WorldWideScience

Sample records for light ions present

  1. Index of light ion inertial confinement fusion publications and presentations January 1989 through December 1993

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1995-11-01

    This report lists publications and presentations that are related to inertial confinement fusion and were authored or coauthored by Sandians in the Pulsed Power Sciences Center from 1989 through 1993. The 661 publications and presentations are categorized into the following general topics: (1) reviews, (2) ion sources, (3) ion diodes, (4) plasma opening switches, (5) ion beam transport, (6) targets and deposition physics, (7) advanced driver and pulsed power technology development, (8) diagnostics, and (9) code development. Research in these areas is arranged by topic in chronological order, with the early efforts under each topic presented first. The work is also categorized alphabetically by first author. A list of acronyms, abbreviations, and definitions of use in understanding light ion inertial confinement fusion research is also included

  2. Ions and light

    CERN Document Server

    Bowers, Michael T

    2013-01-01

    Gas Phase Ion Chemistry, Volume 3: Ions and Light discusses how ions are formed by electron impact, ion-molecule reactions, or electrical discharge. This book discusses the use of light emitted by excited molecules to characterize either the chemistry that formed the excited ion, the structure of the excited ion, or both.Organized into 10 chapters, this volume begins with an overview of the extension of the classical flowing afterglow technique to include infrared and chemiluminescence and laser-induced fluorescence detection. This text then examines the experiments involving molecules that ar

  3. Intense beams of light ions

    International Nuclear Information System (INIS)

    Camarcat, Noel

    1985-01-01

    Results of experiments performed in order to accelerate intense beams of light and heavier ions are presented. The accelerating diodes are driven by existing pulsed power generators. Optimization of the generator structure is described in chapter I. Nuclear diagnostics of the accelerated light ion beams are presented in chapter II. Chapter III deals with the physics of intense charged particle beams. The models developed are applied to the calculation of the performances of the ion diodes described in the previous chapters. Chapter IV reports preliminary results on a multiply ionized carbon source driven by a 0.1 TW pulsed power generator. (author) [fr

  4. High-intensity sources for light ions

    International Nuclear Information System (INIS)

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H + and H - beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented

  5. Light ion program at BNL

    International Nuclear Information System (INIS)

    Foelsche, H.; Barton, D.S.; Thieberger, P.

    1986-08-01

    At Brookhaven National Laboratory (BNL) two existing facilities, the Tandem Van de Graaff machines and the AGS have been joined by a beam transfer line, and modified to permit acceleration of light ions (up to sulfur) to energies of 14.6 GeV/amu. Light ions supplied by a pulsed ion source are accelerated by the Tandem to an energy of about 7 to 8 MeV/amu, and are transferred directly into the AGS in the fully stripped state. In the AGS an auxiliary rf system has been added to accelerate through the low velocity region from about 7 to about 200 MeV/amu, at which point the previously existing AGS RF system takes over to complete the acceleration cycle to full energy, as it normally does for protons. Standard resonant slow extraction delivers the beam to the existing experimental beam facilities. This is the first phase of a long range program to provide facilities for relativistic heavy ion experiments with fixed targets and ultimately with colliding beams at BNL. The design objectives for this project and preliminary results obtained during the commissioning of the light ion program are described in this paper. Plans for a future second phase, a booster accelerator to permit heavy ion acceleration in the AGS, and of the third phase, a proposed Relativistic Heavy Ion Collider (RHIC) are briefly mentioned as well

  6. Data acquisition for the HILI [Heavy Ion Light Ion] detector

    International Nuclear Information System (INIS)

    Teh, K.M.; Shapira, D.; McConnell, J.W.; Kim, H.; Novotny, R.

    1987-01-01

    A large acceptance, multi-segmented detector system capable of the simultaneous detection of heavy and light ions has been constructed. The heavy ions are detected with a segmented gas ionization chamber and a multiwire proportional counter while the light ions are detected with a 192 element plastic phoswich hodoscope. Processing the large number of signals is accomplished through a combination of CAMAC and FASTBUS modules and preprocessors, and a Host minicomputer. Details of the data acquisition system and the reasons for adopting a dual standards system are discussed. In addition, a technique for processing signals from an individual hodoscope detector is presented. 4 refs., 3 figs

  7. Light ion driven inertial fusion reactor concepts

    International Nuclear Information System (INIS)

    Cook, D.L.; Sweeney, M.A.; Buttram, M.T.; Prestwich, K.R.; Moses, G.A.; peterson, R.R.; Lovell, E.G.; Englestad, R.L.

    1980-01-01

    The possibility of designing fusion reactor systems using intense beams of light ions has been investigated. concepts for beam production, transport, and focusing on target have been analyzed in light of more conservative target performance estimates. Analyses of the major criteria which govern the design of the beam-target-cavity tried indicate the feasibility of designing power systems at the few hundred megawatt (electric) level. This paper discusses light ion fusion reactor (LIFR) concepts and presents an assessment of the design limitations through quantitative examples

  8. Tailoring magnetism by light-ion irradiation

    International Nuclear Information System (INIS)

    Fassbender, J; Ravelosona, D; Samson, Y

    2004-01-01

    Owing to their reduced dimensions, the magnetic properties of ultrathin magnetic films and multilayers, e.g. magnetic anisotropies and exchange coupling, often depend strongly on the surface and interface structure. In addition, chemical composition, crystallinity, grain sizes and their distribution govern the magnetic behaviour. All these structural properties can be modified by light-ion irradiation in an energy range of 5-150 keV due to the energy loss of the ions in the solid along their trajectory. Consequently the magnetic properties can be tailored by ion irradiation. Similar effects can also be observed using Ga + ion irradiation, which is the common ion source in focused ion beam lithography. Examples of ion-induced modifications of magnetic anisotropies and exchange coupling are presented. This review is limited to radiation-induced structural changes giving rise to a modification of magnetic parameters. Ion implantation is discussed only in special cases. Due to the local nature of the interaction, magnetic patterning without affecting the surface topography becomes feasible, which may be of interest in applications. The main patterning technique is homogeneous ion irradiation through masks. Focused ion beam and ion projection lithography are usually only relevant for larger ion masses. The creation of magnetic feature sizes below 50 nm is shown. In contrast to topographic nanostructures the surrounding area of these nanostructures can be left ferromagnetic, leading to new phenomena at their mutual interface. Most of the material systems discussed here are important for technological applications. The main areas are magnetic data storage applications, such as hard magnetic media with a large perpendicular magnetic anisotropy or patterned media with an improved signal to noise ratio and magnetic sensor elements. It will be shown that light-ion irradiation has many advantages in the design of new material properties and in the fabrication technology of

  9. The new Sandia light ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Vizkelethy, G., E-mail: gvizkel@sandia.gov [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); Doyle, B.L. [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); McDaniel, F.L. [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); University of North Texas, Denton, TX 76203 (United States)

    2012-02-15

    The Ion Beam Laboratory of Sandia National Laboratories (SNL) was recently relocated into a brand new building. The 6 MV High Voltage Engineering (HVE) tandem accelerator (hosting the heavy ion microbeam and several analytical beam lines) and the 350 kV HVE implanter with a nanobeam were moved to the new building. There were several new pieces of equipment acquired associated with the move, among them a new high brightness 3 MV Pelletron accelerator, a high resolution light ion microbeam, a nanoimplanter, and a transmission electron microscope (TEM) connected to the tandem accelerator. In this paper this new facility will be described, and initial results of the new microbeam will be presented.

  10. Complete fusion in light 'heavy ion' collisions

    International Nuclear Information System (INIS)

    Volant, C.; Wieleczko, J.P.

    1979-01-01

    In the last few years a large amount of data have been obtained on the complete fusion of light ions. One of the aim of these studies was to look for aspects which could not be explained by the macroscopic description of the fusion which works quite well for heavier systems. Indeed, it was suggested that for light systems the fusion could be sometimes limited by compound nucleus properties or by some particular structures in the entrance channel. In this talk new results on fusion experiments obtained by the Saclay group are presented

  11. The light-ion injector

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    In an extensive field mapping program the magnetic fields of the main coils and various pole-gap coils of the light-ion injector (SPC1) were measured. As a further test, the measured field maps were used to calculate the excitation currents through the various coils for a specific field shape. Orbit calculations, based on the electric potential fields measured is the electrolytic tank on the 3:1 scale model of the central region, made it possible to optimise the ion-source position, improve the axial focussing of the beam and specify an approximate position for the second axial. The coils for the first magnetic channel were manufactured and field measurements with the channel in position in the pole-gap have been performed. The radio-frequency system of SPC1 consists of three main sections, namely resonators, power amplifiers and the control systems. The purpose of the rf-system is to provide the accelerating voltages of up to 70 kV peak in the 8,6 to 26 MHz frequency range, which are required to accelerate the particle beams

  12. Progress toward fusion with light ions

    International Nuclear Information System (INIS)

    1980-01-01

    New results in target design, beam generation and transport, and pulse power technology have led to a program shift stressing light ion-driven inertial confinement fusion. According to present estimates, a gain ten fusion pellet will require at least one megajoule and approx. 100 TW power input. Progress in ion sources has resulted in beam power density of approx. 1 TW/cm 2 , a factor of ten increase over the last year, and cylindrical implosion experiments have been performed. Other experiments have demonstrated the ability to transport ion and electron beams with high efficiency and have confirmed numerical predictions on the properties of beam transport channels converging at a target. These developments together with improvements in pulse power technology allow us to project that the 72 beam, 100 TW Particle Beam Fusion Accelerator, PBFA-II will attain target output energy equal to stored energy in the accelerator

  13. Inertial confinement fusion with light ion beams

    International Nuclear Information System (INIS)

    VanDevender, J.P.; Cook, D.L.

    1986-01-01

    The Particle Beam Fusion Accelerator II (PBFA II) is presently under construction and is the only existing facility with the potential of igniting thermonuclear fuel in the laboratory. The accelerator will generate up to 5 megamperes of lithium ions at 30 million electron volts and will focus them onto an inertial confinement fusion (ICF) target after beam production and focusing have been optimized. Since its inception, the light ion approach to ICF has been considered the one that combines low cost, high risk, and high payoff. The beams are of such high density that their self-generated electric and magnetic fields were thought to prohibit high focal intensities. Recent advances in beam production and focusing demonstrate that these self-forces can be controlled to the degree required for ignition, break-even, and high gain experiments. ICF has been pursued primarily for its potential military applications. However, the high efficiency and cost-effectiveness of the light ion approach enhance its potential for commercial energy application as well

  14. Continuum spectra in light-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, T.; Udagawa, T. [Texas Univ., Austin (USA). Dept. of Physics; Ikegami, H.; Muraoka, M [eds.

    1980-01-01

    Recent developments in the use of multi-step direct reaction method, to fit continuum cross sections of light-ion reactions, are reviewed. There has been a long-standing difficulty in reproducing sufficiently large (p, p') continuum cross section, but it has now been all but removed. It will be discussed in some detail, how this was achieved. Analyses of very recent data on analyzing powers in the continuum of (p, p') and (p, ..cap alpha..) reactions will also be discussed. Finally, analysis of the breakup of h into d and p will be presented.

  15. A light ion four rod RFQ injector

    International Nuclear Information System (INIS)

    Schempp, A.; Ferch, M.; Klein, H.

    1987-01-01

    The four-rod RFQ has been developed in Frankfurt as an alternative solution for ion injectors. A 202 MHz resonator has been built with design parameters taken from the HERA injector (18keV-750keV, 20mA H - ). Properties of this structure are described and applications as light ion accelerator for particles from an EBIS ion source are discussed

  16. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  17. Measurement of stopping power of light ions

    International Nuclear Information System (INIS)

    Sakamoto, Naoki

    1981-01-01

    The stopping power of light ions penetrating various materials has been measured. The data of proton stopping power and the mean ionization potentials are presented. The experiments were made by using the 6.75 MeV protons from a cyclotron and the protons in the energy range from 3 to 9 MeV from a tandem Van de Graaff. The windows with and without sample-foils were rotated in front of a semiconductor detector, and the measured energy loss and the thickness of the sample foils were used to estimate the energy loss at the mean energy of protons in the samples. The analyses were made by considering the inner shell correction, Z 1 3 correction and the Bloch correction. The mean ionization potentials were derived from the data. (Kato, T.)

  18. Light ion beam transport research at NRL

    International Nuclear Information System (INIS)

    Hinshelwood, D.D.; Boller, J.R.; Cooperstein, G.

    1996-01-01

    Transport of light ion beams through low-pressure background gas is under investigation at NRL in support of the light-ion ICF program at Sandia National Laboratories. Scaling experiments and the field solver/orbit code ATHETA have been used to design and construct a focusing, extraction applied-B diode for transport experiments. An active anode source has been developed to provide a high proton fraction in the ion beam and a fast ion turn-on time. A very sensitive Zeeman diagnostic is being developed to determine the net current distribution in the beam/transport system. Both analytical and numerical techniques using several codes are being applied to transport modeling, leading to the capability of full system studies. (author). 1 tab., 5 figs., 10 refs

  19. Light ion beam transport research at NRL

    Energy Technology Data Exchange (ETDEWEB)

    Hinshelwood, D D; Boller, J R; Cooperstein, G [Naval Research Lab., Washington, DC (United States). Plasma Physics Div.; and others

    1997-12-31

    Transport of light ion beams through low-pressure background gas is under investigation at NRL in support of the light-ion ICF program at Sandia National Laboratories. Scaling experiments and the field solver/orbit code ATHETA have been used to design and construct a focusing, extraction applied-B diode for transport experiments. An active anode source has been developed to provide a high proton fraction in the ion beam and a fast ion turn-on time. A very sensitive Zeeman diagnostic is being developed to determine the net current distribution in the beam/transport system. Both analytical and numerical techniques using several codes are being applied to transport modeling, leading to the capability of full system studies. (author). 1 tab., 5 figs., 10 refs.

  20. Hybrid light emitting transistors (Presentation Recording)

    Science.gov (United States)

    Muhieddine, Khalid; Ullah, Mujeeb; Namdas, Ebinazar B.; Burn, Paul L.

    2015-10-01

    Organic light-emitting diodes (OLEDs) are well studied and established in current display applications. Light-emitting transistors (LETs) have been developed to further simplify the necessary circuitry for these applications, combining the switching capabilities of a transistor with the light emitting capabilities of an OLED. Such devices have been studied using mono- and bilayer geometries and a variety of polymers [1], small organic molecules [2] and single crystals [3] within the active layers. Current devices can often suffer from low carrier mobilities and most operate in p-type mode due to a lack of suitable n-type organic charge carrier materials. Hybrid light-emitting transistors (HLETs) are a logical step to improve device performance by harnessing the charge carrier capabilities of inorganic semiconductors [4]. We present state of the art, all solution processed hybrid light-emitting transistors using a non-planar contact geometry [1, 5]. We will discuss HLETs comprised of an inorganic electron transport layer prepared from a sol-gel of zinc tin oxide and several organic emissive materials. The mobility of the devices is found between 1-5 cm2/Vs and they had on/off ratios of ~105. Combined with optical brightness and efficiencies of the order of 103 cd/m2 and 10-3-10-1 %, respectively, these devices are moving towards the performance required for application in displays. [1] M. Ullah, K. Tandy, S. D. Yambem, M. Aljada, P. L. Burn, P. Meredith, E. B. Namdas., Adv. Mater. 2013, 25, 53, 6213 [2] R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, M. Muccini, Nature Materials 2010, 9, 496 [3] T. Takenobu, S. Z. Bisri, T. Takahashi, M. Yahiro, C. Adachi, Y. Iwasa, Phys. Rev. Lett. 2008, 100, 066601 [4] H. Nakanotani, M. Yahiro, C. Adachi, K. Yano, Appl. Phys. Lett. 2007, 90, 262104 [5] K. Muhieddine, M. Ullah, B. N. Pal, P. Burn E. B. Namdas, Adv. Mater. 2014, 26,37, 6410

  1. Various light particles emissions accompaning light heavy ion collisions

    International Nuclear Information System (INIS)

    Billerey, R.

    1981-01-01

    In this work we have investigated light particles emission accompanying heavy-ion induced reactions. The experiments were performed at the isochronous cyclotron of the I.S.N. de Grenoble and we got in and out of plane correlations between solid state and gazeous detectors. In 14 N (100 MeV) + 27 Al we have chosen, light particles emitted in coincidence with deep inelastic fragments or evaporation residues have been measured. Likewise we observed the correlations between fragments and fragments. The particularities we found between protons and alpha emissions are to be assigned to differences in separation energies, but their relative energies and angular momenta have also a significant part [fr

  2. Light ion reaction mechanisms and nuclear structure

    International Nuclear Information System (INIS)

    Robson, B.A.

    1986-01-01

    Of the many contributions to the subject 'Light ion reaction mechanism and nuclear structure', a few are selected and reviewed which highlight the present state of the field. Some contributions to the conference dealing with nuclear interactions are briefly outlined in the second section following an introductory section. Lane model calculations are compared with data for 9 Be and results are given showing angular distributions of the cross sections, the analyzing powers and the spin-rotation parameters for p - 40 Ca. Real central potential for d + 32 s resulting from the FB-analysis are compared with frozen density folding and delta-function folding. The third section deals with reaction mechanism. Data are cited which show near-side and far-side contributions to the calculated analyzing powers in the 116 Sn(d,p) 117 Sn (11.2 - ) transition. Calculations are compared with experimental A y and -(A yy + 2)/3. Also given are measurements of the cross sections and analyzing powers of the continuum energy spectra for the 58 Ni(p,p'x), along with relations between the analyzing powers and momentum transfer. The fourth section addresses nuclear structure. Cross sections and analyzing powers measured at 22 MeV for the reaction 208 Pb(p,t) 206 Pb(3 2 + ) are cited and considered. (Nogami, K.)

  3. Focusing experiments with light ion diodes

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1978-01-01

    A review of recent experimental and theoretical work at Sandia Laboratories on magnetically insulated single stage ion diodes for inertial confinement fusion experiments is presented. The production, focusing, and numerical simulation of a 0.5 TW annular proton beam using the Proto I dual transmission line generator is described. The modular magnetically insulated ion diode for the Hydra generator is also described along with recent experimental results. A brief description of how an array of modular diodes similar to the Hydra magnetically insulated diode could be used on the EBFA I generator for breakeven fusion experiments is presented

  4. Light-ion spectroscopy with exotic targets

    International Nuclear Information System (INIS)

    Struble, G.L.; Lanier, R.G.

    1992-01-01

    Understanding the rich and diverse aspects underlying the physics of nuclear structure requires a variety of experimental techniques. In our laboratory, we have concentrated on experimental techniques using light-ion probes and isotopes that are technically difficult to fabricate into targets. In particular, our studies of p-, d-, and t-induced nuclear reactions on the radioactive targets of 152,154 Eu and 148 Gd have illuminated some very specific and very interesting features of nuclear structure near the N = 89 shape-transition region

  5. Light-ion beam for microelectronic applications

    International Nuclear Information System (INIS)

    Hirsch, L.; Tardy, P.; Wantz, G.; Huby, N.; Moretto, P.; Serani, L.; Natali, F.; Damilano, B.; Duboz, J.Y.; Reverchon, J.L.

    2005-01-01

    In this paper we describe the structure and the composition of (Al,Ga)N/GaN Bragg reflectors obtained from Rutherford backscattering spectroscopy. Bragg reflectors constitute a part of blue (λ = 450 nm) resonant cavity light emitting diodes. To improve the measurement accuracy, three tilt angles have been used (10 deg. , 25 deg. and 50 deg. ). In a second part of the paper, ion beam induced charges study has been carried out, with a 2 MeV 4 He + micro-beam, on metal-semiconductor-metal UV photodetectors. Results have been taken into account for the design of the photodetector electrodes

  6. Light Ion Biomedical Research Accelerator LIBRA

    International Nuclear Information System (INIS)

    Gough, R.A.

    1987-01-01

    LIBRA is a concept to place a light-ion, charged-particle facility in a hospital environment, and to dedicate it to applications in biology and medicine. There are two aspects of the program envisaged for LIBRA: a basic research effort coupled with a program in clinical applications of accelerated charged particles. The operational environment to be provided for LIBRA is one in which both of these components can coexist and flourish, and one that will promote the transfer of technology and knowledge from one to the other. In order to further investigate the prospects for a Light Ion Biomedical Research Accelerator (LIBRA), discussions are underway with the Merritt Peralta Medical Center MPMC) in Oakland CA, and the University of California at San Francisco (UCSF). In this paper, a brief discussion of the technical requirements for such a facility is given, together with an outline of the accelerator technology required. While still in a preliminary stage, it is possible nevertheless to develop an adequate working description of the type, size, performance and cost of the accelerator facilities required to meet the preliminary goals for LIBRA

  7. The Light Ion Biomedical Research Accelerator (LIBRA)

    International Nuclear Information System (INIS)

    Gough, R.A.

    1987-03-01

    LIBRA is a concept to place a light-ion, charged-particle facility in a hospital environment, and to dedicate it to applications in biology and medicine. There are two aspects of the program envisaged for LIBRA: a basic research effort coupled with a program in clinical applications of accelerated charged particles. The operational environment to be provided for LIBRA is one in which both of these components can coexist and flourish, and one that will promote the transfer of technology and knowledge from one to the other. In order to further investigate the prospects for a Light Ion Biomedical Research Accelerator (LIBRA), discussions are underway with the Merritt Peralta Medical Center (MPMC) in Oakland, California, and the University of California at San Francisco (UCSF). In this paper, a brief discussion of the technical requirements for such a facility is given, together with an outline of the accelerator technology required. While still in a preliminary stage, it is possible nevertheless to develop an adequate working description of the type, size, performance and cost of the accelerator facilities required to meet the preliminary goals for LIBRA

  8. The prospect for fusion energy with light ions

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Adams, R.G.; Bailey, J.E.

    1998-01-01

    Intense ion beams may be the best option for an Inertial Fusion Energy (IFE) driver. While light ions may be the long-term pulsed power approach to IFE, the current economic climate is such that there is no urgency in developing fusion energy sources. Research on light ion beams at Sandia will be suspended at the end of this fiscal year in favor of z-pinches studying ICF target physics, high yield fusion, and stewardship issues. The authors document the status of light ion research and the understanding of the feasibility of scaling light ions to IFE

  9. Overview of Light-Ion Beam Therapy

    International Nuclear Information System (INIS)

    Chu, William T.

    2006-01-01

    In 1930, Ernest Orlando Lawrence at the University of California at Berkeley invented the cyclotron. One of his students, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80 keV using less than 1 kV on a semi-circular accelerating electrode, now called the ''dee''. Soon after, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. In 1939, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. Just before WWII, Lawrence designed a 184-inch cyclotron, but the war prevented the building of this machine. Immediately after the war ended, the Veksler-McMillan principle of phase stability was put forward, which enabled the transformation of conventional cyclotrons to successful synchrocyclotrons. When completed, the 184-Inch Synchrocyclotron produced 340-MeV protons. Following it, more modern synchrocyclotrons were built around the globe, and the synchrocyclotrons in Berkeley and Uppsala, together with the Harvard cyclotron, would perform pioneering work in treatment of human cancer using accelerated hadrons (protons and light ions). When the 184-Inch Synchrocyclotron was built, Lawrence asked Robert Wilson, one of his former graduate students, to look into the shielding requirements for of the new accelerator. Wilson soon realized that the 184-Inch would produce a copious number of protons and other light ions that had enough energy to penetrate human body, and could be used for treatment of deep-seated diseases. Realizing the advantages of delivering a larger dose in the Bragg peak when placed inside deep-seated tumors, he published in a medical journal a seminal paper on the rationale to use accelerated protons and light ions for treatment of human cancer. The precise dose localization provided by protons and light ions means lower doses to normal tissues adjacent to the treatment volume

  10. Overview of Light-Ion Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chu, William T.

    2006-03-16

    In 1930, Ernest Orlando Lawrence at the University of California at Berkeley invented the cyclotron. One of his students, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80 keV using less than 1 kV on a semi-circular accelerating electrode, now called the ''dee''. Soon after, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. In 1939, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. Just before WWII, Lawrence designed a 184-inch cyclotron, but the war prevented the building of this machine. Immediately after the war ended, the Veksler-McMillan principle of phase stability was put forward, which enabled the transformation of conventional cyclotrons to successful synchrocyclotrons. When completed, the 184-Inch Synchrocyclotron produced 340-MeV protons. Following it, more modern synchrocyclotrons were built around the globe, and the synchrocyclotrons in Berkeley and Uppsala, together with the Harvard cyclotron, would perform pioneering work in treatment of human cancer using accelerated hadrons (protons and light ions). When the 184-Inch Synchrocyclotron was built, Lawrence asked Robert Wilson, one of his former graduate students, to look into the shielding requirements for of the new accelerator. Wilson soon realized that the 184-Inch would produce a copious number of protons and other light ions that had enough energy to penetrate human body, and could be used for treatment of deep-seated diseases. Realizing the advantages of delivering a larger dose in the Bragg peak when placed inside deep-seated tumors, he published in a medical journal a seminal paper on the rationale to use accelerated protons and light ions for treatment of human cancer. The precise dose localization provided by protons and light ions means lower doses to normal tissues adjacent to the

  11. Nonelastic nuclear reactions induced by light ions with the BRIEFF code

    CERN Document Server

    Duarte, H

    2010-01-01

    The intranuclear cascade (INC) code BRIC has been extended to compute nonelastic reactions induced by light ions on target nuclei. In our approach the nucleons of the incident light ion move freely inside the mean potential of the ion in its center-of-mass frame while the center-of-mass of the ion obeys to equations of motion dependant on the mean nuclear+Coulomb potential of the target nucleus. After transformation of the positions and momenta of the nucleons of the ion into the target nucleus frame, the collision term between the nucleons of the target and of the ion is computed taking into account the partial or total breakup of the ion. For reactions induced by low binding energy systems like deuteron, the Coulomb breakup of the ion at the surface of the target nucleus is an important feature. Preliminary results of nucleon production in light ion induced reactions are presented and discussed.

  12. Photoionization of multiply charged ions at the advanced light source

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Kilcoyne, A.L.D.; Aguilar, A.; Gharaibeh, M.F.; Emmons, E.D.; Scully, S.W.J.; Phaneuf, R.A.; Muller, A.; Schippers, S.; Alvarez, I.; Cisneros, C.; Hinojosa, G.; McLaughlin, B.M.

    2004-01-01

    Photoionization of multiply charged ions is studied using the merged-beams technique at the Advanced Light Source. Absolute photoionization cross sections have been measured for a variety of ions along both isoelectronic and isonuclear sequences

  13. Update on Light-Ion Calculations

    International Nuclear Information System (INIS)

    Schultz, David R.

    2013-01-01

    During the time span of the CRP, calculations were (1) initiated extending previous work regarding elastic and transport cross sections relevant to light-species impurity-ion transport modeling, (2) completed for total and state-selective charge transfer (C 5+ , N 6+ , O 6+ , O 7+ + H; C 5+ , C 6+ , O 7+ , O 8+ + He; and C 6+ + H, H 2 ) for diagnostics such as charge exchange recombination spectroscopy, and (3) completed for excitation of atomic hydrogen by ion impact (H + , He 2+ , Be 4+ , C 6+ ) for diagnostics including beam emission spectroscopy and motional Stark effect spectroscopy. The first calculations undertaken were to continue work begun more than a decade ago providing plasma modelers with elastic total and differential cross sections, and related transport cross sections, used to model transport of hydrogen ions, atoms, and molecules as well as other species including intrinsic and extrinsic impurities. This body of work was reviewed in the course of reporting recent new calculations in a recent paper (P.S. Krstic and D.R. Schultz, Physics of Plasmas, 16, 053503 (2009)). After initial calculations for H + + O were completed, work was discontinued in light of other priorities. Charge transfer data for diagnostics provide important knowledge about the state of the plasma from the edge to the core and are therefore of significant interest to continually evaluate and improve. Further motivation for such calculations comes from recent and ongoing benchmark measurements of the total charge transfer cross section being made at Oak Ridge National Laboratory by C.C. Havener and collaborators. We have undertaken calculations using a variety of theoretical approaches, each applicable within a range of impact energies, that have led to the creation of a database of recommended state-selective and total cross sections composed of results from the various methods (MOCC, AOCC, CTMC, results from the literature) within their overlapping ranges of applicability

  14. Conceptual design of light ion beam inertia nuclear fusion reactors

    International Nuclear Information System (INIS)

    1983-07-01

    Light ion beam, inertia nuclear fusion system drew attention recently as one of the nuclear fusion systems for power reactors in the history of the research on nuclear fusion. Its beginning seemed to be the judgement that the implosion of fusion fuel pellets with light ions can be realized with the light ions which can be obtained in view of accelerator techniques. Of course, in order to generate practically usable nuclear fusion reaction by this system and maintain it, many technical difficulties must be overcome. This research was carried out for the purpose of discovering such technical problems and searching for their solution. At the time of doing the works, the following policy was adopted. Though their is the difference of fine and rough, the design of a whole reactor system is performed conformably. In order to make comparison with other reactor types and nuclear fusion systems, the design is carried out as the power plant of about one million kWe output. As the extent of the design, the works at conceptual design stage are performed to present the concept of design which satisfies the required function. Basically, the design is made from conservative standpoint. This research of design was started in 1981, and in fiscal 1982, the mutual adjustment among the design of respective parts was performed on the basis of the results in 1981, and the possible revision and new proposal were investigated. (Kako, I.)

  15. A study of light ion accelerators for cancer treatment

    International Nuclear Information System (INIS)

    Prelec, K.

    1997-07-01

    This review addresses several issues, such as possible advantages of light ion therapy compared to protons and conventional radiation, the complexity of such a system and its possible adaptation to a hospital environment, and the question of cost-effectiveness compared to other modalities for cancer treatment or to other life saving procedures. Characteristics and effects of different types of radiation on cells and organisms will be briefly described; this will include conventional radiation, protons and light ions. The status of proton and light ion cancer therapy will then be described, with more emphasis on the latter; on the basis of existing experience the criteria for the use of light ions will be listed and areas of possible medical applications suggested. Requirements and parameters of ion beams for cancer treatment will then be defined, including ion species, energy and intensity, as well as parameters of the beam when delivered to the target (scanning, time structure, energy spread). Possible accelerator designs for light ions will be considered, including linear accelerators, cyclotrons and synchrotrons and their basic features given; this will be followed by a review of existing and planned facilities for light ions. On the basis of these considerations a tentative design for a dedicated light ion facility will be suggested, a facility that would be hospital based, satisfying the clinical requirements, simple to operate and reliable, concluding with its cost-effectiveness in comparison with other modalities for treatment of cancer

  16. Light-induced ion-acoustic instability of rarefied plasma

    International Nuclear Information System (INIS)

    Krasnov, I.V.; Sizykh, D.V.

    1987-01-01

    A new method of ion-acoustic instability excitation under the effect of coherent light, resonance to ion quantum transitions on collisionless plasma, is suggested. The light-induced ion-acoustic instability (LIIAI) considered is based on the induced progressive nonequilibrium resonance particles in the field of travelling electromagnetic wave. Principal possibility to use LIIAI in high-resolution spectroscopy and in applied problems of plasma physics, related to its instability, is pointed out

  17. Present status of FLNR (JINR) ECR ion sources

    International Nuclear Information System (INIS)

    Bogomolov, S.; Efremov, A.; Loginov, V.; Lebedev, A.; Yazvitsy, N.; Bekhterev, V.; Kostukhov, Y.; Gulbekian, G.; Gikal, B.; Drobin, V.; Seleznev, V.; Seleznev, V.

    2012-01-01

    Six ECR ion sources have been operated in the Flerov Laboratory of Nuclear Reactions (JINR). Two 14 GHz ECR ion sources (ECR4M and DECRIS-2) supply various ion species for the U400 and U400M cyclotrons correspondingly for experiments on the synthesis of heavy and exotic nuclei using ion beams of stable and radioactive isotopes. The 18 GHz DECRIS-SC ion source with superconducting magnet system produces ions from Ar up to W for solid state physics experiments and polymer membrane fabrication at the IC-100 cyclotron. The third 14 GHz ion source DECRIS-4 with 'flat' minimum of the axial magnetic field is used as a stand alone machine for test experiments and also for experiments on ion modification of materials. The other two compact ECR ion sources with all permanent magnet configuration have been developed for the production of single charged ions and are used at the DRIBs installation and at the MASHA mass-spectrometer. In this paper, present status of the ion sources, recent developments and plans for modernization are reported. The paper is followed by the slides of the presentation. (authors)

  18. Molecular dynamics simulations of ion range profiles for heavy ions in light targets

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Xue, J.M. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Zhang, Y., E-mail: Zhangy1@ornl.gov [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Morris, J.R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu, Z. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Gao, Y.; Wang, Y.G.; Yan, S. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Weber, W.J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-09-01

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<{approx}25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

  19. Two-stream instability for a light ion beam-plasma system with external magnetic field

    International Nuclear Information System (INIS)

    Okada, T.; Tazawa, H.

    1992-12-01

    For inertial confinement fusion, a focused light ion beam (LIB) is required to propagate stably through a chamber to a target. We have pointed out that the applied external magnetic field is important for LIB propagation. To investigate the influence of the external magnetic field on the LIB propagation, we analysed the electrostatic dispersion relation of magnetized light ion beam-plasma system. The particle in-cell (PIC) simulation results are presented for a light ion beam-plasma system with external magnetic field. (author)

  20. Beam-optics study of the gantry beam delivery system for light-ion cancer therapy

    International Nuclear Information System (INIS)

    Pavlovic, M.

    1995-12-01

    Ion optics considerations on the granty-like beam delivery system for light-ion cancer therapy are presented. A low-angle active beam scanning in two directions is included in the preliminary gantry design. The optical properties of several gantry modifications are discussed. (orig.)

  1. Conceptual and ion-optical designs of an isocentric gantry for light-ion cancer therapy

    International Nuclear Information System (INIS)

    Vorobiev, L.G.; Weick, H.; Wollnik, H.

    1998-02-01

    Conceptual and ion-optical designs of an isocentric gantry are presented. The gantry is designed for light-ion therapy using a 6 Tm carbon beam. Its main characteristics are: 5 m overall radius, 1.4 m drift to the patient, 20x10 cm 2 treatment field, and two-direction active parallel scanning of a fine focused pencil beam. To achieve these features, the beam scanners are optimally positioned upstream the last 90 bending section consisting of two 45 sector magnets with 4 oblique field boundaries and different apertures. The gantry concept is a compromise between 'barrel' and 'conical' gantry shapes and is likely the most space-saving configuration of single-plane isocentric gantries. This new so-called 'short barrel' configuration features also small aperture quadruple lenses, low intermediate dispersion and a fully achromatic beam transport system. Its overall dimensions stay close to the size of the existing proton gantries. (orig.)

  2. Light Ion Beams for Energy Production in ADS

    Directory of Open Access Journals (Sweden)

    Paraipan Mihaela

    2018-01-01

    Full Text Available A comparative study of the energy efficiency of proton beams with an energy from 0.5 GeV to 4 GeV and light ion beams (7Li, 9Be, 11B, and 12C with energies from 0.25 AGeV to 1 AGeV in natural and enriched quasi-infinite U target is presented. The numerical results on the particle transport and interaction are obtained using the code Geant4. The following target optimization issues are addressed: the beam window dimensions, and the possibility to use a core from low Z materials. The best solution for ADS from the point of view of the energy gain and miniaturization is obtained for 7Li or 9Be beam with an energy of 0.3–0.4 AGeV and a target with Be core.

  3. Effects of UV light and chromium ions on wood flavonoids

    International Nuclear Information System (INIS)

    Molnárné Hamvas, L.; Németh, K.; Stipta, J.

    2003-01-01

    The individual and simultaneous effect of UV light and chromium ions was investigated by spectrophotometric methods on inert surfaces impregnated with quercetin or robinetin. The UV-VIS spectra of the silica gel plates impregnated with these flavonoids were modified characteristically after irradiating ultraviolet light. Even a half an hour of irradiation has caused irreversible changes in the molecule structure. A certain chemical - presumably complexation - was concluded from the change of spectral bands assigned to flavonoids when impregnated with chromic ions. Hexavalent chromium caused more complex changes in the absorption spectra. The differences in the spectra could indicate either the oxidation and decomposition of flavonoids, or some kind of coordination process and the reduction of hexavalent chromium. The simultaneous application of UV light and chromium ions caused more pronounced effects. The complexation process between chromium(III) and flavonoid was completed

  4. Light-induced modification of plant plasma membrane ion transport.

    Science.gov (United States)

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  5. Light-ion-induced multifragmentation. A fast, evolutionary process

    International Nuclear Information System (INIS)

    Viola, V.E.; Bracken, D.S.; Foxford, E.R.; Ginger, D.; Kwiatkowski, K.; Morley, K.B.; Hsi, W.C.; Wang, G.; Korteling, R.G.; Legrain, R.

    1996-09-01

    GeV light-ion-induced reactions offer a unique tool for preparing hot, dilute nuclear matter. Time evolution of nuclear multifragmentation in 3 He + nat Ag and 3 He + 197 Au reactions are investigated. Fragment-fragment correlations are studied in order to gain information on multifragmentation mechanism. (K.A.)

  6. Hydrogenic fast-ion diagnostic using Balmer-alpha light

    International Nuclear Information System (INIS)

    Heidbrink, W W; Burrell, K H; Luo, Y; Pablant, N A; Ruskov, E

    2004-01-01

    Hydrogenic fast-ion populations are common in toroidal magnetic fusion devices, especially in devices with neutral beam injection. As the fast ions orbit around the device and pass through a neutral beam, some fast ions neutralize and emit Balmer-alpha light. The intensity of this emission is weak compared with the signals from the injected neutrals, the warm (halo) neutrals and the cold edge neutrals, but, for a favourable viewing geometry, the emission is Doppler shifted away from these bright interfering signals. Signals from fast ions are detected in the DIII-D tokamak. When the electron density exceeds ∼7 x 10 19 m -3 , visible bremsstrahlung obscures the fast-ion signal. The intrinsic spatial resolution of the diagnostic is ∼5 cm for 40 keV amu -1 fast ions. The technique is well suited for diagnosis of fast-ion populations in devices with fast-ion energies (∼30 keV amu -1 ), minor radii (∼0.6 m) and plasma densities (∼ 20 m -3 ) that are similar to those of DIII-D

  7. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    Science.gov (United States)

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  8. Role of ions in the regulation of light-harvesting

    Directory of Open Access Journals (Sweden)

    Radek Kana

    2016-12-01

    Full Text Available Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer. Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl- attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids, provides an electrical field. The electrical double layer is affected by the valence of the ions and interferes with the regulation of state transitions, protein interactions, and excitation energy spillover from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching of the excited state of chlorophyll a. A triggering of non-photochemical quenching proceeds via lumen acidification and is coupled to the export of positive counter-ions (Mg2+, K+ to the stroma or/and negative ions (e.g., Cl- into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+ in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of electrical double layer, proposed by James Barber (J. Barber (1980 Biochim Biophys Acta 594:253-308 in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+ and divalent (Mg2+ ions on light-harvesting and on screening of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters.

  9. Twisted-Light-Ion Interaction: The Role of Longitudinal Fields

    Science.gov (United States)

    Quinteiro, G. F.; Schmidt-Kaler, Ferdinand; Schmiegelow, Christian T.

    2017-12-01

    The propagation of light beams is well described using the paraxial approximation, where field components along the propagation direction are usually neglected. For strongly inhomogeneous or shaped light fields, however, this approximation may fail, leading to intriguing variations of the light-matter interaction. This is the case of twisted light having opposite orbital and spin angular momenta. We compare experimental data for the excitation of a quadrupole transition in a single trapped 40Ca+ ion from Schmiegelow et al. [Nat. Commun. 7, 12998 (2016), 10.1038/ncomms12998] with a complete model where longitudinal components of the electric field are taken into account. Our model matches the experimental data and excludes by 11 standard deviations the approximation of a complete transverse field. This demonstrates the relevance of all field components for the interaction of twisted light with matter.

  10. Light ion microbeam analysis / processing system and its improvement

    International Nuclear Information System (INIS)

    Koka, Masashi; Ishii, Yasuyuki; Yamada, Naoto; Ohkubo, Takeru; Kamiya, Tomihiro; Satoh, Takahiro; Kada, Wataru; Kitamura, Akane; Iwata, Yoshihiro

    2016-03-01

    A MeV-class light ion microbeam system has been developed for micro-analysis and micro-fabrication with high spatial resolution at 3-MV single-ended accelerator in Takasaki Ion Accelerators for Advanced Radiation Application of Takasaki Advanced Radiation Research Institute, Sector of Nuclear Science Research, Japan Atomic Energy Agency. This report describes the technical improvements for the main apparatus (the accelerator, beam-transport lines, and microbeam system), and auxiliary equipments/ parts for ion beam applications such as Particle Induced X-ray/Gamma-ray Emission (PIXE/PIGE) analysis, 3-D element distribution analysis using PIXE Computed Tomography (CT), Ion Beam Induced Luminescence (IBIL) analysis, and Proton Beam Writing with the microbeam scanning, with functional outline of these apparatus and equipments/parts. (author)

  11. Status of light ion inertial fusion research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Barker, R.J.; Colombant, D.G.; Goldstein, S.A.; Meger, R.A.; Mosher, D.; Neri, J.M.; Ottinger, P.F.

    1984-01-01

    This chapter reports on the use of high-brightness proton beams, extracted from axial pinch-reflex diodes mounted on the Naval Research Laboratory (NRL) Gamble II generator, to study light ion inertial fusion. Topics covered include the modular approach, ion beam brightness studies, light-ion beam transport, final focusing, the single diode approach, the inductive storage approach, an energy loss experiment, and future plans. Analysis of a modular inertial confinement fusion (ICF) system using axial pinch-reflex diodes shows that an operational window for transport of light-ion species exists. A proof-of-principle experiment for the required final focusing cell was conducted on Gamble II. Preliminary experiments using vacuum inductive storage and plasma opening switches have demonstrated factorof-three pulse compressions, with corresponding power and voltage multiplications for pulse durations of interest to PBFA II. The stopping power of deuterons in hot plasmas was measured in other experiments. It is demonstrated that about 40% enhancement in stopping power over that in cold targets when the deuteron beam is focused on the target to about .25 MA/cm 2 . Includes 6 diagrams

  12. Intense ion beam diagnostics for light ion inertial fusion experiments on PBFA 2

    International Nuclear Information System (INIS)

    Leeper, R.J.; Stygar, W.A.; Bailey, J.E.; Baldwin, G.T.; Bloomquist, D.D.; Carlson, A.L.; Chandler, G.; Crist, C.E.; Cooper, G.; Derszon, M.S.; Dukart, R.J.; Fehl, D.L.; Hebron, D.E.; Johnson, D.J.; Kensek, R.P.; Landron, C.O.; Lee, J.R.; Lockner, T.R.; Mattson, C.R.; Matzen, M.K.; Maenchen, J.; Mehlhorn, T.A.; Mix, L.P.; Muron, D.J.; Nash, T.; Nelson, W.E.; Reyes, P.; Rockett, P.; Ruiz, C.L.; Schmidlapp, A.; Stinnett, R.W.; Sujka, B.; Wenger, D.F.

    1991-01-01

    A review of recent developments in intense ion beam diagnostics used in the light ion inertial confinement fusion (ICF) program on the PBFA-2 accelerator at Sandia National Laboratories will be presented. These developments have occurred in each of several generic classes of diagnostics, namely, imaging diagnostics, particle spectrograph diagnostics, nuclear activation, and visible spectroscopy. Critical beam parameters measured by the diagnostic include spatial profile, absolute number, species, anode plasma temperature and density, beam divergence, and beam voltage current density, and power density. A unique feature of these diagnostics is that they are capable of operating in hard (multi-Mev) X-ray (bremsstrahlung) backgrounds of some 10 10 - 10 12 rad/s. The operating principles of each diagnostic will be summarized in the paper, with examples of how the diagnostics may be integrated together to form a complete diagnostic system. The paper will close with a discussion of several near diagnostic systems that are presently being developed. 13 refs., 6 figs

  13. Present status of the ion ring compressor approach to fusion

    International Nuclear Information System (INIS)

    Fleischmann, H.H.

    1975-01-01

    A short review is given of the present research status with regard to the Ion Ring Compressor. A consideration of the reactor characteristics of this fusion scheme indicates the potential for a number of technologically and economically interesting features, in particular with respect to the high-confinement characteristics expected for such minimum-B configurations. Experimental results from the RECE-program at Cornell indicate generally good gross stability of strong electron rings, including purely collisional decay, stability against field perturbations and others. Most-recent experiments have extended the ring lifetime to more than 2 x 10 5 electron orbits. Strong electron rings have been shifted over an axial distance of up to 30 cm. Experiments with magnetic-field insulated diodes indicate ion pulses of up to 300 nsec, and field insulation of up to 800 nsec when metallic electrodes are used

  14. Light ion source studies with a magnetically insulated extraction diode

    International Nuclear Information System (INIS)

    Struckman, C.K.

    1992-01-01

    Light ion sources are currently being studied to assess their ability to drive an inertial confinement fusion reactor. The author has produced a high purity, 1MV, 300A/cm 2 lithium beam using a 200cm 2 extraction geometry, magnetically insulated ion diode. The lithium source was an AC glow discharge cleaned, LiF/Al film active anode. The active anode plasma was formed after 50KA of current was shunted through the anode film for 20ns. The stoichiometry of the resulting ion beam was 65% Li + , 20% Al +2 , and 15% H + . Without the glow discharge cleaning, the ion beam was over 55% hydrogen and only 20% Li + . At the time of the diode's design, extraction diodes were producing poor ion beams: their current efficiency was only 60-70%, and their extracted ion current was radially nonuniform. This diode was the first high efficiency extraction diode, and produced over 200KA of ions with 80-90% ion current efficiency. In addition, by varying the tilt of the applied magnetic field, it was possible to show that the ion current density could be made independent of radius. Since the author was unable to make a Li + beam with a passive anode, he installed an active anode that used an external current to vaporize a thin metal film on the anode surface. Poor beam purity was the most serious problem with active anodes. In order to remove impurities, especially the hydrogen contamination, the author cleaned the anodes with a glow discharge. Al film anodes were cleaned with a 110mA, 33W DC glow discharge, and the LiF/Al film anodes were cleaned with an equivalent AC discharge. The results obtained and a model for the mechanism behind the cleaning process are throughly discussed

  15. Predictive Models of Li-ion Battery Lifetime (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

    2014-09-01

    Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

  16. Quantum computing with trapped ions, atoms and light

    International Nuclear Information System (INIS)

    Steane, Andrew M.

    2001-01-01

    We consider experimental issues relevant to quantum computing, and discuss the best way to achieve the essential requirements of reliable quantum memory and gate operations. Nuclear spins in trapped ions or atoms are a very promising candidate for the qubits. We estimate the parameters required to couple atoms using light via cavity QED in order to achieve quantum gates. We briefly comment on recent improvements to the Cirac-Zoller method for coupling trapped ions via their vibrational degree of freedom. Error processes result in a trade-off between quantum gate speed and failure probability. A useful quantum computer does appear to be feasible using a combination of ion trap and optical methods. The best understood method to stabilize a large computer relies on quantum error correction. The essential ideas of this are discussed, and recent estimates of the noise requirements in a quantum computing device are given

  17. A method for measuring light ion reaction cross sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.

    2005-03-01

    An experimental procedure for measuring reaction cross sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross sections for five different sizes of the solid angles in steps from 99.1 to 99.8% of the total solid angle. The final reaction cross section values are obtained by extrapolation to the full solid angle

  18. Light ion irradiation for unfavorable soft tissue sarcoma

    International Nuclear Information System (INIS)

    Linstadt, D.; Castro, J.R.; Phillips, T.L.; Petti, P.L.; Collier, J.M.; Daftari, I.; Schoethaler, R.; Rayner, A.

    1990-09-01

    Between 1978 and 1989, 32 patients with unfavorable soft tissue sarcoma underwent light ion (helium, neon) irradiation with curative intent at Lawrence Berkeley Laboratory. The tumors were located in the trunk in 22 patients and head and neck in 10. Macroscopic tumor was present in 22 at the time of irradiation. Two patients had tumors apparently induced by previous therapeutic irradiation. Follow-up times for surviving patients ranged from 4 to 121 months (median 27 months). The overall 3-year actuarial local control rate was 62%; the corresponding survival rate was 50%. The 3-year actuarial control rate for patients irradiated with macroscopic tumors was 48%, while none of the patients with microscopic disease developed local recurrence (100%). The corresponding 3-year actuarial survival rates were 40% (macroscopic) and 78% (microscopic). Patients with retroperitoneal sarcoma did notably well; the local control rate and survival rate were 64% and 62%, respectively. Complications were acceptable; there were no radiation related deaths, while two patients (6%) required operations to correct significant radiation-related injuries. These results appear promising compared to those achieved by low -LET irradiation, and suggest that this technique merits further investigation

  19. Ultraviolet light-induced suppression of antigen presentation

    International Nuclear Information System (INIS)

    Spellman, C.W.; Tomasi, T.B.

    1983-01-01

    Ultraviolet (UV) light irradiation of animals results in the development of specific T suppressor cells that inhibit antitumor immune responses. It is thought that suppression may arise as a consequence of altered antigen presentation by UV-irradiated epidermal cells. This hypothesis is based on evidence demonstrating that specific lymphoid tissues from UV-irradiated hosts exhibit impaired antigen-presenting function and that animals cannot be contact sensitized when antigens are applied to a UV-irradiated skin site. Langerhans cells of the skin are likely candidates as targets of UV-induced defects in antigen presentation as they bear Fc and C3b receptors, express Ia antigens, are of bone marrow origin, and are capable of presenting antigen in vitro. We speculate on the possible clinical usefulness of UV-induced tolerance to specific antigens such as those encountered in monoclonal antibody therapy and tissue transplantation

  20. Light particle and gamma ray emission measurements in heavy-ion reactions. Progress report

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1982-01-01

    The development of a position-sensitive neutron detector and a data acquisition system at HHIRF for studying light particle emission in heavy ion reactions is described. Results are presented and discussed for the reactions 12 C + 158 Gd, 13 C + 157 Gd, and 20 Ne + 150 Nd

  1. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    Science.gov (United States)

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. © 2015 American Society of Plant Biologists. All Rights Reserved.

  2. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay

    Energy Technology Data Exchange (ETDEWEB)

    Delferriere, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O. [Commissariat a l' Energie Atomique, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France)

    2012-02-15

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  3. Light ion beam experiments with pinch reflex diodes on KfK's pulse generator KALIF

    International Nuclear Information System (INIS)

    Bluhm, H.; Buth, L.; Bohnel, K.; Harke, W.; Hoppe, P.; Karow, H.U.; Rusch, D.; Schulken, H.; Singer, J.

    1985-01-01

    The authors report on intense LI beam experiments currently performed with pinch reflex ion diodes on 2 ohms/1.4 TW-pulse generator KALIF (Karlsruhe Light Ion Facility). The goals of this work are the generation of highly focussed LI beams of well-defined ion composition, and the undertaking of beam-target experiments. The experimental studies with axial 6 cm phi-pinch reflex proton diodes have been aiming at the focussing characteristics of the diode, and at the ion species composition of the beam. Experiments have been performed using different diode geometries (anode/cathode/beam window foil shapes), and different anode return current paths, respectively. A variety of diagnostique techniques have been used in these studies: Electron pinch phenomena in the diode are observed by static and by gated X-ray cameras. Beam diagnostiques is based on measuring in the vacuum feed the electric parameters of the diode (electron and ion currents, diode voltage) on probing the ion composition and ion energy in the beam (by use of a Thomson Parabola spectrometer), and on the investigation of the beam focus (by use of different techniques: shadow box analysis, α-pin hole imaging, nuclear activation methods). Measurements of beam stopping power of ion beam-heated thin targets are underway using a streaked ion energy-spectrometer. The results obtained so far in these experimental efforts are presented

  4. Current neutralization in ballistic transport of light ion beams

    International Nuclear Information System (INIS)

    Hubbard, R.F.; Slinker, S.P.; Lampe, M.; Joyce, G.; Ottinger, P.

    1992-01-01

    Intense light ion beams are being considered as drivers to ignite fusion targets in the Laboratory Microfusion Facility (LMF). Ballistic transport of these beams from the diode to the target is possible only if the beam current is almost completely neutralized by plasma currents. This paper summarizes related work on relativistic electron beam and heavy ion beam propagation and describes a simple simulation model (DYNAPROP) which has been modified to treat light ion beam propagation. DYNAPROP uses an envelope equation to treat beam dynamics and uses rate equations to describe plasma and conductivity generation. The model has been applied both to the high current, 30 MeV Li +3 beams for LMF as well as low current, 1.2 MeV proton beams which are currently being studied on GAMBLE B at the Naval Research Laboratory. The predicted ratio of net currents to beam current is ∼0.1--0.2 for the GAMBLE experiment and ∼0.01 for LMF. The implications of these results for LMF and the GAMBLE experiments art discussed in some detail. The simple resistive model in DYNAPROP has well-known limitations in the 1 torr regime which arise primarily from the neglect of plasma electron transport. Alternative methods for treating the plasma response are discussed

  5. Two-gluon correlations in heavy–light ion collisions

    International Nuclear Information System (INIS)

    Wertepny, Douglas E.

    2014-01-01

    We derive the cross-section for two-gluon production in heavy–light ion collisions in the saturation/Color Glass Condensate framework. This calculation includes saturation effects to all orders in one of the nuclei (heavy ion) along with a single saturation correction in the projectile (light ion). The calculation of the correlation function predicts (qualitatively) two identical ridge-like correlations, near- and away-side. This prediction was later supported by experimental findings in p + A collisions at the LHC. Concentrating on the energy and geometry dependence of the correlation functions we find that the correlation function is nearly center-of-mass energy independent. The geometry dependence of the correlation function leads to an enhancement of near- and away-side correlations for the tip-on-tip U + U collisions when compared with side-on-side U + U collisions, an exactly opposite behavior from the correlations generated by the elliptic flow of the quark–gluon plasma

  6. LIGHT - from laser ion acceleration to future applications

    Science.gov (United States)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  7. Rotating light ion beam-plasma system in inertial confinement fusion

    International Nuclear Information System (INIS)

    Murakami, H.; Okada, T.

    1997-01-01

    The stabilizing mechanism of filamentation instability in light ion beam propagation is studied numerically by using a particle-in-cell code. Rotating light ion beam scheme has been proposed for the light ion beam propagation. The filamentation instability is stabilized by the external magnetic field which is induced by the rotating light ion beams. From a dispersion relation, linear growth rates of filamentation instabilities are obtained in a light ion beam-plasma system with an external magnetic field. The theory and simulation comparisons illustrate the results. (author)

  8. Nuclear structure studies with low-energy light ions: fundamental and applied

    International Nuclear Information System (INIS)

    Mazumdar, I.

    2016-01-01

    Studies in low and medium energy nuclear physics have been dominated by heavy-ion induced reactions for last five decades. Heavy-ion induced nuclear reactions have enriched our knowledge of the structural evolutions and intricacies of reaction dynamics of the nuclear many-body systems. However, the emergence and rise of heavy-ion physics have seen a general decline in studies with low- and medium-energy light-ion beams. The harsh reality of dwindling number of low-energy light ion facilities adversely affect research in nuclear physics. Very low-energy and high current light-ion facilities immediately conjures up in our minds the studies in nuclear astrophysics. Measurements of light-ion capture cross sections and astrophysical S factors are the major themes of research at most of the light-ion facilities. However, the importance low energy light-ion beams is multifarious. A variety of measurements providing vital support and inputs to heavy-ion research can only be carried out at the low-energy, light-ion facilities. Light-ion beams are also useful for generation of mono-energetic neutron beams. In this talk I will draw from some of our recent measurements to show the importance of light-ion beams in nuclear astrophysics and also in applied nuclear physics. (author)

  9. Progress in light ion beam fusion research on PBFA II

    International Nuclear Information System (INIS)

    Cook, D.L.; Allshouse, G.O.; Bailey, J.

    1986-01-01

    PBFA II is a 100 TW pulsed power accelerator constructed at Sandia National Laboratories for use in the Light Ion Fusion Program. The objective of PBFA II is to accelerate and focus upon an inertial confinement fusion (ICF) target a lithium beam with sufficient energy, power, and power density to perform ignition scaling experiments. The technologies used in PBFA II include: (1) primary energy storage and compression with 6 MV, low-inductance Marx generators, (2) pulse forming in water-insulated, water-dielectric lines with self-closing water switches, (4) voltage addition in vacuum using self-magnetically-insulated biconic transmission lines, (5) inductive energy storage and pulse compression using a fast-opening plasma erosion switch, (6) beam formation using a magnetically-insulated ion diode, and (7) space-charge and current-neutralized beam propagation to the target in a gas-filled cell. The first multimodule shot was on December 11, 1985. The plans for PBFA II include development and demonstration of the pulse-shaping techniques which are necessary for high-gain target compressions. Following a modification of the accelerator which will probably include an ''extraction'' ion diode, a 4- to 5-meter plasma channel for beam bunching during propagation, and a target chamber located beneath the accelerator, temporally-shaped ion beam pulses will be available for pulse-shaped target experiments. (author)

  10. The LILIA (laser induced light ions acceleration) experiment at LNF

    International Nuclear Information System (INIS)

    Agosteo, S.; Anania, M.P.; Caresana, M.; Cirrone, G.A.P.; De Martinis, C.; Delle Side, D.; Fazzi, A.; Gatti, G.; Giove, D.; Giulietti, D.; Gizzi, L.A.; Labate, L.; Londrillo, P.; Maggiore, M.; Nassisi, V.; Sinigardi, S.; Tramontana, A.; Schillaci, F.; Scuderi, V.; Turchetti, G.

    2014-01-01

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50–75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given

  11. The LILIA (laser induced light ions acceleration) experiment at LNF

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Anania, M.P. [INFN LNF Frascati, Frascati (Italy); Caresana, M. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Cirrone, G.A.P. [INFN LNS Catania, Catania (Italy); De Martinis, C. [Physics Department, University of Milan and INFN, Milan (Italy); Delle Side, D. [LEAS, University of Salento and INFN, Lecce (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Gatti, G. [INFN LNF Frascati, Frascati (Italy); Giove, D. [Physics Department, University of Milan and INFN, Milan (Italy); Giulietti, D. [Physics Department, University of Pisa and INFN, Pisa (Italy); Gizzi, L.A.; Labate, L. [INO-CNR and INFN, Pisa (Italy); Londrillo, P. [Physics Department, University of Bologna and INFN, Bologna (Italy); Maggiore, M. [INFN LNL, Legnaro (Italy); Nassisi, V., E-mail: vincenzo.nassisi@le.infn.it [LEAS, University of Salento and INFN, Lecce (Italy); Sinigardi, S. [Physics Department, University of Bologna and INFN, Bologna (Italy); Tramontana, A.; Schillaci, F. [INFN LNS Catania, Catania (Italy); Scuderi, V. [INFN LNS Catania, Catania (Italy); Institute of Physics of the ASCR, Prague (Czech Republic); Turchetti, G. [Physics Department, University of Bologna and INFN, Bologna (Italy); and others

    2014-07-15

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50–75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given.

  12. Report of the Accelerator Group: the light-ion injector

    International Nuclear Information System (INIS)

    1984-01-01

    Good progress was made on the various sub-systems of the light-ion injector cyclotron SPC1. The radio-frequency system, which consists of the two resonators (each with a 25 kW power amplifier) and the stabilization and control system was completed. Orbit calculations were used to determine the phase selection attainable from the combined axial and radial slits, and also to give an indication of the momentum selection which could be achieved using the radial slits. The detail design of all the extraction elements, i.e. the eletrostatic extraction channel EEK and two magnetic channel MEK1 and MEK2 has been completed. On the 15th December 1983, the first beams of ions were accelerated in SPC1. The following subsystems of SPC1 are discussed: magnets, radio-frequency systems, orbit calculations of the phase section, extraction process, vacuum system and beam diagnostics

  13. A method for measuring light ion reaction cross-sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.; Arendse, G.J.; Auce, A.; Cox, A.J.; Foertsch, S.V.; Jacobs, N.M.; Johansson, R.; Nyberg, J.; Peavy, J.; Renberg, P.-U.; Sundberg, O.; Stander, J.A.; Steyn, G.F.; Tibell, G.; Zorro, R.

    2005-01-01

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle

  14. The measurements of light high-energy ions in NINA-2 experiment

    Directory of Open Access Journals (Sweden)

    A. Leonov

    2007-10-01

    Full Text Available The flux of energetic light ions at low altitude is both an important input and output for self-consistent calculations of albedo particles resulting from the interaction of trapped and cosmic ray particles, with the upper atmosphere. In addition, data on the flux of light ions are needed to evaluate radiation damages on space-borne instruments and on space mission crews. In spite of that, sources of data on the flux of energetic ions at LEO are roughly limited to the AP-8 model, CREME/CREME96 codes and the SAMPEX, NOAA/TIROS satellites. The existing and operational European SAC-C/ICARE and PROBA-1/SREM instruments could also be potential sources for proton data at LEO. Although AP-8 and SAMPEX/PSB97 may be publicly accessed through the SPENVIS, they exhibit an order of magnitude difference in low altitude proton fluxes and they do not contain helium fluxes. Therefore, improved light ion radiation models are still needed.

    In this paper we present a procedure to identify and measure the energy of ions that are not stopped in the NINA-2 instrument. Moreover, problems related to particles that cross the instrument in the opposite direction are addressed and shown to be a possible cause of particle misidentification. Measuring fluxes of low abundance elements like energetic helium ions requires a good characterisation of all possible sources of backgrounds in the detector. Hints to determine the several contributions to the background are presented herein and may be applied to extract an order of magnitude of energetic ions fluxes from existing data sets, while waiting for dedicated high performance instruments.

  15. The measurements of light high-energy ions in NINA-2 experiment

    Directory of Open Access Journals (Sweden)

    A. Leonov

    2007-10-01

    Full Text Available The flux of energetic light ions at low altitude is both an important input and output for self-consistent calculations of albedo particles resulting from the interaction of trapped and cosmic ray particles, with the upper atmosphere. In addition, data on the flux of light ions are needed to evaluate radiation damages on space-borne instruments and on space mission crews. In spite of that, sources of data on the flux of energetic ions at LEO are roughly limited to the AP-8 model, CREME/CREME96 codes and the SAMPEX, NOAA/TIROS satellites. The existing and operational European SAC-C/ICARE and PROBA-1/SREM instruments could also be potential sources for proton data at LEO. Although AP-8 and SAMPEX/PSB97 may be publicly accessed through the SPENVIS, they exhibit an order of magnitude difference in low altitude proton fluxes and they do not contain helium fluxes. Therefore, improved light ion radiation models are still needed. In this paper we present a procedure to identify and measure the energy of ions that are not stopped in the NINA-2 instrument. Moreover, problems related to particles that cross the instrument in the opposite direction are addressed and shown to be a possible cause of particle misidentification. Measuring fluxes of low abundance elements like energetic helium ions requires a good characterisation of all possible sources of backgrounds in the detector. Hints to determine the several contributions to the background are presented herein and may be applied to extract an order of magnitude of energetic ions fluxes from existing data sets, while waiting for dedicated high performance instruments.

  16. Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)

    Science.gov (United States)

    Lin, Chen; Kim, I. Jong; Yu, Jinqing; Choi, Il Woo; Ma, Wenjun; Yan, Xueqing; Nam, Chang Hee

    2017-05-01

    The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.

  17. Light water reactor safety. Past, present and future

    International Nuclear Information System (INIS)

    Sehgal, Bal Raj

    2009-01-01

    This paper presents a review of the past, present and possible future developments in light water reactor (LWR) safety. The paper divides the past into two periods: the distant past i.e., before the TMI-2 accident when the main concern was with the design basis, the general design criteria, the concept of the defense in depth, the thermal hydraulics of the large loss of coolant accident (LOCA) and the success of the emergency core cooling system (ECCS), and the near past, i.e., after the TMI-2 accident when the main concern was with the physics of the postulated severe accidents: their prevention and mitigation. The present period is chosen as the translation of the research on the design basis and severe accidents into practical designs of Gen III+ with their core catchers and severe accident management (SAM) strategies, which could, in fact, provide ample assurances of public safety even for very severe accidents. The paper attempts to describe the remaining safety issues for both the Gen II and Gen III+ nuclear plants. The more important safety challenges are being posed by the recent moves of (1) extension of the life of the presently installed Gen II LWRs to 60 years (and perhaps to 80 years) and (2) the large uprates in power that are being sought for the Gen II LWRs. Clearly, the safety margins will be tested by these moves of long extended operations with greater power ratings of the Gen II plants. A prognosis of the emerging development trends in the LWR safety has been attempted with some suggestions. (author)

  18. LIBRA - a light ion beam fusion conceptual reactor design

    International Nuclear Information System (INIS)

    Badger, B.; Moses, G.A.; Engelstad, R.L.; Kulcinski, G.L.; Lovell, E.; MacFarlane, J.; Peterson, R.R.; Sawan, M.E.; Sviatovslavsky, I.N.; Wittenberg, L.J.; Cook, D.L.; Olson, R.E.; Stinnett, R.W.; Ehrhardt, J.; Kessler, G.; Stein, E.

    1990-08-01

    The LIBRA light ion beam fusion commercial reactor study is a self-consistent conceptual design of a 330 MWe power plant with an accompanying economic analysis. Fusion targets are imploded by 4 MJ shaped pulses of 30 MeV Li ions at a rate of 3 Hz. The target gain is 80, leading to a yield of 320 MJ. The high intensity part of the ion pulse is delivered by 16 diodes through 16 separate z-pinch plasma channels formed in 100 torr of helium with trace amounts of lithium. The blanket is an array of porous flexible silicon carbind tubes with Li 17 Pb 83 flowing downward through them. These tubes (INPORT units) shield the target chamber wall from both neutron damage and the shock overpressure of the target explosion. The target chamber is 'self-pumped' by the target explosion generated overpressure into a surge tank partially filled with Li 17 Pb 83 that surrounds the target chamber. This scheme refreshes the chamber at the desired 3 Hz frequently without excessive pumping demands. The blanket multiplication is 1.2 and the tritium breeding ratio is 1.4. The direct capital cost of a 331 MWe LIBRA design is estimated to be 2843 Dollar/kWe while a 1200 MWe LIBRA design will cost approximately 1300 Dollar/kWe. (orig.) [de

  19. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  20. First demonstration of 'white-light' laser cooling of a stored ion beam

    International Nuclear Information System (INIS)

    Atutov, S.N.; Biancalana, V.; Calabrese, R.; Clauser, T.; Grimm, R.; Guidi, V.; Lamanna, G.; Lauer, I.; Lenisa, P.; Luger, V.; Mariotti, E.; Moi, L.; Schramm, U.; Stagno, V.; Stoessel, M.; Tecchio, L.; Variale, V.

    1998-01-01

    'White-light' cooling of an ion beam confined in a storage ring has been demonstrated at Test Storage Ring in Heidelberg. Measurements aimed at comparing 'white-light' with single-mode laser cooling show that 'white-light' cooling gives lower temperatures at higher ion densities both in a coasting and in a bunched beam

  1. Good vibrations: Controlling light with sound (Conference Presentation)

    Science.gov (United States)

    Eggleton, Benjamin J.; Choudhary, Amol

    2016-10-01

    One of the surprises of nonlinear optics, is that light may interact strongly with sound. Intense laser light literally "shakes" the glass in optical fibres, exciting acoustic waves (sound) in the fibre. Under the right conditions, it leads to a positive feedback loop between light and sound termed "Stimulated Brillouin Scattering," or simply SBS. This nonlinear interaction can amplify or filter light waves with extreme precision in frequency which makes it uniquely suited to solve key problems in the fields of defence, biomedicine, wireless communications, spectroscopy and imaging. We have achieved the first demonstration of SBS in compact chip-scale structures, carefully designed so that the optical fields and the acoustic fields are simultaneously confined and guided. This new platform has opened a range of new functionalities that are being applied in communications and defence with breathtaking performance and compactness. My talk will introduce this new field and review our progress and achievements, including silicon based optical phononic processor.

  2. Light ions cyclotron bombardment to simulate fast neutron radiation damage in nuclear materials

    International Nuclear Information System (INIS)

    Segura, E.; Lucki, G.; Aguiar, D.

    1984-01-01

    The applicability and limitations of the use of cyclotron light ions bombardment to simulate the effects of the neutron irradiation are presented. Light ions with energies of about 10 MeV are capable to produce homogeneous damage in specimens suitable for measuring bulk mechanical properties although their low damage rate of 10 -5 dpa.sec -1 limit the dose range to a few dpa. On the other hand, cyclotron alpha particle implantation provides a fast and convenient way of introducing helium with a minimum of side effects so that we can take advantage of this technique to get better understanding of the mechanism by which this insoluble gas produces high temperature embrittlement. Some experimental details such as dimensions and cooling techniques are described. Finally a description of the infrastructure for cyclotron alpha particle implantation and a creep-test facility of the Division of Radiation Damage at IPEN-CNEN/SP are presented. (Author) [pt

  3. The light ion pulsed power induction accelerator for ETF

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.; Smith, D.L.; Bennett, L.F.

    1994-01-01

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The ∼ 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current per module is relatively modest (∼300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source

  4. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    Successful ignition of an inertial confinement fusion (ICF) pellet is calculated to require that several megajoules of energy be deposited in the pellet's centimeter-sized shell within 10 ns. This implies a driver power of several hundreds of terawatts and power density around 100 TW/cm 2 . The Sandia ICF approach is to deposit the energy with beams of 30 MV lithium ions. The first accelerator capable of producing these beams (PBFA II, 100 TW) will be used to study beam formation and target physics on a single pulse basis. To utilize this technology for power production, repetitive pulsing at rates that may be as high as 10 Hz will be required. This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  5. Effect of microstructure on light ion irradiation creep in nickel

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Simonen, E.P.; Bradley, E.R.; Stang, R.G.

    1983-01-01

    The concept of inhomogeneous slip or localized deformation is introduced to account for a weak dependence of irradiation creep on initial microstructure. Specimens of pure nickel (Ni) with three different microstructures were irradiated at 473 K with 15-17 MeV deuterons in the Pacific Northwest Laboratory (PNL) light ion irradiation creep apparatus. A dispersed barrier model for Climb-Glide (CG) creep was unable to account for the observed creep rates and creep strains. The weak dependence on microstructure was consistent with the Stress Induced Preferential Absorption (SIPA) creep mechanism but a high stress enhanced bias had to be assumed to account for the creep rates. Also, SIPA was unable to account for the observed creep strains. The CG and SIPA modeling utilized rate theory calculations of point defect fluxes and transmission electron microscopy for sink sizes and densities. (orig.)

  6. Effects of microstructure on light ion irradiation creep in nickel

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Simonen, E.P.; Bradley, E.R.; Stang, R.G.

    1982-10-01

    The concept of inhomogeneous slip or localized deformation is introduced to account for a weak dependence of irradiation creep on initial microstructure. Specimens of pure Ni with three different microstructures were irradiated at 473 0 K with 15 to 17 MeV deuterons in the PNL light ion irradiation creep apparatus. A dispersed barrier model for climb-glide creep was unable to account for the observed creep rates and creep strains. The weak dependence on microstructure was consistent with the SIPA creep mechanism but a high stress enhanced bias had to be assumed to account for the creep rates. Also, SIPA was unable to account for the observed creep strains. The modeling utilized rate theory calculations of point defect fluxes and transmission electron microscopy for sink sizes and densities

  7. Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps*

    Science.gov (United States)

    Inoue, Keiichi; Nomura, Yurika; Kandori, Hideki

    2016-01-01

    In addition to the well-known light-driven outward proton pumps, novel ion-pumping rhodopsins functioning as outward Na+ and inward Cl− pumps have been recently found in eubacteria. They convert light energy into transmembrane electrochemical potential difference, similar to the prototypical archaeal H+ pump bacteriorhodopsin (BR) and Cl− pump halorhodopsin (HR). The H+, Na+, and Cl− pumps possess the conserved respective DTE, NDQ, and NTQ motifs in the helix C, which likely serve as their functional determinants. To verify this hypothesis, we attempted functional interconversion between selected pumps from each category by mutagenesis. Introduction of the proton-pumping motif resulted in successful Na+ → H+ functional conversion. Introduction of the respective characteristic motifs with several additional mutations leads to successful Na+ → Cl− and Cl− → H+ functional conversions, whereas remaining conversions (H+ → Na+, H+ → Cl−, Cl− → Na+) were unsuccessful when mutagenesis of 4–6 residues was used. Phylogenetic analysis suggests that a H+ pump is the common ancestor of all of these rhodopsins, from which Cl− pumps emerged followed by Na+ pumps. We propose that successful functional conversions of these ion pumps are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Dependence of the observed functional conversions on the direction of evolution strongly suggests that the essential structural mechanism of an ancestral function is retained even after the gain of a new function during natural evolution, which can be evoked by a few mutations. By contrast, the gain of a new function needs accumulation of multiple mutations, which may not be easily reproduced by limited mutagenesis in vitro. PMID:26929409

  8. Data acquisition system for light-ion irradiation creep experiment

    International Nuclear Information System (INIS)

    Hendrick, P.L.; Whitaker, T.J.

    1979-07-01

    Software was developed for a PDP11V/03-based data acquisition system to support the Light-Ion Irradiation Creep Experiment installed at the University of Washington Tandem Van de Graaff Accelerator. The software consists of a real-time data acquisition and storage program, DAC04, written in assembly language. This program provides for the acquisition of up to 30 chennels at 100 Hz, data averaging before storage on disk, alarming, data table display, and automatic disk switching. All analog data are acquired via an analog-to-digital converter subsystem having a resolution of 14 bits, a maximum throughput of 20 kHz, and an overall system accuracy of +-0.01%. These specifications are considered essential for the long-term measurement of irradiation creep strains and temperatures during the light-ion bombardment of irradiation creep specimens. The software package developed also contains a collection of FORTRAN programs designed to monitor a test while in progress. These programs use the foreground/background feature of the RT-11 operating system. The background programs provide a variety of services. The program, GRAFTR, allows transient data (i.e., prior to averaging) to be graphed at the graphics terminal. The program, GRAFAV, allows averaged data to be read from disk and displayed graphically at the terminal. The program, TYPAV, reads averaged data from disk and displays it at the terminal in tabular form. Other programs allow text messages to be written to disk, read from disk, and allow access to DAC04 initialization data. 5 figures, 18 tables

  9. Status of light ion inertial fusion research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Ottinger, P.F.; Goldstein, S.A.

    1983-01-01

    High-brightness proton beams have recently been extracted from axial pinch-reflex diodes mounted on the NRL Gamble II generator. The source power brightness that was measured exceeded 10 TW/cm 2 rad 2 . Analysis of a modular ICF system using such diodes shows that an operational window for transport of light-ion species exists. Multi-terawatt beams can be transported a few meters in channels a few centimeters in diameter. A proof-of-principle experiment for the required final focusing cell has been successfully carried out on Gamble II. A new barrel-shaped equatorial PRD that can be coupled to PBFA II as a single diode has also been operated on Gamble II and has demonstrated 50% ion efficiency with predominately azimuthally-symmetric charged-particle flow. Preliminary experiments using vacuum inductive storage and plasma opening switches have demonstrated factor-of-three pulse compressions, with corresponding power and voltage multiplications for pulse durations of interest to PBFA II. In other experiments the stopping power of deuterons in hot plasmas was measured. Results show about 40% enhancement in stopping power over that in cold targets when the deutron beam is focused on the target to about 0.25 MA/cm 2

  10. Production of light radioactive ion beams (RIB) using inverse kinematics

    International Nuclear Information System (INIS)

    Das, J.J.; Sugathan, P.; Madhavan, N.; Madhusudhana Rao, P.V.; Jhingan, A.; Varughese, T.; Barua, S.; Nath, S.; Sinha, A.K.; Kumar, B.; Zacharias, J.

    2005-01-01

    At Nuclear Science Centre (NSC), New Delhi, we have implemented a facility to produce low energy light radioactive ion beams (RIBs) using (p,n) type of reactions in inverse kinematics. For this purpose primary beams from the 15-UD Pelletron accelerator impinged on a thin polypropylene foil mounted on a rotating/linearly moving target assembly. For efficiently separating the secondary beam from primary beam, the existing recoil mass spectrometer (RMS) HIRA was operated with new ion optics. Suitable hardware modifications were also made. Using this facility, we have extracted a 7 Be beam of purity better than 99% and spot-size ∼4 mm in diameter. This 7 Be beam has been utilized in a variety of experiments in the energy range of 15-22 MeV. Typical beam parameters are: intensity 10 4 pps, angular spread ±30 mrad and energy spread ±0.5 MeV. Development of appropriate detector setup/target arrangement were also made to perform these experiments. In this paper, we describe the implementation of this project

  11. Beamed neutron emission driven by laser accelerated light ions

    Science.gov (United States)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  12. Light ion beam approach to ICF ignition, gain, and energy production

    International Nuclear Information System (INIS)

    Olson, R.; Allshouse, G.; Cook, D.

    1993-01-01

    The US Department of Energy is supporting research oriented toward both near-term defense applications as well as long-term energy applications of inertial confinement fusion (ICF). The ICF programs at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for these applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The LIBRA light ion beam commercial reactor study provides a baseline approach towards the use of the high gain light ion ICF technology as a source of commercial electrical energy

  13. Light ion beam approach to ICF ignition, gain, and energy production

    International Nuclear Information System (INIS)

    Olson, R.; Allshouse, G.; Cook, D.

    1994-01-01

    The U.S. Department of Energy is supporting research oriented toward both near-term defense applications as well as long-term energy applications of inertial confinement fusion (ICF). The ICF program at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for these applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The LIBRA light ion beam commercial reactor study provides a baseline approach towards the use of the high gain light ion ICF technology as a source of commercial electrical energy. (author)

  14. Present and future sources of protons and heavy ions

    International Nuclear Information System (INIS)

    Grunder, H.A.; Leemann, C.W.

    1976-01-01

    A brief outline of existing medical heavy-ion facilities is given. The beam specifications for future dedicated medical ion accelerators are discussed. Machines capable of delivering dose rates of approximately 1 krad/min in volumes of a few liters are shown to represent existing technology. A cost and performance analysis shows the synchrotrons to be the most economical source for the heavier ions while conventional cyclotrons seem optimal for an exclusive proton facility. It is seen that the incorporation of additional capabilities such as neutron generation or radioisotope production can be achieved at modest incremental costs. In addition to the accelerators, feasible layouts of hypothetical facilities are discussed, and three-dimensional beam scanning is shown to allow the irradiation of large volumes without sacrificing the precise dose localization capabilities of heavy-ion beams. Concepts of quality-controlled engineering and modern computer technology are introduced as a means to obtain the desired high degree of reliability and ease of operation and maintenance

  15. Review of light-ion driver development for inertial fusion energy

    Science.gov (United States)

    Bluhm, H.; Hoppé, P.

    2001-05-01

    The concept of a light ion beam driver for Inertial Fusion Energy (IFE) is based on multi-terawatt, multi-megavolt pulsed power generators, two-stage ion acceleration and charge neutralised transport. In this paper we discuss the present status for each of these components and identify the main issues for research. Only modest extrapolations from presently available technologies seem necessary for the high voltage pulse generator. The greatest challenge of this approach is the accelerator, which will consist of two stages, the injector and the post-accelerator. Large progress has been made in understanding the physical phenomena occurring in the injector gap. This progress has become possible by new sophisticated diagnostics that allowed detailed temporally and spatially resolved measurements of field and particle densities in the acceleration gap and by relativistic fully electromagnetic PIC-simulation tools, that stimulated analytic models. The conclusions drawn from these studies, namely limiting the ion current density to small enhancements to reduce the beam divergence need still to be verified experimentally. Systematic experimental research on post-acceleration at high power and voltage must aim at a complete understanding of instabilities coupling from the injector to the post-accelerator and at limiting voltages and barriers for the extraction of unwanted ions from plasmas at the injection side. Ultimately the light ion approach requires rep-rateable large area ion sources with ion masses greater than 1 and particle energies around 30 MeV. Although different cleaning protocols were able to reduce the amount of parasitic ions in the Li beam from a LiF field emission source the achievements are still insufficient. A field of common interest between light and heavy ion beam driven fusion is beam transport from the accelerator to the target. Supposedly the most favourable concept for both approaches is self-pinched transport. Experimental evidence for self

  16. Light in flight photography and applications (Conference Presentation)

    Science.gov (United States)

    Faccio, Daniele

    2017-02-01

    The first successful attempts (Abramson) at capturing light in flight relied on the holographic interference between the ``object'' beam scattered from a screen and a short reference pulse propagating at an angle, acting as an ultrafast shutter cite{egg}. This interference pattern was recorded on a photographic plate or film and allowed the visualisation of light as it propagated through complex environments with unprecedented temporal and spatial resolution. More recently, advances in ultrafast camera technology and in particular the use of picosecond resolution streak cameras allowed the direct digital recording of a light pulse propagating through a plastic bottle (Rasker at el.). This represented a remarkable step forward as it provided the first ever video recording (in the traditional sense with which one intends a video, i.e. something that can be played back directly on a screen and saved in digital format) of a pulse of light in flight. We will discuss a different technology that is based on an imaging camera with a pixel array in which each individual pixel is a single photon avalanche diode (SPAD). SPADs offer both sensitivity to single photons and picosecond temporal resolution of the photon arrival time (with respect to a trigger event). When adding imaging capability, SPAD arrays can deliver videos of light pulse propagating in free space, without the need for a scattering medium or diffuser as in all previous work (Gariepy et al). This capability can then be harnessed for a variety of applications. We will discuss the details of SPAD camera detection of moving objects (e.g. human beings) that are hidden from view and then conclude with a discussion of future perspectives in the field of bio-imaging.

  17. Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Zhixin Tai

    2017-07-01

    Full Text Available Engineering design of battery configurations and new battery system development are alternative approaches to achieve high performance batteries. A novel flexible and ultra-light graphite anode is fabricated by simple friction drawing on filter paper with a commercial 8B pencil. Compared with the traditional anode using copper foil as current collector, this innovative current-collector-free design presents capacity improvement of over 200% by reducing the inert weight of the electrode. The as-prepared pencil-trace electrode exhibits excellent rate performance in potassium-ion batteries (KIBs, significantly better than in lithium-ion batteries (LIBs, with capacity retention of 66% for the KIB vs. 28% for the LIB from 0.1 to 0.5 A g−1. It also shows a high reversible capacity of ∼230 mAh g−1 at 0.2 A g−1, 75% capacity retention over 350 cycles at 0.4 A g−1and the highest rate performance (based on the total electrode weight among graphite electrodes for K+ storage reported so far. Keywords: Current-collector-free, Flexible pencil-trace electrode, Potassium-ion battery, Lithium-ion battery, Layer-by-layer interconnected architecture

  18. 'Beam-emission spectroscopy' diagnostics also measure edge fast-ion light

    International Nuclear Information System (INIS)

    Heidbrink, W W; Bortolon, A; McKee, G R; Smith, D R

    2011-01-01

    Beam-emission spectroscopy (BES) diagnostics normally detect fluctuations in the light emitted by an injected neutral beam. Under some circumstances, however, light from fast ions that charge exchange in the high neutral-density region at the edge of the plasma make appreciable contributions to the BES signals. This 'passive' fast-ion D α (FIDA) light appears in BES signals from both the DIII-D tokamak and the National Spherical Torus Experiment (NSTX). One type of passive FIDA light is associated with classical orbits that traverse the edge. Another type is caused by instabilities that expel fast ions from the core; this light can complicate measurement of the instability eigenfunction.

  19. Coherent scattering of CO2 light from ion-acoustic waves

    International Nuclear Information System (INIS)

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  20. Review of ion beam therapy: Present and Future

    International Nuclear Information System (INIS)

    Alonso, Jose R.

    2000-01-01

    First therapy efforts at the Bevalac using neon ions took place in the 70's and 80's. Promising results led to construction of HIMAC in Chiba Japan, and more recently to therapy trials at GSI. Both these facilities are now treating patients with carbon beams. Advances in both accelerator technology and beam delivery have taken place at these two centers. Plans are well along for new facilities in Europe and Japan

  1. New generation of light sources: Present and future

    International Nuclear Information System (INIS)

    Couprie, M.E.

    2014-01-01

    Spectroscopy and imaging in the VUV–X-ray domain are very sensitive tools for the investigation of the properties of matter [1–3]. Time-resolved studies enable to follow the movies of ultra-fast reactions. More than fifty years after the laser discovery [4], VUVX light sources are actively developed around the world. Among them, high order harmonics generated in gas, X-ray lasers, synchrotron radiation, free electron lasers are providing a wide offer, from laboratory size sources to large scale facilities, with various features, suitable for different types of experiments. The properties of these sources are here reviewed. Quest of new performances and flexibility is also discussed

  2. Quantitatively measuring the orbital angular momentum density of light : Presentation

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2013-08-01

    Full Text Available the orbital angular momentum density of light Angela Dudleya, Christian Schulzeb, Igor Litvina, Michael Duparréb and Andrew Forbes*a,c,d a CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa; b Institute of Applied Optics, Friedrich...., “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000). [3] Sztul, H. I. and Alfano, R. R., “The Poynting vector and angular momentum of Airy beams,” Opt. Express 16(13), 9411–9416 (2008). [4] Allen, L...

  3. ENLIGHT: European network for Light ion hadron therapy.

    Science.gov (United States)

    Dosanjh, Manjit; Amaldi, Ugo; Mayer, Ramona; Poetter, Richard

    2018-04-03

    The European Network for Light Ion Hadron Therapy (ENLIGHT) was established in 2002 following various European particle therapy network initiatives during the 1980s and 1990s (e.g. EORTC task group, EULIMA/PIMMS accelerator design). ENLIGHT started its work on major topics related to hadron therapy (HT), such as patient selection, clinical trials, technology, radiobiology, imaging and health economics. It was initiated through CERN and ESTRO and dealt with various disciplines such as (medical) physics and engineering, radiation biology and radiation oncology. ENLIGHT was funded until 2005 through the EC FP5 programme. A regular annual meeting structure was started in 2002 and continues until today bringing together the various disciplines and projects and institutions in the field of HT at different European places for regular exchange of information on best practices and research and development. Starting in 2006 ENLIGHT coordination was continued through CERN in collaboration with ESTRO and other partners involved in HT. Major projects within the EC FP7 programme (2008-2014) were launched for R&D and transnational access (ULICE, ENVISION) and education and training networks (Marie Curie ITNs: PARTNER, ENTERVISION). These projects were instrumental for the strengthening of the field of hadron therapy. With the start of 4 European carbon ion and proton centres and the upcoming numerous European proton therapy centres, the future scope of ENLIGHT will focus on strengthening current and developing European particle therapy research, multidisciplinary education and training and general R&D in technology and biology with annual meetings and a continuously strong CERN support. Collaboration with the European Particle Therapy Network (EPTN) and other similar networks will be pursued. Copyright © 2018 CERN. Published by Elsevier B.V. All rights reserved.

  4. Light ion ignitors for inertial confinement fusion: progress toward proof-of-principle

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Kuswa, G.W.

    1981-01-01

    From the inception of the REB effort, it was recognized that light ion beams offered substantial advantages as an ICF driver, and as the pulse power driver program progressed the possibilities of using light ion beams became increasingly evident. Because of the rapid progress made in the available power in these light ion beams, their superior target deposition characteristics, the fact that nonrelativistic ion beams can readily be bunched by a factor of 2 to 4, and the favorable scaling relations leading toward reactor levels, Sandia shifted its ICF emphasis from electrons to ions in 1979. The progress which has been made toward proof-of-principle using light ion ignitors, as well as the remaining problems, will be detailed in this paper

  5. Ab Initio Calculations Of Light-Ion Reactions

    International Nuclear Information System (INIS)

    Navratil, P.; Quaglioni, S.; Roth, R.; Horiuchi, W.

    2012-01-01

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.

  6. Decay of hot nuclei produced by relativistic light ions

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1995-01-01

    In collisions of light relativistic projectiles (p, 4 He) with heavy nuclei (Au) very excited target spectators are created, which decay via multiple emission of intermediate mass fragments. It was found that the mean IMF multiplicities are equal (within 15%) to 2.0, 2.6 and 3.0 at proton energies 2.16, 3.6 and 8.1 GeV respectively. These values are comparable with those obtained with heavy ions in the same beam energy range. This is considered to indicate that this observable is not sensitive to the collision dynamics and is determined by the phase space factor. IMF energy spectra are described by the statistical model of multifragmentation neglecting dynamics of the expansion stage before the break up. The expansion velocity is estimated to be ≤ 0.02 c. The mean lifetime of a fragmentating system is found to be ≤ 75 fm/c from IMF-IMF-angular correlations for 4 He (14.6 GeV) +Au collisions. The results support a scenario of true 'thermal' multifragmentation. 26 refs., 10 figs., 1 tab

  7. Light ion EDM search in magnetic storage rings

    International Nuclear Information System (INIS)

    Onderwater, C. J. G.

    2006-01-01

    Permanent electric dipole moments (EDMs) violate parity and time-reversal symmetry. Within the Standard Model (SM), they require CP violation and are many orders of magnitude below present experimental sensitivity. Many extensions of the SM predict much larger EDMs, which are therefore an excellent probe for the existence of 'new physics.' So far only electrically neutral systems were used for sensitive searches of EDMs. Several techniques, based on storing fast particles in a magnetic storage ring, are being developed to probe charged particles for an EDM. With the introduction of these novel experimental methods, high sensitivity for charged systems, in particular light nuclei, is within reach.

  8. Collisional Cooling of Light Ions by Cotrapped Heavy Atoms.

    Science.gov (United States)

    Dutta, Sourav; Sawant, Rahul; Rangwala, S A

    2017-03-17

    We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.

  9. Development of light ion therapy at the Karolinska Hospital and Institute.

    Science.gov (United States)

    Svensson, Hans; Ringborg, Ulrik; Näslund, Ingemar; Brahme, Anders

    2004-12-01

    Recent developments in radiation therapy have made it possible to optimize the high dose region to cover almost any target volume and shape at the same time as the dose level to adjacent organs at risk is acceptable. Further implementations of IMRT (Intensity Modulated Radiation Therapy), and inverse treatment planning using already available technologies but also foreseeable improved design of therapy accelerators delivering electron- and photon beams, will bring these advances to the benefit of a broad population of cancer patients. Protons will therefore generally not be needed since in most situations the improvement will be insignificant or moderate due to the large lateral penumbra with deep proton therapy. A further step would be to use He-ions, which have only half the penumbra width of protons and still a fairly low-LET in the spread-out Bragg peak. There is however still a group of patients that cannot be helped by these advances as the tumor might be radioresistant for the presently utilized low ionization density beam qualities. The ultimate step in the therapy development process should therefore be to optimize the beam quality for each tumor-normal tissue situation. To facilitate beam quality optimization light ions are needed. It is argued that in many radioresistant tumors a dose-mean LET of 25-50 eV/nm in the target would be optimum as then tumor cells will be lost in the highest proportion through apoptotic cell kill and the superficial tissues will still be irradiated with a fairly low LET. Light ions using Li, Be, B, and C would then be the ideal choice. In this paper a light ion facility is outlined for the Karolinska University Hospital facilitating both dose distribution and beam quality optimization.

  10. Development of niobium spoke cavities for a superconducting light-ion Linac

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2< v/c <0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of light ions, at intensities sufficient for a production beam for a radioactive beam facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed

  11. Development of niobium spoke cavities for a superconducting light-ion Linac.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-11-18

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2< v/c <0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of light ions, at intensities sufficient for a production beam for a radioactive beam facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  12. Erosion of volatile elemental condensed gases by keV electron and light-ion bombardment

    International Nuclear Information System (INIS)

    Schou, J.

    1991-11-01

    Erosion of the most volatile elemental gases by keV electron and light-ion bombardment has been studied at the experimental setup at Risoe. The present work includes frozen neon, argon, krypton, nitrogen, oxygen and three hydrogen isotopes, deuterium, hydrogen deuteride and hydrogen. The yield of these condensed gases has been measured as a function of film thickness and primary energy for almost all combinations of primary particles (1-3 keV electrons, 5-10 keV hydrogen- and helium ions) and ices. These and other existing results show that there are substantial common features for the sputtering of frozen elemental gases. Within the two groups, the solid rare gases and the solid molecular gases, the similarity is striking. The hydrogenic solids deviate in some respects from the other elements. The processes that liberate kinetic energy for the particle ejection in sputtering are characteristic of the specific gas. (au) 3 tabs., 12 ills., 159 refs

  13. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    International Nuclear Information System (INIS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.

    2014-01-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies

  14. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Busold, S., E-mail: s.busold@gsi.de [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Almomani, A. [Institut für angewandte Physik, Johann-Wolfgang-Goethe-Universität Frankfurt, Max von Laue Straße 1, D-60438 Frankfurt (Germany); Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Barth, W. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Bedacht, S. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Boine-Frankenheim, O. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schloßgartenstraße 8, D-64289 Darmstadt (Germany); and others

    2014-03-11

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  15. Stable propagation of light-ion beam in inertial confinement fusion

    International Nuclear Information System (INIS)

    Okada, T.; Murakami, H.

    1996-01-01

    The stabilization mechanism of the filamentation instability for a light ion beam (LIB) penetrating plasma is investigated. For the stabilization of the filamentation instability, external magnetic field which is parallel to the direction of the light ion beam propagation is applied. Linear growth rates of filamentation instabilities in a light ion beam-plasma system with an external magnetic field were obtained by means of a dispersion relation. Numerical simulations were carried out using the particle-in-cell (PIC) method. The stabilizing mechanism of the filamentation instability is described. The theory and simulation comparisons illustrate the results. (author). 1 tab., 1 fig., 10 refs

  16. Stable propagation of light-ion beam in inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T; Murakami, H [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology

    1997-12-31

    The stabilization mechanism of the filamentation instability for a light ion beam (LIB) penetrating plasma is investigated. For the stabilization of the filamentation instability, external magnetic field which is parallel to the direction of the light ion beam propagation is applied. Linear growth rates of filamentation instabilities in a light ion beam-plasma system with an external magnetic field were obtained by means of a dispersion relation. Numerical simulations were carried out using the particle-in-cell (PIC) method. The stabilizing mechanism of the filamentation instability is described. The theory and simulation comparisons illustrate the results. (author). 1 tab., 1 fig., 10 refs.

  17. Solution of the Boltzmann equation for primary light ions and the transport of their fragments

    Directory of Open Access Journals (Sweden)

    J. Kempe

    2010-10-01

    Full Text Available The Boltzmann equation for the transport of pencil beams of light ions in semi-infinite uniform media has been calculated. The equation is solved for the practically important generalized 3D case of Gaussian incident primary light ion beams of arbitrary mean square radius, mean square angular spread, and covariance. The transport of the associated fragments in three dimensions is derived based on the known transport of the primary particles, taking the mean square angular spread of their production processes, as well as their energy loss and multiple scattering, into account. The analytical pencil and broad beam depth fluence and absorbed dose distributions are accurately expressed using recently derived analytical energy and range formulas. The contributions from low and high linear energy transfer (LET dose components were separately identified using analytical expressions. The analytical results are compared with SHIELD-HIT Monte Carlo (MC calculations and found to be in very good agreement. The pencil beam fluence and absorbed dose distributions of the primary particles are mainly influenced by an exponential loss of the primary ions combined with an increasing lateral spread due to multiple scattering and energy loss with increasing penetration depth. The associated fluence of heavy fragments is concentrated at small radii and so is the LET and absorbed dose distribution. Their transport is also characterized by the buildup of a slowing down spectrum which is quite similar to that of the primaries but with a wider energy and angular spread at increasing penetration depths. The range of the fragments is shorter or longer depending on their nuclear mass to charge ratio relative to that of the primary ions. The absorbed dose of the heavier fragments is fairly similar to that of the primary ions and also influenced by a rapidly increasing energy loss towards the end of their ranges. The present analytical solution of the Boltzmann equation

  18. Present status and prospect of the experimental study of QED in high Z ions

    International Nuclear Information System (INIS)

    Briand, J.P.

    1993-01-01

    I summarize in this paper the present status of our experimental knowledge on the Lamb shift of high Z hydrogenlike ions. Some tentative prospect on the future improvements with the new large accelerators and ion sources are discussed and compared with the present accuracy of QED corrections. (orig.)

  19. Portable, universal, and visual ion sensing platform based on the light emitting diode-based self-referencing-ion selective field-effect transistor.

    Science.gov (United States)

    Zhang, Xiaowei; Han, Yanchao; Li, Jing; Zhang, Libing; Jia, Xiaofang; Wang, Erkang

    2014-02-04

    In this work, a novel and universal ion sensing platform was presented, which enables the visual detection of various ions with high sensitivity and selectivity. Coaxial potential signals (millivolt-scale) of the sample from the self-referencing (SR) ion selective chip can be transferred into the ad620-based amplifier with an output of volt-scale potentials. The amplified voltage is high enough to drive a light emitting diode (LED), which can be used as an amplifier and indicator to report the sample information. With this double amplification device (light emitting diode-based self-referencing-ion selective field-effect transistor, LED-SR-ISFET), a tiny change of the sample concentration can be observed with a distinguishable variation of LED brightness by visual inspection. This LED-based luminescent platform provided a facile, low-cost, and rapid sensing strategy without the need of additional expensive chemiluminescence reagent and instruments. Moreover, the SR mode also endows this device excellent stability and reliability. With this innovative design, sensitive determination of K(+), H(+), and Cl(-) by the naked eye was achieved. It should also be noticed that this sensing strategy can easily be extended to other ions (or molecules) by simply integrating the corresponding ion (or molecule) selective electrode.

  20. A focal plane detector for both light and heavy ions

    International Nuclear Information System (INIS)

    Ophel, T.R.; Johnston, A.

    1978-05-01

    The characteristics of a multi-element, ionization-type focal plane detector with an effective length of 53 cm have been evaluated for various ions ranging between protons and 32 S. The position resolution obtained is typically 1 mm. Excellent energy (0.49% for 16 O) and angular resolution (0.2 degrees with respect to beam direction for 7 Li) have been obtained enabling clean separation of ion species at essentially full angular acceptance of a split-pole spectrograph

  1. Lighting.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  2. Range to cone length relations for light ions in CR-39

    International Nuclear Information System (INIS)

    Gil, L.R.; Marques, A.

    1988-01-01

    Curves ''range x cone lenght'' and ''diameter x cone lenght'' are calculated for tracks left by low energy light ions in CR-39. The calculations cover ions from helium to iron and are performed for 6.25 N NaOH at 70 0 C and a standard etching time but can be easily extended to other etching conditions. (author) [pt

  3. Cooling atomic ions with visible and infra-red light

    Science.gov (United States)

    Lindenfelser, F.; Marinelli, M.; Negnevitsky, V.; Ragg, S.; Home, J. P.

    2017-06-01

    We demonstrate the ability to load, cool and detect singly charged calcium ions in a surface electrode trap using only visible and infrared lasers for the trapped-ion control. As opposed to the standard methods of cooling using dipole-allowed transitions, we combine power broadening of a quadrupole transition at 729 nm with quenching of the upper level using a dipole allowed transition at 854 nm. By observing the resulting 393 nm fluorescence we are able to perform background-free detection of the ion. We show that this system can be used to smoothly transition between the Doppler cooling and sideband cooling regimes, and verify theoretical predictions throughout this range. We achieve scattering rates which reliably allow recooling after collision events and allow ions to be loaded from a thermal atomic beam. This work is compatible with recent advances in optical waveguides, and thus opens a path in current technologies for large-scale quantum information processing. In situations where dielectric materials are placed close to trapped ions, it carries the additional advantage of using wavelengths which do not lead to significant charging, which should facilitate high rate optical interfaces between remotely held ions.

  4. Proceedings of the Workshop on relativistic heavy ion physics at present and future accelerators

    International Nuclear Information System (INIS)

    Csoergoe, T.; Hegyi, S.; Lukacs, B.; Zimanyi, J.

    1991-09-01

    This volume contains the Proceedings of the Budapest Workshop on relativistic heavy ion physics at present and future accelerators. The topics includes experimental heavy ion physics, particle phenomenology, Bose-Einstein correlations, relativistic transport theory, quark-gluon plasma rehadronization, astronuclear physics, leptonpair production and intermittency. All contributions were indexed separately for the INIS database. (G.P.)

  5. Heavy and Light chain amyloidosois presenting as complete heart block: A rare presentation of a rare disease.

    Science.gov (United States)

    Priyamvada, P S; Morkhandikar, S; Srinivas, B H; Parameswaran, S

    2015-01-01

    Amyloidosis is an uncommon disease characterized by deposition of proteinaceous material in the extracellular matrix, which results from abnormal protein folding. Even though more than 25 precursor proteins are identified, majority of systemic amyloidosis results from deposition of abnormal immunoglobulin (Ig) light chains. In heavy chain amyloidosis (AH), deposits are derived from both heavy chain alone, whereas in heavy and light chain amyloidosis (AHL), the deposits are derived from Ig heavy chains and light chains. Both AH and AHL are extremely rare diseases. Here, we report an unusual presentation of IgG (lambda) AHL amyloidosis in the background of multiple myeloma, where the initial clinical presentation was complete heart block, which preceded the definitive diagnosis by 18 months.

  6. Heavy and Light chain amyloidosois presenting as complete heart block: A rare presentation of a rare disease

    Directory of Open Access Journals (Sweden)

    P S Priyamvada

    2015-01-01

    Full Text Available Amyloidosis is an uncommon disease characterized by deposition of proteinaceous material in the extracellular matrix, which results from abnormal protein folding. Even though more than 25 precursor proteins are identified, majority of systemic amyloidosis results from deposition of abnormal immunoglobulin (Ig light chains. In heavy chain amyloidosis (AH, deposits are derived from both heavy chain alone, whereas in heavy and light chain amyloidosis (AHL, the deposits are derived from Ig heavy chains and light chains. Both AH and AHL are extremely rare diseases. Here, we report an unusual presentation of IgG (lambda AHL amyloidosis in the background of multiple myeloma, where the initial clinical presentation was complete heart block, which preceded the definitive diagnosis by 18 months.

  7. Ion diode optics: measurement of divergence and aiming of beams for transport to light-ion ICF targets

    International Nuclear Information System (INIS)

    Krastelev, E.G.; Kniazev, B.A.; Lindholm, F.; Hammer, D.A.; Kusse, B.R.; Greenly, J.B.

    1996-01-01

    Diagnostic development for measurements of anode plasma structure and ion beam local aiming and micro-divergence are being developed on the COBRA accelerator at Cornell University. Results of streaked-scintillator and tracer target beam diagnostics, and streaked anode light imaging are described. (author). 5 figs., 1 ref

  8. Ion diode optics: measurement of divergence and aiming of beams for transport to light-ion ICF targets

    Energy Technology Data Exchange (ETDEWEB)

    Krastelev, E G; Kniazev, B A; Lindholm, F; Hammer, D A; Kusse, B R; Greenly, J B [Cornell Univ., Ithaca, NY (United States). Lab. of Plasma Studies

    1997-12-31

    Diagnostic development for measurements of anode plasma structure and ion beam local aiming and micro-divergence are being developed on the COBRA accelerator at Cornell University. Results of streaked-scintillator and tracer target beam diagnostics, and streaked anode light imaging are described. (author). 5 figs., 1 ref.

  9. Light ions radiobiological effects on human tumoral cells: measurements modelling and application to hadron-therapy

    International Nuclear Information System (INIS)

    Jalade, P.

    2005-11-01

    In classical radiotherapy, the characteristics of photons interactions undergo limits for the treatment of radioresistant and not well located tumours. Pioneering treatments of patients at the Lawrence Laboratory at Berkeley has demonstrated two advantages of hadrons beams: the Relative Biologic Effect (the RBE) and the ballistic of the beams. Since 1994, the clinical centre at Chiba, has demonstrated successfully the applicability of the method. A physics group, managed by G. Kraft, at Darmstadt in Germany, has underlined the advantages of carbon beams. An European pool, called ENGIGHT (European Network for LIGHt ion Therapy) has been created in which the French ETOILE project appeared. The purpose of the thesis concerns measurements and models of 'in vitro' human cells survival. In the first part, the nowadays situation in particles interactions, tracks and cells structures and radiobiology is presented here. The second is devoted to the models based on the beam tracks and localization of the physical dose. Discussion of sensitivity to various parameters of the model has been realized with the help of numerical simulations. Finally the predictions of the improved model has been compared to experimental irradiations of human cells with argon and carbon beams of the GANIL machine. Conclusion of such study shows the performance and limits of a local model for predicting the radiobiological efficiency of light ions in hadron-therapy. (author)

  10. Light ions and ozone - generation and interactions with living organisms

    International Nuclear Information System (INIS)

    Kriha, V.; Aubrecht, L.

    2005-01-01

    With directly in the living organism born ions exception, LNI coming through three phases: ionisation, attachment by the electronegative molecules and the clusters formation due to local electrostatic interactions. The quantitative analysis of physical parameters leads to conclusion that we cannot find any physical property (till known) explaining the positive affect of LNI on living organisms. Analysis of possible mechanism produces several hypotheses of LNI-organism interaction. A simplified semi-quantitative model of respiratory tract was developed for estimation of ions and ozone interaction with living organisms. A formation of oxygen radicals and products of their chain-reactions in intrinsic conditions is discussed

  11. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  12. Albedo of low-energy light ions: case of anisotropic approximation of the collision integral

    International Nuclear Information System (INIS)

    Simovic, R.; Vukanic, J. . E-mail address of corresponding author: simovicr@vin.bg.ac.yu; Simovic, R.)

    2005-01-01

    For diffusion and slowing-down of low-energy light ions, the linear transport equation in the path length form was rederived taking into account a common anisotropic approximation of the collision integral. Assuming that the transport cross section depends only on the ion initial energy, the equation was Laplace-transformed over the relative path length and half-space albedo problem was considered by using the ordinary DPN technique. The Laplace-transformed reflection function was found in the lowest order of DPN flux approximation, and then was inverted analytically leading to the distribution of backscattered particles in the relative path-length. For the general power potential V(R)∞R -1/m the particle reflection coefficient was obtained as a series, while for the special case of the inverse square potential (m=1/2) this coefficient was determined in a compact form. The present approach was compared with the TRIM simulations of helium ion reflection, as well as with the Tilinin - Betz fitting formula and the MARLOWE simulations of proton reflection. (author)

  13. Multifragment emission in light-ion induced reactions

    International Nuclear Information System (INIS)

    Pollacco, E.C.; Volant, C.; Dayras, R.; Legrain, R.; Cassagnou, Y.; Norbeck, E.

    1991-01-01

    Multifragment events for IMFs (3 ≤ Z ≤ 12) with multiplicity up to four have been observed in the reaction of 0.90 and 3.6 GeV 3 He ions with nat Ag nuclei. Events are detected in which IMFs account for up to 75% of the total charge of the system and extend up to total kinetic energies of 400 MeV. Fragment energy spectra and angular distributions are found to be dependent on event multiplicity

  14. Measuring Light Air Ions in a Speleotherapeutic Cave

    Czech Academy of Sciences Publication Activity Database

    Roubal, Z.; Bartušek, Karel; Szabó, Z.; Drexler, P.; Überhuberová, J.

    2017-01-01

    Roč. 17, č. 1 (2017), s. 27-36 ISSN 1335-8871 R&D Projects: GA MŠk(CZ) LO1212; GA ČR GA13-09086S Institutional support: RVO:68081731 Keywords : speleotherapy * air ions * Gerdien tube * climatology Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.344, year: 2016

  15. Role of Ions in the Regulation of Light-Harvesting

    Czech Academy of Sciences Publication Activity Database

    Kaňa, Radek; Govindjee, G.

    2016-01-01

    Roč. 7, DEC 16 (2016), s. 1849 ISSN 1664-462X R&D Projects: GA ČR(CZ) GA16-10088S; GA MŠk(CZ) LO1416; GA MŠk(CZ) ED2.1.00/19.0392 Institutional support: RVO:61388971 Keywords : ions * non-photochemical quenching * state transitions Subject RIV: EA - Cell Biology Impact factor: 4.298, year: 2016

  16. Analysis of Light-Induced Transmembrane Ion Gradients and Membrane Potential in Photosystem I Proteoliposomes

    International Nuclear Information System (INIS)

    Pennisi, Cristian P.; Greenbaum, Elias; Yoshida, Ken

    2010-01-01

    Photosystem I (PSI) complexes can support a light-driven electrochemical gradient for protons, which is the driving force for energy-conserving reactions across biological membranes. In this work, a computational model that enables a quantitative description of the light-induced proton gradients across the membrane of PSI proteoliposomes is presented. Using a set of electrodiffusion equations, a compartmental model of a vesicle suspended in aqueous medium was studied. The light-mediated proton movement was modeled as a single proton pumping step with backpressure of the electric potential. The model fits determinations of pH obtained from PSI proteoliposomes illuminated in the presence of mediators of cyclic electron transport. The model also allows analysis of the proton gradients in relation to the transmembrane ion fluxes and electric potential. Sensitivity analysis enabled a determination of the parameters that have greater influence on steady-state levels and onset/decay rates of transmembrane pH and electric potential. This model could be used as a tool for optimizing PSI proteoliposomes for photo-electrochemical applications.

  17. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Pengyi; Pan Gang; Chen Hao

    2008-01-01

    The great enhancement of ferric ion on the photochemical decomposition of environmentally persistent perfluorooctanoic acid (PFOA) under 254 nm UV light was reported. In the presence of 10 μM ferric ion, 47.3% of initial PFOA (48 μM) was decomposed and the defluorination ratio reached 15.4% within 4 h reaction time. While the degradation and defluorination ratio greatly increased to 80.2% and 47.8%, respectively, when ferric ion concentration increased to 80 μM, and the corresponding half-life was shortened to 103 min. Though the decomposition rate was significantly lowered under nitrogen atmosphere, PFOA was efficiently decomposed too. Other metal ions like Cu 2+ and Zn 2+ also slightly improved the photochemical decomposition of PFOA under irradiation of 254 nm UV light. Besides fluoride ion, other intermediates during PFOA decomposition including formic acid and five shorter-chain perfluorinated carboxylic acids (PFCAs) with C7, C6, C5, C4 and C3, respectively, were identified and quantified by IC or LC/MS. The mixture of PFOA and ferric ion had strong absorption around 280 nm. It is proposed that PFOA coordinates with ferric ion to form a complex, and its excitation by 254 nm UV light leads to the decomposition of PFOA in a stepwise way

  18. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    International Nuclear Information System (INIS)

    Himics, L.; Tóth, S.; Veres, M.; Tóth, A.; Koós, M.

    2015-01-01

    Highlights: • Characteristics of nitrogen implantation of nanodiamond using two low ion energy ion implantation methods were compared. • Formation of complex nitrogen-related defect centers was promoted by subsequent helium implantation and heat treatments. • Depth profiles of the implanted ions and the generated vacancies were determined using SRIM calculations. • The presence of nitrogen impurity was demonstrated by Fourier-transform infrared spectroscopic measurements. • A new nitrogen related band was detected in the photoluminescence spectrum of the implanted samples that was attributed to the N3 color center in nanodiamond. - Abstract: Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp 2 carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation

  19. A review of experimental L-shell ionization cross sections for light ion impact

    International Nuclear Information System (INIS)

    Orlic, I.

    1994-01-01

    More than 20 000 experimental L-shell cross sections data points for light ion impact are presently available. This number of data provides a solid ground for detailed statistical analysis and comparison with theoretical predictions. An overview of all available experimental data is given in this work. Discussed are annual growth and decline of published data, distribution of L-shell cross section data vs. target atomic number as well as distribution of number of data vs. incident ions. Data for proton impact were recently tabulated by this group and compared with the ECPSSR theoretical predictions in a usual manner: by plotting ratio S = σ exper. /σ theory vs. reduced velocity parameter for each individual subshell L1, L2 and L3, and separately for three groups of target atomic numbers. After applying statistical procedure recommended by the Particle Data Group, so called open-quotes reference cross sectionsclose quotes for proton impact were obtained. Statistical errors of reference cross sections obtained in such a way were significantly smaller than errors of individual experimental results which allowed for some generalization and comparison with theoretical predictions. A review of obtained results is presented in this work

  20. ECR Light Ion Sources at CEA/Saclay%CEA/Saclay的ECR轻离子离子源

    Institute of Scientific and Technical Information of China (English)

    R.Gobin; P-A.Leroy; O.Tuske; D.Uriot; P-Y.Beauvais; A.Ben Ismail; D.Bogard; O.Delferriere; D.de Menezes; R.Duperrier; Y.Gauthier; F.Harrault

    2007-01-01

    In the beginning of the 90s,T.Taylor and his collaborators demonstrated ECR sources operating at low frequency (I.e.2.45GHz) are able to produce very intense single charge light ion beams.At CEA/Saclay,the SILHI source developments started in 1995.Since 1997 more than 100mA proton or deuteron beams are routinely produced in pulsed or continuous mode.To comply with ADS reliability constraint,important improvements have been performed to increase the installation reliability.Moreover,to optimize the beam transport in the low energy beam line,the extraction system was carefully designed and space charge compensation studies were undertaken.An important step has been reached in 2005 with the development of a permanent magnet source able to produce a total beam of 109mA at 85kV.A new test bench named BETSI,especially dedicated to permanent magnet source developments,is presently under construction.It will allow analysing positive or negative extracted beams up to 50keV and 100mA.In addition,for several years work has been done to optimize the production of negative hydrogen ion beam with such an ECR source.Recent analysis pushed towards the construction of a new set up based on a multicusp magnetic configuration.After a brief overview of the CEA/Saclay source developments,this article will point out on the recent results and present status.

  1. Present status of the NIRS-ECR ion source for the HIMAC

    International Nuclear Information System (INIS)

    Kitagawa, A.; Matsushita, H.; Shibuya, S.

    1995-01-01

    The present status of NIRS-ECR ion source for the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS) is reported. The beam intensity of the NIRS-ECR was increased by modifications on the magnetic field structure, chamber cooling system, vacuum conductance and the extraction configuration. The output current of Ar 6+ reached 365 eμA after improvements. The good stability, easy operation, and good reproducibility were realized. (author)

  2. Fusion of light ion systems at energies near and below the Coulomb barrier

    International Nuclear Information System (INIS)

    Arnould, M.; Howard, W.M.; Cusson, R.Y.

    1978-01-01

    Experimental fusion cross sections for light ion systems at energies below the Coulomb barrier become available in greater and greater number, and provide a stringent test of the macroscopic and microscopic physics involved in models of heavy-ion reactions. Measurements and predictions of the fusion cross sections for 12 C + 12 C, 12 C + 16 O and 16 O + 16 O are also of major importance in astrophysics. (orig.) [de

  3. Segmented focal plane detector for light and heavy ions

    International Nuclear Information System (INIS)

    Wolfs, F.L.H.; Bryan, D.C.; Kurz, K.L.; Herrick, D.M.; Perera, P.A.A.; White, C.A.

    1992-01-01

    A segmented focal plane detector for an Enge split-pole spectrograph has been developed for the study of breakup reactions at very low relative energies. It consists of a 61 cm long segmented position-sensitive parallel plate avalanche counter backed by a large Bragg curve detector. A segmented plastic scintillator is mounted behind the anode of the Bragg curve detector and is used for particle identification of low-ionizing particles. The dead space between the two sections of the focal plane detector is 2.5 mm. The intrinsic position resolution of the detector is 1 mm. The intrinsic energy resolution depends on the energy of the incident ion and can be as good as 0.55%. The nuclear charge and mass resolutions are 0.3 e and 0.3 u, respectively. (orig.)

  4. Investigation of the exclusive light-ion disintegration processes on the basis of a diffraction model

    International Nuclear Information System (INIS)

    Evlanov, M.V.; Sokolov, A.M.

    1986-01-01

    A diffraction approach is developed for description of kinematically complete experiments on the disintegration on nuclei with diffuse edges of light, weakly bound ions consisting of one neutral and one charged cluster. The theoretical formalism is used to analyze exclusive experiments on deuteron disintegration in the region of intermediate energies and for a broad range of nuclear mass numbers with a view to studying the structural characteristics of the nuclei and the mechanisms underlying the disintegration process. The possibility of the occurrence of the Nemets effect in the case of the disintegration of other (not only deuterons) light, weakly bound ions on nuclei is discussed

  5. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  6. Light ion beams generation in dense plasma focus

    International Nuclear Information System (INIS)

    Yokoyama, M.; Kitagawa, Y.; Yamada, Y.; Okada, M.; Yamamoto, Y.

    1982-01-01

    The high energy deuterons and protons in a Mather type plasma focus device were measured by nuclear activation techniques. The radioactivity induced in graphite, aluminum and copper targets provided the deuteron intensity, energy spectra and angular dependence. High energy protons were measured by cellulose nitrate particle track detectors. The plasma focus device was operated at 30 kV for a stored energy of 18 kJ at 1.5 Torr D 2 (low pressure mode), and 5 Torr D 2 (high pressure mode). The yield ratio of N-13 and Al-28 showed the mean deuteron energy of 1.55 MeV under low pressure mode and of 1.44 MeV under high pressure mode. The deuteron energy spectra were measured by the stacks of 10 aluminum foils, and consisted of two components as well as the proton energy spectra measured by CN film technique. The angular spread of deuteron beam was within 30 degree under low pressure mode. Under high pressure mode, the distribution showed multi-structure, and two peaks were observed at the angle smaller than 20 degree and at 60 degree. The protons with energy more than 770 keV were directed in the angle of 10 degree. The high energy electron beam was also observed. A three-channel ruby laser holographic interferometry was used to see the spatial and temporal location of the generation of high energy ions. The ion temperature in plasma focus was estimated from D + He 3 mixture gas experiment. (Kato, T.)

  7. Development of a new light collection and detection system optimized for ion beam induced fluorescence microscopy

    International Nuclear Information System (INIS)

    Vanga, Sudheer Kumar; Mi, Zhaohong; Koh, Long Cheng; Tao, Ye; Bettiol, Andrew A.; Watt, Frank

    2015-01-01

    Ion beam induced fluorescence microscopy is a new imaging technique which has the potential to achieve sub-50 nm spatial resolution fluorescence images. Currently the resolution of the technique has been limited to around 150 nm mainly because of inefficient collection and detection of emitted photons from the sample. To overcome this limitation, a new light collection system based on a custom made parabolic mirror is employed to enhance the fluorescence collection. The custom made mirror is designed so as to obtain both structural (scanning transmission ion microscopy) and ion beam induced fluorescence imaging simultaneously. The design and characterization of the parabolic mirror is discussed in detail

  8. Anomalous deceleration of light ion beam in plasm of inertial confinement fusion

    International Nuclear Information System (INIS)

    Abe, Takashi; Niu, Keishiro

    1981-01-01

    The ion beam propagation in inertial confinement fusion by light ion beam is analysed. The anomalous deceleration of the beam ion occurs, when the beam including the electron interacts with the background plasma with a comparable number density. This deceleration is caused by the two stream instability between the beam and the background plasma electrons and then becomes maximum when each density is equivalent. The anomalous deceleration rate of the beam ion is computed by using the quasilinear theory. It is shown that the anomalous deceleration which the beam ion (10 17 cm - 3 ) accepts from the background plasma (10 18 cm - 3 ) is equivalent to the classical one from the background plasma with solid density (10 21 cm - 3 ). (author)

  9. Heavy ions light flashes and brain functions: recent observations at accelerators and in spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Narici, L [Department of Physics, University of Rome Tor Vergata, and INFN Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy)], E-mail: livio.narici@roma2.infn.it

    2008-07-15

    Interactions between ionizing radiation in space and brain functions, and the related risk assessments, are among the major concerns when programming long permanence in space, especially when outside the protective shield of the Earth's magnetosphere. The light flashes (LF) observed by astronauts in space, mostly when dark adapted, are an example of these interactions; investigations in space and on the ground showed that these effects can originate with the action of ionizing radiation in the eye. Recent findings from ALTEA, an interdisciplinary and multiapproach program devoted to the study of different aspects of the radiation-brain functions interaction, are presented in this paper. These include: (i) study of radiation passing through the astronauts' eyes in the International Space Station ({approx}20 ions min{sup -1}, excluding H and fast and very slow He), measured in conjunction with reporting of the perception of LF; (ii) preliminary electrophysiological evidence of these events in astronauts and in patients during heavy ion therapy; and (iii) in vitro results showing the radiation driven activation of rhodopsin at the start of the phototransduction cascade in the process of vision. These results are in agreement with our previous work on mice. A brief but complete summary of the earlier works is also reported to permit a discussion of the results.

  10. Heavy ions light flashes and brain functions: recent observations at accelerators and in spaceflight

    International Nuclear Information System (INIS)

    Narici, L

    2008-01-01

    Interactions between ionizing radiation in space and brain functions, and the related risk assessments, are among the major concerns when programming long permanence in space, especially when outside the protective shield of the Earth's magnetosphere. The light flashes (LF) observed by astronauts in space, mostly when dark adapted, are an example of these interactions; investigations in space and on the ground showed that these effects can originate with the action of ionizing radiation in the eye. Recent findings from ALTEA, an interdisciplinary and multiapproach program devoted to the study of different aspects of the radiation-brain functions interaction, are presented in this paper. These include: (i) study of radiation passing through the astronauts' eyes in the International Space Station (∼20 ions min -1 , excluding H and fast and very slow He), measured in conjunction with reporting of the perception of LF; (ii) preliminary electrophysiological evidence of these events in astronauts and in patients during heavy ion therapy; and (iii) in vitro results showing the radiation driven activation of rhodopsin at the start of the phototransduction cascade in the process of vision. These results are in agreement with our previous work on mice. A brief but complete summary of the earlier works is also reported to permit a discussion of the results

  11. LIBRA-LiTE: A commercial size light ion fusion power plant

    International Nuclear Information System (INIS)

    Badger, B.; Choi, B.; Engelstad, R.L.; Kulcinski, G.L.; Lovell, E.G.; MacFarlane, J.J.; Mogehed, E.A.; Moses, G.A.; Peterson, R.R.; Rutledge, S.; Sawan, M.E.; Sviatoslavsky, G.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1992-05-01

    LIBRA-LiTE is a concept study for future 1000 MWe nuclear fusion reactors operating on the principle of inertial confinement. Light ions, e.g. lithium ions, are given an energy of 25-35 MeV in an accelerator and focused symmetrically onto a target (deuterium-tritium filled sphere of 7 mm diameter) in a reactor chamber. The fusion reaction is ignited by shock wave induced compression of the target. The radiation (photons, neutrons, ions) is absorbed in a blanket where the thermal power is removed by a coolant and tritium is rebred. The LIBRA-LiTE concept study is the continuation of the earlier LIBRA study (330 MWe) with a modified concept of light ion beam focusing. Starting from an ion source (diode), the lithium ion beams are focused ballistically onto the target. For this to be achieved, lithium must be used as the coolant in the reactor chamber and the blanket concept must be slightly modified by providing steel tubes (HT-9) as guiding tubes for the coolant flow. A particular engineering problem to be solved are the ion beam focusing magnets, which have to extend rather closely up to the center of the reactor chamber. (orig.) [de

  12. Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport.

    Science.gov (United States)

    Stiles, Kari A; Van Volkenburgh, Elizabeth

    2002-07-01

    Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.

  13. Development of a diamond detector for temporal profile measurements of intense, short ion bunches within the LIGHT project

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, Diana [Technische Universitaet Darmstadt (Germany); Traeger, Michael; Kis, Mladen [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Collaboration: LIGHT-Collaboration

    2016-07-01

    In the context of the Laser Ion Generation, Handling and Transport (LIGHT) research project at GSI, laser-driven ion acceleration and beam shaping are explored, combining a target normal sheath acceleration (TNSA) proton source with conventional accelerator technology. In the LIGHT experimental campaign in 2015, protons were accelerated via the TNSA mechanism, an energy of 7.8 MeV was selected and collimated with a pulsed solenoid and injected into a rf cavity. Through phase focusing, temporally compressed proton bunches were generated to a pulse length of <240 ps (FWHM) with up to 5 x 10{sup 8} particles in a single bunch at a distance of 6 m from the source. An ultrafast diamond detector has been specially developed to measure the temporal profile of these bunches and will be presented.

  14. Improved Light Extraction Efficiency by Photonic Crystal Arrays on Transparent Contact Layer Using Focused Ion Beams

    International Nuclear Information System (INIS)

    Wu, G.M.; Tsai, B.H.; Kung, S.F.; Wu, C.F.

    2011-01-01

    Nitride-based thin-film materials have become increasingly important for the high brightness light-emitting diode applications. The improvements in light extraction and lower power consumption are highly desired. Although the internal quantum efficiency of GaN-based LED has been relatively high, only a small fraction of light can be extracted. In this study, a new design of two-dimensional photonic crystal array has been prepared on the top transparent contact layer of indium-tin oxide film to improve the light extraction efficiency using focused ion beam. The acceleration voltage of the Ga dual-beam nanotechnology system SMI 3050 was 30 kV and the ion beam current was 100 pA. The cylindrical air holes had the diameter of 150 nm and depth of 100 nm. The micro photoluminescence analysis results showed that the light output intensity could be 1.5 times of that of the non-patterned control sample. In addition, the structural damage from the focused ion beam drilling of GaN step could be eliminated. The excellent I-V characteristics have been maintained, and the external light extraction efficiency would be still improved for the LED devices. (author)

  15. High-intensity light-ion beam research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Colombant, D.G.; Barker, R.J.

    1982-01-01

    High-brightness proton beams (.4 MA, 1 MV) have recently been extracted from 20 cm 2 axial pinch-reflex diodes (PRDs) mounted on the NRL Gamble II generator. A source power brightness of GT 10 TW/cm 2 rad 2 was achieved in these experiments. A new barrel-shaped equitorial PRD that can be coupled to PBFA-II has also been operated on Gamble II and has demonstrated 50% proton efficiency with predominately azimuthally-symmetric charged-particle flow. In other experiments the stopping power of deuterons in hot plasmas was measured using a PRD on Gamble II. Results show about 40% enhancement in stopping power over that in cold targets when the beam was focused to about .25 MA/cm 2 . Research is also being performed on transporting ion beams in large-diameter channels (>= 2.5 cm) and on a post-transport, plasma-filled, magnetic-focusing section to bring the beam to pellet dimensions. (author)

  16. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles. Keywords. Light charged particles; heavy-ion induced reactions; particle spectra and angular distri-.

  17. Physical, biological and clinical basis of light ions using in radiotherapy: EULIMA project

    International Nuclear Information System (INIS)

    Chauvel, P.

    1991-01-01

    Improving the efficiency of radiotherapy is a constant concern in oncology: more than half of the patients who contract cancer receive radiotherapy at some stage. Use of charged particles in radiotherapy represents indisputable progress in localization of the dose delivered to tumour masses, thereby allowing reduction of dose received by adjacent healthy tissues. Protons improve the physical selectivity of the irradiation, i.e. the dose distribution. High-LET (Linear Energy Transfer) radiations produce different biological effects, decreasing the differences in radiosensitivity, and allowing radiation therapy to control radioresistant tumours. Fast neutrons represent the most known of these high-LET particles, but they suffer of a relatively poor physical selectivity. The two approaches (physical selectivity and biological advantages) are joined in by light ions (Carbon, Oxygen, Neon). Highly selective high-LET radiation therapy can be performed for radioresistant tumours without damage to healthy tissues. Preliminary results obtained in Berkeley (USA) demonstrate an improved local control of unresectable, slowly growing tumours, confirming what could be extrapolated from proton and neutrontherapy. Furthermore, radioactive light ion beams can be used to verify the accuracy of treatment planning by checking the range of the particle with a PET camera, and in the future for the treatment itself. In the framework of its programme Europe against Cancer, the Commission of the European Communities participates in the funding of the EULIMA (European Light Ion Medical Accelerator) project feasibility study, aiming to design an hospital-based light ion therapy facility in Europe [fr

  18. High-power pulsed light ion beams for applications in fusion- and matter research

    International Nuclear Information System (INIS)

    Bluhm, H.; Karow, H.U.; Rusch, D.; Zieher, K.W.

    1982-01-01

    The foundations of ultrahigh-power pulse techniques are described together with the two pulse generators KALIF (Karlsruhe Light lion Facility) and Pollux of the INR. The physical principles and diagnostics of ion beam production are discussed as well as possible applications in the field of fusion research. (orig./HT) [de

  19. Radiation-Pressure Acceleration of Ion Beams from Nanofoil Targets: The Leaky Light-Sail Regime

    International Nuclear Information System (INIS)

    Qiao, B.; Zepf, M.; Borghesi, M.; Dromey, B.; Geissler, M.; Karmakar, A.; Gibbon, P.

    2010-01-01

    A new ion radiation-pressure acceleration regime, the 'leaky light sail', is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10 19 W/cm 2 . 100 MeV proton beams are obtained by increasing the intensities to 2x10 20 W/cm 2 .

  20. Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.

    Science.gov (United States)

    Qiao, B; Zepf, M; Borghesi, M; Dromey, B; Geissler, M; Karmakar, A; Gibbon, P

    2010-10-08

    A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10¹⁹  W/cm². 100 MeV proton beams are obtained by increasing the intensities to 2 × 10²⁰  W/cm².

  1. Multifragmentation induced by light relativistic projectiles and heavy ions: similarities and differences

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1998-01-01

    The experimental data on fragment multiplicities, their energy and charge distributions, the emission times are considered for the nuclear multifragmentation process induced by relativistic light projectiles (protons, helium) and heavy ions. With light projectiles, the multifragmentation is a pure 'thermal' process, well described by the statistical models. Heavy-ion-induced multifragmentation is influenced by dynamic effects related first of all to the compression of the system in the collision. But statistical models can also be applied to rendering the partition of the system if the excitation energy is less than 10 MeV/nucleon and compression is modest. For the central collision of heavy ions the statistical approach fails to describe the data

  2. SABRE (Sandia Accelerator and Beam Research Experiment): A test bed for the light ion fusion program

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Hanson, D.L.; McKay, P.F.; Maenchen, J.E.; Tisone, G.C.; Adams, R.G.; Nash, T.; Bernard, M.; Boney, C.; Chavez, J.R.; Fowler, W.F.; Ruscetti, J.; Stearns, W.F.; Noack, D.; Wenger, D.F.

    1992-01-01

    Extraction applied-B ion diode experiments are underway on the recently completed SABRE positive polarity linear induction accelerator (6 MV, 220 kA). The authors are performing these experiments in direct support of the light ion fusion program on PBFAII at Sandia. SABRE provides a test bed with a higher shot rate and improved diagnostic access for ion source development and ion beam divergence control experiments. These experiments will also address the coupling of an ion diode to the turbulent, wide spectrum feed electrons which occur on these inductive adders in positive polarity. This work continues previous work on the HELIA accelerator. The diode is a uniformly magnetically insulated, extraction ion diode, with a 5-cm mean anode surface radius. The uniform insulation field profiles are generated by four individual 60 kJ capacitor banks. Field-exclusion profiles are also anticipated. They have developed a wide array of electrical, ion beam, and plasma diagnostics to accomplish their objectives. MITL (magnetically insulated transmission line) and diode voltages are being measured with a magnetic spectrometer, a range-filtered-scintillator (RFS) fiber optic/PMT system, and a range-filtered CR-39 nuclear track film based system. Beam energy can be determined by these diagnostics as well as a filtered Faraday cup array. MITL and ion currents are being measured with an array of Rogowski coils, common-mode rejection and single turn Bs, and resistive shunts. The ion source experiments will investigate thin-film lithium ion sources, particularly the active LEVIS (Laser EVaporation Ion Source) and the passive LiF source. LEVIS uses two pulsed lasers to evaporate and then ionize lithium from a lithium bearing thin-film on the anode. A ruby laser (20 ns, 12 J) for evaporation, and a dye laser for resonant lithium ionization have been developed. The performance of LEVIS with an array of active and passive surface cleaning techniques will be studied

  3. Photoluminescence and reflectivity studies of high energy light ions irradiated polymethyl methacrylate films

    Science.gov (United States)

    Bharti, Madhu Lata; Singh, Fouran; Ramola, R. C.; Joshi, Veena

    2017-11-01

    The self-standing films of non-conducting polymethyl methacrylate (PMMA) were irradiated in vacuum using high energy light ions (HELIs) of 50 MeV Lithium (Li+3) and 80 MeV Carbon (C+5) at various ion dose to induce the optical changes in the films. Upon HELI irradiation, films exhibit a significant enhancement in optical reflectivity at the highest dose. Interestingly, the photoluminescence (PL) emission band with green light at (514.5 nm) shows a noticeable increase in the intensity with increasing ion dose for both ions. However, the rate of increase in PL intensity is different for both HELI and can be correlated with the linear energy transfer by these ions in the films. Origin of PL is attributed to the formation of carbon cluster and hydrogenated amorphous carbon in the polymer films. HAC clusters act as PL active centres with optical reflectivity. Most of the harmful radiation like UV are absorbed by the material and is becoming opaque after irradiation and this PL active material are useful in fabrication of optoelectronic devices, UV-filter, back-lit components in liquid crystal display systems, micro-components for integrate optical circuits, diffractive elements, advanced materials and are also applicable to the post irradiation laser treatment by means of ion irradiation.

  4. Light ion EDM search in magnetic storage rings

    NARCIS (Netherlands)

    Onderwater, C. J. G.

    Permanent electric dipole moments (EDMs) violate parity and time-reversal symmetry. Within the Standard Model (SM), they require CP violation and are many orders of magnitude below present experimental sensitivity. Many extensions of the SM predict much larger EDMs, which are therefore an excellent

  5. Effects of light and copper ions on volatile aldehydes of milk and milk fractions

    Energy Technology Data Exchange (ETDEWEB)

    Jeno, W.; Bassette, R.; Crang, R.E.

    1988-09-01

    Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanal components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.

  6. Overview on collision processes of highly charged ions with atoms present status and problems

    International Nuclear Information System (INIS)

    Janev, R.K.

    1983-05-01

    This paper provides a brief discussion on the present status of the collision physics of highly charged ions with atoms. The emphasis is on the main achievements in understanding and describing the most important collision processes, and as charge transfer, ionization and Auger-type processes, and even more on those open problems which, due either to their scientific or practical importance, represent challenges to current research in this field. The paper concentrates on general ideas and problems whose development and solutions have advanced or will advance our basic understanding of the collision dynamics of multiply charged ions with atoms

  7. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  8. Heavy ion irradiation effects of polymer film on absorption of light

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Noboru; Seguchi, Tadao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Arakawa, Tetsuhito

    1997-03-01

    Ion irradiation effects on the absorption of light for three types of polymer films; polyethylene-terephthalate (PET), polyethylene-naphthalate (PEN), and polyether-ether-ketone (PEEK) were investigated by irradiation of heavy ions with Ni{sup 4+}(15MeV), O{sup 6+}(160MeV), and Ar{sup 8+}(175MeV), and compared with electron beams(EB) irradiation. The change of absorption at 400nm by a photometer was almost proportional to total dose for ions and EB. The absorption per absorbed dose was much high in Ni{sup 4+}, but rather small in O{sup 6+} and Ar{sup 8+} irradiation, and the absorption by EB irradiation was accelerated by the temperature of polymer film during irradiation. The beam heating of materials during ion irradiation was assumed, especially for Ni ion irradiation. The heavy ion irradiation effect of polymers was thought to be much affected by the ion beam heating than the linear energy transfer(LET) of radiation source. (author)

  9. Collective effects in light-heavy ion collisions

    Science.gov (United States)

    Schenke, Björn; Venugopalan, Raju

    2014-11-01

    We present results for the azimuthal anisotropy of charged hadron distributions in A+A, p+A, d+A, and 3He+A collisions within the IP-Glasma+MUSIC model. Obtained anisotropies are due to the fluid dynamic response of the system to the fluctuating initial geometry of the interaction region. While the elliptic and triangular anisotropies in peripheral Pb+Pb collisions at √{ s} = 2.76 TeV are well described by the model, the same quantities in √{ s} = 5.02 TeV p+Pb collisions underestimate the experimental data. This disagreement can be due to neglected initial state correlations or the lack of a detailed description of the fluctuating spatial structure of the proton, or both. We further present predictions for azimuthal anisotropies in p+Au, d+Au, and 3He+Au collisions at √{ s} = 200 GeV. For d+Au and 3He+Au collisions we expect the detailed substructure of the nucleon to become less important.

  10. Study on exclusive processes of light ion disintegration in the framework of diffraction model

    International Nuclear Information System (INIS)

    Evlanov, M.V.; Sokolov, A.M.

    1986-01-01

    A diffraction approach is developed for description of kinematically complete experiments on disintegration of light weakly-bound ions formed by two clusters (one being charged) on nuclei with diffused edge. The theoretical formalism is applied to analyze exclusive deuteron disintegration experiments at intermediate energies for a wide nuclear mass numbers. The aim of the analysis is to study structure peculiarities of nuclei and disintegration mechanisms. Possible existence of the Nemets effect is discussed for disintegration of other than deuterons weakly-bound ions by nuclei

  11. State-selective charge transfer cross sections for light ion impact of atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D. R. [University of North Texas; Stancil, Phillip C. [University of Georgia, Athens; Havener, C. C. [Oak Ridge National Laboratory (ORNL)

    2015-01-01

    Owing to the utility of diagnosing plasma properties such as impurity concentration and spatial distribution, and plasma temperature and rotation, by detection of photon emission following capture of electrons from atomic hydrogen to excited states of multiply charged ions, new calculations of state-selective charge transfer involving light ions have been carried out using the atomic orbital close-coupling and the classical trajectory Monte Carlo methods. By comparing these with results of other approaches applicable in a lower impact energy regime, and by benchmarking them using key experimental data, knowledge of the cross sections can be made available across the range parameters needed by fusion plasma diagnostics.

  12. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    Science.gov (United States)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    and SRIM calculations. Preliminary studies regarding the biological endpoints DSB (cluster) and chromosomal aberrations have been performed for selected light ions up to neon. Validation with experimental data as well as further calculations are underway and final results will be presented at the meeting. Mitochondrial alterations have been implicated in radiation-induced cardiovascular effects. To extend the applicability of PARTRAC biophysical tool towards effects on mitochondria, the nuclear DNA and chromatin as the primary target of radiation has been complemented by a model of mitochondrial DNA (mtDNA) to mimic a coronary cell with thousand mitochondria contained in the cytoplasm. Induced mtDNA damage (SSB, DSB) has been scored for 60Co photons and 5 MeV alpha-particle irradiation, assuming alternative radical scavenging capacities within the mitochondria. While direct radiation effects in mtDNA are identical to nuclear DNA, indirect effects in mtDNA are in general larger due to lower scavenging and the lack of DNA-protecting histones. These simulations complement the scarce experimental data on radiation-induced mtDNA damage and help elucidate the relative roles of initial mtDNA versus nuclear DNA damage and of pathways that amplify their respective effects. Ongoing and planned developments of PARTRAC include coupling with a radiation transport code and track-structure based calculations of cell killing for RBE studies on macroscopic scales within a mixed ion field. [1] Friedland, Dingfelder et al. (2011): "Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC", Mutat. Res. 711, 28-40 [2] Friedland et al. (2013): "Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation", Mutat. Res. 756, 213-223 [3] Schmid, Friedland et al. (2015): "Sub-micrometer 20 MeV protons or 45 MeV lithium spot irradiation enhances yields of dicentric chromosomes due to clustering of DNA

  13. Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation

    Science.gov (United States)

    Wu, Pengcheng; Song, Xianyin; Si, Shuyao; Ke, Zunjian; Cheng, Li; Li, Wenqing; Xiao, Xiangheng; Jiang, Changzhong

    2018-05-01

    The metal-oxide semiconductor TiO2 shows enormous potential in the field of photoelectric detection; however, UV-light absorption only restricts its widespread application. It is considered that nitrogen doping can improve the visible light absorption of TiO2, but the effect of traditional chemical doping is far from being used for visible light detection. Herein, we dramatically broadened the absorption spectrum of the TiO2 nanowire (NW) by nitrogen ion implantation and apply the N-doped single TiO2 NW to visible light detection for the first time. Moreover, this novel strategy effectively modifies the surface states and thus regulates the height of Schottky barriers at the metal/semiconductor interface, which is crucial to realizing high responsivity and a fast response rate. Under the illumination of a laser with a wavelength of 457 nm, our fabricated photodetector exhibits favorable responsivity (8 A W-1) and a short response time (0.5 s). These results indicate that ion implantation is a promising method in exploring the visible light detection of TiO2.

  14. Fragment formation in GeV-energy proton and light heavy-ion induced reactions

    International Nuclear Information System (INIS)

    Murakami, T.; Haga, M.; Haseno, M.

    2002-01-01

    We have investigated similarities and differences among the fragment formation processes in GeV-energy light-ion and light heavy-ion induced reactions. We have newly measured inclusive and exclusive energy spectra of intermediate mass fragments (3 ≤ Z ≤ 30; IMFs) for 8-GeV 16 O and 20 Ne and 12-GeV 20 Ne induced target multifragmentations (TMFs) in order to compare them with those previously measured for 8- and 12-GeV proton induced TMFs. We fond noticeable difference in their spectrum shapes and magnitudes but all of them clearly indicate the existence of sideward-peaked components, indicating fragment formations are mainly dictated not by a incident energy per nucleon but by a total energy of the projectile. (author)

  15. Nanocavity formation processes in MgO(100) by light ion (D, He, Li) and heavy ion (Kr, Cu, Au) implantation

    NARCIS (Netherlands)

    Veen, A. van; Fedorov, A.V.; Schut, H.; Labohm, F.; Kooi, B.J.; Hosson, J.Th.M. De

    2002-01-01

    In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a

  16. Low-level rf system for the AGS Light Ion Program

    International Nuclear Information System (INIS)

    Kovarik, V.; Ahrens, L.; Barton, D.S.; Frankel, R.; Otis, A.; Pope, D.; Pritsker, M.; Raka, E.; Warkentien, R.

    1987-01-01

    The new low level rf system for the light ion acceleration program features direct digital control of a phase continuous rf synthesizer clocked by finite changes in the B field. The system, its operation and testing are described. The system covers the complete rf frequency range and switches over from single cavity acceleration to multiple cavity acceleration with no beam loss. It also switches from the programmed drive to the normal bootstrap system

  17. Measuring the radial density distribution of light emission around the track of fast ions in nitrogen

    International Nuclear Information System (INIS)

    Ibach, T.

    1983-01-01

    For analysing the emission and stopping of ionization electrons (σ-electrons) emitted by fast ions passing through a gas, the radial density distribution of the light emission of the (0,0) transition of two optical bands in nitrogen have been measured. The systems selected for the epxeriments are the 2nd positive system (2.PS) at 337.1 nm primarily excited by low-energy electrons of about 20 eV, and the first negative system (1.NS) at 391.4 nm excited by faster electrons and simultaneous ionization. The equipment developed for the experiments records the light emission with a telescope-type optical arrangement including interference filters, allowing high local resolution and dynamics of the measured range. The measurements have been carried out at pressures between 0.133 and 13.3 mbar, using photons of energies ranging from 270 keV to 2.8 MeV, helium 3 beams of 270 keV/u and 500 keV/u, and neon beams of 270 keV/u. Abel's inversion applied to the distance functions allows calculation of the spatial light emission density which is normalized for a gas density of 1 g/cm 3 . The profiles of the two bands indicate that the σ-electron spectrum gets harder in outward direction. Next to the beam the impact density decreases faster with increasing ion energy than the stopping power (increasing interaction range of the σ-electrons). With photon beams, about half of the whole light emission in the 1. NS, and of the ionization, is induced by primary interactions of the ion beam. This proportion decreases at constant energy per nucleon with increasing atomic number of the ions as compared with the σ-electrons. The primary σ-emission gets harder with higher atomic numbers. (orig./HP) [de

  18. A semi-analytical model of biological effectiveness for treatment planning in light ion radiotherapy

    Czech Academy of Sciences Publication Activity Database

    Kundrát, Pavel

    2007-01-01

    Roč. 34, č. 6 (2007), s. 2654-2654 ISSN 0094-2405. [AAPM Annual Meeting. Minneapolis, 22.07.2007-26.07.2007] R&D Projects: GA ČR GA202/05/2728 Institutional research plan: CEZ:AV0Z10100502 Keywords : treatment planning * light-ion therapy * radiobiological models Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.198, year: 2007

  19. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions

    Czech Academy of Sciences Publication Activity Database

    Kundrát, Pavel

    2006-01-01

    Roč. 51, - (2006), s. 1185-1199 ISSN 0031-9155 R&D Projects: GA ČR GA202/05/2728 Institutional research plan: CEZ:AV0Z10100502 Keywords : biological effects of ionizing particles * cell inactivation * modelling * protons * light ions * hadron radiotherapy Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.873, year: 2006

  20. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy

    Czech Academy of Sciences Publication Activity Database

    Kundrát, Pavel

    2007-01-01

    Roč. 52, č. 23 (2007), s. 6813-6830 ISSN 0031-9155 R&D Projects: GA ČR GA202/05/2728 Institutional research plan: CEZ:AV0Z10100502 Keywords : Bragg peak * light ions * hadron * hadron radiotherapy * biological effectiveness * treatment planning Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.528, year: 2007

  1. Light-Ion Production in the Interaction of 96 MeV Neutrons with Silicon

    International Nuclear Information System (INIS)

    Tippawan, U.; Dangtip, S.; Pomp, S.; Atac, A.; Bergenwall, B.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Nilsson, L.; Elmgren, K.; Olsson, N.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Corcalciuc, V.; Watanabe, Y.

    2005-01-01

    Radiation effects induced by terrestrial cosmic rays in microelectronics, on board aircrafts as well as at sea level, have recently attracted much attention. The most important particle radiation is due to spallation neutrons, created in the atmosphere by cosmic-ray protons. When, e.g., an electronic memory circuit is exposed to neutron radiation, charged particles can be produced in a nuclear reaction. The charge released by ionization can cause a flip of the memory content in a bit, which is called a single-event upset (SEU). This induces no hardware damage to the circuit, but unwanted re-programming of memories, CPUs, etc., can have consequences for the reliability, and ultimately also for the safety of the system.Data on energy and angular distributions of the secondary particles produced by neutrons in silicon nuclei are essential input for analyses and calculation of SEU rate. In this work, double-differential cross sections of inclusive light-ion (p, d, t, 3He and α) production in silicon, induced by 96 MeV neutrons, are presented. Energy distributions are measured at eight laboratory angles from 20 deg. to 160 deg. in steps of 20 deg. Deduced energy-differential and production cross sections are reported as well. Experimental cross sections are compared to theoretical reaction model calculations and existing experimental data in the literature

  2. High-energy elastic recoil detection heavy ions for light element analysis

    International Nuclear Information System (INIS)

    Goppelt-Langer, P.; Yamamoto, S.; Takeshita, H.; Aoki, Y.; Naramoto, H.

    1994-01-01

    The detection of light and medium heavy elements in not homogeneous solids is a severe problem in ion beam analysis. Heavy elements can be detected by the well established Rutherford backscattering technique (RBS). In a homogeneous host material most impurities can be easily analyzed by secondary ion mass spectroscopy (SIMS). Some isotopes ( 3 He, 6 Li, 10 B) can be measured by nuclear reaction analysis (NRA) using thermal neutrons inducing (n, p) or (n, α) reactions. Others can be detected by energetic ion beams by nuclear reactions (e.g. 15 N( 1 H, αγ) 12 C for analysis of hydrogen). A high content of H, D or T can be also determined by elastic recoil detection using an energetic He beam. The latter technique has been developed to a universal method for detection of light and heavy elements in any target, using a high energetic heavy ion beam and a detector system, which is able to identify the recoils and delivers energy and position of the particles. (author)

  3. Influence of generator structure on pinch reflex diode operation for light ion production

    International Nuclear Information System (INIS)

    Bernard, A.; Bourgeois, C.; Camarcat, N.; Tournier, B.

    1983-01-01

    Light ion beams with characteristics 1 MV, 185 kA, 100 ns FWHM have been accelerated in a pinch-reflex diode driven by the SIDONIX II generator pulsed in positive polarity. The diode impedance of 2 ohms remains higher than the water line impedance of 1.3 ohms, and consequently, the ion efficiency is limited to 25%. This effect is attributed to the slow current rise time and fast anode plasma expansion since the machine does not have an intermediate store to reduce the 100 ns FWHM power pulse. Published data on Hydra, Reiden IV, Gamble II A support this hypothesis. Preliminary results of focusing experiments, when the beam is injected into a 1 Torr air cell downstream the cathode, indicate that 60 kA end up on a 3 cm diameter target. These results should be improved by adding an intermediate store to the generator, giving a 1.3 TW, 45 ns FWHM power pulse for 180 kJ of stored energy in the Marx. We expect that the increase in diode electrical power will lead to an increase in total ion current. For GAMBLE II A, 500 kA of light ion are extracted when the diode power reaches 1.4 TW, for equivalent Marx energies

  4. Influence of excitation light on the frequency upconversion of trivalent lanthanide ions

    International Nuclear Information System (INIS)

    Fu Zhenxing; Zheng Hairong; Tian Yu; Zhang Zhenglong; Cui Min

    2010-01-01

    The upconversion mechanisms of the 1 D 2 level of Tm 3+ ion under different excitation lights were analyzed. The influences of the excitation lights on the upconversion process, nonradiative relaxation from level 3 F 2 to 3 H 4 and fluorescence properties were investigated. It was shown that the one-color cw excitation could affect the profile of fluorescence, while information of the nonradiative relaxation could not be extracted. The nonradiative relaxation rate measured with the one-color pulsed excitation in crystal phase was in agreement with what was obtained in the free-standing nanometer crystal particles through the two-color pulsed excitation. The characteristics of the fluorescent emissions of Tm 3+ ions doped in various host materials were also discussed under different excitation lights. As a result of the discussion, a possible way to obtain nonradiative relaxation rate directly from a spectroscopic method in frequency domain was proposed. The study can be extended to other trivalent lanthanide ions that have upconversion through excited state absorption.

  5. Upgrade of the facility EXOTIC for the in-flight production of light Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, M., E-mail: marco.mazzocco@pd.infn.it [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Torresi, D.; Strano, E. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Boiano, A. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Boiano, C. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Costa, L. [INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, PD (Italy); Glodariu, T. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania); Guglielmetti, A. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica,Università di Milano, Via Celoria 16, I-20133 Milano (Italy); La Commara, M. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Dipartimento di Scienze Fisiche, Università di Napoli, Via Cinthia, I-80126 Napoli (Italy); Parascandolo, C. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Pierroutsakou, D. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Signorini, C.; Soramel, F. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Stroe, L. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania)

    2013-12-15

    Highlights: • Production of in-flight Radioactive Ion Beams via two-body reactions. • Development of a cryogenic gas target. • Event-by-event tracking via Parallel Plate Avalanche Counters (PPACs). -- Abstract: The facility EXOTIC for the in-flight production of light weakly-bound Radioactive Ion Beams (RIBs) has been operating at INFN-LNL since 2004. RIBs are produced via two-body reactions induced by high intensity heavy-ion beams impinging on light gas targets and selected by means of a 30°-dipole bending magnet and a 1-m long Wien filter. The facility has been recently upgraded (i) by developing a cryogenic gas target, (ii) by replacing the power supplies of the middle lenses of the two quadrupole triplets, (iii) by installing two y-steerers and (iv) by placing two Parallel Plate Avalanche Counters upstream the secondary target to provide an event-by-event reconstruction of the position hit on the target. So far, RIBs of {sup 7}Be, {sup 8}B and {sup 17}F in the energy range 3–5 MeV/u have been produced with intensities about 3 × 10{sup 5}, 1.6 × 10{sup 3} and 10{sup 5} pps, respectively. Possible light RIBs (up to Z = 10) deliverable by the facility EXOTIC are also reviewed.

  6. Elastic forward analysis using sup 7 Li ions A useful tool for H and light elements determination

    CERN Document Server

    Romero, S; Murillo, G; Berdejo, H M

    2002-01-01

    Films of CN sub x /Si, TiN sub x /AISI 304 and AlO sub x /Si were analyzed with sup 7 Li ions from 4.0 to 4.5 MeV and an experimental arrangement that, through detection of scattered projectiles and recoils by a single detector, allows quantification of H, light elements and heavier ones. A discussion is presented of the capabilities of Rutherford backscattering spectrometry (RBS) and conventional elastic recoil detection analysis (ERDA) compared to elastic forward analysis.

  7. A review on recent light particle correlation data from heavy ion collisions at intermediate and low energies

    International Nuclear Information System (INIS)

    Ardouin, D.

    1996-01-01

    A review of recent two-particle interferometry data for heavy-ion collisions in the domain of energy between ten and a few hundreds of MeV/nucleon is presented. Not only identical particles but unlike particle correlations have been used successfully as a probe for space-time dynamics of the collision process. Due to the availability of new dedicated charged particles or photon multi-detectors, the field of particle interferometry is moving to a good level of quantitative description: excitation energy and impact parameter dependences are now provided which should stimulate additional theoretical calculations for two-particle cross sections and emission of light fragments. (author)

  8. Precise atomic-scale investigations of material sputtering process by light gas ions in pre-threshold energy region

    CERN Document Server

    Suvorov, A L

    2002-01-01

    Foundation and prospects of the new original technique of the sputtering yield determination of electro-conducting materials and sub-atomic layers on their surface by light gas ions the pre-threshold energy region (from 10 to 500 eV) are considered. The technique allows to identify individual surface vacancies, i.e., to count individual sputtered atoms directly. A short review of the original results obtained by using the developed techniques is given. Data are presented and analyzed concerning energy thresholds of the sputtering onset and energy dependences of sputtering yield in the threshold energy region for beryllium, tungsten, tungsten oxide, alternating tungsten-carbon layers, three carbon materials as well as for sub-atomic carbon layers on surface of certain metals at their bombardment by hydrogen, deuterium and/or helium ions

  9. Are nanoscale ion aggregates present in aqueous solutions of guanidinium salts?

    Science.gov (United States)

    Hunger, Johannes; Niedermayer, Stefan; Buchner, Richard; Hefter, Glenn

    2010-11-04

    A detailed investigation using broadband dielectric relaxation spectroscopy (DRS) has been made of the aqueous solutions of guanidinium chloride and carbonate, GdmCl(aq) and Gdm₂CO₃(aq), at 25 °C. The spectra indicate that Gdm(+) ions, C(NH₂)₃(+), do not bind strongly to water nor are they hydrophobically hydrated; rather they appear to have a most unusual ability to dissolve in water without altering its dynamics. Although DRS is particularly sensitive to the presence of ion pairs, only weak ion pairing was detected in Gdm₂CO₃(aq) solutions and none at all in GdmCl(aq). Surprisingly, no evidence was found for the existence of the higher order homo- and heteroionic nanoscale aggregates that have been identified in recent years by Mason and co-workers using molecular dynamics simulations and neutron diffraction. Possible reasons for this discrepancy are discussed. The present DR spectra and other solution properties of GdmCl(aq) and Gdm₂CO₃(aq), such as apparent molar volumes and electrical conductivities, are shown to have strong similarities to those of the corresponding Na+ salts. However, such solutions also differ remarkably from their Na(+) analogues (and all other simple electrolytes in aqueous solution) in that their average water relaxation times correlate strongly with their bulk viscosities. The biological implications of the present results are briefly discussed.

  10. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  11. Atomic spectroscopy on fusion relevant ions and studies of light impurities in the JET tokamak

    International Nuclear Information System (INIS)

    Tunklev, M.

    1999-03-01

    The spectrum and energy levels of C IV and the 3l-4l system of the Mg-like ions in the iron group elements have been investigated. This has led to several hundred identified transitions, many of them previously unknown. Using the Charge Exchange Diagnostic system at JET, ion temperatures, rotation velocities and densities have been derived from visible spectroscopic measurements on fully ionised light impurities, such as He, C, N and Ne. The existence of plume contribution from beam produced hydrogen-like ions has been proven beyond any doubt to affect the deduction of the active charge exchange signal of He II. In the case of C VI the plume signal was estimated to be at least a factor of five lower than the active charge exchange signal. Line integrated passive charge exchange emission between neutral background atoms and fully stripped impurity ions has been investigated and modelled. When the synthetic spectrum is fitted into the experimentally detected spectra the neutral background density can be deduced. The importance of including background atoms (H, D and T) as charge exchange donors, not only in state 2s, but also in state 1s, has shown to be crucial in high temperature shots. Transport of light impurities has been studied with gas puff injections into steady state H-mode plasmas. The results suggest that light impurities are transported as described by the neo-classical Pfirsch-Schlueter regime at the edge, whilst in the centre, sawtoothing, preferably to Banana transport, is mixing the plasma and increases the measured values on the diffusion. For the peaking of impurities in a steady state plasma an anomalous treatment was more in agreement with the experimental data. Certain confinement information, previously predicted theoretically as a part of the peaking equation, has been experimentally verified

  12. Advancements in ion beam figuring of very thin glass plates (Conference Presentation)

    Science.gov (United States)

    Civitani, M.; Ghigo, M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Cotroneo, V.; DeRoo, C. T.; Schwartz, E. D.; Reid, P. B.

    2017-09-01

    The high-quality surface characteristics, both in terms of figure error and of micro-roughness, required on the mirrors of a high angular resolution x-ray telescope are challenging, but in principle well suited with a deterministic and non-contact process like the ion beam figuring. This process has been recently proven to be compatible even with very thin (thickness around 0.4mm) sheet of glasses (like D263 and Eagle). In the last decade, these types of glass have been investigated as substrates for hot slumping, with residual figure errors of hundreds of nanometres. In this view, the mirrors segments fabrication could be envisaged as a simple two phases process: a first replica step based on hot slumping (direct/indirect) followed by an ion beam figuring which can be considered as a post-fabrication correction method. The first ion beam figuring trials, realized on flat samples, showed that the micro-roughness is not damaged but a deeper analysis is necessary to characterize and eventually control/compensate the glass shape variations. In this paper, we present the advancements in the process definition, both on flat and slumped glass samples.

  13. Ion-induced ionization and capture cross sections for DNA nucleobases impacted by light ions

    International Nuclear Information System (INIS)

    Champion, Christophe; Hanssen, Jocelyn; Galassi, Mariel E; Fojón, Omar; Rivarola, Roberto D; Weck, Philippe F

    2012-01-01

    Two quantum mechanical models (CB1 and CDW-EIS) are here presented for describing electron ionization and electron capture induced by heavy charged particles in DNA bases. Multiple differential and total cross sections are determined and compared with the scarce existing experimental data.

  14. Imaging and modeling of collagen architecture in living tissue with polarized light transfer (Conference Presentation)

    Science.gov (United States)

    Ramella-Roman, Jessica C.; Stoff, Susan; Chue-Sang, Joseph; Bai, Yuqiang

    2016-03-01

    The extra-cellular space in connective tissue of animals and humans alike is comprised in large part of collagen. Monitoring of collagen arrangement and cross-linking has been utilized to diagnose a variety of medical conditions and guide surgical intervention. For example, collagen monitoring is useful in the assessment and treatment of cervical cancer, skin cancer, myocardial infarction, and non-arteritic anterior ischemic optic neuropathy. We have developed a suite of tools and models based on polarized light transfer for the assessment of collagen presence, cross-linking, and orientation in living tissue. Here we will present some example of such approach applied to the human cervix. We will illustrate a novel Mueller Matrix (MM) imaging system for the study of cervical tissue; furthermore we will show how our model of polarized light transfer through cervical tissue compares to the experimental findings. Finally we will show validation of the methodology through histological results and Second Harmonic imaging microscopy.

  15. The Quadrumafios electron cyclotron resonance ion source: presentation and analysis of the results

    International Nuclear Information System (INIS)

    Girard, A.; Briand, P.; Gaudart, G.; Klein, J.P.; Bourg, F.; Debernardi, J.; Mathonnet, J.M.; Melin, G.; Su, Y.

    1993-01-01

    The Quadrumafios electron cyclotron resonance ion source (ECRIS) has been especially designed to permit physical studies of the plasma; this paper describes the source itself (which has been operated at 10 GHz in a first step), its preliminary performances, and the different diagnostics involved, which mainly concern the electron population (ECE, X rays, diamagnetism, microwave interferometer, and electron analyser). The results are presented and discussed: there is of course a close relationship between the parameters of the plasma and the performances of the source; this point will be discussed in the article. (authors). 5 refs., 9 figs

  16. Systematic model calculations of the hyperfine structure in light and heavy ions

    CERN Document Server

    Tomaselli, M; Nörtershäuser, W; Ewald, G; Sánchez, R; Fritzsche, S; Karshenboim, S G

    2003-01-01

    Systematic model calculations are performed for the magnetization distributions and the hyperfine structure (HFS) of light and heavy ions with a mass close to A ~ 6 208 235 to test the interplay of nuclear and atomic structure. A high-precision measurement of lithium-isotope shifts (IS) for suitable transition, combined with an accurate theoretical evaluation of the mass-shift contribution in the respective transition, can be used to determine the root-mean-square (rms) nuclear-charge radius of Li isotopes, particularly of the halo nucleus /sup 11/Li. An experiment of this type is currently underway at GSI in Darmstadt and ISOLDE at CERN. However, the field-shift contributions between the different isotopes can be evaluated using the results obtained for the charge radii, thus casting, with knowledge of the ratio of the HFS constants to the magnetic moments, new light on the IS theory. For heavy charged ions the calculated n- body magnetization distributions reproduce the HFS of hydrogen-like ions well if QED...

  17. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration

    Science.gov (United States)

    2016-01-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  18. Light Video Game Play is Associated with Enhanced Visual Processing of Rapid Serial Visual Presentation Targets.

    Science.gov (United States)

    Howard, Christina J; Wilding, Robert; Guest, Duncan

    2017-02-01

    There is mixed evidence that video game players (VGPs) may demonstrate better performance in perceptual and attentional tasks than non-VGPs (NVGPs). The rapid serial visual presentation task is one such case, where observers respond to two successive targets embedded within a stream of serially presented items. We tested light VGPs (LVGPs) and NVGPs on this task. LVGPs were better at correct identification of second targets whether they were also attempting to respond to the first target. This performance benefit seen for LVGPs suggests enhanced visual processing for briefly presented stimuli even with only very moderate game play. Observers were less accurate at discriminating the orientation of a second target within the stream if it occurred shortly after presentation of the first target, that is to say, they were subject to the attentional blink (AB). We find no evidence for any reduction in AB in LVGPs compared with NVGPs.

  19. Minibeam Therapy With Protons and Light Ions: Physical Feasibility and Potential to Reduce Radiation Side Effects and to Facilitate Hypofractionation

    Energy Technology Data Exchange (ETDEWEB)

    Dilmanian, F. Avraham, E-mail: avraham.dilmanian@stonybrook.edu [Departments of Radiation Oncology, Neurology, and Radiology, Stony Brook University Medical Center, Stony Brook, New York (United States); Eley, John G. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Krishnan, Sunil [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-06-01

    Purpose: Despite several advantages of proton therapy over megavoltage x-ray therapy, its lack of proximal tissue sparing is a concern. The method presented here adds proximal tissue sparing to protons and light ions by turning their uniform incident beams into arrays of parallel, small, or thin (0.3-mm) pencil or planar minibeams, which are known to spare tissues. As these minibeams penetrate the tissues, they gradually broaden and merge with each other to produce a solid beam. Methods and Materials: Broadening of 0.3-mm-diameter, 109-MeV proton pencil minibeams was measured using a stack of radiochromic films with plastic spacers. Monte Carlo simulations were used to evaluate the broadening in water of minibeams of protons and several light ions and the dose from neutron generated by collimator. Results: A central parameter was tissue depth, where the beam full width at half maximum (FWHM) reached 0.7 mm, beyond which tissue sparing decreases. This depth was 22 mm for 109-MeV protons in a film stack. It was also found by simulations in water to be 23.5 mm for 109 MeV proton pencil minibeams and 26 mm for 116 MeV proton planar minibeams. For light ions, all with 10 cm range in water, that depth increased with particle size; specifically it was 51 mm for Li-7 ions. The ∼2.7% photon equivalent neutron skin dose from the collimator was reduced 7-fold by introducing a gap between the collimator and the skin. Conclusions: Proton minibeams can be implemented at existing particle therapy centers. Because they spare the shallow tissues, they could augment the efficacy of proton therapy and light particle therapy, particularly in treating tumors that benefit from sparing of proximal tissues such as pediatric brain tumors. They should also allow hypofractionated treatment of all tumors by allowing the use of higher incident doses with less concern about proximal tissue damage.

  20. Projectile electron loss in collisions of light charged ions with helium

    International Nuclear Information System (INIS)

    Yin Yong-Zhi; Chen Xi-Meng; Wang Yun

    2014-01-01

    We investigate the single-electron loss processes of light charged ions (Li 1+,2+ , C 2+,3+,5+ , and O 2+,3+ ) in collisions with helium. To better understand the experimental results, we propose a theoretical model to calculate the cross section of projectile electron loss. In this model, an ionization radius of the incident ion was defined under the classical over-barrier model, and we developed ''strings'' to explain the processes of projectile electron loss, which is similar with the molecular over-barrier model. Theoretical calculations are in good agreement with the experimental results for the cross section of single-electron loss and the ratio of double-to-single ionization of helium associated with one-electron loss. (atomic and molecular physics)

  1. On the treatment of light-ion electronic stopping in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Schiwietz, G. (Hahn-Meitner-Inst. Berlin GmbH, Div., FD (Germany)); Grande, P.L. (Hahn-Meitner-Inst. Berlin GmbH, Div., FD (Germany))

    1994-05-01

    A review is given on single-electron mechanisms and the corresponding theoretical approaches describing the electronic energy-transfer processes of light ions in gases and solids. Special emphasis is given to a discussion on the connection between exact Bloch-wave treatments and free-atom approximations. In the case of solids, perturbation theory is applied to the stopping of low-energy ions in the alkaline metals Li and Na. These calculations include Bloch wavefunctions of the Wigner-Seitz type obtained from a Hartree-Fock-Slater calculation and allow for a prediction of the mean energy loss under channeling conditions. Results of the most widely used local-density approximation are compared to data of our more complete perturbative treatment. Comparison is also made with recent LCAO calculations. (orig.)

  2. Eu/Tb ions co-doped white light luminescence Y2O3 phosphors

    International Nuclear Information System (INIS)

    Tu Dong; Liang Yujun; Liu Rong; Li Daoyi

    2011-01-01

    Y 2 O 3 :Eu 3+ , Tb 3+ phosphors with white emission are prepared with different doping concentration of Eu 3+ and Tb 3+ ions and synthesizing temperatures from 750 to 950 deg. C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu 3+ and Tb 3+ co-doped Y 2 O 3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu 3+ and two at 481 and 541 nm originate from Tb 3+ , under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu 3+ and Tb 3+ ions were induced into the Y 2 O 3 lattice and the energy transfer from Tb 3+ →Eu 3+ ions in these phosphors was found. The Commission International de l'Eclairage (CIE) chromaticity shows that the Y 2 O 3 :Eu 3+ , Tb 3+ phosphors can obtain an intense white emission. - Highlights: → Novel phosphors Y 2 O 3 :Eu 3+ , Tb 3+ have been synthesized by co-precipitation method. → Samples emit white light with excellent color coordinates under UV excitation. → Luminescence color could be changed by varying the excitation wavelength. → Energy transfer from Tb 3+ →Eu 3+ ions in these phosphors was found.

  3. How Can a Lighting Designer Use Light in Buildings For Well-Being? - 'Presented as invited speaker'

    DEFF Research Database (Denmark)

    Christoffersen, Jens

    design. Summary: Adequate lighting, both natural and artificial, is important as part of a person's well-being. A description of a person's well-being may be context-specific depending on the building design and include a number of parameters such as daylight and sunlight penetration, window views...... and content of view, enclosed or open space, crowding, visual and acoustical privacy, personal control of ambient conditions etc. Successful daylighting requires trade-offs and optimisation between competing design aspects by skilful integration of the facade layout with the space configuration and the choice...... of lighting system used.  Surveys consistently show that people prefer daylight over electric light, a desire for windows and view is well-established, and daylight as primary source is believed to be more healthful. Also, work spaces often consist of changing visual tasks, and thereby different lighting...

  4. Study of the continuum in heavy ion inelastic spectra by light particle coincidence measurements

    International Nuclear Information System (INIS)

    Scarpaci, J.A.; Blumenfeld, Y.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Roynette, J.C.; Suomijarvi, T.; Van der Woude, A.; Alamanos, N.; Fernandez, B.; Gillibert, A.; Van der Woude, A.; Lepine, A.

    1990-01-01

    The continuum in heavy ion inelastic spectra contains, in addition to the excitation of target nucleus states, contributions from pick-up break-up and knock out reactions. In the case of the 40 Ca + 40 Ca collision at 50 MeV/N these contributions are separated and their relative importance assessed by the measurement of light charged particles in coincidence with the inelastically scattered fragments. The pick-up break-up contribution is found to make up less than half of the cross section at high excitation energies, conversely, the knock out process is important

  5. A light-matter quantum interface : ion-photon entanglement and state mapping

    International Nuclear Information System (INIS)

    Stute, A.

    2012-01-01

    Quantum mechanics promises to have a great impact on computation. Motivated by the long-term vision of a universal quantum computer that speeds up certain calculations, the field of quantum information processing has been growing steadily over the last decades. Although a variety of quantum systems consisting of a few qubits have been used to implement initial algorithms successfully, decoherence makes it difficult to scale up these systems. A powerful technique, however, could surpass any size limitation: the connection of individual quantum processors in a network. In a quantum network, ''flying'' qubits coherently transfer information between the stationary nodes of the network that store and process quantum information. Ideal candidates for the physical implementation of nodes are single atoms that exhibit long storage times; optical photons, which travel at the speed of light, are ideal information carriers. For coherent information transfer between atom and photon, a quantum interface has to couple the atom to a particular optical mode. This thesis reports on the implementation of a quantum interface by coupling a single trapped 40 Ca+ ion to the mode of a high-finesse optical resonator. Single intra-cavity photons are generated in a vacuum-stimulated Raman process between two atomic states driven by a laser and the cavity vacuum field. In this Raman process, all Zeeman substates of the atom are spectroscopically resolved by tuning the frequency of the laser; via addressing specific atomic states, the polarization of the generated cavity photon is controlled, defining the photonic qubit. The electronic state of the ion is initialized, coherently manipulated, and read out via driving the quadrupole transition. With these techniques in hand, we have demonstrated two protocols for quantum communication. The first protocol, ion-photon entanglement, is regarded as a key resource of distributed quantum information processing. In our realization, we control both

  6. Multifragmentation of nuclei induced by relativistic light ions. FAZA-2 project

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1996-01-01

    In this work the project of the further development of 4π-multidetector device FAZA-2 is represented. The device is designed for the research of the highly excited nuclei decay that appears in the interactions of the light relativistic ions (p, 4 He, 12 C) with a heavy target (Au). Here is the review of new data obtained with the working FAZA device. Additional development of the functional possibilities is discussed, the ones that allow: to analyze the acquainted quantities in dependence of the impact parameter; to research the correlation function within the small angle; to measure the nuclear temperature of the nuclei-spectator. For these purposes in the working device the following parts will be embedded: light charged particles multiplicity detector, telescope module that consists of 32 ΔExE-telescope-spectrometer, precision telescope-spectrometer. (author). 8 refs., 11 figs

  7. Proceedings of study meeting on microscopic and phenomenological research of interaction for light heavy-ion systems

    International Nuclear Information System (INIS)

    1991-06-01

    The Research Center for Nuclear Physics study meeting 'Microscopic and phenomenological research of interaction for light heavy-ion systems was held on March 7-9, 1990 as the study meeting in the second half of 1990, and 25 researchers took part in it. As the background of holding this study meeting, the fact that recently the rainbow scattering due to nuclear force was discovered experimentally in 16 O- 16 O system, and phenomenologically it was explained only by deep inter-nucleus potential. This should be evaluated as an important foothold for the research on the interaction for light heavy-ion systems and nuclear reaction mechanism. Accordingly, most of the papers presented this time were those related to the inter-nucleus potential and nuclear reaction mechanism. Also the development of theoretical analysis method was carried out and reported. Further, recently the experimental study on the structure and reaction of the neutron rich nucleus has advanced, and the theoretical research related to this topic was reported. (K.I.)

  8. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    Science.gov (United States)

    Piotrowicz, P. A.; Caneses, J. F.; Showers, M. A.; Green, D. L.; Goulding, R. H.; Caughman, J. B. O.; Biewer, T. M.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    We present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displays characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.

  9. The Clinical Presentation and Management of Systemic Light-Chain Amyloidosis in China.

    Science.gov (United States)

    Huang, Xiang-Hua; Liu, Zhi-Hong

    2016-04-01

    Amyloidosis includes a group of diseases characterized by the extracellular deposition of various fibrillary proteins that can autoaggregate in a highly abnormal fibrillary conformation. The amyloid precursor protein of systemic light-chain (AL) amyloidosis is comprised of monoclonal light chains that are due to plasma cell dyscrasia. The clinical presentation of patients with AL amyloidosis varies from patient to patient. Current treatment strategies target the clone in order to decrease the production of the pathologic light chains. Recent advances in therapy have helped many patients with AL amyloidosis achieve hematologic and organ responses. AL amyloidosis is the most common type of systemic amyloidosis in China with increasing morbidity and a high mortality rate. The clinical presentation of AL amyloidosis is variable, and the median overall survival was found to be 36.3 months. The disease prognosis and risk stratification are linked to serialized measurement of cardiac biomarkers and free light chains. The treatment of AL amyloidosis is mainly based on chemotherapy and autologous hematopoietic stem cell transplantation (ASCT). The use of novel agents (thalidomide, lenalidomide, and bortezomib) alone and in combination with steroids and alkylating agents has shown efficacy and continues to be explored. AL amyloidosis is the most common type of systemic amyloidosis in China with increasing morbidity and a high mortality rate. The lack of prospective clinical trials using the current therapies is a challenge for evidence-based decision making concerning the treatment of AL amyloidosis. (1) AL amyloidosis is the most prevalent type of amyloidosis accounting for 65% of the amyloidosis-diagnosed patients in the UK and for 93% of the amyloidosis-diagnosed patients in China. The predisposition of men over women to develop AL amyloidosis might be higher in China than in Western countries (2:1 vs. 1.3:1). Both in the East and West, incidence increases with age. At

  10. Types of organic materials present in CEGB waste streams and possible encapsulation processes for organic ion-exchange materials

    International Nuclear Information System (INIS)

    Haighton, A.P.

    1988-01-01

    The organic composition of low and intermediate-level radioactive wastes is discussed. Work underway in the development of immobilising binders for organic ion exchange resins found in radioactive wastes and in the encapsulation of these ion exchangers is presented. (U.K.)

  11. Present status and perspectives of heavy ion studies on cells and organisms

    International Nuclear Information System (INIS)

    Yang, T.C.; Craise, L.M.; Mei Mantong.

    1992-01-01

    Biomedical research of heavy ion radiation has been an unique and highly active field in past two decades. Through these intensive research efforts, significant amount of quantitative and qualitative data, which provide insights into biological effects, have been obtained. RBE and LET relationship has been well established for cell inactivation, somatic mutation, and cancer induction. In addition, the effects of oxygen and cell cycle on radiosensitivity of mammalian cells, exposed to heavy ions, have been examined. In spite of such large quantitative information, there is only very limited understanding of the mechanisms of these effects of heavy ions. It remains to be discovered how heavy ions cause various biological effects and why heavy ions can be so effective in producing these effects. As the understanding of molecular effects of heavy ion increases, the potential use of heavy ions in probing molecular mechanism(s) of mutation and neoplastic cell transformation becomes more evident. The exciting progress of heavy ion research in past decades only leads to more challenging questions. Answers for these interesting questions can be obtained by developing new heavy ion facilities for single particle irradiation, by further studies with modern molecular biology techniques, and by innovative approaches. Knowledge from biomedical heavy ion research will not only enhance our basic understanding of fundamental biological processes, such as repair, cell growth control, differentiation, etc., but also help in assessing health risk of space radiation and in improving animal and plant breeding. Research in heavy ion radiobiology is gradually growing from infant to mature stage. (author)

  12. Present status of the negative ion sources and injectors at JAERI tandem accelerator facility

    International Nuclear Information System (INIS)

    Minehara, E.; Yoshida, T.; Abe, S.

    1988-01-01

    The JAERI tandem accelerator began regular operation with the 350 kV negative ion jnjector and 3 kinds of nagative ion sources (Direct Extraction Duoplasmatron Ion Source, Heinickie Penning Ion Source, Negative Ion Sputter Source (Refocus-UNIS)) since 1982. An extension with the injector was constructed in 1984, (1) to increase reliability of all devices in the injector, (2) to exclude completely any unsafe operation in the injector, and (3) to tune several ion sources simultaneously, while a certain ion source is in operation. After the extended injector became available, we have been able to run the whole injector system very safely, steadily and effectively, and have had few troubles. Currently, the second injector has been constructed in order to obtain a full strength of resistance against any sudden troubles in the injector. Several other operational and developmental items will be discussed in the text briefly. (author)

  13. submitter Light Extraction From Scintillating Crystals Enhanced by Photonic Crystal Structures Patterned by Focused Ion Beam

    CERN Document Server

    Modrzynski, Pawel; Knapitsch, Arno; Kunicki, Piotr; Lecoq, Paul; Moczala, Magdalena; Papakonstantinou, Ioannis; Auffray, Etiennette

    2016-01-01

    “Photonic Crystals (PhC)” have been used in a variety of fields as a structure for improving the light extraction efficiency from materials with high index of refraction. In previous work we already showed the light extraction improvement of several PhC covered LYSO crystals in computer simulations and practical measurements. In this work, new samples are made using different materials and techniques which allows further efficiency improvements. For rapid prototyping of PhC patterns on scintillators we tested a new method using “Focused Ion Beam (FIB)” patterning. The FIB machine is a device similar to a “Scanning Electron Microscope (SEM)”, but it uses ions (mainly gallium) instead of electrons for the imaging of the samples' surface. The additional feature of FIB devices is the option of surface patterning in nano-scale which was exploited for our samples. Three samples using FIB patterning have been produced. One of them is a direct patterning of the extraction face of a 0.8×0.8×10 $mm^3$ LYS...

  14. Study and development of a new ECR source creating an intense light ions beam

    International Nuclear Information System (INIS)

    Nyckees, S.

    2012-01-01

    This thesis is in the context of study and design of a new ECR light ion source on LEDA (Laboratory of Research and Development of Accelerators - CEA Saclay), named ALISES (Advanced Light Ions Source Extraction System). As a first step, the magnetic, electrical and mechanical design of the new source is described. Then, simulations were performed to determine the reduction of emittance growth taking into account the reduction of the length of the LBE (Low Energy Beam Line) provided by the source ALISES. With this source, it's also possible to realize a study on the dimensions of the cylindrical plasma chamber. Simulations were performed to better understand the interaction between radiofrequency wave and plasma. Subsequently, experiments on the source ALISES helped highlight, understand and solve problems in the Penning discharges inside the accelerator column. Measurements performed on the plasma have yielded the assumption that the electrons are heated at the entrance of the plasma chamber and thermalized along its entire length to achieve an energy corresponding to the maximum of the ionization cross section for hydrogen. (author) [fr

  15. Serum levels of immunoglobulin free light chains in patients with chronic hepatitis C presenting cryoglobulinemia

    Directory of Open Access Journals (Sweden)

    Isabela S. Oliveira

    2014-11-01

    Full Text Available Hepatitis C virus (HCV infects B-lymphocytes, provokes cellular dysfunction and causes lymphoproliferative diseases such as cryoglobulinemia and non-Hodgkin's B-cell lymphoma. In the present study, we investigated the serum levels of kappa and lambda free light chains (FLC of immunoglobulins and the kappa/lambda FLC ratio in Brazilian patients with chronic HCV infection and cryoglobulinemia. We also analyzed the immunochemical composition of the cryoglobulins in these patients. Twenty-eight cryoglobulinemic HCV patients composed the target group, while 37 HCV patients without cryoglobulinemia were included as controls. The median levels of kappa and lambda FLC were higher in patients with cryoglobulinemia compared to controls (p = 0.001 and p = 0.003, respectively, but the kappa/lambda FLC ratio was similar in patients with and without cryoglobulinemia (p > 0.05. The median FLC ratio was higher in HCV patients presenting with advanced fibrosis of the liver compared to HCV patients without fibrosis (p = 0.004. Kappa and lambda FLC levels were strongly correlated with the IgA, IgG and IgM levels in the patients with cryoglobulinemia. In patients without cryoglobulinemia, the kappa FLC level was only correlated with the IgG level, whereas the lambda FLC were weakly correlated with the IgA, IgG and IgM levels. An immunochemical pattern of mixed cryoglobulins (MC, predominantly IgM, IgG, IgA and kappa light chain, was verified in these immune complexes. We concluded that HCV-infected patients presenting cryoglobulinemia have vigorous polyclonal B-lymphocyte activation due to chronic HCV infection and persistent immune stimulation.

  16. Deterministic control of the emission from light sources in 1D nanoporous photonic crystals (Conference Presentation)

    Science.gov (United States)

    Galisteo-López, Juan F.

    2017-02-01

    Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.

  17. LIBRA - a light ion beam inertial confinement fusion reactor conceptual design

    International Nuclear Information System (INIS)

    Moses, G.A.; Kulcinski, G.L.; Bruggink, D.

    1989-01-01

    The LIBRA light ion beam fusion commercial reactor study is a self-consistent conceptual design of a 330 MWe power plant with an accompanying economic analysis. Fusion targets are imploded by 4 MJ shaped pulses of 30 MeV Li ions at a rate of 3 Hz. The target gain is 80, leading to a yield of 320 MJ. The high intensity part of the ion pulse is delivered by 16 diodes through 16 separate z-pinch plasma channels formed in 100 torr of helium with trace amounts of lithium. The blanket is an array of porous flexible silicon carbide tubes with Li 17 Pb 83 flowing downward through them. These tubes (INPORT units) shield the target chamber wall from both neutron damage and the shock overpressure of the target explosion. The target chamber is a right circular cylinder, 8.7 meters in diameter. The target chamber is 'self-pumped' by the target explosion generated overpressure into a surge tank partially filled with liquid that surrounds the target chamber. This scheme refreshes the chamber at the desired 3 Hz frequency without excessive pumping demands. The blanket multiplication is 1.2 and the tritium breeding ratio is 1.4. The direct capital cost of LIBRA is estimated to be $2200/kWe. (author)

  18. The present state and perspectives of low-energy heavy ion biology

    International Nuclear Information System (INIS)

    Yuan Chengling; Yu Zengliang

    2004-01-01

    The interaction between low-energy ions and matter has been concerned rarely comparing to that of high-energy ions. It is even more unusual to find studies of the interaction of low-energy ions and complicated organisms. However, the discovery of bioeffects induced by ion beam implantation has opened a new branch in the field of ion beam applications in the life science--Low-energy Heavy Ion Biology. The mutagenic effect of low energy heavy ions was firstly reported in 1986 in rice. Since then, a damage mechanism involved in energy absorption, mass deposition, and charge exchange has been proposed. Accumulating evidence has indicated that these three factors are key determinants in the bioeffects induced by low energy heavy ions, which has opened new opportunities for mutational breeding, gene transferring, cell modification, and cell fusion. In recent years, the ion beam implantation technique has been widely applied in many fields, and increasing research interest in the field has been seen. The authors summarize recent advances in research on the role of low-energy ions in terms of the mechanisms and applications

  19. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.

    Science.gov (United States)

    Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei

    2013-05-22

    Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).

  20. Light-chain amyloidosis presenting with rapidly progressive submucosal hemorrhage of the stomach

    Directory of Open Access Journals (Sweden)

    Song-Yi Kim

    2016-04-01

    Full Text Available The gastrointestinal tract is frequently in involved light-chain (AL amyloidosis, but significant hemorrhagic complications are rare. A 71-year-old man presented to our hospital with dyspepsia and heartburn for 1 month. Gastroscopy revealed a large submucosal hematoma at the gastric fundus. Two days later, a follow-up gastroscopy indicated extensive expansion of the hematoma throughout the upper half of the stomach. The hematoma displayed ongoing expansion during the endoscopic examination, suggesting that rupture was imminent. Emergency total gastrectomy was performed, and amyloidosis was confirmed after examining the surgical specimen. Bone marrow examination revealed multiple myeloma, and serum immunoglobulin assay confirmed the diagnosis of myeloma-associated AL amyloidosis. At manuscript submission, the patient was doing well and was undergoing chemotherapy.

  1. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  2. Presentations

    International Nuclear Information System (INIS)

    2007-01-01

    The presented materials consist of presentations of international workshop which held in Warsaw from 4 to 5 October 2007. Main subject of the meeting was progress in manufacturing as well as research program development for neutron detector which is planned to be placed at GANIL laboratory and will be used in nuclear spectroscopy research

  3. Deep reactive ion etching of auxetic structures: present capabilities and challenges

    International Nuclear Information System (INIS)

    Muslija, Alban; Díaz Lantada, Andrés

    2014-01-01

    Auxetic materials (or metamaterials) have negative Poisson ratios (NPR) and display the unexpected properties of lateral expansion when stretched, and equal and opposing densification when compressed. Such auxetic materials are being used more frequently in the development of novel products, especially in the fields of intelligent expandable actuators, shape-morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic materials and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study, we present a very promising approach for the development of auxetic materials and devices based on the use of deep reactive ion etching (DRIE). The process stands out for its precision and its potential applications to mass production. To our knowledge, it represents the first time this technology has been applied to the manufacture of auxetic materials with nanometric details. We take into account the present capabilities and challenges linked to the use of DRIE in the development of auxetic materials and auxetic-based devices. (technical note)

  4. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties

    Science.gov (United States)

    Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian

    2017-12-01

    The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.

  5. Evaluation of anemia diagnosis based on elastic light scattering (Conference Presentation)

    Science.gov (United States)

    Tong, Lieshu; Wang, Xinrui; Xie, Dengling; Chen, Xiaoya; Chu, Kaiqin; Dou, Hu; Smith, Zachary J.

    2017-03-01

    Currently, one-third of humanity is still suffering from anemia. In China the most common forms of anemia are iron deficiency and Thalassemia minor. Differentiating these two is the key to effective treatment. Iron deficiency is caused by malnutrition and can be cured by iron supplementation. Thalassemia is a hereditary disease in which the hemoglobin β chain is lowered or absent. Iron therapy is not effective, and there is evidence that iron therapy may be harmful to patients with Thalassemia. Both anemias can be diagnosed using red blood cell morphology: Iron deficiency presents a smaller mean cell volume compared to normal cells, but with a wide distribution; Thalassemia, meanwhile, presents a very small cell size and tight particle size distribution. Several researchers have proposed diagnostic indices based on red cell morphology to differentiate these two diseases. However, these indices lack sensitivity and specificity and are constructed without statistical rigor. Using multivariate methods we demonstrate a new classification method based on red cell morphology that diagnoses anemia in a Chinese population with enough accuracy for its use as a screening method. We further demonstrate a low cost instrument that precisely measures red cell morphology using elastic light scattering. This instrument is combined with an automated analysis program that processes scattering data to report red cell morphology without the need for user intervention. Despite using consumer-grade components, when comparing our experimental results with gold-standard measurements, the device can still achieve the high precision required for sensing clinically significant changes in red cell morphology.

  6. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    International Nuclear Information System (INIS)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus; Bassler, Niels; Palmans, Hugo; Sharpe, Peter; Ecker, Swantje; Chaudhri, Naved; Jäkel, Oliver; Georg, Dietmar

    2013-01-01

    Background and purpose: In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation of the biological dose is out of scope of the current work. Materials and methods: The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm 3 ). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose verification aimed at measuring a dose of 10 Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm 3 . In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). Results: The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was −2.4 ± 0.9% (1σ) for protons and −2.2 ± 1.1% (1σ) for carbon ions. The measurements performed with the ionisation chamber indicate this slight underdosage with a dose difference of −1.7% for protons and −1.0% for carbon ions. The profiles measured by radiochromic films showed an acceptable homogeneity of about 3%. Conclusions: Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is

  7. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy.

    Science.gov (United States)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus; Bassler, Niels; Palmans, Hugo; Sharpe, Peter; Ecker, Swantje; Chaudhri, Naved; Jäkel, Oliver; Georg, Dietmar

    2013-07-01

    In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation of the biological dose is out of scope of the current work. The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm(3)). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose verification aimed at measuring a dose of 10Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm(3). In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was -2.4 ± 0.9% (1σ) for protons and -2.2 ± 1.1% (1σ) for carbon ions. The measurements performed with the ionisation chamber indicate this slight underdosage with a dose difference of -1.7% for protons and -1.0% for carbon ions. The profiles measured by radiochromic films showed an acceptable homogeneity of about 3%. Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is feasible. If further studies show similar results, this dosimetric audit could be

  8. Presentations

    International Nuclear Information System (INIS)

    2007-01-01

    The PARIS meeting held in Cracow, Poland from 14 to 15 May 2007. The main subjects discussed during this meeting were the status of international project dedicated to gamma spectroscopy research. The scientific research program includes investigations of giant dipole resonance, probe of hot nuclei induced in heavy reactions, Jacobi shape transitions, isospin mixing and nuclear multifragmentation. The mentioned programme needs Rand D development such as new scintillations materials as lanthanum chlorides and bromides as well as new photo detection sensors as avalanche photodiodes - such subjects are also subjects of discussion. Additionally results of computerized simulations of scintillation detectors properties by means of GEANT- 4 code are presented

  9. Equilibrium and non-equilibrium microfireball behaviour in light-ion fusion systems

    International Nuclear Information System (INIS)

    Uesaka, M.; Peterson, R.R.; Moses, G.A.

    1984-01-01

    Light-ion fusion reactors and high-yield target testing facilities will have a gas-filled reaction vessel. The target microexplosion will create a microfireball in this gas. The behaviour of this microfireball as it propagates and reflects from the reaction vessel wall is critical to the design of the vessel. The type of gas and the modelling assumptions used for analysis can significantly affect the prediction of this behaviour. The effects of two-temperature and multifrequency radiative transfer models are investigated for nitrogen and argon gases. The isothermal sphere model and the target X-ray attenuation model for microfireball creation are compared. The computational results are related to the analytic strong-shock theory. (author)

  10. Scattering of light keV ions from amorphous and crystalline solid surfaces

    International Nuclear Information System (INIS)

    Robinson, J.E.; Kwok, K.K.; Thompson, D.A.

    1976-01-01

    Total reflection coefficients (R), backscattered energy fractions (γ), and backscattered energy spectra are evaluated using a binary collision Monte Carlo technique for a variety of light ions (H, D, T, He) in the energy range 0.25-8 keV, incident on amorphous targets (C, Fe, Nb). The scattering is also evaluated for H on Nb for a range of incident angles and two electronic stopping values. The average scattered energy per reflected particle and the backscattered energy spectra are found to vary in a universal manner as a function of the reflection coefficient between the Rutherford high energy limit and a low energy multiple collision limit. Single crystal effects are also briefly discussed using a diffusional dechanneling model. (Auth.)

  11. Break up of light ions in the nuclear and Coulomb field of nuclei

    International Nuclear Information System (INIS)

    Srivastava, D.K.

    1985-12-01

    The break up of light ion projectiles in the nuclear and Coulomb field of nuclei is considered. Current theoretical concepts for describing break up processes and their theoretical features are discussed. An alternative method, based on a prior-interaction DWBA, is introduced for the calculation of the direct elastic break up cross sections. This method reveals the role of the internal momentum distribution of the break up fragments and includes corresponding 'finite range' effects. The Coulomb break up of 6 Li is studied on the basis of a quasi-sequential break up approach (following Rybicki and Austern) and results are obtained for very low relative energies of the emerging α-particles and deuteron fragments. The astrophysical interest in these cross sections is noted. A view on further extensions of the break up theory is given. (orig.) [de

  12. Light particle and gamma ray emission measurements in heavy ion reactions. Progress report

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1983-01-01

    Studies of neutron and charged particle emission in heavy ion reactions using the facilities at the HHIRF and the new computer facilities at Georgia State are briefly described. A progress report for 1982 to 1983 is combined with a proposal for work to be performed during 1983 to 1984. Present activities and immediate plans for a run already approved by the Program Advisory Committee of the HHIRF are discussed

  13. Metamaterial devices for molding the flow of diffuse light (Conference Presentation)

    Science.gov (United States)

    Wegener, Martin

    2016-09-01

    Much of optics in the ballistic regime is about designing devices to mold the flow of light. This task is accomplished via specific spatial distributions of the refractive index or the refractive-index tensor. For light propagating in turbid media, a corresponding design approach has not been applied previously. Here, we review our corresponding recent work in which we design spatial distributions of the light diffusivity or the light-diffusivity tensor to accomplish specific tasks. As an application, we realize cloaking of metal contacts on large-area OLEDs, eliminating the contacts' shadows, thereby homogenizing the diffuse light emission. In more detail, metal contacts on large-area organic light-emitting diodes (OLEDs) are mandatory electrically, but they cast optical shadows, leading to unwanted spatially inhomogeneous diffuse light emission. We show that the contacts can be made invisible either by (i) laminate metamaterials designed by coordinate transformations of the diffusion equation or by (ii) triangular-shaped regions with piecewise constant diffusivity, hence constant concentration of scattering centers. These structures are post-optimized in regard to light throughput by Monte-Carlo ray-tracing simulations and successfully validated by model experiments.

  14. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Kai-Jia Sun

    2017-11-01

    Full Text Available Based on the coalescence model for light nuclei production, we show that the yield ratio Op-d-t=NH3Np/Nd2 of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn=〈(δn2〉/〈n〉2 at kinetic freeze-out. From recent experimental data in central Pb+Pb collisions at sNN=6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS, we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at sNN=8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ∼144 MeV and baryon chemical potential of ∼385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.

  15. Intense light-ion beams provide a robust, common-driver path toward ignition, gain, and commercial fusion energy

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Cook, D.L.

    1993-01-01

    Intense light-ion beams are being developed for investigations of inertial confinement fusion (ICF). This effort has concentrated on developing the Particle Beam Fusion Accelerator II (PBFA II) at Sandia as a driver for ICF target experiments, on design concepts for a high-yield, high-gain Laboratory Microfusion Facility (LMF), and on a comprehensive system study of a light-ion beam-driven commercial fusion reactor (LIBRA). Reports are given on the status of design concepts and research in these areas. (author)

  16. Light emission from sputtered or backscattered atoms on tungsten surfaces under ion irradiation

    International Nuclear Information System (INIS)

    Sakai, Yasuhiro; Nogami, Keisuke; Kato, Daiji; Sakaue, Hiroyuki A.; Kenmotsu, Takahiko; Furuya, Kenji; Motohashi, Kenji

    2013-01-01

    We measured the intensity of light emission from sputtered atoms on tungsten surfaces under the irradiations of Kr"+ ion and Ar"+ ion, as a function of the perpendicular distance from the surface. Using the analysis of decay curve, we estimated the mean vertical velocity component in direction normal to the surface. We found that the estimated mean velocity had much differences according to the excited state. For example, although the estimated mean vertical velocity component normal to the surface from the 400.9 nm line((5d"5(6S)6p "7p_4→(5d"5(6S)6s "7S_3 transition) was 5.6±1.7 km/sec, that from the 386.8 nm line((5d"4(6S)6p "7D_4→(5d"5(6S)6s "7S_4 transition) was 2.8±1.0 km/sec. However, for different projectiles and energies, we found no remarkable changes in the velocity. (author)

  17. Cardiac Light Chain Amyloidosis: The Role of Metal Ions in Oxidative Stress and Mitochondrial Damage.

    Science.gov (United States)

    Diomede, Luisa; Romeo, Margherita; Rognoni, Paola; Beeg, Marten; Foray, Claudia; Ghibaudi, Elena; Palladini, Giovanni; Cherny, Robert A; Verga, Laura; Capello, Gian Luca; Perfetti, Vittorio; Fiordaliso, Fabio; Merlini, Giampaolo; Salmona, Mario

    2017-09-20

    The knowledge of the mechanism underlying the cardiac damage in immunoglobulin light chain (LC) amyloidosis (AL) is essential to develop novel therapies and improve patients' outcome. Although an active role of reactive oxygen species (ROS) in LC-induced cardiotoxicity has already been envisaged, the actual mechanisms behind their generation remain elusive. This study was aimed at further dissecting the action of ROS generated by cardiotoxic LC in vivo and investigating whether transition metal ions are involved in this process. In the absence of reliable vertebrate model of AL, we used the nematode Caenorhabditis elegans, whose pharynx is an "ancestral heart." LC purified from patients with severe cardiac involvement intrinsically generated high levels of ROS and when administered to C. elegans induced ROS production, activation of the DAF-16/forkhead transcription factor (FOXO) pathway, and expression of proteins involved in stress resistance and survival. Profound functional and structural ROS-mediated mitochondrial damage, similar to that observed in amyloid-affected hearts from AL patients, was observed. All these effects were entirely dependent on the presence of metal ions since addition of metal chelator or metal-binding 8-hydroxyquinoline compounds (chelex, PBT2, and clioquinol) permanently blocked the ROS production and prevented the cardiotoxic effects of amyloid LC. Innovation and Conclusion: Our findings identify the key role of metal ions in driving the ROS-mediated toxic effects of LC. This is a novel conceptual advance that paves the way for new pharmacological strategies aimed at not only counteracting but also totally inhibiting the vicious cycle of redox damage. Antioxid. Redox Signal. 27, 567-582.

  18. Experimental Study of an ion cyclon resonance accelerator presentation of his thesis

    CERN Document Server

    Ramsell, C T

    1999-01-01

    The Ion Cyclotron Resonance Accelerator (ICRA) uses the operating principles of cyclotrons and gyrotrons. The novel geometry of the ICRA allows an ion beam to drift axially while being accelerated in the azimuthal direction. Previous work on electron cyclotron resonance acceleration used waveguide modes to accelerate an electron beam [5]. This research extends cyclotron resonance acceleration to ions by using a high field superconducting magnet and an rf driven magnetron operating at a harmonic of the cyclotron frequency. The superconducting solenoid provides an axial magnetic field for radial confinement and an rf driven magnetron provides azimuthal electric fields for acceleration. The intent of the ICRA concept is to create an ion accelerator which is simple, compact, lightweight, and inexpensive. Furthermore, injection and extraction are inherently simple since the beam drifts through the acceleration region. However, use of this convenient geometry leads to an accelerated beam with a large energy spread....

  19. Concluding remarks presented at the Symposium on heavy ion reaction dynamics on the tandem energy region

    International Nuclear Information System (INIS)

    Betts, R.R.

    1988-01-01

    This paper discusses the divisions between different heavy ion reaction processes. Fusion, deep inelastic, quasi-elastic and elastic interactions are discussed in terms of coupled channel calculations. 20 refs., 8 figs

  20. Enhanced light trapping by focused ion beam (FIB) induced self-organized nanoripples on germanium (100) surface

    Science.gov (United States)

    Kamaliya, Bhaveshkumar; Mote, Rakesh G.; Aslam, Mohammed; Fu, Jing

    2018-03-01

    In this paper, we demonstrate enhanced light trapping by self-organized nanoripples on the germanium surface. The enhanced light trapping leading to high absorption of light is confirmed by the experimental studies as well as the numerical simulations using the finite-difference time-domain method. We used gallium ion (Ga+) focused ion beam to enable the formation of the self-organized nanoripples on the germanium (100) surface. During the fabrication, the overlap of the scanning beam is varied from zero to negative value and found to influence the orientation of the nanoripples. Evolution of nanostructures with the variation of beam overlap is investigated. Parallel, perpendicular, and randomly aligned nanoripples with respect to the scanning direction are obtained via manipulation of the scanning beam overlap. 95% broadband absorptance is measured in the visible electromagnetic region for the nanorippled germanium surface. The reported light absorption enhancement can significantly improve the efficiency of germanium-silicon based photovoltaic systems.

  1. Presentation

    Directory of Open Access Journals (Sweden)

    Eduardo Vicente

    2013-06-01

    Full Text Available In the present edition of Significação – Scientific Journal for Audiovisual Culture and in the others to follow something new is brought: the presence of thematic dossiers which are to be organized by invited scholars. The appointed subject for the very first one of them was Radio and the invited scholar, Eduardo Vicente, professor at the Graduate Course in Audiovisual and at the Postgraduate Program in Audiovisual Media and Processes of the School of Communication and Arts of the University of São Paulo (ECA-USP. Entitled Radio Beyond Borders the dossier gathers six articles and the intention of reuniting works on the perspectives of usage of such media as much as on the new possibilities of aesthetical experimenting being build up for it, especially considering the new digital technologies and technological convergences. It also intends to present works with original theoretical approach and original reflections able to reset the way we look at what is today already a centennial media. Having broadened the meaning of “beyond borders”, four foreign authors were invited to join the dossier. This is the first time they are being published in this country and so, in all cases, the articles where either written or translated into Portuguese.The dossier begins with “Radio is dead…Long live to the sound”, which is the transcription of a thought provoking lecture given by Armand Balsebre (Autonomous University of Barcelona – one of the most influential authors in the world on the Radio study field. It addresses the challenges such media is to face so that it can become “a new sound media, in the context of a new soundscape or sound-sphere, for the new listeners”. Andrew Dubber (Birmingham City University regarding the challenges posed by a Digital Era argues for a theoretical approach in radio studies which can consider a Media Ecology. The author understands the form and discourse of radio as a negotiation of affordances and

  2. JT-60 negative ion beam NBI apparatus. Present state of its construction and initial experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Masaaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-02-01

    The NBI (Neutral Beam Injection) apparatus used for negative ion at first in the world, has an aim to actually prove heating and electric current drive with high density plasma at the JT-60 and to constitute physical and technical bases for selection and design of heating apparatus of ITER (International Thermal Nuclear Fusion Experimental Reactor). Construction of 500 KeV negative ion NBI apparatus for the JT-60 started to operate on 1993 was completed at March, 1996. On the way, at a preliminary test on forming and acceleration of the negative ion beam using a portion of this apparatus, 400 KeV and 13.5 A/D of the highest deuterium negative ion beam acceleration in the world was obtained successfully, which gave a bright forecasting of the plasma heating and electric current drive experiment using the negative ion NBI apparatus. After March, 1996, some plans to begin beam incident experiment at the JT-60 using the negative ion NBI apparatus and to execute the heating and electric current drive experiment at the JT-60 under intending increase of beam output are progressed. (G.K.)

  3. Non-invasive red light optogenetic pacing and optical coherence microscopy (OCM) imaging for drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2017-02-01

    Cardiac pacing could be a powerful tool for investigating mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, traditional electrical pacing using pacemaker requires an invasive surgical procedure. Electrical currents from the implanted electrodes can also cause damage to heart tissue, further restricting its utility. Optogenetic pacing has been developed as a promising, non-invasive alternative to electrical stimulation for controlling animal heart rhythms. It induces heart contractions by shining pulsed light on transgene-generated microbial opsins, which in turn activate the light gated ion channels in animal hearts. However, commonly used opsins in optogenetic pacing, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we performed optogenetic pacing by expression of recently engineered red-shifted microbial opsins, ReaChR and CsChrimson, in a well-established animal model, Drosophila melanogaster, using the 617 nm stimulation light pulses. The OCM technique enables non-invasive optical imaging of animal hearts with high speed and ultrahigh axial and transverse resolutions. We integrated a customized OCM system with the optical stimulation system to monitor the optogenetic pacing noninvasively. The use of red-sifted opsins enabled deeper penetration of simulating light at lower power, which is promising for applications of optogenetic pacing in mammalian cardiac pathology studies or clinical treatments in the future.

  4. Recent advances in head-mounted light field displays for virtual and augmented reality (Conference Presentation)

    Science.gov (United States)

    Hua, Hong

    2017-02-01

    Head-mounted light field displays render a true 3D scene by sampling either the projections of the 3D scene at different depths or the directions of the light rays apparently emitted by the 3D scene and viewed from different eye positions. They are capable of rendering correct or nearly correct focus cues and addressing the very well-known vergence-accommodation mismatch problem in conventional virtual and augmented reality displays. In this talk, I will focus on reviewing recent advancements of head-mounted light field displays for VR and AR applications. I will demonstrate examples of HMD systems developed in my group.

  5. Towards a unified description of light ion fusion cross section excitation functions

    International Nuclear Information System (INIS)

    Zimmer, K.W.

    1995-01-01

    A description of light heavy-ion fusion, taking into account both entrance-channel characteristics and compound-nucleus properties, is derived within a unified theory of nuclear reactions. The dependence of the imaginary fusion potential on the level density of the compound nucleus is revealed. The 12 C + 12 C, 12 C + 14 N, 10 B + 16 O and 16 O + 16 O fusion cross sections are calculated for E cm ≤ 120 MeV and compared with experimental data. The excitation energy dependence of the level-density parameter of 24 Mg, 26 Al and 32 S is inferred below 5 MeV/A. A realistic nuclear level-density model, describing the experimental level-density parameters of highly excited nuclei, is shown to be consistent with both the global features and details of the fusion cross section. 12 C + 12 C and 16 O + 16 O fusion cross section oscillations are predicted at large excitation energies, reflecting the structure of the level density of the highly excited light compound nuclei. Differences of the 12 C + 14 N and 10 B + 16 O fusion reaction mechanisms are discussed in terms of specific entrance-channel characteristics. (orig.)

  6. Towards a unified description of light ion fusion cross section excitation functions

    International Nuclear Information System (INIS)

    Zimmer, K.W.; Rebel, H.

    1994-10-01

    A description of light heavy-ion fusion, taking into account both entrace-channel characteristics and compound-nucleus properties, is derived within a unified theory of nuclear reactions. The dependence of the imaginary fusion potential on the level density of the compound nucleus is revealed. The 12 C+ 12 C, 12 C+ 14 N, 10 B+ 16 O and 16 O+ 16 O fusion cross sections are calculated for E cm ≤120 MeV and compared with experimental data. The excitation energy dependence of the level-density parameter of 24 Mg, 26 Al and 32 S is inferred below 5 MeV/A. A realistic nuclear level-density model, describing the experimental level-density parameters of highly excited nuclei, is shown to be consistent with both the global features and details of the fusion cross section. 12 C+ 12 C and 16 O+ 16 O fusion cross section oscillations are predicted at large excitation energies, reflecting the structure of the level density of the highly excited light compound nuclei. Differences of the 12 C+ 14 N and 10 B+ 16 O fusion reaction mechanisms are discussed in terms of specific entrance-channel characteristics. (orig.)

  7. Interaction of the wood surface with metal ions. Part 3: The effects of light on chromium impregnated wood surface

    International Nuclear Information System (INIS)

    Stipta, J.; Németh, K.; Molnárné Hamvas, L.

    2004-01-01

    UV-light changes of untreated and chromium impregnated wood surface were investigated by absorption spectrophotometric methods. The properties of indifferent silicagel and celulose layers were to the behaviour of poplar and black locust surface. Chromic-ion-impregnation had no significant effect on the absorption spectra of these layers. On the other hand, hexavalent chromium was reduced and UV-light caused irreversible wood degradation. Surface treatment caused considerable modification in black locust

  8. AGOR: A superconducting cyclotron for light and heavy ions plans for experimental facilities and physics program

    International Nuclear Information System (INIS)

    Gales, S.

    1991-01-01

    The construction of the K600 superconducting cyclotron AGOR, a joint undertaking of the KVI Groningen and the Institut de Physique Nucleaire at Orsay, has reached the stage where the assembly of major subsystems is underway. Field measurements are scheduled to start in the fall of this year, beam tests should start at Orsay by the end of 1992 before AGOR final installation at Groningen. The beam guiding system, the location and equipments of the main experimental areas are currently being designed. Taking advantage of the broad range of ions and energies that AGOR will made available (from 200 MeV protons to 100 MeV/A α down to 6 MeV/A Pb ions), the first ideas about the physics research to be done will be presented. (author) 28 refs., 15 figs., 2 tabs

  9. Nanocavity formation processes in MgO(100) by light ion (D, He, Li) and heavy ion (Kr, Cu, Au) implantation

    OpenAIRE

    Veen, A. van; Fedorov, A.V.; Schut, H.; Labohm, F.; Kooi, B.J.; Hosson, J.Th.M. De

    2002-01-01

    In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a dose of 10^16 cm–2, followed by annealing to 1300 K. It has been shown earlier by transmission electron microscopy (TEM) that the cavities (thickness 2–3 nm and length/width 5–10 nm) have a perfect...

  10. Shining new light on treating dementia: integrating EEG neurofeedback training and near infrared photobiomodulation (Conference Presentation)

    Science.gov (United States)

    Berman, Marvin H.

    2017-02-01

    Evidence from animal and human studies regarding the biological impact of near infrared light stimulation has significantly increased of late noting the disease modifying properties of photobiomodulation for improving physical and cognitive performance in subjects with a variety of neurodegenerative conditions. Concurrently we see a growing body of literature regarding the efficacy of operant conditioning of EEG amplitude and connectivity in remediating both cognitive and behavioral symptoms of both neuropsychiatric and neurodegenerative disorders including traumatic brain injury, ADHD, PTSD, and dementia. This presentation seeks to outline a treatment model combining these two treatment methods to stop the progression of neurodegeneration using pulsed (10hz), brief (5-20minutes) repeated (1-2x/daily) transcranial and intranasal photobiomodulation with 810nm and 1068nm near infrared phototherapy and operant conditioning of EEG amplitude and coherence. Our initial study on treating dementia with EEG biofeedback (N=37) showed neuroplasticity's potential for modifying cognitive and behavioral symptoms using the evidence from decades of neurological research that never felt the warm touch of a translational researcher's hand. The near infrared interventional studies clarified the order of treatment, i.e., tissue health and renewal were achieved, followed by neural connectivity enhancement. Significant improvements in both immediate and delayed recall and praxis memory as well as executive functioning and behavioral regulation were obtained with each intervention. The inferred synergistic impact of properly combining these approaches is what informs our current clinical applications and future research efforts examining the value of combined treatments for all dementias, parkinson's disease and age-related dry macular degeneration.

  11. Physics of intense light ion beams and production of high energy density in matter. Annual report 1994

    International Nuclear Information System (INIS)

    Bluhm, H.J.

    1995-06-01

    This report presents the results obtained in 1994 within the FZK-program on 'Physics of intense ion beams and pulsed plasmas'. It describes the present status of the 6 MW, 2 TW pulsed generator KALIF-HELIA, the production and focussing of high power ion beams and numerical simulations and experiments related to the hydrodynamics of beam matter interaction. (orig.) [de

  12. Experimental study of collective acceleration of light and heavy ions from a localized gas cloud

    International Nuclear Information System (INIS)

    Floyd, L.E. IV.

    1984-01-01

    An experimental investigation into the collective acceleration of various gaseous atoms (H, D, He, N, Ne, Ar, Kr, Xe) is presented. A localized gas cloud is formed using a fast rise puff valve immediately downstream of an intense relativistic electron beam diode. The diode consists of a tungsten needle cathode and a stainless steel anode with a hole on axis. The diode is driven by an electron beam generator system consisting of a Marx generator, Blumlein line, and transmission line transformer. It produces a 1.5 MV, 35 kA, 30 ns FWHM electrical pulse measured at the diode. The resulting electron beam has nu/γ approx. 1 and is about six times the vacuum space charge limiting current in the downstream drift chamber. Ions are produced during the impact of the electron beam with the gas cloud and are accelerated to high energy by collective effects associated with the electron beam space charge. Ion energy diagnostics include fast neutron counting, nuclear activation of stacked foils, measurement of time of flight using direct intercept current collector probes, and range/energy analysis of nuclear track plates. The principal result of the experiments was that all ion species were accelerated to a maximum velocity of 0.1c, corresponding to an energy of 4.7 MeV/nucleon. Energy spectra obtained from stacked foil activation for accelerated hydrogen and deuterium were found to be approximately exponential in character

  13. Light-emitting Si nanostructures formed by swift heavy ions in stoichiometric SiO2 layers

    Science.gov (United States)

    Kachurin, G. A.; Cherkova, S. G.; Marin, D. V.; Kesler, V. G.; Volodin, V. A.; Skuratov, V. A.

    2012-07-01

    Three hundred and twenty nanometer-thick SiO2 layers were thermally grown on the Si substrates. The layers were irradiated with 167 MeV Xe ions to the fluences ranging between 1012 cm-2 and 1014 cm-2, or with 700 MeV Bi ions in the fluence range of 3 × 1012-1 × 1013 cm-2. After irradiation the yellow-orange photoluminescence (PL) band appeared and grew with the ion fluences. In parallel optical absorption in the region of 950-1150 cm-1, Raman scattering and X-ray photoelectron spectroscopy evidenced a decrease in the number of Si-O bonds and an increase in the number of Si-coordinated atoms. The results obtained are interpreted as the formation of the light-emitting Si-enriched nanostructures inside the tracks of swift heavy ions through the disproportionation of SiO2. Ionization losses of the ions are regarded as responsible for the processes observed. Difference between the dependences of the PL intensity on the fluences of Xe and Bi ions are ascribed to their different stopping energy, therewith the diameters of the tracks of Xe and Bi ions were assessed as <3 nm and ˜10 nm, respectively. The observed shift of the PL bands, induced by Xe and Bi ions, agrees with the predictions of the quantum confinement theory.

  14. Light-emitting Si nanostructures formed by swift heavy ions in stoichiometric SiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Kachurin, G.A., E-mail: kachurin@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk (Russian Federation); Cherkova, S.G. [A.V. Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk (Russian Federation); Marin, D.V. [A.V. Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Kesler, V.G. [A.V. Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk (Russian Federation); Volodin, V.A. [A.V. Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Skuratov, V.A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2012-07-01

    Three hundred and twenty nanometer-thick SiO{sub 2} layers were thermally grown on the Si substrates. The layers were irradiated with 167 MeV Xe ions to the fluences ranging between 10{sup 12} cm{sup -2} and 10{sup 14} cm{sup -2}, or with 700 MeV Bi ions in the fluence range of 3 Multiplication-Sign 10{sup 12}-1 Multiplication-Sign 10{sup 13} cm{sup -2}. After irradiation the yellow-orange photoluminescence (PL) band appeared and grew with the ion fluences. In parallel optical absorption in the region of 950-1150 cm{sup -1}, Raman scattering and X-ray photoelectron spectroscopy evidenced a decrease in the number of Si-O bonds and an increase in the number of Si-coordinated atoms. The results obtained are interpreted as the formation of the light-emitting Si-enriched nanostructures inside the tracks of swift heavy ions through the disproportionation of SiO{sub 2}. Ionization losses of the ions are regarded as responsible for the processes observed. Difference between the dependences of the PL intensity on the fluences of Xe and Bi ions are ascribed to their different stopping energy, therewith the diameters of the tracks of Xe and Bi ions were assessed as <3 nm and {approx}10 nm, respectively. The observed shift of the PL bands, induced by Xe and Bi ions, agrees with the predictions of the quantum confinement theory.

  15. Light-emitting Si nanostructures formed by swift heavy ions in stoichiometric SiO2 layers

    International Nuclear Information System (INIS)

    Kachurin, G.A.; Cherkova, S.G.; Marin, D.V.; Kesler, V.G.; Volodin, V.A.; Skuratov, V.A.

    2012-01-01

    Three hundred and twenty nanometer-thick SiO 2 layers were thermally grown on the Si substrates. The layers were irradiated with 167 MeV Xe ions to the fluences ranging between 10 12 cm −2 and 10 14 cm −2 , or with 700 MeV Bi ions in the fluence range of 3 × 10 12 –1 × 10 13 cm −2 . After irradiation the yellow–orange photoluminescence (PL) band appeared and grew with the ion fluences. In parallel optical absorption in the region of 950–1150 cm −1 , Raman scattering and X-ray photoelectron spectroscopy evidenced a decrease in the number of Si–O bonds and an increase in the number of Si-coordinated atoms. The results obtained are interpreted as the formation of the light-emitting Si-enriched nanostructures inside the tracks of swift heavy ions through the disproportionation of SiO 2 . Ionization losses of the ions are regarded as responsible for the processes observed. Difference between the dependences of the PL intensity on the fluences of Xe and Bi ions are ascribed to their different stopping energy, therewith the diameters of the tracks of Xe and Bi ions were assessed as <3 nm and ∼10 nm, respectively. The observed shift of the PL bands, induced by Xe and Bi ions, agrees with the predictions of the quantum confinement theory.

  16. Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)

    Science.gov (United States)

    Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James

    2017-02-01

    Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.

  17. Present status on the ion collective acceleration and high-current beam transport in the Lebedev's Physical Institute USSR

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1982-01-01

    The results of investigations into the ion collective acceleration and transport of high-current electron beams (HCEB) in vacuum channels with dielectric walls (VCDW) are presented. The physical principle of transport is in the partial neutralization of spatial charge of electrons with ions escaped from the prewall plasma and the compression of the beam with its own magnetic field. A problem of obtaining the intensive beams of negative ions in diode with magnetic isolation is considered. The mechanism of ion acceleration in VCDW is considered. It is shown that there are two regions with different mechanisms of acceleration. In the first region (''plasma'') ion acceleration in the quasipotential HCEB field up to energy of the order of the electron energy takes place. In the second region (''beam'') the acceleration takes place in the wave fields that can be excited due to the mechanism of the two-beam type instability. The mechanism of ion acceleration in direct electron beams is considered. This mechanism is based on the concept of relaxation oscillations of the virtual cathode and corresponding the reconstruction of the spatial charge distribution

  18. Light-ion irradiation experiments in National Research Institute for Metals

    International Nuclear Information System (INIS)

    Kishimoto, Naoki; Nagakawa, Johsei; Shiraishi, Haruki

    1987-01-01

    National Research Institute for Metals (NRIM) has primarily focused in the mechanical testings under ion bombardment. (creep, fatigue, and fracture toughness are planned). For the purpose of carrying out those objectives, light ion cyclotron is thought one of the most suitable as an accelerator. NRIM installed AVF-type cyclotron with some modification accomodating to the irradiation testing. From the characteristics of produced particles, NRIM's cyclotron is expected to simulate fusion irradiation environment properly. Irradiation creep experiment was started in 1986. An important and difficult point for the creep measurement is the control of specimen temperature under flucturing beam heating. The problem of this fluctuation was solved by employing forced convection of helium and DC. heating. Fe-25Ni-15Cr and 316 SS have been preliminarily investigated concerning mechanism of the phase stability and the post-helium-implantation creep, etc. Fe-25Ni-15Cr was made into platelets of 0.087 x 2.5 x 20 mm 3 and 316 SS was drawn into wire of 0.8 mm in diameter. Results of preliminary experiments are as follows. For Fe-25Ni-15Cr, 1) Ni of 25 % does not improve creep resistance, 2) Minor element like Ti is important in suppressing the creep, 3) SIPA and PAG model explain the stress dependence of creep qualitatively, and for 316 SS, 4) 0.025 dpa is required to reach steady-state creep, at 2.5 x 10 -7 dpa/s, 300 deg C and 50 MPa, 5) The evolution of irradiation creep is sensitive to the damage rate, particularly in the low dpa range. (Ishimitsu, A.)

  19. Development of niobium spoke cavities for a superconducting light-ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kedzie, M.; Delayen, J.R.; Piller, C.

    1998-01-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2 < v/c < 0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of ions, at intensities sufficient for a production beam for a radioactive facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed

  20. Development of niobium spoke cavities for a superconducting light-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W; Kedzie, M; Delayen, J R; Piller, C

    1998-08-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2 < v/c < 0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of ions, at intensities sufficient for a production beam for a radioactive facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  1. Is long distance free space quantum communication with the OAM state of light feasible [Presentation

    CSIR Research Space (South Africa)

    Hamadou Ibrahim, A

    2013-06-01

    Full Text Available -space quantum communication with the OAM state of light feasible? A. HAMADOU IBRAHIM1,2, F.S. ROUX1, M. McLAREN1,3 , A. FORBES1,2,3 & T. KONRAD2 1. CSIR National Laser Centre, PO Box 395, Pretoria 0001 2. School of Physics, University of Kwazulu...

  2. Researching Classroom Interaction in the light of social justice. : [paper presentation

    NARCIS (Netherlands)

    Nicolina Montesano-Montessori; Prof.Dr. Petra Ponte

    2010-01-01

    A research into classroom interaction (behaviour and communication) between teachers and pupils in the light of social justice. The research is based on the concern that educational praxis, defined as 'practice which implies a conscious awareness of the practitioners that their actions are morally

  3. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    International Nuclear Information System (INIS)

    Alton, G.D.; Beene, J.R.

    1998-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBs). The reconfiguration, construction, and equipment commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target ion source related problems, endemic to the production of specific short lived RIBs will be discussed. In addition, plans, which involve either a 200 MeV or a 1 GeV proton linac driver for a second generation ISOL facility, will be presented

  4. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  5. Development of a center for light ion therapy and accurate tumor diagnostics at karolinska institutet and hospital

    Science.gov (United States)

    Brahme, Anders; Lind, Bengt K.

    2002-04-01

    Radiation therapy is today in a state of very rapid development with new intensity modulated treatment techniques continuously being developed. This has made intensity modulated electron and photon beams almost as powerful as conventional uniform beam proton therapy. To be able to cure also the most advanced hypoxic and radiation resistant tumors of complex local spread, intensity modulated light ion beams are really the ultimate tool and only slightly more expensive than proton therapy. The aim of the new center for ion therapy and tumor diagnostics in Stockholm is to develop radiobiologically optimized 3-dimensional pencil beam scanning techniques. Beside the "classical" approaches using low ionization density hydrogen ions (protons, but also deuterons and tritium nuclei) and high ionization density carbon ions, two new approaches will be developed. In the first one lithium or beryllium ions, that induce the least detrimental biological effect to normal tissues for a given biological effect in a small volume of the tumor, will be key particles. In the second approach, referred patients will be given a high-dose high-precision "boost" treatment with carbon or oxygen ions during one week preceding the final treatment with conventional radiations in the referring hospital. The rationale behind these approaches is to reduce the high ionization density dose to the normal tissue stroma inside the tumor and to ensure a microscopically uniform dose delivery. The principal idea of the center is to closely integrate ion therapy into the clinical routine and research of a large radiotherapy department. The light ion therapy center will therefore be combined with advanced tumor diagnostics including MR and PET-CT imaging to facilitate efficient high-precision high-dose boost treatment of remitted patients. The possibility to do 3D tumor diagnostics and 3D dose delivery verification with the same PET camera will be the ultimate step in high quality adaptive radiation therapy

  6. Study of the 6Li+16O light heavy-ion system around the Coulomb barrier

    International Nuclear Information System (INIS)

    Glasner, K.; Ricken, L.; Kuhlmann, E.

    1986-01-01

    Total cross sections of the light heavy-ion reactions 16 O( 6 Li,p) 21 Ne, i=0-10, have been measured for beam energies Esub(Li)=4.5-8.0 MeV in steps of 100 keV. Additional excitation functions of the inclusive reactions 16 O( 6 Li,xy), x=p, n and α, were taken for Esub(li)=4.1-12.5 MeV. The 6 Li+ 16 O reaction can be understood as a predominant compound-nucleus process as extensive Hauser-Feshbach calculations show. A comprehensive statistical analysis yields a coherence width GAMMA=130+-20 keV for Esub(x)( 22 Na)approx.=19 MeV. Statistically significant deviations from pure fluctuation phenomena are found in most excitation functions at Esub(x)( 22 Na)=17.9, 18.4, 19.2 and 20.2 MeV. Interpreting these structures with widths 400<=GAMMAsub(tot)<=800 keV as intermediate-width resonances in terms of rotational band, tentative spin assignments can be given. (orig.)

  7. Photoluminescent (PL) or electroluminescent (EL) quantum dots for display, lighting, and photomedicine (Conference Presentation)

    Science.gov (United States)

    Dong, Yajie

    2017-02-01

    Quantum dots (QDs) have gone through a long journey before finding their ways into the display field. This talk will briefly touch on the history before trying to answer several key questions related to QDs applications in display: What are QDs? How are they made? What properties do they have and Why? How can these properties be used to improve color and efficiency of display, in either photoluminescence (PL) or electroluminescence (EL) mode? And what are the remaining challenges for QDs wide adoption in display industry? Lastly, some most recent progresses in our UCF lab at both PL and EL fronts will be highlighted. For PL, a cadmium-free perovskite-polymer composite films with exceptionally narrow emission green peaks (FWHM 20 nm) and good water and thermal stability will be reported. Together with red quantum dots or PFS/KSF phosphors as down-converters for blue LEDs, a white-light source with 95% Rec. 2020 color gamut was demonstrated [1]. For EL, red quantum dot light emitting devices (QLEDs) with record luminance of 165,000 Cd/m2 has been obtained at a current density of 1000 mA/cm2 with a low driving voltage of 5.8 V and CIE coordinates of (0.69, 0.31). [2] The potential of using these QLEDs for light sources for integrated sensing platform [3] or high efficiency, high color quality hybrid white OLED [4] will be discussed. [1] Y. N. Wang, J. He, H. Chen, J. S. Chen, R. D. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S. T. Wu, Y. J. Dong. Ultrastable, Highly Luminescent Organic-Inorganic Perovskite - Polymer Composite Films, Advanced Materials, accepted, (2016). [2] Y. J. Dong, J.M. Caruge, Z. Q. Zhou, C. Hamilton, Z. Popovic, J. Ho, M. Stevenson, G. Liu, V. Bulovic, M. Bawendi, P. T. Kazlas, S. Coe-Sullivan, and J. Steckel Ultra-bright, Highly Efficient, Low Roll-off Inverted Quantum-Dot Light Emitting Devices (QLEDs). SID Symp. Dig. Tech. Pap. 46, 270-273 (2015). [3] J. He, H. Chen, S. T. Wu, and Y. J. Dong, Integrated Sensing Platform Based on Quantum

  8. Attempts to use pulsed light as an emerging technology for inactivation of mould naturally present on rye

    Directory of Open Access Journals (Sweden)

    NICOLETA ARON MAFTEI

    2011-12-01

    Full Text Available Pulsed light technology was used to inactivate moulds, naturally present on rye. The experiments were performed on samples containing 3.5·104 CFU/g and 4.3·103 CFU/g. Treatments of different duration (5, 10, 15, 20, 30, and 40 pulses at intensity of 0.4 J·cm-2 per pulse were applied and mould inactivation was evaluated. Besides confirming the utilisation of pulsed light as decontamination method for cereals, this work contributes with new information regarding the effects of the spectral range of pulsed light, proving that the whole UV range of the spectrum accounts for the lethal effect against moulds. This research supports pulsed light as emerging technology in food preservation.

  9. Gas-breakdown effects associated with the self-pinched transport of intense light-ion beams

    International Nuclear Information System (INIS)

    Ottinger, P.F.; Olson, C.L.; Welch, D.R.; Oliver, B.V.

    1997-01-01

    Self-pinched transport (SPT) of intense light-ion beams is being considered for delivering energy to a high-gain, high-yield inertial confinement fusion target. Proton beam SPT experiments are underway on the Gamble II generators at the Naval Research Laboratory. The physics of SPT in low-pressure gas is being analyzed with analytic theory and numerical simulations. A 1-D theory estimates the net current fraction necessary for stable transport as a function of gas density for a given beam profile. SPT simulations using the 3-D hybrid particle-in-cell (PIC) code IPROP determine the beam profile. Important to both theory and simulations is the inclusion of gas-breakdown physics. A comparison between the theory and the self-consistent simulations using IPROP is made. Additional SPT simulations have been carried out using the 2-D hybrid PIC code SOLENZ which assumes a pre-ionized plasma. This simulation model enables the investigation of long time scale beam propagation issues. A comparison between IPROP and SOLENZ will be presented. SOLENZ simulations with the Gamble I beam parameters demonstrate SPT but point to the need to study the injection conditions to improve beam confinement. Simulations examining beam-to-wall distance and injection conditions will be presented

  10. Orbiting in collisions between light heavy ions (A/sub T/ + A/sub P/ < 50)

    International Nuclear Information System (INIS)

    Shapira, D.; Erb, K.A.; Ford, J.L.C. Jr.

    1983-01-01

    Evidence is presented for the formation of a long-lived rotating dinuclear complex in the early stages of the collision between light heavy nuclei. A study of the variation of the total kinetic energy of the outgoing fragments with bombarding energy allows a determination of the average dinuclear separation prior to scission. At higher bombarding energies the study reveals that the system of the two colliding nuclei has reached a critical value of angular momentum beyond which it can not be trapped into an orbiting configuration

  11. Can pneumocephalus present as flashes of light? A rare case report

    Directory of Open Access Journals (Sweden)

    Santanu Ghosh

    2017-01-01

    Full Text Available Orbital emphysema and associated pneumocephalus usually result from trauma to orbital bones or due to sinus disease, allowing air to travel from paranasal sinus into orbit and brain. However, it is extremely rare to have orbital emphysema and pneumocephalus in the absence of orbital wall fracture. In our case, a young male was admitted with severe eye pain, diminution of vision due to sudden exposure of compressed air gun. Examination revealed proptosed, emphysematous right eye with conjunctival laceration. Computed tomography scan of the head and orbit revealed multiple radiolucencies with air in the right orbit and brain extending up to the spinal canal without any evidence of orbital sinus or cranial bone fracture. Visual acuity recovered completely on follow–up; however, 2 weeks following injury, the patient developed disabling flashes of light which the patient perceived as central in location and resolved finally over a period of 3 months. Flashes of light, in our case, could be attributable to unnoticed damage to cerebral vasculature or connective tissue surrounding the optic nerve due to pneumocephalus.

  12. White light emission from an exciplex interface with a single emitting layer (Conference Presentation)

    Science.gov (United States)

    Bernal, Wilson; Perez-Gutierrez, Enrique; Agular, Andres; Barbosa G, J. Oracio C.; Maldonado, Jose L.; Meneses-Nava, Marco Antonio; Rodriguez Rivera, Mario A.; Rodriguez, Braulio

    2017-02-01

    Efficient solid state lighting devices based in inorganic emissive materials are now available in the market meanwhile for organic emissive materials still a lot of research work is in its way. [1,2] In this work a new organic emissive material based on carbazole, N-(4-Ethynylphenyl) carba-zole-d4 (6-d4), is used as electron-acceptor and commercial PEDOT:PSS as the electron-donor to obtain white emission. Besides the HOMO-LUMO levels of materials the white emission showed dependence on the films thicknesses and applied voltages. In here it is reported that by diminishing the thickness of the PEDOT:PSS layer, from 60 to 35 nm, and by keeping the derivative carbazole layer constant at 100 nm the electro-luminescence (EL) changed from emissive exciton states to the mixture of emissive exciton and exciplex states. [3] For the former thicknesses no white light was obtained meanwhile for the later the EL spectra broadened due to the emission of exciplex states. Under this condition, the best-achieved CIE coordinate was (0.31,0.33) with a driving voltage of 8 V. To lower the driving voltage of the devices a thin film of LiF was added between the derivative of carbazol and cathode but the CIE coordinates changed. The best CIE coordinates for this case were (0.29, 0.34) and (0.32, 0.37) with driving voltage of about 6.5 V. Acknowledgments: CeMie-Sol/27 (Mexico) 207450 References [1] Timothy L Dawson, Society of Dyers and Colourists, Color. Technol., 126, 1-10 (2010), doi: 10.1111/j.1478-4408.2010.00220.x [2] G. M. Farinola, R. Ragni, Journal of Solid State Lighting, 2:9 (2015), doi: 10.1186/s40539-015-0028-7. [3] E. Angioni, et al, J. Mater. Chem. C, 2016, 4, 3851, doi: 10.1039/c6tc00750c.

  13. Investigation of oxygen distribution in HTSC-insulator in film structures on light ion beam

    International Nuclear Information System (INIS)

    Verbitskaya, E.M.; Grekhov, I.V.; Eremin, V.K.; Konnikov, S.G.; Linijchuk, I.A.; Razumov, S.V.; Semchinova, O.K.; Strokan, N.B.; Dyumin, A.N.; Lebedev, V.M.

    1992-01-01

    Use of nuclear reaction method on accelerated ions for profiling of oxygen concentration in thin-film HTSC structures is considered. Reaction on 16 O(d, α) 14 N deuterons, in course of which ∼ 2.6 MeV α-particles are generated, is used. Detected in experiment 2.0-2.6 MeV α-particle spectrum permits to recognstruct oxygen concentration profile in sample depth. Results obtained on YBa 2 Cu 3 O 7-δ and Y 2 BaCuO 5 film om MgO sunstrates, relating to the case of both uniform and nonuniform oxygen distribution, are presented. Resolution in the depth ∼ 200 A and accuracy of concentration measurement (relatively MgO substrate) of several percents are attained during oxygen profiling

  14. Probing of Hermean Exosphere by ultraviolet spectroscopy: Instrument presentation, calibration philosophy and first lights results

    Science.gov (United States)

    Mariscal, J. F.; Rouanet, N.; Maria, J. L.; Quémerais, E.; Mine, P. O.; Zuppella, P.; Suman, M.; Nicolosi, P.; Pelizzo, M. G.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.

    2017-11-01

    PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) is a double spectrometer for the Extreme Ultraviolet range (55-155 nm) and the Far Ultraviolet range (145-315 nm) dedicated to the characterization of Mercury's exosphere composition and dynamics, and surface-exosphere connections. PHEBUS is part of the ESA BepiColombo cornerstone mission payload devoted to the study of Mercury. The BepiColombo mission consists of two spacecrafts: the Mercury Magnetospheric Orbiter (MMO) and the Mercury Planetary Orbiter (MPO) on which PHEBUS will be mounted. PHEBUS is a French-led instrument implemented in a cooperative scheme involving Japan (detectors), Russia (scanner) and Italy (ground calibration). Before launch, PHEBUS team want to perform a full absolute calibration on ground, in addition to calibrations which will be made in-flight, in order to know the instrument's response as precisely as possible. Instrument overview and calibration philosophy are introduced along with the first lights results observed by a first prototype.

  15. Methodological studies into the applicability of positron emission tomography (PET) in light-ion beam tumor therapy

    International Nuclear Information System (INIS)

    Pawelke, J.

    1995-06-01

    For reconstruction of measured activity distributions, a multiplicative iteration scheme was used which, however, does not fulfill the clinical requirement of availability of reconstructed activity distributions within a few minutes after measuring. This disadvantage was set off by the development of an empirical algorithm for determination of the 3D-distribution of the intersection points of all possible coincidence line pairs. This algorithm was then applied for the reconstruction of the positron emitter distributions measured during range measurement of light ions. For the simple, compact source distributions and small number of measured coincidences in this case, the method of intersecting point computation is better than the iterative method in that it is significantly faster and yields images of comparable quality. On the basis of these results, a PET system was set up for clinical applications at the irradiation system for experimental light-ion beam therapy at GSI Darmstadt. (orig./DG) [de

  16. Optimization of determination of 126Sn by ion exchange chromatography method (presentation)

    International Nuclear Information System (INIS)

    Pasteka, L.; Dulanska, S.

    2013-01-01

    The aim of the work is to optimize the uptake of tin on anion exchange resins and application of this knowledge for the analysis of samples of radioactive waste from the device of Jaslovske Bohunice and Mochovce in determining of 126 Sn. First to be optimized a method for the separation of tin on ion exchange sorbent Anion Exchange Resin (1-X8, Chloride Form) from Eichrom Technologies. Model sample was prepared in 7 mol dm -3 HCl, because in that environment a sorbent effectively captures the tin, which is bounded complexly with chloride anions as SnCl 6 2- . The radiochemical separation yield was monitored by gamma spectrometric measurements on high purity germanium detector HPGe (E = 391 keV) by adding isotope 113 Sn to each model solution. The method of tin separation was optimized on model samples.

  17. Modelling the many-body dynamics of heavy ion collisions. Present status and future perspective

    International Nuclear Information System (INIS)

    Hartnack, Ch.; Puri, R.K.; Aichelin, J.; Konopka, J.; Bass, S.A.; Stoecker, H.; Greiner, W.

    1996-01-01

    Basic problems of the semiclassical microscopic modelling of strongly interacting systems are discussed within the framework of Quantum Molecular Dynamics (QMD). It is shown that the same predictions can be obtained with several - numerically completely different and independently written -programs as far as the same model parameters are employed and the same basic approximations are made. Some of the physical results, however, depend also on rather technical parameters like the preparation of the initial configuration in phase space. This crucial problem is connected with the description of the ground state of single nuclei, which differs among the various approaches. An outlook to an improved molecular dynamics scheme for heavy ion collisions is given. (author)

  18. Modelling the many-body dynamics of heavy ion collisions. Present status and future perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hartnack, Ch.; Puri, R.K.; Aichelin, J. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Konopka, J.; Bass, S.A.; Stoecker, H.; Greiner, W. [Johann Wolfgang Goethe Univ., Frankfurt am Main (Germany). Inst. fuer Theoretische Physik

    1996-12-31

    Basic problems of the semiclassical microscopic modelling of strongly interacting systems are discussed within the framework of Quantum Molecular Dynamics (QMD). It is shown that the same predictions can be obtained with several - numerically completely different and independently written -programs as far as the same model parameters are employed and the same basic approximations are made. Some of the physical results, however, depend also on rather technical parameters like the preparation of the initial configuration in phase space. This crucial problem is connected with the description of the ground state of single nuclei, which differs among the various approaches. An outlook to an improved molecular dynamics scheme for heavy ion collisions is given. (author). 86 refs.

  19. Effect of Jigsaw II, Reading-Writing-Presentation, and Computer Animations on the Teaching of "Light" Unit

    Science.gov (United States)

    Koç, Yasemin; Yildiz, Emre; Çaliklar, Seyma; Simsek, Ümit

    2016-01-01

    The aim of this study is to determine the effect of Jigsaw II technique, reading-writing-presentation method, and computer animation on students' academic achievements, epistemological beliefs, attitudes towards science lesson, and the retention of knowledge in the "Light" unit covered in the 7th grade. The sample of the study consists…

  20. Improved stability of organic light-emitting diode with aluminum cathodes prepared by ion beam assisted deposition

    Directory of Open Access Journals (Sweden)

    Soon Moon Jeong, Deuk Yeon Lee, Won Hoe Koo, Sang Hun Choi, Hong Koo Baik, Se-Jong Lee and Kie Moon Song

    2005-01-01

    Full Text Available We have fabricated highly stable organic electroluminescent devices based on spin-coated poly-p-phenylene-vynylene (PPV thin films. The electrical properties of aluminum cathode, prepared by ion beam assisted deposition, on PPV have been investigated and compared to those by thermal evaporation. Although energetic particles of Al assisted by Ar+ ion may damage the organic material, I–V–L characteristics are improved by applying thin Al buffer layer. In addition, a dense Al cathode inhibits the permeation of H2O and O2 into PPV film through pinhole defects, and thus retards dark spot growth. It may be deduced from highly packed structure of Al cathode with an increase in the contact area between Al and PPV that reduce the contact resistance. In conclusion, the lifetime of organic light-emitting device (OLED has been extended effectively by dense Al film through ion beam assisted deposition process.

  1. An extended formula for the energy spectrum of sputtered atoms from a material irradiated by light ions

    International Nuclear Information System (INIS)

    Ono, T.; Aoki, Y.; Yamamura, Y.; Kawamura, T.; Kenmotsu, T.

    2004-10-01

    We extend a formula proposed by Kenmotsu et al. (hereafter Paper I), which fits with the energy spectrum of atoms sputtered from a heavy material hit by low-energy light ions (H + , D + , T + , He + ) by taking into account an inelastic energy loss neglected in Paper I. We assume that primary knock-on atoms produced by ions backscattered at large angles do not lose energy while penetrating the material up to the surface, instead of the energy-loss model used in Paper I. The extended formula is expressed in terms of a normalized energy-distribution function and is compared with the data calculated with the ACAT code for 50 eV, 100 eV and 1 keV D + ions impinging on a Fe target. Our formula fits well with the data in a wide range of incident energy. (author)

  2. Calculated energy distributions for light 0.25--18-keV ions scattered from solid surfaces

    International Nuclear Information System (INIS)

    Robinson, J.E.; Harms, A.A.; Karapetsas, S.K.

    1975-01-01

    Scattered energy distributions are calculated for light ions incident on Nb and Mo surfaces of interest for controlled nulcear fusion reactors. The scattered energy is found to vary as a function of the reflection coefficient between a multiple-collision limit at low energies and a single-collision Rutherford scattering limit at high energies. High-energy peaking of the scattered particle distributions is also found for low incident energies

  3. Preequilibrium light particle emission in heavy ion collisions for E/A between 10 and 20 MeV/A

    International Nuclear Information System (INIS)

    Kailas, S.

    1989-01-01

    It is known that when two heavy ions collide, while the interaction process is dominated by nucleus-nucleus mean field effects at lower energies (E/A < 10Me V), the nucleon-nucleon collision aspects dominate at higher energies (E/A <100 MeV) . In the intermediate E/A region, both the above mentioned effects are important t o varying degrees. Many experiments have shown that when the incident energy excee ds 10 MeV/A, the complete fusion (CF) of target and projectile gives way to an inco mplete fusion (ICF) mechanism associated with preequilibrium light particle (PELP) emmi sion. This phenomenon becomes increasingly important as E increases and at E/A < 20 Me V, the cross section for PELP emission becomes comparable to the reaction cross section . Considerable progress has been made in the last decade towards understanding of ICF and PELP. In the present work, the review of this field is mainly restricted to E/A values lying between 10 and 20 MeV/A. (author). 27 refs., 5 figs

  4. Reversible Low-Light Induced Photoswitching of Crowned Spiropyran-DO3A Complexed with Gadolinium(III Ions

    Directory of Open Access Journals (Sweden)

    André Knoesen

    2012-05-01

    Full Text Available Photoswitchable spiropyran has been conjugated to the crowned ring system DO3A, which improves its solubility in dipolar and polar media and stabilizes the merocyanine isomer. Adding the lanthanide ion gadolinium(III to the macrocyclic ring system leads to a photoresponsive magnetic resonance imaging contrast agent that displays an increased spin-lattice relaxation time (T1 upon visible light stimulation. In this work, the photoresponse of this photochromic molecule to weak light illumination using blue and green light emitting diodes was investigated, simulating the emission spectra from bioluminescent enzymes. Photon emission rate of the light emitting diodes was changed, from 1.75 × 1016 photons·s−1 to 2.37 × 1012 photons·s−1. We observed a consistent visible light-induced isomerization of the merocyanine to the spiropyran form with photon fluxes as low as 2.37 × 1012 photons·s−1 resulting in a relaxivity change of the compound. This demonstrates the potential for use of the described imaging probes in low light level applications such as sensing bioluminescence enzyme activity. The isomerization behavior of gadolinium(III-ion complexed and non-complexed spiropyran-DO3A was analyzed in water and ethanol solution in response to low light illumination and compared to the emitted photon emission rate from over-expressed Gaussia princeps luciferase.

  5. Virtual 3D bladder reconstruction for augmented medical records from white light cystoscopy (Conference Presentation)

    Science.gov (United States)

    Lurie, Kristen L.; Zlatev, Dimitar V.; Angst, Roland; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Bladder cancer has a high recurrence rate that necessitates lifelong surveillance to detect mucosal lesions. Examination with white light cystoscopy (WLC), the standard of care, is inherently subjective and data storage limited to clinical notes, diagrams, and still images. A visual history of the bladder wall can enhance clinical and surgical management. To address this clinical need, we developed a tool to transform in vivo WLC videos into virtual 3-dimensional (3D) bladder models using advanced computer vision techniques. WLC videos from rigid cystoscopies (1280 x 720 pixels) were recorded at 30 Hz followed by immediate camera calibration to control for image distortions. Video data were fed into an automated structure-from-motion algorithm that generated a 3D point cloud followed by a 3D mesh to approximate the bladder surface. The highest quality cystoscopic images were projected onto the approximated bladder surface to generate a virtual 3D bladder reconstruction. In intraoperative WLC videos from 36 patients undergoing transurethral resection of suspected bladder tumors, optimal reconstruction was achieved from frames depicting well-focused vasculature, when the bladder was maintained at constant volume with minimal debris, and when regions of the bladder wall were imaged multiple times. A significant innovation of this work is the ability to perform the reconstruction using video from a clinical procedure collected with standard equipment, thereby facilitating rapid clinical translation, application to other forms of endoscopy and new opportunities for longitudinal studies of cancer recurrence.

  6. Light trespass : causes, remedies and actions. Paper presented at the CIE / MBE Symposium "Lighting and Signalling for Transport", Budapest, 22-23 September 1986.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1986-01-01

    Light trespass is the result of light that does not reach its destination, or that is reflected after having reached its destination or is scattered by the media in between source and destination: by light that is "spilled". Light trespass may disturb people for whom the lighting actually is

  7. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    Science.gov (United States)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  8. Fragmentation of the C60 molecule in collision with light ions studied by a multi-correlation technique. Cross-sections, electron spectroscopy

    International Nuclear Information System (INIS)

    Rentenier, A.

    2004-04-01

    A quantitative study of the C60 fullerenes fragmentation in collision with light ions (H n + with n=1,2,3, He q+ with q=1,2) in the velocity range 0,1 - 2,3 u.a.) is presented. The multi-correlation technique, developed between fragment ions and electrons with well defined energy, has enlightened some of the dependences and properties of fragmentation mechanisms (cross sections, electron spectroscopy, size distributions, kinetic energy of fragment ions, Campi's scatter plot, activation energies). The deposited energy hence appeared as an important parameter. Cross sections have been measured, for the first time, for all the collisional processes. Ionisation and capture only depends on the collision velocity. On the other hand, scaling laws with the deposited energy have been observed for the cross sections of multifragmentation, which depends on the collision energy and the nature of the projectile. The deposited energy has also been found as an essential parameter to understand the evolution of the charged fragment size distributions. The electron spectroscopy, achieved at an emission angle of 35 degrees, showed spectra peaked at important energies (from 5 to 20 eV). The spectra shape depends on the collision velocity. A first theoretical analysis points out the link between the observed energy distribution and the presence of a centrifugal potential barrier. Finally, correlation experiments between produced ions and electron energy reveal that electron energy increases with internal energy. (author)

  9. Characterization of light ion beams generated by a plasma focus device

    International Nuclear Information System (INIS)

    Koo, Bon Cheul

    1999-02-01

    Plasma focus device has been studied as neutron and X-ray sources generated from the high pressure fusion reaction during Z-pinch. Recently, the scope of the device is focused on efficient neutron generation, X-ray lithography, preliminary fusion experiment, and ion/electron beam generation devices. A Hexagonal Beam Generator with six parallel capacitors has been developed and generated ion beams from 30kJ(C=6 μ F, V= 100kV) maximum energy. To find the optimum condition of ion beam generation, the correlation among charging voltage(20∼30kV), operation pressure of chamber(0.1∼5 torr), and length of electrode has been studied. To measure ion beam, a Faraday Cup and 3 Rogowski coils were installed. Energy of ion beam was obtained by adopting time-of -flight method between Rogowski coils

  10. Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G-.H.; Smith, K.; Pesaran, A.

    2009-06-01

    This presentation outlines NREL's multi-physics simulation study to characterize an internal short by linking and integrating electrochemical cell, electro-thermal, and abuse reaction kinetics models.

  11. Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries

    Science.gov (United States)

    Colò, Francesca; Bella, Federico; Nair, Jijeesh R.; Gerbaldi, Claudio

    2017-10-01

    In this work we present a very simple preparation procedure of a poly(ethylene oxide) (PEO)-based crosslinked polymer electrolyte (XPE) for application in sodium-ion batteries (NIBs). The polymer electrolyte, containing NaClO4 as Na+ source, is prepared by rapid, energy saving, solvent-free photopolymerization technique, in a single step. Thermal, mechanical, morphological and electrochemical properties of the resulting XPE are thoroughly investigated. The highly ionic conducting (>1 mS cm-1 at 25 °C) polymer electrolyte is used in a lab-scale sodium cell with nanostructured TiO2 working electrode. The obtained results in terms of ambient temperature cycling behaviour (stable specific capacity of about 250 mAh g-1 at 0.1 mA cm-2 and overall remarkable stability, for a quasi-solid state Na polymer cell, upon very long term cycling exceeding 1000 reversible cycles at 0.5 mA cm-2 corresponding to > 5000 h of continuous operation) demonstrate the promising prospects of this novel XPE to be implemented in the next-generation NIBs conceived for large-scale energy storage systems, such as those connected to photovoltaic and wind factories.

  12. Production study of light fragments emitted at low angle in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bastid, N.

    1987-03-01

    The Diogene plastic wall was built in order to study fragment production in a 0 O -6 O angular range. After generalities on heavy ion collisions and a description of the Diogene detector, methods used for data analysis allowing identification of charged particles and measurement of their energy and emission angle are presented. From correlation studies between the Diogene events and the plastic wall events, we can have an information on the centrality of collisions. On the other hand, the study of differential cross sections shows two existing sources: one formed by the projectile remnant, at a velocity close to beam velocity and a source of intermediary rapidity formed by the participants. We have shown that even for very central collisions and heavy targets, the target nucleus remains partially transparent. In order to explain projectile fragmentation mechanism, we have used two models: a coalescence model and a thermal model. The first model gives the value of the coalescence radius. It seems that this model does not apply to angles nearing 0 O . With the thermal model, we have been able to sort out apparent temperature values which confirm the weak excitation energy of the projectile remnant [fr

  13. Intense pulsed light-ion beam generated by planar type self-magnetically insulated diode

    International Nuclear Information System (INIS)

    Yoshikawa, T.; Masugata, K.; Ito, M.; Matsui, M.; Yatsui, K.

    1984-01-01

    New type of ion diode named ''Planar Type Self-Magnetically Insulated Diode'' (PSID) has been developed. By using a 1.5-mm-thick-polyethylene sheet as an anode surface, we have obtained Vsub(d) (diode voltage) -- 886 kV, Isub(d) (diode current) -- 180 kA, and Isub(i) (net ion current) -- 52 kA, yielding the diode efficiency of ion production to be -- 30 %. Multiple-shots operation (more than 40 shots) has been possible with good reproducibility in such a relatively high powers above. (author)

  14. Manipulating Ion Migration for Highly Stable Light-Emitting Diodes with Single-Crystalline Organometal Halide Perovskite Microplatelets.

    Science.gov (United States)

    Chen, Mingming; Shan, Xin; Geske, Thomas; Li, Junqiang; Yu, Zhibin

    2017-06-27

    Ion migration has been commonly observed as a detrimental phenomenon in organometal halide perovskite semiconductors, causing the measurement hysteresis in solar cells and ultrashort operation lifetimes in light-emitting diodes. In this work, ion migration is utilized for the formation of a p-i-n junction at ambient temperature in single-crystalline organometal halide perovskites. The junction is subsequently stabilized by quenching the ionic movement at a low temperature. Such a strategy of manipulating the ion migration has led to efficient single-crystalline light-emitting diodes that emit 2.3 eV photons starting at 1.8 V and sustain a continuous operation for 54 h at ∼5000 cd m -2 without degradation of brightness. In addition, a whispering-gallery-mode cavity and exciton-exciton interaction in the perovskite microplatelets have both been observed that can be potentially useful for achieving electrically driven laser diodes based on single-crystalline organometal halide perovskite semiconductors.

  15. Hg+ ion density in low-pressure Ar-Hg discharge plasma used for liquid crystal display back-lighting

    International Nuclear Information System (INIS)

    Goto, Miki; Arai, Toshihiko

    1995-01-01

    The positive column of a low-pressure Ar-Hg discharge has been applied as a fluorescent light source for illumination. Many studies on the diagnostics and fundamental mechanisms have been carried out on both the classical fluorescent lamp (d=36 mm) and the compact fluorescent lamp (d=12 mm). On the other hand, a lamp of extremely narrow diameter (usually below 6 mm) has been recently developed for liquid crystal display (LCD) back-lighting and its importance is undoubtedly increasing. Some characteristics or mechanisms of the narrow-diameter lamp may be similar to those of the 36 mm one; however the similarity rule does not hold between them due to the contributions from a stepwise ionization process. Therefore, in order to clarify the excitation mechanism in the narrow-diameter lamp quantitatively, various parameters must be measured directly and some analysis must be done. The Hg + ion density and electron density are important parameters for the purpose of clarifying the excitation mechanism quantitatively. In this work, we have measured the Hg + ion density using the modified absorption method, and the electron density using the probe method in the Ar-Hg discharge of the 4 mm bore tube on bath temperature. Moreover, with combining the modified absorption method and the probe method, the Hg 2 + molecular ion density has been determined

  16. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.

    1986-01-01

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  17. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    DEFF Research Database (Denmark)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus

    2013-01-01

    Background and purpose In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic...... of the biological dose is out of scope of the current work. Materials and methods The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm3). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose...... fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). Results The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was −2...

  18. Light and collisions: Julius von Bismark presents an update on his work after his CERN Residency

    CERN Multimedia

    2012-01-01

    On 27 June 2012, Julius von Bismarck, the first winner of the Prix Ars Electronica Collide@CERN, will give a special informal interim lecture for CERN on his ideas and work in progress.   Julius will disclose his personal reactions to his experiences at CERN, sharing with us how particle physics and the laboratory has started having an impact on his artistic practice. As he said when he won the prize at the first Collide@CERN public lecture: “For me, the Collide@CERN residency is a dream come true.” So has reality matched up with his dreams? And why in the first two weeks did he say: “For me already the residency is already a success.” What is his experience of the creative collisions between arts and science? There will be opportunities for the audience to ask questions, and the artist stresses that this will be a personal and informal presentation of ideas in progress. The lecture will take place in the Council Chamber (Room 503-1-001) from 4.3...

  19. The stopping power and energy straggling of light ions in graphene oxide foils

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Malinský, Petr; Sofer, Z.

    2017-01-01

    Roč. 406, SEP (2017), s. 173-178 ISSN 0168-583X R&D Projects: GA MŠk LM2015056; GA ČR GA16-05167S Institutional support: RVO:61389005 Keywords : ion energy loss * ion energy straggling * graphene oxide Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.109, year: 2016

  20. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D N; Breese, M B.H.; Prawer, S; Dooley, S P; Allen, M G; Bettiol, A A; Saint, A [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C G [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1994-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  1. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N.; Breese, M.B.H.; Prawer, S.; Dooley, S.P.; Allen, M.G.; Bettiol, A.A.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  2. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    Science.gov (United States)

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  4. Nanocavity formation processes in MgO(1 0 0) by light ion (D, He, Li) and heavy ion (Kr, Cu, Au) implantation

    International Nuclear Information System (INIS)

    Veen, A. van; Huis, M.A. van; Fedorov, A.V.; Schut, H.; Labohm, F.; Kooi, B.J.; Hosson, J.Th.M. de

    2002-01-01

    In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a dose of 10 16 cm -2 , followed by annealing to 1300 K. It has been shown earlier by transmission electron microscopy (TEM) that the cavities (thickness 2-3 nm and length/width 5-10 nm) have a perfectly rectangular shape bounded by {1 0 0} faces. The majority of the gas has been released at this temperature and the cavities are stable until annealing at 1500 K. The depth location of the cavities and the implanted ions is monitored by positron beam analysis, neutron depth profiling, RBS/channeling and energy dispersive spectroscopy. The presence of metallic nanoprecipitates is detected by optical absorption measurements and by high-resolution XTEM. Surprisingly, all the metallic implants induce, in addition to metallic precipitates in a band at the mean ion range, small rectangular and cubic nanocavities. These are most clearly observed at a depth shallower than the precipitate band. In the case of gold the cavities are produced in close proximity to the crystal surface. The results indicate that in MgO vacancy clustering dominates over Frenkel-pair recombination. Results of molecular dynamics calculations will be used to discuss the observed defect recovery and clustering processes in MgO

  5. Nanocavity formation processes in MgO(1 0 0) by light ion (D, He, Li) and heavy ion (Kr, Cu, Au) implantation

    Energy Technology Data Exchange (ETDEWEB)

    Veen, A. van E-mail: avveen@iri.tudelft.nl; Huis, M.A. van; Fedorov, A.V.; Schut, H.; Labohm, F.; Kooi, B.J.; Hosson, J.Th.M. de

    2002-05-01

    In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a dose of 10{sup 16} cm{sup -2}, followed by annealing to 1300 K. It has been shown earlier by transmission electron microscopy (TEM) that the cavities (thickness 2-3 nm and length/width 5-10 nm) have a perfectly rectangular shape bounded by {l_brace}1 0 0{r_brace} faces. The majority of the gas has been released at this temperature and the cavities are stable until annealing at 1500 K. The depth location of the cavities and the implanted ions is monitored by positron beam analysis, neutron depth profiling, RBS/channeling and energy dispersive spectroscopy. The presence of metallic nanoprecipitates is detected by optical absorption measurements and by high-resolution XTEM. Surprisingly, all the metallic implants induce, in addition to metallic precipitates in a band at the mean ion range, small rectangular and cubic nanocavities. These are most clearly observed at a depth shallower than the precipitate band. In the case of gold the cavities are produced in close proximity to the crystal surface. The results indicate that in MgO vacancy clustering dominates over Frenkel-pair recombination. Results of molecular dynamics calculations will be used to discuss the observed defect recovery and clustering processes in MgO.

  6. Two-color above-threshold ionization of atoms and ions in XUV Bessel beams and intense laser light

    Science.gov (United States)

    Seipt, D.; Müller, R. A.; Surzhykov, A.; Fritzsche, S.

    2016-11-01

    The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultraviolet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target atoms with regard to the beam axis. In addition, analog to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of the atoms relative to the beam. For macroscopically extended targets, in contrast, three of these dichroism signals tend to zero, while the other four just coincide with the standard circular dichroism, similar as for Bessel beams with a small opening angle. Detailed computations of the dichroism are performed and discussed for the 4 s valence-shell photoionization of Ca+ ions.

  7. Light ions radiobiological effects on human tumoral cells: measurements modelling and application to hadron-therapy; Mesures et modelisation des effets radiobiologiques des ions legers sur des cellules tumorales humaines: application a l'hadrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Jalade, P

    2005-11-15

    In classical radiotherapy, the characteristics of photons interactions undergo limits for the treatment of radioresistant and not well located tumours. Pioneering treatments of patients at the Lawrence Laboratory at Berkeley has demonstrated two advantages of hadrons beams: the Relative Biologic Effect (the RBE) and the ballistic of the beams. Since 1994, the clinical centre at Chiba, has demonstrated successfully the applicability of the method. A physics group, managed by G. Kraft, at Darmstadt in Germany, has underlined the advantages of carbon beams. An European pool, called ENGIGHT (European Network for LIGHt ion Therapy) has been created in which the French ETOILE project appeared. The purpose of the thesis concerns measurements and models of 'in vitro' human cells survival. In the first part, the nowadays situation in particles interactions, tracks and cells structures and radiobiology is presented here. The second is devoted to the models based on the beam tracks and localization of the physical dose. Discussion of sensitivity to various parameters of the model has been realized with the help of numerical simulations. Finally the predictions of the improved model has been compared to experimental irradiations of human cells with argon and carbon beams of the GANIL machine. Conclusion of such study shows the performance and limits of a local model for predicting the radiobiological efficiency of light ions in hadron-therapy. (author)

  8. Light ions radiobiological effects on human tumoral cells: measurements modelling and application to hadron-therapy; Mesures et modelisation des effets radiobiologiques des ions legers sur des cellules tumorales humaines: application a l'hadrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Jalade, P

    2005-11-15

    In classical radiotherapy, the characteristics of photons interactions undergo limits for the treatment of radioresistant and not well located tumours. Pioneering treatments of patients at the Lawrence Laboratory at Berkeley has demonstrated two advantages of hadrons beams: the Relative Biologic Effect (the RBE) and the ballistic of the beams. Since 1994, the clinical centre at Chiba, has demonstrated successfully the applicability of the method. A physics group, managed by G. Kraft, at Darmstadt in Germany, has underlined the advantages of carbon beams. An European pool, called ENGIGHT (European Network for LIGHt ion Therapy) has been created in which the French ETOILE project appeared. The purpose of the thesis concerns measurements and models of 'in vitro' human cells survival. In the first part, the nowadays situation in particles interactions, tracks and cells structures and radiobiology is presented here. The second is devoted to the models based on the beam tracks and localization of the physical dose. Discussion of sensitivity to various parameters of the model has been realized with the help of numerical simulations. Finally the predictions of the improved model has been compared to experimental irradiations of human cells with argon and carbon beams of the GANIL machine. Conclusion of such study shows the performance and limits of a local model for predicting the radiobiological efficiency of light ions in hadron-therapy. (author)

  9. Proceedings of the workshop on microscopic and phenomenological studies of the interactions between light-heavy ions

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1993-01-01

    The workshop 'Microscopic and Phenomenological Studies of the Interactions between Light-Heavy Ions' was held at Institute for Nuclear Study, University of Tokyo from Dec. 24 to Dec. 26, 1991. The workshop included 1) studies of the nucleus-nucleus interactions of the systems as 16 O- 16 O, 16 O- 15 N, etc., or the studies of the elastic and inelastic scatterings and the transfer reactions in such systems, 2) structure and reactions of neutron-rich nuclei, 3) microscopic derivation of the effective two-nucleon interactions, 4) development of the methods of techniques applied to the heavier systems. (author)

  10. Hybrid nanowire ion-to-electron transducers for integrated bioelectronic circuitry (Conference Presentation)

    Science.gov (United States)

    Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.

    2016-09-01

    A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).

  11. Comparison of single and mixed ion implantation effects on the changes of the surface hardness, light transmittance, and electrical conductivity of polymeric materials

    International Nuclear Information System (INIS)

    Park, J. W.; Lee, J. H.; Lee, J. S.; Kil, J. G.; Choi, B. H.; Han, Z. H.

    2001-01-01

    Single or mixed ions of N, He, C were implanted onto the transparent PET(Polyethylen Terephtalate) with the ion energies of less than 100 keV and the surface hardness, light transmittance and electrical conductivity were examined. As measured with nanoindentation, mixed ion implantations such as N + +He + or N + + C + exhibited more increase in the surface hardness than the single ion implantation. Especially, implantation of C+N ions increased the surface hardness by about three times as compared to the implantation of N ion alone, which means more than 10 times increase than the untreated PET. Surface electrical conductivity was increased along with the hardness increase. The conductivity increase was more proportional to the hardness when used the higher ion energy and ion dose, while it did not show any relationship at as low as 50 keV of ion energy. The light at the 550 nm wavelength (visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet, implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays

  12. Design and optimization of the PBFA II vacuum interface and transmission lines for light ion fusion

    International Nuclear Information System (INIS)

    Mc Daniel, D.H.; Stinnett, R.W.; Gray, E.W.; Mattis, R.E.

    1985-01-01

    The PBFA II vacuum insulator was originally designed for optimum coupling to a proton ion diode with minimum inductance. In July 1983 it was decided that lithium ions at 30 MeV would be the baseline for PBFA II. This requires the use of Plasma Opening Switches (POS) and vacuum inductor to reach 30 MV. To achieve this, the vacuum magnetically insulated transmission lines had to be redesigned as an inductive energy store. To gain optimum coupling to this vacuum inductor, the output impedance of the water section was increased by the use of a water-dielectric transformer. The calculations leading to the final design are discussed

  13. Cathodoluminescence studies of anomalous ion implantation defect introduction in lightly and heavily doped liquid phase epitaxial GaAs:Sn

    International Nuclear Information System (INIS)

    Norris, C.B.; Barnes, C.E.

    1980-01-01

    The anomalous postrange defect introduction produced by shallow ion implantation in GaAs has been investigated in Sn-doped liquid phase epitaxial (LPE) material using depth-resolved cathodoluminescence in conjunction with layer removal by chemical etching. 100-keV Ne + or 200-keV Zn + ions were implanted into lightly or heavily Sn-doped LPE layers at temperatures between 80 and 300 K. All implantations were subsequently annealed at 300 K. Although the projected ion ranges for the implants were on the order of 1000 A, significant postrange damage was observed at far greater depths. At depths up to several microns, the damage introduction produced severe nonradiative recombination but simultaneously caused an apparent increase in the concentration of incumbent luminescence centers responsible for an extrinsic band near 1.39 eV. A weak damage-related band near 1.2 eV could also be seen in one instance. At depths of 5--30 μm, the postrange damage had the opposite effect of annihilating incumbent 1.39-eV luminescence centers. The efficiency of the damage introduction has a complicated temperature dependence which is significantly different for the ion/substrate combinations investigated. However, no conditions were found for which the damage introduction could be inhibited. While our measurements are the most extensive to date concerning the anomalous ion implant damage introduction in GaAs, the detailed mechanisms responsible for this effect still remain obscure owing in part to the limited understanding of defects in GaAs

  14. Full Solar Spectrum Light Driven Thermocatalysis with Extremely High Efficiency on Nanostructured Ce Ion Substituted OMS-2 Catalyst for VOCs Purification

    DEFF Research Database (Denmark)

    Hou, J.T.; Li, Y.Z.; Mao, M.Y.

    2015-01-01

    solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants such as benzene, toluene, and acetone. Based on the experimental evidence, we propose a novel...... in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full...... mechanism of solar light driven thermocatalysis for the Ce ion substituted OMS-2 catalyst. The reason why the Ce ion substituted OMS-2 catalyst exhibits much higher catalytic activity than pure OMS-2 and CeO2/OMS-2 nano composite under the full solar spectrum irradiation is discussed....

  15. Low-temperature FTIR spectroscopy provides evidence for protein-bound water molecules in eubacterial light-driven ion pumps.

    Science.gov (United States)

    Nomura, Yurika; Ito, Shota; Teranishi, Miwako; Ono, Hikaru; Inoue, Keiichi; Kandori, Hideki

    2018-01-31

    Light-driven H + , Na + and Cl - pumps have been found in eubacteria, which convert light energy into a transmembrane electrochemical potential. A recent mutation study revealed asymmetric functional conversion between the two pumps, where successful functional conversions are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Although this fact suggests that the essential structural mechanism of an ancestral function is retained even after gaining a new function, questions regarding the essential structural mechanism remain unanswered. Light-induced difference FTIR spectroscopy was used to monitor the presence of strongly hydrogen-bonded water molecules for all eubacterial H + , Na + and Cl - pumps, including a functionally converted mutant. This fact suggests that the strongly hydrogen-bonded water molecules are maintained for these new functions during evolution, which could be the reason for successful functional conversion from Na + to H + , and from Cl - to H + pumps. This also explains the successful conversion of the Cl - to the H + pump only for eubacteria, but not for archaea. It is concluded that water-containing hydrogen-bonding networks constitute one of the essential structural mechanisms in eubacterial light-driven ion pumps.

  16. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  17. Neutron production in lead targets by high-energy light-mass heavy ions

    International Nuclear Information System (INIS)

    Daniehl', A.V.; Lyapin, V.S.; Tsvetkov, I.O.

    1992-01-01

    The characteristics of the time-of-flight spectrometer and the double different distributions of neutrons and secondary charged particles produced by 2 GeV protons and 1 GeVXA d,α, 6 Li and 12 C ions bombarding lead targets are described. Experimental data are compared with the results of calculations by codes SITHA. 17 refs.; 10 figs.; 1 tab

  18. Magnetic behavior of light rare earth ions in (Nd,Eu,Gd)-123 superconductors

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš; Rameš, Michal; Marcenat, C.; Wolf, T.

    2013-01-01

    Roč. 26, č. 4 (2013), s. 901-905 ISSN 1557-1939 R&D Projects: GA MŠk(CZ) ME10069 Institutional support: RVO:68378271 Keywords : high- T c superconductors * cuprates * thermodynamic properties * LRE-123 * paramagnetic ions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2013

  19. Shedding light on the mercury mass discrepancy by weighing Hg52+ ions in a Penning trap

    International Nuclear Information System (INIS)

    Fritioff, T.; Bluhme, H.; Schuch, R.; Bergstroem, I.; Bjoerkhage, M.

    2003-01-01

    In their nuclear tables Audi and Wapstra have pointed out a serious mass discrepancy between their extrapolated values for the mercury isotopes and those from a direct measurement by the Manitoba group. The values deviate by as much as 85 ppb from each other with claimed uncertainties of about 16 and 7 ppb, respectively. In order to decide which values are correct the masses of the 198 Hg and 204 Hg isotopes have been measured in the Stockholm Penning trap mass spectrometer SMILETRAP using 52+ ions. This charge state corresponds to a filled Ni electron configuration for which the electron binding energy can be accurately calculated. The mass values obtained are 197.966 768 44(43) u for 198 Hg and 203.973 494 10(39) u for 204 Hg. These values agree with those measured by the Manitoba group, with a 3 times lower uncertainty. This measurement was made possible through the implementation of a cooling technique of the highly charged mercury ions during charge breeding in the electron beam ion source used for producing the Hg 52+ ions

  20. Light particle emission measurements in heavy ion reactions: Progress report, June 1, 1987-May 31, 1988

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1988-01-01

    This paper discusses work on heavy ion reactions done at Georgia State University. Topics and experiments discussed are: energy division in damped reactions between 58 Ni projectiles and 165 Ho and 58 Ni targets using time-of-flight methods; particle-particle correlations; and development works on the Hili detector system. 10 refs., 9 figs

  1. arXiv Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bittrich, Carsten; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Briglin, Daniel Lawrence; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Gama, Rafael; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasznahorkay, Attila; Krauss, Dominik; Kravchenko, Anton; Kremer, Jakub Andrzej; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Mateos, David; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McNamara, Peter Charles; McPherson, Robert; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Newman, Paul; Ng, Tsz Yu; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Ponomarenko, Daniil; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciandra, Andrea; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Shen, Yu-Ting; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sopczak, Andre; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sydorenko, Alexander; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsang, Ka Wa; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valéry, Lo\\"ic; Valkar, Stefan; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Qing; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wei; Wang, Wenxiao; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2017-08-14

    Light-by-light scattering ($\\gamma\\gamma\\rightarrow\\gamma\\gamma$) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead (Pb) ions. Using 480 $\\mu$b$^{-1}$ of Pb+Pb collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, the ATLAS Collaboration reports evidence for the $\\gamma\\gamma\\rightarrow\\gamma\\gamma$ reaction. A total of 13 candidate events are observed with an expected background of $2.6\\pm0.7$ events. After background subtraction and analysis corrections, the fiducial cross section of the process $\\textrm{Pb+Pb}\\,(\\gamma\\gamma)\\rightarrow \\textrm{Pb}^{(\\ast)}\\textrm{+}\\textrm{Pb}^{(\\ast)}\\,\\gamma\\gamma$, for photon transverse energy $E_{\\mathrm{T}}>3$ GeV, photon absolute pseudorapidity $|\\eta|<2.4$, diphoton invariant mass greater than 6 GeV, diphoton transver...

  2. Track structure of protons and other light ions in liquid water: applications of the LIonTrack code at the nanometer scale.

    Science.gov (United States)

    Bäckström, G; Galassi, M E; Tilly, N; Ahnesjö, A; Fernández-Varea, J M

    2013-06-01

    The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H(+), He(2+), and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. ["Electron inelastic-scattering cross sections in liquid water," Radiat. Phys. Chem. 53, 1-18 (1998); "Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water," Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C(6+) ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H(+). On average clusters of two to three EDs for 1 MeV/u H(+) and clusters of four to five EDs for 1 MeV/u C(6+) could be expected for a modeling double strand break distance of 3.4 nm.

  3. Making Mass Spectrometry See the Light: The Promises and Challenges of Cryogenic Infrared Ion Spectroscopy as a Bioanalytical Technique.

    Science.gov (United States)

    Cismesia, Adam P; Bailey, Laura S; Bell, Matthew R; Tesler, Larry F; Polfer, Nicolas C

    2016-05-01

    The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte ion would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors' opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation.

  4. Measurement of the radial density distribution of the light emissions near the trajectory of fast ions in nitrogen

    International Nuclear Information System (INIS)

    Ibach, T.

    1983-11-01

    For the analysis of the emission and deceleration mechanisms of ionisation-electrons (delta-electrons) during the passage of fast ions through gases, the radial density distribution of the light emission has been measured, which is related with the (0,0)-transitions of two optical bands in nitrogen. These measurements have been made using a small aperture limited ion beam. The first band under study is the 2. positive system at 337.1 nm excited mainly by low energy electrons around 20 eV, and the second band is the 1. negative system at 391.4 nm excited by fast electrons with simultaneous ionisation. For these measurements an experimental setup has been developed with a telescope-like optical system and interference filters to detect the emitted light with a high spacial resolution (4x10 -4 of profile width) and a high dynamic range (10 6 ). The experiments have been performed using proton beams of different energies between 270 keV and 2.8 MeV, He-3 beams with 270 keV/u and 500 keV/u and a Ne beam with 270 keV/u with gas pressures in the range between 0.133 to 13.3 mbar. Based on the method of Abel inversion the spacial light emission density is deduced from the experimental distance functions and normalized to a gas density of 1 g/cm 3 . The results show that approximately half of the total light emission in the 1. negative system and the ionisation is caused by the primary interaction of the ion beam. For the same energy per nucleon this contribution decreases relative to the contribution of the delta-electrons with increasing atomic number. In addition the delta-radiation becomes harder with increasing atomic number. Good agreement is obtained by comparison with the results of other authors, which are based on probe techniques and Monte-Carlo-calculations. (orig./HP) [de

  5. Ion optics of RHIC EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  6. Investigation of low-resistivity from hydrogenated lightly B-doped diamond by ion implantation

    Directory of Open Access Journals (Sweden)

    Cui Xia Yan et al

    2008-01-01

    Full Text Available We have implanted boron (B ions (dosage: 5×1014 cm-2 into diamond and then hydrogenated the sample by implantating hydrogen ions at room temperature. A p-type diamond material with a low resistivity of 7.37 mΩ cm has been obtained in our experiment, which suggests that the hydrogenation of B-doped diamond results in a low-resistivity p-type material. Interestingly, inverse annealing, in which carrier concentration decreased with increasing annealing temperature, was observed at annealing temperatures above 600 °C. In addition, the formation mechanism of a low-resistivity material has been studied by density functional theory calculation using a plane wave method.

  7. Red light generation through the lead boro-telluro-phosphate glasses activated by Eu3+ ions

    Science.gov (United States)

    Selvi, S.; Marimuthu, K.; Suriya Murthy, N.; Muralidharan, G.

    2016-09-01

    Lead boro-telluro-phosphate glasses containing 0.05 to 2.0 wt% of Eu3+ ions were prepared through melt quenching technique. Structural characteristics of title glasses were identified through XRD, FTIR and Raman studies. The optical properties of the prepared glasses were studied using UV-Vis-NIR absorption and photoluminescence spectra. From the resultant spectra, we have obtained the bonding parameters (δ), nephelauxetic ratio (β), direct and indirect band gaps and Urbach energy (ΔE) values. A deep red luminescence due to 5D0 → 7F2 transition of Eu3+ ions could be observed for the title glasses. The local site symmetry around the Eu3+ ions and the degree of Eu3+-O2- covalence were assessed from the luminescence intensity ratio of 5D0 → 7F2/5D0 → 7F1 transitions. Judd-Ofelt intensity parameters, calculated from the luminescence spectra, were used to estimate the radiative parameters like transition probability (A), branching ratio (βexp, βcal) and stimulated emission cross-section (σPE) concerning the 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) transitions. The important laser parameters, gain bandwidth and optical gain are also estimated. The decay curves associated with the transition from 5D0 state was found to be single-exponential at all Eu3+ ion concentrations. CIE colour coordinates and colour purity of the prepared glasses were estimated from the CIE chromaticity diagram.

  8. White-light laser cooling of ions in a storage ring

    International Nuclear Information System (INIS)

    Calabrese, R.; Guidi, V.; Lenisa, P.; Grimm, R.; Miesner, H.J.; Mariotti, E.; Siena Univ.; Moi, L.; Siena Univ.

    1996-01-01

    We propose the use of a white laser for laser cooling of ions in a storage ring. The use of a broad-band laser provides a radiation pressure force with wide velocity capture range and high magnitude, which is promising to improve the performance of both longitudinal and indirect transverse cooling. This wide-range force could also be suitable for direct transverse cooling of low-density beams. (orig.)

  9. Light ion source for proton/deuteron production at CEA Saclay for the Spiral2 project

    Energy Technology Data Exchange (ETDEWEB)

    Tuske, O.; Adroit, G.; Delferriere, O.; Denis, J-F.; Gauthier, Y.; Girardot, P.; Gobin, R.; Harrault, F.; Guiho, P.; Sauce, Y.; Uriot, D.; Vacher, T.; Van Hille, C. [CEA/Saclay, DSM/IRFU/SACM, F- 91191-Gif/Yvette (France); Graehling, P.; Hosselet, J.; Maazouzi, C. [IPHC, Institut Pluridisciplinaire Hubert Curien, Strasbourg (France)

    2012-02-15

    The production of rare radioactive ion beam (RIB) far from the valley of stability is one of the final purposes of the Spiral2 facility in Caen. The RIB will be produced by impinging a deuteron beam onto a carbon sample to produce a high neutron flux, which will interact with a uranium target. The primary deuteron beam is produced by an ion source based on ECR plasma generation. The deuteron source and the low energy beam transport (LEBT) has been assembled and tested at CEA Saclay. Diagnostics from other laboratories were implemented on the LEBT in order to characterize the deuteron beam produced and compare it to the initial simulations. The ion source has been based on a SILHI-type source, which has demonstrated good performances in pulsed and continuous mode, and also a very good reliability on long term operation. The 5 mA of deuteron beam required at the RFQ entrance is extracted from the plasma source at the energy of 40 kV. After a brief description of the experimental set-up, this article reports on the first beam characterization experiments.

  10. Light-ion therapy in the US: From the Bevalac to ??

    International Nuclear Information System (INIS)

    Alonso, Jose R.; Castro, Joseph R.

    2002-01-01

    While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joined by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room

  11. Characterization of surface modifications by white light interferometry: applications in ion sputtering, laser ablation, and tribology experiments.

    Science.gov (United States)

    Baryshev, Sergey V; Erck, Robert A; Moore, Jerry F; Zinovev, Alexander V; Tripa, C Emil; Veryovkin, Igor V

    2013-02-27

    In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: i. Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. ii. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. iii. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained.

  12. Tailored white light emission in Eu3+/Dy3+ doped tellurite glass phosphors containing Al3+ ions

    Science.gov (United States)

    Walas, Michalina; Piotrowski, Patryk; Lewandowski, Tomasz; Synak, Anna; Łapiński, Marcin; Sadowski, Wojciech; Kościelska, Barbara

    2018-05-01

    Tellurite glass systems modified by addition of aluminum fluoride AlF3 have been successfully synthesized as host matrices for optically active rare earth ions RE3+ (RE3+ = Eu3+, Dy3+). Samples with different Eu3+ to Dy3+ molar ratio have been studied in order to determine possibility of white light emission via UV excitation. Structural investigations confirmed amorphous character of materials whereas spectroscopic studies brought more insight into glass network's nature. FTIR results shown presence of two features related to tellurite glass matrix (in 490-935 cm-1 spectral region) and another one (940-1250 cm-1) due to aluminum addition. Especially, Al-O and Te-O-Al bonds of AlO4 tetrahedrons have been found. AlO4 units are considered as glass formers that improve network's strength and thermal resistivity against devitrification. Based on XPS studies of Al3+ photoelectron band the existence of Al-O and also Al-F bonds have been examined. Moreover, signals originating from Eu3+ and Dy3+ have been found confirming their valence state. Luminescence results revealed possibility of simultaneous UV excitation of Eu3+ and Dy3+ ions. Excitation with λexc = 390 and 393 nm resulted in white light generation starting from warm white to neutral and cool white depending on Eu3+ concentration and used excitation wavelength. Additionally, increase of decay lifetime of Eu3+ induced by Al3+ presence have been revealed based on luminescence decay analysis. Thus, tellurite glass systems modified by AlF3 and doped with Eu3+/Dy3+ may be considered as promising candidates for white light emitting sources.

  13. Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Yue, Yuanzheng; Greaves, G. Neville; Zhao, Xiujian

    2015-01-01

    The nanostructured Ce ion substituted cryptomelane-type octahedral molecular sieve (OMS-2) catalyst exhibits strong absorption in the entire solar spectrum region. The Ce ion substituted OMS-2 catalyst can efficiently transform the absorbed solar energy to thermal energy, resulting in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants such as benzene, toluene, and acetone. Based on the experimental evidence, we propose a novel mechanism of solar light driven thermocatalysis for the Ce ion substituted OMS-2 catalyst. The reason why the Ce ion substituted OMS-2 catalyst exhibits much higher catalytic activity than pure OMS-2 and CeO2/OMS-2 nano composite under the full solar spectrum irradiation is discussed.The nanostructured Ce ion substituted cryptomelane-type octahedral molecular sieve (OMS-2) catalyst exhibits strong absorption in the entire solar spectrum region. The Ce ion substituted OMS-2 catalyst can efficiently transform the absorbed solar energy to thermal energy, resulting in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants

  14. Surgical instrument biocontaminant fluorescence detection in ambient lighting conditions for hospital reprocessing and sterilization department (Conference Presentation)

    Science.gov (United States)

    Baribeau, François; Bubel, Annie; Dumont, Guillaume; Vachon, Carl; Lépine, André; Rochefort, Stéphane; Massicotte, Martin; Buteau-Vaillancourt, Louis; Gallant, Pascal; Mermut, Ozzy

    2017-03-01

    Hospitals currently rely on simple human visual inspection for assessing cleanliness of surgical instruments. Studies showed that surgical site infections are in part attributed to inadequate cleaning of medical devices. Standards groups recognize the need to objectively quantify the amount of residues on surgical instruments and establish guidelines. We developed a portable technology for the detection of contaminants on surgical instruments through fluorescence following cleaning. Weak fluorescence signals are usually detected in the obscurity only with the lighting of the excitation source. The key element of this system is that it works in ambient lighting conditions, a requirement to not disturb the normal workflow of hospital reprocessing facilities. A biocompatible fluorescent dye is added to the detergent and labels the proteins of organic residues. It is resistant to the harsh environment in a washer-disinfector. Two inspection devices have been developed with a 488nm laser as the excitation source: a handheld scanner and a tabletop station using spectral-domain and time-domain ambient light cancellation schemes. The systems are eye safe and equipped with image processing and interfacing software to provide visual or audible warnings to the operator based on a set of adjustable signal thresholds. Micron-scale residues are detected by the system which can also evaluate soil size and mass. Unlike swabbing, it can inspect whole tools in real-time. The technology has been validated in an independent hospital decontamination research laboratory. It also has potential applications in the forensics, agro-food, and space fields. Technical aspects and results will be presented and discussed.

  15. Crystal fields at light rare-earth ions in Y and Lu

    DEFF Research Database (Denmark)

    Touborg, P.; Nevald, Rolf; Johansson, Torben

    1978-01-01

    Crystal-field parameters have been deduced for the light rare-earth solutes Ce, Pr, and Nd in Y or Lu hosts from measurements of the paramagnetic susceptibilities. In the analysis all multiplets in the lowest LS term were included. For a given host, crystal-field parameters divided by Stevens fac...

  16. Past, present and future aspects of studies of heavy ion radiotherapy. 2. Future view of clinical studies of heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Tsujii, Hirohiko; Kamata, Tadashi

    2007-01-01

    The purpose of clinical studies of heavy ion radiotherapy (HIR, using carbon beam) in National Institute of Radiological Sciences (NIRS) is, in treatment of cancers, to elucidate its potential and significance for establishing the methodology for curing the disease safely and reliably to further spread the therapy. Here is presented a future view of clinical studies of HIR based on the past results and along authorities' medical policy. NIRS has treated 3,100 or more cancer patients in about 50 clinical trials from the start of HIR in 1994. In those studies, curing the intractable malignancies has become possible in a short term of therapy, and the irradiating machine is being miniaturized (actually under construction in Gunma Univ.). At the end of 2006, about 4,000 patients have been treated with HIR globally: the impact of NIRS HIR. There are such future HIR plans as the promotion of clinical trials, development of irradiation technology, promotion and efficient practice as an advanced frontier medicare, imaging diagnosis for the aim of treatment, biological studies, and comparative studies to elucidate the usefulness. Cooperation of NIRS, manufacturers and authorities will make HIR a more useful, less burdensome mean to treat patients with more intractable cancers. (R.T.)

  17. I. Exchange currents in electron scattering from light nuclei. II. Heavy-ion scattering at intermediate and high energy

    International Nuclear Information System (INIS)

    Dubach, J.F.

    1976-01-01

    The purpose of this work is to develop a formalism that will allow one to search the wide variety of transitions presented by nuclei in order to locate situations in which the exchange-current effects are important or dominant and thus allow one to study the contributions of the meson exchanges to the electromagnetic densities within the nucleus. The nuclei studied are assumed to be described in a shell model using harmonic oscillator wave functions. The formalism needed to allow one to do a multipole analysis of these exchange currents within 1s and 1p nuclei is developed. This formalism is then applied to an examination of electron scattering from a series of light nuclei: 3 He, 6 Li, 7 Li, 9 Be, and 10 B. Three significant effects due to the inclusion of exchange currents are seen: (1) The exchange currents can often introduce new structure into the form factors. (2) At larger momentum transfer (700 to 1000 MeV/c) the exchange current contributions to the form factor dominate the simpler one-body form factor by a few orders of magnitude. (3) The exchange currents can excite E4 and M5 multipoles in the p shell which are forbidden to the simpler one-body currents. The elastic scattering of two heavy ions at intermediate and high energies (compared to the Coulomb barrier) is examined in the formalism of the WKB and ''Glauber theory'' approximations. As a concrete example, the scattering of 16 O from 60 Ni is studied assuming an optical-model potential that fits elastic scattering data at low energies. One immediate result is that the WKB approximation agrees quite well with ''exact'' numerical calculations at energies as low as 60 MeV. The Glauber theory fails below about 1 GeV but correction terms are developed that can extend the usefulness of the Glauber theory to much lower energies. The model problem of scattering from a black-sphere model of the nucleus is briefly examined

  18. High-resolution spectral analysis of light from neutral beams and ion source plasmas

    International Nuclear Information System (INIS)

    McNeill, D.H.; Kim, J.

    1980-05-01

    The spectral distributions of Balmer alpha emission from 7- and 22-cm-diam neutral hydrogen beams have been measured with a Fabry-Perot interferometer to obtain information on the beam energy, divergence, and species composition. Results of these measurements are compared with other data on the beam properties to evaluate high-resolution spectroscopy as a beam diagnostic technique. Measurements on ion source plasmas and on beam-produced background plasmas yield average neutral atom energies of approximately 0.3 and 2.5 eV, respectively

  19. Real-time diagnostics of fast light ion beams accelerated by a sub-nanosecond laser

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Picciotto, A.; Prokůpek, Jan

    2011-01-01

    Roč. 56, č. 2 (2011), s. 137-141 ISSN 0029-5922 R&D Projects: GA ČR(CZ) GAP205/11/1165 EU Projects: European Commission(XE) 212105 - ELI-PP Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-driven acceleration * ion beams * real-time diagnostics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.389, year: 2011 http://www.nukleonika.pl/www/back/full/vol56_2011/v56n2p137f.pdf

  20. SU-E-T-146: Reference Dosimetry for Protons and Light-Ion Beams Based on Graphite Calorimetry.

    Science.gov (United States)

    Rossomme, S; Palmans, H; Thomas, R; Lee, N; Bailey, M; Shipley, D; Al-Sulaiti, L; Cirrone, P; Romano, F; Kacperek, A; Bertrand, D; Vynckier, S

    2012-06-01

    The IAEA TRS-398 code of practice can be applied for the measurement of absorbed dose to water under reference conditions with an ionization chamber. For protons, the combined relative standard uncertainty on those measurements is less than 2% while for light-ion beams, it is considerably larger, i.e. 3.2%, mainly due to the higher uncertainty contributions for the water to air stopping power ration and the W air-value on the beam quality correction factors kQ,Q 0 . To decrease this uncertainty, a quantification of kQ,Q 0 is proposed using a primary standard level graphite calorimeter. This work includes numerical and experimental determinations of dose conversion factors to derive dose to water from graphite calorimetry. It also reports on the first experimental data obtained with the graphite calorimeter in proton, alpha and carbon ion beams. Firstly, the dose conversion has been calculated with by Geant4 Monte-Carlo simulations through the determination of the water to graphite stopping power ratio and the fluence correction factor. The latter factor was also derived by comparison of measured ionization curves in graphite and water. Secondly, kQ,Q 0 was obtained by comparison of the dose response of ionization chambers with that of the calorimeter. Stopping power ratios are found to vary by no more than 0.35% up to the Bragg peak, while fluence correction factors are shown to increase slightly above unity close to the Bragg peak. The comparison of the calorimeter with ionization chambers is currently under analysis. For the modulated proton beam, preliminary results on W air confirm the value recommended in TRS-398. Data in both the non-modulated proton and light-ion beams indicate higher values but further investigation of heat loss corrections is needed. The application of graphite calorimetry to proton, alpha and carbon ion beams has been demonstrated successfully. Other experimental campaigns will be held in 2012. This work is supported by the BioWin program

  1. Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions

    KAUST Repository

    Guan, Xinwei

    2017-11-23

    Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite-based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high-quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament-type switching behavior. This work elucidates the important role of processing-dependent defects in the charge transport of hybrid perovskites and provides insights on the ion-redistribution-based RS in perovskite memory devices.

  2. Light ion fusion experiment (L.I.F.E.) concept validation studies. Final report, July 1979-May 1980

    International Nuclear Information System (INIS)

    Christensen, T.E.; Orthel, J.L.; Thomson, J.J.

    1980-12-01

    This report reflects the considerable advances made for the objectives of the contractual program, validating by detailed anaytical studies the concept of a new Light Ion Fusion Experiment for Inertial Confinement Fusion. The studies have produced an analytical design of a novel electrostatic accelerator based on separate function and strong channel focusing principles, to launch 3 to 10 MeV, 23 kA, He + neutralized beams in 400 ns pulses, delivering on a 5 mm radius target located 10 m downstream, 50 kJ of implosion energy in approx. 20 ns impact times The control, stability and focusing of beams is made by electrostatic quadrupoles, producing overall beam normalized emittance of approx. 3 x 10 -5 m-rad

  3. Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2018-02-01

    Full Text Available Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples. Therefore, a presentation attack detection (PAD method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP, local ternary pattern (LTP, and histogram of oriented gradients (HOG. As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN method to extract deep image features and the multi-level local binary pattern (MLBP method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases.

  4. Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors.

    Science.gov (United States)

    Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung

    2018-02-26

    Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases.

  5. Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors

    Science.gov (United States)

    Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung

    2018-01-01

    Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases. PMID:29495417

  6. Use of the Coulomb excitation by light and heavy ions for quantitative analysis

    International Nuclear Information System (INIS)

    Craciun, L.; Racolta, P. M.; Tripadus, V.; Dragulescu, E.; Serbanut, C.

    2001-01-01

    It is well known that in many cases thin layers with specific properties fulfil the same demands as former bulk materials and, although they seem to be more expensive, the general tendency has proven them to be cheaper. Therefore it might be a permanent task for physicists to develop methods, so far only applied in scientific laboratories, to a standard that might be feasible and economically justified to use them to a much larger extent. The reason for the very slow introduction of new analytical techniques is certainly the fear that instruments and apparatus used in basic research do not fulfil the standards of reliability, permanent availability and easy handling, which are important requirements for industrial applications. The knowledge of the slowing down of ions in crossing matter is of fundamental importance in methods of materials analysis using beams of charged atomic particles, Depth determination is based directly on the energy lost by the probing particles. The energy loss affects both quantitative and qualitative analyses. The physics of energy loss phenomena is very complex, involving many kinds of interactions between the projectile ion, target nuclei, and target electrons. Because of their significance in many fields of physics, these phenomena have been subject to intense studies since the beginning of the century. The theoretical treatment has been reviewed, among others, by Bohr (1948), Whaling (1958), Fano (1963), Jackson (1962,1975), Bichel (1970), Sigmund (1975), Ahlen (1980), Littmark and Ziegler (1980), Ziegler (1977, 1980), Ziegler et al. (1985). The experimental methods have been reviewed and investigated by, e.g., Chu (1979), Brauer (1987), Mertens (1987), Powers (1989). - Two well known phenomena can be used for the production of gamma-rays in bombardments with charged projectiles: a) nuclear reactions involving incident energies near and above the Coulomb barrier; in this case gamma-rays arise from the de-excitation of the product

  7. X-ray diffraction patterns of single crystals implanted with high-energy light ions

    International Nuclear Information System (INIS)

    Wieteska, K.

    1998-01-01

    X-ray diffraction patterns of silicon and gallium arsenide single crystals implanted with high-energy protons and α-particles were studied. A various models of lattice parameter changes were analysed. The agreement between the simulation and experiment proves that the lattice parameter depth-distribution can be assumed to be proportional to vacancy distribution obtained by Monte-Carlo method and from the Biersack-Ziegler theory. Most of the X-ray experiments were performed using synchrotron source of X-ray radiation in particular in the case of back-reflection and transmission section topographic methods. The new method of direct determination of the implanted ion ranges was proposed using synchrotron radiation back-reflection section topography. A number of new interference phenomena was revealed and explained. These interferences are important in the applications of diffraction theory in studying of the real structure of implanted layers. (author)

  8. Investigation of the channeling of light ions through gold crystals having thicknesses of several hundreds of angstroms from 0.5 to 2 MeV

    International Nuclear Information System (INIS)

    Poizat, J.C.; Remillieux, J.

    A technique to obtain a few hundred A thick self-supporting gold crystal is described. These crystals have been used to perform three channeling experiments with 0.5 to 2 MeV light ions: i) The wide angle scattering probability as a function of the distance from the crystal surface was studied for a beam of particles incident in planar and axial directions. ii) The influence of channeling on the light emission from crystal-excited atomic beams was investigated. iii) A strong channeling effect was found on the probability of transmission of a molecular beam of H 2 + ions through a thin crystal

  9. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants.

    Science.gov (United States)

    Acosta-Motos, José R; Alvarez, Sara; Barba-Espín, Gregorio; Hernández, José A; Sánchez-Blanco, María J

    2014-12-01

    The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.

  10. Photobehavior of aqueous uranyl ion and photo-oxygenation of isobutane using light from the visible region

    International Nuclear Information System (INIS)

    Bergfeldt, T.M.; Waltz, W.L.; Xu, X; Sedlak, P.; Dreyer, U.; Mockel, H.; Lilie, J.; Stephenson, J.W.

    2003-01-01

    The photochemical and photophysical behavior of the aqueous uranyl ion [UO 2 (H 2 O) 5 ] 2+ has been studied under the influence of visible light and with added perchloric acid over the range of 0.01-4 M. In the presence of 2-methylpropane (isobutane), photo-oxygenation of isobutane occurs to yield, as the major product, 2-methyl-2-propanol (tert-butyl alcohol) along with lesser amounts of 2-methyl-2-propene (isobutene) and other C1-C8 products. The quantum yield for formation of tert-butyl alcohol is independent of light intensity at the irradiation wavelength of 415 nm and of uranyl concentration, but it increases from 0.016 ± 0.001 at 0.01 M HC1O 4 (pH 2) to 0.13 ± 0.01 at 4 M HC1O 4 . The emission spectrum from the electronically excited uranyl ion and the associated quantum yields have been measured in the presence and absence of isobutane, as a function of added perchloric acid. While in both cases the shape of the spectrum remains invariant, the quantum yields increase with increasing perchloric acid concentration. The strong dependence on added perchloric acid is interpreted within the context of the presence and interconversion of two electronically excited species, an acid form, *[UO 2 (H 2 O) 5 ] 2+ , and a base form, *[UO 2 (H 2 O) n (OH)] + . It is proposed that both forms react with isobutane to give a tert-butyl radical, and that oxidation of coordinated aqua ligands occur, the latter generating a hydroxyl radical whose reaction with isobutane rapidly leads also to a tert-butyl radical. The reaction of this alkyl radical with ground-state [UO 2 (H 2 O) 5 ] 2+ then gives rise to the stable tert-butyl alcohol product and reduced forms of uranyl ion. Based upon the values of the quantum yields and of excited-state lifetime measurements reported in the literature, a comprehensive mechanism has been developed in a quantitative manner to provide calculated values of the rate constants for the individual mechanistic steps. The calculated rate constants

  11. Heavy and light ion irradiation damage effects in δ-phase Sc{sub 4}Hf{sub 3}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000 (China); Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Y.H., E-mail: liyuhong@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000 (China); Tang, M.; Valdez, J.A.; Wang, Y.Q. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Patel, M.K.; Sickafus, K.E. [Department of Materials Science & Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2015-12-15

    Polycrystalline δ-phase Sc{sub 4}Hf{sub 3}O{sub 12} was irradiated with light and heavy ions to study the radiation stability of this compound. In order to explore the ion species spectrum effect, the irradiations were performed with 400 keV Ne{sup 2+} ions to fluences ranging from 1 × 10{sup 14} to 1 × 10{sup 15} ions/cm{sup 2}, 600 keV Kr{sup 3+} ions to fluences ranging from 5 × 10{sup 14} to 5 × 10{sup 15} ions/cm{sup 2}, and 6 MeV Xe{sup 26+} ions to fluences ranging from 2 × 10{sup 13} to 1 × 10{sup 15} ions/cm{sup 2}. Irradiated samples were characterized by various techniques including grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). A complete phase transformation from ordered rhombohedral to disordered fluorite was observed by a fluence of 1 × 10{sup 15} ions/cm{sup 2} with 400 keV Ne{sup 2+} ions, equivalent to a peak ballistic damage dose of ∼0.33 displacements per atom (dpa). Meanwhile, the same transformation was also observed by 600 keV Kr{sup 3+} ions at the same fluence of 1 × 10{sup 15} ions/cm{sup 2}, which however corresponds to a peak ballistic damage dose of ∼2.2 dpa. Only a partial O-D transformation was observed for 6 MeV Xe{sup 26+} ions in the fluence range used. Experimental results indicated that the O-D transformation is observed under both electronic and nuclear stopping dominant irradiation regimes. It was also observed that light ions are more efficient than heavy ions in producing the retained defects that are presumably responsible for the O-D phase transformation. The O-D transformation mechanism is discussed in the context of anion oxygen Frenkel defects and cation antisite defects. We concluded that the irradiation induced O-D transformation is easier to occur in δ-phase compounds with partial order of cations than in that with fully disordered cation structures.

  12. The azimuthally anisotropic emission of unstable light nuclear in the heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    He Zhiyong; Jin Genming; Li Zuyu; Duan Limin; Dai Guangxi; Zhang Baoguo; Wu Heyu; Wen Wanxin; Qi Yujin; Luo Qingzheng

    1996-01-01

    The unstable light nuclei emitted in the interaction of 40 Ar on 197 Au have been detected at energy of 25 MeV/u by using particle-particle correlation measurement at small relative angle. Their in-plane and out-of-plane emission were measured for three bins of experimentally estimated impact parameter. The enhanced in-plane emission for mid-rapidity unstable nuclei is observed. This enhanced in-plane emission becomes stronger with increasing of impact parameter, but changes small with the mass of unstable nuclei. The in-plane enhancement decreases slightly with the energy of excited state of unstable nuclei. For projectile-like unstable nuclei, the in-plane emission dominates as expected

  13. Review of experimental cross sections for K-shell ionization by light ions

    International Nuclear Information System (INIS)

    Paul, H.; Muhr, J.

    1986-01-01

    We review experimental K-shell ionization cross sections using a data file containing about 7800 total X-ray or Auger production cross sections taken from the literature for which Z 1 /Z 2 1 and Z 2 are the atomic numbers of projectile and target. We compare various recent collections of K-shell fluorescence yields ω, and we use Krause's tables to convert the data to ionization cross sections. For every projectile, we normalize these data using the theoretical cross section due to Brandt and Lapicki (ECPSSR). We show them plotted versus log xi (where xi is the scaled projectile velocity) in the appendix, and we average them in equal intervals Δ log xi. A statistical criterion is used to exclude references with discrepant data. We find that the average normalized cross section anti s is mostly close to unity (i.e., ECPSSR describes the data well), but that there are also significant deviations at certain values of xi. For almost all projectiles, anti s decreases below unity for log xi 2 for small and for large log xi. We approximate anti s by analytical functions of log xi and thus produce ''reference'' cross sections for selected proton energies and targets. For heavier projectiles (and also for protons on light targets), additional systematic deviations develop: a maximum of anti s around log xi=-0.6 and a minimum around log xi=-0.3. Above log xi=-0.1, the influence of multiple ionization and of electron capture by the projectile becomes noticeable with increasing Z 1 . X-ray cross sections for light solid or gaseous targets (Z 2 2 >5). (orig.)

  14. Light-ion inertial confinement fusion research at Naval Research Laboratory

    International Nuclear Information System (INIS)

    Cooperstein, G.; Colombant, D.G.; Barker, R.J.

    1983-01-01

    High-brightness proton beams (0.4 MA, 1 MV) have recently been extracted from 20 cm 2 axial pinch-reflex diodes (PRDs) mounted on the NRL Gamble II generator. A source power brightness of >=10 TW.cm - 2 .rad - 2 was achieved in these experiments. A new barrel-shaped equatorial PRD that can be coupled to PBFA II has also been operated on Gamble II and has demonstrated 50% proton efficiency with predominantly azimuthally symmetric charged-particle flow. In other experiments the stopping power of deuterons in hot plasmas was measured using a PRD on Gamble II. Results show about 40% increase in stopping power over that in cold targets when the beam was focused to about 0.25 MA.cm - 2 . Research is also being performed on transporting ion beams in large-diameter channels (>or approx. 2.5 cm) and on a post-transport plasma-filled magnetic focusing section to bring the beam to pellet dimensions. (author)

  15. Vacancy production in molybdenum by low energy light ion bombardment: computer simulation

    International Nuclear Information System (INIS)

    Hou, M.; Veen, A. van; Caspers, L.M.; Ypma, M.R.

    1983-01-01

    A comparison is made of the room temperature vacancy production measured with THDS (thermal helium desorption spectrometry) and the Frenkel pair production calculated in the binary collision approximation with MARLOWE for 0.5 to 3 keV He + ions and 1.5 keV protons injected into a Mo(110) crystal. Using the distributions of Frenkel pair separation distances calculated with MARLOWE for various values of the displacement threshold Esub(d), the experimental data are matched by selecting a cut-off radius Rsub(c) so that for separations larger than Rsub(c) the Frenkel pairs survive recombination. It became apparent that all experimental data could be reasonably described by a pair of parameters Esub(d) = 33 eV and Rsub(c) = 3.7 a 0 (a 0 is the lattice cell edge unit). The value of Esub(d) we found is close to the experimentally determined threshold energy for permanent displacements in Mo. A detailed analysis of the recombination process using the MARLOWE results shows that the found cut-off radius corresponds with an effective recombination radius Rsub(o) = 2.8 a 0 . In the literature lower (theoretical) values of Rsub(o) = 1.4 - 2.1 a 0 are quoted for correlated recombination of single Frenkel pairs in molybdenum. (orig.)

  16. The search for electric dipole moments of light ions in storage rings

    International Nuclear Information System (INIS)

    Rathmann, Frank; Saleev, Artem; Nikolaev, N N

    2013-01-01

    The Standard Model (SM) of Particle Physics is not capable of accounting for the apparent matter-antimatter asymmetry of our universe. Physics beyond the SM is required and is searched for by (i) employing highest energies (e.g., at LHC), and (ii) striving for ultimate precision and sensitivity (e.g., in the search for electric dipole moments (EDMs)). Permanent EDMs of particles violate both time reversal (T) and parity (P) invariance, and are via the CPT-theorem also CP-violating. Finding an EDM would be a strong indication for physics beyond the SM, and reducing upper limits further provides crucial tests for any corresponding theoretical model, e.g., SUSY. Direct searches for proton and deuteron EDMs bear the potential to reach sensitivities beyond 10 −29 e·cm. For an all-electric proton storage ring, this goal is pursued by the US-based srEDM collaboration [1], while the newly founded Jülich-based JEDI collaboration [2] is pursuing an approach using a combined electric-magnetic lattice, which shall provide access to the EDMs of protons, deuterons, and 3 He ions in the same machine. In addition, JEDI has recently proposed making a direct measurement of the proton and/or deuteron EDM at COSY using resonant techniques involving Wien filters

  17. Light particle emission measurements in heavy ion reactions: Progress report, June 1, 1988--May 31, 1989

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1989-01-01

    We have completed another successful year of experimental work at the Heavy Ion Research Facility (HHIRF) and at Georgia State University (GSU). Since submitting our previous progress report we have completed our paper on neutron emission from products of the reaction 58 Ni + 165 Ho and it has been submitted to Physical Review C. Some of the details of these results are discussed below. We have installed the Vaxstation computer system for which we received supplemental funding from DOE during 1988-89 and it is being used to analyze the Ni + Ho data using the codes Pace and a modified version of Lilita, both of which we have been able to transfer to our Vaxstation systems from the Vax at ORNL with very minimal modification. The Exabyte tape drive which we ordered with the computer system was finally delivered at the end of January after months of delays. It is now being used to scan data tapes from our experiment to study neutron-neutron and neutron-charged-particle momentum correlations using the reaction 32 S + 197 Au at 25 MeV/nucleon. This data analysis can now proceed at a fast pace. Finally, we have continued our developmental work on the Hili detector system at ORNL, and have participated in experiments to study the predictions of the Dyabatic Dynamics model of particle emission using the Ni + Ni system and the HILI detector system

  18. The HKS model for electron production in liquid water by light ions

    International Nuclear Information System (INIS)

    Bernal, M.A.; Liendo, J.A.

    2006-01-01

    The HKS model developed to determine ionization cross sections (ICS) for the interaction of non-relativistic ions with matter, is used for 0.5 MeV protons impinging on liquid water and some inconsistencies between the single (SDCS) and double (DDCS) differential cross section values predicted by the formalism are found. To overcome this problem, new SDCS and DDCS formulas are determined analytically by use of the transition probabilities published by Hansen and Kocbach [J.P. Hansen, L. Kocbach, J. Phys. B 22 (1989) L71]. The new cross section expressions applied to the 0.5 MeV proton on liquid water case, give perfectly consistent SDCS and DDCS values. Furthermore, SDCS and DDCS values predicted from the new formulas for ionization of liquid water by protons (0.5-4.2 MeV/u) and alpha particles (0.3-0.5 MeV/u) are compared with corresponding experimental cross section values reported in the literature for water vapor ionization. Despite of the simplicity of the HKS model, accurate secondary electron energy distributions can be obtained, even for electron energies as low as 10 eV. Although the same accuracy cannot be achieved for electron angular distributions, the HKS formalism can still be used when these distributions are not critical

  19. Manipulating femtosecond laser interactions in bulk glass and thin-film with spatial light modulation (Conference Presentation)

    Science.gov (United States)

    Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.

    2017-03-01

    Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction. This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring. Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation

  20. Presentation and comparison of experimental critical heat flux data at conditions prototypical of light water small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, M.S., E-mail: 1greenwoodms@ornl.gov; Duarte, J.P.; Corradini, M.

    2017-06-15

    Highlights: • Low mass flux and moderate to high pressure CHF experimental results are presented. • Facility uses chopped-cosine heater profile in a 2 × 2 square bundle geometry. • The EPRI, CISE-GE, and W-3 CHF correlations provide reasonable average CHF prediction. • Neural network analysis predicts experimental data and demonstrates utility of method. - Abstract: The critical heat flux (CHF) is a two-phase flow phenomenon which rapidly decreases the efficiency of the heat transfer performance at a heated surface. This phenomenon is one of the limiting criteria in the design and operation of light water reactors. Deviations of operating parameters greatly alters the CHF condition and must be experimentally determined for any new parameters such as those proposed in small modular reactors (SMR) (e.g. moderate to high pressure and low mass fluxes). Current open literature provides too little data for functional use at the proposed conditions of prototypical SMRs. This paper presents a brief summary of CHF data acquired from an experimental facility at the University of Wisconsin-Madison designed and built to study CHF at high pressure and low mass flux ranges in a 2 × 2 chopped cosine rod bundle prototypical of conceptual SMR designs. The experimental CHF test inlet conditions range from pressures of 8–16 MPa, mass fluxes of 500–1600 kg/m2 s, and inlet water subcooling from 250 to 650 kJ/kg. The experimental data is also compared against several accepted prediction methods whose application ranges are most similar to the test conditions.

  1. Deprotonation of g-C3N4 with Na ions for efficient nonsacrificial water splitting under visible light

    DEFF Research Database (Denmark)

    Guo, Feng; Chen, Jingling; Zhang, Minwei

    2016-01-01

    Developing a photocatalyst with the necessary characteristics of being cheap, efficient and robust for visible-light-driven water splitting remains a serious challenge within the photocatalysis field. Herein, an effective strategy, deprotonating g-C3N4 with Na ions from low-cost precursors...

  2. A code to determine the energy distribution, the incident energy and the flux of a beam of light ions into a stack of foils

    International Nuclear Information System (INIS)

    Sonzogni, A.A.; Romo, A.S.M.A.; Frosch, W.R.; Nassiff, S.J.

    1992-01-01

    The stacked-foil technique is one of the most used methods to obtain excitation functions of nuclear reactions using light ions as projectiles. The purpose of this program is the calculation of the energy of the beam in the stack, as well as to obtain the incident energy and the flux of the beam by using monitor excitation functions. (orig.)

  3. Cold-target recoil-ion momentum spectroscopy for diagnostics of high harmonics of the extreme-ultraviolet free-electron laser light source at SPring-8

    International Nuclear Information System (INIS)

    Liu, X.-J.; Fukuzawa, H.; Pruemper, G.; Ueda, K.; Okunishi, M.; Shimada, K.; Motomura, K.; Saito, N.; Iwayama, H.; Nagaya, K.; Yao, M.; Rudenko, A.; Ullrich, J.; Foucar, L.; Czasch, A.; Schmidt-Boecking, H.; Doerner, R.; Nagasono, M.; Higashiya, A.; Yabashi, M.

    2009-01-01

    We have developed a cold-target recoil-ion momentum spectroscopy apparatus dedicated to the experiments using the extreme-ultraviolet light pulses at the free-electron laser facility, SPring-8 Compact SASE Source test accelerator, in Japan and used it to measure spatial distributions of fundamental, second, and third harmonics at the end station.

  4. Capacitance-voltage investigation of silicon photodiodes damaged by MeV energy light ions

    International Nuclear Information System (INIS)

    Kalinka, G.; Simon, A.; Novak, M.; Kiss, A.Z.

    2006-01-01

    Complete text of publication follows. Nuclear radiation creates not only deep centers, but in addition influences shallow dopant concentration in semiconductors, as well. At a given temperature the maximum frequency a center can respond to depends on its energy level, therefore the capacitance-voltage (C-V) characteristics of radiation damaged semiconductor diodes should ideally be measured as function of frequency in order to obtain the physical and energy depth distribution of ionized centers [1,2]. In our experiments C-V plots of MeV energy ion irradiated photodiodes were taken at fixed 1 kHz frequency, which is low enough to be sensitive at room temperature to some of the deep levels expected. During, for example, an irradiation with 5.5 MeV α particles the capacitance of a p + nn + diode increased significantly at low voltages, but showed rather small changes at higher ones. The former turned out to be merely related to a decrease of the built in voltage, corresponding to a lifetime to relaxation type transition of the semiconductor [3]. Rescaling C-V data for this change, the remaining, actual capacitance changes could be interpreted as related to nuclear recoil caused damage located around the end of particle tracks. C-V technique has also been used for follow up investigation of spontaneous self annealing at room temperature of irradiated samples. This is shown here by plotting capacitance data normalized to their virgin values as function of depletion depth for irradiation with 430 keV protons, whose range is about 5 μm. The sensitivity of the method is illustrated for low fluence of 6.5 MeV oxygen, whose range is 5 μm, too, and where the normalization is now made to data taken one week after the irradiation. Acknowledgement This work was supported by the Hungarian Research and Technology Innovation Fund and the Croatian Ministry of Science, Education and Sports within the framework of the Hungarian-Croatian Intergovernmental Science and Technology Co

  5. An ion exchange strategy to BiOI/CH{sub 3}COO(BiO) heterojunction with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Han, Qiaofeng, E-mail: hanqiaofeng@njust.edu.cn; Yang, Zhen; Wang, Li; Shen, Zichen; Wang, Xin; Zhu, Junwu; Jiang, Xiaohong

    2017-05-01

    Highlights: • BiOI/BiOAc heterojunction was firstly synthesized by an ion exchange route. • BiOI/BiOAc exhibited enhanced visible-light-driven photoreactivity for the dyes degradation in comparison with individuals. • Photocatalytic activity of the as-prepared BiOI/BiOAc is better than that prepared by precipitation-deposition method. • Photosensitization effect of BiOI to BiOAc was superior to that of Bi{sub 2}S{sub 3} due to suitable solubility constant. - Abstract: It is very significant to develop CH{sub 3}COO(BiO) (denoted as BiOAc) based photocatalysts for the removal of pollutants due to its non-toxicity and availability. We previously reported that BiOAc exhibited excellent photocatalytic activity for rhodamine B (RhB) degradation under UV light irradiation. Herein, by an ion exchange approach, BiOI/BiOAc heterojunction could be easily obtained. The as-prepared heterojunction possessed enhanced photodegradation activity for multiple dyes including RhB and methyl orange (MO) under visible light illumination in comparison with individual materials. Good visible-light photocatalytic activity of the heterojunction could be attributed to the increased visible light response, effective charge transfer from the modified band position and close interfacial contact due to partial ion exchange method.

  6. Electron capture in low- and intermediate-energy collisions between completely stripped light ions and metastable H(2s) targets

    International Nuclear Information System (INIS)

    Blanco, S.A.; Falcon, C.A.; Reinhold, C.O.; Casaubon, J.I.; Piacentini, R.D.

    1987-01-01

    Total cross sections for electron capture from H(2s) targets by He 2+ ions have been computed in the impact velocity range 0.05-0.5 au. Calculations were performed using a molecular close-coupling approach with inclusion of electron translation factors. A ten-state molecular basis set was considered. A comparison is made with Landau-Zener results for the same system. Intermediate projectile energy classical Monte Carlo capture cross sections are also presented for H + , He 2+ , Li 3+ and C 6+ projectiles. (author)

  7. Fusion cross section measurements of astrophysical interest for light heavy ions systems within the STELLA project

    Directory of Open Access Journals (Sweden)

    Fruet Guillaume

    2017-01-01

    The experimental setup composed of an ultra high vacuum reaction chamber, a set of 3 silicon strip detectors, up to 36 LaBr3(Ce scintillators from the UK FATIMA collaboration, and a fast rotating target system will be described. The 12C+12C fusion reaction has been studied from Elab = 11 to 5.6 MeV using STELLA at the Andromède facility in Orsay, France. Preliminary commissioning results are presented in this article.

  8. Microdosimetry of light and heavy ions with TEPC - comparison of calculations with experiments

    International Nuclear Information System (INIS)

    Nikjoo, Hooshang; Lindborg, Lennart; Brahme, Anders; Pinsky, Lawrence

    2008-01-01

    Full text: For the purposes of radiation protection it is necessary to estimate the exposure and consequent risk to human from environmental, terrestrial and space, industrial and medical radiations. Therefore, accurate measurement of absorbed dose and estimation of quality factor (Q) and relative biological effectiveness (RBE) are of paramount importance. To obtain a better estimation of RBE and Q values microdosimetric techniques have been employed to model and calculate these quantities. A choice instrument for the measurements of dose and monitoring of radiation environment is tissue equivalent proportional counter (TEPC). In this paper we present modelling and calculations of microdosimetric quantities in spherical TEPC, for wall and wall- less, counters for radiations of different qualities and compare the results to measurements. To improve understanding and knowledge underlying mechanism of radiation action and relevant critical microscopic properties, especially at low doses, need quantitative description of the general features of radiation insult. As ionizing radiation is unique amongst biologically damaging agents in their ability to cause clusters of ionizations and excitations in targets sizes of biological importance, Monte Carlo track structure methods have been employed to investigate spatial and temporal patterns of energy depositions and their biological consequences. Data are presented for microdosimetric distributions as a function of LET and target sizes raging from a few nanometers to micrometer active volumes. The data provides an insight into characterization of radiation track at nanometer scale of interest both in radiation protection and therapy. (author)

  9. Theoretical and experimental investigations of the damage and activation of pure iron under irradiation with energetic light ions

    International Nuclear Information System (INIS)

    Daum, E.

    1996-10-01

    In this report the applicability of light ion simulation irradiations with respect to the displacement damage under fusion neutron irradiation is investigated by theoretical and experimental activities. The production of primary knock-on atoms (PKA) and the displacement of lattice atoms (DPA) under proton and α-particle irradiation is considered in pure iron. The main focus is put on the effect of the non-elastic processes which are characterized by nuclear reactions and taken into account quantitatively for the first time. The profiles of the non-elastic PKA spectra can be characterized by the excitation functions of the corresponding nuclear reactions and by the mean recoil ranges of the residue nuclides. In this framework the excitation functions of proton- and α-particle-induced nuclear reactions leading to the long-lived nuclides from 57 Ni to 47 Sc are measured. The short-lived nuclides 53 Fe g , 53 Fe m , 52 Mn m and 52 V are investigated for the first time. The mean recoil ranges of the non-elastic PKA are experimentally determined by the same method. Based on theoretical calculations with nuclear and range models, non-elastic PKA spectra are obtained for all open reaction channels. (orig./WL)

  10. Observation of intermediate bands in Eu3+ doped YPO4 host: Li+ ion effect and blue to pink light emitter

    Directory of Open Access Journals (Sweden)

    Abdul Kareem Parchur

    2012-09-01

    Full Text Available This article explores the tuning of blue to pink colour generation from Li+ ion co-doped YPO4:5Eu nanoparticles prepared by polyol method at ∼100-120 °C with ethylene glycol (EG as a capping agent. Interaction of EG molecules capped on the surface of the nanoparticles and/or created oxygen vacancies induces formation of intermediate/mid gap bands in the host structure, which is supported by UV-Visible absorption data. Strong blue and pink colors can be observed in the cases of as-prepared and 500 °C annealed samples, respectively. Co-doping of Li+ enhances the emission intensities of intermediate band as well as Eu3+. On annealing as-prepared sample to 500 °C, the intermediate band emission intensity decreases, whereas Eu3+ emission intensity increases suggesting increase of extent of energy transfer from the intermediate band to Eu3+ on annealing. Emission intensity ratio of electric to magnetic dipole transitions of Eu3+ can be varied by changing excitation wavelength. The X-ray photoelectron spectroscopy (XPS study of as-prepared samples confirms the presence of oxygen vacancies and Eu3+ but absence of Eu2+. Dispersed particles in ethanol and polymer film show the strong blue color, suggesting that these materials will be useful as probes in life science and also in light emitting device applications.

  11. A Medley with over ten years of (mostly light-ion production measurements at The Svedberg Laboratory

    Directory of Open Access Journals (Sweden)

    Prokofiev A.V.

    2010-10-01

    Full Text Available Over the past years an experimental programme has been run at the neutron beam of The Svedberg Laboratory with the aim to study light-ion production induced by 96 and 175 MeV neutrons for a wide variety of targets. The measurements have been conducted using the Medley facility which allows measurement of p, d, t, He-3 and alpha production at fixed angles (from 20 to 160 degrees in steps of 20 degrees over a wide dynamic range. An overview of the results obtained at the now finished campaign at 96 MeV will be given. Since 2007 we have been running at 175 MeV with C, O, Si, Fe, Bi and U as target material. Preliminary results from these measurements will be shown and compared to model calculations with Talys-1.2. We also summarize the Medley measurements of elastic np and nd scattering and of angular distributions of fission fragments.

  12. Visible light emission induced by Krq+ (4 ≤ q ≤ 9) ions colliding with the Cu surface

    Science.gov (United States)

    Guo, Yipan; Yang, Zhihu; Xu, Qiumei; Ren, Jieru; Zhao, Hongyun; Zhao, Yongtao

    2017-09-01

    In this paper, we report visible light emission from 320 keV Krq+ (4 ≤ q ≤ 9) ions on the Cu target. The wavelength range measured is from 300 nm to 656 nm. Two Cu I spectra deriving from different initial states and one Kr I line are detected. Specifically, the two Cu I lines belong to transitions 3d104p(2P03/2) - 3d104s (2S1/2) at 324.78 nm (A) and 3d104p(2P01/2) - 3d104s(2S1/2) at 327.42 nm (B), respectively, and the photon yield ratio of spectra lines (A) and (B) are about 2:1. The Kr I line belongs to transition 4s24p5(2P03/2)11d 2[3/2]0 - 4s24p5(2P03/2)5p 2[1/2] at 486.12 nm (C). In addition, the experimental results show that the photon yields of all lines are increasing with the charge state increase.

  13. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  14. Light particle emission measurements in heavy ion reactions: Progress report, June 1, 1986-May 31, 1987

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1987-01-01

    During the past year we have completed our work on neutron emission in coincidence with fission fragments from the 158 Er system. In addition to this we have completed preliminary analysis of our results on neutron emission from products of damped reactions between 58 Ni and 165 Ho at 930 MeV. Two experiments were planned for the present contract period as discussed in our proposal for 1986-87. One of these, to measure the mass and charge distributions from projectile-like fragments (PLF) in the reactions 58 Ni + 165 Ho and 58 Ni + 58 Ni using the time-of-flight facility at the HHIRF has been successfully completed. The other, to measure momentum correlations between neutrons and charged particles produced in central collisions between 32 S + 197 Au is scheduled to be run in mid-February. 14 refs., 4 figs

  15. Gamma decay of pygmy states in 90,94Zr from inelastic scattering of light ions

    Science.gov (United States)

    Crespi, F. C. L.; Bracco, A.; Tamii, A.; Blasi, N.; Camera, F.; Wieland, O.; Aoi, N.; Balabanski, D.; Bassauer, S.; Brown, A. S.; Carpenter, M. P.; Carroll, J. J.; Ciemala, M.; Czeszumska, A.; Davies, P. J.; Donaldson, L.; Fang, Y.; Fujita, H.; Gey, G.; Hoang, T. H.; Ichige, N.; Ideguchi, E.; Inoue, A.; Isaak, J.; Iwamoto, C.; Jenkins, D. G.; Jin, O. H.; Klaus, T.; Kobayashi, N.; Koike, T.; Krzysiek, M.; Raju, M. Kumar; Liu, M.; Maj, A.; Montanari, D.; Morris, L.; Noji, S.; Pickstone, S. G.; Savran, D.; Spieker, M.; Steinhilber, G.; Sullivan, C.; Wasilewska, B.; Werner, V.; Yamamoto, T.; Yamamoto, Y.; Zhou, X.; Zhu, S.

    2018-05-01

    We performed experiments to study the low-energy part of the E1 response (Pygmy Dipole Resonance) in 90,94Zr nuclei, by measuring the (p,p’γ) and (α,α’γ) inelastic scattering reactions at energies Ebeam,p = 80 MeV and Ebeam,α = 130 MeV respectively. The inelastically scattered particles were measured by employing the high-resolution spectrometer Grand Raiden. The gamma-rays emitted following the de-excitation of the Zr target nuclei were detected using both the clover type HPGe detectors of the CAGRA array and the large volume LaBr3:Ce scintillation detectors from the HECTOR+ array. Some preliminary results are presented here.

  16. First light on 3d photoionization of multiply charged xenon ions: a new photon-ion merged beam setup at PETRA III

    International Nuclear Information System (INIS)

    Ricz, S; Schippers, S; Buhr, T; Holste, K; Jr, A Borovik; Hellhund, J; Schäfer, H-J; Schury, D; Klumpp, S; Mertens, K; Martins, M; Flesch, R; Ulrich, G; Rühl, E; Lower, J; Jahnke, T; Metz, D; Schmidt, L; Schöffler, M; Williams, J B

    2014-01-01

    A photon-ion merged beam endstation has been set up at the variable polarization XUV-beamline P04 of PETRA III in Hamburg. In a commissioning experiment first results could be obtained for multiple photoionization of Xe q+ ions (q = 1,2,..,5) at photon energies around the 3d ionization threshold.

  17. T-Opt: A 3D Monte Carlo simulation for light delivery design in photodynamic therapy (Conference Presentation)

    Science.gov (United States)

    Honda, Norihiro; Hazama, Hisanao; Awazu, Kunio

    2017-02-01

    The interstitial photodynamic therapy (iPDT) with 5-aminolevulinic acid (5-ALA) is a safe and feasible treatment modality of malignant glioblastoma. In order to cover the tumour volume, the exact position of the light diffusers within the lesion is needed to decide precisely. The aim of this study is the development of evaluation method of treatment volume with 3D Monte Carlo simulation for iPDT using 5-ALA. Monte Carlo simulations of fluence rate were performed using the optical properties of the brain tissue infiltrated by tumor cells and normal tissue. 3-D Monte Carlo simulation was used to calculate the position of the light diffusers within the lesion and light transport. The fluence rate near the diffuser was maximum and decreased exponentially with distance. The simulation can calculate the amount of singlet oxygen generated by PDT. In order to increase the accuracy of simulation results, the parameter for simulation includes the quantum yield of singlet oxygen generation, the accumulated concentration of photosensitizer within tissue, fluence rate, molar extinction coefficient at the wavelength of excitation light. The simulation is useful for evaluation of treatment region of iPDT with 5-ALA.

  18. Motorway lighting under fog conditions : based on a paper presented at Japan Highway Corporation, Tokyo, 12 July 1990.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1992-01-01

    This study defines fog as an aerosol consisting primarily of water droplets. The main effect on road traffic is the contrast reduction as a result of the scatter of light in the aerosol. Absorption plays only a small role. The effect of the contrast reduction is that many objects in the field of

  19. HISTORY OF AMPHIBIAN DECLINE AND THE PAST, PRESENT AND FUTURE RESEARCH WITH UV LIGHT AND OTHER STRESSORS

    Science.gov (United States)

    This talk is an overview of the history of amphibian decline and the lab research and field monitoring results generated by MED and other agencies. Included are the general field observations leading up to our research initiation, UV-light exposures to the Northern Leopard Frog...

  20. Breakup-fusion analyses of light ion induced stripping reactions to both bound and unbound regions

    International Nuclear Information System (INIS)

    Lee, Y.J.

    1987-01-01

    The breakup-fusion theory developed recently by our group at the University of Texas has been very successful in explaining observed continuum spectra of particles emitted from breakup type reactions, such as (d,p), (h,p), (h,d), (α,p), and (α,t) reactions. The aim of the present work is to extend the breakup-fusion formalism to calculate the usual stripping reaction, in which a nucleon or a nucleon-cluster is transferred into abound orbit in the target nucleus. With this extension, it is now possible to calculate the spectra of particles emitted from stripping type reactions. We particularly explore the possibility of using the breakup-fusion theory as a spectroscopic tool to obtain information about single particle states in both bound and unbound regions. For this purpose, we extend the theory so as to include the spin-orbit interaction between the transferred particle and the target which has been neglected in all the breakup-fusion studies made in the past. We then apply the thus extended breakup-fusion theory to analyze data of (d,p) and (α,t) reactions. The results of the calculations fit the observed spectra very well and the BF method is shown indeed to be useful for extracting information about the single particle states observed as bumps in both the continuum and discrete regions

  1. Inner shell coulomb ionization by light ions: applications of the semiclassical approximation

    International Nuclear Information System (INIS)

    Kocbach, L.

    1976-01-01

    The Semiclassical Approximation (SCA) has been applied to the process of inner shell ionization by Bang and Hansteen (1959). In the process of the present work their formalism has been simplified. Numerical results have been obtained and compared with experimental data for K- and L-shell ionization. Results for M-shell ionization were also obtained. Three effects have been investigated in close collaboration with experimentalists: structure in the distribution of L-shell ionization probabilities; relativistic effects; angular dependence of ionization probability for very small impact parameters. The structure of the mechanism has been discussed, and, for the first time in the SCA framework, realistic electronic wave functions have been used in the calculations of ionization cross sections and probabilities. This work is not thereby completed and many aspects require further study. The review part of the thesis should thus also provide a reference system for further work. Three of the papers contain general discussions and to some extent have the character of review papers. Appendix A of the review paper forms a cross-reference index for the papers included, while a list of papers on SCA by the Bergen Group is given in Appendix B. (Auth.)

  2. Light ion induced L X-ray production cross-sections in Au and Pb

    International Nuclear Information System (INIS)

    Ouziane, S.; Amokrane, A.; Toumert, I.

    2008-01-01

    Experimental proton-induced L α , L β , L γ , L l and L tot absolute X-ray production cross-sections for Au and Pb in the incident proton energy range between 1 and 2.5 MeV are presented. The experimental results for X-ray production cross-sections are compared to available data given in Sokhi and Crumpton [R.S. Sokhi, D. Crumpton, At. Data Nucl. Data Tables 30 (1984) 49], Jesus et al. [A.P. Jesus, J.S. Lopes, J.P. Ribeiro, J. Phys. B: At. Mol. Phys. 18 (1985) 2456; A.P. Jesus, T.M. Pinheiro, I.A. Nisa, J.P. Ribeiro, J.S. Lopes, Nucl. Instrum. Methods B15 (1986) 95] and Goudarzi et al. [M. Goudarzi, F. Shokouhi, M. Lamehi-Rachti, P.Olialiy, Nucl. Instrum. Methods Phys. Res. B247 (2006) 218]. The given data are also compared with the predictions of ECPSSR model [W. Brandt, G. Lapicki, Phys. Rev. A23 (1981) 1717

  3. ECR ion source for variable energy cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bose, D K; Taki, G S; Nabhiraj, P Y; Pal, G; Dasgupta, B; Mallik, C; Das, S K; Bandopadhaya, D K; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1995-09-01

    Some performance characteristics of 6.4 GHz two stage ECR ion source which was under development at this centre is presented. The present ion source will facilitate acceleration of light heavy ions with the existing k=130 variable energy cyclotron. Multiply charged heavy ion (MCHI) beam from the source will also be utilized for atomic physics studies. Oxygen beam has already been used for ion implantation studies. The external injection system under development is nearing completion. Heavy ion beam from cyclotron is expected by end of 1995. (author).

  4. Present status of the development of far-infrared coherent light sources with the ISIR linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Shuichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research

    1996-07-01

    Far-infrared light sources are being developed with a 38-MeV L-band linear accelerator at the Institute of Scientific and Industrial Research, Osaka University. In the experiments of free-electron laser the self-amplified spontaneous emission was observed at wavelengths of 20 and 40 {mu}m with a high-intensity single-bunch beam for a single passage through a wiggler. In the free-electron laser oscillation experiments with a multibunch beam laser light was obtained at wavelengths from 32 to 40 {mu}m. The peak power in a micropulse of the laser was estimated to be 8.3 MW at a wavelength of 40 {mu}m. Coherent radiation emitted from bunched electrons was observed for Cherenkov and transition radiation processes with the single-bunch beam. (author)

  5. Antiradiation Vaccine: Technology Development- Radiation Tolerance,Prophylaxis, Prevention And Treatment Of Clinical Presentation After Heavy Ion Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Research in the field of biological effects of heavy charged particles is necessary for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions.[Durante M. 2004] In future crew of long-term manned missions could operate in exremely high hadronic radiation areas of space and will not survive without effective radiation protection. An Antiradiation Vaccine (AV) must be an important part of a countermeasures regimen for efficient radiation protection purposes of austronauts-cosmonauts-taukonauts: immune-prophylaxis and immune-therapy of acute radiation toxic syndromes developed after heavy ion irradiation. New technology developed (AV) for the purposes of radiological protection and improvement of radiation tolerance and it is quite important to create protective immune active status which prevent toxic reactions inside a human body irradiated by high energy hadrons.[Maliev V. et al. 2006, Popov D. et al.2008]. High energy hadrons produce a variety of secondary particles which play an important role in the energy deposition process, and characterise their radiation qualities [Sato T. et al. 2003] Antiradiation Vaccine with specific immune-prophylaxis by an anti-radiation vaccine should be an important part of medical management for long term space missions. Methods and experiments: 1. Antiradiation vaccine preparation standard, mixture of toxoid form of Radiation Toxins [SRD-group] which include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins of Radiation Determinant Group isolated from the central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastro-intestinal, Hematopoietic forms of ARS. Devices for radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions

  6. Intense ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  7. Effect of Organic Solvents and Biologically Relevant Ions on the Light-Induced DNA Cleavage by Pyrene and Its Amino and Hydroxy Derivatives

    Directory of Open Access Journals (Sweden)

    Hongtao Yu

    2002-09-01

    Full Text Available Abstract: Polycyclic aromatic hydrocarbons (PAHs are a class of carcinogenic compounds that are both naturally and artificially produced. Many PAHs are pro-carcinogens that require metabolic activation. Recently, it has been shown that PAH can induce DNA single strand cleavage and formation of PAH-DNA covalent adduct upon irradiation with UVA light. The light-induced DNA cleavage parallels phototoxicity in one instance. The DNA photocleavage efficiency depends on the structure of the PAHs. This article reports the effect of both organic solvents and the presence of biologically relevant ions, Na+, Mg2+, Ca2+, K+, Fe3+, Cu2+, Zn+2, Mn2+, and I-, on the light-induced DNA cleavage by pyrene, 1-hydroxypyrene and 1-aminopyrene. Since both 1-hydroxypyrene (0.6 μM and 1-aminopyrene (6 μM dissolve well in the minimum organic solvents used (2% methanol, dimethylsulfoxide, and dimethylformamide, increasing the amount of the organic solvent resulted in the decrease of the amount of DNA single strand cleavage caused by the combination effect of 1-hydroxy or 1-aminopyrene and UVA light. The result with the less watersoluble pyrene shows that increase of the amount of the organic solvent can increase the amount of DNA single strand DNA photocleavage cause by the combination of pyrene and UVA light. Therefore, there are two effects by the organic solvents: (i to dissolve PAH and (ii to quench DNA photocleavage. The presence of Fe3+ and Zn2+ enhances, while the presence of Ca2+ and Mn2+ inhibits the DNA photocleavage caused by 1-aminopyrene and UVA light. Other metal ions have minimal effect. This means that the effect of ions on DNA photocleavage by PAHs is complex. The presence of KI enhances DNA photocleavage. This indicates that the triplet-excited state of 1-aminopyrene is involved in causing DNA cleavage

  8. Microdosimetry of light ions

    International Nuclear Information System (INIS)

    Borak, T.B.; Guetersloh, S.; Taddei, P.; Murakami, T.; Iwata, Y.

    2003-01-01

    Dosimetry of energetic charged nuclei during manned space missions and radiotherapy requires identification of mixed particle fields in order to determine linear energy transfer (LET) which is necessary for estimating relative biological effectiveness (RBE) or quality factors. A tissue equivalent proportional counter (TEPC) gives details of the absorbed dose and dose rate. It can also provide direct information on the quality or type of the radiation field. The interior cavity of the detector is filled with tissue equivalent gas such that the density thickness, cm 2 /g, of the gas is equivalent to the density thickness of tissue with dimensions approaching the nucleus of a mammalian cell (1-5 μm). The motivation for this was that the proportional counter serves as a microdosimeter that can detect energy deposition events similar to those encountered by biological systems having the similar dimensions. (author)

  9. Light-dependant intraretinal ion regulation by melanopsin in young awake and free moving mice evaluated with manganese-enhanced MRI

    OpenAIRE

    Berkowitz, Bruce A.; Roberts, Robin; Bissig, David

    2010-01-01

    Purpose To test the hypothesis that in young, functionally blind mice, light-dependent intraretinal ion regulation occurs via melanopsin. Methods Postnatal day (P) 7 wild type (WT, C57Bl/6) and melanopsin knockout (KO, opn4−/−, B6129) mice were light or dark adapted. Awake and freely moving animals were injected intraperitoneally (ip) with MnCl2. Four hours later, the mice in both groups were anesthetized and studied with manganese-enhanced MRI (MEMRI) to measure the extent of intraretinal up...

  10. Modern light-water reactors - EPR and SWR 1000. Present status and possibilities of development and application

    International Nuclear Information System (INIS)

    Brettschuh, W.; Schneider, D.

    2001-01-01

    A number of reactor concepts are being advanced worldwide also in the light of long-term perspectives in the power economy. Activities in this respect are concentrated on the proven technologies of light-water and heavy-water reactors and on gas or liquid-metal cooled designs. Also smaller units are being considered for various applications. Framatome ANP focus on further development of the EPR and SWR 1000 light-water reactor lines. These plant concepts, which were developed in cooperation with, and with the support of, power utilities together with a number of European partners, are characterized by an even higher level of safety, especially as far as potential accidental releases are concerned, and by their competitiveness in the electricity generating market compared to other sources of energy. Given the cost structure of these plants, with approx. 60% capital costs, approx. 24% operating costs, and approx. 16% fuel cycle costs, efforts are made in particular to reduce the dominating capital cost share. For the EPR, this is to be achieved by high plant capacities, i.e. lower specific capital outlays per kilowatt installed; for the SWR 1000, mainly by means of an optimized, streamlined plant design. Moreover, installed nuclear generating capacities provide long-term assurance in calculating electricity generating costs, as they are less sensitive to the variable costs of the fuel cycle and of operation than fossil-fired plants. Commercial maturity of the SWR 1000 will be achieved after the completion of basic development in late 1999 and the ongoing detailed design steps in 2001. Also for the EPR, commercial maturity has been achieved with the completion of the basic design phase. (orig.) [de

  11. Enhancing visible light photocatalytic and photocharge separation of (BiO){sub 2}CO{sub 3} plate via dramatic I{sup −} ions doping effect

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Lei [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Cao, Jing [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Anhui Collaborative Innovation Center of Advanced Functional Composite, Huaibei, 235000, Anhui (China); Lin, Haili, E-mail: linhaili@mail.ipc.ac.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Guo, Xiaomin; Zhang, Meiyu [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, 233100, Anhui (China)

    2016-08-15

    Highlights: • Novel I-(BiO){sub 2}CO{sub 3} was prepared by a facile chemical precipitation method. • I{sup −} ions impurity level located on the top of valence band of (BiO){sub 2}CO{sub 3}. • I{sup −} ions doping largely improved photocatalytic activity of I-(BiO){sub 2}CO{sub 3}. • I-(BiO){sub 2}CO{sub 3} displayed excellent photocharge separation efficiency. - Abstract: Novel I{sup −} ions doped (BiO){sub 2}CO{sub 3} (I-(BiO){sub 2}CO{sub 3}) photocatalysts were successfully synthesized via a facile chemical precipitation method. Under visible light (λ > 400 nm), I-(BiO){sub 2}CO{sub 3} displayed much higher activity for rhodamine B and dichlorophenol degradation than the undoped (BiO){sub 2}CO{sub 3}. The pseudo-first-order rate constant k{sub app} of RhB degradation over 15.0% I-(BiO){sub 2}CO{sub 3} was 0.54 h{sup −1}, which is 11.3 times higher than that of (BiO){sub 2}CO{sub 3}. The doped I{sup −} ions formed an impurity level on the top of valence band of (BiO){sub 2}CO{sub 3} and induced much more visible light to be absorbed. The enhanced photocurrent and surface photovoltage properties were detected, which strongly ensures the efficient separation of electrons and holes in I-(BiO){sub 2}CO{sub 3} system under visible light. It provides a facile way to improve the photocatalytic activity of the wide-band-gap (BiO){sub 2}CO{sub 3} via intense doping effect of I{sup −} ions.

  12. A visible-light-excited europium(III) complex-based luminescent probe for visualizing copper ions and hydrogen sulfide in living cells

    Science.gov (United States)

    Wang, Yiren; Wang, Huan; Yang, Mei; Yuan, Jingli; Wu, Jing

    2018-01-01

    Development of visible-light-excited lanthanide (III) complex-based luminescent probes is highly appealing due to their superiority of less damage to the living biosystems over the conventional UV-light-excited ones. In this work, a visible-light-excited europium (III) complex-based luminescent probe, BPED-BHHCT-Eu3+-BPT, has been designed and synthesized by conjugating the Cu2+-binding N,N-bis(2-pyridylmethyl)ethanediamine (BPED) to a tetradentate β-diketone ligand 4,4‧-bis(1″,1″,1″,2″,2″,3″,3″-heptafluoro-4″,6″-hexanedione-6″-yl)chlorosulfo-o-terphenyl (BHHCT) and coordinating with a coligand 2-(N,N-diethylanilin-4-yl)-4,6-bis(pyrazol-1-yl)-1,3,5-triazine) (BPT) for the time-gated luminescence detection of Cu2+ ions and hydrogen sulfide (H2S) in living cells. BPED-BHHCT-Eu3+-BPT exhibited a sharp excitation peak at 407 nm and a wide excitation window extending to beyond 460 nm. Upon its reaction with Cu2+ ions, the luminescence of BPED-BHHCT-Eu3+-BPT was efficiently quenched, which could be reversibly restored by the addition of H2S due to the strong affinity between Cu2+ ions and H2S. The "on-off-on" type luminescence behavior of BPED-BHHCT-Eu3+-BPT towards Cu2+ ions and H2S enabled the sensing of the two species with high sensitivity and selectivity. The performances of BPED-BHHCT-Eu3+-BPT for visualizing intracellular Cu2+ ions and H2S were investigated, and the results have demonstrated the practical applicability of the probe for molecular imaging of cells.

  13. Enhancing visible light photocatalytic and photocharge separation of (BiO)_2CO_3 plate via dramatic I"− ions doping effect

    International Nuclear Information System (INIS)

    Liang, Lei; Cao, Jing; Lin, Haili; Guo, Xiaomin; Zhang, Meiyu; Chen, Shifu

    2016-01-01

    Highlights: • Novel I-(BiO)_2CO_3 was prepared by a facile chemical precipitation method. • I"− ions impurity level located on the top of valence band of (BiO)_2CO_3. • I"− ions doping largely improved photocatalytic activity of I-(BiO)_2CO_3. • I-(BiO)_2CO_3 displayed excellent photocharge separation efficiency. - Abstract: Novel I"− ions doped (BiO)_2CO_3 (I-(BiO)_2CO_3) photocatalysts were successfully synthesized via a facile chemical precipitation method. Under visible light (λ > 400 nm), I-(BiO)_2CO_3 displayed much higher activity for rhodamine B and dichlorophenol degradation than the undoped (BiO)_2CO_3. The pseudo-first-order rate constant k_a_p_p of RhB degradation over 15.0% I-(BiO)_2CO_3 was 0.54 h"−"1, which is 11.3 times higher than that of (BiO)_2CO_3. The doped I"− ions formed an impurity level on the top of valence band of (BiO)_2CO_3 and induced much more visible light to be absorbed. The enhanced photocurrent and surface photovoltage properties were detected, which strongly ensures the efficient separation of electrons and holes in I-(BiO)_2CO_3 system under visible light. It provides a facile way to improve the photocatalytic activity of the wide-band-gap (BiO)_2CO_3 via intense doping effect of I"− ions.

  14. Night-time light ion transition height behaviour over the Kharkiv (50°N, 36°E) IS radar during the equinoxes of 2006–2010

    Czech Academy of Sciences Publication Activity Database

    Kotov, K. V.; Truhlík, Vladimír; Richards, P. G.; Stankov, S.; Bogomaz, O. V.; Chernogor, L. F.; Domnin, I. F.

    2015-01-01

    Roč. 132, Sept (2015), s. 1-12 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GC15-07281J Institutional support: RVO:68378289 Keywords : ionosphere * light ions * transition heightI * solar minimum * FLIP * IRI Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.463, year: 2015 http://www.sciencedirect.com/science/article/pii/S1364682615001248#

  15. Jan Rak and Michael J. Tannenbaum present the book "High-pT physics in the heavy ion era"

    CERN Multimedia

    2013-01-01

    Thursday 13 June 2013 from 4 p.m. to 5 p.m. in the Library, Bldg. 52 1-052 The book provides an overview of the basic concepts of large transverse momentum particle physics, with a focus on pQCD phenomena. It examines high-pT probes of relativistic heavy-ion collisions and will serve as a handbook for those working on RHIC and LHC data analyses. Starting with an introduction and review of the field, the authors look at basic observables and experimental techniques, concentrating on relativistic particle kinematics, before moving onto a discussion about the origins of high-pT physics. The main features of high-pT physics are placed within a historical context and the authors adopt an experimental outlook, highlighting the most important discoveries leading up to the foundation of modern QCD theory. High-pT physics in the heavy ion era, by Jan Rak and Michael J. Tannenbaum,  Cambridge University Press, 2013, ISBN  9780521190299. *Coffee will be served from 3 p.m.*

  16. The past and present Earth-Moon system: the speed of light stays steady as tides evolve.

    Science.gov (United States)

    Williams, James G; Turyshev, Slava G; Boggs, Dale H

    Tides induce a semimajor axis rate of +38.08 ± 0.19 mm/yr, corresponding to an acceleration of the Moon's orbital mean longitude of -25.82 ± 0.13 "/cent 2 , as determined by the analysis of 43 yr of Lunar Laser Ranging (LLR) data. The LLR result is consistent with analyses made with different data spans, different analysis techniques, analysis of optical observations, and independent knowledge of tides. Plate motions change ocean shapes, and geological evidence and model calculations indicate lower rates of tidal evolution for extended past intervals. Earth rotation has long-term slowing due to tidal dissipation, but it also experiences variations for times up to about 10 5  yr due to changes in the moment of inertia. An analysis of LLR data also tests for any rate of change in either the speed of light c or apparent mean distance. The result is (-2.8 ± 3.4)×10 -12 /yr for either scale rate or -(d c /d t )/ c , or equivalently -1.0 ± 1.3 mm/yr for apparent distance rate. The lunar range does not reveal any change in the speed of light.

  17. Measurement of elliptic flow of light nuclei at √{sN N}=200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X. M.; Sun, Z.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, Y.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, F.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, H.; Xu, Z.; Xu, J.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Yang, Y.; Yang, S.; Yang, C.; Yang, Y.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J.; Zhang, Y.; Zhang, X. P.; Zhang, Z.; Zhang, J. B.; Zhang, S.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-09-01

    We present measurements of second-order azimuthal anisotropy (v2) at midrapidity (|y |<1.0 ) for light nuclei d ,t ,3He (for √{sN N}=200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and antinuclei d ¯ (√{sN N}=200 , 62.4, 39, 27, and 19.6 GeV) and ¯3He (√{sN N}=200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The v2 for these light nuclei produced in heavy-ion collisions is compared with those for p and p ¯. We observe mass ordering in nuclei v2(pT) at low transverse momenta (pT<2.0 GeV/c ). We also find a centrality dependence of v2 for d and d ¯. The magnitude of v2 for t and 3He agree within statistical errors. Light-nuclei v2 are compared with predictions from a blast-wave model. Atomic mass number (A ) scaling of light-nuclei v2(pT) seems to hold for pT/A <1.5 GeV /c . Results on light-nuclei v2 from a transport-plus-coalescence model are consistent with the experimental measurements.

  18. A Monte-Carlo code for the detailed simulation of electron and light-ion tracks in condensed matter

    International Nuclear Information System (INIS)

    Emfietzoglou, D.; Papamichael, G.; Karava, K.; Androulidakis, I.; Pathak, A.; Phillips, G. W.; Moscovitch, M.; Kostarelos, K.

    2006-01-01

    In an effort to understand the basic mechanism of the action of charged particles in solid radiation dosimeters, we extend our Monte-Carlo code (MC4) to condensed media (liquids/solids) and present new track-structure calculations for electrons and protons. Modeling the energy dissipation process is based on a model dielectric function, which accounts in a semi-empirical and self-consistent way for condensed-phase effects which are computationally intractable. Importantly, these effects mostly influence track-structure characteristics at the nano-meter scale, which is the focus of radiation action models. Since the event-by-event scheme for electron transport is impractical above several kilo-electron volts, a condensed-history random-walk scheme has been implemented to transport the energetic delta rays produced by energetic ions. Based on the above developments, new track-structure calculations are presented for two representative dosimetric materials, namely, liquid water and silicon. Results include radial dose distributions in cylindrical and spherical geometries, as well as, clustering distributions, which, among other things, are important in predicting irreparable damage in biological systems and prompt electric-fields in microelectronics. (authors)

  19. The use of ion beam analysis in the synthesis of materials. A review of the determination of light elements by high-energy resonant backscattering

    International Nuclear Information System (INIS)

    Nastasi, M.

    1999-01-01

    For the ion synthesis of materials plasma inversion ion processing (PIIP) technology, has been applied in the framework of materials science research. The characteristics of this technique are discussed. PIIP has been complemented and compared with alpha-particle Rutherford Backscattering Spectrometry (RBS) High-energy Backscattering Spectrometry (HEBS) is the third material testing method for comparison. Examples for each technology are presented and discussed. (R.P.)

  20. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions.

    Science.gov (United States)

    Stewart, Robert D; Streitmatter, Seth W; Argento, David C; Kirkby, Charles; Goorley, John T; Moffitt, Greg; Jevremovic, Tatjana; Sandison, George A

    2015-11-07

    To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, (137)Cs γ-rays, neutrons and light ions relative to γ-rays from (60)Co in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that (137)Cs γ-rays are about 1.7% more effective at creating DSB than γ-rays from (60)Co (RBEDSB  =  1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than (60)Co. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as (60)Co γ-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer.

  1. On the role of individualized Regge poles in forming refractive structures in light and heavy ion scattering at large angles

    International Nuclear Information System (INIS)

    Kuznichenko, A.V.; Onyshchenko, G.M.; Pilipenko, V.V.; Burtebaev, N.; Zhurunbayeva, G.S.

    2002-01-01

    Investigation of the refraction structures in cross sections of nuclear scattering is a well-known method of probing the interior parts of the interaction region of colliding nuclei and attracts much attention. During recent years essential success was achieved in the experimental studies of scattering of light and heavy ions in wide scattering angle range. The studies were carried out not only in the energy region with standard nuclear rainbow behavior but also at energies near and below the critical energy of nuclear rainbow E cr which revealed well pronounced refractive structures in the angular distributions of the processes studied including rainbow-like maximums and anomalous large angle scattering. To analyze evolution of the refraction effects with energy a new S-matrix model, which can supplement the results of the analyses on the basis of commonly used optical potential approach. The S-matrix model takes into account of some Regge poles near the real axis ('individualized' poles), which addresses the case of energies near and below E cr . Basing on developed model a number a scattering patterns for system α+A, 16 O+ 16 O and 16 O+ 12 C at different energy values have been analyzed. The comparison with results of optical model analyses have been made. The studies were complemented by the analysis on basis of the modified Fuller procedure of decomposition of cross sections into near and far components with removing unphysical contributions. The results of analysis performed suggest the conclusion that the observed refractive structures at large angles (both the rainbow-like ones and ALAS) at E≤E cr are strongly affected by the above mentioned individualized Regge poles. Strictly saying, the scattering in this energy region is not a pure rainbow one, but is of transition character. The arising Regge poles can be considered as a quantum analog for the transition to the orbiting regime in the case of classical scattering. The notch test of the sensitivity

  2. Studies on the bombardment of condensed molecular gases at liquid-He temperatures by keV electrons and light ions

    International Nuclear Information System (INIS)

    Boergesen, P.

    1982-09-01

    Films of solid H 2 , D 2 and N 2 were irradiated with keV electrons and ions. Stopping cross sections and ranges of 0.3-10 keV/amu light ions in solid H 2 and D 2 are in good agreement with experimental and theoretical data on gaseous targets. In contrast, both stopping cross section and range measurements in solid N 2 suggest that the stopping here is only about half of that in N 2 -gas. This ''phase-effect'' is further supported by secondary emission measurements. Secondary electron emission coefficients for 2-10 keV H 1 + , H 2 + , H 3 + , D 3 + , D 2 H + , 4 He + , 14 N + and 20 Ne + incident on solids H 2 , D 2 and N 2 are in reasonable agreement with previous results for electron-incidence. The rather large erosion yields for 1-3 keV electrons incident on solid D 2 depend strongly on target thickness (for thin films), but weakly on energy. Bulk yields for 2 keV electrons were approximately 8 H 2 /electron, approximately 4 D 2 /electron and approximately 0.5 N 2 /electron. Secondary ion emission during ion bombardment seems to be predominantly reflected projectiles in the case of N 2 -targets, while it may be explained as sputtered particles from H 2 - and D 2 -targets. Preliminary results on the erosion of solid H 2 and D 2 by keV light ions indicate very large erosion yields (approx. 400 H 2 /atom for 2 keV protons) increasing strongly with energy. (Auth.)

  3. Use of synchrotron and laser radiations for present and future photoionization studies in excited atoms and ions

    International Nuclear Information System (INIS)

    Wuilleumier, F.J.

    1984-01-01

    The status of experiments in photoionization of atoms in excited states is reviewed, with emphasis given to synchrotron and laser photon sources. A technique for exciting the photoionization spectrum of Na atoms using the flux emitted from the bending magnetic of a storage ring is discussed in detail. Some problems in interpreting photoionization spectrum of Ba in the excited state, due to the presence of higher orders are considered. A design approach for a positron storage ring to produce coherent radiation in the VUV is described. It is shown that combined use of a CW dye laser and the positron storage ring will allow new progress to be made in photoionization studies of excited atoms. Some of the experiments to be carried out using the positron storage ring include: measurements of collisional ionization in rare earth metal atoms of low atomic density; photoionization measurements at lower laser powers, leading to an extension of the CW tunability range; and photoionization studies of multiply charged positive ions. 21 references

  4. Interleukin production by neonatal spleen cells during and as a result of antigen presentation: The effect of ultraviolet light

    International Nuclear Information System (INIS)

    Levin, D.; Gershon, H.

    1989-01-01

    Antigen presentation by neonatal murine spleen cells and the production of lymphokines and interleukins involved in the stimulation of a T-helper-2 (TH2) cell line (D10-G4.1) were studied as were the effects of ultra violet (UV)-irradiation on this system. Neonatal spleen cells are less capable than adult cells of performing the initial steps of the immune response required for antigen dependent activation of TH2 cells. These steps include soluble antigen processing and presentation and as a result reduced production of IL-4 and IL-1-Inducer Factor (IL-1-IF) by the T-helper cells and reduced production of IL-1 and IL-2 by the antigen presenting cell population. Spontaneous membrane IL-1 activity is low in the neonate, however, when exposed to IL-1-IF they can express adult levels. Ultraviolet (UV) irradiation of the antigen presenting population has a damaging effect on all the above mentioned processes. Antigen processing and presentation, induction of D10 IL-4 production and proliferation, and IL-2 production demonstrate two different age related patterns of UV-irradiation induced damage: a dose dependent inhibition when adult cells are irradiated and an inverse effect in which low doses of irradiation were more inhibitory than higher doses when neonatal cells are irradiated. However, the secretion and membrane expression of IL-1 by both age groups are directly and totally inhibited by the range of UV-irradiation doses used and cannot be reinduced with a supplement of a crude IL-1-IF. While the capacity to produced IL-1 is totally destroyed by UV-irradiation, the ability to produce IL-2 remains intact and remains responsive to an IL-2-Inducer activity during proper antigen presentation. The low responses of neonatal antigen presenting spleen cell populations and the damaging effect of UV on both neonatal and adult responses are not due to the induction of suppressor factors

  5. Nuclear structure studies with pions and light and heavy ions. Progress report, June 1, 1981-May 31, 1984

    International Nuclear Information System (INIS)

    Dehnhard, D.

    1984-01-01

    A large number of experiments were done using pion and proton beams at intermediate energies to investigate different excitation modes of the nucleus. Pions were found to be especially suited to excite magnetic transitions of high multipolarity (M4's). The isospin, or neutron/proton, structure of many transitions could be unraveled and detailed comparisons with the predictions of large-space shell-model calculations were successful in many cases. A few glaring exceptions were found to the general good agreement between theory and experiment. For the collectively enhanced electric quadrupole (E2) and octupole (E3) transitions, effective charge enhancements were needed to fit the pion and proton data. The polarization charges were usually found to be in good agreement with the results of electromagnetic measurements. Studies of the excitation of giant resonances by pion inelastic scattering indicated a large isovector component in the transitions to isoscalar giant resonances. This result, although theoretically unexpected, is supported by comparison of electron and alpha-particle scattering and requires further study. A very recent experiment on pion inelastic scattering from 4 He showed little evidence for isospin mixing in this nucleus, in contrast to the conclusions drawn from (γ,n) and (γ,p) work. A high precision elastic π + scattering experiment on 4 He is underway. The work on heavy-ion elastic scattering was completed and terminated. Two experiments are presently being done at lower energies to supplement the work at intermediate energy

  6. Presentation-Practice-Production and Task-Based Learning in the Light of Second Language Learning Theories.

    Science.gov (United States)

    Ritchie, Graeme

    2003-01-01

    Features of presentation-practice-production (PPP) and task-based learning (TBL) models for language teaching are discussed with reference to language learning theories. Pre-selection of target structures, use of controlled repetition, and explicit grammar instruction in a PPP lesson are given. Suggests TBL approaches afford greater learning…

  7. Summarized presentation of the numerical model used for the pressurizer of a light water nuclear reactor. Description and validation

    International Nuclear Information System (INIS)

    Siarry, P.

    1981-12-01

    The pressurizer model is first described together with its coupling to the nuclear unit. The different stages involved in the validation are then presented: validation of overall qualitative behavior; validation of the open loop pressurizer model; validation of the various units for controlling pressures and levels; simulation of two large transients (Bugey plant) [fr

  8. Influence of helium-ion bombardment on the optical properties of ZnO nanorods/p-GaN light-emitting diodes

    Science.gov (United States)

    Alvi, Naveed Ul Hassan; Hussain, Sajjad; Jensen, Jen; Nur, Omer; Willander, Magnus

    2011-12-01

    Light-emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods grown by vapor-liquid-solid catalytic growth method were irradiated with 2-MeV helium (He+) ions. The fabricated LEDs were irradiated with fluencies of approximately 2 × 1013 ions/cm2 and approximately 4 × 1013 ions/cm2. Scanning electron microscopy images showed that the morphology of the irradiated samples is not changed. The as-grown and He+-irradiated LEDs showed rectifying behavior with the same I-V characteristics. Photoluminescence (PL) measurements showed that there is a blue shift of approximately 0.0347 and 0.082 eV in the near-band emission (free exciton) and green emission of the irradiated ZnO nanorods, respectively. It was also observed that the PL intensity of the near-band emission was decreased after irradiation of the samples. The electroluminescence (EL) measurements of the fabricated LEDs showed that there is a blue shift of 0.125 eV in the broad green emission after irradiation and the EL intensity of violet emission approximately centered at 398 nm nearly disappeared after irradiations. The color-rendering properties show a small decrease in the color-rendering indices of 3% after 2 MeV He+ ions irradiation.

  9. Fragmentation of the C60 molecule in collision with light ions studied by a multi-correlation technique. Cross-sections, electron spectroscopy; Fragmentation de la molecule C60 par impact d'ions legers etudiee en multicorrelation. Sections efficaces, spectroscopie d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rentenier, A

    2004-04-01

    A quantitative study of the C60 fullerenes fragmentation in collision with light ions (H{sub n}{sup +} with n=1,2,3, He{sup q+} with q=1,2) in the velocity range 0,1 - 2,3 u.a.) is presented. The multi-correlation technique, developed between fragment ions and electrons with well defined energy, has enlightened some of the dependences and properties of fragmentation mechanisms (cross sections, electron spectroscopy, size distributions, kinetic energy of fragment ions, Campi's scatter plot, activation energies). The deposited energy hence appeared as an important parameter. Cross sections have been measured, for the first time, for all the collisional processes. Ionisation and capture only depends on the collision velocity. On the other hand, scaling laws with the deposited energy have been observed for the cross sections of multifragmentation, which depends on the collision energy and the nature of the projectile. The deposited energy has also been found as an essential parameter to understand the evolution of the charged fragment size distributions. The electron spectroscopy, achieved at an emission angle of 35 degrees, showed spectra peaked at important energies (from 5 to 20 eV). The spectra shape depends on the collision velocity. A first theoretical analysis points out the link between the observed energy distribution and the presence of a centrifugal potential barrier. Finally, correlation experiments between produced ions and electron energy reveal that electron energy increases with internal energy. (author)

  10. Highlights of the heavy ion fusion symposium

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-01-01

    The current status and prospects for inertial confinement fusion based on the use of intense beams of heavy ions will be described in the light of results presented at the International Symposium on Heavy Ion Fusion, (Washington, DC, May 27-29, 1986)

  11. Highlights of the heavy ion fusion symposium

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The current status and prospects for inertial confinement fusion based on the use of intense beams of heavy ions will be described in the light of results presented at the International Symposium on Heavy Ion Fusion, (Washington, DC, May 27-29, 1986)

  12. Electron stripping cross sections for light impurity ions in colliding with atomic hydrogens relevant to fusion research

    International Nuclear Information System (INIS)

    Tawara, H.

    1992-04-01

    Electron stripping (ionization) cross sections for impurity (carbon) ions with various charge states in collisions with atomic hydrogens have been surveyed. It has been found that these data are relatively limited both in collision energy and charge state and, in particular those necessary for high energy neutral beam injection (NBI) heating in fusion plasma research are scarce. Some relevant cross sections for carbon ions, C q+ (q = 0-5) have been estimated, based upon the existing data, empirical behavior and electron impact ionization data. (author)

  13. Estimation of free acidity in some hydrolysable metal ions present in reprocessing streams by fiber optic aided spectrophotometry

    International Nuclear Information System (INIS)

    Ganesh, S.; Velavendan, P.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2014-01-01

    A fiber optic aided spectrophotometric technique has been developed for the determination of free acidity in nuclear fuel reprocessing streams. In this method, nitric acid forms yellow colour complex with chrome azurol s. The system obeys Lambert-Beer's law at 542 nm in the range of acidity 4-14 M. The molar absorption coefficient (ε) and Sandell's sensitivity (S) of complex are 5.23 × 10 3 L.mol -1 .cm -1 and 1.91 × 10 -4 µg/cm 2 respectively. Relative standard deviation is less than 1 % and correlation coefficient is 0.999. Results of the present method are in good agreement with those obtained by the standard procedure. (author)

  14. The effect of sodium ions on the light-induced 86Rb release from the isolated crayfish retina

    International Nuclear Information System (INIS)

    Hartung, K.; Stieve, H.

    1980-01-01

    The effect of low external Na + concentrations on the light-induced K + release from crayfish photoreceptor cells was tested by labelling intracellular K + with the isotope 86 Rb. The amount of isotope released per light, stimulus is roughly proportional to the external Na + concentration if the osmolarity is kept constant by replacing Na + with Tris, choline or sucrose. When sucrose is used to replace the depleted Na + the light-induced K + release is a linear function of the external Na + concentration and is reduced by approx. 95% at an external Na + concentration of 5 mmol/l. For choline and Tris substitutions the relationships are less clear but at Na + concentrations + release is smaller in a Tris solution and larger in a choline solution. It is suggested that the light-induced K + release is due mainly to an activation of voltage sensitive K + channels. (orig.)

  15. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light.

    Science.gov (United States)

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.

  16. Assessment of improved organ at risk sparing for meningioma: Light ion beam therapy as boost versus sole treatment option

    International Nuclear Information System (INIS)

    Mock, Ulrike; Georg, Dietmar; Sölkner, Lukas; Suppan, Christian; Vatnitsky, Stanislav M.; Flechl, Birgit; Mayer, Ramona; Dieckmann, Karin; Knäusl, Barbara

    2014-01-01

    Purpose: To compare photons, protons and carbon ions and their combinations for treatment of atypical and anaplastical skull base meningioma. Material and methods: Two planning target volumes (PTV initial /PTV boost ) were delineated for 10 patients (prescribed doses 50 Gy(RBE) and 10 Gy(RBE)). Plans for intensity modulated photon (IMXT), proton (IMPT) and carbon ion therapy ( 12 C) were generated assuming a non-gantry scenario for particles. The following combinations were compared: IMXT + IMXT/IMPT/ 12 C; IMPT + IMPT/ 12 C; and 12 C + 12 C. Plan quality was evaluated by target conformity and homogeneity (CI, HI), V 95% , D 2% and D 50% and dose-volume-histogram (DVH) parameters for organs-at-risk (OAR). If dose escalation was possible, it was performed until OAR tolerance levels were reached. Results: CI was worst for IMXT. HI < 0.05 ± 0.01 for 12 C was significantly better than for IMXT. For all treatment options dose escalation above 60 Gy(RBE) was possible for four patients, but impossible for six patients. Compared to IMXT + IMXT, ion beam therapy showed an improved sparing for most OARs, e.g. using protons and carbon ions D 50% was reduced by more than 50% for the ipsilateral eye and the brainstem. Conclusion: Highly conformal IMPT and 12 C plans could be generated with a non-gantry scenario. Improved OAR sparing favors both sole 12 C and/or IMPT plans

  17. Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng; Hu, Liangbing; Choi, Jang Wook; Cui, Yi

    2010-01-01

    and Si as a high capacity anode material for Li-ion battery. Such free-standing film has a low sheet resistance of ∼30 Ohm/sq. It shows a high specific charge storage capacity (∼2000 mAh/g) and a good cycling life, superior to pure sputtered-on silicon

  18. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: Key information from ultrafast electronic spectroscopy

    KAUST Repository

    Kar, Prasenjit; Sardar, Samim; Alarousu, Erkki; Sun, Jingya; Seddigi, Zaki Shakir Abdullah; Ahmed, Saleh Abdel Mgeed; Danish, Ekram Yousif; Mohammed, Omar F.; Pal, Samir Kumar

    2014-01-01

    ProtoporphyrinIX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: Key information from ultrafast electronic spectroscopy

    KAUST Repository

    Kar, Prasenjit

    2014-07-10

    ProtoporphyrinIX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tunable white light emission from hafnium oxide films co-doped with trivalent terbium and europium ions deposited by Pyrosol technique

    Energy Technology Data Exchange (ETDEWEB)

    Guzman-Olguin, J.C.; Montes, E.; Guzman-Mendoza, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del Instituto Politecnico Nacional, Unidad Legaria (Mexico); Baez-Rodriguez, A.; Zamora-Peredo, L. [Centro de Investigacion en Micro y Nanotecnologia, Universidad Veracruzana, Boca del Rio, Ver (Mexico); Garcia-Hipolito, M.; Alvarez-Fregoso, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan (Mexico); Martinez-Merlin, I.; Falcony, C. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional (Mexico)

    2017-10-15

    In this paper, the photo and cathodoluminescent properties of HfO{sub 2} films optically activated with different atomic concentrations of Tb{sup 3+} and Eu{sup 3+} ions, deposited by the Pyrosol technique, are reported. These films were deposited at temperatures from 400 to 600 C, using chlorides as raw materials. The surface morphologies of all deposited films were rough and dense. X-ray diffraction analysis showed that the films deposited at 600 C were polycrystalline exhibiting the HfO{sub 2} monoclinic phase. The tuning by the means of the excitation wavelength generates photoluminescence spectra, for co-doped films, in several emissions from blue to yellow (including white light) due to the characteristic electronic transitions of Tb{sup 3+} (green), Eu{sup 3+}(red) ions and the violet-blue emission associated to the host lattice (HfO{sub 2}). According to the chromaticity diagram, the best white light is reached for the sample S2 excited with 382 nm (x = 0.3343, y = 0.3406). The cathodoluminescence emission spectra for co-doped films showed emissions from green to red (including yellow, orange and other intermediate emissions). The averaged quantum efficiency values of the sample labeled as S2 resulted between 47 and 78% depending on the excitation wavelength. In addition, XPS, TEM, SEM and decay times were performed to characterize these films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    Science.gov (United States)

    Vertes, Akos; Walker, Bennett N.

    2013-09-10

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  2. Analysis of the interaction between Bacillus coagulans and Bacillus thuringiensis S-layers and calcium ions by XRD, light microscopy, and FTIR.

    Science.gov (United States)

    Babolmorad, Ghazal; Emtiazi, Giti; Emamzadeh, Rahman

    2014-05-01

    S-layer is a self-assemble regularly crystalline surface that covers major cell wall component of many bacteria and archaea and exhibits a high metal-binding capacity. We have studied the effect of the calcium ions and type of solid support (glass or mica) on the structure of the S-layers from Bacillus coagulans HN-68 and Bacillus thuringiensis MH14 upon simple methods based on light microscopy and AFM. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study is indicated that the calcium-S-layer interaction occurred mainly through the carboxylate groups of the side chains of aspartic acid (Asp) and glutamic acid (Glu) and nitrogen atoms of Lys, Asn, and histidine (His) amino acids and N-H groups of the peptide backbone. Studied FTIR revealed that inner faces of S-layer are mainly negative, and outer faces of S-layer are mainly positive. Probably, calcium ions with positive charges bound to the carboxyl groups of Glu and Asp. Accordingly, calcium ions are anchored in the space between the inner faces of S-layer with negative charge and the surface of mica with negative charge. This leads to regular arrangement of the S-layer subunits.

  3. Lecture Presentations

    International Nuclear Information System (INIS)

    2007-01-01

    The Heavy-Ion Collisions in the LHC workshop held in Cracow from 18 to 18 May 2007. The main subject of the workshop was to present the newest results of research provided at CERN LHC collider. Additionally some theoretical models and methods used for presented data analysis were discussed

  4. Self-magnetically-insulated 'plasma-focus diode' as a new source of an intence pulsed light-ion beam

    International Nuclear Information System (INIS)

    Takahashi, Akira; Aga, Keigo; Masugata, Katsumi; Ito, Michiaki; Yatsui, Kiyoshi

    1986-01-01

    A new and simple type of self-magnetically-insulated diode named ''Plasma-Focus Diode'' has been successfully developed, where anode and cathode are constituted by a pair of coaxial cylindrical electrodes similarly to a Mather-type plasma-focus device. Operating conditions are typically as follows: inductively-calibrated diode voltage ∼ 660 kV, diode current ∼ 142 kA, total ion current ∼ 32 kA, pulse width ∼ 90 ns and diode efficiency ∼ 22 %. Multiple-shots operation more than 50 shots has been possible without changing flashboard. Local divergence angle has been observed to be 0.9 deg ∼ 1.6 deg. Using such a simple ion diode, we have demonstrated a possibility of high concentration of beam-power density onto a target placed at the center. (author)

  5. Improved calculations of the electronic and nuclear energy losses for light ions penetrating H and He targets at intermediate velocities

    Energy Technology Data Exchange (ETDEWEB)

    Grande, P.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Schiwietz, G. [Hahn-Meitner-Institut Berlin GmbH (Germany). Dept. FD

    1994-06-01

    A review is given on the use of the coupled-channel method to calculate the electronic and nuclear energy loss of ions penetrating the matter. This first principle calculation based on an expansion of the time dependent electronic wavefunction in terms of atomic orbitals has been applied to evaluate the impact parameter dependence of the electronic energy loss, the stopping cross-section and the fluctuation is energy loss of ions colliding with H and He atoms at energies of 10 keV/amu to 500 keV/amu. The results have been compared to experimental data as well as to others existing models, local density approximation in an electron gas target, harmonic oscillator target treatment and first order plane-wave-Born approximation. (author). 63 refs, 11 figs.

  6. Investigations of reactions between pure refractory metals and light gases with the field ion microscope and atom probe

    International Nuclear Information System (INIS)

    Krautz, E.; Haiml, G.

    1989-01-01

    The initial stages of selected reactions of the refractory metals tungsten, niobium and tantalum with hydrogen, oxygen, nitrogen and methane have been studied with the field ion microscope in atomic resolution whereby the composition of single net planes converages and surface zones could absolutely be analyzed with the atom probe by using field desorption under defined conditions at low temperatures. 14 refs., 9 figs. (Author)

  7. RBS analysis of ions implanted in light substrates exposed to hot plasmas laser-generated at PALS

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Gammino, S.; Picciotto, A.; Wolowski, J.; Krása, Josef; Láska, Leoš; Calcagnile, L.; Quarta, G.

    2005-01-01

    Roč. 160, 10-12 (2005), s. 685-695 ISSN 1042-0150. [Workshop PIBHI 2005 /2./. Giardini Naxos, 08.06.06-11.06.06] R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : RBS analysis * ion implantation * plasma-generated by lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.353, year: 2005

  8. Ultra-light Hierarchical Graphene Electrode for Binder-Free Supercapacitors and Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Zuo, Zicheng; Kim, Tae Young; Kholmanov, Iskandar; Li, Huifeng; Chou, Harry; Li, Yuliang

    2015-10-07

    A mild and environmental-friendly method is developed for fabricating a 3D interconnected graphene electrode with large-scale continuity. Such material has interlayer pores between reduced graphene oxide nanosheets and in-plane pores. Hence, a specific surface area up to 835 m(2) g(-1) and a high powder conductivity up to 400 S m(-1) are achieved. For electrochemical applications, the interlayer pores can serve as "ion-buffering reservoirs" while in-plane ones act as "channels" for shortening the mass cross-plane diffusion length, reducing the ion response time, and prevent the interlayer restacking. As binder-free supercapacitor electrode, it delivers a specific capacitance up to 169 F g(-1) with surface-normalized capacitance close to 21 μF cm(-2) (intrinsic capacitance) and power density up to 7.5 kW kg(-1), in 6 m KOH aqueous electrolyte. In the case of lithium-ion battery anode, it shows remarkable advantages in terms of the initiate reversible Coulombic efficiency (61.3%), high specific capacity (932 mAh g(-1) at 100 mA g(-1)), and robust long-term retention (93.5% after 600 cycles at 2000 mAh g(-1)). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enhanced photoluminescence and thermal stability of divalent ions (Zn2+, Mg2+) assisted CaTiO3:Eu3+ perovskite phosphors for lighting applications

    Science.gov (United States)

    Singh, Dhananjay Kumar; Manam, J.

    2018-03-01

    Current study proposes the improved red emission of Zn2+ and Mg2+ ions incorporated CaTiO3:Eu3+ phosphors synthesized via the well-known solid-state reaction method. Under the 397 nm UV excitation, the Zn2+- and Mg2+-incorporated CaTiO3:0.15Eu3+ phosphor having orthorhombic structure with space group Pbnm exhibited an intense red emission at 619 nm. This can be credited to the hypersensitive 5D0 → 7F2 transition of Eu3+ ions, which is also indicative of the fact that the Eu3+ ions populated the non-inversion symmetry sites in the CaTiO3 lattices. The optimized composition CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, pronounces in a magnificent enhancement of PL intensity by 5.5 and 2.5 times, respectively, as compared to CaTiO3:0.15 Eu3+ phosphor. From the temperature-dependent emission spectra, ΔEa were enunciated to be 0.101 and 0.086 eV for CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, respectively, for thermal quenching. In addition, it can be better understood as related to the adequate thermal stability of 60% even at 450 and 420 K, respectively. Furthermore, the Judd-Ofelt theory was used to study the radiative intensity parameters of Eu3+ ions in the CaTiO3 lattices. The experimental results incited the bright prospects of synthesized ceramics as a promising candidate for lighting applications.

  10. [Pollution Characteristics and Light Extinction Effects of Water-soluble Ions in PM2.5 During Winter Hazy Days at North Suburban Nanjing].

    Science.gov (United States)

    Zhou, Yao-yao; Ma, Yan; Zheng, Jun; Cui, Fen-ping; Wang, Li

    2015-06-01

    To investigate the characteristics of water-soluble ions in PM2.5 and their contribution to light extinction in haze days, on-line monitoring of PM2.5. was conducted at North Suburban Nanjing from 25 January through 3 February, 2013. Water-soluble components were collected with a particle-into-liquid sampler (PILS), and analyzed by ion chromatography (IC) for the contents of SO4(2-), NO3-, NH4+, Cl-, Na+, K+, Mg2+ and Ca2+ Simultaneously particle size distributions were measured using scanning mobility particle sizer (SMPS) and Aerodynamic Particle Sizer (APS). The absorption and scattering coefficients were measured by three-wavelength photoacoustic soot spectrometer (PASS-3). Trace gases (SO2, NO2 etc.) were also monitored. The results showed that the average concentrations of total water-soluble ions were 70.3 and 22.9 microg x m(-3) in haze and normal days, respectively. Secondary hygroscopic components including SO4(2-), NO3- and NH4+ were the major ionic pollutants. Hazy days favored the conversion of SO2 and NOx, to SO4(2-) and NO3-, respectively, and in particular the oxidation of NOx. Using multiple linear regression statistical method, the empirical relationship between the dry aerosol extinction coefficient and the chemical composition was established. NH4NO3 was found to be the largest contributor to aerosol extinction in winter in Nanjing, followed by (NH4)2SO4, OC and EC. In two heavy pollution events, the increase of ion concentrations was influenced by the increase of primary emissions and secondary transformation.

  11. Light-induced changes of cubic and uniaxial magnetic aniosotropy in a magnet doped by strongly anisotropic ions

    Czech Academy of Sciences Publication Activity Database

    Zaytseva, I.; Stupakiewicz, A.; Maziewski, A.; Zablotskyy, Vitaliy A.

    254-255, - (2003), s. 118-120 ISSN 0304-8853. [Soft Magnetic Material Conference ( SMM 15). Bilbao, 05.09.2001-07.09.2001] Institutional research plan: CEZ:AV0Z1010914 Keywords : photomagnetic effects * light-induced anisotropy * garnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  12. Long-wave UVA radiation excited warm white-light emitting NaGdTiO4: Tm3+/Dy3+/Eu3+ ions tri-doped phosphors: Synthesis, energy transfer and color tunable properties

    International Nuclear Information System (INIS)

    Bharat, L. Krishna; Du, Peng; Yu, Jae Su

    2016-01-01

    NaGdTiO 4 (NGT) phosphors doped with different activator ions (Tm 3+ , Dy 3+ , and Eu 3+ ) were synthesized by a conventional solid-state reaction method in an ambient atmosphere. These phosphors were characterized by scanning electron microscope images, transmission electron microscope images, X-ray diffraction patterns, Fourier transform infrared spectra, and photoluminescence spectra. All the samples were crystallized in an orthorhombic phase with a space group of Pbcm (57). In Tm 3+ /Dy 3+ ions co-doped samples, white-light emission was observed under near-ultraviolet (NUV) excitation. In addition, the energy transfer between Tm 3+ and Dy 3+ ions was proved to be a resonant type via an electric dipole–dipole mechanism and the critical distance of energy transfer was calculated to be 19.91 Å. Furthermore, Tm 3+ /Dy 3+ /Eu 3+ ions tri-doped NGT phosphors demonstrated warm white-light emission by appropriately tuning the activator content, based on the principle of energy transfer. These NUV wavelength excitable phosphors exhibit great potential as a single-phase full-color emitting phosphor for white light-emitting diode applications. - Highlights: • The pebble shaped NaGdTiO 4 particles were prepared by solid-state reaction method. • Tm 3+ and Dy 3+ single doping gives respective blue and cool white light emission. • The Tm 3+ /Dy 3+ ions co-doped samples give CIE values near to standard white light. • Addition of Eu 3+ ions shifts the CIE values towards warm white light region. • This single phase white light emitting phosphors have lower CCT values (<5000 K).

  13. Formation of light-emitting nanostructures in layers of stoichiometric SiO{sub 2} irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kachurin, G. A., E-mail: kachurin@isp.nsc.ru; Cherkova, S. G. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics (Russian Federation); Skuratov, V. A. [Joint Institute for Nuclear Research (Russian Federation); Marin, D. V.; Kesler, V. G.; Volodin, V. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics (Russian Federation)

    2011-10-15

    Thermally grown SiO{sub 2} layers have been irradiated with 700-MeV Bi ions with doses of (3-10) Multiplication-Sign 10{sup 12} cm{sup -2}. It is found that, even after a dose of 3 Multiplication-Sign 10{sup 12} cm{sup -2}, a photoluminescence band in the region of 600 nm appears. Its intensity levels off at a dose of {approx}5 Multiplication-Sign 10{sup 12} cm{sup -2}. The nature of the emission centers is studied by the methods of infrared transmission, Raman scattering, X-ray photoelectron spectroscopy, ellipsometry, and the reaction to passivating low-temperature anneals. It is established that irradiation brings about a decrease in the number of Si-O bonds with a relevant increase in the Si-Si bonds. It is assumed that the photoluminescence is caused by nanostructures containing an excess Si and/or having a deficit of O. The reaction of reduction of SiO{sub 2} proceeds in ion tracks due to high levels of ionization and heating within these tracks. The dose dependence is used to estimate the diameter of a track at 8-9 nm.

  14. Formation of light-emitting nanostructures in layers of stoichiometric SiO2 irradiated with swift heavy ions

    International Nuclear Information System (INIS)

    Kachurin, G. A.; Cherkova, S. G.; Skuratov, V. A.; Marin, D. V.; Kesler, V. G.; Volodin, V. A.

    2011-01-01

    Thermally grown SiO 2 layers have been irradiated with 700-MeV Bi ions with doses of (3–10) × 10 12 cm −2 . It is found that, even after a dose of 3 × 10 12 cm −2 , a photoluminescence band in the region of 600 nm appears. Its intensity levels off at a dose of ∼5 × 10 12 cm −2 . The nature of the emission centers is studied by the methods of infrared transmission, Raman scattering, X-ray photoelectron spectroscopy, ellipsometry, and the reaction to passivating low-temperature anneals. It is established that irradiation brings about a decrease in the number of Si-O bonds with a relevant increase in the Si-Si bonds. It is assumed that the photoluminescence is caused by nanostructures containing an excess Si and/or having a deficit of O. The reaction of reduction of SiO 2 proceeds in ion tracks due to high levels of ionization and heating within these tracks. The dose dependence is used to estimate the diameter of a track at 8–9 nm.

  15. Present and future development at Ganil

    International Nuclear Information System (INIS)

    Ferme, J.

    1988-01-01

    GANIL has been in operation since January 1983. During this period beams from Carbon to Xenon have been available continuously for physics. There is now a demand to extend the ion range up to uranium, and to increase the beam intensity above the present level of about 3 microamperes with light ions. The corresponding modifications of the machine have been studied and will be made in the near future. Progress in ion sources, beam diagnostics, computer control is reported. Speculative considerations on the distant future are discussed

  16. Recyclable UV and visible light photocatalytically active amorphous TiO2 doped with M (III) ions (M = Cr and Fe)

    International Nuclear Information System (INIS)

    Buddee, Supat; Wongnawa, Sumpun; Sirimahachai, Uraiwan; Puetpaibool, Walailak

    2011-01-01

    Research highlights: → The low photocatalytic activity of amorphous TiO2 was enhanced by doping with Cr(III) or Fe(III) ions. → The doped catalysts performed close to P25 under UV light and better with visible light. → The doped catalysts can be recycled. - Abstract: Samples of amorphous TiO 2 doped with Cr(III) and Fe(III), designated as Cr-TiO 2 and Fe-TiO 2 , were prepared via modified impregnation method. The resulting products were characterized by X-ray diffraction, scanning electron microscopy, specific surface area by the Brunauer, Emmett and Teller method, UV-vis absorption and diffuse reflectance spectroscopy, and electron spin resonance spectroscopy. Experimental results revealed that the concentrations of dopants under studied, from 0.05 to 0.2 mol%, had no effect on the phase of products. The band gap energies shifted from 3.28 eV in the undoped amorphous TiO 2 to 2.50 eV and 2.86 eV for Fe-TiO 2 and Cr-TiO 2 , respectively. The doped amorphous TiO 2 showed photocatalytic activities under both UV and visible light with optimal results at 0.1 mol% dopants. Under UV irradiation, the 0.1 mol% doped samples decolorized methylene blue solutions to the same extent as the commercial TiO 2 samples (P25 and anatase) in 5 h. Under visible light, the doped samples decolorized dye solutions in 12 h while the commercial ones were much less active. The used catalysts can be recycled many times without any special treatment.

  17. Analysis of the dependence parametrization of the allocations of heavy ions on light nuclei elastic scattering diffraction maxima from the projectile energy

    Directory of Open Access Journals (Sweden)

    O. A. Ponkratenko

    2015-10-01

    Full Text Available Diffraction range of available experimental differential cross sections of heavy ions on light nuclei elastic scattering for 17 pairs of the interacting nuclei with 4 ≤ А ≤ 20 have been analyzed in the projectile energy wide interval from 1 to 100 МеV/nucleon. Diffraction maxima and minima positions in the transferred momentum coordinates depending on projectile energy demonstrate smooth behavior at energies higher 2 - 4 МeV/nucleon, and practically do not depend on energy at energies up to 30 - 40 МеV/nucleon. These energy dependences of maxima (minima positions can be parameterized by simple functions. It was found the suitable approximations that describe reasonably the energy dependence of the maxima (minima positions of the experimental elastic scattering differential cross sections. These approximations were evaluated with the same parameters for all colliding nuclei groups.

  18. Analysis of the dependence parametrization of the allocations of heavy ions on light nuclei elastic scattering diffraction maxima from the projectile energy

    International Nuclear Information System (INIS)

    Ponkratenko, O.A.; Pyirnak, Val. M.; Rudchik, A.A.; Stepanenko, Yu.M.; Uleshchenko, V.V.; Shirma, Yu.O.

    2015-01-01

    Diffraction range of available experimental differential cross sections of heavy ions on light nuclei elastic scattering for the interactive nuclei 17 pairs with 4 ≤ A ≤ 20 have been analyzed in the projectile energy wide interval from 1 to 100 MeV/nucleon. Diffraction maxima and minima positions in the transferred momentum coordinates depending on projectile energy demonstrate smooth behavior at energies higher 2 - 4 MeV/nucleon and at energies to 30 - 40 MeV/nucleon - practically does not depend on energy. These energy dependences of maxima (minima) position. can be parameterized by simple functions. It was found the suitable approximations that describe reasonable the energy dependence of the maxima (minima) positions of the experimental elastic scattering differential cross sections. These approximations were evaluated with the same parameters for all colliding nuclei groups

  19. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  20. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  1. Cancer therapy with ions

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1993-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (Carbon, Oxygen, Neon) has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. The rationale for this new radiotherapy, the accelerators and the beam delivery systems needed are presented in this paper. (orig.)

  2. Presenting a new kinetic model for methanol to light olefins reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson mechanism

    Science.gov (United States)

    Javad Azarhoosh, Mohammad; Halladj, Rouein; Askari, Sima

    2017-10-01

    In this study, a new kinetic model for methanol to light olefins (MTO) reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism was presented and the kinetic parameters was obtained using a genetic algorithm (GA) and genetic programming (GP). Several kinetic models for the MTO reactions have been presented. However, due to the complexity of the reactions, most reactions are considered lumped and elementary, which cannot be deemed a completely accurate kinetic model of the process. Therefore, in this study, the LHHW mechanism is presented as kinetic models of MTO reactions. Because of the non-linearity of the kinetic models and existence of many local optimal points, evolutionary algorithms (GA and GP) are used in this study to estimate the kinetic parameters in the rate equations. Via the simultaneous connection of the code related to modelling the reactor and the GA and GP codes in the MATLAB R2013a software, optimization of the kinetic models parameters was performed such that the least difference between the results from the kinetic models and experiential results was obtained and the best kinetic parameters of MTO process reactions were achieved. A comparison of the results from the model with experiential results showed that the present model possesses good accuracy.

  3. Impact parameter dependence of the specific entropy and the light particle yield in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gudima, K.K.; Toneev, V.D.

    1986-01-01

    The connection between the fragment yield and the associated specific entropy of particles produced in the course of a relativistic heavy ion collision is studied within the cascade approach. The essential impact parameter dependence of the fragment yield indicates that the specific entropy increases with impact parameter and that the critical density of the system decay is the larger the more central the collision process is. The results show that the thermodynamical equilibrium limit for the entropy production is not reached for such heavy systems as Nb+Nb at 400 MeV/nucleon and that the finite size effects and the dynamical freeze-out process are dominant factors in determining the cluster yield

  4. Analytic theory of the spherical electron to ion convertor

    International Nuclear Information System (INIS)

    Verdeyen, J.T.; Miller, P.A.

    1980-01-01

    Calculations will be presented which indicate that one could, with high efficiency, convert the electron beam energy transported from many pinched diode to ions at a reasonably sized evacuated spherical shell - or a light bulb

  5. The effect of composition on the formation of light-emitting Si nanostructures in SiO{sub x} layers on irradiation with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kachurin, G. A., E-mail: kachurin@isp.nsc.ru; Cherkova, S. G.; Marin, D. V.; Kesler, V. G. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Skuratov, V. A. [Joint Institute for Nuclear Research (Russian Federation); Cherkov, A. G. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2011-03-15

    The SiO{sub x} layers different in composition (0 < x < 2) are irradiated with Xe ions with the energy 167 MeV and the dose 10{sup 14} cm{sup -2} to stimulate the formation of light-emitting Si nanostructures. The irradiation gives rise to a photoluminescence band with the parameters dependent on x. As the Si content is increased, the photoluminescence is first enhanced, with the peak remaining arranged near the wavelength {lambda} Almost-Equal-To 600 nm, and then the peak shifts to {lambda} Almost-Equal-To 800 nm. It is concluded that the emission sources are quantum-confined nanoprecipitates formed by disproportionation of SiO{sub x} in ion tracks due to profound ionization losses. Changes in the photoluminescence spectrum with increasing x are attributed firstly to the increase in the probability of formation of nanoprecipitates and then to the increase in their dimensions; the latter effect is accompanied with a shift of the emission band to longer wavelengths. The subsequent quenching of photoluminescence is interpreted as a result of the removal of quantum confinement in nanoprecipitates and their coagulation.

  6. Electron and ion angular distributions in resonant dissociative photoionization of H{sub 2} and D{sub 2} using linearly polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Jorge; MartIn, Fernando [Departamento de Quimica C-9, Universidad Autonoma de Madrid, 28049 Madrid (Spain)], E-mail: fernando.martin@uam.es

    2009-04-15

    We have evaluated fully differential electron angular distributions in H{sub 2} and D{sub 2} dissociative photoionization by using linearly polarized light of 20, 27 and 33 eV. At 20 eV, the distributions exhibit simple p-wave patterns, which is the signature of direct ionization through the X{sup 2}{sigma}{sub g}{sup +}(1s{sigma}{sub g}) channel. At 27 eV, where the Q{sub 1} autoionizing states are populated, we observe a similar pattern, except when the molecule is oriented perpendicularly to the polarization direction and the energy of the ejected electron is small. In contrast, at 33 eV, autoionization from the Q{sub 1} and Q{sub 2} states leads to interferences between the X{sup 2}{sigma}{sub g}{sup +}(1s{sigma}{sub g}) and {sup 2}{sigma}{sub u}{sup +}(2p{sigma}{sub u}) ionization channels that result in a strong asymmetry of the electron angular distributions along the molecular axis. This asymmetry changes rapidly with the energy of the ejected electron. Electron angular distributions integrated over all possible molecular orientations or ion angular distributions integrated over electron emission angle show no reminiscence of the above phenomena, but the corresponding asymmetry parameters dramatically change with electron and ion energies in the region of autoionizing states.

  7. Range-energy relation, range straggling and response function of CsI(Tl), BGO and GSO(Ce) scintillators for light ions

    CERN Document Server

    Avdeichikov, V; Jakobsson, B; Rodin, A M; Ter-Akopian, G M

    2000-01-01

    Range-energy relations and range straggling of sup 1 sup , sup 2 sup , sup 3 H and sup 4 sup , sup 6 He isotopes with the energy approx 50A MeV are measured for the CsI(Tl), BGO and GSO(Ce) scintillators with an accuracy better than 0.2% and 5%, respectively. The Si-Sci/PD telescope was exposed to secondary beams from the mass separator ACCULINNA. The experimental technique is based on the registration of the 'jump' in the amplitude of the photodiode signal for ions passing through the scintillation crystal. Light response of the scintillators for ions 1<=Z<=4 is measured in energy range (5-50)A MeV, the results are in good agreement with calculations based on Birks model. The energy loss straggling for particles with DELTA E/E=0.01-0.50 and mass up to A=10 in 286 mu m DELTA E silicon detector is studied and compared with theoretical prescriptions. The results allow a precise absolute calibration of the scintillation crystal and to optimize the particle identification by the DELTA E-E(Sci/PD) method.

  8. Mapping whole-brain activity with cellular resolution by light-sheet microscopy and high-throughput image analysis (Conference Presentation)

    Science.gov (United States)

    Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.

    2016-03-01

    Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.

  9. Tight control of light trapping in surface addressable photonic crystal membranes: application to spectrally and spatially selective optical devices (Conference Presentation)

    Science.gov (United States)

    Letartre, Xavier; Blanchard, Cédric; Grillet, Christian; Jamois, Cécile; Leclercq, Jean-Louis; Viktorovitch, Pierre

    2016-04-01

    Surface addressable Photonic Crystal Membranes (PCM) are 1D or 2D photonic crystals formed in a slab waveguides where Bloch modes located above the light line are exploited. These modes are responsible for resonances in the reflection spectrum whose bandwidth can be adjusted at will. These resonances result from the coupling between a guided mode of the membrane and a free-space mode through the pattern of the photonic crystal. If broadband, these structures represent an ideal mirror to form compact vertical microcavity with 3D confinement of photons and polarization selectivity. Among numerous devices, low threshold VCSELs with remarkable and tunable modal properties have been demonstrated. Narrow band PCMs (or high Q resonators) have also been extensively used for surface addressable optoelectronic devices where an active material is embedded into the membrane, leading to the demonstration of low threshold surface emitting lasers, nonlinear bistables, optical traps... In this presentation, we will describe the main physical rules which govern the lifetime of photons in these resonant modes. More specifically, it will be emphasized that the Q factor of the PCM is determined, to the first order, by the integral overlap between the electromagnetic field distributions of the guided and free space modes and of the dielectric periodic perturbation which is applied to the homogeneous membrane to get the photonic crystal. It turns out that the symmetries of these distributions are of prime importance for the strength of the resonance. It will be shown that, by molding in-plane or vertical symmetries of Bloch modes, spectrally and spatially selective light absorbers or emitters can be designed. First proof of concept devices will be also presented.

  10. Tuning of the optical properties of In-rich In{sub x}Ga{sub 1−x}N (x=0.82−0.49) alloys by light-ion irradiation at low energy

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, Marta; Polimeni, Antonio; Capizzi, Mario [Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma (Italy); Pettinari, Giorgio [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Ciatto, Gianluca; Fonda, Emiliano [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif sur Yvette Cedex (France); Amidani, Lucia; Boscherini, Federico [Department of Physics and CNISM, University of Bologna, V. le C. Berti Pichat 6/2, 40127 Bologna (Italy); Filippone, Francesco; Bonapasta, Aldo Amore [CNR-Istituto di Struttura della Materia (ISM), Via Salaria Km 29.5, CP 10, I-00016 Monterotondo Stazione (Italy); Knübel, Andreas; Cimalla, Volker; Ambacher, Oliver [Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg (Germany); Giubertoni, Damiano; Bersani, Massimo [CMM - Fondazione Bruno Kessler, Trieste, via Sommarive 18, 38100, Povo Trento (Italy)

    2013-12-04

    The effects of low-energy irradiation by light ions (H and He) on the properties of In-rich In{sub x}Ga{sub 1−x}N alloys are investigated by optical and structural techniques. H-irradiation gives rise to a remarkable blue-shift of light emission and absorption edge energies. X-ray absorption measurements and first-principle calculations address the microscopic origin of these effects.

  11. Tuning of the optical properties of In-rich InxGa1−xN (x=0.82−0.49) alloys by light-ion irradiation at low energy

    International Nuclear Information System (INIS)

    De Luca, Marta; Polimeni, Antonio; Capizzi, Mario; Pettinari, Giorgio; Ciatto, Gianluca; Fonda, Emiliano; Amidani, Lucia; Boscherini, Federico; Filippone, Francesco; Bonapasta, Aldo Amore; Knübel, Andreas; Cimalla, Volker; Ambacher, Oliver; Giubertoni, Damiano; Bersani, Massimo

    2013-01-01

    The effects of low-energy irradiation by light ions (H and He) on the properties of In-rich In x Ga 1−x N alloys are investigated by optical and structural techniques. H-irradiation gives rise to a remarkable blue-shift of light emission and absorption edge energies. X-ray absorption measurements and first-principle calculations address the microscopic origin of these effects

  12. Study of the out-of-plane emission of protons and light fragments in symmetric heavy-ion collisions

    International Nuclear Information System (INIS)

    Brill, D.; Beckerle, P.; Bormann, C.; Schwab, E.; Shin, Y.; Stock, R.; Stroebele, H.; Baltes, P.; Muentz, C.; Oeschler, H.; Sturm, C.; Wagner, A.; Barth, R.; Cieslak, M.; Debowski, M.; Grosse, E.; Koczon, P.; Mang, M.; Miskowiec, D.; Schicker, R.; Senger, P.; Kohlmeyer, B.; Puehlhofer, F.; Speer, J.; Voelkel, K.; Walus, W.

    1996-01-01

    Midrapidity protons from 209 Bi+ 209 Bi collisions were measured with the Kaon Spectrometer at SIS at incident energies of E Lab /A=400, 700 and 1000 MeV. Additionally, light fragments were analysed at 400 MeV. We have investigated the azimuthal emission pattern of the particles relative to the reaction plane as function of transverse momentum, bombarding energy and impact parameter. We observe an enhanced emission of particles perpendicular to the reaction plane at all bombarding energies. The ratio of the number of particles emitted out-of-plane/in-plane increases strongly with the particles transverse momentum. The anisotropy decreases with increasing beam energy. Composite particles show a much stronger effect than protons. (orig.)

  13. Electron loss from hydrogen-like highly charged ions in collisions with electrons, protons and light atoms

    Science.gov (United States)

    Lyashchenko, K. N.; Andreev, O. Yu; Voitkiv, A. B.

    2018-03-01

    We consider electron loss from a hydrogen-like highly charged ion (HCI) in relativistic collisions with hydrogen and helium in the range of impact velocities v min ≤ v ≤ v max (v min and v max correspond to the threshold energy ε th for electron loss in collisions with a free electron and to ≈5 ε th, respectively) where any reliable data for loss cross sections are absent. In this range, where the loss process is characterized by large momentum transfers, we express it in terms of electron loss in collisions with equivelocity protons and electrons and explore by performing a detailed comparative study of these subprocesses. Our results, in particular, show that: (i) compared to equivelocity electrons protons are more effective in inducing electron loss, (ii) the relative effectiveness of electron projectiles grows with increase in the atomic number of a HCI, (iii) collisions with protons and electrons lead to a qualitatively different population of the final-state-electron momentum space and even when the total loss cross sections in these collisions become already equal the spectra of the outgoing electrons still remain quite different in almost the entire volume of the final-state-electron momentum space, (iv) in collisions with hydrogen and helium the contributions to the loss process from the interactions with the nucleus and the electron(s) of the atom could be rather well separated in a substantial part of the final-state-electron momentum space.

  14. Potential problems associated with ion-exchange resins used in the decontamination of light-water reactor systems

    International Nuclear Information System (INIS)

    Soo, P.; Adams, J.W.; Kempf, C.R.

    1987-01-01

    During a typical decontamination event, ion-exchange resin beds are used to remove corrosion products (radioactive and nonradioactive) and excess decontamination reagents from waste streams. The spent resins may be solidified in a binder, such as cement, or sealed in a high-integrity container (HIC) in order to meet waste stability requirements specified by the Nuclear Regulatory Commission. Lack of stability of low-level waste in a shallow land burial trench may lead to trench subsidence, enhanced water infiltration and waste leaching, which would result in accelerated transport of radionuclides and the complexing agents used for decontamination. The current program is directed at investigating safety problems associated with the handling, solidification and containerization of decontamination resin wastes. The three tasks currently underway include freeze-thaw cycling of cementitious and vinyl ester-styrene forms to determine if mechanical integrity is compromised, a study of the corrosion of container materials by spent decontamination waste resins, and investigations of resin degradation mechanisms

  15. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus.

    Science.gov (United States)

    Kajimoto, Kousuke; Kikukawa, Takashi; Nakashima, Hiroki; Yamaryo, Haruki; Saito, Yuta; Fujisawa, Tomotsumi; Demura, Makoto; Unno, Masashi

    2017-05-04

    Sodium-ion-pump rhodopsin (NaR) is a microbial rhodopsin that transports Na + during its photocycle. Here we explore the photocycle mechanism of NaR from Indibacter alkaliphilus with transient absorption and transient resonance Raman spectroscopy. The transient absorption data indicate that the photocycle of NaR is K (545 nm) → L (490 nm)/M (420 nm) → O 1 (590 nm) → O 2 (560 nm) → NaR, where the L and M are formed as equilibrium states. The presence of K, L, M, and O intermediates was confirmed by the resonance Raman spectra with 442 and 532 nm excitation. The main component of the transient resonance Raman spectra was due to L which contains a 13-cis retinal protonated Schiff base. The presence of an enhanced hydrogen out-of-plane band as well as its sensitivity to the H/D exchange indicate that the retinal chromophore is distorted near the Schiff base region in L. Moreover, the retinal Schiff base of the L state forms a hydrogen bond that is stronger than that of the dark state. These observations are consistent with a Na + pumping mechanism that involves a proton transfer from the retinal Schiff base to a key aspartate residue (Asp116 in Krokinobacter eikastus rhodopsin 2) in the L/M states.

  16. SU-F-T-124: Radiation Biological Equivalent Presentations OfLEM-1 and MKM Approaches in the Carbon-Ion Radiotherapy

    International Nuclear Information System (INIS)

    Hsi, W; Jiang, G; Sheng, Y

    2016-01-01

    Purpose: To study the correlations of the radiation biological equivalent doses (BED) along depth and lateral distance between LEM-1 and MKM approaches. Methods: In NIRS-MKM (Microdosimetric Kinetic Model) approach, the prescribed BED, referred as C-Eq, doses aims to present the relative biological effectiveness (RBE) for different energies of carbon-ions on a fixed 10% survival value of HCG cell with respect to convention X-ray. Instead of a fixed 10% survival, the BED doses of LEM-1 (Local Effect Model) approach, referred as X-Eq, aims to present the RBE over the whole survival curve of chordoma-like cell with alpha/beta ratio of 2.0. The relationship of physical doses as a function of C-Eq and X-Eq doses were investigated along depth and lateral distance for various sizes of cubic targets in water irradiated by carbon-ions. Results: At the center of each cubic target, the trends between physical and C-Eq or X-Eq doses can be described by a linear and 2nd order polynomial functions, respectively. Using fit functions can then calculate a scaling factor between C-Eq and X-Eq doses to have similar physical doses. With equalized C-Eq and X-Eq doses at the depth of target center, over- and under-estimated X-Eq to C-Eq are seen for depths before and after the target center, respectively. Near the distal edge along depth, sharp rising of RBE value is observed for X-Eq, but sharp dropping of RBE value is observed for C-Eq. For lateral locations near and just outside 50% dose level, sharp raising of RBE value is also seen for X-Eq, while only minor increasing with fast dropping for C-Eq. Conclusion: An analytical function to model the differences between the CEq and X-Eq doses along depth and lateral distance need to further investigated to explain varied clinic outcome of specific cancers using two different approaches to calculated BED doses.

  17. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  18. Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2010-07-27

    Silicon is an attractive alloy-type anode material because of its highest known capacity (4200 mAh/g). However, lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Si nanostructures such as nanowires, which are chemically and electrically bonded to the current collector, can overcome the pulverization problem, however, the heavy metal current collectors in these systems are larger in weight than Si active material. Herein we report a novel anode structure free of heavy metal current collectors by integrating a flexible, conductive carbon nanotube (CNT) network into a Si anode. The composite film is free-standing and has a structure similar to the steel bar reinforced concrete, where the infiltrated CNT network functions as both mechanical support and electrical conductor and Si as a high capacity anode material for Li-ion battery. Such free-standing film has a low sheet resistance of ∼30 Ohm/sq. It shows a high specific charge storage capacity (∼2000 mAh/g) and a good cycling life, superior to pure sputtered-on silicon films with similar thicknesses. Scanning electron micrographs show that Si is still connected by the CNT network even when small breaking or cracks appear in the film after cycling. The film can also "ripple up" to release the strain of a large volume change during lithium intercalation. The conductive composite film can function as both anode active material and current collector. It offers ∼10 times improvement in specific capacity compared with widely used graphite/copper anode sheets. © 2010 American Chemical Society.

  19. Search for a double-collision mechanism as a possible interpretation for ionization by low-energy light-ion impact

    International Nuclear Information System (INIS)

    Avaldi, L.; Magno, C.; Milazzo, M.; Rota, A.

    1981-01-01

    In a previous work the authors proposed, in the frame of the binary-encounter approximation (BEA) of the inner-shell atomic ionization by ion bombardment, a correction to the ion energy in order to account for the Coulomb repulsion by the atomic nucleus. Such corrected cross-section values numerically coincide with those of the PWBA model, but, as a consequence of the correction, they obtain a much higher-energy ionization threshold than the binding energy, which has no experimental evidence. In the present work it is shown that ionization below such a threshold can be explained by a double-collision mechanism which involves intermediate electron states and can directly be derived from the impulsive nature of the binary-collision model. Calculations have been performed by supposing a statistical independence between these two collisions. Relativistic corrections have not been taken into account. A remarkable agreement is obtained between the curves corresponding to single- and double-collision classical processes, since they match at the bombarding threshold ion energy. (author)

  20. Adsorption of Pb(II) ions present in aqueous solution on the oxy hydroxides: boehmite (γ-AIOOH), goethite (α-FeOOH) and manganite (γ-MnOOH); Adsorcion de iones Pb(II) presentes en solucion acuosa sobre los oxihidroxidos: boehmita (γ-AlOOH), goetita (α-FeOOH) y manganita (γ-MnOOH)

    Energy Technology Data Exchange (ETDEWEB)

    Arreola L, J. E.

    2013-07-01

    Boehmite, goethite and manganite were synthesized by different methods and characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric study , N{sub 2} physisorption measurements, scanning electron microscopy (Sem), semiquantitative elemental analysis (EDS), as well as additional studies were determined the surface active sites concentration and zero point of charge. Furthermore, we studied the Pb(II) ion adsorption capacity present in aqueous solution on these synthesized materials by batch-type experiments at room temperature, as a function of contact time between the phases liquid-solid system (adsorption kinetics), initial concentration of the adsorbate (adsorption isotherms), ph and temperature. The adsorption equilibrium time of adsorption processes in these studied systems was found at 60 minutes for boehmite and 30 minutes for goethite and manganite respectively after contacting the solid-liquid phase systems. The adsorption capacity of the lead ions on these adsorbent materials depended of lead concentration, ph and temperature of the systems. Were evaluated lead adsorption capacities in these materials to different contact times using an initial concentration of 20 mg/L of Pb(II) ions at ph = 4, the results of three systems were adjusted to second pseudo kinetic model order. With respect to the study of the adsorbate concentration effect, boehmite-Pb(II) and goethite-Pb(II) systems were adjusted to Langmuir isotherm model which proposes that the adsorption is carried out in a monolayer, moreover manganite-Pb(II) system was adjusted Temp kin isotherm model, which assumes that the adsorption heat of all the molecules in the layer decreases linearly with coverage due to adsorbent-adsorbate interactions and adsorption is characterized by a uniform distribution of the binding energies. Were studied the ph effect of Pb(II) ions solution on the adsorption capacity of such adsorbents, it was found that as the ph increases lead

  1. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  2. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  3. WOW: light print, light propel, light point

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew Rafael; Aabo, Thomas

    2012-01-01

    anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light...... propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation...

  4. Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [Laboratory of Advanced Materials, Fudan University, Shanghai 200438 (China); Chen, Qiuhang; Zhang, Wanlu; Mei, Shiliang; He, Liangjie; Zhu, Jiatao [Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Institute for Electric Light Sources, Fudan University, Shanghai 200433 (China); Chen, Guoping [School of Information Science and Technology, Fudan University, Shanghai 200433 (China); Guo, Ruiqian, E-mail: rqguo@fudan.edu.cn [Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Institute for Electric Light Sources, Fudan University, Shanghai 200433 (China)

    2015-10-01

    Highlights: • ZnSe-based QDs were formed via a microwave-assisted aqueous approach. • The stabilizer, ZnS coats and UV irradiation played a role in the PL enhancement. • Tunable white-light-emitting Mn:ZnSe QDs and Cu,Mn:ZnSe/ZnS QDs were synthesized. • The formation mechanism of Cu,Mn:ZnSe QDs was clarified. • The corresponding CIE color coordinates of different PL spectra were obtained. - Abstract: Synthesis of bright white-light emitting Mn and Cu co-doped ZnSe/ZnS core/shell quantum dots (QDs) (Cu,Mn:ZnSe/ZnS) was reported. Water-soluble ZnSe-based QDs with Mn and Cu doping were prepared using a versatile hot-injection method in aqueous solution with a microwave-assisted approach. Influence of the Se/S ratio, stabilizer, refluxing time and the concentration of Cu/Mn dopant ions on the particle size and photoluminescence (PL) were investigated. The as-prepared QDs in the different stages of growth were characterized by X-ray powder diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), UV–visible (UV–vis) spectrophotometer, and fluorescence spectrophotometer. It is found that these ZnSe-based QDs synthesized under mild conditions exhibit emission in the range of 390–585 nm. The PL quantum yield (QY) of the as-prepared water-soluble ZnSe QDs can be up to 24.3% after the UV-irradiation treatment. The band-gap emission of ZnSe is effectively restrained through Mn and Cu doping. The refluxing time influences the doping of not only Mn, but also Cu, which leads to the best refluxing time of Mn:ZnSe and the red-shift of the emission of Cu:ZnSe d-dots. Co-doping induced white-light emission (WLE) from Cu,Mn:ZnSe/ZnS core/shell QDs were obtained, which can offer the opportunity for future-generation white-light emitting diodes (LEDs)

  5. WE-H-BRA-09: Application of a Modified Microdosimetric-Kinetic Model to Analyze Relative Biological Effectiveness of Ions Relevant to Light Ion Therapy Using the Particle Heavy Ion Transport System

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, M [Yale-New Haven Hospital, New Haven, CT (United States); Palmer, T [Oregon State University, Corvallis, OR (United States)

    2016-06-15

    Purpose: To evaluate the dose and biological effectiveness of various ions that could potentially be used for actively scanned particle therapy. Methods: The PHITS Monte Carlo code paired with a microscopic analytical function was used to determine probability distribution functions of the lineal energy in 0.3µm diameter spheres throughout a water phantom. Twenty million primary particles for 1H beams and ten million particles for 4He, 7Li, 10B, 12C, 14N, 16O, and 20Ne were simulated for 0.6cm diameter pencil beams. Beam energies corresponding to Bragg peak depths of 50, 100, 150, 200, 250, and 300mm were used and evaluated transversely every millimeter and radially in annuli with outer radius of 1.0, 2.0, 3.0, 3.2, 3.4, 3.6, 4.0, 5.0, 10.0, 15.0, 20.0 and 25.0mm. The acquired probability distributions were reduced to dose-mean lineal energies and applied to the modified microdosimetric kinetic model for five different cell types to calculate relative biological effectiveness (RBE) compared to 60Co beams at the 10% survival threshold. The product of the calculated RBEs and the simulated physical dose was taken to create biological dose and comparisons were then made between the various ions. Results: Transversely, the 10B beam was seen to minimize relative biological dose in both the constant and accelerated dose change regions, proximal to the Bragg Peak, for all beams traveling greater than 50mm. For the 50mm beam, 7Li was seen to provide the most optimal biological dose profile. Radially small fluctuations (<4.2%) were seen in RBE while physical dose was greater than 1% for all beams. Conclusion: Even with the growing usage of 12C, it may not be the most optimal ion in all clinical situations. Boron was calculated to have slightly enhanced RBE characteristics, leading to lower relative biological doses.

  6. The effect of composition on the formation of light-emitting Si nanostructures in SiOx layers on irradiation with swift heavy ions

    International Nuclear Information System (INIS)

    Kachurin, G. A.; Cherkova, S. G.; Marin, D. V.; Kesler, V. G.; Skuratov, V. A.; Cherkov, A. G.

    2011-01-01

    The SiO x layers different in composition (0 14 cm −2 to stimulate the formation of light-emitting Si nanostructures. The irradiation gives rise to a photoluminescence band with the parameters dependent on x. As the Si content is increased, the photoluminescence is first enhanced, with the peak remaining arranged near the wavelength λ ≈ 600 nm, and then the peak shifts to λ ≈ 800 nm. It is concluded that the emission sources are quantum-confined nanoprecipitates formed by disproportionation of SiO x in ion tracks due to profound ionization losses. Changes in the photoluminescence spectrum with increasing x are attributed firstly to the increase in the probability of formation of nanoprecipitates and then to the increase in their dimensions; the latter effect is accompanied with a shift of the emission band to longer wavelengths. The subsequent quenching of photoluminescence is interpreted as a result of the removal of quantum confinement in nanoprecipitates and their coagulation.

  7. Charge and angular distributions as well as sequential decay and γ-ray emission in heavy ion collisions viewed in the light of the diffusion model

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1977-08-01

    The hierarchy of the collective relaxation times in heavy ion reactions is briefly reviewed. An improved diffusion model is introduced and applied to interpret the fragment Z and angular distributions for some typical reactions. The equilibrium in the neutron-to-proton ratio as well as the sharing of the excitation energy between fragments is studied by a coincidence method which leads to the measurement of the charge, mass and mean number of nucleons emitted by each fragment. The final destiny of the dissipative energy is determined by measuring the atomic number of two coincident fragments, thus obtaining the missing charge as a function of bombarding energy and the Q of the reaction. The sequential fission probability of the heavy recoil is established as a function of the Z and kinetic energy of the light partner. The out-of-plane angular distribution of the fission fragments is correlated with the fissionability and interpreted in terms of various sources of angular momentum misalignment. The γ-ray multiplicities and the γ-ray angular distributions associated with deep inelastic event are discussed in terms of the angular momentum transfer and in terms of the diffusion model

  8. ITO films realized at room-temperature by ion beam sputtering for high-performance flexible organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, B.; Rammal, W.; Moliton, A. [Limoges Univ., Faculte des Sciences et Techniques, CNRS, UMR 6172, Institut de Recherche XLIM, Dept. MINACOM, 87 - Limoges (France)

    2006-06-15

    Indium-tin oxide (ITO) thin layers are obtained by an IBS (Ion Beam Sputtering) deposition process. We elaborated ITO films on flexible substrates of polyethylene terephthalate (PET), under soft conditions of low temperatures and fulfilling the requirements of fabrication processes of the organic optoelectronic components. With a non thermally activated (20 Celsius degrees) ITO deposition assisted by an oxygen flow (1 cm{sup 3}/min), we got an optical transmittance of 90% in the visible range, a resistivity around 10{sup -3} {omega}.cm and a surface roughness lower than 1.5 mm. Thus we realized flexible organic light-emitting diodes (FOLEDs) with good performances: a maximum luminance of 12000 cd/m{sup 2} at a voltage of 19 V and a maximum luminous power efficiency around 1 lm/W at a voltage of 10 V (or a maximum current efficiency of 4 cd/A at 14 V) for the (PET(50 {mu}m) / ITO(200 nm) / TPD(40 nm) / Alq3(60 nm) / Ca / Al) structure. (authors)

  9. Kinetic Monte Carlo simulation of the efficiency roll-off, emission color, and degradation of organic light-emitting diodes (Presentation Recording)

    Science.gov (United States)

    Coehoorn, Reinder; van Eersel, Harm; Bobbert, Peter A.; Janssen, Rene A. J.

    2015-10-01

    The performance of Organic Light Emitting Diodes (OLEDs) is determined by a complex interplay of the charge transport and excitonic processes in the active layer stack. We have developed a three-dimensional kinetic Monte Carlo (kMC) OLED simulation method which includes all these processes in an integral manner. The method employs a physically transparent mechanistic approach, and is based on measurable parameters. All processes can be followed with molecular-scale spatial resolution and with sub-nanosecond time resolution, for any layer structure and any mixture of materials. In the talk, applications to the efficiency roll-off, emission color and lifetime of white and monochrome phosphorescent OLEDs [1,2] are demonstrated, and a comparison with experimental results is given. The simulations show to which extent the triplet-polaron quenching (TPQ) and triplet-triplet-annihilation (TTA) contribute to the roll-off, and how the microscopic parameters describing these processes can be deduced properly from dedicated experiments. Degradation is treated as a result of the (accelerated) conversion of emitter molecules to non-emissive sites upon a triplet-polaron quenching (TPQ) process. The degradation rate, and hence the device lifetime, is shown to depend on the emitter concentration and on the precise type of TPQ process. Results for both single-doped and co-doped OLEDs are presented, revealing that the kMC simulations enable efficient simulation-assisted layer stack development. [1] H. van Eersel et al., Appl. Phys. Lett. 105, 143303 (2014). [2] R. Coehoorn et al., Adv. Funct. Mater. (2015), publ. online (DOI: 10.1002/adfm.201402532)

  10. Momentum transfer with light ions at energies from 70 MeV to 1000 MeV

    International Nuclear Information System (INIS)

    Saint Laurent, F.; Conjeaud, M.; Dayras, R.; Harar, S.; Oeschler, H.; Volant, C.

    1982-01-01

    Angular correlations of fission fragments induced by bombarding a 232 Th target with protons, deuterons and alpha particles of energies from 70 MeV to 1000 MeV have been measured. They give information about the forward momentum imparted to the fissioning nuclei. We present the average values of the transferred linear momentum ([p vertical stroke vertical stroke ]) as a function of the incident energy and propose a classification into three regimes of dominating processes leading to fission: (I) low-energy behaviour, for E/A less than 10 MeV/u [p vertical stroke vertical stroke ]/psub(i) approx. equal to 1. (II) Between 10 MeV/u and about 70 MeV/u, [p vertical stroke vertical stroke ]/psub(i) decreases progressively down to 0.5 but remains proportional to the projectile mass. (III) The region between 70 MeV/u and about 1000 MeV/u corresponds to a transition region where the projectiles, whatever their masses, tend to transfer the same momentum. (orig.)

  11. Energy spectra of gold and silver ions jointly expanding in multielement laser plasma

    International Nuclear Information System (INIS)

    Bedilov, M.R.; Kuramatov, D.; Tsoj, T.G.; Kholbaev, A.; Khaitbaev, K.

    1986-01-01

    The results of the investigations on energy distribution of Au and Ag ions jointly expanding in multielement paser plasma are presented. It is denonstrated, that on the stages of formation and expanding of multielement plasma multucharged ions considerable contribution is made by collision processes between electrons and ions and between ions of light and heavy elements. The results are discussed on the basis of existing theoretical models

  12. Charged particle activation analysis: present status and future perspectives

    International Nuclear Information System (INIS)

    Chowdhury, D.P.

    2006-01-01

    Charged particle activation analysis is a highly sensitive nuclear analytical technique for the determination of elements at trace and ultra trace levels. CPAA involves the irradiation of samples with high energy charged particles, both light ions and heavy ions, from an accelerator in the energy range of 10 to 100 MeV. CPAA has been developed and standardized for the determination of several elements at trace levels in various types of materials using high energy ion beams from VEC machine at Kolkata. A brief review on CPAA is presented here based on our present works and its applications in future. (author)

  13. The lighting of residential yards. Paper presented at the 19th Session of the Commission Internationale de l'Eclairage (CIE), Kyoto, Japan, 1979.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1979-01-01

    The "woonerf" is conceived in order to enhance the amenity in residential districts. It is put into effect by a series of legal measures, road construction and traffic management measures, planning measures and social measures. The quality requirements for the public lighting include apart of

  14. Ion-ion collisions and ion storage rings

    International Nuclear Information System (INIS)

    Mowat, J.R.

    1988-01-01

    Improved understanding of fundamental ion-ion interactions is expected to emerge from research carried out with ion storage rings. In this short survey the significant advantages and unique features that make stored ions useful targets for collision experiments are reviewed and discussed. It is pointed out that improvements to existing ion-ion experiments, as well as qualitatively new experiments, should occur over the next few years as ion storage rings become available for atomic physics. Some new experiments are suggested which are difficult if not impossible with present-day technology, but which seem feasible at storage rings facilities. (orig.)

  15. Study of Light Ion Collisions

    CERN Multimedia

    2002-01-01

    Inelastic and elastic pd, dd, p@a and @a@a interactions are studied at a nucleon-nucleon cm energy @]s^n^n = 31~GeV using the Split-Field-Magnet detector. The two forward telescopes have been upgraded by two calorimeters to tag spectator neutrons and by two MWPCs for improved detection of charged nuclear fragments. Several selective triggers are planned in addition to the minimum-bias trigger: 1) high p^t single hadron at 10|0, 20|0 and 45|0; 2) central particle production together with unfragmented projectiles; 3) nuclear break-up without particle production; 4) elastic interactions. This experiment is an extension of the @a-run in 1980; the new one will benefit from the direct comparisons of @a@a, dd, @ap and dp interactions; from expected higher integrated luminosity for @a@a interactions; the upgrading of the spectator tagging capability and the new high p^t triggers installed by R41

  16. A review of polarized ion sources

    International Nuclear Information System (INIS)

    Schmor, P.W.

    1995-06-01

    The two main types of polarized ion sources in use on accelerators today are the Atomic Beam Polarized Ion Source (ABIS) source and the Optically Pumped Polarized Ion Source (OPPIS). Both types can provide beams of nuclearly polarized light ions which are either positively or negatively charged. Heavy ion polarized ion sources for accelerators are being developed. (author). 35 refs., 1 tab

  17. Self-magnetically insulated ion diode

    International Nuclear Information System (INIS)

    VanDevender, J.; Quintenz, J.; Leeper, R.; Johnson, D.; Crow, J.

    1981-01-01

    Light ion diodes for producing 1--100 TW ion beams are required for inertial confinement fusion. The theory, numerical simulations, and experiments on a self-magnetically insulated ion diode are presented. The treatment is from the point of view of a self-magnetically insulated transmission line with an ion loss current and differs from the usual treatment of the pinched electron beam diode. The simulations show that the ratio V/IZ 0 =0.25 in such a structure with voltage V, local total current I, and local vacuum wave impedance Z 0 . The ion current density is enhanced by a factor of approximately 2 over the simple space-charge limited value. The simulation results are verified in an experiment. An analytical theory is then presented for scaling the results to produce a focused beam of protons with a power of up to 10 13 W

  18. Stopping power for heavy ions in low energy region

    International Nuclear Information System (INIS)

    Kitagawa, Mitsuo

    1983-01-01

    Review is made for the study on the power for stopping heavy ions. The studies on the power for stopping heavy ions passing through materials have been developed in the last twenty years due to the accuracy improvement in the data analysis of the power for stopping light ions, the requirement of data establishment on the power for stopping heavy ions from fusion research and the development of the experimental studies by heavy-ion accelerators. The relation between the analysis of the power for stopping heavy ions and the power for stopping light ions is described from the standpoint that the results on the power for stopping light ions serve as the guide for the study on the power for stopping heavy ions. Both at present and in future. The analysis of stopping power data with the accuracy from +-10 to 20 % is possible from the theoretical analysis of effective electric charge and its systematic table of the numerical data. The outline of the scaling rule on effective electric charge is discussed. The deviation of the experimental data from the scaling rule is discussed by comparing with the measured values of effective electric charge ratio. Various analyses of the power for stopping heavy ions are summarized. (Asami, T.)

  19. Separation and determination of carbohydrates in drinks by ion chromatography with a self-regenerating suppressor and an evaporative light-scattering detector.

    Science.gov (United States)

    Li, Jing; Chen, Meilan; Zhu, Yan

    2007-06-29

    Analysis of glucose and other carbohydrates are often performed by use of normal phase HPLC methods with acetonitrile as major eluent coupled with evaporative light-scattering detector (ELSD) or by use of anion-exchange ion chromatography (IC) methods with NaOH as eluent coupled with pulsed amperimetric electrochemical detector. In this work, a novel method for the determination of carbohydrates by IC in conjunction with a self-regenerating suppressor and an ELSD detector was investigated. Three carbohydrates (glucose, fructose, and sucrose) were separated using a KOH eluent generator to avoid the effect of carbon dioxide absorption in the alkaline eluent. Due to the use of the suppressor, non-volatile components were removed and a low salt background (K+ approximately 0.070 microg/mL) can be obtained so the suppressed eluent could directly go into an ELSD detector without obvious interference of inorganic salts. After examining the changes in retention and resolution, an optimized method was established (for IC: using 32 mM KOH as the eluent at a flow rate of 1 mL/min; for ELSD: operated at 95 degrees C, 4.0 bar nitrogen with a gas flow rate of 2.0 L/min) and the linearity, reproducibility, and the limit of detection (LOD) for the three carbohydrates were further evaluated. Regression equations revealed acceptable linearity (correlation coefficients=0.994-0.998) across the working-standard range (100-1000 microg/mL for glucose and sucrose, 150-1000 microg/mL for fructose) and LODs of glucose, fructose, and sucrose were 93, 126, and 90 microg/mL, respectively. This method has successfully been applied to the determination of the three carbohydrates in carbonated cola drinks and fruit juices. The recoveries were between 95 and 113% (n=3) for different carbohydrates.

  20. Light metal production

    Science.gov (United States)

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  1. Dynamical limitations to heavy ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    Dynamical limitations to heavy ion fusion reaction are considered. The experimental signatures and the importance of a quasi-fission process are examined. The anaular distributions of fission fragments for the 32 S+ 208 Pb and 16 O+ 238 U systems are presented. It is shown that the observations of quasi-fission for even rather ''light'' heavy ions poeess severe limitations on the fusion process. This result may consequently be responsible for the lack of success of the search for super heavy elements in heavy ion fusion reactions

  2. Light output response of EJ-309 liquid organic scintillator to 2.86-3.95 MeV carbon recoil ions due to neutron elastic and inelastic scatter

    Science.gov (United States)

    Norsworthy, Mark A.; Ruch, Marc L.; Hamel, Michael C.; Clarke, Shaun D.; Hausladen, Paul A.; Pozzi, Sara A.

    2018-03-01

    We present the first measurements of energy-dependent light output from carbon recoils in the liquid organic scintillator EJ-309. For this measurement, neutrons were produced by an associated particle deuterium-tritium generator and scattered by a volume of EJ-309 scintillator into stop detectors positioned at four fixed angles. Carbon recoils in the scintillator were isolated using triple coincidence among the associated particle detector, scatter detector, and stop detectors. The kinematics of elastic and inelastic scatter allowed data collection at eight specific carbon recoil energies between 2.86 and 3.95 MeV. We found the light output caused by carbon recoils in this energy range to be approximately 1.14% of that caused by electrons of the same energy, which is comparable to the values reported for other liquid organic scintillators. A comparison of the number of scattered neutrons at each angle to a Monte Carlo N-Particle eXtended simulation indicates that the ENDF/B-VII.1 evaluation of differential cross sections for 14.1 MeV neutrons on carbon has discrepancies with the experiment as large as 55%, whereas those reported in the JENDL-4.0u evaluation agree with experiment.

  3. Light particle probes of expansion and temperature evolution: Coalescence model analyses of heavy ion collisions at 47A MeV

    International Nuclear Information System (INIS)

    Hagel, K.; Wada, R.; Cibor, J.; Lunardon, M.; Marie, N.; Alfaro, R.; Shen, W.; Xiao, B.; Zhao, Y.; Majka, Z.

    2000-01-01

    The reactions 12 C+ 116 Sn, 22 Ne+Ag, 40 Ar+ 100 Mo, and 64 Zn+ 89 Y have been studied at 47A MeV projectile energy. For these reactions the most violent collisions lead to increasing amounts of fragment and light particle emission as the projectile mass increases. This is consistent with quantum molecular dynamics (QMD) model simulations of the collisions. Moving source fits to the light charged particle data have been used to gain a global view of the evolution of the particle emission. Comparisons of the multiplicities and spectra of light charged particles emitted in the reactions with the four different projectiles indicate a common emission mechanism for early emitted ejectiles even though the deposited excitation energies differ greatly. The spectra for such ejectiles can be characterized as emission in the nucleon-nucleon frame. Evidence that the 3 He yield is dominated by this type of emission and the role of the collision dynamics in determining the 3 H/ 3 He yield ratio are discussed. Self-consistent coalescence model analyses are applied to the light cluster yields, in an attempt to probe emitter source sizes and to follow the evolution of the temperatures and densities from the time of first particle emission to equilibration. These analyses exploit correlations between ejectile energy and emission time, suggested by the QMD calculations. In this analysis the degree of expansion of the emitting system is found to increase with increasing projectile mass. The double isotope yield ratio temperature drops as the system expands. Average densities as low as 0.36ρ 0 are reached at a time near 100 fm/c after contact. Calorimetric methods were used to derive the mass and excitation energy of the excited nuclei which are present after preequilibrium emission. The derived masses range from 102 to 116 u and the derived excitation energies increase from 2.6 to 6.9 MeV/nucleon with increasing projectile mass. A caloric curve is derived for these expanded A∼110

  4. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  5. Heavy ion measurements at ATLAS and CMS

    CERN Document Server

    Chapon, Emilien

    2018-01-01

    We present an overview of recent results from the ATLAS and CMS collaborations on heavy ion physics. Using data from proton-proton, proton-lead and lead-lead collisions at the LHC, these results help to shed light on the properties of nuclear matter.

  6. Simulation of ion-beam induced defects in cuprate superconductors

    International Nuclear Information System (INIS)

    Dineva, M.; Marksteiner, M.; Lang, W.

    2005-01-01

    Full text: Heavy-ion irradiation of cuprate superconductors is well known to produce columnar defect tracks along which magnetic vortices can be pinned. Hence, this effect has a large potential for practical applications and can enhance the critical current of the high-temperature superconducting materials. On the other hand, little work has been devoted to light-ion irradiation of the new superconductors. Our previous experimental results have indicated a systematic change of electric transport properties when irradiating YBa 2 Cu 3 O 7 (YBCO) with 75 KEXV He + ions. The purpose of the present study is the investigation of the ion-target interactions with computer simulation programs based on the binary collision approximation. The program package SRIM (Stopping and Range of Ions in Matter) is widely used to simulate the impact of energetic ions (10 eV to 2 GeV) on a solid target using a quantum mechanical treatment of ion-atom collisions under the assumption of an unstructured target material. A similar program, MARLOWE, includes the exact crystalline structure of the target and, thus, is able to calculate ion channeling effects and angle dependences. Detailed results of the penetration range of ions into YBCO, scattering cascades, creation of vacancies and interstitials, are reported for various kinds of ions. One of the central results is that light ions with energy of about 80 KEXV can penetrate through thin films of the cuprate superconductors and create point defects, mainly by oxygen displacement. (author)

  7. Ion mixing and numerical simulation of different ions produced in the ECR ion source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    This paper is to continue theoretical investigations and numerical simulations in the physics of ECR ion sources within the CERN program on heavy ion acceleration. The gas (ion) mixing effect in ECR sources is considered here. It is shown that the addition of light ions to the ECR plasma has three different mechanisms to improve highly charged ion production: the increase of confinement time and charge state of highly ions as the result of ion cooling; the concentration of highly charged ions in the central region of the source with high energy and density of electrons; the increase of electron production rate and density of plasma. The numerical simulations of lead ion production in the mixture with different light ions and different heavy and intermediate ions in the mixture with oxygen, are carried out to predict the principal ECR source possibilities for LHC applications. 18 refs., 23 refs

  8. Characterization of a multilayer ionization chamber prototype for fast verification of relative depth ionization curves and spread-out-Bragg-peaks in light ion beam therapy.

    Science.gov (United States)

    Mirandola, Alfredo; Magro, Giuseppe; Lavagno, Marco; Mairani, Andrea; Molinelli, Silvia; Russo, Stefania; Mastella, Edoardo; Vai, Alessandro; Maestri, Davide; La Rosa, Vanessa; Ciocca, Mario

    2018-05-01

    To dosimetrically characterize a multilayer ionization chamber (MLIC) prototype for quality assurance (QA) of pristine integral ionization curves (ICs) and spread-out-Bragg-peaks (SOBPs) for scanning light ion beams. QUBE (De.Tec.Tor., Torino, Italy) is a modular detector designed for QA in particle therapy (PT). Its main module is a MLIC detector, able to evaluate particle beam relative depth ionization distributions at different beam energies and modulations. The charge collecting electrodes are made of aluminum, for a nominal water equivalent thickness (WET) of ~75 mm. The detector prototype was calibrated by acquiring the signals in the initial plateau region of a pristine BP and in terms of WET. Successively, it was characterized in terms of repeatability response, linearity, short-term stability and dose rate dependence. Beam-induced measurements of activation in terms of ambient dose equivalent rate were also performed. To increase the detector coarse native spatial resolution (~2.3 mm), several consecutive acquisitions with a set of certified 0.175-mm-thick PMMA sheets (Goodfellow, Cambridge Limited, UK), placed in front of the QUBE mylar entrance window, were performed. The ICs/SOBPs were achieved as the result of the sum of the set of measurements, made up of a one-by-one PMMA layer acquisition. The newly obtained detector spatial resolution allowed the experimental measurements to be properly comparable against the reference curves acquired in water with the PTW Peakfinder. Furthermore, QUBE detector was modeled in the FLUKA Monte Carlo (MC) code following the technical design details and ICs/SOBPs were calculated. Measurements showed a high repeatability: mean relative standard deviation within ±0.5% for all channels and both particle types. Moreover, the detector response was linear with dose (R 2  > 0.998) and independent on the dose rate. The mean deviation over the channel-by-channel readout respect to the reference beam flux (100%) was equal

  9. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources

    International Nuclear Information System (INIS)

    Strueder, Lothar; Epp, Sascha; Rolles, Daniel; Hartmann, Robert; Holl, Peter; Lutz, Gerhard; Soltau, Heike; Eckart, Rouven; Reich, Christian; Heinzinger, Klaus; Thamm, Christian; Rudenko, Artem; Krasniqi, Faton; Kuehnel, Kai-Uwe; Bauer, Christian; Schroeter, Claus-Dieter; Moshammer, Robert; Techert, Simone; Miessner, Danilo; Porro, Matteo

    2010-01-01

    Fourth generation accelerator-based light sources, such as VUV and X-ray Free Electron Lasers (FEL), deliver ultra-brilliant (∼10 12 -10 13 photons per bunch) coherent radiation in femtosecond (∼10-100 fs) pulses and, thus, require novel focal plane instrumentation in order to fully exploit their unique capabilities. As an additional challenge for detection devices, existing (FLASH, Hamburg) and future FELs (LCLS, Menlo Park; SCSS, Hyogo and the European XFEL, Hamburg) cover a broad range of photon energies from the EUV to the X-ray regime with significantly different bandwidths and pulse structures reaching up to MHz micro-bunch repetition rates. Moreover, hundreds up to trillions of fragment particles, ions, electrons or scattered photons can emerge when a single light flash impinges on matter with intensities up to 10 22 W/cm 2 . In order to meet these challenges, the Max Planck Advanced Study Group (ASG) within the Center for Free Electron Laser Science (CFEL) has designed the CFEL-ASG MultiPurpose (CAMP) chamber. It is equipped with specially developed photon and charged particle detection devices dedicated to cover large solid-angles. A variety of different targets are supported, such as atomic, (aligned) molecular and cluster jets, particle injectors for bio-samples or fixed target arrangements. CAMP houses 4π solid-angle ion and electron momentum imaging spectrometers ('reaction microscope', REMI, or 'velocity map imaging', VMI) in a unique combination with novel, large-area, broadband (50 eV-25 keV), high-dynamic-range, single-photon-counting and imaging X-ray detectors based on the pnCCDs. This instrumentation allows a new class of coherent diffraction experiments in which both electron and ion emission from the target may be simultaneously monitored. This permits the investigation of dynamic processes in this new regime of ultra-intense, high-energy radiation-matter interaction. After an introduction into the salient features of the CAMP chamber and

  10. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1987-01-01

    The review concerns the effects of ion implantation that specifically relate to the optical properties of insulators. Topics which are reviewed include: ion implantation, ion range and damage distributions, colour centre production by ion implantation, high dose ion implantation, and applications for integrated optics. Numerous examples are presented of both diagnostic and industrial examples of ion implantation effects in insulators. (U.K.)

  11. Lighting. Eclairage

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Increasing energy costs have led to a review of the high costs of lighting. The use of new energy-efficient lighting equipment, coupled with the use of the proper quantity and quality of lighting only where it is needed, creates a potential for cost reduction. A manual is provided to aid the process of adapting Canadian industrial, commercial, and institutional enterprises to these higher costs. An introductory review of lighting fundamentals is presented, providing a basic understanding of concepts such as illumination, light output measurements, power requirements, lighting quality, and energy audit methods. The currently available lighting equipment used to achieve cost savings is then reviewed, including energy saving lamps and ballasts, controls, and automatic energy control systems. A number of energy management opportunities are identified, such as modification of lighting usage patterns, calculation of the optimum number of lighting fixtures, replacement of existing lamps, and the application of task lighting. Examples are included to show the cost savings possible when applying some of the techniques suggested. 27 figs., 11 tabs.

  12. Process of converting actinide ions present in the solid residues of a sulphating process for radioactive solid waste containing actinides into a useful state

    International Nuclear Information System (INIS)

    Wieczorek, H.; Oser, B.

    1985-01-01

    Stages of the process: a) The residue is dissolved in water or 1 to 2 mole nitric acid, where the greater part is dissolved. b) The solution formed is separated from the insoluble part of the residue and is heated to a temperature below its boiling point. c) The hot solution has an aquaeous barium nitrate solution added to it with a quantity which slightly exceeds that required for the stochiometric complete precipitation of the sulphate ions. The solution is kept at the selected temperature for a period of 0.5 to 2 hours. d) After subsequent cooling to room temperature, the precipitated barium sulphate is separated and e) the actinide-nitrate solution is fed into an extractive reprocessing process. (orig./PW) [de

  13. Present and future role of ion beam analysis in the study of cultural heritage materials: The example of the AGLAE facility

    International Nuclear Information System (INIS)

    Salomon, J.; Dran, J.-C.; Guillou, T.; Moignard, B.; Pichon, L.; Walter, P.; Mathis, F.

    2008-01-01

    The application of IBA to cultural heritage mostly relies on the use of PIXE because of its high sensitivity and its ease of implementation at atmospheric pressure. The need for depth information not easily available with this technique has conducted to associate RBS also in external beam mode. We have progressively developed a set-up that permits such a combination of techniques either simultaneously or sequentially. The set-up is currently further improved to permit NRA measurement (depth profiles of light elements) in addition to PIXE and RBS. The coupling of all these techniques provides a wealth of information on cultural heritage objects, not easily attainable with any other single method

  14. Response of the GLAST LAT calorimeter to relativistic heavy ions

    International Nuclear Information System (INIS)

    Lott, B.; Piron, F.; Blank, B.; Bogaert, G.; Bregeon, J.; Canchel, G.; Chekhtman, A.; D'Avezac, P.; Dumora, D.; Giovinazzo, J.; Grove, J.E.; Hellstroem, M.; Jacholkowska, A.; Johnson, W.N.; Nuss, E.; Reposeur, Th.; Smith, D.A.; Suemmerer, K.

    2006-01-01

    The CsI calorimeter of the Gamma-Ray Large-Area Space Telescope (GLAST) will be calibrated in flight with cosmic-ray heavy ions. In order to determine the response of the calorimeter to relativistic heavy ions lighter than Fe, an experiment was carried out at the GSI heavy ion facility using the Fragment Separator (FRS). The measured response exhibits an unexpected feature for light ions, opposite to that observed at low incident energy: for a given deposited energy, the observed signal is greater for these ions than for protons (or more generally Z=1 minimum ionizing particles). Pulse shapes are found to be almost identical for carbon ions and Z=1 particles, with a significant slow scintillation component, which constitutes another departure from the low-energy behavior. Data on the energy resolution for the individual CsI crystals and on the loss of ions due to nuclear reactions in the calorimeter are also presented

  15. Laser photodissociation and spectroscopy of mass-separated biomolecular ions

    CERN Document Server

    Polfer, Nicolas C

    2014-01-01

    This lecture notes book presents how enhanced structural information of biomolecular ions can be obtained from interaction with photons of specific frequency - laser light. The methods described in the book ""Laser photodissociation and spectroscopy of mass-separated biomolecular ions"" make use of the fact that the discrete energy and fast time scale of photoexcitation can provide more control in ion activation. This activation is the crucial process producing structure-informative product ions that cannot be generated with more conventional heating methods, such as collisional activation. Th

  16. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Z. Y.; Breese, M. B. H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore Singapore 117542 (Singapore); Lin, Y.; Tok, E. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Vittone, E. [Physics Department, NIS Excellence Centre and CNISM, University of Torino, via Pietro Giuria 1, 10125 Torino (Italy)

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by