile elements with extensive areas of SV, presence of myelin figures, and mitochondrial aggregates. Majority of AF cases showed extensive fibrosis in the form of collagen bundles in the interstitium. The left atrial substrate in AF as compared with NSR, in rheumatic heart disease patients, is associated with significant degenerative remodeling and ongoing inflammation that is associated with extensive fibrosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The border between the central and the peripheral nervous system in the cat cochlear nerve: a light and scanning electron microscopical study.

    Osen, Kirsten K; Furness, David N; Hackney, Carole M


    The transition between the central (CNS) and peripheral nervous system (PNS) in cranial and spinal nerve roots, referred to here as the CNS-PNS border, is of relevance to nerve root disorders and factors that affect peripheral-central regeneration. Here, this border is described in the cat cochlear nerve using light microscopical sections, and scanning electron microscopy of the CNS-PNS interfaces exposed by fracture of the nerve either prior to or following critical point drying. The CNS-PNS border represents an abrupt change in type of myelin, supporting elements, and vascularization. Because central myelin is formed by oligodendrocytes and peripheral myelin by Schwann cells, the myelinated fibers are as a rule equipped with a node of Ranvier at the border passage. The border is shallower and smoother in cat cochlear nerve than expected from other nerves, and the borderline nodes are largely in register. The loose endoneurial connective tissue of the PNS compartment is closed at the border by a compact glial membrane, the mantle zone, of the CNS compartment. The mantle zone is penetrated by the nerve fibers, but is otherwise composed of astrocytes and their interwoven processes like the external limiting membrane of the brain surface with which it is continuous. The distal surface of the mantle zone is covered by a fenestrated basal lamina. Only occasional vessels traverse the border. From an anatomical point of view, the border might be expected to be a weak point along the cochlear nerve and thus vulnerable to trauma. In mature animals, the CNS-PNS border presents a barrier to regrowth of regenerating nerve fibers and to invasion of the CNS by Schwann cells. An understanding of this region in the cochlear nerve is therefore relevant to head injuries that lead to hearing loss, to surgery on acoustic Schwannomas, and to the possibility of cochlear nerve regeneration.

  20. Evaluating the effect of low-level laser therapy on healing of tentomized Achilles tendon in streptozotocin-induced diabetic rats by light microscopical and gene expression examinations.

    Aliodoust, Morteza; Bayat, Mohammad; Jalili, Mohammad Reza; Sharifian, Zainalabedin; Dadpay, Masoomeh; Akbari, Mohammad; Bayat, Mehrnoush; Khoshvaghti, Amir; Bayat, Homa


    Tendon healing is impaired in individuals diagnosed with diabetes mellitus (DM). According to research, there is considerable improvement in the healing of surgically tenotomized Achilles tendons following low-level laser therapy (LLLT) in non-diabetic, healthy animals. This study uses light microscopic (LM) and semi-quantitative reverse transcription PCR (RT-PCR) analyses to evaluate the ability of LLLT in healing Achilles tendons from streptozotocin-induced diabetic (STZ-D) rats. A total of 88 rats were randomly divided into two groups, non-diabetic and diabetic. DM was induced in the rats by injections of STZ. The right Achilles tendons of all rats were tenotomized 1 month after administration of STZ. Laser-treated rats were treated with a helium-neon (He-Ne) laser that had a 632.8-nm wavelength and 7.2-mW average power. Experimental group rats received a daily dose of 0.014 J (energy density, 2.9 J/cm(2)). Control rats did not receive LLLT. Animals were sacrificed on days 5, 10, and 15 post-operatively for semi-quantitative LM and semi-quantitative RT-PCR examinations of transforming growth factor-beta1 (TGF-β1) gene expression. The chi-square test showed that LLLT significantly reduced inflammation in non-diabetic rats compared with their non-diabetic controls (p = 0.02). LLLT significantly decreased inflammation in diabetic rats on days 5 (p = 0.03) and 10 (p = 0.02) compared to the corresponding control diabetic rats. According to the student's t test, LLLT significantly increased TGF-β1 gene expression in healthy (p = 0.000) and diabetic (p = 0.000) rats compared to their relevant controls. The He-Ne laser was effective in altering the inflammatory reaction and increasing TGF-β1 gene production.

  1. 用偏光显微镜检测硝化棉的含氮量%Determination of the Nitrogen Content in Nitrocellulose Using Polarized Light Microscope

    苏鹏飞; 陈智群; 王景荣; 邵自强; 张皋; 李文杰; 王明


    A novel method for determination of the nitrogen content in nitrocellulose was established using a polarized light microscope. Senarmont method was used to determine the average optical path difference. The results show that the relationship(w= -0. 046 6λ+ 12. 388) between the nitrogen content and the optical path difference was linear with a correlation coefficient of 0. 999 3 when the range of the nitrogen content in nitrocellulose were 11.0%-13.8%. Certified nitrocellulose reference materials were used to evaluate the method and the results show that the recoveries ranged from 99.7 % to 100.2 % with the relative standard deviations falling between 0.15% and 0.20%. The method is simple , accurate and environment-friendly.%建立了偏光显微镜测定硝化棉含氮量的新方法.采用色那蒙法测定了平均光程差.结果表明,当硝化棉含氮量为11.0%~13.8%时,光程差与含氮量线性相关,线性回归方程为ω=-0.0466λ+12.388,线性相关系数R=0.9993.用硝化棉标准物质对新方法检测结果进行了验证,回收率为99.7%~100.2%,变异系数为0.15%~0.20%.新方法操作简单,结果准确,环境友好.

  2. Rotation axes analysis of deformed magnesium based on rotation contour contrast in a scanning electron microscope

    Kaboli, Shirin; Gauvin, Raynald, E-mail:


    A crystallographic orientation contrast in the form of cross-shaped and intersecting contours was observed in a backscattered electron (BSE) micrograph of deformed magnesium (Mg) grains in a cold field emission scanning electron microscope (CFE-SEM). This contrast was identified as rotation contour contrast (RCC). A model is presented to link the RCC in the BSE micrograph to the channeling contrast in the corresponding channeling pattern. Based on this model, the appearance of the cross-shaped RCC in the BSE micrograph was attributed to the rotation of the crystal about two rotation axes and the RCC was related to a two dimensional angular scan of the corresponding channeling pattern. This model was experimentally validated using the selected area channeling pattern (SACP) technique. The crystallographic directions of the rotation axes were identified using the electron backscatter diffraction (EBSD) technique. - Highlights: • The rotation contour contrast (RCC) was studied in scanning electron microscope (SEM). • The RCC model was developed to link the backscattered electron contrast to the channeling contrast. • The RCC model was validated using the selected area channeling pattern (SACP). • The rotation axes were identified using the electron backscatter diffraction (EBSD)

  3. Scanning electron microscope analysis of gunshot defects to bone: an underutilized source of information on ballistic trauma.

    Rickman, John M; Smith, Martin J


    Recent years have seen increasing involvement by forensic anthropologists in the interpretation of skeletal trauma. With regard to ballistic injuries, there is now a large literature detailing gross features of such trauma; however, less attention has been given to microscopic characteristics. This article presents analysis of experimentally induced gunshot trauma in animal bone (Bos taurus scapulae) using full metal jacket (FMJ), soft point (SP), and captive bolt projectiles. The results were examined using scanning electron microscopy (SEM). Additional analysis was conducted on a purported parietal gunshot lesion in a human cranial specimen. A range of features was observed in these samples suggesting that fibrolamellar bone response to projectile impact is analogous to that observed in synthetic composite laminates. The results indicate that direction of bullet travel can be discerned microscopically even when it is ambiguous on gross examination. It was also possible to distinguish SP from FMJ lesions. SEM analysis is therefore recommended as a previously underexploited tool in the analysis of ballistic trauma.

  4. Anisotropic contrast optical microscope

    Peev, D.; Hofmann, T.; Kananizadeh, N.; Beeram, S.; Rodriguez, E.; Wimer, S.; Rodenhausen, K. B.; Herzinger, C. M.; Kasputis, T.; Pfaunmiller, E.; Nguyen, A.; Korlacki, R.; Pannier, A.; Li, Y.; Schubert, E.; Hage, D.; Schubert, M.


    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  5. Superlensing Microscope Objective Lens

    Yan, Bing; Parker, Alan; Lai, Yukun; Thomas, John; Yue, Liyang; Monks, James


    Conventional microscope objective lenses are diffraction limited, which means that they cannot resolve features smaller than half the illumination wavelength. Under white light illumination, such resolution limit is about 250-300 nm for an ordinary microscope. In this paper, we demonstrate a new superlensing objective lens which has a resolution of about 100 nm, offering at least two times resolution improvement over conventional objectives in resolution. This is achieved by integrating a conventional microscope objective lens with a superlensing microsphere lens using a 3D printed lens adaptor. The new objective lens was used for label-free super-resolution imaging of 100 nm-sized engineering and biological samples, including a Blu-ray disc sample, semiconductor chip and adenoviruses. Our work creates a solid base for developing a commercially-viable superlens prototype, which has potential to transform the field of optical microscopy and imaging.

  6. Integrated elastic microscope device

    Lee, W. M.; Wright, D.; Watkins, R.; Cen, Zi


    The growing power of imaging and computing power of smartphones is creating the possibility of converting your smartphone into a high power pocket microscopy system. High quality miniature microscopy lenses attached to smartphone are typically made with glass or plastics that can only be produce at low cost with high volume. To revise the paradigm of microscope lenses, we devised a simple droplet lens fabrication technique that which produces low cost and high performance lens. Each lens is integrated into thin 3-D printed holder with complimentary light emitted diode (LEDs) that clips onto majority of smartphones. The integrated device converts a smartphone into a high power optical microscope/dermatoscope at around $2. This low cost device has wide application in a multitude of practical uses such as material inspection, dermascope and educational microscope.

  7. Comparative analysis of microscopic images and XRF and EDS results of bricks from arheological sites Mediana and Naisus

    Kalamković Snežana


    Full Text Available This paper describes the archaeological sites Mediana and Naisus during Late Antiquity. Microscopic images of bricks, and the results and analysis of XRF bricks from these archaeological sites are shown. Based on the results, it can be concluded that a similar brick exterior, and approximately the same chemical composition. One reason is, most likely, a similar chemical composition of the soil, because the archaeological sites are geographically close to each other. Another reason could be the same way bricks were producted, and that the same fuel was used in the kilns.

  8. Innovative parameters obtained for digital analysis of microscopic images to evaluate in vitro hemorheological action of anesthetics

    Alet, Analía. I.; Basso, Sabrina; Delannoy, Marcela; Alet, Nicolás. A.; D'Arrigo, Mabel; Castellini, Horacio V.; Riquelme, Bibiana D.


    Drugs used during anesthesia could enhance microvascular flow disturbance, not only for their systemic cardiovascular actions but also by a direct effect on the microcirculation and in particular on hemorheology. This is particularly important in high-risk surgical patients such as those with vascular disease (diabetes, hypertension, etc.). Therefore, in this work we propose a set of innovative parameters obtained by digital analysis of microscopic images to study the in vitro hemorheological effect of propofol and vecuronium on red blood cell from type 2 diabetic patients compared to healthy donors. Obtained innovative parameters allow quantifying alterations in erythrocyte aggregation, which can increase the in vivo risk of microcapillary obstruction.

  9. Evaluation of Enterococcus faecalis adhesion, penetration, and method to prevent the penetration of Enterococcus faecalis into root cementum: Confocal laser scanning microscope and scanning electron microscope analysis

    Halkai, Rahul S.; Hegde, Mithra N.; Halkai, Kiran R.


    Aim: To ascertain the role of Enterococcus faecalis in persistent infection and a possible method to prevent the penetration of E. faecalis into root cementum. Methodology: One hundred and twenty human single-rooted extracted teeth divided into five groups. Group I (control): intact teeth, Group II: no apical treatment done, Group III divided into two subgroups. In Groups IIIa and IIIb, root apex treated with lactic acid of acidic and neutral pH, respectively. Group IV: apical root cementum exposed to lactic acid and roughened to mimic the apical resorption. Group V: apical treatment done same as Group IV and root-end filling done using mineral trioxide aggregate (MTA). Apical one-third of all samples immersed in E. faecalis broth for 8 weeks followed by bone morphogenetic protein and obturation and again immersed into broth for 8 weeks. Teeth split into two halves and observed under confocal laser scanning microscope and scanning electron microscope, organism identified by culture and polymerase chain reaction techniques. Results: Adhesion and penetration was observed in Group IIIa and Group IV. Only adhesion in Group II and IIIB and no adhesion and penetration in Group I and V. Conclusion: Adhesion and penetration of E. faecalis into root cementum providing a long-term nidus for subsequent infection are the possible reason for persistent infection and root-end filling with MTA prevents the adhesion and penetration. PMID:27994316

  10. Imaging and analysis of subsurface Cu interconnects by detecting backscattered electrons in the scanning electron microscope

    Gignac, L. M.; Kawasaki, M.; Boettcher, S. H.; Wells, O. C.


    Cu -SiO2-SiNx interconnects that were located 0.65-2.7-μm below the surface of silicon-integrated circuits were imaged in a scanning electron microscope and a transmission electron microscope with a scanning attachment by detecting backscattered electrons (BSEs) with an incident electron-beam energy (Eo) in the range of 30-400keV. BSE images could be used to detect voids in subsurface Cu interconnects, even in regions covered with upper level Cu lines or vias. As Eo was increased from 30to400keV, structures could be seen as a result of atomic number (Z) contrast farther below the surface while structures closer to the surface had reduced Z contrast. The subsurface beam diameter was measured from BSE images as a function of Eo and depth below the surface. For all Eo, the subsurface beam diameter initially rapidly increased with SiO2 overlayer thickness but, for 150keV, a leveling off in the beam spread was seen for depths >1.7μm. Beam broadening affected whether the TaN /Ta liners that surrounded the Cu conductors could be seen at the edges of the lines; this contrast was observed only when the subsurface beam diameter was ⩽1.5× the liner thickness. The BSE information depth for imaging 0.2-μm-sized voids in subsurface Cu -SiO2-SiNx interconnect structures at 30 and 150keV was estimated to be 0.65 and 3μm, respectively.

  11. Comparative microscopic analysis of nail clippings from patients with cutaneous psoriasis and psoriatic arthritis*

    Fonseca, Gabriela Poglia; Werner, Betina; Seidel, Gabriela; Staub, Henrique Luiz


    BACKGROUND The nail involvement in psoriasis is related to psoriatic arthritis and may represent a predictor of the disease. OBJECTIVES To analyze, through nail clipping, clinically normal and dystrophic nails of patients with cutaneous psoriasis and psoriatic arthritis. METHODS This is a cross-sectional multicenter study, conducted between August 2011 and March 2012. Patients were divided into four groups: patients with cutaneous psoriasis and onychodystrophy, patients with cutaneous psoriasis and clinically normal nails, patients with psoriatic arthritis and onychodystrophy and patients with psoriatic arthritis and clinically normal nails. We calculated NAPSI (Nail Psoriasis Severity Index) of the nail with more clinically noticeable change. After collection and preparation of the nail clipping, the following microscopic parameters were evaluated: thickness of the nail plate and subungual region, presence or absence of parakeratosis, serous lakes, blood, and fungi. RESULTS There were more layers of parakeratosis (p=0.001) and a greater thickness of the subungual region in patients with cutaneous psoriasis and onychodystrophy (p=0.002). Serous lakes were also more present in the same group (p=0.008) and in patients with psoriatic arthritis and normal nails (p=0.047). The other microscopic parameters showed no significant difference between normal and dystrophic nails or between patients with psoriatic arthritis or cutaneous psoriasis. STUDY LIMITATIONS Small sample size and use of medications. CONCLUSIONS Nail clipping is a simple and quick method to assess the nails of patients with nail psoriasis although does not demonstrate difference between those with joint changes or exclusively cutaneous psoriasis. PMID:28225951

  12. Tetraquark bound states and resonances in a unitary microscopic quark model: A case study of bound states of two light quarks and two heavy antiquarks

    Bicudo, P.; Cardoso, M.


    We address q q Q ¯Q ¯ exotic tetraquark bound states and resonances with a fully unitarized and microscopic quark model. We propose a triple string flip-flop potential, inspired by lattice QCD tetraquark static potentials and flux tubes, combining meson-meson and double Y potentials. Our model includes the color excited potential, but neglects the spin-tensor potentials, as well as all the other relativistic effects. To search for bound states and resonances, we first solve the two-body mesonic problem. Then we develop fully unitary techniques to address the four-body tetraquark problem. We fold the four-body Schrödinger equation with the mesonic wave functions, transforming it into a two-body meson-meson problem with nonlocal potentials. We find bound states for some quark masses, including the one reported in lattice QCD. Moreover, we also find resonances and calculate their masses and widths, by computing the T matrix and finding its pole positions in the complex energy plane, for some quantum numbers. However, a detailed analysis of the quantum numbers where binding exists shows a discrepancy with recent lattice QCD results for the l l b ¯ b ¯ tetraquark bound states. We conclude that the string flip-flop models need further improvement.

  13. Energy flow lines as light paths a didactical analysis

    Horn, M E


    Analyses of interviews with secondary school students about their conceptions of light at the University of Potsdam indicate that numerous students have a deterministic view of light. With regard to these results the model of energy flow lines, which has been discussed recently in the didactical literature, is of special interest. Following this model, light is presumed to move along energy flow lines as trajectories. In an analysis of the model of energy flow lines four didactical dimensions (didactical content, internal structure, present-day relevance and future significance) are investigated. It can be shown that a discussion of this model in physics at school can increase the meta-conceptional knowledge of the students about the models of light. On the other hand, this can promote deterministic conceptions and the Bohm interpretation of quantum mechanics. But the question remains: Should the nature of light really be described as deterministic?

  14. Lighting

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  15. White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water

    Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh


    We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.

  16. Microscopic structure and interaction analysis for supercritical carbon dioxide-ethanol mixtures: a Monte Carlo simulation study.

    Xu, Wenhao; Yang, Jichu; Hu, Yinyu


    Configurational-bias Monte Carlo simulations in the isobaric-isothermal ensemble using the TraPPE-UA force field were performed to study the microscopic structures and molecular interactions of mixtures containing supercritical carbon dioxide (scCO(2)) and ethanol (EtOH). The binary vapor-liquid coexisting curves were calculated at 298.17, 333.2, and 353.2 K and are in excellent agreement with experimental results. For the first time, three important interactions, i.e., EtOH-EtOH hydrogen bonding, EtOH-CO(2) hydrogen bonding, and EtOH-CO(2) electron donor-acceptor (EDA) bonding, in the mixtures were fully analyzed and compared. The EtOH mole fraction, temperature, and pressure effect on the three interactions was investigated and then explained by the competition of interactions between EtOH and CO(2) molecules. Analysis of the microscopic structures indicates a strong preference for the formation of EtOH-CO(2) hydrogen-bonded tetramers and pentamers at higher EtOH compositions. The distribution of aggregation sizes and types shows that a very large EtOH-EtOH hydrogen-bonded network exists in the mixtures, while only linear EtOH-CO(2) hydrogen-bonded and EDA-bonded dimers and trimers are present. Further analysis shows that EtOH-CO(2) EDA complex is more stable than the hydrogen-bonded one.

  17. Voxel-based approach to generate entire human metacarpal bone with microscopic architecture for finite element analysis.

    Tang, C Y; Tsui, C P; Tang, Y M; Wei, L; Wong, C T; Lam, K W; Ip, W Y; Lu, W W J; Pang, M Y C


    With the development of micro-computed tomography (micro-CT) technology, it is possible to construct three-dimensional (3D) models of human bone without destruction of samples and predict mechanical behavior of bone using finite element analysis (FEA). However, due to large number of elements required for constructing the FE models of entire bone, this demands a substantial computational effort and the analysis usually needs a high level of computer. In this article, a voxel-based approach for generation of FE models of entire bone with microscopic architecture from micro-CT image data is proposed. To enable the FE analyses of entire bone to be run even on a general personal computer, grayscale intensity thresholds were adopted to reduce the amount of elements. Human metacarpal bone (MCP) bone was used as an example for demonstrating the applicability of the proposed method. The micro-CT images of the MCP bone were combined and converted into 3D array of pixels. Dual grayscale intensity threshold parameters were used to distinguish the pixels of bone tissues from those of surrounding soft tissues and improve predictive accuracy for the FE analyses with different sizes of elements. The method of selecting an appropriate value of the second grayscale intensity threshold was also suggested to minimize the area error for the reconstructed cross-sections of a FE structure. Experimental results showed that the entire FE MCP bone with microscopic architecture could be modeled and analyzed on a personal computer with reasonable accuracy.

  18. 皱纹盘鲍眼部组织的显微及亚显微结构观察%Light and electron microscopic study of the eye ofHaliotis discus hannai Ino

    高霄龙; 张墨; 李贤; 宋昌斌; 刘鹰


    采用组织学和电镜的方法,对皱纹盘鲍(Haliotis discus hannai Ino)的眼部组织进行了光镜和电镜观察,以期为进一步从分子生物学角度解析鲍对光照的生理响应机制提供组织学与细胞学基础。结果发现,眼部组织由外至内依次为视网膜色素上皮细胞层、外核层、光感受器内节、内核层、黑色素颗粒沉积层、视觉纤维层。组织表面布满乳头状突起,每一乳状突起的顶端均具有一簇或两簇纤毛环。疏松结缔组织和平滑肌纤维等是组织内的主要成分,结缔组织间分布的胶原纤维等对保持细胞的弹性和韧性具有重要的作用。研究结果显示了鲍的眼部组织在感受和辨识外界光环境因子中的重要作用,也为鲍养殖生产中的光环境因子优化和调控、深入探讨鲍对光照的生理应答机制提供了形态学依据。%Light is a key environmental factor that influences the growth, culture and survival of aquatic organisms. In the present study, the eye tissues ofHaliotis discus hannaiIno were observed under the light microscope, scan-ning electron microscope and transmission electron microscope to provide an enhanced histological and cytologi-cal basis for analysis of the physiological response mechanism of abalone to light from the perspective of mo-lecular biology. Findings show that the eye tissues, from the outside to the inside, are: retinal pigment epithelium, outer nuclear layer, inner segment, inner nuclear layer, melanin granules sediment and optical fiber layer. Connec-tive tissue mainly exists between the epithelium and the outer nuclear layer, and a portion of the connective tissue nucleus is a darker color. The optical fiber layer mainly comprises the light red reticular nerve fibers which gradually become dense from the outside to the inside. The front ends of eye tissues are cylinder-shaped with an obvious circular depression, in which the reticular nerve fibers are

  19. A multi-platform flow device for microbial (co- cultivation and microscopic analysis.

    Matthijn C Hesselman

    Full Text Available Novel microbial cultivation platforms are of increasing interest to researchers in academia and industry. The development of materials with specialized chemical and geometric properties has opened up new possibilities in the study of previously unculturable microorganisms and has facilitated the design of elegant, high-throughput experimental set-ups. Within the context of the international Genetically Engineered Machine (iGEM competition, we set out to design, manufacture, and implement a flow device that can accommodate multiple growth platforms, that is, a silicon nitride based microsieve and a porous aluminium oxide based microdish. It provides control over (co-culturing conditions similar to a chemostat, while allowing organisms to be observed microscopically. The device was designed to be affordable, reusable, and above all, versatile. To test its functionality and general utility, we performed multiple experiments with Escherichia coli cells harboring synthetic gene circuits and were able to quantitatively study emerging expression dynamics in real-time via fluorescence microscopy. Furthermore, we demonstrated that the device provides a unique environment for the cultivation of nematodes, suggesting that the device could also prove useful in microscopy studies of multicellular microorganisms.

  20. Comprehensive Study of Hydrated IDPs: X-Ray Diffraction, IR Spectroscopy and Electron Microscopic Analysis

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Nozaki, W.; Tomeoka, K.


    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere(1). Although much is known about the mineralogy, chemistry and carbon abundance of hydrated IDPs (2-4) controversies still exist regarding their formation, history, and relationship to other primitive solar system materials. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone some degree of aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels (3,4) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. We report the comprehensive study of individual hydrated IDPs. The strong depletion in Ca (I) has been used as a diagnostic feature of hydrated IDPs. The particles are embedded in elemental sulfur or low viscosity epoxy and ultramicrotomed thin sections are observed using a transmission electron microscope (TEM) equipped with an energy-dispersive X-ray detector (EDX) followed by other measurements including: 1) FTIR microspectroscopy to understand the significant constraints on the organic functionality and the nature of the C-bearing phases and 2) powder X-ray difiaction using a synchrotron X-ray source to understand the bulk mineralogy of the particles.

  1. Real-Time Analysis of Magnetic Hyperthermia Experiments on Living Cells under a Confocal Microscope.

    Connord, Vincent; Clerc, Pascal; Hallali, Nicolas; El Hajj Diab, Darine; Fourmy, Daniel; Gigoux, Véronique; Carrey, Julian


    Combining high-frequency alternating magnetic fields (AMF) and magnetic nanoparticles (MNPs) is an efficient way to induce biological responses through several approaches: magnetic hyperthermia, drug release, controls of gene expression and neurons, or activation of chemical reactions. So far, these experiments cannot be analyzed in real-time during the AMF application. A miniaturized electromagnet fitting under a confocal microscope is built, which produces an AMF of frequency and amplitude similar to the ones used in magnetic hyperthermia. AMF application induces massive damages to tumoral cells having incorporated nanoparticles into their lysosomes without affecting the others. Using this setup, real-time analyses of molecular events occurring during AMF application are performed. Lysosome membrane permeabilization and reactive oxygen species production are detected after only 30 min of AMF application, demonstrating they occur at an early stage in the cascade of events leading eventually to cell death. Additionally, lysosomes self-assembling into needle-shaped organization under the influence of AMF is observed in real-time. This experimental approach will permit to get a deeper insight into the physical, molecular, and biological process occurring in several innovative techniques used in nanomedecine based on the combined use of MNPs and high-frequency magnetic fields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of mitochondrial mechanical dynamics using a confocal fluorescence microscope with a bent optical fibre.

    Li, Yongbo; Honda, Satoshi; Iwami, Kentaro; Ohta, Yoshihiro; Umeda, Norihiro


    The cells in the cardiovascular system are constantly subjected to mechanical forces created by blood flow and the beating heart. The effect of forces on cells has been extensively investigated, but their effect on cellular organelles such as mitochondria remains unclear. We examined the impact of nano-Newton forces on mitochondria using a bent optical fibre (BOF) with a flat-ended tip (diameter exceeding 2 μm) and a confocal fluorescence microscope. By indenting a single mitochondrion with the BOF tip, we found that the mitochondrial elastic modulus was proportional to the (-1/2) power of the mitochondrial radius in the 9.6-115 kPa range. We stained the mitochondria with a potential-metric dye (TMRE) and measured the changes in TMRE fluorescence intensity. We confirmed that more active mitochondria exhibit a higher frequency of repetitive transient depolarization. The same trend was observed at forces lower than 50 nN. We further showed that the depolarization frequency of mitochondria decreases under an extremely large force (nearly 100 nN). We conclude that mitochondrial function is affected by physical environmental factors, such as external forces at the nano-Newton level.

  3. Confocal microscope analysis of depth of etch between self-limiting and traditional etchant systems.

    Wilson, Sara M; Lien, Wen; Lee, David P; Dunn, William J


    To see whether there is an advantage to using a self-limiting phosphoric acid etchant versus a traditional 34% phosphoric acid etchant for bonding by measuring the depth of etch at multiple time intervals. A total of 25 bovine teeth were mounted and etched on the facial surface with two different etchants: standard 34% phosphoric acid and a self-limiting 35% phosphoric acid etchant at varied time intervals of 15, 30, 60, 90, and 120 seconds. Teeth were scanned using a three-dimensional laser confocal scanning microscope prior to etching and scanned again after etching to determine the depth of enamel etched compared to the baseline enamel surface prior to etching. The 34% phosphoric acid etchant etched significantly deeper than the self-limiting etch. Etch times exceeding 30 seconds also etched significantly deeper for both types of etchant. The etch depth of the self-limiting etchant was consistently less than the standard etchant. Both types of etchant etched deeper after 30 seconds, but the depth of etch at 120 seconds was not different than at 60 seconds, indicating that both etchants are somewhat self-limiting in depth. Therefore, there is no advantage to using the self-limiting etchant.

  4. Quantitative analysis of the fusion cross sections using different microscopic nucleus-nucleus interactions

    Adel, A.; Alharbi, T.


    The fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems are investigated near and above the Coulomb barrier using the one-dimensional barrier penetration model. The microscopic nuclear interaction potential is computed by four methods, namely: the double-folding model based on a realistic density-dependent M3Y NN interaction with a finite-range exchange part, the Skyrme energy density functional in the semiclassical extended Thomas-Fermi approximation, the generalized Proximity potential, and the Akyüz-Winther interaction. The comparison between the calculated and the measured values of the fusion excitation functions indicates that the calculations of the DFM give quite satisfactory agreement with the experimental data, being much better than the other methods. New parameterized forms for the fusion barrier heights and positions are presented. Furthermore, the effects of deformation and orientation degrees of freedom on the distribution of the Coulomb barrier characteristics as well as the fusion cross sections are studied for the reactions 16 O + 70 Ge and 28 Si + 100 Mo. The calculated values of the total fusion cross sections are compared with coupled channel calculations using the code CCFULL and compared with the experimental data. Our results reveal that the inclusion of deformations and orientation degrees of freedom improves the comparison with the experimental data.

  5. Light

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.


    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  6. Iron, copper, zinc and bromine mapping in cirrhotic liver slices from patients with hemochromatosis studied by microscopic synchrotron radiation X-ray fluorescence analysis in continuous scanning mode

    Osterode, W. [Medizinische Universitaet Wien, Univ. Klinik fuer Innere Medizin IV, Klinische Abteilung fuer Arbeitsmedizin, Waehringer Guertel 18-20, A-1090 Wien (Austria)], E-mail:; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor HASYLAB, Deutsches Elektronen-Synchrotron DESY (Germany); Hoeftberger, R. [Medizinische Universitaet Wien, Klinisches Institut fuer Neurologie (Austria); Wrba, F. [Medizinische Universitaet Wien, Klinisches Institut fuer Klinische Pathologie (Austria)


    Iron (Fe) and copper (Cu) are essential metals in physiological cell metabolism. While Fe is easy to determine biochemically in histological slices, Cu and zinc (Zn) distribution is frequently critical in confirming the presence of an overload in disturbed Fe/Cu metabolism. To analyze Fe, Cu and Zn in a near histological resolution, energy dispersive microscopic synchrotron radiation X-ray fluorescence was applied. In normal liver tissue, after fixation and imbedding in paraffin, mean Fe, Cu and Zn concentrations were 152 {+-} 54, 20.1 {+-} 4.3 and 88.919.5 {mu}g/g sample weight, respectively. No substantial, characteristic differences in their distribution were found in the two-dimensional scans. In slices from patients with hemochromatosis mean Fe, Cu and Zn concentrations were 1102 {+-} 539, 35.9 {+-} 14.6 and 27.2 {+-} 6.7 {mu}g/g sample weight, respectively. Additionally, a significant decrease in phosphorus and sulphur concentrations existed. An increased Cu around cirrhotic regenerations nodules is mostly associated with a lymphocytic infiltration in this region. Analyzing concentrations of Fe in different regions of the samples show a clear negative dependency between Fe and Cu, Cu and Zn, but a positive one between Fe and Zn. Conclusion: With a focal beam size of 15 {mu}m in diameter a resolution of the elemental distribution was achieved which is widely comparable with stained histological slices (20x light microscope). The analysis of simultaneous determined elements reveals metabolic differences between Fe, Cu and Zn in liver tissue from patients with hemochromatosis.

  7. Iron, copper, zinc and bromine mapping in cirrhotic liver slices from patients with hemochromatosis studied by microscopic synchrotron radiation X-ray fluorescence analysis in continuous scanning mode

    Osterode, W.; Falkenberg, G.; Höftberger, R.; Wrba, F.


    Iron (Fe) and copper (Cu) are essential metals in physiological cell metabolism. While Fe is easy to determine biochemically in histological slices, Cu and zinc (Zn) distribution is frequently critical in confirming the presence of an overload in disturbed Fe/Cu metabolism. To analyze Fe, Cu and Zn in a near histological resolution, energy dispersive microscopic synchrotron radiation X-ray fluorescence was applied. In normal liver tissue, after fixation and imbedding in paraffin, mean Fe, Cu and Zn concentrations were 152 ± 54, 20.1 ± 4.3 and 88.919.5 μg/g sample weight, respectively. No substantial, characteristic differences in their distribution were found in the two-dimensional scans. In slices from patients with hemochromatosis mean Fe, Cu and Zn concentrations were 1102 ± 539, 35.9 ± 14.6 and 27.2 ± 6.7 μg/g sample weight, respectively. Additionally, a significant decrease in phosphorus and sulphur concentrations existed. An increased Cu around cirrhotic regenerations nodules is mostly associated with a lymphocytic infiltration in this region. Analyzing concentrations of Fe in different regions of the samples show a clear negative dependency between Fe and Cu, Cu and Zn, but a positive one between Fe and Zn. Conclusion: With a focal beam size of 15 μm in diameter a resolution of the elemental distribution was achieved which is widely comparable with stained histological slices (20× light microscope). The analysis of simultaneous determined elements reveals metabolic differences between Fe, Cu and Zn in liver tissue from patients with hemochromatosis.

  8. Microscopic description of irreversibility in quantum Lorentz gas by complex spectral analysis of the Liouvillian outside the Hilbert space

    Petrosky, T.; Hashimoto, K.; Kanki, K.; Tanaka, S.


    Irreversible process of a weakly coupled one-dimensional quantum perfect Lorentz gas is studied on the basis of the fundamental laws of physics in terms of the complex spectral analysis associated with the resonance state of the Liouvillian. Without any phenomenological operations, such as a coarse-graining of space-time or a truncation of the higher order correlation, we obtained irreversible processes on a purely dynamical basis in all space and time scale including the microscopic atomic interaction range that is much smaller than the mean-free-length. The list of development of the complex spectral analysis of the Hamiltonian (instead of the Liouvillian) in quantum optical systems and in quantum nano-devices is also presented.

  9. Variance Analysis and Adaptive Sampling for Indirect Light Path Reuse

    Hao Qin; Xin Sun; Jun Yan; Qi-Ming Hou; Zhong Ren; Kun Zhou


    In this paper, we study the estimation variance of a set of global illumination algorithms based on indirect light path reuse. These algorithms usually contain two passes — in the first pass, a small number of indirect light samples are generated and evaluated, and they are then reused by a large number of reconstruction samples in the second pass. Our analysis shows that the covariance of the reconstruction samples dominates the estimation variance under high reconstruction rates and increasing the reconstruction rate cannot effectively reduce the covariance. We also find that the covariance represents to what degree the indirect light samples are reused during reconstruction. This analysis motivates us to design a heuristic approximating the covariance as well as an adaptive sampling scheme based on this heuristic to reduce the rendering variance. We validate our analysis and adaptive sampling scheme in the indirect light field reconstruction algorithm and the axis-aligned filtering algorithm for indirect lighting. Experiments are in accordance with our analysis and show that rendering artifacts can be greatly reduced at a similar computational cost.

  10. Comparison of Complications, Trends, and Costs in Endoscopic vs Microscopic Pituitary Surgery: Analysis From a US Health Claims Database.

    Asemota, Anthony O; Ishii, Masaru; Brem, Henry; Gallia, Gary L


    Microsurgical and endoscopic techniques are commonly utilized surgical approaches to pituitary pathologies. There are limited data comparing these 2 procedures. To evaluate postoperative complications, associated costs, and national and regional trends of microscopic and endoscopic techniques in the United States employing a nationwide database. The Truven MarketScan database 2010 to 2014 was queried and Current Procedural Terminology codes identified patients that underwent microscopic and/or endoscopic transsphenoidal pituitary surgery. International Classification of Diseases codes identified postoperative complications. Adjusted logistic regression and matched propensity analysis evaluated independent odds for complications. Among 5886 cases studied, 54.49% were microscopic and 45.51% endoscopic. The commonest surgical indications were benign pituitary tumors. Annual trends showed increasing utilization of endoscopic techniques vs microscopic procedures. Postoperative complications occurred in 40.04% of cases, including diabetes insipidus (DI; 16.90%), syndrome of inappropriate antidiuretic hormone (SIADH; 2.02%), iatrogenic hypopituitarism (1.36%), fluid/electrolyte abnormalities (hypoosmolality/hyponatraemia [5.03%] and hyperosmolality/hypernatraemia [2.48%]), and cerebrospinal fluid (CSF) leaks (CSF rhinorrhoea [4.42%] and other CSF leak [6.52%]). In our propensity-based model, patients that underwent endoscopic surgery were more likely to develop DI (odds ratio [OR] = 1.48; 95% confidence interval [CI] = 1.28-1.72), SIADH (OR = 1.53; 95% CI = 1.04-2.24), hypoosmolality/hyponatraemia (OR = 1.17; 95% CI = 1.01-1.34), CSF rhinorrhoea (OR = 2.48; 95% CI = 1.88-3.28), other CSF leak (OR = 1.59; 95% CI = 1.28-1.98), altered mental status (OR = 1.46; 95% CI = 1.01-2.60), and postoperative fever (OR = 4.31; 95% CI = 1.14-16.23). There were no differences in hemorrhagic complications, ophthalmological complications, or bacterial meningitis. Postoperative

  11. Propolis as storage media for avulsed teeth: microscopic and morphometric analysis in rats.

    Mori, Graziela Garrido; Nunes, Daniele Clapes; Castilho, Lithiene Ribeiro; de Moraes, Ivaldo Gomes; Poi, Wilson Roberto


    The maintenance of the avulsed teeth in appropriate media for preserving the cellular viability has been important for repairing the periodontal ligament and preventing the root resorption after tooth reimplantation. Propolis is a substance capable of preserving cellular viability. This study aimed to analyze the propolis substance as a storage media for maintaining the avulsed teeth, besides to determine the ideal time period for keeping the tooth inside it. Thus, 60 maxillary right central incisors of rats were extracted and divided into five groups. In groups I and II, teeth were kept in propolis for 60 min and 6 h, respectively; in group III, teeth were kept in milk for 6 h; in group IV, teeth were kept dry for 60 min; and in group V, they were immediately reimplanted. All teeth had their root canals filled with calcium hydroxide paste. Following, teeth were reimplanted in their sockets. After 15 and 60 days, animals were killed and the obtained samples were processed in laboratory for microscopic and morphometric analyzing. The results showed that the occurrence of inflammatory resorption, dental ankylosis and the formation of the connective tissue parallel to the root surface were similar among groups. It could be verified a greater occurrence of replacement resorption in group IV when comparing to other groups. In groups I and IV, the presence of periodontal ligament-like connective tissue was substantially smaller than the other groups. Regarding to the cementum amount over the root, it could be observed that this was present in smaller amount in groups I and IV. Group II was similar to groups III and IV. Therefore, according to the results of this study, the use of propolis as a storage media for maintaining avulsed teeth could be highlighted, and the 6-h period was more appropriate than the 60-min period.

  12. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.


    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  13. Concentration dependent switch in the kinetic pathway of lysozyme fibrillation: Spectroscopic and microscopic analysis

    Kiran Kumar, E.; Prasad, Deepak Kumar; Prakash Prabhu, N.


    Formation of amyloid fibrils is found to be a general tendency of many proteins. Investigating the kinetic mechanisms and structural features of the intermediates and the final fibrillar state is essential to understand their role in amyloid diseases. Lysozyme, a notable model protein for amyloidogenic studies, readily formed fibrils in vitro at neutral pH in the presence of urea. It, however, showed two different kinetic pathways under varying urea concentrations when probed with thioflavin T (ThT) fluorescence. In 2 M urea, lysozyme followed a nucleation-dependent fibril formation pathway which was not altered by varying the protein concentration from 2 mg/ml to 8 mg/ml. In 4 M urea, the protein exhibited concentration dependent change in the mechanism. At lower protein concentrations, lysozyme formed fibrils without any detectable nuclei (nucleation-independent polymerization pathway). When the concentration of the protein was increased above 3 mg/ml, the protein followed nucleation-dependent polymerization pathway as observed in the case of 2 M urea condition. This was further verified using microscopic images of the fibrils. The kinetic parameters such as lag time, elongation rate, and fibrillation half-time, which were derived from ThT fluorescence changes, showed linear dependency against the initial protein concentration suggested that under the nucleation-dependent pathway conditions, the protein followed primary-nucleation mechanism without any significant secondary nucleation events. The results also suggested that the differences in the initial protein conformation might alter the mechanism of fibrillation; however, at the higher protein concentrations lysozyme shifted to nucleation-dependent pathway.

  14. Experimental Study of Membrane Fouling during Crossflow Microfiltration of Yeast and Bacteria Suspensions: Towards an Analysis at the Microscopic Level.

    Hassan, Ines Ben; Ennouri, Monia; Lafforgue, Christine; Schmitz, Philippe; Ayadi, Abdelmoneim


    Microfiltration of model cell suspensions combining macroscopic and microscopic approaches was studied in order to better understand microbial membrane fouling mechanisms. The respective impact of Saccharomyces cerevisiae yeast and Escherichia coli bacteria on crossflow microfiltration performances was investigated using a multichannel ceramic 0.2 µm membrane. Pure yeast suspensions (5 µm ovoid cells) and mixtures of yeast and bacteria (1 to 2.5 µm rod shape cells) were considered in order to analyse the effect of interaction between these two microorganisms on fouling reversibility. The resistances varied significantly with the concentration and characteristics of the microorganisms. Membrane fouling with pure yeast suspension was mainly reversible. For yeast and bacteria mixed suspensions (6 g L-1 yeast concentration) the increase in bacteria from 0.15 to 0.30 g L-1 increased the percentage of normalized reversible resistance. At 10 g L-1 yeast concentration, the addition of bacteria tends to increase the percentage of normalized irreversible resistance. For the objective of performing local analysis of fouling, an original filtration chamber allowing direct in situ observation of the cake by confocal laser scanning microscopy (CLSM) was designed, developed and validated. This device will be used in future studies to characterize cake structure at the microscopic scale.

  15. Experimental Study of Membrane Fouling during Crossflow Microfiltration of Yeast and Bacteria Suspensions: Towards an Analysis at the Microscopic Level

    Abdelmoneim Ayadi


    Full Text Available Microfiltration of model cell suspensions combining macroscopic and microscopic approaches was studied in order to better understand microbial membrane fouling mechanisms. The respective impact of Saccharomyces cerevisiae yeast and Escherichia coli bacteria on crossflow microfiltration performances was investigated using a multichannel ceramic 0.2 µm membrane. Pure yeast suspensions (5 µm ovoid cells and mixtures of yeast and bacteria (1 to 2.5 µm rod shape cells were considered in order to analyse the effect of interaction between these two microorganisms on fouling reversibility. The resistances varied significantly with the concentration and characteristics of the microorganisms. Membrane fouling with pure yeast suspension was mainly reversible. For yeast and bacteria mixed suspensions (6 g L−1 yeast concentration the increase in bacteria from 0.15 to 0.30 g L−1 increased the percentage of normalized reversible resistance. At 10 g L−1 yeast concentration, the addition of bacteria tends to increase the percentage of normalized irreversible resistance. For the objective of performing local analysis of fouling, an original filtration chamber allowing direct in situ observation of the cake by confocal laser scanning microscopy (CLSM was designed, developed and validated. This device will be used in future studies to characterize cake structure at the microscopic scale.

  16. Measurement of microscopic coupling constants between atoms on a surface: Combination of LEEM observation with lattice model analysis

    Akutsu, Noriko


    We present a method combining low-energy electron microscopy (LEEM) and lattice model analysis for measuring the microscopic lateral coupling constants between atoms on a surface. The calculated step (interface) stiffness in a honeycomb lattice Ising model with the nearest neighbor and the second nearest neighbor interactions (J1 = 93.8 meV and J2 = 9.38 meV) matched the experimental step quantity values on an Si(111)(1 × 1) surface reported by Pang et al. and Bartelt et al. based on LEEM measurements. The experimental value of step tension obtained by Williams et al. lies on the calculated step tension curve. The polar graphs of the step tension and a two-dimensional island shape at the temperature T = 1163 K also agree well with the experimental graphs reported by Métois and Müller. The close agreement between the LEEM observations and the lattice model calculations on a Si(111) surface suggests that our method is also suitable for measuring microscopic lateral coupling constants on the surface of other materials that are less well-studied than Si.

  17. [The pertinence of microscopic analysis of the urine as a diagnostic test for asymptomatic bacteriuria in pregnancy].

    Boucher, M; Leduc, L; Rinfret, D


    The genito-urinary tract is the most frequent site of infection during pregnancy. Asymptomatic bacteriuria is found in 2 to 12% of the obstetrical population. The importance of its detection is underlined by the fact that 20 to 40% of untreated cases will present acute pyelonephritis. Our study's first aim was determining the incidence of asymptomatic bacteriuria in our population. Our results show an incidence of 3.9%. Second, routine mandatory prenatal laboratory examinations include urinalysis and urine culture. Considering the fact that we already do a routine culture, we questioned the pertinence of the microscopic part of urinalysis for screening asymptomatic bacteriuria. Our study has shown that no amount of erythrocytes, leucocytes, bacteria, pus or combination thereof has sufficient sensitivity and/or specificity to be used for screening. We thus conclude that in our context of budget restrictions, the microscopic analysis of urine should be abandoned as a routine test. The biochemical part of urinalysis could be done easily with dipsticks at a lower cost. Urine culture remains the gold standard for detection of asymptomatic bacteriuria.

  18. Microscopic Driving Parameters-Based Energy-Saving Effect Analysis under Different Electric Vehicle Penetration

    Enjian Yao


    Full Text Available Due to the rapid motorization over the recent years, China's transportation sector has been facing an increasing environmental pressure. Compared with gasoline vehicle (GV, electric vehicle (EV is expected to play an important role in the mitigation of CO2 and other pollution emissions, and urban air quality improvement, for its zero emission during use and higher energy efficiency. This paper aims to estimate the energy saving efficiency of EV, especially under different EV penetration and road traffic conditions. First, based on the emission and electricity consumption data collected by a light-duty EV and a light duty GV, a set of electricity consumption rate models and gasoline consumption rate models are established. Then, according to the conversion formula of coal equivalent, these models are transformed into coal equivalent consumption models, which make gasoline consumption and electricity consumption comparable. Finally, the relationship between the EV penetration and the reduction of energy consumption is explored based on the simulation undertaken on the North Second Ring Road in Beijing. The results show that the coal equivalent consumption will decrease by about 5% with the increases of EV penetration by 10% and the maximum energy-saving effect can be achieved when the traffic volume is about 4000 pcu/h.

  19. Automated microscopic characterization of metallic ores with image analysis: a key to improve ore processing. I: test of the methodology; Reconocimiento automatizado de menas metalicas mediante analisis digital de imagen: un apoyo al proceso mineralurgico. I: ensayo metodologico

    Berrezueta, E.; Castroviejo, R.


    Ore microscopy has traditionally been an important support to control ore processing, but the volume of present day processes is beyond the reach of human operators. Automation is therefore compulsory, but its development through digital image analysis, DIA, is limited by various problems, such as the similarity in reflectance values of some important ores, their anisotropism, and the performance of instruments and methods. The results presented show that automated identification and quantification by DIA are possible through multiband (RGB) determinations with a research 3CCD video camera on reflected light microscope. These results were obtained by systematic measurement of selected ores accounting for most of the industrial applications. Polarized light is avoided, so the effects of anisotropism can be neglected. Quality control at various stages and statistical analysis are important, as is the application of complementary criteria (e.g. metallogenetic). The sequential methodology is described and shown through practical examples. (Author)

  20. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Conan O' Rourke; Yutao Zhou


    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three of PEARL program during the period of October 2002 to April 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The products tested are 20 models of screw-based compact fluorescent lamps (CFL) of various types and various wattages made or marketed by 12 different manufacturers, and ten models of residential lighting fixtures from eight different manufacturers.

  1. Teaching meta-analysis using MetaLight

    Thomas James


    Full Text Available Abstract Background Meta-analysis is a statistical method for combining the results of primary studies. It is often used in systematic reviews and is increasingly a method and topic that appears in student dissertations. MetaLight is a freely available software application that runs simple meta-analyses and contains specific functionality to facilitate the teaching and learning of meta-analysis. While there are many courses and resources for meta-analysis available and numerous software applications to run meta-analyses, there are few pieces of software which are aimed specifically at helping those teaching and learning meta-analysis. Valuable teaching time can be spent learning the mechanics of a new software application, rather than on the principles and practices of meta-analysis. Findings We discuss ways in which the MetaLight tool can be used to present some of the main issues involved in undertaking and interpreting a meta-analysis. Conclusions While there are many software tools available for conducting meta-analysis, in the context of a teaching programme such software can require expenditure both in terms of money and in terms of the time it takes to learn how to use it. MetaLight was developed specifically as a tool to facilitate the teaching and learning of meta-analysis and we have presented here some of the ways it might be used in a training situation.

  2. Modification Of Normal Microscope To Magneto-Optical Microscope

    Nurazlin Ahmad


    Full Text Available Abstract The present work reports on the modification of polarizing microscope to a magnetic domain imaging microscope based on Faraday Effect. Sample used in this research is a ferromagnetic garnet BiTmNa3FeGa5O12. The halogen lamp in the microscope is replaced by helium-neon HeNe laser as a light source. To reduce the laser spatial coherent effect thin transparent plastics placed in the laser path. The plastics are rotated at certain velocity. Other factors to be considered are the plastic rotation velocity the laser intensity and the laser alignment. Typical magnetic domain pattern is obtained with the new system.

  3. Microscopic Evaluation of Friction Plug Welds- Correlation to a Processing Analysis

    Rabenberg, Ellen M.; Chen, Poshou; Gorti, Sridhar


    Recently an analysis of dynamic forge load data from the friction plug weld (FPW) process and the corresponding tensile test results showed that good plug welds fit well within an analytically determined processing parameter box. There were, however, some outliers that compromised the predictions. Here the microstructure of the plug weld material is presented in view of the load analysis with the intent of further understanding the FPW process and how it is affected by the grain structure and subsequent mechanical properties.

  4. Sensitivity analysis of rectangular atomic force microscope cantilevers immersed in liquids based on the modified couple stress theory.

    Lee, Haw-Long; Chang, Win-Jin


    The modified couple stress theory is adopted to study the sensitivity of a rectangular atomic force microscope (AFM) cantilever immersed in acetone, water, carbon tetrachloride (CCl4), and 1-butanol. The theory contains a material length scale parameter and considers the size effect in the analysis. However, this parameter is difficult to obtain via experimental measurements. In this study, a conjugate gradient method for the parameter estimation of the frequency equation is presented. The optimal method provides a quantitative approach for estimating the material length scale parameter based on the modified couple stress theory. The results show that the material length scale parameter of the AFM cantilever immersed in acetone, CCl4, water, and 1-butanol is 0, 25, 116.3, and 471 nm, respectively. In addition, the vibration sensitivities of the AFM cantilever immersed in these liquids are investigated. The results are useful for the design of AFM cantilevers immersed in liquids.

  5. Diagnostics of hemangioma by the methods of correlation and fractal analysis of laser microscopic images of blood plasma

    Boychuk, T. M.; Bodnar, B. M.; Vatamanesku, L. I.


    For the first time the complex correlation and fractal analysis was used for the investigation of microscopic images of both tissue images and hemangioma liquids. It was proposed a physical model of description of phase distributions formation of coherent radiation, which was transformed by optical anisotropic biological structures. The phase maps of laser radiation in the boundary diffraction zone were used as the main information parameter. The results of investigating the interrelation between the values of correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of phase shifts in the points of laser images of histological sections of hemangioma, hemangioma blood smears and blood plasma with vascular system pathologies. The diagnostic criteria of hemangioma nascency are determined.

  6. Morphology and morphometric analysis of stromal capillaries in full term human placental villi of smoking mothers: an electron microscopic study.

    Rath, G; Dhuria, R; Salhan, S; Jain, A K


    The capillaries of placental villi play a very important role in the feto-maternal exchange of gases and nutrients. A morphological change in their structure may lead to the impairment of placental function. In this study an attempt has been made to find out the morphological and morphometric features of the capillaries in full term placental villi of non smoking mothers as well as active and passive smoking mothers under an electron microscope. A total number of 163 placentae from active, passive and nonsmoking mother (n = 61+42+60) were processed for electron microscopic study. The ultrathin sections were examined under electron microscope and images were recorded. Morphometry and statistical analysis were carried out with the help of software. The study revealed that the endothelial cells of stromal capillaries of the placental villi were oedematous and the cytoplasm was rich in dilated endoplasmic reticulum, mitochondria, fibrils and fine filaments in both groups of the smokers' placenta in comparison to control. Morphometric analysis showed a significant reduction in the perimeter of the stromal capillary of the tertiary villi of placenta in both active and passive smokers from mean value of 71.65 ± 47.82 µ to mean value of 59.77 ± 29.72 µ (p = 0.07) and 49.49 ± 20.94 µ (p = 0.0005) respectively. In case of passive smoker, area of the capillary (µm²) reduced significantly (p = 0.00004) from mean value of 266.29 ± 331.86 µm² to 116.64 ± 83.62 µm² whereas the number of capillary per villus increased significantly (p = 0.046) from mean value 2.42 ± 1.84 to 4.2 ± 3.16. The thickness of basement membrane of the endothelial cells of stromal capillaries of the placenta increased significantly in active as well as passive smokers (p = 0.00001). The ultrastructural changes noticed in the endothelial cells of placental villi may be due to hypoxia resulting from tobacco consumption either in active or passive form by the pregnant mothers. Thus, targeted


    N M Chaudhari


    Full Text Available Computer assisted semen analysis (CASA helps the pathologist or fertility specialist to evaluate the human semen. Detail analysis of spermatozoa like morphology and motility is very important in the process of intrauterine insemination (IUI or In-vitro fertilization (IVF in infertile couple. The main objective for this new semen analysis is to provide a low cost solution to the pathologist and gynecologist for the routine raw semen analysis, finding the concentration of the semen with dynamic background removal and classify the spermatozoa type (grade according to the motility and structural abnormality as per the WHO criteria. In this paper a new system , computer assisted semen analysis system is proposed in which hybrid approach is used to identify the moving object, scan line algorithm is applied for confirmation of the objects having tails, so that we can count the actual number of spermatozoa. For removal of background initially the dynamic background generation algorithm is proposed to create a background for background subtraction stage. The standard data set is created with 40× and 100× magnification from the different raw semen s. For testing the efficiency of proposed algorithm, same frames are applied to the existing algorithm. Another module of the system is focused on finding the motility and Type classification of individual spermatozoa.

  8. Automated Classification Of Scanning Electron Microscope Particle Images Using Morphological Analysis

    Lamarche, B. L.; Lewis, R. R.; Girvin, D. C.; McKinley, J. P.


    We are developing a software tool that can automatically classify anthropogenic and natural aerosol particulates using morphological analysis. Our method was developed using SEM (background and secondary electron) images of single particles. Particle silhouettes are detected and converted into polygons using Intel's OpenCV image processing library. Our analysis then proceeds independently for the two kinds of images. Analysis of secondary images concerns itself solely with the silhouette and seeks to quantify its shape and roughness. Traversing the polygon with spline interpolation, we uniformly sample k(s), the signed curvature of the silhouette's path as a function of distance along the perimeter s. k(s) is invariant under rotation and translation. The power spectrum of k(s) qualitatively shows both shape and roughness: more power at low frequencies indicates variation in shape; more power at higher frequencies indicates a rougher silhouette. We present a series of filters (low-, band-, and high-pass) which we convolve with k(s) to yield a set of parameters that characterize the shape and roughness numerically. Analysis of backscatter images focuses on the (visual) texture, which is the result of both composition and geometry. Using the silhouette as a boundary, we compute the variogram, a statistical measure of inter-pixel covariance as a function of distance. Variograms take on characteristic curves, which we fit with a heuristic, asymptotic function that uses a small set of parameters. The combination of silhouette and variogram fit parameters forms the basis of a multidimensional classification space whose dimensionality we may reduce by principal component analysis and whose region boundaries allow us to classify new particles. This analysis is performed without a priori knowledge of other physical, chemical, or climatic properties. The method will be adapted to multi-particulate images.

  9. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Conan O' Rourke; Yutao Zhou


    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three and Cycle Four of PEARL program during the period of April 2003 to October 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle three is lumen maintenance at 40% rated life, and parameters tested for Cycle Four are all parameters required in Energy Star specifications except lumen maintenance at 40% rated life.

  10. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Conan O' Rourke; Yutao Zhou


    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Five and Cycle Six of PEARL program during the period of April 2004 to October 2004, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle Five is lumen maintenance at 40% rated life, and parameters tested for Cycle Six are Efficacy, CCT, CRI, Power Factor, Start Time, Warm-up Time, and Rapid Cycle Stress Test for CFLs.

  11. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Conan O' Rourke; Yutao Zhou


    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Six of PEARL program during the period of October 2004 to April 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameters tested for CFL models in Cycle Six are 1000-hour Lumen Maintenance, Lumen Maintenance at 40% Rated Life, and Interim Life Test, along with a series of parameters verified, such as ballast electrical parameters and Energy Star label.

  12. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Conan O' Rourke; Yutao Zhou


    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle 6 and Reflector CFL In-situ Testing of PEARL program during the period of April 2005 to October 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC performed testing for the fixture samples in Cycle 6 against Energy Star residential fixture specifications during this period of time. LRC subcontracted the Reflector CFL In-situ Testing to Luminaire Testing Laboratories located at Allentown PA, and supervised this test.

  13. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Conan O' Rourke; Yutao Zhou


    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure of Cycle 7 of PEARL program during the period of October 2005 to March 2006, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC administered the purchasing of CFL samples to test in Cycle 7, performed 100-hour seasoning for most of the CFL samples received by March 2006, and performed sphere testing for some of the CFL samples at 100 hours of life (initial measurement).

  14. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Conan O' Rourke; Yutao Zhou


    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Four and Cycle Five of PEARL program during the period of October 2003 to April 2004, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle Four is lumen maintenance at 40% rated life, and parameters tested for Cycle Five are all parameters required in Energy Star specifications except lumen maintenance at 40% rated life.

  15. Preliminary Analysis of ULPC Light Curves Using Fourier Decomposition Technique

    Ngeow, Chow-Choong; Kanbur, Shashi; Barrett, Brittany; Lin, Bin


    Recent work on Ultra Long Period Cepheids (ULPCs) has suggested their usefulness as a distance indicator, but has not commented on their relationship as compared with other types of variable stars. In this work, we use Fourier analysis to quantify the structure of ULPC light curves and compare them to Classical Cepheids and Mira variables. Our preliminary results suggest that the low order Fourier parameters of ULPCs show a continuous trend defined by Classical Cepheids after the resonance around 10 days. However their Fourier parameters also overlapped with those from Miras, which make the classification of long period variable stars difficult based on the light curves information alone.

  16. Image Analysis of Fabric Pilling Based on Light Projection

    陈霞; 黄秀宝


    The objective assessment of fabric pilling based on light projection and image analysis has been exploited recently.The device for capturing the cross-sectional images of the pilled fabrics with light projection is elaborated.The detection of the profile line and integration of the sequential cross-sectional pilled image are discussed.The threshold based on Gaussian model is recommended for pill segmentation.The results show that the installed system is capable of eliminating the interference with pill information from the fabric color and pattern.

  17. Scanning Miniature Microscopes without Lenses

    Wang, Yu


    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  18. Light-front analysis of the Casimir effect

    Chabysheva, Sophia S


    The Casimir force between conducting plates at rest in an inertial frame is usually computed in equal-time quantization, the natural choice for the given boundary conditions. We show that the well-known result obtained in this way can also be obtained in light-front quantization. This differs from a light-front analysis where the plates are at "rest" in an infinite momentum frame, rather than an inertial frame; in that case, as shown by Lenz and Steinbacher, the result does not agree with the standard result. As is usually done, the analysis is simplified by working with a scalar field and periodic boundary conditions, in place of the complexity of quantum electrodynamics. The two key ingredients are a careful implementation of the boundary conditions, following the work of Almeida et al. on oblique light-front coordinates, and computation of the ordinary energy density, rather than the light-front energy density. The analysis demonstrates that the physics of the effect is independent of the coordinate choice...

  19. Is there an association of microscopic colitis and irritable bowel syndrome-A subgroup analysis of placebo-controlled trials

    Ahmed Madisch; Birgit Bethke; Manfred Stolte; Stephan Miehlke


    @@ TO THE EDITOR With great interest we read the recent retrospectice study by Barta et al (1) dealing with the clinical presentation of patients with microscopic colitis. They investigated in a cohort of 53 patients with microscopic colitis (46 with collagenous colitis, 7 with lymphocytic colitis)the relationship between microscopic colitis and both constipation and diarrhea. One of their mean finding was that abdominal pain, diarrhea and constipation was a common symptom complex of patients with microscopic colitis, thus the face of microcopic colitis resembles the subgroups of irritable bowel syndrome (IBS).

  20. A collaborative biomedical image mining framework: application on the image analysis of microscopic kidney biopsies.

    Goudas, T; Doukas, C; Chatziioannou, A; Maglogiannis, I


    The analysis and characterization of biomedical image data is a complex procedure involving several processing phases, like data acquisition, preprocessing, segmentation, feature extraction and classification. The proper combination and parameterization of the utilized methods are heavily relying on the given image data set and experiment type. They may thus necessitate advanced image processing and classification knowledge and skills from the side of the biomedical expert. In this work, an application, exploiting web services and applying ontological modeling, is presented, to enable the intelligent creation of image mining workflows. The described tool can be directly integrated to the RapidMiner, Taverna or similar workflow management platforms. A case study dealing with the creation of a sample workflow for the analysis of kidney biopsy microscopy images is presented to demonstrate the functionality of the proposed framework.

  1. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples.

    Song, Young Kyoung; Hong, Sang Hee; Jang, Mi; Han, Gi Myung; Rani, Manviri; Lee, Jongmyoung; Shim, Won Joon


    The analysis of microplastics in various environmental samples requires the identification of microplastics from natural materials. The identification technique lacks a standardized protocol. Herein, stereomicroscope and Fourier transform infrared spectroscope (FT-IR) identification methods for microplastics (microplastics were significantly (p0.05) different. Depending on the number of samples and the microplastic size range of interest, the appropriate identification method should be determined; selecting a suitable identification method for microplastics is crucial for evaluating microplastic pollution.

  2. Labor Economists Get Their Microscope: Big Data and Labor Market Analysis.

    Horton, John J; Tambe, Prasanna


    This article describes how the fine-grained data being collected by Internet labor market intermediaries, such as employment websites, online labor markets, and knowledge discussion boards, are providing new research opportunities and directions for the empirical analysis of labor market activity. After discussing these data sources, we examine some of the research opportunities they have created, highlight some examples of existing work that already use these new data sources, and enumerate the challenges associated with the use of these corporate data sources.

  3. Immunohistochemical and morphometric analysis of immunoglobulin light-chain immunoreactive amyloid in psammoma bodies of the human choroid plexus.

    Jovanović, Ivan; Ugrenović, Sladjana; Vasović, Ljiljana; Stojanović, Ivan


    The aim of this research was to establish the presence of amyloid and to quantify immunohistochemical reactions of kappa and lambda light chains of psammoma bodies of the choroid plexus. Choroid plexus tissue obtained from 14 right lateral ventricles postmortem was processed histologically and stained with Congo red, thioflavin T, and monoclonal antibodies for kappa and lambda light chains. Morphological analysis was performed with a light microscope at lens magnifications of 4×, 10×, 20×, 25×, and 40×. The morphometric characteristics of psammoma bodies that were kappa and lambda positive and negative were analyzed with ImageJ. Histological analysis showed that the psammoma bodies, stromal blood vessel walls, and some epithelial cells reacted positively with Congo red and thioflavin T. Psammoma bodies were predominantly positive for lambda light chains. Lambda positivity was detected inside some stromal blood vessels, which pointed to a probable systemic origin for these light chains. Morphometric analysis showed that the mean optical densities of lambda- and kappa-positive psammoma bodies were significantly higher than those that gave a negative reaction. The percentage of lambda-positive psammoma bodies was significantly higher than the percentage of lambda-negative psammoma bodies in 80% of the cases, while the reaction with kappa light chains was negative in the majority of the cases. Linear regression analysis showed a significant increase in the percentage of lambda-positive psammoma bodies and their mean optical density with age. Finally, it can be concluded that the positive reaction of psammoma bodies in the choroid plexus with respect to amyloid and lambda light chains may point to the presence of light-chain amyloid in their structures.

  4. Persistent extraradicular infection in root-filled asymptomatic human tooth: scanning electron microscopic analysis and microbial investigation after apical microsurgery.

    Signoretti, Fernanda G C; Endo, Marcos S; Gomes, Brenda P F A; Montagner, Francisco; Tosello, Fernanda B; Jacinto, Rogério C


    Procedural accidents have a negative effect on healing and might contribute to the persistence of infections in inaccessible apical areas, requiring surgical intervention. This report describes a case of persistent apical periodontitis of a lower left first molar associated with the sinus tract and a periapical lesion that required nonsurgical endodontic retreatment and apical surgery for resolution. The tooth had received endodontic treatment 3 years ago and had to be retreated using the crown-down technique with chemical auxiliary substance (2% chlorhexidine gel), foramen patency, and enlargement and was filled in a single appointment. The occlusal access cavity was immediately restored with composite resin. After 1 month, it could be observed that the sinus tract persisted and, radiographically, the lesion remained unaltered. Therefore, endodontic microsurgery was indicated. Apical microsurgery was performed under magnification with the use of a dental operating microscope including apicectomy, root end with ultrasound, and sealing with mineral trioxide aggregate. A microbiological sample was collected from the apical lesion. The resected distal root apex was observed by scanning electron microscopy. The following species were detected: Actinomyces naeslundii and Actinomyces meyeri, Propionibacterium propionicum, Clostridium botullinum, Parvimonas micra, and Bacteroides ureolyticus; scanning electron microscopic analysis revealed bacterial biofilm surrounding the apical foramen and external radicular surface. Gutta-percha overfilling at the apex because of a zip caused during initial endodontic treatment could be observed. A 6-month follow-up showed apparent radiographic periapical healing, which progressed after 24 months. Gram-positive anaerobic bacteria and extraradicular biofilm seem to participate in the maintenance of persistent periapical pathology, and endodontic retreatment followed by periapical microsurgery proved to be a successful alternative in the

  5. Quantitative compositional analysis of organic thin films using transmission NEXAFS spectroscopy in an X-ray microscope

    Collins, Brian A. [Department of Physics, NCSU, Raleigh, NC 27695-8202 (United States); Ade, Harald, E-mail: [Department of Physics, NCSU, Raleigh, NC 27695-8202 (United States)


    Highlights: Black-Right-Pointing-Pointer Common sources of error in transmission NEXAFS spectra in a STXM identified and shown to be significant. Black-Right-Pointing-Pointer Three facile methods to characterize and eliminate or limit errors are detailed. Black-Right-Pointing-Pointer Appropriate spectra processing methods are discussed and demonstrated. Black-Right-Pointing-Pointer Quantitative compositional analysis of organic thin films is conducted and shown to be robust. -- Abstract: Near edge X-ray absorption fine structure (NEXAFS) spectroscopy is well suited for the quantitative determination of the composition of soft matter thin films. Combined with the high spatial resolution of a scanning transmission X-ray microscope, compositional maps of submicron morphologies can be derived and have been used successfully to characterize a number of materials systems. However, multiple sources of known systematic errors limit the accuracy and are frequently not taken into account. We show that these errors can be significant (more than 10%) and demonstrate simple methods to eliminate them. With suitable precautions, a compositional measurement can be made on a thin film sample in a matter of minutes with sub-micron spatial resolution and sub-percent compositional precision. NEXAFS measurements are furthermore known to be sensitive to anisotropic molecular orientation and a strategy to account for that and extract preferential molecular orientation relative to a reference is presented. The spatial resolution of the measurement can be increased to below 100 nm at the expense of compositional precision, depending on the point spread function of the zone plate focusing optics of the microscope.

  6. Characterizing primary refractory neuroblastoma: prediction of outcome by microscopic image analysis

    Niazi, M. Khalid Khan; Weiser, Daniel A.; Pawel, Bruce R.; Gurcan, Metin N.


    Neuroblastoma is a childhood cancer that starts in very early forms of nerve cells found in an embryo or fetus. It is a highly lethal cancer of sympathetic nervous system that commonly affects children of age five or younger. It accounts for a disproportionate number of childhood cancer deaths and remains a difficult cancer to eradicate despite intensive treatment that includes chemotherapy, surgery, hematopoietic stem cell transplantation, radiation therapy and immunotherapy. A poorly characterized group of patients are the 15% with primary refractory neuroblastoma (PRN) which is uniformly lethal due to de novo chemotherapy resistance. The lack of response to therapy is currently assessed after multiple months of cytotoxic therapy, driving the critical need to develop pretreatment clinic-biological biomarkers that can guide precise and effective therapeutic strategies. Therefore, our guiding hypothesis is that PRN has distinct biological features present at diagnosis that can be identified for prediction modeling. During a visual analysis of PRN slides, stained with hematoxylin and eosin, we observed that patients who survived for less than three years contained large eosin-stained structures as compared to those who survived for greater than three years. So, our hypothesis is that the size of eosin stained structures can be used as a differentiating feature to characterize recurrence in neuroblastoma. To test this hypothesis, we developed an image analysis method that performs stain separation, followed by the detection of large structures stained with Eosin. On a set of 21 PRN slides, stained with hematoxylin and eosin, our image analysis method predicted the outcome with 85.7% accuracy.

  7. Nuclear Pairing from Two-body Microscopic Forces: Analysis of the Cooper Pair Wavefunctions

    Finelli, P; Holt, J W


    In a recent paper we studied the behavior of the pairing gaps $\\Delta_F$ as a function of the Fermi momentum $k_F$ for neutron and nuclear matter in all relevant angular momentum channels where superfluidity is believed to naturally emerge. The calculations employed realistic chiral nucleon-nucleon potentials with the inclusion of three-body forces and self-energy effects. In this contribution, after a detailed description of the numerical method we employed in the solution of the BCS equations, we will show a preliminary analysis of the Cooper pair wavefunctions.

  8. Optimal Search Mechanism Analysis of Light Ray Optimization Algorithm

    Jihong SHEN; Jialian LI; Bin WEI


    Based on Fermat's principle and the automatic optimization mechanism in the propagation process of light,an optimal searching algorithm named light ray optimization is presented,where the laws of refraction and reflection of light rays are integrated into searching process of optimization.In this algorithm,coordinate space is assumed to be the space that is full of media with different refractivities,then the space is divided by grids,and finally the searching path is assumed to be the propagation path of light rays.With the law of refraction,the search direction is deflected to the direction that makes the value of objective function decrease.With the law of reflection,the search direction is changed,which makes the search continue when it cannot keep going with refraction.Only the function values of objective problems are used and there is no artificial rule in light ray optimization,so it is simple and easy to realize.Theoretical analysis and the results of numerical experiments show that the algorithm is feasible and effective.

  9. Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.

    Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G


    The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.

  10. Dark field microscopic analysis of discrete Au nanostructures: Understanding the correlation of scattering with stoichiometry

    Wang, Guoqing; Bu, Tong; Zako, Tamotsu; Watanabe-Tamaki, Ryoko; Tanaka, Takuo; Maeda, Mizuo


    Due to the potential of gold nanoparticle (AuNP)-based trace analysis, the discrimination of small AuNP clusters with different assembling stoichiometry is a subject of fundamental and technological importance. Here we prepare oligomerized AuNPs with controlled stoichiometry through DNA-directed assembly, and demonstrate that AuNP monomers, dimers and trimers can be clearly distinguished using dark field microscopy (DFM). The scattering intensity for of AuNP structures with stoichiometry ranging from 1 to 3 agrees well with our theoretical calculations. This study demonstrates the potential of utilizing the DFM approach in ultra-sensitive detection as well as the use of DNA-directed assembly for plasmonic nano-architectures.

  11. Estimating the Temperature Experienced by Biomass Particles during Fast Pyrolysis Using Microscopic Analysis of Biochars

    Thompson, Logan C. [National; Ciesielski, Peter N. [National; Jarvis, Mark W. [National; Mukarakate, Calvin [National; Nimlos, Mark R. [National; Donohoe, Bryon S. [National


    Biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput method to investigate the thermal history experienced by large ensembles of particles during fast pyrolysis by imaging and quantitative image analysis. We present a correlation between the surface luminance (darkness) of the biochar particle and the highest temperature that it experienced during pyrolysis. Next, we apply this correlation to large, heterogeneous ensembles of char particles produced in a laminar entrained flow reactor (LEFR). The results are used to interpret the actual temperature distributions delivered by the reactor over a range of operating conditions.

  12. Weathered MC252 crude oil-induced anemia and abnormal erythroid morphology in double-crested cormorants (Phalacrocorax auritus) with light microscopic and ultrastructural description of Heinz bodies.

    Harr, Kendal E; Cunningham, Fred L; Pritsos, Chris A; Pritsos, Karen L; Muthumalage, Thivanka; Dorr, Brian S; Horak, Katherine E; Hanson-Dorr, Katie C; Dean, Karen M; Cacela, Dave; McFadden, Andrew K; Link, Jane E; Healy, Katherine A; Tuttle, Pete; Bursian, Steven J


    Injury assessment of birds following the Deepwater Horizon (DWH) oil spill in 2010 was part of the Natural Resource Damage Assessment. One reported effect was hemolytic anemia with the presence of Heinz bodies (HB) in birds, however, the role of route and magnitude of exposure to oil is unknown. The purpose of the present study was to determine if double-crested cormorants (Phalacocorax auritis; DCCO) exposed orally and dermally to artificially weathered crude oil would develop hemolytic anemia including HB and reticulocytosis. In the oral experiment, sub-adult, mixed-sex DCCOs were fed control (n = 8) or oil-injected fish with a daily target dose of 5 (n = 9) or 10 (n = 9) ml oil/kg for 21 days. Then, subadult control (n = 12) and treated (n = 13) cormorant groups of similar sex-ratio were dermally treated with approximately 13ml of water or weathered MC252 crude oil, respectively, every 3 days for 6 dosages approximating 20% surface coverage. Collected whole blood samples were analyzed by light (new methylene blue) and transmission electron microscopy. Both oral and dermal treatment with weathered DWH MC252 crude oil induced regenerative, but inadequately compensated, anemia due to hemolysis and hematochezia as indicated by decreased packed cell volume, relative increase in reticulocytes with lack of difference in corrected reticulocyte count, and morphologic evidence of oxidant damage at the ultrastructural level. Hemoglobin precipitation, HB formation, degenerate organelles, and systemic oxidant damage were documented. Heinz bodies were typically <2µm in length and smaller than in mammals. These oblong cytoplasmic inclusions were difficult to see upon routine blood smear evaluation and lacked the classic button appearance found in mammalian red blood cells. They could be found as light, homogeneous blue inclusions upon new methylene blue staining. Ultrastructurally, HB appeared as homogeneous, electron-dense structures within the cytosol and lacked membranous

  13. Raman Microscopic Analysis of Internal Stress in Boron-Doped Diamond

    Kevin E. Bennet


    Full Text Available Analysis of the induced stress on undoped and boron-doped diamond (BDD thin films by confocal Raman microscopy is performed in this study to investigate its correlation with sample chemical composition and the substrate used during fabrication. Knowledge of this nature is very important to the issue of long-term stability of BDD coated neurosurgical electrodes that will be used in fast-scan cyclic voltammetry, as potential occurrence of film delaminations and dislocations during their surgical implantation can have unwanted consequences for the reliability of BDD-based biosensing electrodes. To achieve a more uniform deposition of the films on cylindrically-shaped tungsten rods, substrate rotation was employed in a custom-built chemical vapor deposition reactor. In addition to visibly preferential boron incorporation into the diamond lattice and columnar growth, the results also reveal a direct correlation between regions of pure diamond and enhanced stress. Definite stress release throughout entire film thicknesses was found in the current Raman mapping images for higher amounts of boron addition. There is also a possible contribution to the high values of compressive stress from sp2 type carbon impurities, besides that of the expected lattice mismatch between film and substrate.

  14. Analysis of the swimming activity of Pseudomonas aeruginosa by using photonic force microscope

    Chan, Chia-Han; Chang, Bo-Jui; Huang, Ying-Jung; Fan, Chia-Chieh; Peng, Hwei-Ling; Chi, Sien; Hsu, Long


    Swimming activity of flagella is a main factor of the motility of bacteria. Flagella expressed on the surface of bacterial species serve as a primary means of motility including swimming. We propose to use optical tweezers to analyze the swimming activity of bacteria. The sample bacteria in the work is Pseudomonas aeruginosa, and it is a gram-negative bacterium and often causes leading to burn wound infections, urinary-tract infections, and pneumonia. The single polar flagellum of P. aeruginosa has been demonstrated to be important virulence and colonization factor of this opportunistic pathogen. We demonstrate a gene to regulate the bacterial swimming activity in P. aeruginosa PAO1 by biological method. However, the change of flagellar morphology was not observed by electron microscopy analysis, suggesting that the gene regulates the flagellar rotation that could not be detected by biological method. PFM exhibits a spatial resolution of a few nanometers to detect the relative position of the probe at an acquisition rate over 1 MHz. By binding a probe such as a bead or a quantum dot on the flagella, we expect the rotation of the probe due to the flagella could be detected. It is expected that the study of the swimming activity of P. aeruginosa provide potent method for the pathogenic role of the flagella in P. aeruginosa.

  15. Mineral trioxide aggregate as a root canal filling material in reimplanted teeth. Microscopic analysis in monkeys.

    Panzarini, Sônia Regina; Holland, Roberto; de Souza, Valdir; Poi, Wilson Roberto; Sonoda, Celso Koogi; Pedrini, Denise


    This study analyzed mineral trioxide aggregate (MTA) as a root canal filling material for the immediate reimplantation of monkey teeth. Four adult capuchin monkeys Cebus apella were used, which had their maxillary and mandibular lateral incisors on both sides extracted and reimplanted after 15 min. During the extra-alveolar period, the teeth were kept in saline solution and after reimplantation retention was performed with a stainless steel wire and composite resin for 14 days. After 7 days, the reimplanted teeth were submitted to endodontic treatment with biomechanics up to file n. 30 and irrigation with a saturated solution of calcium hydroxide [Ca(OH)(2)], and then divided into two study groups: group I - root canal filled with a Ca(OH)(2) paste, and group II - root canal filled with MTA. Radiographic follow up was performed at 30, 60 and 90 days postoperatively, and after 180 days the animals were killed and specimens were processed for histomorphological analysis. The results revealed that most specimens of both groups presented organized periodontal ligament with no inflammation. The resorptions observed were surface resorptions and were repaired by cementum. Both MTA and Ca(OH)(2) were good root canal filling materials for immediately reimplanted teeth, providing good repair and also allowing biological sealing of some lateral canals. There was no significant difference between the study groups (alpha = 29.60%).

  16. Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experiments

    Moeglein, W. A.; Griswold, R.; Mehdi, B. L.; Browning, N. D.; Teuton, J.


    In-situ (scanning) transmission electron microscopy (S/TEM) is being developed for numerous applications in the study of nucleation and growth under electrochemical driving forces. For this type of experiment, one of the key parameters is to identify when nucleation initiates. Typically the process of identifying the moment that crystals begin to form is a manual process requiring the user to perform an observation and respond accordingly (adjust focus, magnification, translate the stage etc.). However, as the speed of the cameras being used to perform these observations increases, the ability of a user to “catch” the important initial stage of nucleation decreases (there is more information that is available in the first few milliseconds of the process). Here we show that video shot boundary detection (SBD) can automatically detect frames where a change in the image occurs. We show that this method can be applied to quickly and accurately identify points of change during crystal growth. This technique allows for automated segmentation of a digital stream for further analysis and the assignment of arbitrary time stamps for the initiation of processes that are independent of the user’s ability to observe and react.

  17. Microscopic analysis and simulation of check-mark stain on the galvanized steel strip

    So, Hongyun; Yoon, Hyun Gi; Chung, Myung Kyoon


    When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of adhered zinc film is controlled by plane impinging air gas jet referred to as "air-knife system". In such a gas-jet wiping process, stain of check-mark or sag line shape frequently appears. The check-mark defect is caused by non-uniform zinc coating and the oblique patterns such as "W", "V" or "X" on the coated surface. The present paper presents a cause and analysis of the check-mark formation and a numerical simulation of sag lines by using the numerical data produced by Large Eddy Simulation (LES) of the three-dimensional compressible turbulent flow field around the air-knife system. It was found that there is alternating plane-wise vortices near the impinging stagnation region and such alternating vortices move almost periodically to the right and to the left sides on the stagnation line due to the jet flow instability. Meanwhile, in order to simulate the check-mark formation, a novel perturbation model has been developed to predict the variation of coating thickness along the transverse direction. Finally, the three-dimensional zinc coating surface was obtained by the present perturbation model. It was found that the sag line formation is determined by the combination of the instantaneous coating thickness distribution along the transverse direction near the stagnation line and the feed speed of the steel strip.

  18. Authentication of the 31 species of toxic and potent Chinese materia medica by microscopic technique assisted by ICP-MS analysis, part 4: four kinds of toxic and potent mineral arsenical CMMs.

    Li, Qin; Chu, Chu; Wang, Ya-Qiong; Chen, Hu-Biao; Li, Ping; Zhao, Zhong-Zhen


    Toxic and Potent Chinese Materia Medica (T/PCMM) is a special and very important category of Chinese medicines. They have long been used in traditional medical practice and are being used more and more widely throughout the world in recent years. As there may be many fatal toxic effects caused by misusing or confusion of T/PCMM, their quality and safety control arouse increasing attention internationally. Researches on the accurate identification to ensure the safe use of T/PCMM are acquired; however, there are few reports on authentication. We are carrying out a series of studies on 31 T/PCMM originating from plants, animals, minerals, and secreta. In our previous studies, we proved that modern microscopic authentication is a simple, fast, effective, low cost, and less toxic method for identifying animal, seed, and flower T/PCMM. In the present study, we focused on the authentication of four kinds of mineral arsenicals, including orpiment (mainly containing As₂S₃), realgar (mainly containing As₄S₄), arsenolite, and arsenic trioxide (mainly containing As₂O₃). We examined the macroscopic and microscopic characteristics of the above minerals and found that they all can be easily identified and authenticated by using light microscopy coupled with polarized microscopy. Moreover, the authentication results for arsenolite and arsenic trioxide are confirmed by ICP-MS analysis. We are sure that the morphological and microscopic characteristics indicated here are indispensable to establishing standards for these four mineral T/PCMMs.

  19. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji


    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  20. Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance.

    Tosi, A L; Campana, L G; Dughiero, F; Forzan, M; Rastrelli, M; Sieni, E; Rossi, C R


    Tissue electrical conductivity is correlated with tissue characteristics. In this work, some soft tissue sarcomas (STS) excised from patients have been evaluated in terms of histological characteristics (cell size and density) and electrical resistance. The electrical resistance has been measured using the ex vivo study on soft tissue tumors electrical characteristics (ESTTE) protocol proposed by the authors in order to study electrical resistance of surgical samples excised by patients in a fixed measurement setup. The measurement setup includes a voltage pulse generator (700 V, 100 µs long at 5 kHz, period 200 µs) and an electrode with 7 needles, 20 mm-long, with the same distance arranged in a fixed hexagonal geometry. In the ESTTE protocol, the same voltage pulse sequence is applied to each different tumor mass and the corresponding resistance has been evaluated from voltage and current recorded by the equipment. For each tumor mass, a histological sample of the volume treated by means of voltage pulses has been taken for histological analysis. Each mass has been studied in order to identify the sarcoma type. For each histological sample, an image at 20× or 40× of magnification was acquired. In this work, the electrical resistance measured for each tumor has been correlated with tissue characteristics like the type, size and density of cells. This work presents a preliminary study to explore possible correlations between tissue characteristics and electrical resistance of STS. These results can be helpful to adjust the pulse voltage intensity in order to improve the electrochemotherapy efficacy on some histotype of STS.

  1. Brain-wide mapping of axonal connections: workflow for automated detection and spatial analysis of labeling in microscopic sections

    Eszter Agnes ePapp


    Full Text Available Axonal tracing techniques are powerful tools for exploring the structural organization of neuronal connections. Tracers such as biotinylated dextran amine (BDA and Phaseolus vulgaris leucoagglutinin (Pha-L allow brain-wide mapping of connections through analysis of large series of histological section images. We present a workflow for efficient collection and analysis of tract-tracing datasets with a focus on newly developed modules for image processing and assignment of anatomical location to tracing data. New functionality includes automatic detection of neuronal labeling in large image series, alignment of images to a volumetric brain atlas, and analytical tools for measuring the position and extent of labeling. To evaluate the workflow, we used high-resolution microscopic images from axonal tracing experiments in which different parts of the rat primary somatosensory cortex had been injected with BDA or Pha-L. Parameters from a set of representative images were used to automate detection of labeling in image series covering the entire brain, resulting in binary maps of the distribution of labeling. For high to medium labeling densities, automatic detection was found to provide reliable results when compared to manual analysis, whereas weak labeling required manual curation for optimal detection. To identify brain regions corresponding to labeled areas, section images were aligned to the Waxholm Space (WHS atlas of the Sprague Dawley rat brain (v2 by custom-angle slicing of the MRI template to match individual sections. Based on the alignment, WHS coordinates were obtained for labeled elements and transformed to stereotaxic coordinates. The new workflow modules increase the efficiency and reliability of labeling detection in large series of images from histological sections, and enable anchoring to anatomical atlases for further spatial analysis and comparison with other data.

  2. Thimble microscope system

    Kamal, Tahseen; Rubinstein, Jaden; Watkins, Rachel; Cen, Zijian; Kong, Gary; Lee, W. M.


    Wearable computing devices, e.g. Google Glass, Smart watch, embodies the new human design frontier, where technology interfaces seamlessly with human gestures. During examination of any subject in the field (clinic, surgery, agriculture, field survey, water collection), our sensory peripherals (touch and vision) often go hand-in-hand. The sensitivity and maneuverability of the human fingers are guided with tight distribution of biological nerve cells, which perform fine motor manipulation over a range of complex surfaces that is often out of sight. Our sight (or naked vision), on the other hand, is generally restricted to line of sight that is ill-suited to view around corner. Hence, conventional imaging methods are often resort to complex light guide designs (periscope, endoscopes etc) to navigate over obstructed surfaces. Using modular design strategies, we constructed a prototype miniature microscope system that is incorporated onto a wearable fixture (thimble). This unique platform allows users to maneuver around a sample and take high resolution microscopic images. In this paper, we provide an exposition of methods to achieve a thimble microscopy; microscope lens fabrication, thimble design, integration of miniature camera and liquid crystal display.

  3. Light

    Robertson, William C


    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  4. Testicular myxosporidiasis and ultrastructural characteristics of Myxobolus bufonis (Myxobolidae) infecting the Egyptian toad Bufo regularis (Bufonidae). A light and electron microscopic study.

    Morsy, Kareem; Semmler, Margit; Al-Olayan, Ebtsam; Mehlhorn, Heinz


    The phylum Myxozoa comprises more than 2180 species, almost all of which are considered to be obligate parasites of aquatic fishes and amphibians. They are dangerous pathogens responsible for severe economic losses. From March to September 2014, 40 adult male Bufo regularis (Bufonidae) captured from different areas at Giza province, Egypt, were surveyed for myxosporean parasitic infection. Of these, 22 (55%) were infected by histozoic plasmodia, which produced spores after rupture belonging to Myxosporidia. The present investigation introduced a new data for the recorded parasite observed by light and transmission electron microscopy. The infection was diagnosed as large clusters of macroscopic plasmodia embedded in the testicular tissue causing distortion at the site of infection. The host reaction was manifested by the encapsulation of the plasmodia with a thick layer of connective tissue. Plasmodia were whitish in color, elliptical to ovoid in shape measuring 0.54 ± 0.2 (0.34-0.63) mm in diameter. The spores were subspherical, reaching 7.1 ± 0.2 (6.2-8.4) μm in length and 6.3 ± 0.2 (5.8-7.0) μm in width with two equal-sized polar capsules regularly arranged at the anterior pole of each spore. They were 3.4 ± 0.2 (3.0-4.2) μm in length and 1.9 ± 0.2 (1.6-2.4) in width with 6-8 turns of polar filaments. Ultrastructural analysis showed that the plasmodia were surrounded by a plasma membrane with numerous projections and pinocytotic channels extended toward the host cell. The generative cells and the different developmental stages were arranged at the periphery of the plasmodia while immature and mature spores were centrally arranged. Sporogenesis, capsulogenesis, valvogenesis, and spore maturation of the present parasite were also described.

  5. Shear-Resistant Behavior Analysis of Light Composite Shear Walls

    李升才; 江见鲸; 于庆荣


    Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan in this paper. The analysis results show that this kind of composite wall panel works very well, and can be regarded as a solid panel. The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play. Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack.

  6. On the Analysis of Light Curves in Asteroseismology

    David L. Mary


    We provide a detailed introduction to the main problems arising when analyzing light curves in asteroseismology. Attention is first paid to the signal model delivered by the pulsating stars and to the noise sources corrupting this model in photometric observations. The main pitfalls and ambiguities occurring in Fourier analysis are summarized and illustrated. Someclassical, Least Squares (LS) based methods for spectrum analysis are analyzed and commented on from the point of view of ill-posed problems. The insight that can be gained from such analyses is discussed.

  7. Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures.

    Jacob A Nelson

    Full Text Available Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.


    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation AnalysisPhouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.<...

  9. Macroscopic and microscopic analysis of the thumb carpometacarpal ligaments: a cadaveric study of ligament anatomy and histology.

    Ladd, Amy L; Lee, Julia; Hagert, Elisabet


    Stability and mobility represent the paradoxical demands of the human thumb carpometacarpal joint, yet the structural origin of each functional demand is poorly defined. As many as sixteen and as few as four ligaments have been described as primary stabilizers, but controversy exists as to which ligaments are most important. We hypothesized that a comparative macroscopic and microscopic analysis of the ligaments of the thumb carpometacarpal joint would further define their role in joint stability. Thirty cadaveric hands (ten fresh-frozen and twenty embalmed) from nineteen cadavers (eight female and eleven male; average age at the time of death, seventy-six years) were dissected, and the supporting ligaments of the thumb carpometacarpal joint were identified. Ligament width, length, and thickness were recorded for morphometric analysis and were compared with use of the Student t test. The dorsal and volar ligaments were excised from the fresh-frozen specimens and were stained with use of a triple-staining immunofluorescent technique and underwent semiquantitative analysis of sensory innervation; half of these specimens were additionally analyzed for histomorphometric data. Mixed-effects linear regression was used to estimate differences between ligaments. Seven principal ligaments of the thumb carpometacarpal joint were identified: three dorsal deltoid-shaped ligaments (dorsal radial, dorsal central, posterior oblique), two volar ligaments (anterior oblique and ulnar collateral), and two ulnar ligaments (dorsal trapeziometacarpal and intermetacarpal). The dorsal ligaments were significantly thicker (p histologic appearance of capsular tissue with low cellularity. The dorsal deltoid ligament complex is uniformly stout and robust; this ligament complex is the thickest morphometrically, has the highest cellularity histologically, and shows the greatest degree of sensory nerve endings. The hypocellular anterior oblique ligament is thin, is variable in its location, and

  10. iSpectra: An Open Source Toolbox For The Analysis of Spectral Images Recorded on Scanning Electron Microscopes.

    Liebske, Christian


    iSpectra is an open source and system-independent toolbox for the analysis of spectral images (SIs) recorded on energy-dispersive spectroscopy (EDS) systems attached to scanning electron microscopes (SEMs). The aim of iSpectra is to assign pixels with similar spectral content to phases, accompanied by cumulative phase spectra with superior counting statistics for quantification. Pixel-to-phase assignment starts with a threshold-based pre-sorting of spectra to create groups of pixels with identical elemental budgets, similar to a method described by van Hoek (2014). Subsequent merging of groups and re-assignments of pixels using elemental or principle component histogram plots enables the user to generate chemically and texturally plausible phase maps. A variety of standard image processing algorithms can be applied to groups of pixels to optimize pixel-to-phase assignments, such as morphology operations to account for overlapping excitation volumes over pixels located at phase boundaries. iSpectra supports batch processing and allows pixel-to-phase assignments to be applied to an unlimited amount of SIs, thus enabling phase mapping of large area samples like petrographic thin sections.

  11. The study of time dependent administration of methylphenidate on the microscopic indices of spermatogenesis and sperm analysis in adult rats

    Shapour Hasanzadeh


    Full Text Available Objective: Methylphenidate, Ritalin, is one of the most common medications. The administration of Ritalin leads to increase of the activity of central nervous system. Ritalin may be used for maintaining alertness and improving of attention which, may lead to increase of the risk of substance abuse in some cases. There is a little data about the effects of long term treatment with Ritalin on body organs involved in fertility ability. Regarding to the effect of normal fertility on the physical and mental health of males, this study was designed to investigate the time dependent effects of MPH on the activity of male reproductive system. Methods: Ritalin was administrated to adult rats (10 mg/kg/day in three experimental groups for periods of two weeks, 11 weeks and 11 weeks with one week interval between each two weeks. The blood plasma levels of gonadotropins and testosterone was measured. Histomorphometrical study and sperm analysis was performed for evaluation of reproductive function. Results: The reduction in body weight and decline in the blood testosterone levels was seen in two groups which treated for 11 weeks. The reduction of microscopic indices of spermatogenesis and the alteration of morphometeric characteristics of seminiferous tubules was accompanied with epididymal sperm decrement in long term treated animals. Conclusion: The findings of this study indicate that, the long term use of methylphenidate can adversely damage the male fertility due to impairment of normal spermatogenesis. [J Exp Integr Med 2013; 3(2.000: 121-125

  12. Determination of bulk diffusion lengths for angle-lapped semiconductor material via the scanning electron microscope: A theoretical analysis

    Vonroos, O.


    A standard procedure for the determination of the minority carrier diffusion length by means of a scanning electron microscope (SEM) consists in scanning across an angle-lapped surface of a P-N junction and measuring the resultant short circuit current I sub sc as a function of beam position. A detailed analysis of the I sub sc originating from this configuration is presented. It is found that, for a point source excitation, the I sub sc depends very simply on x, the variable distance between the surface and the junction edge. The expression for the I sub sc of a planar junction device is well known. If d, the constant distance between the plane of the surface of the semiconductor and the junction edge in the expression for the I of a planar junction is merely replaced by x, the variable distance of the corresponding angle-lapped junction, an expression results which is correct to within a small fraction of a percent as long as the angle between the surfaces, 2 theta sub 1, is smaller than 10 deg.

  13. Global analysis of isospin dependent microscopic nucleon-nucleus optical potentials in a Dirac-Brueckner-Hartree-Fock approach

    Xu, Ruirui; Ma, Zhongyu; Zhang, Yue; Tian, Yuan; van Dalen, E. N. E.; Müther, H.


    Background: For the study of exotic nuclei it is important to have an optical model potential that is reliable not only for stable nuclei but can also be extrapolated to nuclear systems with exotic numbers of protons and neutrons. An efficient way to obtain such a potential is to develop a microscopic optical potential (MOP) based on a fundamental theory with a minimal number of free parameters, which are adjusted to describe stable nuclei all over the nuclide chart. Purpose: The choice adopted in the present work is to develop the MOP within a relativistic scheme which provides a natural and consistent relation between the spin-orbit part and the central part of the potential. The Dirac-Brueckner-Hartree-Fock (DBHF) approach provides such a microscopic relativistic scheme, which is based on a realistic nucleon-nucleon interaction and reproduces the saturation properties of symmetric nuclear matter without any adjustable parameter. Its solution using the projection technique within the subtracted T -matrix representation provides a reliable extension to asymmetric nuclear matter, which is important to describe the features of isospin asymmetric nuclei. The present work performs a global analysis of the isospin dependent nucleon-nucleus MOP based on the DBHF calculation in symmetric and asymmetric nuclear matter. Methods: The DBHF approach is used to evaluate the relativistic structure of the nucleon self-energies in nuclear matter at various densities and asymmetries. The Schrödinger equivalent potentials of finite nuclei are derived from these Dirac components by a local density approximation (LDA). The density distributions of finite nuclei are taken from the Hartree-Fock-Bogoliubov approach with Gogny D1S force. An improved LDA approach (ILDA) is employed to get a better prediction of the scattering observables. A χ2 assessment system based on the global simulated annealing algorithm is developed to optimize the very few free components in this study. Results

  14. Laser light scan analysis of the "anticonvulsant face".

    Orup, H Ivan; Deutsch, Curtis K; Holmes, Lewis B


    The "anticonvulsant face," with a short nose, broad nasal bridge, epicanthal folds, and wide mouth, was described in the 1970s in children who had been exposed during pregnancy to the anticonvulsant drugs phenytoin and phenobarbital. The laser light scan makes it possible to establish three-dimensional positions of physical features and to determine more objectively the changes in the size and shape of the affected soft tissues of the faces of children exposed to these anticonvulsant drugs during pregnancy. Thirteen individuals, exposed throughout pregnancy to phenytoin as either monotherapy or polytherapy, were identified in a previous analysis as having significant changes in their craniofacial features based on measurements of cephalometric radiographs. Those changes were associated with midface hypoplasia and a short nose, features of the "anticonvulsant face." The soft tissues of their faces have been evaluated with laser light scans. The notable changes in soft tissues identified by laser light scans were a wide philtrum (cph-cph), narrow mouth (ch-ch), short nasal bridge (n-prn), shortened nose height (n-sn), and flattened orbits (orbital protrusion index). This analysis of the facial features of phenytoin-exposed individuals, selected because of changes in their craniofacial bony structures, showed that there were several significant changes, two of which, widening of the philtrum and a small mouth, have not been described previously as part of this phenotype. © 2014 Wiley Periodicals, Inc.

  15. Influence of Using Clinical Microscope as Auxiliary to Perform Mechanical Cleaning of Post Space: A Bond Strength Analysis.

    Ferreira, Ricardo; Prado, Maíra; de Jesus Soares, Adriana; Zaia, Alexandre Augusto; de Souza-Filho, Francisco José


    The aim of the present study was to evaluate the influence of using a clinical microscope while performing mechanical cleaning of post space walls on the bond strength of a fiberglass post to dentin. Forty-five bovine roots were used. After preparation, roots were filled using gutta-percha and Pulp Canal Sealer (SybronEndo, Orange, CA). Subsequently, for post space preparation, the roots were divided into 3 groups: control (only heat condenser + specific bur of the post system); cleaning without a microscope, mechanical cleaning (after the procedure described in the control group, round burs were used to improve cleaning); and cleaning with a microscope, mechanical cleaning performed with round burs visualized under a clinical microscope. Then, fiberglass posts were cemented. The roots were prepared and evaluated by the push-out test. Data were analyzed using Kruskal-Wallis and Student-Newman-Keuls tests (P microscope (cervical 1.66 ± 2.3, middle 0.65 ± 1.1, apical 0.79 ± 1.2, and total1.04 ± 1.7), and cleaning with a microscope (cervical 3.26 ± 2.8, middle 1.97 ± 3.5, apical 1.85 ± 4.1, and total 2.37 ± 3.5). In the cleaning with a microscope group, the bond strength values were significantly higher than those in the other groups. In all groups, the main failure pattern was adhesive between cement and dentin. The use of a clinical microscope while performing mechanical cleaning during post space preparation improved the bond strength of a fiberglass post to dentin. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis

    Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J


    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...

  17. X-ray microanalysis with transition edge sensors. The future of material analysis with scanning electron microscopes

    Hollerith, C.


    In current experiments and technical applications the demand for new and advanced concepts for the detection of radiation and particle is increasing. Low temperature detectors such as Transition Edge Sensors (TES) have been developed as ultrahigh-resolution radiation and particle detectors offering advantages in manifold applications. They were designed primarily for astrophysical experiments such as the dark matter search. In material analysis they have been introduced to revolutionize mass spectroscopy of biological molecules and Energy Dispersive X-ray Spectroscopy (EDS). EDS is the determination of the elemental constitution of samples in scanning electron microscopes (SEMs) with characteristic X-ray radiation excited by the electron beam. The use of TES detectors improves the EDS analysis of small volumes such as particles or thin layers. This is especially important for the semiconductor industry because of the continual shrinking of device size. Current structure sizes of 65 nm are already demanding new approaches in analytic methodology. In this thesis the introduction and improvement of a fully automated TES detector system in the industrial environment of a semiconductor failure analysis lab is described. This system, marketed under the trade name of 'Polaris' by the manufacturer, is based on a mechanical pulse tube cooler in combination with an adiabatic demagnetization refrigerator (ADR) for cooling the TES detector to its operating temperature. Several large improvements had to be made to the system during the total system integration. The energy resolution could be improved significantly thus enabling a better peak separation and the measurement of chemical shifts. Due to the small area of TES detectors compared with conventional EDS detectors the efficiency of the system proved to be too low for everyday use. A polycapillary X-ray lens was added to the system in order to solve this problem. The application of the lens, however, brought its

  18. Light

    Ditchburn, R W


    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  19. Non-linear analysis in Light Water Reactor design

    Rashid, Y.R.; Sharabi, M.N.; Nickell, R.E.; Esztergar, E.P.; Jones, J.W.


    The results obtained from a scoping study sponsored by the US Department of Energy (DOE) under the Light Water Reactor (LWR) Safety Technology Program at Sandia National Laboratories are presented. Basically, this project calls for the examination of the hypothesis that the use of nonlinear analysis methods in the design of LWR systems and components of interest include such items as: the reactor vessel, vessel internals, nozzles and penetrations, component support structures, and containment structures. Piping systems are excluded because they are being addressed by a separate study. Essentially, the findings were that nonlinear analysis methods are beneficial to LWR design from a technical point of view. However, the costs needed to implement these methods are the roadblock to readily adopting them. In this sense, a cost-benefit type of analysis must be made on the various topics identified by these studies and priorities must be established. This document is the complete report by ANATECH International Corporation.

  20. Retrospective analysis of a concurrent series of microscopic versus endoscopic transsphenoidal surgeries for Knosp Grades 0-2 nonfunctioning pituitary macroadenomas at a single institution.

    Dallapiazza, Robert; Bond, Aaron E; Grober, Yuval; Louis, Robert G; Payne, Spencer C; Oldfield, Edward H; Jane, John A


    The object of this study was to compare surgical outcomes and complications in a contemporaneous series of patients undergoing either microscopic or endoscopic transsphenoidal surgery for nonfunctioning pituitary macroadenomas without imaging evidence of cavernous sinus invasion. This is a retrospective analysis of a prospectively collected database from a single institution. Data were collected from patients whose surgery had occurred in the period from June 2010 to January 2013. Patients who underwent microscopic or endoscopic surgery for Knosp Grade 0, 1, or 2 nonfunctioning pituitary macroadenomas were included in the study. Patients who had clinically secreting or Knosp Grade 3 or 4 tumors and patients who were undergoing revision surgery were excluded from analysis. Eligible patient records were analyzed for outcomes and complications. Statistical analyses were performed on tumor volume, intraoperative factors, postoperative complications, and degree of resection on 1-year postoperative MRI. The results were used to compare the outcomes after microscopic and endoscopic approaches. Forty-three patients underwent microscopic transsphenoidal surgery, and 56 underwent endoscopic transsphenoidal surgery. There were no statistical differences in the intraoperative extent of resection or endocrinological complications. There were significantly more intraoperative CSF leaks in the endoscopic group (58% vs 16%); however, there was no difference in the incidence of postoperative CSF rhinorrhea (12% microscopic vs 7% endoscopic). Length of hospitalization was significantly shorter in patients undergoing an endoscopic approach (3.0 days vs 2.4 days). Two-month follow-up imaging was available in 95% of patients, and 75% of patients had 1-year follow-up imaging. At 2 months postprocedure, there was no evidence of residual tumor in 79% (31 of 39) and 85% (47 of 55) of patients in the microscopic and endoscopic groups, respectively. At 1 year postprocedure, 83% (25 of 30) of

  1. 人氟斑牙釉质表面结构及漂白后改变的电镜观察%A Study of the Enamel Surface Morphology and Morphologic Changes after Cold Light Whitening through Scanning Electron Microscope

    张娟; 邓婧; 张慧; 潘克清


    Objective:At present,internal and external research in dental fluorosis is mainly concentrates on the epidemiological investigation and clinical efficacy analysis.However,the extent of cold light whitening after the enamel surface demineralization is very rarely reported.The purpose of this study was to observe the microscopic structure of different degrees of human dental fluorosis,to explore the effect of cold light whitening on fluorosis enamel surface,and to explore cold light whitening safety of the treatment of severe dental fluorosis.Methods:10 complete normal teeth and 50 various types of dental fluorosis without decay were selected as specimens in this experiment.All specimens were chosen from the typical buccal regional.Dental fluorosis specimens were divided into mild,moderate and severe according to the Dean's classification and normal teeth were used as the control group.Each group was randomly divided into four sub-groups:Group A:no treatment; Group B:etching enamel surface; Group C:etching enamel profile; Group D:cold light whitening enamel surface.We observed the morphology of specimens by scanning electron microscopy.Results:Enamel column gap of mild fluorosis widened with small amount of crystal disordered arrangement and grain gap widened.Enamel surface of severe fluorosis were uneven,which appeared as crater or honeycomb.The outline of enamel column was unclear,besides,crystals arranged in disorder or even disappear.Moderate fluorosis was in the between.After cold light whitening,enamel surface of all teeth showed no significant change under low magnification and scattered shallow pits under high magnification.Moreover,moderate and severe fluorosis were also accompanied by a large number of miliary holes.Conclusion:With the aggravation of the severity of dental fluorosis,the enamel surface was damaged severity.Result displayed that cold light whitening can cause enamel surface demineralization,which was more serious in dental fluorosis

  2. Light Curve and Orbital Period Analysis of VX Lac

    Yılmaz, M.; Nelson, R. H.; Şenavcı, H. V.; İzci, D.; Özavcı, İ.; Gümüş, D.


    In this study, we performed simultaneously light curve and radial velocity, and also period analyses of the eclipsing binary system VX Lac. Four color (BVRI) light curves of the system were analysed using the W-D code. The results imply that VX Lac is a classic Algol-type binary with a mass ratio of q=0.27, of which the less massive secondary component fills its Roche lobe. The orbital period behaviour of the system was analysed by assuming the light time effect (LITE) from a third body. The O-C analysis yielded a mass transfer rate of dM/dt=1.86×10-8Mȯyr-1 and the minimal mass of the third body to be M3=0.31Mȯ. The residuals from mass transfer and the third body were also analysed because another cyclic variation is seen in O-C diagram. This periodic variation was examined under the hypotheses of stellar magnetic activity and fourth body.

  3. Performance Analysis of Visible Light Communication Using CMOS Sensors

    Trong-Hop Do


    Full Text Available This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR, is formulated. Finally, a simulation is conducted to verify the analysis.

  4. Microscopic Halftone Image Segmentation

    WANG Yong-gang; YANG Jie; DING Yong-sheng


    Microscopic halftone image recognition and analysis can provide quantitative evidence for printing quality control and fault diagnosis of printing devices, while halftone image segmentation is one of the significant steps during the procedure. Automatic segmentation on microscopic dots by the aid of the Fuzzy C-Means (FCM) method that takes account of the fuzziness of halftone image and utilizes its color information adequately is realized. Then some examples show the technique effective and simple with better performance of noise immunity than some usual methods. In addition, the segmentation results obtained by the FCM in different color spaces are compared, which indicates that the method using the FCM in the f1f2f3 color space is superior to the rest.

  5. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Conan O' Rourke; Yutao Zhou


    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This final report summarizes the experimental procedure and results of all cycles (Cycles 1 through 8) of PEARL program from the beginning of year 2000 to the end of 2007, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. In each cycle of PEARL program, PEARL Board selects a list of Compact Fluorescent Lamp (CFL) and Residential Lighting Fixture (RLF) models that are Energy Star qualified. In Cycle 5, Cycle 7, and Cycle 8, no fixture models were selected. After that PEARL sponsors procure product samples for each selected model from different stores and locations in the retail market and send them to LRC for testing. LRC then receive and select the samples, and test them against Energy Star specifications. After the testing LRC analyze and report the results to PEARL Board. Totally 185 models of CFL and 52 models of RLF were tested in PEARL program. Along with the evolution of the Energy Star specifications from year 2000 to 2003, parameters that were required by Energy Star changed during the eight years of PEARL program. The testing parameters and number of samples tested in PEARL program also changed during this time. For example, in Cycle 1, three samples of each models were tested

  6. Microscopic analysis of the iliofemoral and ischiofemoral ligaments in the hip joint: collagen fiber direction and crimp distribution.

    Sato, Kaori; Uchiyama, Eiichi; Katayose, Masaki; Fujimiya, Mineko


    Since no previous studies have described the functional significance of the iliofemoral and ischiofemoral ligaments on the basis of microscopic analyses, we examined the direction of collagen fiber alignment and crimp distribution of the collagen fibers in sections cut in different directions. Polarized microscopic images of sections along the longitudinal (L) and transverse (T) planes of each ligament were obtained from 20 cadavers (8 males and 12 females, age at death 81.7 ± 9.4 years old). Results showed that the microscopic direction of collagen fibers in the iliofemoral ligament was parallel to the macroscopic direction, suggesting that this ligament may play a part in restricting extension of the hip joint. In contrast, the microscopic direction of collagen fibers in the ischiofemoral ligament was not parallel to the macroscopic direction, suggesting that this ligament may contribute not only to the restriction of medial rotation but also retstriction of flexion of the hip joint. From the low density of the crimp distribution in the L plane, the iliofemoral ligament may contribute to stability of the hip joint in the standing position in the living body. In conclusion, the microscopic observations of the direction of collagen fibers as well as the crimp distribution shown in the present study provide a better understanding of the functional significance of the iliofemoral and ischiofemoral ligaments.

  7. Further analysis of assessments of the coefficient of variation of corneal endothelial cell areas from specular microscopic images.

    Doughty, Michael J; Aakre, Bente Monica


    The aim of this study was to compare two methods of assessments of the coefficient of variation (COV) of endothelial cell area. A single image (Topcon SP-2000P specular microscope) was obtained from the central region of the corneal endothelium of 45 healthy white (Norwegian) individuals, aged from 24 to 43 years and without a history of major eye disease or surgery. The image file was printed to A3-size, the cell-cell boundaries marked manually and the areas of the cells measured with a digitiser pad. The same image file was independently processed by the semi-automated Topcon IMAGEnet system. From either method, the cell area data from 100 contiguous cells approximately in the middle portion of the images were used to calculate the average cell area (AVG), the coefficient of variation (COV) on the cell areas and the endothelial cell density (ECD). Both methods produced similar AVG and ECD values that were not statistically different (p >or= 0.180). The SD values on the cell areas increased in relation to the AVG values (Pearson's r >or= 0.557). The resultant COV values were only marginally higher with the manual method (27.8 versus. 26.3 per cent) but the limits of agreement (LoA) for the COV values were rather large at -4.9 to +7.9 per cent. A semi-automated image analysis system can be used to generate COV data for the corneal endothelium similar to those of a manual method. The limits of agreement between the methods are substantial and this probably reflects the extreme sensitivity of the COV calculation to even a few different cell area values. This poor agreement needs to be considered in any comparative studies.

  8. In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach.

    Wang, Huhu; Ding, Shijie; Wang, Guangyu; Xu, Xinglian; Zhou, Guanghong


    Salmonella biofilm on food-contact surfaces present on food processing facilities may serve as a source of cross-contamination. In our work, biofilm formation by multi-strains of meat-borne Salmonella incubated at 20 °C, as well as the composition and distribution of extracellular polymeric substances (EPS), were investigated in situ by combining confocal laser scanning microscopy (CLSM), scanning electron microscope (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. A standard laboratory culture medium (tryptic soy broth, TSB) was used and compared with an actual meat substrate (meat thawing-loss broth, MTLB). The results indicated that Salmonella grown in both media were able to form biofilms on stainless steel surfaces via building a three-dimensional structure with multilayers of cells. Although the number of biofilm cells grown in MTLB was less than that in TSB, the cell numbers in MTLB was adequate to form a steady and mature biofilm. Salmonella grown in MTLB showed "cloud-shaped" morphology in the mature biofilm, whereas when grown in TSB appeared "reticular-shaped". The ATR-FTIR and Raman analysis revealed a completely different chemical composition between biofilms and the corresponding planktonic cells, and some important differences in biofilms grown in MTLB and in TSB. Importantly, our findings suggested that the progress towards a mature Salmonella biofilm on stainless steel surfaces may be associated with the production of the EPS matrix, mainly consisting of polysaccharides and proteins, which may serve as useful markers of biofilm formation. Our work indicated that a combination of these non-destructive techniques provided new insights into the formation of Salmonella biofilm matrix. © 2013.

  9. Microscopical and chemical surface characterization of CAD/CAM zircona abutments after different cleaning procedures. A qualitative analysis.

    Gehrke, Peter; Tabellion, Astrid; Fischer, Carsten


    To describe and characterize the surface topography and cleanliness of CAD/CAM manufactured zirconia abutments after steaming and ultrasonic cleaning. A total of 12 ceramic CAD/CAM implant abutments of various manufacturers were produced and randomly divided into two groups of six samples each (control and test group). Four two-piece hybrid abutments and two one-piece abutments made of zirconium-dioxide were assessed per each group. In the control group, cleaning by steam was performed. The test group underwent an ultrasonic cleaning procedure with acetone, ethyl alcohol and antibacterial solution. Groups were subjected to scanning electron microscope (SEM) analysis and Energy-dispersive X-ray spectroscopy (EDX) to verify and characterize contaminant chemical characterization non-quantitatively. All zirconia CAD/CAM abutments in the present study displayed production-induced wear particles, debris as well as organic and inorganic contaminants. The abutments of the test group showed reduction of surface contamination after undergoing an ultrasonic cleaning procedure. However, an absolute removal of pollutants could not be achieved. The presence of debris on the transmucosal surface of CAD/CAM zirconia abutments of various manufacturers was confirmed. Within the limits of the study design, the results suggest that a defined ultrasonic cleaning process can be advantageously employed to reduce such debris, thus, supposedly enhancing soft tissue healing. Although the adverse long-term influence of abutment contamination on the biological stability of peri-implant tissues has been evidenced, a standardized and validated polishing and cleaning protocol still has to be implemented.

  10. Cell type classifiers for breast cancer microscopic images based on fractal dimension texture analysis of image color layers.

    Jitaree, Sirinapa; Phinyomark, Angkoon; Boonyaphiphat, Pleumjit; Phukpattaranont, Pornchai


    Having a classifier of cell types in a breast cancer microscopic image (BCMI), obtained with immunohistochemical staining, is required as part of a computer-aided system that counts the cancer cells in such BCMI. Such quantitation by cell counting is very useful in supporting decisions and planning of the medical treatment of breast cancer. This study proposes and evaluates features based on texture analysis by fractal dimension (FD), for the classification of histological structures in a BCMI into either cancer cells or non-cancer cells. The cancer cells include positive cells (PC) and negative cells (NC), while the normal cells comprise stromal cells (SC) and lymphocyte cells (LC). The FD feature values were calculated with the box-counting method from binarized images, obtained by automatic thresholding with Otsu's method of the grayscale images for various color channels. A total of 12 color channels from four color spaces (RGB, CIE-L*a*b*, HSV, and YCbCr) were investigated, and the FD feature values from them were used with decision tree classifiers. The BCMI data consisted of 1,400, 1,200, and 800 images with pixel resolutions 128 × 128, 192 × 192, and 256 × 256, respectively. The best cross-validated classification accuracy was 93.87%, for distinguishing between cancer and non-cancer cells, obtained using the Cr color channel with window size 256. The results indicate that the proposed algorithm, based on fractal dimension features extracted from a color channel, performs well in the automatic classification of the histology in a BCMI. This might support accurate automatic cell counting in a computer-assisted system for breast cancer diagnosis.

  11. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna


    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  12. Remnant lipoprotein size distribution profiling via dynamic light scattering analysis.

    Chandra, Richa; Mellis, Birgit; Garza, Kyana; Hameed, Samee A; Jurica, James M; Hernandez, Ana V; Nguyen, Mia N; Mittal, Chandra K


    Remnant lipoproteins (RLP) are a metabolically derived subpopulation of triglyceride-rich lipoproteins (TRL) in human blood that are involved in the metabolism of dietary fats or triglycerides. RLP, the smaller and denser variants of TRL particles, are strongly correlated with cardiovascular disease (CVD) and were listed as an emerging atherogenic risk factor by the AHA in 2001. Varying analytical techniques used in clinical studies in the size determination of RLP contribute to conflicting hypotheses in regard to whether larger or smaller RLP particles contribute to CVD progression, though multiple pathways may exist. We demonstrated a unique combinatorial bioanalytical approach involving the preparative immunoseparation of RLP, and dynamic light scattering for size distribution analysis. This is a new facile and robust methodology for the size distribution analysis of RLP that in conjunction with clinical studies may reveal the mechanisms by which RLP cause CVD progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Computerized mouse pupil size measurement for pupillary light reflex analysis.

    Lu, Wei; Tan, Jinglu; Zhang, Keqing; Lei, Bo


    Accurate measurement of pupil size is essential for pupillary light reflex (PLR) analysis in clinical diagnosis and vision research. Low pupil-iris contrast, corneal reflection, artifacts and noises in infrared eye imaging pose challenges for automated pupil detection and measurement. This paper describes a computerized method for pupil detection or identification. After segmentation by a region-growing algorithm, pupils are detected by an iterative randomized Hough transform (IRHT) with an elliptical model. The IRHT iteratively suppresses the effects of extraneous structures and noise, yielding reliable measurements. Experimental results with 72 images showed a mean absolute difference of 3.84% between computerized and manual measurements. The inter-run variation for the computerized method (1.24%) was much smaller than the inter-observer variation for the manual method (7.45%), suggesting a higher level of consistency of the former. The computerized method could facilitate PLR analysis and other non-invasive functional tests that require pupil size measurements.

  14. Microscopic characteristics of burst coal seams

    Zhang, H.; Wang, C. [Shandong University of Science and Technology (China)


    Based on the analytical results of coal samples with microscope and scanning electron microscope, the paper explains the petrographic characteristics and microscopic depredation of burst coal. Quantitative analysis on the components and microstructures of the burst coal is conducted. The influence of the microscopic characteristics on coal burst is discussed. For coal seams with burst tendency, it has provided the necessary forecasting parameters. 2 refs., 1 fig., 2 tabs.

  15. LED-FISH: Fluorescence microscopy based on light emitting diodes for the molecular analysis of Her-2/neu oncogene amplification

    Vollmer Ekkehard


    Full Text Available Abstract Light emitting diodes (LED, which are available as small monochromatic light sources with characteristic features such as maximum illumination power combined with minimum energy consumption and extremely long lifespan have already proved as a highly potential low-cost alternative for specific diagnostic applications in clinical medicine such as tuberculosis fluorescence microscopy. Likewise, the most reliable evaluation of Her-2/neu (c-erbB2 gene amplification, which has been established in the last few years for routine diagnosis in clinical pathology as determinant towards Herceptin-based treatment of patients with breast cancer, is based on fluorescence in situ hybridization (FISH and corresponding high priced fluorescence equipment. In order to test the possibility to utilize the advantages of low-cost LED technology on FISH analysis of c-erbB2 gene expression for routine diagnostic purposes, the applicability of a standard bright field Carl Zeiss Axiostar Plus microscope equipped with a Fraen AFTER* LED Fluorescence Microscope Kit for the detection of Her-2/neu gene signals was compared to an advanced Nikon Eclipse 80i fluorescence microscope in combination with a conventional 100W mercury vapor lamp. Both microscopes were fitted with the same Quicam FAST CCD digital camera to unequivocally compare the quality of the captured images. C-erbB2 gene expression was analyzed in 30 different human tissue samples of primary invasive breast cancer, following formalin fixation and subsequent paraffin-embedding. The Her2/neu gene signals (green were identifiable in the tumor cells in all cases and images of equal quality were captured under almost identical conditions by 480 nm (blue LED module equipped standard Axiostar microscope as compared to conventional fluorescence microscopy. In this first attempt, these monochromatic LED elements proved in principle to be suitable for the detection of Her-2/neu gene expression by FISH. Thus, our own

  16. Mixing states of light-absorbing particles measured using a transmission electron microscope and a single-particle soot photometer in Tokyo, Japan

    Adachi, Kouji; Moteki, Nobuhiro; Kondo, Yutaka; Igarashi, Yasuhito


    Light-absorbing atmospheric aerosols such as carbonaceous particles influence the climate through absorbing sunlight. The mixing states of these aerosol particles affect their optical properties. This study examines the changes in the mixing states and abundance of strongly light absorbing carbonaceous particles by using transmission electron microscopy (TEM) and single-particle soot photometer (SP2), as well as of iron oxide particles, in Tokyo, Japan. TEM and SP2 use fundamentally different detection techniques for the same light-absorbing particles. TEM allows characterization of the morphological, chemical, and structural features of individual particles, whereas SP2 optically measures the number, size, and mixing states of black carbon (BC). A comparison of the results obtained using these two techniques indicates that the peaks of high soot (nanosphere soot (ns-soot)) concentration periods agree with those of the BC concentrations determined by SP2 and that the high Fe-bearing particle fraction periods measured by TEM agree with that of high number concentrations of iron oxide particles measured using SP2 during the first half of the observation campaign. The results also show that the changes in the ns-soot/BC mixing states primarily correlate with the air mass sources, wind speed, precipitation, and photochemical processes. Nano-sized, aggregated, iron oxide particles mixed with other particles were commonly observed by using TEM during the high iron oxide particle periods. We conclude that although further quantitative comparison between TEM and SP2 data will be needed, the morphologically and optically defined ns-soot and BC, respectively, are essentially the same substance and that their mixing states are generally consistent across the techniques.

  17. Nonlinear Time Series Analysis of White Dwarf Light Curves

    Jevtic, N.; Zelechoski, S.; Feldman, H.; Peterson, C.; Schweitzer, J.


    We use nonlinear time series analysis methods to examine the light intensity curves of white dwarf PG1351+489 obtained by the Whole Earth Telescope (WET). Though these methods were originally introduced to study chaotic systems, when a clear signature of determinism is found for the process generating an observable and it couples the active degrees of freedom of the system, then the notion of phase space provides a framework for exploring the system dynamics of nonlinear systems in general. With a pronounced single frequency, its harmonics and other frequencies of lower amplitude on a broadband background, the PG1351 light curve lends itself to the use of time delay coordinates. Our phase space reconstruction yields a triangular, toroidal three-dimensional shape. This differs from earlier results of a circular toroidal representation. We find a morphological similarity to a magnetic dynamo model developed for fast rotators that yields a union of both results: the circular phase space structure for the ascending portion of the cycle, and the triangular structure for the declining portion. The rise and fall of the dynamo cycle yield both different phase space representations and different correlation dimensions. Since PG1351 is known to have no significant fields, these results may stimulate the observation of light curves of known magnetic white dwarfs for comparison. Using other data obtained by the WET, we compare the phase space reconstruction of DB white dwarf PG1351 with that of GD 358 which has a more complex power spectrum. We also compare these results with those for PG1159. There is some general similarity between the results of the phase space reconstruction for the DB white dwarfs. As expected, the difference between the results for the DB white dwarfs and PG1159 is great.

  18. Macroscopic and microscopic spatially-resolved analysis of food contaminants and constituents using laser-ablation electrospray ionization mass spectrometry imaging

    Nielen, Michel W.F.; VAN BEEK, TERIS A.


    Laser-ablation electrospray ionization (LAESI) mass spectrometry imaging (MSI) does not require very flat surfaces, high-precision sample preparation, or the addition of matrix. Because of these features, LAESI-MSI may be the method of choice for spatially-resolved food analysis. In this work, LAESI time-of-flight MSI was investigated for macroscopic and microscopic imaging of pesticides, mycotoxins, and plant metabolites on rose leaves, orange and lemon fruit, ergot bodies, cherry tomatoes, ...

  19. Multispectral Video-Microscope Modified for Skin Diagnostics

    Rubins U.


    Full Text Available Commercial DinoLite AD413 digital microscope was modified for skin diagnostics purposes. The original LED ring (4 white and 4 ultraviolet light emitters of microscope was replaced by a custom-designed 16-LED ring module consisting of four LED groups (450, 545, 660 and 940 nm, and an onboard LED controller with USB hub was added. The video acquisition and LED switching are performed using custom-designed Matlab software which provides real-time spectral analysis of multi-spectral images and calculation of skin chromophore optical density. The developed multispectral video-microscope is mainly meant for diagnostics of skin malformations, e.g. skin cancerous lesions.

  20. Foldscope: Origami-Based Paper Microscope

    Cybulski, James S.; Clements, James; Prakash, Manu


    Here we describe an ultra-low-cost origami-based approach for large-scale manufacturing of microscopes, specifically demonstrating brightfield, darkfield, and fluorescence microscopes. Merging principles of optical design with origami enables high-volume fabrication of microscopes from 2D media. Flexure mechanisms created via folding enable a flat compact design. Structural loops in folded paper provide kinematic constraints as a means for passive self-alignment. This light, rugged instrument can survive harsh field conditions while providing a diversity of imaging capabilities, thus serving wide-ranging applications for cost-effective, portable microscopes in science and education. PMID:24940755

  1. Foldscope: origami-based paper microscope.

    James S Cybulski

    Full Text Available Here we describe an ultra-low-cost origami-based approach for large-scale manufacturing of microscopes, specifically demonstrating brightfield, darkfield, and fluorescence microscopes. Merging principles of optical design with origami enables high-volume fabrication of microscopes from 2D media. Flexure mechanisms created via folding enable a flat compact design. Structural loops in folded paper provide kinematic constraints as a means for passive self-alignment. This light, rugged instrument can survive harsh field conditions while providing a diversity of imaging capabilities, thus serving wide-ranging applications for cost-effective, portable microscopes in science and education.

  2. Foldscope: Origami-based paper microscope

    Cybulski, James; Prakash, Manu


    Here we describe an ultra-low-cost origami-based approach for large-scale manufacturing of microscopes, specifically demonstrating brightfield, darkfield, and fluorescence microscopes. Merging principles of optical design with origami enables high-volume fabrication of microscopes from 2D media. Flexure mechanisms created via folding enable a flat compact design. Structural loops in folded paper provide kinematic constraints as a means for passive self-alignment. This light, rugged instrument can survive harsh field conditions while providing a diversity of imaging capabilities, thus serving wide-ranging applications for cost-effective, portable microscopes in science and education.

  3. WASP-14 b: Transit Timing analysis of 19 light curves

    Raetz, St; Seeliger, M; Marka, C; Fernandez, M; Güver, T; Gögüs, E; Nowak, G; Vanko, M; Berndt, A; Eisenbeiss, T; Mugrauer, M; Trepl, L; Gelszinnis, J


    Although WASP-14 b is one of the most massive and densest exoplanets on a tight and eccentric orbit, it has never been a target of photometric follow-up monitoring or dedicated observing campaigns. We report on new photometric transit observations of WASP-14 b obtained within the framework of "Transit Timing Variations @ Young Exoplanet Transit Initiative" (TTV@YETI). We collected 19 light-curves of 13 individual transit events using six telescopes located in five observatories distributed in Europe and Asia. From light curve modelling, we determined the planetary, stellar, and geometrical properties of the system and found them in agreement with the values from the discovery paper. A test of the robustness of the transit times revealed that in case of a non-reproducible transit shape the uncertainties may be underestimated even with a wavelet-based error estimation methods. For the timing analysis we included two publicly available transit times from 2007 and 2009. The long observation period of seven years ...

  4. Sulfide silver architectonics of rat, cat, and guinea pig spinal cord. A light microscopic study with Timm's method for demonstration of heavy metals

    Schroder, H D


    The distribution of heavy metals in the spinal cord of the cat, rat, and guinea pig has been studied histochemically with Timm's sulfide silver method. There was considerable variation in the degree of staining of the neuropil. The dorsal horn showed a laminar staining pattern corresponding...... to the cytoarchitectonic lamination. Lamina I in the cat and guinea pig was light. Lamina II in all three species was heavily stained. In the rat and guinea pig it could be subdivided in a ventral and a dorsal layer, and moreover in the rat a darkly staining borderzone abutting on lamina III was present. Lamina III......, characterized by heterogeneous staining, also appeared dark, although less obvious in the guinea pig. In the ventral horn the coarser stained particles in lamina IX contrasted with the surrounding lamina. Cell staining varied between different cell groups, and within single cell populations. In the cat thoracic...

  5. Light and scanning electron microscopic study of the tongue in the estuarine dolphin (Sotalia guianensis van Bénéden, 1864).

    Guimarães, Juliana Plácido; Mari, Renata de Britto; Marigo, Juliana; Rosas, Fernando César Weber; Watanabe, Ii-Sei


    The importance of the tongue during feeding, and the limited information on the tongue of most aquatic mammals led us to investigate its morphological aspects in sexually immature and mature Sotalia guianensis. Six tongues were measured and photo-documented after their removal from the oral cavity. The samples were divided into rostral, middle, and caudal regions, and examined using light microscopy and scanning electron microscopy (S.E.M.). Sotalia guianensis tongue presented lateral grooves from the apex to the middle portion, while the anterolateral region presented marginal papillae. Histological characteristics revealed the presence of a keratinized stratified epithelium, salivary glands in the middle and caudal portions of the tongue, and filiform papillae in the caudal region. S.E.M. images revealed the presence of filiform papillae and ducts of salivary glands in the middle and caudal portions of the tongue. We can conclude that the characteristics found in this study may reflect an adaptation to changes in diet after weaning.

  6. Radiation-induced changes in the microstructure of epithelial cells of the oral mucosa: A comparative light and electron microscopic study.

    Asikainen, Pekka J; Dekker, Hannah; Sirviö, Ellinoora; Mikkonen, Jopi; Schulten, Engelbert A J M; Bloemena, Elisabeth; Koistinen, Arto; Ten Bruggenkate, Chris M; Kullaa, Arja M


    The microplicae is a typical structure of the epithelial cell surface of the oral mucosa. The cell surface is potentially of great significance, as it provides the underlying basis for the protective function of the salivary pellicle. The aim of this study was to investigate whether radiation therapy affects the surface morphology of the superficial cells of the human oral mucosa in patients who have received radiotherapy for oral cancer. Oral mucosal tissue samples from 91 patients were collected during dental implant surgery or ablative surgery. Study group 1 consisted of 28 patients who underwent dental implant surgery after radiotherapy. Group 2 consisted of five patients who developed osteoradionecrosis. Group 3 consisted of eight oral cancer patients without radiotherapy. Group 4 consisted of 50 clinically healthy subjects as controls. The samples were studied with scanning electron microscopy and compared with both light and transmission electron micrographs. Radiation therapy (RT) induces breakage and destruction in the microplicae morphology and declines the density of the microplicae surface structures. In some of the irradiated cells, the microplicae were completely vanished, especially in patients who developed osteoradionecrosis. In non-irradiated tissue, the microplicae of the superficial epithelial cells were intact in all cases. Scanning electron microscopy, in contrast to light microscopy, appears to be a useful tool to reveal the condition of superficial oral mucosal cells. In respect of the possible pathogenesis of osteoradionecrosis, the radiation-induced damage of the microplicae and its influence on the mucosal salivary pellicle is discussed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Structural Analysis of Crystalline R(+)-α-Lipoic Acid-α-cyclodextrin Complex Based on Microscopic and Spectroscopic Studies.

    Ikuta, Naoko; Endo, Takatsugu; Hosomi, Shota; Setou, Keita; Tanaka, Shiori; Ogawa, Noriko; Yamamoto, Hiromitsu; Mizukami, Tomoyuki; Arai, Shoji; Okuno, Masayuki; Takahashi, Kenji; Terao, Keiji; Matsugo, Seiichi


    R(+)-α-lipoic acid (RALA) is a naturally-occurring substance, and its protein-bound form plays significant role in the energy metabolism in the mitochondria. RALA is vulnerable to a variety of physical stimuli, including heat and UV light, which prompted us to study the stability of its complexes with cyclodextrins (CDs). In this study, we have prepared and purified a crystalline RALA-αCD complex and evaluated its properties in the solid state. The results of ¹H NMR and PXRD analyses indicated that the crystalline RALA-αCD complex is a channel type complex with a molar ratio of 2:3 (RALA:α-CD). Attenuated total reflection/Fourier transform infrared analysis of the complex showed the shift of the C=O stretching vibration of RALA due to the formation of the RALA-αCD complex. Raman spectroscopic analysis revealed the significant weakness of the S-S and C-S stretching vibrations of RALA in the RALA-αCD complex implying that the dithiolane ring of RALA is almost enclosed in glucose ring of α-CD. Extent of this effect was dependent on the direction of the excitation laser to the hexagonal morphology of the crystal. Solid-state NMR analysis allowed for the chemical shift of the C=O peak to be precisely determined. These results suggested that RALA was positioned in the α-CD cavity with its 1,2-dithiolane ring orientated perpendicular to the plane of the α-CD ring.

  8. A simple white noise analysis of neuronal light responses.

    Chichilnisky, E J


    A white noise technique is presented for estimating the response properties of spiking visual system neurons. The technique is simple, robust, efficient and well suited to simultaneous recordings from multiple neurons. It provides a complete and easily interpretable model of light responses even for neurons that display a common form of response nonlinearity that precludes classical linear systems analysis. A theoretical justification of the technique is presented that relies only on elementary linear algebra and statistics. Implementation is described with examples. The technique and the underlying model of neural responses are validated using recordings from retinal ganglion cells, and in principle are applicable to other neurons. Advantages and disadvantages of the technique relative to classical approaches are discussed.

  9. Buoyancy-corrected gravimetric analysis of lightly loaded filters.

    Rasmussen, Pat E; Gardner, H David; Niu, Jianjun


    Numerous sources of uncertainty are associated with the gravimetric analysis of lightly loaded air filter samples (cut sizes (0.056-9.9 microm). By maintaining tight controls on humidity (within 0.5% RH of control setting) throughout pre- and postweighing at each stepwise increase in RH, it was possible to quantify error due to water absorption: 45% of the total mass change due to water absorption occurred between 16 and 50% RH, and 55% occurred between 50 and 60% RH. The buoyancy corrections ranged from -3.5 to +5.8 microg in magnitude and improved relative standard deviation (RSD) from 21.3% (uncorrected) to 5.6% (corrected) for a 7.2 microg sample. It is recommended that protocols for weighing low-mass particle samples (e.g., nanoparticle samples) should include buoyancy corrections and tight temperature/humidity controls. In some cases, conditioning times longer than 24 hr may be warranted.

  10. Microscope use in clinical veterinary practice and potential implications for veterinary school curricula.

    Stewart, Sherry M; Dowers, Kristy L; Cerda, Jacey R; Schoenfeld-Tacher, Regina M; Kogan, Lori R


    Microscopy (skill of using a microscope) and the concepts of cytology (study of cells) and histology (study of tissues) are most often taught in professional veterinary medicine programs through the traditional method of glass slides and light microscopes. Several limiting factors in veterinary training programs are encouraging educators to explore innovative options for teaching microscopy skills and the concepts of cytology and histology. An anonymous online survey was administered through the Colorado Veterinary Medical Association to Colorado veterinarians working in private practice. It was designed to assess their current usage of microscopes for cytological and histological evaluation of specimens and their perceptions of microscope use in their veterinary education. The first part of the survey was answered by 183 veterinarians, with 104 indicating they had an onsite diagnostic lab. Analysis pertaining to the use of the microscope in practice and in veterinary programs was conducted on this subset. Most respondents felt the amount of time spent in the curriculum using a microscope was just right for basic microscope use and using the microscope for viewing and learning about normal and abnormal histological sections and clinical cytology. Participants felt more emphasis could be placed on clinical and diagnostic cytology. Study results suggest that practicing veterinarians frequently use microscopes for a wide variety of cytological diagnostics. However, only two respondents indicated they prepared samples for histological evaluation. Veterinary schools should consider these results against the backdrop of pressure to implement innovative teaching techniques to meet the changing needs of the profession.

  11. Analysis on electrical characteristics of high-voltage GaN-based light-emitting diodes

    Guo Wei-Ling; Yan Wei-Wei; Zhu Yan-Xu; Liu Jian-Peng; Ding Yan; Cui De-Sheng; Wu Guo-Qing


    In order to investigate their electrical characteristics,high-voltage light-emitting-diodes (HV-LEDs) each containing four cells in series are fabricated.The electrical parameters including varying voltage and parasitic effect are studied.It is shown that the ideality factors (IFs) of the HV-LEDs with different numbers of cells are 1.6,3.4,4.7,and 6.4.IF increases linearly with the number of cells increasing.Moreover,the performance of the HV-LED with failure cells is examined.The analysis indicates that the failure cell has a parallel resistance which induces the leakage of the failure cell.The series resistance of the failure cell is 76.8 Ω,while that of the normal cell is 21.3 Ω.The scanning electron microscope (SEM) image indicates that different metal layers do not contact well.It is hard to deposit the metal layers in the deep isolation trenches.The fabrication process of HV-LEDs needs to be optimized.

  12. Compact Video Microscope Imaging System Implemented in Colloid Studies

    McDowell, Mark


    Long description Photographs showing fiber-optic light source, microscope and charge-coupled discharge (CCD) camera head connected to camera body, CCD camera body feeding data to image acquisition board in PC, and Cartesian robot controlled via PC board. The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. CMIS can be used in situ with a minimum amount of user intervention. This system can scan, find areas of interest in, focus on, and acquire images automatically. Many multiple-cell experiments require microscopy for in situ observations; this is feasible only with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control. The software also has a user-friendly interface, which can be used independently of the hardware for further post-experiment analysis. CMIS has been successfully developed in the SML Laboratory at the NASA Glenn Research Center and adapted for use for colloid studies and is available for telescience experiments. The main innovations this year are an improved interface, optimized algorithms, and the ability to control conventional full-sized microscopes in addition to compact microscopes. The CMIS software-hardware interface is being integrated into our SML Analysis package, which will be a robust general-purpose image-processing package that can handle over 100 space and industrial applications.

  13. Observation of F-ERG on the light-induced retinal damage during microscopic cataract surgery%显微白内障手术光性视网膜损伤的F-ERG观察

    严良; 陆豪; 张茂英; 李海生


    Objective To observe the influence of microscopic lightillumination on the retinal function during the cataract extraction surgery.Methods Applying the standardized F-ERG recording technique to measure the amplitude of a-wave and b-wave of the maximal combined response(MCR) of F-ERG in 45 cases(45 eyes) of cataract patients pre-operation and post-operation. According to different lens opacity (as WHO classification) different operative methods (group A-PHACO, group B-ECCE)are used. The exposuring time under microscope light in group A was 25~40min(mean 31.4min±4.1min), the light intensity was moderate, whereas the exposuring time in group B was 50~75min(mean 59.8min±8.7min), the light intensity was moderate to high. Comparing different microscopic light illumination(time and intensity)with ERG response to evaluate its damage to the retinal function.Results The amplitudes of a-wave and b-wave one month post-operation are larger than those of pre-operation;The amplitude of F-ERG in group A post-operation is significantly larger than that of pre-operation (P<0.01);In group B it was somewhat larger than it was post-operation(0.01<P<0.05).Conclusions ERG response of cataract eyes will be increased in various degrees post-operation, which suggests that lens opacity can reduce the response; The longer the operation and the exposure time spent under microscope light, the lower the F-ERG response gets 1 month post-operation. We can come to the conclusion that continuous surgery under microscopic light illumination can induce the retinal light damage.%目的 观察现代囊外白内障术中显微镜光照对视网膜功能的影响。方法 应用国际标准化视网膜电流图(F-ERG)记录45例45眼白内障术前及(白内障囊外摘出)术后1moF-ERG最大反应(MCR)(a、b波振幅)。按(WHO)晶状体混浊度分级采用不同术式,A组PHACO术、B组ECCE术。A组术中实际曝光于显微镜下25~40min(31.4min±4.1min),中度光强;B组50

  14. Analysis of the hadronic light-by-light contributions to the muon g - 2

    Bijnens, Johan; Pallante, Elisabetta; Prades, Joaquim


    We calculate the hadronic light-by-light contributions to the muon g - 2. We use both 1/Nc and chiral counting to organize the calculation. Then we calculate the leading and next-to-leading order in the 1/Nc expansion low energy contributions using the Extended Nambu-Jona-Lasinio model as hadronic m

  15. Mecanoreceptores da mucosa palatina de avestruz (Struthio camelus: estudo ao microscópio de luz Mechanoreceptors of the palatine mucosa of ostrich (Struthio camelus: light microscope study

    Juliana P. Guimarães


    Full Text Available Foram estudados corpúsculos de Herbst da mucosa palatina de avestruz em nível de microscopia de luz. Os corpúsculos compõem-se de uma cápsula externa, cápsula interna e axônio central. A cápsula externa apresentou numerosas lamelas, enquanto que a cápsula interna mostrou estrutura de folhas compactas. Os corpúsculos apresentaram formato ovalado ou circular e circundado por espessos feixes de fibras colágenas. Cada lamela estava composta de uma densa rede de fibras espessas. Os axônios terminais estavam situados ao longo do eixo, terminando em um bulbo terminal. As fibras da cápsula externa, coradas por Picrosirius e examinadas no microscópio óptico sob luz polarizada, revelou a presença de fibras colágenas do tipo I em verde e na região periférica observou-se grande quantidade de fibras colágenas do tipo III. Os corpúsculos apresentaram-se envoltos por células planas e envoltos por fibras colágenas.Herbst corpuscles of the palatine mucosa of ostrich were studied by light microscopy. The corpuscles are composed of an outer core, inner core and central nerve terminal. The outer core presents numerous lamellae, while the inner core shows compact structure of cytoplasm sheets. The corpuscles are elongate or oval in shape and are surrounded by bundles of collagen fibers. Each lamella is composed of a dense network of thick fibrils. The terminal axons are located along the axis and form a bulb terminal. The fibers of external core stained by Picrosirius and examined by polarized light microscopy revealed to be green in color like type I collagen fibers, and at the periphery is a large amount of collagen type III. The corpuscles are surrounded by flat cells and dense collagen fibers at the periphery.

  16. Analysis of light guiding property in light piped based solar concentrator

    Whang, Allen J.; Chuang, Chun-Hsien, Jr.; Chen, Yi-Yung


    Recently, many researchers have tried to design a system for indoor illumination because the benefits of solar systems. A simple parabolic reflector is often used to collect sunlight but the efficiency is poor when sunlight isn't incident normally. Therefore, an accurate machine to track sun has to be used. In order to get better tolerance, a light pipe based solar concentrator (LPBSC) which comprises a parabolic reflector and a hollow reflective light pipe is proposed. We develop a math model which combines the reflection times of sunlight in light pipe and the candela data of parabolic reflector to analyze the efficiency. And then, straight light pipe is replaced by tapered light pipe to improve the tolerance. Optical simulation software, TracePro, and mathematical software, MATLAB, are used to prove the model is correct and feasible. In the results, LPBSC can improve the tolerance to get good efficiency.

  17. Microscopic analysis and histochemical observations of the medicinal root of Iostephane heterophylla (Cav.) Benth. ex Hemsl. (Asteraceae)

    Estela Sandoval; Robert A. Bye; Griselda Ríos; María Isabel Aguilar


    The roots of Iostephane heterophylla are popular in Mexican traditional medicine and as such are a good candidate to develop herbal drug preparations to be used as phytomedicine. International criteria for validation and standardization of a herbal product as phytomedicine include, among others, the integration of microscopic and histochemical characteristics of the raw material, as in this case the herbal drug, to guarantee its authenticity. As an original contribution to the knowledge of th...

  18. Optical investigation of microscopic defect distribution in semi-polar (1-101 and 11-22) InGaN light-emitting diodes

    Hafiz, Shopan; Andrade, Nicolas; Monavarian, Morteza; Izyumskaya, Natalia; Das, Saikat; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit


    Near-field scanning optical microscopy was applied to investigate the spatial variations of extended defects and their effects on the optical quality for semi-polar (1-101) and (11-22) InGaN light emitting diodes (LEDs). (1-101) and (11-22) oriented InGaN LEDs emitting at 450-470 nm were grown on patterned Si (001) 7° offcut substrates and m-sapphire substrates by means of nano-epitaxial lateral overgrowth (ELO), respectively. For (1-101) structures, the photoluminescence (PL) at 85 K from the near surface c+ wings was found to be relatively uniform and strong across the sample. However, emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations (TDs) and basal plane stacking faults (BSFs) as revealed from the local PL spectra. In case of (11-22) LED structures, near-field PL intensity correlated with the surface features and the striations along the direction parallel to the c-axis projection exposed facets where the Indium content was higher as deduced from shift in the PL peak energy.


    Li Ma; Wei Lu; Ke-long Huang; Meng-yu Gan; Chao Chen; Jun Yan


    Conductive polyaniline (Pan-M and Pan-O) doped with dodecylbenzene sulfonic acid (DBSA) was synthesized by using emulsion polymerization method in the presence of a constant magnetic field (0.4 T) and the absence of magnetic field, respectively. The effects of magnetic field on the microscopic morphology and orientation structure of Pan were generally analyzed and characterized by using transmission electron microscope (TEM), X-ray diffraction (XRD) and through the conductivity anisotropy of unit resistance of the Pan/PVA(polyvinyl alcohol) composite film. The results showed that, compared with Pan-O, Pan-M had higher crystallinity and more obvious microscopic orientation structure: its particles were arranged orderly and piled into many banded aggregates with a certain length/diameter ratio, after magnetization treatment, it demonstrated a high degree of consistent orientation; Pan-M/PVA composite films showed conductivity anisotropy after magnetization in the film-forming process. The results all fully confirmed that Pan prepared in a magnetic field condition had a high degree of orientation.

  20. Macro-microscopic morphology and phase analysis of TiAl-based alloys sheet fabricated by EB-PVD method


    TiAl-based alloys sheet with thickness of 0.3-0.4 mm as well as dimension of 150 mm×100 mm was fabricated successfully by using electron beam-physical vapor deposition(EB-PVD) method. The microscopic morphology and phase composition of specimens in various states were analyzed by atomic force microscope(AFM), scanning electron microscope(SEM)and X-ray diffractometer(XRD), respectively. The results indicate that the as-deposited TiAl-based alloys sheet has good surface quality and is composed of γ, α2 and τ phase. There is natural delamination inside the sheet, of which the microstructure is columnar crystal, and the component shows a gradient change along the normal direction of substrate. After the vacuum hot pressing treatment and subsequent homogenization treatment, the columnar crystal transforms into the coarse fully lamellar microstructure, the delamination phenomenon and τ phase disappear, α2 phase decreases obviously, and the composition tends to uniforrnization.

  1. Transmission positron microscopes

    Doyama, Masao [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan)]. E-mail:; Kogure, Yoshiaki [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan); Inoue, Miyoshi [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan); Kurihara, Toshikazu [Institute of Materials Structure Science (IMSS), High Energy Accelerator, Research Organization (KEK), Ohno 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Yoshiie, Toshimasa [Reactor Research Institute, Kyoto University, Noda, Kumatori, Osaka 590-0451 (Japan); Oshima, Ryuichiro [Research Institute for Advanced Science and Technology, Osaka Prefecture University (Japan); Matsuya, Miyuki [Electron Optics Laboratory (JEOL) Ltd., Musashino 3-1-2, Akishima 196-0021 (Japan)


    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons.

  2. Forensic Scanning Electron Microscope

    Keeley, R. H.


    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  3. Anti-methicillin Resistant Staphylococcus aureus Compound Isolation from Halophilic Bacillus amyloliquefaciens MHB1 and Determination of Its Mode of Action Using Electron Microscope and Flow Cytometry Analysis.

    Jeyanthi, Venkadapathi; Velusamy, Palaniyandi


    The aim of this study was to purify, characterize and evaluate the antibacterial activity of bioactive compound against methicillin-resistant Staphylococcus aureus (MRSA). The anti-MRSA compound was produced by a halophilic bacterial strain designated as MHB1. The MHB1 strain exhibited 99 % similarity to Bacillus amyloliquefaciens based on 16S rRNA gene analysis. The culture conditions of Bacillus amyloliquefaciens MHB1 were optimized using nutritional and environmental parameters for enhanced anti-MRSA compound production. The pure bioactive compound was isolated using silica gel column chromatography and Semi-preparative High-performance liquid chromatography (Semi-preparative HPLC). The Thin layer chromatography, Fourier transform infrared spectroscopy and proton NMR ((1)H NMR) analysis indicated the phenolic nature of the compound. The molecular mass of the purified compound was 507 Da as revealed by Liquid chromatography-mass spectrometry (LC-MS) analysis. The compound inhibited the growth of MRSA with minimum inhibitory concentration (MIC) of 62.5 µg mL(-1). MRSA bacteria exposed to 4× MIC of the compound and the cell viability was determined using flow cytometric analysis. Scanning electron microscope and Transmission electron microscope analysis was used to determine the ultrastructural changes in bacteria. This is the first report on isolation of anti-MRSA compound from halophilic B. amyloliquefaciens MHB1 and could act as a promising biocontrol agent.

  4. Techniques of advanced light microscopy and their applications to morphological analysis of human extra-embryonic membranes.

    Ockleford, C D; Mongan, L C; Hubbard, A R

    The science of light microscopy has advanced dramatically in recent years through the introduction of new technology. A brief description of scanning light microscopes, laser illumination, the confocal principle, digital imaging, and image processing reveals a number of theoretical advantages which are particularly useful in improving epifluorescence microscope images. Examples of results from several studies of human extra-embryonic membranes conducted in our laboratory show how the application of these techniques has been used to describe structures such as microtrabeculae and rivets for the first time, to map the microscopic distribution of a wide range of proteins, and to observe the activity of placental villi at the microscopic level in an environmentally controlled microscope stage. High-sensitivity detectors have permitted the "super-resolution" detection of structures smaller than the theoretically calculated limits of light microscope resolution. Rendering images in false colour is demonstrably useful in detecting subtle variations in fluorescence intensity at different intracellular sites and at different sites within tissues of fetal membranes. Processing stacks of digital images using appropriate software allows the 3-D reconstruction of suitably sized extra-embryonic membrane components. These digital images created from optical sections through the tissue are obtained non-destructively, and the relationships in space of the components are well preserved.

  5. Three-dimensional analysis of free-space light propagation based on quantum mechanical scattering theory of light

    Son, Hyeonho; Choi, Honggu; Oh, Kyunghwan


    In this paper, a free-space light propagation analysis between 3-dimensional (3-D) volumetric spaces is proposed. In contrast to conventional scalar diffraction, the proposed theory is based on quantum mechanical scattering providing a general volumetric analysis for the free-space light propagation. Assuming a plane wave light incidence, we obtained a new analytic formula for 3-D volumetric convolution, which provided a transfer function in a closed form used for caculating the electric fields at the observation points. The proposed method was consistent with the conventional numerical methods for a 2-dimensional aperture and can be further applied to exact calculation of diffraction fields from 3-D surfaces, providing a compact reconstruction algorithm for 3-D images in a computer generated hologram.

  6. Analysis of selected Kepler Mission planetary light curves

    Rhodes, M D


    We have modified the graphical user interfaced close binary system analysis program CurveFit to the form WinKepler and applied it to 16 representative planetary candidate light curves found in the NASA Exoplanet Archive (NEA) at the Caltech website, with an aim to compare different analytical approaches. WinKepler has parameter options for a realistic physical model, including gravity-brightening and structural parameters derived from the relevant Radau equation. We tested our best-fitting parameter-sets for formal determinacy and adequacy. A primary aim is to compare our parameters with those listed in the NEA. Although there are trends of agreement, small differences in the main parameter values are found in some cases, and there may be some relative bias towards a 90 degrees value for the NEA inclinations. These are assessed against realistic error estimates. Photometric variability from causes other than planetary transits affects at least 6 of the data-sets studie...

  7. Computational analysis of light scattering from collagen fiber networks

    Arifler, Dizem; Pavlova, Ina; Gillenwater, Ann; Richards-Kortum, Rebecca


    Neoplastic progression in epithelial tissues is accompanied by structural and morphological changes in the stromal collagen matrix. We used the Finite-Difference Time-Domain (FDTD) method, a popular computational technique for full-vector solution of complex problems in electromagnetics, to establish a relationship between structural properties of collagen fiber networks and light scattering, and to analyze how neoplastic changes alter stromal scattering properties. To create realistic collagen network models, we acquired optical sections from the stroma of fresh normal and neoplastic oral cavity biopsies using fluorescence confocal microscopy. These optical sections were then processed to construct three-dimensional collagen networks of different sizes as FDTD model input. Image analysis revealed that volume fraction of collagen fibers in the stroma decreases with neoplastic progression, and statistical texture features computed suggest that fibers tend to be more disconnected in neoplastic stroma. The FDTD modeling results showed that neoplastic fiber networks have smaller scattering cross-sections compared to normal networks of the same size, whereas high-angle scattering probabilities tend to be higher for neoplastic networks. Characterization of stromal scattering is expected to provide a basis to better interpret spectroscopic optical signals and to develop more reliable computational models to describe photon propagation in epithelial tissues.

  8. Impact of inflow transport approximation on light water reactor analysis

    Choi, Sooyoung; Smith, Kord; Lee, Hyun Chul; Lee, Deokjung


    The impact of the inflow transport approximation on light water reactor analysis is investigated, and it is verified that the inflow transport approximation significantly improves the accuracy of the transport and transport/diffusion solutions. A methodology for an inflow transport approximation is implemented in order to generate an accurate transport cross section. The inflow transport approximation is compared to the conventional methods, which are the consistent-PN and the outflow transport approximations. The three transport approximations are implemented in the lattice physics code STREAM, and verification is performed for various verification problems in order to investigate their effects and accuracy. From the verification, it is noted that the consistent-PN and the outflow transport approximations cause significant error in calculating the eigenvalue and the power distribution. The inflow transport approximation shows very accurate and precise results for the verification problems. The inflow transport approximation shows significant improvements not only for the high leakage problem but also for practical large core problem analyses.

  9. Design and Analysis of a Quantum Well Light Emitting Triode.

    Rajagopalan, Bharath


    We present, for the first time, the design and analysis of a novel, quantum well light emitting triode (QWLET), based on a bipolar junction transistor with a quantum well in the base. Modulation of the collector -base voltage controls the radiation emission from the quantum well by sweeping the space-charge region across the well. Detailed analysis is provided for an npn-Al_{.35 }Ga_{.65}As transistor with an undoped GaAs quantum well. Calculations indicate that modulation rates in excess of 1 GHz are possible. The switching-off process is limited by thermionic emission of majority carriers out of the well, whereas the turn -on is controlled by the recombination lifetime in the well. Our calculations reveal that the thermionic emission lifetime of these carriers is ~0.1 ns at an applied field of 5 times 10 ^4 V/cm, while the radiative lifetime is approximately 1-2 ns for carrier densities in excess of 10^{12} cm ^{-2} in the well. For material systems, or choice of parameters, where thermionic emission is insignificant, field induced tunneling of carriers out of the well is considered as a quenching mechanism. However, the tunneling lifetime is ~3.1 mus at a field of 1 times 10^5 V/cm, and therefore we propose a novel scheme to reduce this lifetime to ~3.3 ns through impurity assisted tunneling. Our calculated results also include a capture cross-section of 10^{-14} cm ^2 for carriers into the well, a B coefficient for radiative recombination of 2.4 times 10^{-10} cm ^3/s, and optical power generation of 0.15 muW per μm of length per mA of drive current and peaked at 855 nm. The voltage amplitude needed to modulate the radiation is on the order of 1 to 2 volts.

  10. Two-photon light-sheet nanoscopy by fluorescence fluctuation correlation analysis

    Chen, Xuanze; Zong, Weijian; Li, Rongqin; Zeng, Zhiping; Zhao, Jia; Xi, Peng; Chen, Liangyi; Sun, Yujie


    Advances in light-sheet microscopy have enabled the fast three-dimensional (3D) imaging of live cells and bulk specimens with low photodamage and phototoxicity. Combining light-sheet illumination with super-resolution imaging is expected to resolve subcellular structures. Actually, such kind of super-resolution light-sheet microscopy was recently demonstrated using a single-molecule localization algorithm. However, the imaging depth and temporal resolution of this method are limited owing to the requirements of precise single molecule localization and reconstruction. In this work, we present two-photon super-resolution light-sheet imaging via stochastic optical fluctuation imaging (2PLS-SOFI), which acquires high spatiotemporal resolution and excellent optical sectioning ability. 2PLS-SOFI is based on non-linear excitation of fluctuation/blinking probes using our recently developed fast two-photon three-axis digital scanned light-sheet microscope (2P3A-DSLM), which enables both deep penetration and thin sheet of light. Overall, 2PLS-SOFI demonstrates up to 3-fold spatial resolution enhancement compared with conventional two-photon light-sheet (2PLS) microscopy and about 40-fold temporal resolution enhancement compared with individual molecule localization-selective plane illumination microscopy (IML-SPIM). Therefore, 2PLS-SOFI is promising for 3D long-term, deep-tissue imaging with high spatiotemporal resolution.

  11. Degranulation, density, and distribution of mast cells in the rat thalamus: a light and electron microscopic study in basal conditions and after intracerebroventricular administration of nerve growth factor.

    Florenzano, F; Bentivoglio, M


    In the adult rat brain mast cells reside selectively in the thalamus. We investigated thalamic mast cells stained by acidic toluidine blue or pinacyanol, and with histamine immunocytochemistry, focusing on their state of activity revealed by degranulation. Mast cells exhibited perivascular prevalence and high quantitative variability, between cases and in different sections, with no asymmetry or topographical selectivity in thalamic nuclei. Pinacyanol, alone or with erythrosine, stained mast cells with higher sensitivity than toluidine blue. However, toluidine blue was highly predictive of pinacyanol staining and provided the best resolution of mast cell cytoplasmic features. Histamine immunocytochemistry labeled 61% of pinacyanol-stained mast cells. Intensely toluidine blue-stained granulated cells, as well as cells exhibiting different degrees of degranulation that paralleled lighter staining, were observed. The response of thalamic mast cells to intracerebroventricular administration of nerve growth factor (NGF) and control cytochrome-c injections was evaluated after 2, 24, and 72 hours. No obvious changes in mast cell number or distribution were found after treatment, but massive degranulation was frequently observed after NGF administration. Significant decrease of staining intensity of mast cells, supporting enhanced degranulation, was documented in NGF-treated animals by quantitative image analysis. Ultrastructural features of mast cell degranulation, with granule coalescence and matrix dissolution, were detected in untreated and NGF-treated cases. The findings point out that mast cells are active in the thalamus in basal conditions and that NGF has the potential to elicit long-lasting degranulation of thalamic mast cells in vivo, exerting a direct effect and/or priming these cells to react to endogenous stimuli.

  12. Experimental research on dual polarized laser optical feedback microscope

    MAO Wei; ZHANG Shu-lian; TAN Yi-dong


    The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to detect the two polarized lights' intensities separately with a Wollaston prism instead of to detect the whole light's intensity. The second is that both of the two orthogonally polarized lights of a birefringent dual frequency laser are fed back. The third one is that only one of the orthogonally polarized lights is fed back. The experimental results show that the modes competition between orthogonally polarized lights can be used to improve the vertical resolution of laser optical feedback microscope effectively.

  13. Monte carlo analysis of multicolour LED light engine

    Chakrabarti, Maumita; Thorseth, Anders; Jepsen, Jørgen


    light engine designed for white tuneable studio lighting. The measured sensitivities to the various factors influencing the colour uncertainty for similar system are incorporated. The method aims to provide uncertainties in the achievable chromaticity coordinates as output over the tuneable range, e...

  14. Utility of light scatter in the morphological analysis of sperm

    We were able to differentiate the morphologically diverse sperm nuclei of four animal species by using an Ortho flow cytometer to detect the forward light scatter from a red (helium-neon) laser. Cytograms depicting the axial light loss and forward red scatter signals revealed uni...

  15. High-resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope

    Mark Cronin-Golomb


    Full Text Available Atomic force microscopes have become indispensable tools for mechanical characterization of nanoscale and submicron structures. However, materials with complex geometries, such as electrospun fiber networks used for tissue scaffolds, still pose challenges due to the influence of tension and bending modulus on the response of the suspended structures. Here we report mechanical measurements on electrospun silk fibers with various treatments that allow discriminating among the different mechanisms that determine the mechanical behavior of these complex structures. In particular we were able to identify the role of tension and boundary conditions (pinned versus clamped in determining the mechanical response of electrospun silk fibers. Our findings show that high-resolution mechanical imaging with torsional harmonic atomic force microscopy provides a reliable method to investigate the mechanics of materials with complex geometries.

  16. A comprehensive analysis of a Light-UAVS design

    Olivart Llop, Josep Miquel


    The actual situation of the UAVS market is analyzed, putting special attention in the Light- UAVS segment. It is also reviewed the actual regulation of UAVS (or the lack of it) in the United States and in Europe. The MH2000, a Light-UAVS created by MAVTech s.r.l. under the directions of the Politecnico di Torino is actually being used by the non-profit association ITHACA for photogrammetric purposes. This model has been taken as an example of the Light-UAVS segment and it ha...

  17. Observations on the morphology at the transition between the peripheral and the central nervous system in the cat. V. A light microscopical and histochemical study of S1 dorsal rootlets in developing kittens.

    Berthold, C H; Carlstedt, T


    The postnatal development of the transitional region (TR) i.e. the proximal free part of a spinal rootlet that contains both PNS and CNS tissue, was studied light-microscopically in semi-thin sections and after histochemical staining according to the Marchi and OTAN methods for the demonstration of degenerating myelin and according to the Gomori method for the demonstration of acid phosphatase activity. In the newborn kitten the PNS tissue extended well up to the spinal cord surface and the rootlets lacked a transitional region. The CNS tissue entered the root during the second postnatal week, and a trasitional region was fully established at the beginning of the second month. The degree of myelination in the group of large fibres differed on the two sides of the PNS-CNS borderline: well myelinated PNS fibres were transformed into poorly myelinated or apparently unmyelinated CNS-fibres. PNS and CNS myelin sheaths of large fibres appeared to be of equal thickness in the 4 week old kitten. During the first postnatal month large amounts of Marchi positive material and a high acid phosphatase activity occurred in complex paranodes and very short internodes in the PNS compartment just distally to the PNS-CNS borderline. In the adult cat Marchi positive bodies were numerous in the CNS compartment just proximally to the PNS-CNS borderline. The results are discussed against previous studies on focal demyelination as found during the normal development of the feline peripheral nervous system.

  18. Spectroscopic Analysis of Today's Compact Fluorescent Light Bulbs

    Pluhar, Edward


    In today's consumer market, there are many different light bulbs that claim to produce `natural' light. In my research, I both quantitatively and qualitatively analyzed this claim. First, utilizing a spectroscope, I compared the spectra emitted by different brands and types of compact fluorescent light (CFL) bulbs to the spectra emitted by the Sun. Once the bulbs were quantitatively analyzed, I proceeded to qualitatively analyze them by exposing subjects to the different bulbs. The subjects were asked to rate the quality of color in different pictures illuminated by each type of CFL. From these tests, I was able to determine the ``best'' CFL bulbs, and conclude whether the health risks associated with CFL bulbs outweigh the cost savings, longevity of the bulbs, and/or quality of light benefits.

  19. Performance analysis of solar cell arrays in concentrating light intensity

    Xu Yongfeng; Li Ming; Wang Liuling; Lin Wenxian; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian


    tage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system.

  20. Towards a data-driven analysis of hadronic light-by-light scattering

    Colangelo, Gilberto; Kubis, Bastian; Procura, Massimiliano; Stoffer, Peter


    The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently analyzed in the framework of dispersion theory, providing a systematic formalism where all input quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle accessible in experiment. We briefly review the main ideas behind this framework and discuss the various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In particular, we identify processes that in the absence of data for doubly-virtual pion-photon interactions can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion transition form factor and the helicity partial waves for $\\gamma^*\\gamma^*\\to\\pi\\pi$.

  1. Light Environment Analysis and Design Strategies of Large Commercial Buildings-A Case Study in Harbin

    Hong Jin; XinXin Li


    This paper presents a comprehensive survey for the situation of light environment in large commercial building through architecture design information, subjective and objective fieldwork and online survey for three typical commercial building forms ( centralized form, covered mall shopping center, lifestyle center ) . Descriptive method is used for statistical analysis which includes the evaluation of light environmental quality, subjective assessment among daylight and artificial illumination, effect of physical characteristics on subjective assessment of light environment. Based on the results of statistical analysis, the improving strategies for light environment are proposed in terms of making use of daylight, artificial lighting design and improvement of the overall light environmental quality. The design strategies which based on the consumer needs is very important can provide help for further impact prediction on the quality of light environment.

  2. The microscopes of Antoni van Leeuwenhoek.

    van Zuylen, J


    The seventeenth-century Dutch microscopist, Antoni van Leeuwenhoek, was the first man to make a protracted study of microscopical objects, and, unlike his contemporary Robert Hooke, he viewed by transmitted light. Leeuwenhoek made over 500 of his own, curious, simple microscopes, but now only nine are known to exist. The exact nature of the lenses Leeuwenhoek made, has for long been a puzzle. The existing microscopes have now been examined in detail, and their optical characteristics measured and tabulated. It is proposed that the lens of highest magnification, x 266, was made using a special blown bubble technique.

  3. Microscope Project for Undergraduate Laboratories

    Chippendale, Rachel Kemp Alexander; Shumway, Jennifer; Tan, Amanda; Zuraw, Sarah; Ross, Jennifer L


    Optics is an important subfield of physics required for instrument design and used in a variety of other disciplines, including materials science, physics, and life sciences such as developmental biology and cell biology. It is important to educate students from a variety of disciplines and backgrounds in the basics of optics in order to train the next generation of interdisciplinary researchers and instrumentalists who will push the boundaries of discovery. In this paper, we present an experimental system developed to teach students in the basics of geometric optics, including ray and wave optics. The students learn these concepts through designing, building, and testing a home-built light microscope made from component parts. We describe the experimental equipment and basic measurements students can perform to learn principles, technique, accuracy, and resolution of measurement. Students find the magnification and test the resolution of the microscope system they build. The system is open and versatile to a...

  4. Cryogenic immersion microscope

    Le Gros, Mark; Larabell, Carolyn A.


    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  5. Analytical Electron Microscope

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  6. Analysis and Design of Phase Change Thermal Control for Light Emitting Diode (LED) Spacesuit Helmet Lights

    Bue, Grant C.; Nguyen, Hiep X.; Keller, John R.


    LED Helmet Extravehicular Activity Helmet Interchangeable Portable (LEHIP) lights for the Extravehicular Mobility Unit (EMU) have been built and tested and are currently being used on the International Space Station. A design is presented of the passive thermal control system consisting of a chamber filled with aluminum foam and wax. A thermal math model of LEHIP was built and correlated by test to show that the thermal design maintains electronic components within hot and cold limits for a 7 hour spacewalk in the most extreme EVA average environments, and do not pose a hazard to the crew or to components of the EMU.

  7. Electron-microscopic microprobe analysis on the initial stages of mineral formation in the epiphyseal growth plate.

    Barckhaus, R H; Krefting, E R; Althoff, J; Quint, P; Höhling, H J


    Dry thin sections (300-500 nm thick) of shock-frozen, freeze-dried and embedded epiphyseal growth plates from the proximal tibia of guinea pigs were cut longitudinally from the plate. Dark round bodies (phi less than 0.5 micron) were observed using the scanning transmission mode of the electron microscope initially directly in the vicinity of the chondrocytes. They gradually spread out in the direction of the metaphysis to the center of the longitudinal septum and represent most probably the matrix vesicles. By use of a microscan of 0.25 X 0.25 micron the element-concentrations of these bodies were measured. The measurements started on those bodies that could be clearly recognized and were extended to a length of 30-40 micron in the metaphyseal direction. To obtain approximate quantitative results the registered CaK alpha and PK alpha x-ray counts were directly compared with counts of fully mineralized regions, the Ca and P contents of which are known. Ca as well as p could be detected in the first visible vesicle-like structures (Ca approximately 0.2%, P approximately 0.4%) and increased steeply in the metaphyseal direction, amounting to approximately 6% Ca and 3% P. These results may lead to the conclusion that Pi becomes split from phosphate esters and transformed into the matrix vesicles already in a very early stage of enrichment. Incorporation of Ca may be coupled with this process.

  8. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for In-Situ Mars Surface Sample Analysis

    Edmunson, J.; Gaskin, J. A.; Jerman, G. A.; Harvey, R. P.; Doloboff, I. J.; Neidholdt, E. L.


    The Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Sciences (ROSES), will build upon previous miniaturized SEM designs and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. This project is a collaboration between NASA Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), electron gun and optics manufacturer Applied Physics Technologies, and small vacuum system manufacturer Creare. Dr. Ralph Harvery and environmental SEM (ESEM) inventor Dr. Gerry Danilatos serve as advisors to the team. Variable pressure SEMs allow for fine (nm-scale) resolution imaging and micron-scale chemical study of materials without sample preparation (e.g., carbon or gold coating). Charging of a sample is reduced or eliminated by the gas surrounding the sample. It is this property of ESEMs that make them ideal for locations where sample preparation is not yet feasible, such as the surface of Mars. In addition, the lack of sample preparation needed here will simplify the sample acquisition process and allow caching of the samples for future complementary payload use.

  9. Discrepancies in quantitative assessment of normal and regenerated peripheral nerve fibers between light and electron microscopy.

    Ronchi, Giulia; Jager, Sara Buskbjerg; Vaegter, Christian Bjerggaard; Raimondo, Stefania; Giacobini-Robecchi, Maria Giuseppina; Geuna, Stefano


    Quantitative estimation of myelinated nerve fiber number, together with fiber size parameters, is one of the most important tools for nerve regeneration research. In this study we used a design-based stereological method to evaluate the regenerative process in two experimental paradigms: crush injury and autograft repair. Samples were embedded in resin and morphometric counting and measurements were performed using both light and electron microscopes. Results show a significant difference in myelinated fiber number estimation between light and electron microscopes, especially after autograft repair; light microscope significantly underestimates the number of fibers because of the large number of very small axons that can be detected only in electron microscope. The analysis of the size parameters also shows a higher number of small fibers in electron microscopic analysis, especially in regenerated nerves. This comparative study shows that the integration of data obtained in light microscope with those obtained in electron microscope is necessary in revealing very small myelinated fibers that cannot be detected otherwise. Moreover, the difference in the estimation of total number of myelinated fibers between light and electron microscopes must be considered in data analysis to ensure accurate interpretation of the results. © 2014 Peripheral Nerve Society.

  10. A high-resolution multimode digital microscope system.

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry


    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.

  11. The composition analysis of coal-derived light oil

    GAO Zhen-nan; LIU Li-lin; ZHU Xiao-man; LI Wen-bo


    The composition of coal-derived light oil (IBP-220 ℃) was separated into 5 fractions by atmospheric distillation and analyzed by gas chromatography/mass spec-trometry (GC/MS). The light oil was made at 0.1 t/d coal direct liquefaction bench scale unit (BSU) at China Coal Research Institute (CCRI). Six groups of organics, including acyclic hydrocarbon, alicyclic hydrocarbon, aromatics, phenols, polynuclear aromatics and heterocyclics, were found and 80 compounds were tentatively identified in total. Alicyclic hydrocarbon is the main component of the light oil compared to other groups whether in relative mass percentage or the number of compounds in group. The predominant oxy-gen-contained compound is phenols, and the nitrogen-containing compound is pyridine.No sulfur-containing compound is detected.

  12. Optical and digital microscopic imaging techniques and applications in pathology.

    Chen, Xiaodong; Zheng, Bin; Liu, Hong


    The conventional optical microscope has been the primary tool in assisting pathological examinations. The modern digital pathology combines the power of microscopy, electronic detection, and computerized analysis. It enables cellular-, molecular-, and genetic-imaging at high efficiency and accuracy to facilitate clinical screening and diagnosis. This paper first reviews the fundamental concepts of microscopic imaging and introduces the technical features and associated clinical applications of optical microscopes, electron microscopes, scanning tunnel microscopes, and fluorescence microscopes. The interface of microscopy with digital image acquisition methods is discussed. The recent developments and future perspectives of contemporary microscopic imaging techniques such as three-dimensional and in vivo imaging are analyzed for their clinical potentials.

  13. 6061管材白道缺陷分析%Analysis of Light Strip Flaw in AA6061 Tube

    孙巍; 荣伟; 刘建生; 迟洋波; 曹振华


    The light strip flaw in AA6061 tube is investigated by optical microscope,Laser Scanning Confocal Microscope, scanning electron microscope and radiation spectrum analyzer. The light strips in 6061 tube caused by coarse compounds in chain which consists of Fe,Mn,Cr,Si. And improvement methods are put forward in this paper.%通过光学显微镜、激光共聚焦显微镜、扫描电镜、能谱等对6061管材制品中白道缺陷进行了分析,确定白道为呈链状分布的FeMnCrSi化合物聚集导致,并提出了改进措施。

  14. Mailing microscope slides

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  15. Surface imaging microscope

    Rogala, Eric W.; Bankman, Isaac N.


    The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.

  16. 一幅霉变书画的扫描电镜分析%Scanning electron microscopic analysis of a mold-contaminated painting



    利用扫描电镜分析一幅霉变清代书画样品上菌落的表面结构和形貌,明确了污染书画上的霉菌为毛壳菌。通过对纸张纤维超微结构分析显示:毛壳菌对纸张纤维结构的破坏作用不容忽视。此研究为后期文物的修复和保存提供了超微形态学依据。%The ultra⁃morphology of fungi on the contaminated sample from a Qing dynasty painting was examined by using digital microscope and scanning electron microscope. The fungi belongs to Chaetomium species. The analysis of paper fiber structure suggests that Chaetomium species have devastating effect on paper which cannot be overlooked in any cases. The results provide ultramicroscopic morphology evidence for future conservation and restoration of paintings.


    Sanders, N. E.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Betancourt, M., E-mail: [Department of Statistics, University of Warwick, Coventry CV4 7AL (United Kingdom)


    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.

  18. New approach for serological testing for leptospirosis by using detection of leptospira agglutination by flow cytometry light scatter analysis.

    Yitzhaki, S; Barnea, A; Keysary, A; Zahavy, E


    Leptospirosis is considered an important reemerging infectious disease worldwide. The standard and most widespread method for the diagnosis of leptospirosis is the microscopic agglutination test (MAT). This test is laborious and time-consuming, and the interpretation of the results is subjective. In the present work we describe an application of flow cytometry (FCM) as a tool for the serological diagnosis of leptospirosis. The analysis is based on the sensitivity of FCM to the size and shape of the bacteria analyzed by measurement of light scatter parameters: forward scatter (FSC) and side scatter (SSC). The addition of positive serum to an infecting leptospiral serovar results in a shift of the light scatter parameter to a different location with higher FSC and SSC values, indicating the formation of leptospiral aggregates. By using immunofluorescent staining, we have shown that the large particles formed are the agglutinated leptospires. Quantification of the agglutination process has been achieved by calculating an agglutination factor (Af), based on changes in the light scatter parameters measured by FCM. Af enables us to determine the specificity of the serological reaction of the patient serum with each leptospiral serovar. In this work, 27 serum samples from 18 leptospirosis patients were tested by both the MAT and the FCM techniques, in which each serum sample was tested against 13 serovars. Twenty-six human serum samples derived from patients with a variety of other defined illnesses were used as negative controls and enabled us to define the Af threshold value as < 9.3 for negative patients, while any value higher than that would be a positive result for leptospirosis. Compared to MAT, the FCM technique was found to be more specific and sensitive, especially in identifying the serogroup in the acute phase of the disease. The whole process was found to be rapid and took less than 1.5 h. Moreover, FCM analysis is objective and can be automated for the

  19. Light and scanning electron microscopic studies of Myxobolus indica n. sp. and a report of three Myxozoan (Myxosporea: Bivalvulida parasites of cultured ornamental goldfish, Carassius auratus L. for the first time in India

    Mandira Saha


    Full Text Available The ornamental fish industry is an economically viable sector in India which suffers from different ectoparasitic infestations, including the myxozoan parasites. An icthyoparasitological survey of myxozoan infections in ornamental fish farms in India revealed the presence of four myxozoan parasites belonging to the family Myxobolidae, in the genera Myxobolus and Thelohanellus. The myxozoan spores were small to large, spherical to ellipsoidal in size. The plasmodia measured 0.5–3.0 mm in diameter with disporic pansporoblasts and mature spores. During the survey the authors identified for the first time in India, three previously described species, namely, M. mehlhorni, T. nikolskii and T. batae; and one new species M. indica n. sp., all infecting the ornamental goldfish, Carassius auratus. The present study thus reports a new host, and a new locality for T. batae and M. mehlhorni. The description of T. nikolskii is the first record found in India. The spore of M. indica n. sp. measures 5.8 ± 0.2 × 4.1 ± 0.5 μm in size, having two equal shaped pyriform polar capsules measuring 4.1 ± 0.4 × 2.7 ± 0.6 μm. The results from a combination of light and scanning electron microscopic observations along with a comparison with closely related species were incorporated here. Molecular data is needed to complete the description of the new species.

  20. Line-edge quality optimization of electron beam resist for high-throughput character projection exposure utilizing atomic force microscope analysis

    Ikeno, Rimon; Mita, Yoshio; Asada, Kunihiro


    High-throughput electron-beam lithography (EBL) by character projection (CP) and variable-shaped beam (VSB) methods is a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as standard-cell logics and memory arrays. However, non-VLSI applications like MEMS and MOEMS may not fully utilize the benefits of CP method due to their wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear on such irregular edges by VSB exposure often result in intolerable edge roughness, which may degrade performances of the fabricated devices. In our former study, we proposed a general EBL methodology for such applications utilizing a combination of CP and VSB methods, and demonstrated its capabilities in electron beam (EB) shot reduction and edge-quality improvement by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and high-resolution Hydrogen Silsesquioxane resist. Both scanning electron microscope and atomic force microscope observations were used to analyze quality of the resist edge profiles to determine the influence of the control parameters used in the exposure-data preparation process. In this study, we carried out detailed analysis of the captured edge profiles utilizing Fourier analysis, and successfully distinguish the systematic undulation by the exposed CP character profiles from random roughness components. Such capability of precise edge-roughness analysis is useful to our EBL methodology to maintain both the line-edge quality and the exposure throughput by optimizing the control parameters in the layout data conversion.