WorldWideScience

Sample records for light intensity regulation

  1. Rhodopsin gene expression regulated by the light dark cycle, light spectrum and light intensity in the dinoflagellate Prorocentrum

    OpenAIRE

    Shi, Xinguo; Li, Ling; Guo, Chentao; Lin, Xin; Li, Meizhen; Lin, Senjie

    2015-01-01

    The proton pump rhodopsin is widely found in marine bacteria and archaea, where it functions to capture light energy and convert it to ATP. While found in several lineages of dinoflagellates, this gene has not been studied in Prorocentrales species and whether it functionally tunes to light spectra and intensities as in bacteria remains unclear. Here we identified and characterized this gene in the bloom-forming Prorocentrum donghaiense. It is a 7-helix transmembrane polypeptide containing co...

  2. Rhodopsin gene expression regulated by the light dark cycle, light spectrum and light intensity in the dinoflagellate Prorocentrum.

    Science.gov (United States)

    Shi, Xinguo; Li, Ling; Guo, Chentao; Lin, Xin; Li, Meizhen; Lin, Senjie

    2015-01-01

    The proton pump rhodopsin is widely found in marine bacteria and archaea, where it functions to capture light energy and convert it to ATP. While found in several lineages of dinoflagellates, this gene has not been studied in Prorocentrales species and whether it functionally tunes to light spectra and intensities as in bacteria remains unclear. Here we identified and characterized this gene in the bloom-forming Prorocentrum donghaiense. It is a 7-helix transmembrane polypeptide containing conserved domains and critical amino acid residues of PPR. This gene is phylogenetically affiliated to the xanthorhodopsin clade, but seems to have a distinct evolutionary origin. Quantitative reverse transcription PCR showed that in regular cultures, the transcript abundance of the gene exhibited a clear diel pattern, high abundance in the light period and low in the dark. The same diel pattern was observed for protein abundance with a Western blot using specific antiserum. The rhythm was dampened when the cultures were shifted to continuous dark or light condition, suggesting that this gene is not under circadian clock control. Rhodopsin transcript and protein abundances varied with light intensity, both being highest at a moderate illumination level. Furthermore, the expression of this gene responded to different light spectra, with slightly higher transcript abundance under green than blue light, and lowest abundance under red light. Transformed Escherichia coli over-expressing this rhodopsin gene also exhibited an absorption maximum in the blue-green region with slightly higher absorption in the green. These rhodopsin-promoting light conditions are similar to the relatively turbid marine habitat where the species forms blooms, suggesting that this gene may function to compensate for the light-limited photosynthesis in the dim environment.

  3. Rhodopsin gene expression regulated by the light dark cycle, light spectrum and light intensity in the dinoflagellate Prorocentrum

    Directory of Open Access Journals (Sweden)

    Xinguo eShi

    2015-06-01

    Full Text Available The proton pump rhodopsin (PPR is widely found in marine bacteria and archaea, where it functions to capture light energy and convert it to ATP. While found in several lineages of dinoflagellates, this gene has not been studied in Prorocentrales species and whether it functionally tunes to light spectra and intensities as in bacteria remains unclear. Here we identified and characterized this gene in the bloom-forming Prorocentrum donghaiense. It is a 7-helix transmembrane polypeptide containing conserved domains and critical amino acid residues of PPR. This gene is phylogenetically affiliated to the xanthorhodopsin clade, but seems to have a distinct evolutionary origin. Quantitative reverse transcription PCR (qRT-PCR showed that in regular cultures, the transcript abundance of the gene exhibited a clear diel pattern, high abundance in the light period and low in the dark. The same diel pattern was observed for protein abundance with a Western blot using specific antiserum. The rhythm was dampened when the cultures were shifted to continuous dark or light condition, suggesting that this gene is not under circadian clock control. Rhodopsin transcript and protein abundances varied with light intensity, both being highest at a moderate illumination level. Furthermore, the expression of this gene responded to different light spectra, with slightly higher transcript abundance under green than blue light, and lowest abundance under red light. Transformed E. coli over-expressing this rhodopsin gene also exhibited an absorption maximum in the blue-green region with slightly higher absorption in the green. These rhodopsin-promoting light conditions are similar to the relatively turbid marine habitat where the species forms blooms, suggesting that this gene may function to compensate for the light-limited photosynthesis in the dim environment.

  4. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool

    Energy Technology Data Exchange (ETDEWEB)

    Escoubas, J.M.; Lomas, M.; LaRoche, J. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1995-10-24

    The eukaryotic green alga Dunaliella tertiolecta acclimates to decreased growth irradiance by increasing cellular levels of light-harvesting chlorophyll protein complex apoproteins associated with photosystem II (LHCIIs), whereas increased growth irradiance elicits the opposite response. Nuclear run-on transcription assays and measurements of cab mRNA stability established that light intensity-dependent changes in LHCII are controlled at the level of transcription. cab gene transcription in high-intensity light was partially enhanced by reducing plastoquinone with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), whereas it was repressed in low-intensity light by partially inhibiting the oxidation of plastoquinol with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Uncouplers of photosynthetic electron transport and inhibition of water splitting had no effect on LHCII levels. These results strongly implicate the redox state of the plastoquinone pool in the chloroplast as a photon-sensing system that is coupled to the light-intensity regulation of nuclear-encoded cab gene transcription. The accumulation of cellular chlorophyll at low-intensity light can be blocked by cytoplasmically directed phosphatase inhibitors, such as okadaic acid, microcystin L-R, and tautomycin. Gel mobility-shift assays revealed that cells grown in high-intensity light contained proteins that bind to the promoter region of a cab gene carrying sequences homologous to higher plant light-responsive elements. On the basis of these experimental results, we propose a model for a light intensity signaling system where cab gene expression is reversibly repressed by a phosphorylated factor coupled to the redox status of plastoquinone through a chloroplast protein kinase. 54 refs., 5 figs.

  5. Variation in pupil diameter in North American Gartersnakes (Thamnophis) is regulated by immersion in water, not by light intensity.

    Science.gov (United States)

    Fontenot, Clifford L

    2008-07-01

    A variable pupil generally regulates the amount of incoming light available for image formation on the retina. However, some of the semi-aquatic snakes (North American Gartersnakes, Thamnophis) that forage in relatively low light conditions reduce the pupil aperture in response to submergence underwater at the expense incoming light. Given that these snakes have all-cone retinas, reduction of incoming light because of pupillary constriction upon immersion seems counterintuitive. To test the effect of light and water on pupil aperture, three species of North American Gartersnakes (T. atratus, T. hammondii, and T. sirtalis) were exposed to nine light intensities in air and water. There was no effect of light on relative pupil aperture for any species. However, all three species showed a significant reduction in pupil aperture upon submergence underwater. The lack of a light response is surprising, and may be related to the method of accommodation in snakes. Snakes lack a ciliary muscle, and move the lens by constricting the pupil, which increases pressure in the posterior chamber and pushes the lens forward. Upon submergence, the snakes may be attempting to overcome the change in refractive index and defocus imposed by the water, by constricting the pupil. Thus, having the iris muscle involved in accommodation may preclude it from much of a light regulating function.

  6. Traffic light intensity meter, TIM®

    NARCIS (Netherlands)

    Leden, N. van der; Varkevisser, J.; Vroom, J. de; Oijen, T van

    2005-01-01

    The intensity of traffic lights decreases over time as a result of pollution and ageing. The Dutch Traffic Research Centre of the Ministry of Transport, Public Works and Water Management is searching for a convenient method for measuring the luminous intensity of traffic lights on the road, in order

  7. Perceiving the Intensity of Light

    Science.gov (United States)

    Purves, Dale; Williams, S. Mark; Nundy, Surajit; Lotto, R. Beau

    2004-01-01

    The relationship between luminance (i.e., the photometric intensity of light) and its perception (i.e., sensations of lightness or brightness) has long been a puzzle. In addition to the mystery of why these perceptual qualities do not scale with luminance in any simple way, "illusions" such as simultaneous brightness contrast, Mach bands,…

  8. Design of Greenhouse Temperature and Light Intensity Control Circuit

    Institute of Scientific and Technical Information of China (English)

    Chao; ZHANG

    2014-01-01

    In view of domestic scientific and technological achievements at present,real-time control circuit for greenhouse temperature and light intensity has been designed in line with the principle of cost saving and easy control.With advanced temperature sensor and light sensor applied to measure the temperature and light intensity,an execution unit is controlled by single-chip microcomputer(SCM)to regulate the temperature and light intensity,creating a hardware design scheme and software design idea.In case of high temperature and high light intensity in greenhouse,the sunshade net will be put down and the blower will be started automatically;in case of low temperature and light intensity,the sunshade net will be folded up and the heating valve will be turned up automatically.In this way,the temperature and light intensity in greenhouse will be controlled within the designed range.

  9. Average Light Intensity Inside a Photobioreactor

    Directory of Open Access Journals (Sweden)

    Herby Jean

    2011-01-01

    Full Text Available For energy production, microalgae are one of the few alternatives with high potential. Similar to plants, algae require energy acquired from light sources to grow. This project uses calculus to determine the light intensity inside of a photobioreactor filled with algae. Under preset conditions along with estimated values, we applied Lambert-Beer's law to formulate an equation to calculate how much light intensity escapes a photobioreactor and determine the average light intensity that was present inside the reactor.

  10. VISUAL ACUITY IN DIFFERENT INTENSITIES OF LIGHT

    Directory of Open Access Journals (Sweden)

    Shruthi

    2014-12-01

    Full Text Available : BACKGROUND: Visual acuity is the resolving power of eyes which enables to distinguish the details and shapes of the objects. It is influenced by the intensity (illumination of light falling on the object. Measuring visual acuity is a simple test in assessing-health of the eyes, the pathway and visual brain. Intact normal vision is mandatory for selection of posts related to driving and traffic services. Intactness of visual acuity is influenced by a number of factors and one among them is intensity of ambient light. Hence, this study is undertaken to assess optimum light intensity for better visual perception. AIM: To evaluate the association between visual acuity and intensity of light and the optimum intensity of light to carry out for better perception of vision. MATERIALS AND METHODS: 100 literate subjects - 50 males and 50 females between 15-45 years, act both as cases and controls. Subjects, instructed to read alphabets and numbers from Snellen chart in 15 watts, 20 watts, 40 watts, 60 watts, 100 watts, 200 watts were considered as the study group and the same subjects in this study in day light as controls. Chart was placed at 6m distance. Both right and left eyes were tested separately in dark room illuminated with controlled light intensities. Number of correct characters read were noted for different illuminations and compared with that of controls. RESULTS: Reduced illumination significantly increased the no of incorrect choices and was statistically significant (P < 0.05 between 15 - 100 W. Visual acuity was best in 200 W in comparison with day light but was not statistically significant. However Visual acuity showed no significant difference between males and females for different intensities of light.

  11. Dynamic light intensity detection system of aerodrome assistance light

    Science.gov (United States)

    Gao, Jianshu; Song, Jiye; Yu, Zhijing; Chen, Fei; Shi, Xudong; Gao, Qingji

    2007-11-01

    The techniques used in dynamic detection of airfield lighting intensity are introduced in this paper. These techniques can take place of the old method of checking all manually, and the system can detect the lights intensity online quickly and exactly, so as to find out the light faults and ensure the safety of planes taking off, landing and slipping. The system uses a car with a string of sensors which have been cosine calibrated and v(λ) calibrated to detect the light intensity. When the car is moving, the sensors can detect the lights' horizontal section. To accurately measure the distance from the measured aerodrome assistance light to the moving car, and then calculate the light intensity and protract the iso-candela curve, the Doppler ranging radar system is used. To guarantee the dependability of the system and the measurement precision, a video monitoring and guiding system is used to assure the car to run along the airfield lights line, then light orientation sensors are used to eliminate the radar's cumulating errors. The experiment indicates that this system is feasible and has high detecting precision.

  12. Intense, ultrashort light and dense, hot matter

    Indian Academy of Sciences (India)

    G Ravindra Kumar

    2009-07-01

    This article presents an overview of the physics and applications of the interaction of high intensity laser light with matter. It traces the crucial advances that have occurred over the past few decades in laser technology and nonlinear optics and then discusses physical phenomena that occur in intense laser fields and their modeling. After a description of the basic phenomena like multiphoton and tunneling ionization, the physics of plasma formed in dense matter is presented. Specific phenomena are chosen for illustration of the scientific and technological possibilities – simulation of astrophysical phenomena, relativistic nonlinear optics, laser wakefield acceleration, laser fusion, ultrafast real time X-ray diffraction, application of the particle beams produced from the plasma for medical therapies etc. A survey of the Indian activities in this research area appears at the end.

  13. Lasers and Intense Pulsed Light Hidradenitis Suppurativa.

    Science.gov (United States)

    Saunte, Ditte M; Lapins, Jan

    2016-01-01

    Lasers and intense pulsed light (IPL) treatment are useful for the treatment of hidradenitis suppurativa (HS). Carbon dioxide lasers are used for cutting or vaporization of the affected area. It is a effective therapy for the management of severe and recalcitrant HS with persistent sinus tract and scarring, and can be performed under local anesthesia. HS has a follicular pathogenesis. Lasers and IPL targeting the hair have been found useful in treating HS by reducing the numbers of hairs in areas with HS. The methods have few side effects, but the studies are preliminary and need to be repeated.

  14. Light-regulated plant growth and development.

    Science.gov (United States)

    Kami, Chitose; Lorrain, Séverine; Hornitschek, Patricia; Fankhauser, Christian

    2010-01-01

    Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).

  15. Daytime light intensity affects seasonal timing via changes in the nocturnal melatonin levels

    Science.gov (United States)

    Kumar, Vinod; Rani, Sangeeta; Malik, Shalie; Trivedi, Amit K.; Schwabl, Ingrid; Helm, Barbara; Gwinner, Eberhard

    2007-08-01

    Daytime light intensity can affect the photoperiodic regulation of the reproductive cycle in birds. The actual way by which light intensity information is transduced is, however, unknown. We postulate that transduction of the light intensity information is mediated by changes in the pattern of melatonin secretion. This study, therefore, investigated the effects of high and low daytime light intensities on the daily melatonin rhythm of Afro-tropical stonechats ( Saxicola torquata axillaris) in which seasonal changes in daytime light intensity act as a zeitgeber of the circannual rhythms controlling annual reproduction and molt. Stonechats were subjected to light conditions simulated as closely as possible to native conditions near the equator. Photoperiod was held constant at 12.25 h of light and 11.75 h of darkness per day. At intervals of 2.5 to 3.5 weeks, daytime light intensity was changed from bright (12,000 lux at one and 2,000 lux at the other perch) to dim (1,600 lux at one and 250 lux at the other perch) and back to the original bright light. Daily plasma melatonin profiles showed that they were linked with changes in daytime light intensity: Nighttime peak and total nocturnal levels were altered when transitions between light conditions were made, and these changes were significant when light intensity was changed from dim to bright. We suggest that daytime light intensity could affect seasonal timing via changes in melatonin profiles.

  16. Vitiligo following intense pulsed light treatment.

    Science.gov (United States)

    Shin, Jung U; Roh, Mi Ryung; Lee, Ju Hee

    2010-07-01

    Vitiligo is an acquired depigmenting disorder characterized by the progressive loss of melanocytes from the epidermis and epidermal appendages, which results in milky-white macular lesions. Various factors are suspected to affect the induction and progression of vitiligo such as emotional shock, sunburn, pregnancy, physical illness and trauma. The intense pulsed light (IPL) device which mostly affects redness and dyspigmentation has a broad spectrum of emissions of white light with wavelengths between approximately 515 and 1200 nm. Adverse effects such as purpura and pigmentary changes are known to be rare. We present a 41-year-old woman who developed multiple round, hypopigmented macules on both the cheek and mandibular area following the treatment with IPL for lentigines and dyspigmentation. Based on biopsy and Wood's lamp examination, diagnosis as vitiligo was made. She was treated with a 308-nm excimer laser. After 3 months of treatment, almost complete repigmentation was seen but another coin-sized hypopigmented patch was noted after 5 months later. Herein, we report a case of vitiligo which developed after IPL treatment. This is the first case to be reported which vitiligo developed after IPL treatment. Therefore, dermatologists should be aware of unsighted vitiligo lesion before IPL treatment.

  17. Regulation of the carbon-concentrating mechanism in the cyanobacterium Synechocystis sp. PCC6803 in response to changing light intensity and inorganic carbon availability.

    Science.gov (United States)

    Burnap, Robert L; Nambudiri, Rehka; Holland, Steven

    2013-11-01

    Photosynthetic organisms possess regulatory mechanisms to balance the various inputs of photosynthesis in a manner that minimizes over-excitation of the light-driven electron transfer apparatus, while maximizing the reductive assimilation of inorganic nutrients, most importantly inorganic carbon (Ci). Accordingly, the regulatory interactions coordinating responses to fluctuating light and responses to Ci availability are of fundamental significance. The inducible high affinity carbon-concentrating mechanism (CCM) in the cyanobacterium Synechocystis sp. PCC6803 has been studied in order to understand how it is integrated with the light and dark reactions of photosynthesis. To probe genetic regulatory mechanisms, genomic DNA microarrays were used to survey for differences in the expression of genes in response to a shift to high light conditions under conditions of either high or low Ci availability. Discrepancies in published experiments exist regarding the extent to which genes for the CCM are upregulated in response to high light treatment. These discrepancies may be due to critical differences in Ci availability existing during the different high light experiments. The present microarray experiments reexamine this by comparing high light treatment under two different Ci regimes: bubbling with air and bubbling with air enriched with CO2. While some transcriptional responses such as the downregulation of antenna proteins are quite similar, pronounced differences exist with respect to the differential expression of CCM and affiliated genes. The results are discussed in the context of a recent analysis revealing that small molecules that are intermediates of the light and dark reaction photosynthetic metabolism act as allosteric effectors of the DNA-binding proteins which modulate the expression of the CCM genes.

  18. Unconventional Use of Intense Pulsed Light

    Directory of Open Access Journals (Sweden)

    D. Piccolo

    2014-01-01

    Full Text Available According to the literature, intense pulsed light (IPL represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne, due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases, port-wine stain (PWS (10 cases, disseminated porokeratosis (10 cases, pilonidal cyst (3 cases, seborrheic keratosis (10 cases, hypertrophic scar (5 cases and keloid scar (5 cases, Becker’s nevus (2 cases, hidradenitis suppurativa (2 cases, and sarcoidosis (1 case. Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator’s experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre. Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness.

  19. Physiological and molecular responses to variation of light intensity in rubber Tree (Hevea brasiliensis Muell. Arg..

    Directory of Open Access Journals (Sweden)

    Li-feng Wang

    Full Text Available Light is one of most important factors to plants because it is necessary for photosynthesis. In this study, physiological and gene expression analyses under different light intensities were performed in the seedlings of rubber tree (Hevea brasiliensis clone GT1. When light intensity increased from 20 to 1000 µmol m(-2 s(-1, there was no effect on the maximal quantum yield of photosystem II (PSII photochemistry (Fv/Fm, indicating that high light intensity did not damage the structure and function of PSII reaction center. However, the effective photochemical quantum yield of PSII (Y(II, photochemical quenching coefficient (qP, electron transfer rate (ETR, and coefficient of photochemical fluorescence quenching assuming interconnected PSII antennae (qL were increased significantly as the light intensity increased, reached a maximum at 200 µmol m(-2 s(-1, but decreased from 400 µmol m(-2 s(-1. These results suggested that the PSII photochemistry showed an optimum performance at 200 µmol m(-2 s(-1 light intensity. The chlorophyll content was increased along with the increase of light intensity when it was no more than 400 µmol m(-2 s(-1. Since increasing light intensity caused significant increase in H2O2 content and decreases in the per unit activity of antioxidant enzymes SOD and POD, but the malondialdehyde (MDA content was preserved at a low level even under high light intensity of 1000 µmol m(-2 s(-1, suggesting that high light irradiation did not induce membrane lipid peroxidation in rubber tree. Moreover, expressions of antioxidant-related genes were significantly up-regulated with the increase of light intensity. They reached the maximum expression at 400 µmol m(-2 s(-1, but decreased at 1000 µmol m(-2 s(-1. In conclusion, rubber tree could endure strong light irradiation via a specific mechanism. Adaptation to high light intensity is a complex process by regulating antioxidant enzymes activities, chloroplast formation, and related

  20. Intense Pulsed Light (IPL) in Aesthetic Dermatology

    Science.gov (United States)

    Pytras, B.; Drozdowski, P.; Zub, K.

    2011-08-01

    Introduction. Newer and newer technologies have been widely developed in recent years due to increasing need for aesthetic medicine procedures. Less invasive methods of skin imperfection and time-related lesions removal, IPL (Intense Pulse Light) being one of them, are gaining more and more interest. The shorter the "downtime" for the patient is and the more efficient the procedure results, the more popular the method becomes. Materials and methods_Authors analyse the results of treatment of a 571 patients-group (501 women and 70 men) aged 5-72 years in the period: October 2006-August 2010. IPL™ Quantum (Lumenis Ltd.) device with 560 nm. cut-off filter was used. Results. The results were regarded as: very good, good or satisfying (%):Skin photoaging symptomes 37/40/23, Isolated facial dyschromia 30/55/25, Isolated facial erythema 62/34/4, Lower limbs teleangiectasia 12/36/52, Keratosis solaris on hands 100/-/-. Approximately half of the patients developed transitory erythema and 25%- transitory, mild, circumscribed oedema. Following undesirable effects were noted: skin thermal irritation (6,1% of the patients) and skin hypopigmentation (2% of the patients). Discussion. Results and post-treatment management proposed by authors are similar to those reported by other authors. Conclusions. Treatment results of the 571-patients group prove IPL to be a very efficient method of non-ablative skin rejuvenation. It turned out effective also in lower limbs teleangiectasia treatment. It presents low risk of transitory and mild side effects. Futhermore, with short or no downtime, it is well-tolerated by the patients.

  1. effect of light intensity on the cure characteristics of photo ...

    African Journals Online (AJOL)

    2012-05-05

    May 5, 2012 ... Design: A laboratory based cross sectional study. Setting: Public and ... set out to determine the light intensity emitted by light curing units ... polymerised with it. MATERIAL AND METHODS ..... J. of Oral Rehab. 2005; 32:.

  2. Light-intensity and high-intensity interval training improve cardiometabolic health in rats.

    Science.gov (United States)

    Batacan, Romeo B; Duncan, Mitch J; Dalbo, Vincent J; Connolly, Kylie J; Fenning, Andrew S

    2016-09-01

    Physical activity has the potential to reduce cardiometabolic risk factors but evaluation of different intensities of physical activity and the mechanisms behind their health effects still need to be fully established. This study examined the effects of sedentary behaviour, light-intensity training, and high-intensity interval training on biometric indices, glucose and lipid metabolism, inflammatory and oxidative stress markers, and vascular and cardiac function in adult rats. Rats (12 weeks old) were randomly assigned to 1 of 4 groups: control (CTL; no exercise), sedentary (SED; no exercise and housed in small cages to reduce activity), light-intensity trained (LIT; four 30-min exercise bouts/day at 8 m/min separated by 2-h rest period, 5 days/week), and high-intensity interval trained (HIIT, four 2.5-min work bouts/day at 50 m/min separated by 3-min rest periods, 5 days/week). After 12 weeks of intervention, SED had greater visceral fat accumulation (p < 0.01) and slower cardiac conduction (p = 0.04) compared with the CTL group. LIT and HIIT demonstrated beneficial changes in body weight, visceral and epididymal fat weight, glucose regulation, low-density lipoprotein cholesterol, total cholesterol, and mesenteric vessel contractile response compared with the CTL group (p < 0.05). LIT had significant improvements in insulin sensitivity and cardiac conduction compared with the CTL and SED groups whilst HIIT had significant improvements in systolic blood pressure and endothelium-independent vasodilation to aorta and mesenteric artery compared with the CTL group (p < 0.05). LIT and HIIT induce health benefits by improving traditional cardiometabolic risk factors. LIT improves cardiac health while HIIT promotes improvements in vascular health.

  3. IR microscopy utilizing intense supercontinuum light source

    DEFF Research Database (Denmark)

    Dupont, Sune; Petersen, Christian; Thøgersen, Jan;

    2012-01-01

    . The supercontinuum light source has a high brightness and spans the infrared region from 1400 nm to 4000 nm. This combination allows contact free high resolution hyper spectral infrared microscopy. The microscope is demonstrated by imaging an oil/water sample with 20 μm resolution.......Combining the molecular specificity of the infrared spectral region with high resolution microscopy has been pursued by researchers for decades. Here we demonstrate infrared supercontinuum radiated from an optical fiber as a promising new light source for infrared microspectroscopy...

  4. Measurement of Dynamic Light Scattering Intensity in Gels

    CERN Document Server

    Rochas, Cyrille

    2015-01-01

    In the scientific literature little attention has been given to the use of dynamic light scattering (DLS) as a tool for extracting the thermodynamic information contained in the absolute intensity of light scattered by gels. In this article we show that DLS yields reliable measurements of the intensity of light scattered by the thermodynamic fluctuations, not only in aqueous polymer solutions, but also in hydrogels. In hydrogels, light scattered by osmotic fluctuations is heterodyned by that from static or slowly varying inhomogeneities. The two components are separable owing to their different time scales, giving good experimental agreement with macroscopic measurements of the osmotic pressure. DLS measurements in gels are, however, tributary to depolarised light scattering from the network as well as to multiple light scattering. The paper examines these effects, as well as the instrumental corrections required to determine the osmotic modulus. For guest polymers trapped in a hydrogel the measured intensity...

  5. effect of light curing unit characteristics on light intensity output ...

    African Journals Online (AJOL)

    2013-09-09

    Sep 9, 2013 ... Objective: To determine the characteristics of light curing units (LCUs) in dental clinics in Nairobi and ... generation which has dogged the new generation of. LEDs without ..... Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G.

  6. Effects of light intensity on photosynthesis and photoprotective mechanisms in apple under progressive drought

    Institute of Scientific and Technical Information of China (English)

    MA Ping; BAI Tuan-hui; WANG Xiao-qian; MA Feng-wang

    2015-01-01

    The effects of light intensity on photosynthesis and photoprotective mechanisms under progressive drought were studied on apple trees (Malus domestica Borkh.) Fuji. The potted trees were exposed to drought stress for 12 days and different light conditions (100, 60 and 25% sunlight). During the progressive drought, the relative water content (RWC) in leaf declined and was faster in full light than in 60 and 25% sunlight. However, the decrease in the net photosynthetic rate (Pn), stomatal conductance (Gs) and Rubisco activity were slower under 100% sunlight condition than other light conditions. After the 6 days of drought, the maximum PSII quantum yield (Fv/Fm), the capacity of electrons move beyond QA- (1-Vj) and electron move from intersystem to PSI acceptor side (1-VI)/(1-VJ) decreased, with greater decline extent in brighter light. While RWCs were 〉75%, the variations in different light intensities of Gs and Rubisco activity at identical RWC, suggested the direct effects of light. While the little difference in the state of photosynthetic electron transport chain among tested light intensities indicates the results of faster water loss rate of light. Our results also demonstrated that the enhancement the de-epoxidations of xanthophyll cycle, activities of ascorbate peroxidase (APX) and catalase (CAT) were directly regulated by light intensity. While the higher photorespiration rate (Pr) under stronger light condition was mainly caused by faster water loss rate of light.

  7. Effects of light intensity on photosynthesis and photoprotective mechanisms in apple under progressive drought

    Institute of Scientific and Technical Information of China (English)

    MA Ping; BAI Tuan-hui; WANG Xiao-qian; MA Feng-wang

    2015-01-01

    The effects of light intensity on photosynthesis and photoprotective mechanisms under progressive drought were studied on apple trees (Malus domestica Borkh.) Fuji. The potted trees were exposed to drought stress for 12 days and different light conditions (100, 60 and 25%sunlight). During the progressive drought, the relative water content (RWC) in leaf declined and was faster in ful light than in 60 and 25%sunlight. However, the decrease in the net photosynthetic rate (Pn), stomatal conductance (Gs) and Rubisco activity were slower under 100%sunlight condition than other light conditions. After the 6 days of drought, the maximum PSII quantum yield (Fv/Fm), the capacity of electrons move beyond QA−(1–VJ) and electron move from intersystem to PSI acceptor side (1–VI)/(1–VJ) decreased, with greater decline extent in brighter light. While RWCs were>75%, the variations in different light intensities of Gs and Rubisco activity at identical RWC, suggested the direct effects of light. While the little difference in the state of photosynthetic electron transport chain among tested light intensities indicates the results of faster water loss rate of light. Our results also demonstrated that the enhancement the de-epoxidations of xanthophyl cycle, activities of ascorbate peroxidase (APX) and catalase (CAT) were directly regulated by light intensity. While the higher photorespiration rate (Pr) under stronger light condition was mainly caused by faster water loss rate of light.

  8. Performance analysis of solar cell arrays in concentrating light intensity

    Institute of Scientific and Technical Information of China (English)

    Xu Yongfeng; Li Ming; Wang Liuling; Lin Wenxian; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

    2009-01-01

    tage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system.

  9. Remote Controlling of Light Intensity Using Phone Devices

    Directory of Open Access Journals (Sweden)

    Beza Negash Getu

    2015-08-01

    Full Text Available In this study, we investigate the design and simulation of an electronic system for remote controlling the level of light intensity of an electrical lighting system used for a certain desired application. The remote controlling is done using the keypad of any Dual Tone Multi Frequency (DTMF based telephone handset. A DTMF tone command sent from a transmitting fixed or mobile phone terminal will be used to activate a system of relays that control the required level of light intensity. An appropriate active bandpass filters are designed for recognition of the DTMF tones of the transmitted digit. The bandpass filters and the additional subsequent stages of the overall electronic system are simulated and tested using MULTISM. Light intensity controlling is useful to avoid unnecessary electrical power wastage and the remote controlling eliminates the physical presence of a person for adjusting the required level of lighting at the desired location.

  10. LED intense headband light source for fingerprint analysis

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  11. LED intense headband light source for fingerprint analysis

    Science.gov (United States)

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  12. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  13. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C;

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...

  14. Relationship between normalized light intensity and attenuated total reflection ratio

    Institute of Scientific and Technical Information of China (English)

    Yingcai Wu; Zhengtian Gu

    2008-01-01

    Attenuated total reflection (ATR) ratio is usually utilized to study the properties of surface plasmon resonance (SPR) sensors. The relationship between normalized light intensity and ATR ratio is investigated, and a modification coefficient is put forward to describe the relationship. A mathematical expression is built up for the coefficient based on Fresnel principle. The result shows that the ATR ratio, which cannot be measured directly in experiments, can be determined with the coefficient and the normalized intensity of light. The characteristic of the coefficient is also discussed.

  15. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...... and discuss the efficacy and human safety implications of home-use devices....

  16. The velocity of light intensity increase modulates the photoprotective response in coastal diatoms.

    Directory of Open Access Journals (Sweden)

    Vasco Giovagnetti

    Full Text Available In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC and non-photochemical fluorescence quenching (NPQ, to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events with that of a slower increase (corresponding to the light diel cycle on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m-2 s-1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective 'safety valves' in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.

  17. Dynamics of fluid and light intensity in mechanically stirred photobioreactor.

    Science.gov (United States)

    Zhang, T

    2013-10-10

    Turbulent flows in a single-stage and a two-stage impeller-stirred photobioreactor with a simple geometric configuration were analyzed using computational fluid dynamics. The trajectories of the microorganisms entrained in the flow field were traced by the particle tracking method. By projecting these trajectories onto a radial-axial (r-z) plane with a given azimuth angle, we were able to observe four different dynamics zones: circulation, pure rotation, trap, and slow-motion. Within the pure rotation zone, turbulence can be observed near the edges of the impeller. The light intensity and the light/dark cycles subjected by the microorganisms differ significantly in these zones. These differences can be further changed by providing different incident light illuminations on the reactor surface. The dynamics zones can be altered by modifying the geometric configuration of the reactor and the impeller stirring mechanism. In combination with the utilization of different incident light illuminations, the light intensity dynamics and the light/dark cycles subjected by the microorganisms can be controlled such that an optimal photobioreactor design with a high efficiency of light utilization and a high formation rate of the biochemical products can be realized.

  18. Battery Charge Affects the Stability of Light Intensity from Light-emitting Diode Light-curing Units.

    Science.gov (United States)

    Tongtaksin, A; Leevailoj, C

    This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm(2). The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm(2). In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm(2). There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was

  19. Crystalline silicon cell performance at low light intensities

    NARCIS (Netherlands)

    Reich, N.H.|info:eu-repo/dai/nl/30483453X; van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526; Alsema, E.A.|info:eu-repo/dai/nl/073416258; Lof, R.W.; Schropp, R.E.I.|info:eu-repo/dai/nl/072502584; Sinke, W.C.|info:eu-repo/dai/nl/071641009; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355

    2009-01-01

    Measured and modelled JV characteristics of crystalline silicon cells below one sun intensity have been investigated. First, the JV characteristics were measured between 3 and 1000 W/m2 at 6 light levels for 41 industrially produced mono- and multi-crystalline cells from 8 manufacturers, and at 29 i

  20. Increased collection efficiency of LIFI high intensity electrodeless light source

    Science.gov (United States)

    Hafidi, Abdeslam; DeVincentis, Marc; Duelli, Markus; Gilliard, Richard

    2008-02-01

    Recently, RF driven electrodeless high intensity light sources have been implemented successfully in the projection display systems for HDTV and videowall applications. This paper presents advances made in the RF waveguide and electric field concentrator structures with the purpose of reducing effective arc size and increasing light collection. In addition, new optical designs are described that further improve system efficiency. The results of this work demonstrate that projection system light throughput is increased relative to previous implementations and performance is optimized for home theater and other front projector applications that maintain multi-year lifetime without re-lamping, complete spectral range, fast start times and high levels of dynamic contrast due to dimming flexibility in the light source system.

  1. SiPM response to long and intense light pulses

    Science.gov (United States)

    Vinogradov, S.; Arodzero, A.; Lanza, R. C.; Welsch, C. P.

    2015-07-01

    Recently Silicon Photomultipliers (SiPMs) have become well recognized as the detector of choice for various applications which demand good photon number resolution and time resolution of short weak light pulses in the nanosecond time scale. In the case of longer and more intensive light pulses, SiPM performance gradually degrades due to dark noise, afterpulsing, and non-instant cell recovering. Nevertheless, SiPM benefits are expected to overbalance their drawbacks in applications such as X-ray cargo inspection using Scintillation-Cherenkov detectors and accelerator beam loss monitoring with Cherenkov fibres, where light pulses of a microsecond time scale have to be detected with good amplitude and timing resolution in a wide dynamic range of 105-106. This report is focused on transient characteristics of a SiPM response on a long rectangular light pulse with special attention to moderate and high light intensities above the linear dynamic range. An analytical model of the transient response and an initial consideration of experimental results in comparison with the model are presented.

  2. SiPM response to long and intense light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, S., E-mail: Sergey.Vinogradov@liverpool.ac.uk [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Leninskiy prospekt 53, Moscow (Russian Federation); Arodzero, A. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); RadiaBeam Technologies Inc., 1717 Stewart St., Santa Monica, CA 90404 (United States); Lanza, R.C. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Welsch, C.P. [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom)

    2015-07-01

    Recently Silicon Photomultipliers (SiPMs) have become well recognized as the detector of choice for various applications which demand good photon number resolution and time resolution of short weak light pulses in the nanosecond time scale. In the case of longer and more intensive light pulses, SiPM performance gradually degrades due to dark noise, afterpulsing, and non-instant cell recovering. Nevertheless, SiPM benefits are expected to overbalance their drawbacks in applications such as X-ray cargo inspection using Scintillation-Cherenkov detectors and accelerator beam loss monitoring with Cherenkov fibres, where light pulses of a microsecond time scale have to be detected with good amplitude and timing resolution in a wide dynamic range of 10{sup 5}–10{sup 6}. This report is focused on transient characteristics of a SiPM response on a long rectangular light pulse with special attention to moderate and high light intensities above the linear dynamic range. An analytical model of the transient response and an initial consideration of experimental results in comparison with the model are presented.

  3. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.

    2013-12-17

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  4. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C;

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...... observation period. Side effects were evaluated clinically. No tumors appeared in untreated control mice or in just IPL-treated mice. Skin tumors developed in UV-exposed mice independently of IPL treatments. The time it took for 50% of the mice to first develop skin tumor ranged from 47 to 49 weeks...

  5. Crystalline silicon cell performance at low light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Reich, N.H.; van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C. [Utrecht University, Faculty of Science, Copernicus Institute for Sustainable Development and Innovation, Department of Science, Techonology and Society, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Lof, R.W.; Schropp, R.E.I. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics - Physics of Device, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht (Netherlands); Sinke, W.C. [Energy research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)

    2009-09-15

    Measured and modelled JV characteristics of crystalline silicon cells below one sun intensity have been investigated. First, the JV characteristics were measured between 3 and 1000 W/m{sup 2} at 6 light levels for 41 industrially produced mono- and multi-crystalline cells from 8 manufacturers, and at 29 intensity levels for a single multi-crystalline silicon between 0.01 and 1000 W/m{sup 2}. Based on this experimental data, the accuracy of the following four modelling approaches was evaluated: (1) empirical fill factor expressions, (2) a purely empirical function, (3) the one-diode model and (4) the two-diode model. Results show that the fill factor expressions and the empirical function fail at low light intensities, but a new empirical equation that gives accurate fits could be derived. The accuracy of both diode models are very high. However, the accuracy depends considerably on the used diode model parameter sets. While comparing different methods to determine diode model parameter sets, the two-diode model is found to be preferred in principle: particularly its capability in accurately modelling V{sub OC} and efficiency with one and the same parameter set makes the two-diode model superior. The simulated energy yields of the 41 commercial cells as a function of irradiance intensity suggest unbiased shunt resistances larger than about 10 k{omega} cm{sup 2} may help to avoid low energy yields of cells used under predominantly low light intensities. Such cells with diode currents not larger than about 10{sup -9} A/cm{sup 2} are excellent candidates for Product Integrated PV (PIPV) appliances. (author)

  6. Effects of light propagation in middle intensity atmospheric turbulence

    Institute of Scientific and Technical Information of China (English)

    Xiubua YUAN; Dexiu HUANG; Bangxu LI

    2009-01-01

    The purpose of this report is to present an experimental study of the effects of light propagation through atmospheric turbulence.Free space optical communication is a line-of-sight technology that transmits a modulated beam of visible light through the atmosphere for broadband communication.The fundamental limitations of free space optical communications arise from the environment through which it propagates.However these systems are vulnerable to atmospheric turbulence, such as attenuation and scintillation, Scintillation is due to the air index variation under the temperature effects.These factors cause an attenuated receiver signal and lead to higher bit error rate (BER).An experiment of laser propagation was carried out to characterize the light intensity through turbulent air in the laboratory environment.The experimental results agree with the calculation based on Rytov for the case of weak to intermediate turbulence.Also, we show the characteristics of irradiance scintillation, intensity distribution and atmospheric turbulence strength.By means of laboratory simulated turbulence, the turbulence box is constructed with the following measurements: 0.5 m wide, 2m long and 0.5m high.The simulation box consists of three electric heaters and is well described for understanding the experimental set up.The fans and heaters are used to increase the homogeneity of turbulence and to create different scintillation indices.The received intensity scintillation and atmosphere turbulence strength were obtained and the variation of refractive index, with its corresponding structure parameter, is calculated from the experimental results.

  7. Multifractal analysis of light scattering-intensity fluctuations

    Science.gov (United States)

    Shayeganfar, F.; Jabbari-Farouji, S.; Movahed, M. Sadegh; Jafari, G. R.; Tabar, M. Reza Rahimi

    2009-12-01

    We provide a simple interpretation of non-Gaussian nature of the light scattering-intensity fluctuations from an aging colloidal suspension of Laponite using the multiplicative cascade model, Markovian method, and volatility correlations. The cascade model and Markovian method enable us to reproduce most of recent empirical findings: long-range volatility correlations and non-Gaussian statistics of intensity fluctuations. We provide evidence that the intensity increments Δx(τ)=I(t+τ)-I(t) , upon different delay time scales τ , can be described as a Markovian process evolving in τ . Thus, the τ dependence of the probability density function p(Δx,τ) on the delay time scale τ can be described by a Fokker-Planck equation. We also demonstrate how drift and diffusion coefficients in the Fokker-Planck equation can be estimated directly from the data.

  8. Detection of light and vibration modulates bioluminescence intensity in the glowworm, Arachnocampa flava.

    Science.gov (United States)

    Mills, Rebecca; Popple, Julie-Anne; Veidt, Martin; Merritt, David John

    2016-04-01

    Glowworms are larval fungus gnats that emit light from a specialised abdominal light organ. The light attracts small arthropod prey to their web-like silk snares. Larvae glow throughout the night and can modulate their bioluminescence in response to sensory input. To better understand light output regulation and its ecological significance, we examined the larvae's reaction to light exposure, vibration and sound. Exposure to a 5-min light pulse in the laboratory causes larvae to exponentially decrease their light output over 5-10 min until they completely switch off. They gradually return to pre-exposure levels but do not show a rebound. Larvae are most sensitive to ultraviolet light, then blue, green and red. Vibration of the larval snares results in a several-fold increase in bioluminescence over 20-30 s, followed by an exponential return to pre-exposure levels over 15-30 min. Under some conditions, larvae can respond to vibration by initiating bioluminescence when they are not glowing; however, the response is reduced compared to when they are glowing. We propose that inhibitory and excitatory mechanisms combine to modulate bioluminescence intensity by regulating biochemical reactions or gating the access of air to the light organ.

  9. LIGHT regulates inflamed draining lymph node hypertrophy

    Science.gov (United States)

    Zhu, Mingzhao; Yang, Yajun; Wang, Yugang; Wang, Zhongnan; Fu, Yang-Xin

    2011-01-01

    Lymph node (LN) hypertrophy, the increased cellularity of LNs, is the major indication of the initiation and expansion of the immune response against infection, vaccination, cancer or autoimmunity. The mechanisms underlying LN hypertrophy remain poorly defined. Here, we demonstrate that LIGHT (TNFSF14) is a novel factor essential for LN hypertrophy after CFA immunization. Mechanistically, LIGHT is required for the influx of lymphocytes into but not egress out of LNs. In addition, LIGHT is required for DC migration from the skin to draining LNs. Compared with WT mice, LIGHT−/− mice express lower levels of chemokines in skin and addressins in LN vascular endothelial cells after CFA immunization. We unexpectedly observed that LIGHT from radioresistant rather than radiosensitive cells, likely Langerhans cells, is required for LN hypertrophy. Importantly, antigen-specific T cell responses were impaired in DLN of LIGHT−/− mice, suggesting the importance of LIGHT regulation of LN hypertrophy in the generation of an adaptive immune response. Collectively, our data reveal a novel cellular and molecular mechanism for the regulation of LN hypertrophy and its potential impact on the generation of an optimal adaptive immune response. PMID:21572030

  10. Fast and effective: intense pulse light photodynamic inactivation of bacteria.

    Science.gov (United States)

    Maisch, Tim; Spannberger, Franz; Regensburger, Johannes; Felgenträger, Ariane; Bäumler, Wolfgang

    2012-07-01

    The goal of this study was to investigate the photodynamic toxicity of TMPyP (5, 10, 15, 20-Tetrakis (1-methylpyridinium-4-yl)-porphyrin tetra p-toluenesulfonate) in combination with short pulses (ms) of an intense pulse light source within 10 s against Bacillus atrophaeus, Staphylococcus aureus, Methicillin-resistant S. aureus and Escherichia coli, major pathogens in food industry and in health care, respectively. Bacteria were incubated with a photoactive dye (TMPyP) that is subsequently irradiated with visible light flashes of 100 ms to induce oxidative damage immediately by generation of reactive oxygen species like singlet oxygen. A photodynamic killing efficacy of up to 6 log(10) (>99.9999%) was achieved within a total treatment time of 10 s using a concentration range of 1-100 μmol TMPyP and multiple light flashes of 100 ms (from 20 J cm(-2) up to 80 J cm(-2)). Both incubation of bacteria with TMPyP alone or application of light flashes only did not have any negative effect on bacteria survival. Here we could demonstrate for the first time that the combination of TMPyP as the respective photosensitizer and a light flash of 100 ms of an intense pulsed light source is enough to generate sufficient amounts of reactive oxygen species to kill these pathogens within a few seconds. Increasing antibiotic resistance requires fast and efficient new approaches to kill bacteria, therefore the photodynamic process seems to be a promising tool for disinfection of horizontal surfaces in industry and clinical purposes where savings in time is a critical point to achieve efficient inactivation of microorganisms.

  11. High-intensity light-emitting diode vs fluorescent tubes for intensive phototherapy in neonates.

    Science.gov (United States)

    Sherbiny, Hanan S; Youssef, Doaa M; Sherbini, Ahmad S; El-Behedy, Rabab; Sherief, Laila M

    2016-05-01

    Special blue fluorescent tubes are recommended by the American Academy of Pediatrics (AAP) as the most effective light source for lowering serum bilirubin. A high-intensity light-emitting diode ('super LED') could render intensive phototherapy more effective than the above conventional methods. This study compared the efficacy and safety of a high-intensity light-emitting diode bed vs conventional intensive phototherapy with triple fluorescent tube units as a rescue treatment for severe unconjugated neonatal hyperbilirubinaemia. This was a randomised, prospective trial. Two hundred jaundiced neonates ≥ 35 weeks gestation who met the criteria for intensive phototherapy as per AAP guidelines were randomly assigned to be treated either with triple fluorescent tube units (group 1, n = 100) or a super LED bed (group 2, n = 100). The outcome was the avoidance of exchange transfusion by successful control of hyperbilirubinaemia. Statistically significant higher success rates of intensive phototherapy were achieved among neonates treated with super LED (group 2) than in those treated conventionally (group 1) (87% vs 64%, P = 0.003). Significantly higher 'bilirubin decline' rates were reported in both haemolytic and non-haemolytic subgroups treated with the super LED bed compared with a similar sub-population in the conventionally treated group. Comparable numbers of neonates in both groups developed rebound jaundice (8% vs 10% of groups 1 and 2, respectively). Side-effects were mild in both groups, but higher rates of hyperthermia (12% vs 0%, P = 0.03), dehydration (8% vs 2%, P = 0.26) and skin rash (39% vs 1%, P = 0.002) were reported in the fluorescent tubes-treated group compared with the LED group. Super LED is a safe rescue treatment for severe neonatal hyperbilirubinaemia, and its implementation may reduce the need for exchange transfusion.

  12. Effect of ambient temperature and light intensity on physiological reactions of heavy broiler chickens.

    Science.gov (United States)

    Olanrewaju, H A; Purswell, J L; Collier, S D; Branton, S L

    2010-12-01

    The effects of ambient temperature, light intensity, and their interaction on blood acid-base balance, metabolites, and electrolytes in broiler chickens under environmentally controlled conditions were examined in 2 trials. The experiment consisted of a factorial arrangement of treatments in a randomized complete block design. The 9 treatments consisted of 3 levels of temperatures (low = 15.6°C; moderate = 21.1°C; high = 26.7°C) from 21 to 56 d of age and 3 levels of light intensities (0.5, 3.0, 20 lx) from 8 to 56 d of age at 50% RH. A total of 540 Ross 708 chicks were randomly distributed into 9 environmentally controlled chambers (30 male and 30 female chicks/chamber) at 1 d of age. Feed and water were provided ad libitum. Venous blood samples were collected on d 21 (baseline), 28, 42, and 56. High ambient temperature significantly (P ≤ 0.05) reduced BW, partial pressure of CO(2), bicarbonate, hematocrit, hemoglobin, K(+), and Na(+) along with significantly (P ≤ 0.05) elevated pH level, Cl(-), glucose, osmolality, and anion gap concentrations. Partial pressure of O(2) was slightly increased in response to increased ambient temperature. There was no effect of light intensity on most of the blood variables examined. Acid-base regulation during high ambient temperature and light intensity exposure did not deteriorate despite a lower partial pressure of CO(2), which consequently increased blood pH because of a compensatory decrease in HCO(3)(-) concentration. Plasma corticosterone was not affected by temperature, light intensity, or their interaction. These results indicate that continuous exposure of broiler chickens to varying light intensities had a minor effect on physiological blood variables, whereas high ambient temperature markedly affected various blood variables without inducing stress in broilers.

  13. ELVES light intensity studies at the Pierre Auger Observatory

    Science.gov (United States)

    Mussa, Roberto; Maiorana, Carolina

    2016-04-01

    The Pierre Auger Observatory, located in Malargüe (Argentina), is the largest facility (3000 km2) for the study of Ultra High Energy Cosmic Rays (E>1018 eV). The four sites of the Fluorescence Detector (FD) are continuously observing the night sky with moon fraction below 50% (13% duty cycle) with 100 ns time resolution and a space resolution below one degree. The fluorescence light (λ = 300 nm to 420 nm) produced by shower in the atmosphere is proportional to the energy of the primary cosmic ray. The atmospheric optical properties are continuously monitored by the Observatory with a set of dedicated instruments (lidars, cloud cameras, weather stations). The energy of each cosmic ray can therefore be measured with a systematic energy resolution about 14%. After the serendipitous discovery of an ELVES candidate event in 2005, a special trigger has been implemented to detect these phenomena with high efficiency, fully operational since March 2013. Since January 2014 the ELVES candidates are read out with a modified DAQ scheme, to observe the light emission from above the vertical of the causative lightning. This paper will report about the analysis of the correlation between light emission and lightning intensity as recorded by lightning detection networks, on data taken in the last three years of operation.

  14. Acne treatment by methyl aminolevulinate photodynamic therapy with red light vs. intense pulsed light.

    Science.gov (United States)

    Hong, Jong Soo; Jung, Jae Yoon; Yoon, Ji Young; Suh, Dae Hun

    2013-05-01

    Various methods of photodynamic therapy (PDT) for acne have been introduced. However, comparative studies among them are still needed. We performed this study to compare the effect of methyl aminolevulinate (MAL) PDT for acne between red light and intense pulsed light (IPL). Twenty patients were enrolled in this eight-week, prospective, split-face study. We applied MAL cream over the whole face with a three-hour incubation time. Then patients were irradiated with 22 J/cm(2) of red light on one-half of the face and 8-10 J/cm(2) of IPL on the other half during each treatment session. We performed three treatment sessions at two-week intervals and followed-up patients until four weeks after the last session. Inflammatory and non-inflammatory acne lesions were reduced significantly on both sides. The red light side showed a better response than the IPL side after the first treatment. Serious adverse effects after treatment were not observed. MAL-PDT with red light and IPL are both an effective and safe modality in acne treatment. Red light showed a faster response time than IPL. After multiple sessions, both light sources demonstrated satisfactory results. We suggest that reducing the total dose of red light is desirable when performing MAL-PDT in Asian patients with acne compared with Caucasians.

  15. Role of ions in the regulation of light-harvesting

    Directory of Open Access Journals (Sweden)

    Radek Kana

    2016-12-01

    Full Text Available Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer. Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl- attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids, provides an electrical field. The electrical double layer is affected by the valence of the ions and interferes with the regulation of state transitions, protein interactions, and excitation energy spillover from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching of the excited state of chlorophyll a. A triggering of non-photochemical quenching proceeds via lumen acidification and is coupled to the export of positive counter-ions (Mg2+, K+ to the stroma or/and negative ions (e.g., Cl- into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+ in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of electrical double layer, proposed by James Barber (J. Barber (1980 Biochim Biophys Acta 594:253-308 in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+ and divalent (Mg2+ ions on light-harvesting and on screening of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters.

  16. New findings regarding light intensity and its effects as a zeitgeber in the Sprague-Dawley rat

    Science.gov (United States)

    Tischler, A. C.; Winget, C. M.; Holley, D. C.; Deroshia, C. W.; Gott, J.; Mele, G.; Callahan, P. X.

    1993-01-01

    In most mammals, the suprachiasmatic nucleus of the anterior hypothalamus has been implicated as the central driving mechanism of circadian rhythmicity. The photic input from the retina, via the retino-hypothalamic tract, and modulation from the pineal gland help regulate the clock. In this study, we investigated the effects of low light intensity on the circadian system of the Sprague-Dawley rat. A series of light intensity experiments were conducted to determine if a light level of 0.1 Lux will maintain entrained circadian rhythms of feeding, drinking, and locomotor activity.

  17. Position Detection Based on Intensities of Reflected Infrared Light

    DEFF Research Database (Denmark)

    Christensen, Henrik Vie

    This thesis focuses on development of methods for using infrared sensors for position detection. There exist various methods where optical sensors are used to give position estimates, many utilizing multiple cameras. The overall approach in this thesis is to base a position detection sensor system...... challenge of this work is to reconstruct the object position based on knowledge of the emitted and received signals. Methods for reconstructing the object position has been developed for both 3D space and 2D space. The method for position reconstruction in 3D space is based on a 3D Reflection Map Model....... The 3D Reflection Map Model is developed to model the intensities of light reflected by a spherical object. The 3D object position is reconstructed by searching the parameter space of the 3D Reflection Map Model. The position reconstruction for the 2D space is based on simple calculations on the direct...

  18. The risk of retina damage from high intensity light sources.

    Science.gov (United States)

    Pollak, V A; Romanchuk, K G

    1980-05-01

    The risk of thermal damage to the retina of the eye by exposure to excessive light intensities from continuous and pulsed man-made sources is discussed. The probability of injury increases, the larger the radiant power absorbed by the retina and the smaller the size of the retinal image of the source. A mehtod of estimating the temperature increase of the immediately affected area of the retina is presented. The time constants involved are also briefly considered. Using numerical values from literature for the relevant parameters of the eye, threshold values for a variety of conditions can be established. Below these values little risk of retina damage should exist. The degree of hazard when these values are exceeded depends upon the circumstances. A case study of a welding accident showed good agreement between the conclusions of the theoretical analysis and clinical findings.

  19. Intense pulsed light sintering of copper nanoink for printed electronics

    Science.gov (United States)

    Kim, Hak-Sung; Dhage, Sanjay R.; Shim, Dong-Eun; Hahn, H. Thomas

    2009-12-01

    An intense pulsed light (IPL) from a xenon flash lamp was used to sinter copper nanoink printed on low-temperature polymer substrates at room temperature in ambient condition. The IPL can sinter the copper nanoink without damaging the polymer substrates in extremely short time (2 ms). The microstructure of the sintered copper film was investigated using X-ray powder diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), X-ray micro tomography, and atomic force microscopy (AFM). The sintered copper film has a grainy structure with neck-like junctions. The resulting resistivity was 5 μΩ cm of electrical resistivity which is only 3 times as high as that of bulk copper. The IPL sintering technique allows copper nanoparticles to be used in inkjet printing on low-temperature substrates such as polymers in ambient conditions.

  20. Granulomatous tattoo reaction induced by intense pulse light treatment.

    Science.gov (United States)

    Tourlaki, Athanasia; Boneschi, Vinicio; Tosi, Diego; Pigatto, Paolo; Brambilla, Lucia

    2010-10-01

    Cosmetic tattooing involves implantation of pigments into the dermis in order to create a permanent makeup. Here, we report a case of sarcoidal granulomatous reaction to old cosmetic tattoos after an intense pulsed light (IPL) treatment for facial skin rejuvenation. We consider this case as a peculiar example of photo-induced reaction to tattoo. In addition, we hypothesize that an underlying immune dysfunction was present, and acted as a predisposing factor for this unusual response, as the patient had suffered from an episode of acute pulmonary sarcoidosis 15 years before. Overall, our observation suggests that IPL treatment should be used cautiously in patients with tattoos, especially when a history of autoimmune disease is present.

  1. Intense pulsed light sintering of copper nanoink for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak-Sung; Dhage, Sanjay R.; Shim, Dong-Eun [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); Hahn, H.T. [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); University of California, Material Science and Engineering Department, California NanoSystems Institute, Los Angeles, CA (United States)

    2009-12-15

    An intense pulsed light (IPL) from a xenon flash lamp was used to sinter copper nanoink printed on low-temperature polymer substrates at room temperature in ambient condition. The IPL can sinter the copper nanoink without damaging the polymer substrates in extremely short time (2 ms). The microstructure of the sintered copper film was investigated using X-ray powder diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), X-ray micro tomography, and atomic force microscopy (AFM). The sintered copper film has a grainy structure with neck-like junctions. The resulting resistivity was 5{mu}{omega} cm of electrical resistivity which is only 3 times as high as that of bulk copper. The IPL sintering technique allows copper nanoparticles to be used in inkjet printing on low-temperature substrates such as polymers in ambient conditions. (orig.)

  2. Light-dependent magnetoreception in birds: the effect of intensity of 565-nm green light

    Science.gov (United States)

    Wiltschko, W.; Wiltschko, R.; Munro, U.

    In a previous study, Australian silvereyes tested in autumn under monochromatic 565-nm green light at intensities of 2.1 and 7.5mWm-2 preferred their normal northerly migratory direction, whereas they showed a significantly different tendency towards northwest at 15.0mWm-2. Repeating these experiments in spring with silvereyes migrating southward, we again observed well-oriented tendencies in the migratory direction at 2.1 and 7.5mWm-2. At 15.0mWm-2, however, the birds once more preferred northwesterly directions, i.e. their response under this condition proved to be independent of the migratory direction. This contradicts the interpretation that monochromatic green light of this high intensity leads to a rotation of compass information; instead, it appears to produce sensory input that causes birds to give up their migratory direction in favor of a fixed direction of as yet unknown origin.

  3. Directional migration of cancer cells induced by a blue light intensity gradient.

    Science.gov (United States)

    Lan, Chien-Chih; Lu, Eugene Youjhen; Pan, Huei-Jyuan; Lee, Chau-Hwang

    2015-07-01

    We used a spatial light modulator to project an optical micropattern of 473 nm light with a quartic intensity gradient on a single lung cancer cell. We observed that the intracellular amounts of reactive oxygen species (ROS) of the cancer cells were proportional to the intensity of the blue light, and the blue light intensity gradients could drive directional cell migration. This optically induced directional cell migration was inhibited by a ROS scavenger in the culture medium in a dose-dependent manner. In contrast, the ROS levels in fibroblasts were saturated by the blue light at low intensity and therefore the fibroblasts did not exhibit directional migration in the intensity gradient.

  4. 'In a dark place, we find ourselves': light intensity in critical care units.

    Science.gov (United States)

    Durrington, Hannah J; Clark, Richard; Greer, Ruari; Martial, Franck P; Blaikley, John; Dark, Paul; Lucas, Robert J; Ray, David W

    2017-12-01

    Intensive care units provide specialised care for critically ill patients around the clock. However, intensive care unit patients have disrupted circadian rhythms. Furthermore, disrupted circadian rhythms are associated with worse outcome. As light is the most powerful 're-setter' of circadian rhythm, we measured light intensity on intensive care unit. Light intensity was low compared to daylight during the 'day'; frequent bright light interruptions occurred over 'night'. These findings are predicted to disrupt circadian rhythms and impair entrainment to external time. Bright lighting during daytime and black out masks at night might help maintain biological rhythms in critically ill patients and improve clinical outcomes.

  5. Experimental Effective Intensity of Steady and Flashing Light Emitting Diodes for Aircraft Anti-Collision Lighting

    Science.gov (United States)

    2013-08-01

    Human Factors Division, (ANG-C1). The authors of this paper acknowledge the support of Dr. Yoshi Ohno of the National Institute of Standards and...and analytically ( Ohno & Couzin, 2002) for use with LEDs. In addition, other models have been proposed as alternatives for measuring the effective...intensity of a pulsed light source such as the Allard method (Allard, 1876) and the form-factor method (Schmidt-Clausen, 1968). Ohno and Couzin (2002

  6. Lighting intensity of the soilsurface and restocking of oak groves

    Science.gov (United States)

    Slepykh, Victor; Zubko, Anna; Povolotckaia, Nina

    2016-04-01

    Oak groves of Caucasian Mineral Vody region (CMVR) possess a high ecological and balneological potential which defines the significance of their preservation and reproduction [1]. The role assessment of lighting intensity on renewal of oak groves was carried out on four trial squares (ts) in natural sixty-seven years old forest stand with prevalence of English oak (Quercus robur L.) with unimodal sity (type of the habitat - C1). The illumination was measured at the grass level by the universal measuring instrument of meteoparameters ATT-9508 with an illumination sensor of ATA-1591. The assessment of reforestation was carried out according to the established standards [2]. In the winter of 2005 there was conducted a selecting cutting cabin of the forest stand according to a local method on ts2 with intensity 30%, on ts4 - 50% after which the illumination on the soil surface in relation to illumination of an open place in the summer of 2005 increased from 4.9% to 33.9% on ts2, and from 5.9% to 24.4% on ts4. But by 2014 the illumination decreased till 3.0% on ts2, till 5.4% on ts4 because of an intensive soil grassing down. The control was carried out by ts1 and ts3 on which from 2005 to 2014 the illumination of the soil surface decreased from 4 to 2% as a result of the development of all storeys. As a result due to an intensive soil grassing-down, the total quantity of young oak trees decreased from 2005 to 2014 from 25.6 thousand pcs/ha to 5.9 thousand pcs/ha on ts2; on from 17.3 thousand pcs/ha to 4.0 thousand pcs/ha on ts4. At the same time the total quantity of young oak trees on control squares increased respectively for 1.4% (from 18.8 thousand pcs/ha to 19.1 thousand pcs/ha) on ts1, for 38.7% (from 25.2 thousand pcs/ha to 41.1 thousand pcs/ha). The experiment showed that small young oak trees perishes in the first years of their life from a lack of light and competition from grasland vegetation without providing successful reforestation. Conclusion. So it is

  7. The Physiologic Reaction of Cucumber to Low Temperature and Low Light Intensity

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing-jun; ZHANG Fu-man; WANG Yong-jian; Kurata Kenji

    2003-01-01

    The dynamics of chlorophyll content, leaf area and photosynthesis of cucumber seedlings were studied under sole stress of two low temperatures and low light intensity as well as combined stresses of low light intensity and the two low temperatures. The results showed that low light intensity reduced sensitivity of cucumber to low temperature and improved chlorophyll content, leaf area and chlorophyll fluorescence quantum yield. The photosynthesis rate was reduced under low light intensity. The intensity of light played the leading role in growth of cucumber under the low temperature condition, while the low temperature played the leading role under the critical low temperature condition. There were differences in reaction to light and temperature among different varieties. The tolerance to low temperature and low light intensity was not always synergetic for the same cucumber variety.

  8. Early Birds by Light at Night: Effects of Light Color and Intensity on Daily Activity Patterns in Blue Tits

    NARCIS (Netherlands)

    Jong, Maaike de; Caro, Samuel P.; Gienapp, Phillip; Spoelstra, Kamiel; Visser, Marcel E.

    2017-01-01

    Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits (Cyanistes caeruleus) exposed to similar intensities of

  9. Affect-regulated exercise intensity: does training at an intensity that feels 'good' improve physical health?

    Science.gov (United States)

    Parfitt, Gaynor; Alrumh, Amnah; Rowlands, Alex V

    2012-11-01

    Affect-regulated exercise to feel 'good' can be used to control exercise intensity amongst both active and sedentary individuals and should support exercise adherence. It is not known, however, whether affect-regulated exercise training can lead to physical health gains. The aim of this study was to examine if affect-regulated exercise to feel 'good' leads to improved fitness over the course of an 8-week training programme. A repeated measures design (pretest-posttest) with independent groups (training and control). 20 sedentary females completed a submaximal graded exercise test and were then allocated to either a training group or control group. The training group completed two supervised sessions and one unsupervised session per week for 8 weeks. Exercise intensity was affect-regulated to feel 'good'. Following the 8 weeks of training, both groups completed a second submaximal graded exercise test. Repeated measures analyses of variance indicated a significant increase in the time to reach ventilatory threshold in the training group (318 ± 23.7s) compared to control (248 ± 16.9s). Overall compliance to training was high (>92%). Participants in the training group exercised at intensities that would be classified as being in the lower range of the recommended guidelines (≈ 50% V˙O(2) max) for cardiovascular health. Affect-regulated exercise to feel 'good' can be used in a training programme to regulate exercise intensity. This approach led to a 19% increase in time to reach ventilatory threshold, which is indicative of improved fitness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30.

    Science.gov (United States)

    Xu, Yanan; Ibrahim, Iskander M; Harvey, Patricia J

    2016-09-01

    The green microalga Dunaliella salina survives in a wide range of salinities via mechanisms involving glycerol synthesis and degradation and is exploited for large amounts of nutraceutical carotenoids produced under stressed conditions. In this study, D. salina CCAP 19/30 was cultured in varying photoperiods and light intensities to study the relationship of light with different growth measurement parameters, with cellular contents of glycerol, starch and carotenoids, and with photosynthesis and respiration. Results show CCAP 19/30 regulated cell volume when growing under light/dark cycles: cell volume increased in the light and decreased in the dark, and these changes corresponded to changes in cellular glycerol content. The decrease in cell volume in the dark was independent of cell division and biological clock and was regulated by the photoperiod of the light/dark cycle. When the light intensity was increased to above 1000 μmol photons m(-2) s(-1), cells displayed evidence of photodamage. However, these cells also maintained the maximum level of photosynthesis efficiency and respiration possible, and the growth rate increased as light intensity increased. Significantly, the intracellular glycerol content also increased, >2-fold compared to the content in light intensity of 500 μmol photons m(-2) s(-1), but there was no commensurate increase in the pool size of carotenoids. These data suggest that in CCAP 19/30 glycerol stabilized the photosynthetic apparatus for maximum performance in high light intensities, a role normally attributed to carotenoids.

  11. Human wavelength discrimination of monochromatic light explained by optimal wavelength decoding of light of unknown intensity.

    Directory of Open Access Journals (Sweden)

    Li Zhaoping

    Full Text Available We show that human ability to discriminate the wavelength of monochromatic light can be understood as maximum likelihood decoding of the cone absorptions, with a signal processing efficiency that is independent of the wavelength. This work is built on the framework of ideal observer analysis of visual discrimination used in many previous works. A distinctive aspect of our work is that we highlight a perceptual confound that observers should confuse a change in input light wavelength with a change in input intensity. Hence a simple ideal observer model which assumes that an observer has a full knowledge of input intensity should over-estimate human ability in discriminating wavelengths of two inputs of unequal intensity. This confound also makes it difficult to consistently measure human ability in wavelength discrimination by asking observers to distinguish two input colors while matching their brightness. We argue that the best experimental method for reliable measurement of discrimination thresholds is the one of Pokorny and Smith, in which observers only need to distinguish two inputs, regardless of whether they differ in hue or brightness. We mathematically formulate wavelength discrimination under this wavelength-intensity confound and show a good agreement between our theoretical prediction and the behavioral data. Our analysis explains why the discrimination threshold varies with the input wavelength, and shows how sensitively the threshold depends on the relative densities of the three types of cones in the retina (and in particular predict discriminations in dichromats. Our mathematical formulation and solution can be applied to general problems of sensory discrimination when there is a perceptual confound from other sensory feature dimensions.

  12. Disruptive effects of light pollution on sleep in free-living birds: Season and/or light intensity-dependent?

    Science.gov (United States)

    Raap, Thomas; Sun, Jiachen; Pinxten, Rianne; Eens, Marcel

    2017-09-01

    Light pollution or artificial light at night (ALAN) is an increasing anthropogenic environmental pollutant posing an important potential threat for wildlife. Evidence of its effects on animal physiology and behaviour is accumulating. However, in order to effectively mitigate light pollution it is important to determine which factors contribute to the severity of effects of ALAN. In this experimental study we explored whether there are seasonal-dependent effects of ALAN on sleep in free-living great tits (Parus major), an important model species. Additionally, we looked at whether light intensity determined the severity of effects of ALAN on sleep. We therefore exposed animals to artificial light inside the nest box (3lx) in December (winter) and February (pre-breeding season). Results from February were compared with the results from a previous study in February, using a lower light intensity (1.6lx). We found little evidence for a season-dependent response. Effects of ALAN hardly differed between high and low light intensity. ALAN disrupted sleep with as main effect a decrease in sleep duration (≈-40min) as animals woke up earlier (≈-24min). However, compared to a natural dark situation sleep onset was delayed by high but not by low light intensity of ALAN. Our study underlines earlier found disruptive effects of ALAN on sleep of free-living animals. While we found no conclusive evidence for seasonal or light intensity-dependent effects of ALAN, additional experimental work using lower light intensities might show such differences. Examining potential management options is crucial in mitigating disruptive effects of light pollution, which will be an important focus for future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Light-Regulated Stomatal Aperture in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Chen Chen; Yu-Guo Xiao; Xin Li; Min Ni

    2012-01-01

    The stomatal pores of plant leaves,situated in the epidermis and surrounded by a pair of guard cells,allow CO2 uptake for photosynthesis and water loss through transpiration.Blue light is one of the dominant environmental signals that control stomatal movements in leaves of plants in a natural environment.This blue light response is mediated by blue/UV A light-absorbing phototropins (phots) and cryptochromes (crys).Red/far-red light-absorbing phytochromes (phys) also play a role in the control of stomatal aperture.The signaling components that link the perception of light signals to the stomatal opening response are largely unknown.This review discusses a few newly discovered nuclear genes,their function with respect to the phot-,cry-,and phy-mediated signal transduction cascades,and possible involvement of circadian clock.

  14. Growth of shredders on leaf litter biofilms: the effect of light intensity

    NARCIS (Netherlands)

    Franken, R.J.M.; Waluto, B.; Peeters, E.T.H.M.; Gardeniers, J.J.P.; Beijer, J.A.J.; Scheffer, M.

    2005-01-01

    1. The effect of light intensity on the decomposition of poplar (Populus nigra) leaves and growth of the shredders, Asellus aquaticus and Gammarus pulex, was studied in a laboratory experiment. The response was studied along a gradient of six light intensities of 0, 5, 23, 54, 97 and 156 ¿mol m -2 s

  15. Forage and seed production of Puero (Pueraria javanica in a Different Light intensity level

    Directory of Open Access Journals (Sweden)

    Fanindi A

    2016-06-01

    Full Text Available Puero (Pueraria javanica is forage that can serve as a cover crop in plantations. The limiting factor for plant growth in the plantation is the light intensity, therefore the influence of light intensity on forage and seed production of Puero needs to be examined. Research was conducted at Kaum Pandak Research station of Indonesian Research Institute for Animal Production Bogor and Laboratory of Agrostology Faculty of Animal Husbandry, Bogor Agricultural University, for 16 months. Four levels of light intensity,i.e 100, 80,60 and 40% were applied, leguminosainous species Puero (Pueraria javanica, was used. The treatments were arangged in Randomized Complete Block Design with 3 replications. Data collected were analyzed by ANOVA and Duncan’s Multiple Range Test. Forage production was evaluated in one year. The forage quality and digestibility (invitro were assessed. Seed production was recorded accumulatively from seasonal seed production during one year. Results show that light intensity affected (P 0.05 quality and digestibility of Puero. The highest forage and seed production of Puero were obtained from full light intensity (100%. and seed production of Puero was affected (P < 0.05 by light intensity. The seed quality of Puero was also affected by light intensity. The best seed quality of Puero was achieved by from 80% light intensity.

  16. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities

    NARCIS (Netherlands)

    Remmers, Ilse M.; Martens, Dirk E.; Wijffels, René H.; Lamers, Packo P.

    2017-01-01

    Lipid production in microalgae is highly dependent on the applied light intensity. However, for the EPA producing model-diatom Phaeodactylum tricornutum, clear consensus on the impact of incident light intensity on lipid productivity is still lacking. This study quantifies the impact of different

  17. Interactive effects of photoperiod and light intensity on blood physiological and biochemical reactions of broilers grown to heavy weights.

    Science.gov (United States)

    Olanrewaju, H A; Purswell, J L; Collier, S D; Branton, S L

    2013-04-01

    The effects of photoperiod, light intensity, and their interaction on blood acid-base balance, metabolites, and electrolytes in broiler chickens under environmentally controlled conditions were examined in 2 trials. A 3 × 3 factorial experiment in a randomized complete block design was used in this study. In each trial, all treatment groups were provided 23L:1D with 20 lx of intensity from placement to 7 d, and then subjected to the treatments. The 9 treatments consisted of 3 photoperiods [long/continuous (23L:1D) from d 8 to 56, regular/intermittent (2L:2D), and short/nonintermittent (8L:16D) from d 8 to 48 and 23L:1D from d 49 to 56, respectively] and exposure to 3 light intensities (10, 5.0, and 0.5 lx) from d 8 through d 56 at 50% RH. Feed and water were provided ad libitum. Venous blood samples were collected on d 7, 14, 28, 42, and 56. Main effects indicated that short/nonintermittent photoperiod significantly (P light intensity, or their interaction. There was no effect of light intensity on most of the blood variables examined. Acid-base regulation during photoperiod and light intensity exposure did not deteriorate despite a lower pH and higher partial pressure of CO2 with normal HCO3(-). These results indicate that continuous exposure of broiler chickens to varying light intensities had a minor effect on blood physiological variables, whereas the short photoperiod markedly affected most blood physiological variables without inducing physiological stress in broilers.

  18. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities.

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    Full Text Available Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad. 'Sambok Honey' and 'Speed' as the scion and bottle gourd (Lagenaria siceraria Stanld. 'RS Dongjanggun' as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m-2 s-1. Our proteomic analysis revealed 24 and 27 differentially expressed proteins in 'Sambok Honey' and 'Speed', respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m-2 s-1 results in better protein expression responses in grafted seedlings.

  19. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities.

    Science.gov (United States)

    Muneer, Sowbiya; Ko, Chung Ho; Soundararajan, Prabhakaran; Manivnnan, Abinaya; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) 'Sambok Honey' and 'Speed' as the scion and bottle gourd (Lagenaria siceraria Stanld.) 'RS Dongjanggun' as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m-2 s-1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in 'Sambok Honey' and 'Speed', respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m-2 s-1 results in better protein expression responses in grafted seedlings.

  20. The effect of light intensity on growth and development of turkey toms.

    Science.gov (United States)

    Yahav, S; Hurwitz, S; Rozenboim, I

    2000-03-01

    1. The effect of light intensities from 10 to 700 lux on the performance of 5 to 18 week-old turkey males was studied in 2 trials. 2. Body weight of 18 week-old turkeys, in both experiments, was highest under the lowest light intensity This coincided with higher weight gain and lower food intake, which resulted in significantly better food conversion efficiency 3. Light intensity affected heart muscle weight but not weight of breast muscle, abdominal fat or testis as proportions of body weight. 4. The decline in plasma T3 concentration with age differed from other treatments at the low light intensity, which resulted in a significantly higher T3 concentration in turkeys exposed to 10 lux at the age of 10 to 15 weeks. 5. It is concluded that light intensity significantly affects food conversion efficiency in turkey males. This is likely to be related to differential investment of energy expenditure for maintenance.

  1. The Flux of Euglena gracilis Cells Depends on the Gradient of Light Intensity

    Science.gov (United States)

    Ogawa, Takuma; Shoji, Erika; Suematsu, Nobuhiko J.; Nishimori, Hiraku; Izumi, Shunsuke; Awazu, Akinori; Iima, Makoto

    2016-01-01

    We have quantified the photomovement behavior of a suspension of Euglena gracilis representing a behavioral response to a light gradient. Despite recent measurements of phototaxis and photophobicity, the details of macroscopic behavior of cell photomovements under conditions of light intensity gradients, which are critical to understand recent experiments on spatially localized bioconvection patterns, have not been fully understood. In this paper, the flux of cell number density under a light intensity gradient was measured by the following two experiments. In the first experiment, a capillary containing the cell suspension was illuminated with different light intensities in two regions. In the steady state, the differences of the cell numbers in the two regions normalized by the total number were proportional to the light difference, where the light intensity difference ranged from 0.5–2.0 μmol m−2 s−1. The proportional coefficient was positive (i.e., the bright region contained many microorganisms) when the mean light intensity was weak (1.25 μmol m−2 s−1), whereas it was negative when the mean intensity was strong (13.75 μmol m−2 s−1). In the second experiment, a shallow rectangular container of the suspension was illuminated with stepwise light intensities. The cell number density distribution exhibited a single peak at the position where the light intensity was about Ic ≃ 3.8 μmol m−2 s−1. These results suggest that the suspension of E. gracilis responded to the light gradient and that the favorable light intensity was Ic. PMID:28033336

  2. The light responsive transcriptome of the zebrafish: function and regulation.

    Directory of Open Access Journals (Sweden)

    Benjamin D Weger

    Full Text Available Most organisms possess circadian clocks that are able to anticipate the day/night cycle and are reset or "entrained" by the ambient light. In the zebrafish, many organs and even cultured cell lines are directly light responsive, allowing for direct entrainment of the clock by light. Here, we have characterized light induced gene transcription in the zebrafish at several organizational levels. Larvae, heart organ cultures and cell cultures were exposed to 1- or 3-hour light pulses, and changes in gene expression were compared with controls kept in the dark. We identified 117 light regulated genes, with the majority being induced and some repressed by light. Cluster analysis groups the genes into five major classes that show regulation at all levels of organization or in different subset combinations. The regulated genes cover a variety of functions, and the analysis of gene ontology categories reveals an enrichment of genes involved in circadian rhythms, stress response and DNA repair, consistent with the exposure to visible wavelengths of light priming cells for UV-induced damage repair. Promoter analysis of the induced genes shows an enrichment of various short sequence motifs, including E- and D-box enhancers that have previously been implicated in light regulation of the zebrafish period2 gene. Heterologous reporter constructs with sequences matching these motifs reveal light regulation of D-box elements in both cells and larvae. Morpholino-mediated knock-down studies of two homologues of the D-box binding factor Tef indicate that these are differentially involved in the cell autonomous light induction in a gene-specific manner. These findings suggest that the mechanisms involved in period2 regulation might represent a more general pathway leading to light induced gene expression.

  3. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.

    Science.gov (United States)

    Niederman, Robert A

    2013-10-01

    for membrane development studies in Rba. sphaeroides, the lowering of oxygen tension in chemoheterotropically growing cells results in a gratuitous formation of the ICM by an extensive membrane biogenesis process. These membrane alterations in response to lowered illumination and oxygen levels in purple bacteria are under the control of a number of interrelated two-component regulatory circuits reviewed here, which act at the transcriptional level to regulate the formation of both the pigment and apoprotein components of the LH, RC, and respiratory complexes. We have performed a proteomic examination of the ICM development process in which membrane proteins have been identified that are temporally expressed both during adaptation to low light intensity and ICM formation at low aeration and are spatially localized in both growing and mature ICM regions. For these proteomic analyses, membrane growth initiation sites and mature ICM vesicles were isolated as respective upper-pigmented band (UPB) and chromatophore fractions and subjected to clear native electrophoresis for isolation of bands containing the LH2 and RC-LH1 core complexes. In chromatophores, increasing levels of LH2 polypeptides relative to those of the RC-LH1 complex were observed as ICM membrane development proceeded during light-intensity downshifts, along with a large array of other associated proteins including high spectral counts for the F1FO-ATP synthase subunits and the cytochrome bc1 complex, as well as RSP6124, a protein of unknown function, that was correlated with increasing LH2 spectral counts. In contrast, the UPB was enriched in cytoplasmic membrane (CM) markers, including electron transfer and transport proteins, as well as general membrane protein assembly factors confirming the origin of the UPB from both peripheral respiratory membrane and sites of active CM invagination that give rise to the ICM. The changes in ICM vesicles were correlated to AFM mapping results (Adams and Hunter, Biochim

  4. Characterization of light-dependent regulation of state transitions in gymnosperms.

    Science.gov (United States)

    Verhoeven, Amy S; Kertho, Albert; Nguyen, Mary

    2016-03-01

    The goal of this study was to characterize the light-dependent regulation of state transitions in gymnosperms. Two species of conifer were examined: eastern white pine (Pinus strobus L.) and white spruce [Picea glauca (Moench) Voss], as well as the angiosperm pumpkin (Cucurbita pepo L. subsp. pepo). Both diurnal time courses in the field and manipulated light experiments in growth chambers were conducted. Results from chlorophyll fluorescence analysis indicated that pumpkin was able to use a larger fraction of absorbed light to drive photochemistry and retain a lower reduction state at a given light intensity relative to the conifers. Results from western blots using anti-phosphothreonine demonstrate that in field conditions, conifers maintained higher light-harvesting complex II (LHCII) phosphorylation than pumpkin; however, this was likely due to a more variable light environment. Manipulated light experiments showed that general patterns of light-dependent LHCII phosphorylation were similar in conifers and pumpkin, with low levels of LHCII phosphorylation occurring in darkness and maximal levels occurring in low light conditions. However, high light-dependent dephosphorylation of LHCIII appears to be regulated differently in conifers, with conifers maintaining phosphorylation of LHCII proteins at higher excitation pressure compared with pumpkin. Additionally, spruce needles maintained relatively high phosphorylation of LHCII even in very high light conditions. Our results suggest that this difference in dephosphorylation of LHCII may be due to differences in the stromal redox status in spruce relative to pine and pumpkin.

  5. Phytochrome A and B Regulate Primary Metabolism in Arabidopsis Leaves in Response to Light

    Directory of Open Access Journals (Sweden)

    Xiaozhen Han

    2017-08-01

    Full Text Available Primary metabolism is closely linked to plant productivity and quality. Thus, a better understanding of the regulation of primary metabolism by photoreceptors has profound implications for agricultural practices and management. This study aims at identifying the role of light signaling in the regulation of primary metabolism, with an emphasis on starch. We first screened seven cryptochromes and phytochromes mutants for starch phenotype. The phyAB mutant showed impairment in starch accumulation while its biomass, chlorophyll fluorescence parameters, and leaf anatomy were unaffected, this deficiency being present over the whole vegetative growth period. Mutation of plastidial nucleoside diphosphate kinase-2 (NDPK2, acting downstream of phytochromes, also caused a deficit in starch accumulation. Besides, the glucose-1-phosphate adenylyltransferase small subunit (APS1 was down-regulated in phyAB. Those results suggest that PHYAB affect starch accumulation through NDPK2 and APS1. Then, we determined changes in starch and primary metabolites in single phyA, single phyB, double phyAB grown in light conditions differing in light intensity and/or light spectral content. PHYA is involved in starch accumulation in all the examined light conditions, whereas PHYB only exhibits a role under low light intensity (44 ± 1 μmol m-2 s-1 or low R:FR (11.8 ± 0.6. PCA analysis of the metabolic profiles in the mutants and wild type (WT suggested that PHYB acts as a major regulator of the leaf metabolic status in response to light intensity. Overall, we propose that PHYA and PHYB signaling play essential roles in the control of primary metabolism in Arabidopsis leaves in response to light.

  6. Response Characteristics of Plant Bioelectric Potential to Light Intensity Indoor and Outdoor

    Science.gov (United States)

    Shimbo, Tatsuya; Fujii, Masaki; Sawada, Ayako; Oyabu, Takashi; Kimura, Haruhiko

    Plant is affected by environmental factors. For example, these are temperature, humidity and light intensity. The light intensity affected strongly to the plant. The plant produces glucose and oxygen with photosynthesis. Moreover, light intensity is important to purify the contaminants in the atmosphere. In this study, it was examined whether the plant is affected by temperature, wind grade and soil moisture using bioelectric potential characteristics of the plant. Especially plant bioelectric potential to light intensity change was measured. The measurement was carried out in indoor and outdoor. As for the result, the differences of plant bioelectric potential characteristics in the indoor and outdoor were recognized. At that analysis, the integrated value of plant bioelectric potential for 1 minute (vm1) was adopted. Moreover, a high correlation was indicated between the vm1 and light intensity. The correlation coefficient was R2=0.94. It becomes obvious that the plant is affected strongly by light intensity and the plant can understand the environmental factors like light intensity. The characteristics are found by measuring bioelectric potential of the plant. The environmental sensing can be possible by the use of the plant bioelectric potential.

  7. Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp.

    Science.gov (United States)

    Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang

    2014-02-01

    A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.

  8. Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front.

    Science.gov (United States)

    Kazansky, Peter G; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Beresna, Martynas; Gecevičius, Mindaugas; Svirko, Yuri; Akturk, Selcuk; Qiu, Jianrong; Miura, Kiyotaka; Hirao, Kazuyuki

    2011-10-10

    We present the first experimental evidence of anisotropic photosensitivity of an isotropic homogeneous medium under uniform illumination. Our experiments reveal fundamentally new type of light induced anisotropy originated from the hidden asymmetry of pulsed light beam with a finite tilt of intensity front. We anticipate that the observed phenomenon, which enables employing mutual orientation of a light polarization plane and pulse front tilt to control interaction of matter with ultrashort light pulses, will open new opportunities in material processing.

  9. Fifty Cases of Chloasma Treated by Acupuncture plus Intensive Pulse Light Irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To observe the clinical therapeutic effect of acupuncture plus intensive pulse light irradiation on chloasma. Methods: Ninety-six cases of chloasma were randomly divided into two groups, the control group of 46 cases treated by simple acupuncture and the treatment group of 50 cases treated by acupuncture and intensive pulse light irradiation. Results: The total effective rate was 89.1% and 98.0% in the control group and treatment group respectively, with a significant difference between the two groups (P<0.05). Conclusion: For chloasma, the effect of treatment with acupuncture plus intensive pulse light irradiation is superior to that with simple acupuncture.

  10. The effect of temperature and light intensity on hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Inci [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Sevinc, Pelin [Middle East Technical Univ., Ankara (Turkey). Dept. of Biotechnology; Guenduez, Ufuk; Yucel, Meral [Middle East Technical Univ., Ankara (Turkey). Dept. of Biological Sciences

    2010-07-01

    Rhodobacter capsulatus is a purple non-sulfur photosynthetic bacterium which can produce hydrogen by photofermentation on acetate and lactate. Hydrogen productivity depends on several parameters such as medium composition, pH, light intensity and temperature. In the present study, the effects of temperature and light intensity on hydrogen production were investigated. The cell growth curve has been fitted to the logistic model and hydrogen productivity was interpreted by Modified Gompertz Equation. The maximum productivity was obtained at 30 C and light intensity of 4000 lux. (orig.)

  11. Effect of the light spectrum of various substrates for inkjet printed conductive structures sintered with intense pulsed light

    Science.gov (United States)

    Weise, Dana; Mitra, Kalyan Yoti; Ueberfuhr, Peter; Baumann, Reinhard R.

    2015-02-01

    In this work, the novel method of intense pulsed light (IPL) sintering of a nanoparticle silver ink is presented. Various patterns are printed with the Inkjet technology on two flexible foils with different light spectra. One is a clear Polyethylenterephthalat [PET] foil and the second is a light brownish Polyimide [PI] foil. The samples are flashed with different parameters regarding to pulse intensity and pulse length. Microscopic images are indicating the impact of the flashing parameters and the different light spectra of the substrates on the sintered structures. Sheet and line resistance are measured and the conductivity is calculated. A high influence of the property of the substrate with respect to light absorption and thermal conductivity on the functionality of printed conductive structures could be presented. With this new method of IPL sintering, highly conductive inkjet printed silver patterns could be manufactured within milliseconds on flexible polymeric foils without damaging the substrate.

  12. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    Science.gov (United States)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  13. Intensity noise and spontaneous emission coupling in superluminescent light sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, H.F. (Dept. of Electrical Engineering, Texas A and M Univ., College Station, TX (US))

    1990-01-01

    A simple expression for the noise in the photocurrent generated by the detection of light from an ideal superluminescent source is derived using a quantum amplifier model. The excess noise factor {ital X} is found to be related to the photocurrent {ital I{sub d}}, electronic charge, {ital e}, spontaneous emission coupling factor {ital K}, and full width at half maximum power of the emission spectrum {Delta}{ital v}{sub 1/2} by the expression {ital X} = 0.664 {ital I{sub d}/eK}{Delta}{ital v}{sub 1/2}. Implications of this result for the performance of fiberoptic gyroscopes using superluminescent diode (SLD) light sources and for the design of low-noise SLD's are discussed.

  14. Light intensity distribution of a new type of contact laser scalpel

    Institute of Scientific and Technical Information of China (English)

    Jin Fan; Kun Yang; Chuanqing Zhou; Xinyu Chai; Qiushi Ren

    2008-01-01

    The emergent light distribution of a new type of contact laser scalpel is measured in three different states using a light sensor. The relationship between the angle and the light intensity is analyzed. The results show that the strongest light is emitted from two sides and the front of the scalpel. The light from the front mainly plays a role of cutting. The light from two sides contributes to stanch the wound so as to remain a clear visual field during the surgery. It also helps to increase the cutting efficiency.

  15. Influence of light intensity on growth and physiological characteristics of common sage (Salvia officinalis L.

    Directory of Open Access Journals (Sweden)

    George Zervoudakis

    2012-02-01

    Full Text Available The aim of this work was to investigate the effects of four different light intensities on the growth characteristics, physiological parameters and leaf photosynthetic pigments of Salvia officinalis L. The plant's dry mass, number of the leaves and physiological parameters indicated a strong positive correlation with the light intensity. On the other hand, the plant's height and leaf photosynthetic pigments were increased at low light treated plants. These results suggest that the aromatic herb Salvia officinalis L. is adaptable to different light environments.

  16. The Luminous Intensity Requirements of Vehicle Front Lights for Use in Towns.

    Science.gov (United States)

    Fisher, A J

    1974-01-01

    Previous studies suggest that the use of the dipped headlights on urban traffio routes lit by street lighting is undesirable because of glare, yet it is often contended that present marker lights are not adequately conspicuous. An investigation was therefore carried out, using appraisal techniques, to determine the intensity of vehicle front lights which will be adequately conspicuous without being too bright. It was found that the intensity requirements were largely independent of observer attributes, the luminance of the road surface and its surrounds and the number and movement of the vehicles. However, the results suggest that conspicuity and brightness are different attributes of a light. While both increased with increasing luminous intensity, the observers found that, for a given intensity, a larger source was the more conspicuous but that a smaller caused t he more discomfort. Optimum lighting appears to be a town beam, based on dimming the present dipped headlight, giving a straight ahead intensity of 80 ed. If the light is based on the small diameter marker light this value needs to be doubled to give adequate conspicuity, but then this light will be regarded as too bright in about one observation in twenty.

  17. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J. [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1993-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  18. Microsecond pulse width, intense, light-ion beam accelerator

    Science.gov (United States)

    Rej, D. J.; Bartsch, R. R.; Davis, H. A.; Faehl, R. J.; Greenly, J. B.; Waganaar, W. J.

    1993-10-01

    A relatively long-pulse width (0.1-1 μs) intense ion beam accelerator has been built for materials processing applications. An applied Br, magnetically insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2 MV, 300-kJ Marx generator. The diode is designed with the aid of multidimensional particle-in-cell simulations. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse shaping. The effect of a plasma opening switch on diode behavior is considered.

  19. Intense pulsed light in treatment of nevus spilus: brief report of a clinical trial

    Directory of Open Access Journals (Sweden)

    Amir Houshang Ehsani

    2014-10-01

    Conclusion: Intense pulsed light is seemed an effective and safe treatment for nevus spilus Treatment; however randomized control trials with longer follow-up periods are required to evaluate the efficacy and safety.

  20. Novel method for correcting light intensity fluctuation in the TDLAS system

    Institute of Scientific and Technical Information of China (English)

    Guojie Tu; Yu Wang; Fengzhong Dong; Hua Xia; Tao Pang; Zhirong Zhang; Bian Wu

    2012-01-01

    A novel method for online correction of light intensity fluctuation in a practical tunable diode laser absorption spectroscopy (TDLAS) system with wavelength modulation is presented.The proposed method is developed according to the linear relation between peaks at multiple frequencies of sine modulation in the power spectral density of the demodulated second-harmonic (2f) signal and the incident light intensity.Those peaks are demonstrated experimentally and explained as residual power at the first-harmonic and third-harmonic frequencies after 2f demodulation of the residual amplitude modulation signal due to the limited integrating time constant of the lock-in-amplifier.This method can achieve real-time correction of light intensity fluctuations with only little calculation.It can work well in a very large range of light intensity and has great potential applications in the wavelength modulation spectroscopy system.

  1. Light Intensity Affects Pungency of Hot Pepper (Capsicum annuum L.) Fruits

    Institute of Scientific and Technical Information of China (English)

    LV Chang-shan; WANG Jin-ling; YU Guang-jian

    2005-01-01

    This study was carried out both laboratory and field experiment to research the effects of three different light intensity on capsaicin content of hot pepper fruits during the growing stage, the varieties in the study were in different hot levels named No.4 Xiangyan (mid-hot) and No.3 Jingjianjiao (very hot). The study showed that capsaicin content increased accompanied with light intensity weakening. There was an inverse relationship between capsaicin content and peroxidase activity.

  2. Detecting quantum coherence of Bose gases in optical lattices by scattering light intensity in cavity.

    Science.gov (United States)

    Zhou, Xiaoji; Xu, Xu; Yin, Lan; Liu, W M; Chen, Xuzong

    2010-07-19

    We propose a new method of detecting quantum coherence of a Bose gas trapped in a one-dimensional optical lattice by measuring the light intensity from Raman scattering in cavity. After pump and displacement process, the intensity or amplitude of scattering light is different for different quantum states of a Bose gas, such as superfluid and Mott-Insulator states. This method can also be useful to detect quantum states of atoms with two components in an optical lattice.

  3. Modeling spatiotemporal patterns of understory light intensity using airborne laser scanner (LiDAR)

    Science.gov (United States)

    Peng, Shouzhang; Zhao, Chuanyan; Xu, Zhonglin

    2014-11-01

    This study described a spatiotemporally explicit 3D raytrace model to provide spatiotemporal patterns of understory light (light intensity in the forest floor and along the vertical gradient). The model was built based on voxels derived from LiDAR and field investigation data, geographical information (elevation and location), and solar position (azimuth and altitude angles). We calculated the distance (L, in meters) traveled by solar ray in the crowns based on the model, and then calibrated and verified the light attenuation function using L based on Beer's law. L and the ratio of below canopy light intensity to above canopy light intensity showed obviously exponential relationship, with R2 = 0.94 and P competition, soil evaporation, plant transpiration, and snowmelt in the forest.

  4. Particle acceleration studies with intense lasers and advanced light sources

    Science.gov (United States)

    Murphy, C. D.; Gray, R. J.; MacLellan, D. A.; Rusby, D.; McKenna, P.; Ridgers, C. P.; Booth, N.; Robinson, A. P. L.; Wilson, L.; Green, J. S.

    2013-10-01

    The interaction of lasers with matter is a subject which has progressed rapidly over the last two decades as higher intensity lasers are found to have possible applications in inertial fusion, laboratory astrophysics and ion acceleration for oncology or ultrafast proton probing. All of these applications require a good understanding of laser-electron coupling and fast electron transport in solid targets which has proven difficult to diagnose. Here we present data from an experiment carried out on the Astra Gemini laser system at STFC-Rutherford Appleton Laboratory, where novel targets and diagnostics illuminate the complex processes at play. An outline of how x-ray free electron lasers may further expand our understanding of such processes will also be described.

  5. Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco.

    Science.gov (United States)

    Biswal, Ajaya K; Pattanayak, Gopal K; Pandey, Shiv S; Leelavathi, Sadhu; Reddy, Vanga S; Govindjee; Tripathy, Baishnab C

    2012-05-01

    Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%-80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation.

  6. Intense pulsed light treatment of hirsutism: case reports of skin phototypes V and VI.

    Science.gov (United States)

    Johnson, F; Dovale, M

    1999-12-01

    Removal of unwanted hair is a common cosmetic concern. For hirsute women, treatment often requires drug therapy and various methods to physically remove the hair. Traditional methods of hair removal include shaving, waxing, tweezing, depilatory creams and electrolysis. Hair removal methods based on light technology, such as lasers and intense pulsed light systems, are alternative methods for longer-term hair removal. Intense pulsed light has been used in our clinic during the past 2 years to treat light-to-dark skinned patients, including skin types V and VI. We present here the treatment, using an intense pulsed light source, of three dark skinned patients with hirsutism. Patients were treated during multiple sessions (five to seven) for unwanted facial hair. Sessions were conducted monthly and patients were evaluated at follow-up sessions 2-7 months after the final treatment. Successful clearance of unwanted hair was achieved in all three patients with no pigmentary changes observed during the final follow-up sessions. Folliculitis and hyperpigmentation from tweezing were also treated by the intense pulsed light source. These results suggest that intense pulsed light is an effective source for hair removal and may, with proper parameter selection, be useful in the treatment of very dark skin types.

  7. Relationships Between the Distribution of Relative Canopy Light Intensity and the Peach Yield and Quality

    Institute of Scientific and Technical Information of China (English)

    HE Feng-li; WANG Fei; WEI Qin-ping; WANG Xiao-wei; ZHANG Qiang

    2008-01-01

    The aim of the present experiment was to study the relationship between the distribution of relative light intensity in canopy and yield and quality of Wanmi peach.The optimum relative canopy light intensity was judged to be 36.3% for high quality peaches,when canopy volumes of Wanmi peach trees with a relative light intensity<30%accounted for 7.7 and 47.9%of the total canopy volume in June and September,respectively.The canopy volume with a relative light intensity>80%was 27.7 and 3.1%of the total canopy volume in June and September.respectively.Peach canopies were divided into 0.5m×0.5m×0.5m cubes.with the relative light intensity being measured at different positions of the canopy during the growing season.Yield and fruit quality were also measured at these positions at harvest.The results showed that the relative light intensity decreased gradually from outside to inside and from top to bottom of the tree canopy.Fruit were mainly distributed in the upper and middle portions of the canopy,1.5-3.0m above ground. Regression results showed that single fruit weight and soluble solid content were positively related to relative light intensity.

  8. Emotion differentiation and intensity during acute tobacco abstinence: A comparison of heavy and light smokers.

    Science.gov (United States)

    Sheets, Erin S; Bujarski, Spencer; Leventhal, Adam M; Ray, Lara A

    2015-08-01

    The ability to recognize and label discrete emotions, termed emotion differentiation, is particularly pertinent to overall emotion regulation abilities. Patterns of deficient emotion differentiation have been associated with mood and anxiety disorders but have yet to be examined in relation to nicotine dependence. This study employed ecological momentary assessment to examine smokers' subjective experience of discrete emotions during 24-h of forced tobacco abstinence. Thirty daily smokers rated their emotions up to 23 times over the 24-hour period, and smoking abstinence was biologically verified. From these data, we computed individual difference measures of emotion differentiation, overall emotion intensity, and emotional variability. As hypothesized, heavy smokers reported poorer negative emotion differentiation than light smokers (d=0.55), along with more intense negative emotion (d=0.97) and greater negative emotion variability (d=0.97). No differences were observed in positive emotion differentiation. Across the sample, poorer negative emotion differentiation was associated with greater endorsement of psychological motives to smoke, including negative and positive reinforcement motives, while positive emotion differentiation was not.

  9. High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms

    Science.gov (United States)

    Wagner, Karoline; Bengtsson, Mia M.; Findlay, Robert H.; Battin, Tom J.; Ulseth, Amber J.

    2017-07-01

    Changes in the riparian vegetation along stream channels, diurnal light availability, and longitudinal fluctuations in the local light regime in streams influence primary production and carbon (C) cycling in benthic stream biofilms. To investigate the influence of light availability on the uptake dynamics of autochthonous and allochthonous dissolved organic carbon (DOC) in benthic biofilms, we experimentally added 13C-labeled allochthonous DOC to biofilms grown under light intensities ranging from 5 to 152 μmol photons m-2 s-1. We calculated the net C flux, which showed that benthic biofilms released autochthonous DOC across the entire light gradient. Light availability and diurnal light patterns influenced C uptake by benthic biofilms. More allochthonous DOC was respired under low light availability and at night, whereas under high light availability and during the day mainly autochthonous C was respired by the benthic biofilm community. Furthermore, phenol oxidase activity (indicative of allochthonous DOC uptake) was more elevated under low light availability, whereas beta-glucosidase activity (indicative of autochthonous DOC use) increased with light intensity. Collectively, our results suggest that biofilms exposed to high light inputs preferentially used autochthonous DOC, whereas biofilms incubated at attenuated levels showed greater use of allochthonous DOC. This has implications for the spatial dynamics of DOC uptake in streams and speaks against the occurrence of priming effects in algal-dominated stream biofilms.

  10. Seed vigor, antioxidant metabolism and initial growth characteristics of red rice seedlings under different light intensities

    Directory of Open Access Journals (Sweden)

    Tiago Zanatta Aumonde

    2013-06-01

    Full Text Available This work aimed to evaluate the effect that different intensities of light have on the physiological attributes of red rice seeds and seedlings. Before and after emergence, seedlings were exposed to light levels of 35%; 65% and 100% in a greenhouse. We evaluated shoots and roots, in terms of length and dry mass, as well as leaf area and content of chlorophyll (a,b and total. In leaves and roots, we quantified the activity of superoxide dismutase (SOD, ascorbate peroxidase (APX, catalase (CAT and guaiacol peroxidase (POX. We determined the leaf area ratio (F A, leaf mass ratio (F W, specific leaf area (S A, and shoot/root ratio (P W. At higher light intensities, shoot length decreased, whereas root length, dry mass and number of tillers increased. Leaf area was greatest in seedlings exposed to a 65% light level. The F A, F W, S A and P W were lowest at a light intensity of 100%. Differences in light intensity had qualitative and quantitative effects on chlorophyll contents. The activity of SOD and CAT was higher at lower light levels, whereas the inverse was true for APX and POX activity. Extremes of light availability alter the activity of antioxidant enzymes, negatively affecting the initial growth characteristics and photosynthetic pigments of red rice seedlings.

  11. Responses of fen plant species to groundwater level and light intensity

    NARCIS (Netherlands)

    Kotowski, W; van Andel, J; van Diggelen, R; Hogendorf, J.

    Characteristic species of sedge-moss fen communities occur in constantly wet, nutrient-poor sites with a high penetration of light through the vegetation canopy. We studied the effects of water table depth and differences in light intensity on the performance of fen species. Three fen species (Carex

  12. The application of (RCA 1P 28)-photomultiplier tubes to the detection of weak light intensities

    NARCIS (Netherlands)

    Boeschoten, F.; Milatz, J.M.W.; Smit, C.

    1954-01-01

    Two methods are discussed of measuring weak light intensities (varying but slowly with time) with the aid of a photomultiplier tube. 1°. the light-chopping method in combination with a phase- and frequency-sensitive measuring device (i.c. alternating current galvanometer 1) 2) 3) 4) 16). 2°. the c

  13. Light Intensity is Important for Hydrogen Production in NaHSO3-Treated Chlamydomonas reinhardtii.

    Science.gov (United States)

    Wei, Lanzhen; Yi, Jing; Wang, Lianjun; Huang, Tingting; Gao, Fudan; Wang, Quanxi; Ma, Weimin

    2017-03-01

    Chlamydomonas reinhardtii is a unicellular green alga that can use light energy to produce H2 from H2O in the background of NaHSO3 treatment. However, the role of light intensity in such H2 production remains elusive. Here, light intensity significantly affected the yield of H2 production in NaHSO3-treated C. reinhardtii, which was consistent with its effects on the content of O2 and the expression and activity of hydrogenase. Further, NaHSO3 was found to be able to remove O2 via a reaction of bisulfite with superoxide anion produced at the acceptor side of PSI, and light intensity affected the reaction rate significantly. Accordingly, high light and strong light but not low light can create an anaerobic environment, which is important to activate hydrogenase and produce H2. Based on the above results, we conclude that light intensity plays an important role in removing O2 and consequently activating hydrogenase and producing H2 in NaHSO3-treated C. reinhardtii. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Effect of light intensity and irradiation time on the polymerization process of a dental composite resin

    Directory of Open Access Journals (Sweden)

    Discacciati José Augusto César

    2004-01-01

    Full Text Available Polymerization shrinkage is a critical factor affecting the longevity and acceptability of dental composite resins. The aim of this work was to evaluate the effect of light intensity and irradiation time on the polymerization process of a photo cured dental composite resin by measuring the Vickers hardness number (VHN and the volumetric polymerization shrinkage. Samples were prepared using a dental manual light-curing unit. The samples were submitted to irradiation times of 5, 10, 20 and 40 s, using 200 and 400 mW.cm-2 light intensities. Vickers hardness number was obtained at four different moments after photoactivation (immediate, 1 h, 24 h and 168 h. After this, volumetric polymerization shrinkage values were obtained through a specific density method. The values were analyzed by ANOVA and Duncan's (p = 0.05. Results showed increase in hardness values from the immediate reading to 1 h and 24 h readings. After 24 h no changes were observed regardless the light intensities or activation times. The hardness values were always smaller for the 200 mW.cm-2 light intensity, except for the 40 s irradiation time. No significant differences were detected in volumetric polymerization shrinkage considering the light intensity (p = 0.539 and the activation time (p = 0.637 factors. In conclusion the polymerization of the material does not terminate immediately after photoactivation and the increase of irradiation time can compensate a lower light intensity. Different combinations between light intensity and irradiation time, i.e., different amounts of energy given to the system, have not affected the polymerization shrinkage.

  15. Light-dependent magnetoreception in birds: increasing intensity of monochromatic light changes the nature of the response

    Directory of Open Access Journals (Sweden)

    Bischof Hans-Joachim

    2007-02-01

    Full Text Available Abstract Background The Radical Pair model proposes that magnetoreception is a light-dependent process. Under low monochromatic light from the short-wavelength part of the visual spectrum, migratory birds show orientation in their migratory direction. Under monochromatic light of higher intensity, however, they showed unusual preferences for other directions or axial preferences. To determine whether or not these responses are still controlled by the respective light regimes, European robins, Erithacus rubecula, were tested under UV, Blue, Turquoise and Green light at increasing intensities, with orientation in migratory direction serving as a criterion whether or not magnetoreception works in the normal way. Results The birds were well oriented in their seasonally appropriate migratory direction under 424 nm Blue, 502 nm Turquoise and 565 nm Green light of low intensity with a quantal flux of 8·1015 quanta s-1 m-2, indicating unimpaired magnetoreception. Under 373 nm UV of the same quantal flux, they were not oriented in migratory direction, showing a preference for the east-west axis instead, but they were well oriented in migratory direction under UV of lower intensity. Intensities of above 36·1015 quanta s-1 m-2 of Blue, Turquoise and Green light elicited a variety of responses: disorientation, headings along the east-west axis, headings along the north-south axis or 'fixed' direction tendencies. These responses changed as the intensity was increased from 36·1015 quanta s-1 m-2 to 54 and 72·1015 quanta s-1 m-2. Conclusion The specific manifestation of responses in directions other than the migratory direction clearly depends on the ambient light regime. This implies that even when the mechanisms normally providing magnetic compass information seem disrupted, processes that are activated by light still control the behavior. It suggests complex interactions between different types of receptors, magnetic and visual. The nature of the

  16. Effect of light intensity on partitioning of photosynthetic electron transport to photorespiration in four subtropical forest plants

    Institute of Scientific and Technical Information of China (English)

    林植芳; 彭长连; 孙梓建; 林桂珠

    2000-01-01

    Photosynthetic rate (Pn) and the partitioning of noncyclic photosynthetic electron transport to photorespiration (Jo) in seedlings of four subtropical woody plants growing at three light intensities were studied in the summer time by measurements of chlorophyll fluorescence and CO2 exchange. Except Schima superba, an upper canopy tree species, the tree species Castanopsis fissa and two understory shrubs Psychotria rubra, Ardisia quinquegona had the highest Pn at 36% of sunlight intensity. The total photosynthetic electron transport rate (JF) and the ratio of Jo/JF were elevated in leaves under full sunlight. Jo/JF ratio reached 0.5-0.6 and coincided with the increasing of oxygenation rate of Rubisco (Vo), the activity of glycolate oxidase and photorespiration rate at full sunlight. It is suggested that an increasing partitioning proportion of photosynthetic electron transport to photorespiration might be one of the protective regulation mechanisms in forest plant under strong summer light and high tempe

  17. Effect of light intensity on partitioning of photosynthetic electron transport to photorespiration in four subtropical forest plants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Photosynthetic rate (Pn) and the partitioning of noncyclic photosynthetic electron transport to photorespiration (Jo) in seedlings of four subtropical woody plants growing at three light intensities were studied in the summer time by measurements of chlorophyll fluorescence and CO2 exchange. Except Schima superba, an upper canopy tree species, the tree species Castanopsis fissa and two understory shrubs Psychotria rubra, Ardisia quinquegona had the highest Pn at 36% of sunlight intensity. The total photosynthetic electron transport rate (JF) and the ratio of Jo/JF were elevated in leaves under full sunlight. Jo/JF ratio reached 0.5-0.6 and coincided with the increasing of oxygenation rate of Rubisco (Vo), the activity of glycolate oxidase and photorespiration rate at full sunlight. It is suggested that an increasing partitioning proportion of photosynthetic electron transport to photorespiration might be one of the protective regulation mechanisms in forest plant under strong summer light and high temperature conditions.

  18. The role of lasers and intense pulsed light technology in dermatology

    Science.gov (United States)

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  19. Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina

    Science.gov (United States)

    Tian, Ning; Xu, Hong-ping; Wang, Ping

    2014-01-01

    Retinal light responsiveness measured via electroretinography undergoes developmental modulation and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study is to determine whether the dopamine D2 receptor regulates the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild type mice and mice with a genetic deletion of the gene that encodes the dopamine D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that mutation of the dopamine D2 receptors preferentially increases the amplitude of the inner retinal light responses evoked by high intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, the a-wave, b-wave and oscillatory potentials, increase with age. Comparatively, mutation of the dopamine D2 receptors preferentially reduces the age-dependent increase of b-waves evoked by low intensity light. Light deprivation from birth reduces the amplitude of b-waves and completely diminishes the increased amplitude of oscillatory potentials. Taken together, these results demonstrate that the dopamine D2 receptor plays an important role in the activity-dependent functional development of the mouse retina. PMID:25393815

  20. Accelerometer-assessed light-intensity physical activity and mortality among those with mobility limitations.

    Science.gov (United States)

    Frith, Emily; Loprinzi, Paul D

    2017-08-31

    Emerging research demonstrates that light-intensity physical activity is favorably associated with numerous health outcomes among the general population, even independent of high-intensity physical activity. To examine the association between accelerometer-assessed light-intensity physical activity and mortality in a national sample of American adults with mobility limitations. Data from the 2003-2006 National Health and Nutrition Examination Survey were utilized. Participants were followed through 2011. Based on self-report, analyzed participants included those with mobility limitations (N = 1369). Light-intensity physical activity was assessed via waist-mounted accelerometry. For the sample, 108,010 person-months occurred with an all-cause mortality rate of 2.07 per 1000 person-months. After adjustments, for every 60 min/day increase in light-intensity physical activity, participants with mobility limitations had a 14% reduced risk of all-cause mortality (HR = 0.86; 95% CI: 0.75-0.98; P = 0.03). These findings underscore the importance of promoting light-intensity physical activity to those with mobility limitations. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    Directory of Open Access Journals (Sweden)

    Martin Olofsson

    Full Text Available BACKGROUND: Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head. CONCLUSIONS/SIGNIFICANCE: In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  2. The role of lasers and intense pulsed light technology in dermatology

    Directory of Open Access Journals (Sweden)

    Husain Z

    2016-02-01

    Full Text Available Zain Husain,1 Tina S Alster1,2 1Department of Dermatology, Georgetown University Hospital, 2Washington Institute of Dermatologic Laser Surgery, Washington, DC, USA Abstract: The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. Keywords: laser, intense pulsed light, treatment, dermatology, technology

  3. Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature

    Science.gov (United States)

    Kumar, Manoj; Kulshreshtha, Jyoti; Singh, Gajendra Pal

    2011-01-01

    In order to find out optimum culture condition for algal growth, the effect of light irradiance and temperature on growth rate, biomass composition and pigment production of Spirulina platensis were studied in axenic batch cultures. Growth kinetics of cultures showed a wide range of temperature tolerance from 20 °C to 40 °C. Maximum growth rate, cell production with maximum accumulation of chlorophyll and phycobilliproteins were found at temperature 35 °C and 2,000 lux light intensity. But with further increase in temperature and light intensity, reduction in growth rate was observed. Carotenoid content was found maximum at 3,500 lux. Improvement in the carotenoid content with increase in light intensity is an adaptive mechanism of cyanobacterium S.platensis for photoprotection, could be a good basis for the exploitation of microalgae as a source of biopigments. PMID:24031731

  4. Effect of different light intensities on performance, welfare and behavior of turkey poults

    Directory of Open Access Journals (Sweden)

    Hesham Mohammed

    2016-03-01

    Full Text Available Objective: Lighting requirements of birds have to be considered for choosing the optimal light intensity. Therefore, the experiment was carried out to study the effects of the different light intensities on performance, welfare and behavior of turkey poults. Materials and Methods: A total of 81 turkey poults aging 3 weeks were randomly selected and divided into three equal groups. The birds were subjected for 3 different light intensities (5, 25 and 50 lux with 12 h photoperiod in 3 separate rooms. The growth performance parameters of the poults were measured; the parameters were body weight (BW, average feed intake (FI, average body weight gain (ABWG, relative growth rate (RGR, and feed conversion ratio (FCR. Besides, blood parameters and behavioral characters were observed. Results: Our results revealed that poults reared in low intensity (5 lux had better performance (body weight gain, relative growth rate and feed intake. Also, final body weight was significantly higher in 5 lux. The cortisol level was lower in 5 lux than other 25 and 50 lux. Behavior of poults is affected by light intensities in our study, where feather preening, feather pecking and aggressive behaviors were significantly higher in birds housed in the highest intensity (50 lux. In the same way, drinking time was significantly higher in 25 lux. The poults tended to lay and rest on perches more under the lowest intensity (5 lux. Conclusion: It was concluded that, it is better to use moderate light intensity to improve previous parameters with avoiding abnormal behavior. [J Adv Vet Anim Res 2016; 3(1.000: 18-23

  5. Controlling the intensity of light in large areas at the interfaces of a scattering medium

    CERN Document Server

    Ojambati, Oluwafemi S; Gorter, Klaas-Jan; Mosk, Allard P; Vos, Willem L

    2016-01-01

    The recent advent of wave-shaping methods has demonstrated the focusing of light through and inside even the most strongly scattering materials. Typically in wavefront shaping, light is focused in an area with the size of one speckle spot. It has been shown that the intensity is not only increased in the target speckle spot, but also in an area outside the optimized speckle spot. Consequently, the total transmission is enhanced, even though only the intensity in a single speckle spot is controlled. Here, we experimentally study how the intensity enhancement on both interfaces of a scattering medium depends on the optimization area on the transmission side. We observe that as the optimization radius increases, the enhancement of the total transmitted intensity increases. We find a concomitant decrease of the total reflected intensity, which implies an energy redistribution between transmission and reflection channels. In addition, we find a qualitative evidence of a long-range reflection-transmission correlati...

  6. Light Regulation of Gibberellins Metabolism in Seedling Development

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ying Zhao; Xu-Hong Yu; Xuan-Ming Liu; Chen-Tao Lin

    2007-01-01

    Light affects many aspects of plant development, including seed germination, stem elongation, and floral initiation. How photoreceptors control photomorphogenic processes is not yet fully understood. Because phytohormones are chemical regulators of plant development, it may not be surprising that light affects,directly or indirectly, cellular levels and signaling processes of various phytohormones, such as auxin,gibberellins (GA), cytokinin, ethylene, abscisic acid (ABA), and brassinosteroids (BR). Among those phytohormones, light regulation of GA metabolism has probably attracted more attention among photobiologists and it is arguably the most extensively studied plant hormone at present with respect to its role in photomorphogenesis. It has become increasingly clear that phytochromes and cryptochromes are the major photoreceptors mediating light regulation of GA homeostasis. This short article attempts to examine some recent developments in our understanding of how light and photoreceptors regulate GA biosynthesis and catabolism during seedling development. It is not our intention to carry out a comprehensive review of the field, and readers are referred to recent review articles for a more complete view of this area of study (Kamiya and Garcia-Martinez 1999; Hedden and Phillips 2000; Garcia-Martinez and Gil 2001; Olszewski et al. 2002; Halliday and Fankhauser 2003; Sun and Gubler 2004).

  7. Dynamic light regulation of translation status in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Julia eBailey-Serres

    2012-04-01

    Full Text Available Light, a dynamic environmental parameter, is an essential regulator of plant growth and development. Light-regulated transcriptional networks are well documented, whereas light-regulated post-transcriptional regulation has received only limited attention. In this study, dynamics in translation of cytosolic mRNAs were evaluated at the genome-level in Arabidopsis thaliana seedlings grown under a typical light / dark diurnal regime, shifted to darkness at midday and then re-illuminated. One-hour of unanticipated darkness reduced levels of polyribosomes (polysomes by 17% in a manner consistent with inhibition of initiation of translation. This down-regulation of protein synthesis was reversed within 10 minutes of re-illumination. Quantitative comparison of the total cellular population of transcripts (the transcriptome to those associated with one or more 80S ribosome (the translatome identified over 1600 mRNAs that are differentially translated in response to light availability. Unanticipated darkness limited transcription and translation of mRNAs encoding components of the photosynthetic machinery. Many mRNAs encoding proteins associated with the energy demanding process of protein synthesis were stable but sequestered in the dark, in a rapidly reversible manner. A meta-analysis determined these same transcripts were similarly and coordinately regulated in response to changes in oxygen availability. The dark and hypoxia translationally repressed mRNAs lack highly supported candidate RNA-regulatory elements but are characterized by G+C-rich 5’-untranslated regions. We propose that dynamic regulation of the translational status of a subset of cellular mRNAs serves as a general energy conservation mechanism.

  8. Changes in manganese superoxide dismutase expression after exposure of the retina to intense light.

    Science.gov (United States)

    Yamamoto, M; Lidia, K; Gong, H; Onitsuka, S; Kotani, T; Ohira, A

    1999-02-01

    Manganese superoxide dismutase (Mn-SOD) is a naturally-occurring scavenger of superoxide, one of several reactive oxygen intermediates. To determine if Mn-SOD expression is enhanced as a defensive mechanism against oxidative challenges, such as intense light exposure, rats were exposed to cyclic light (80 lux) for 2 weeks, intense light (1,800 lux) for 24 h, and then again to cyclic light. Experimental and control (exposed to cyclic light only) eyes were enucleated 3 h, 1, 3, 7, and 14 days after light challenge. Protein expression was examined immunohistochemically using rabbit antisera against rat Mn-SOD. There was no significant difference between the light-exposed and the control groups in the thickness of the outer nuclear layers. Both retinal pigment epithelial cells and photoreceptor inner segments in the normal retina were labeled for Mn-SOD. Mn-SOD labeling was lost 3 h and day 1 after light challenge. It was re-expressed in the retinal pigment epithelial cells 3, 7, and 14 days after the light challenge, and in the photoreceptor inner segments after day 14. These results suggest that the retina might have a protective potential against light damage, in which Mn-SOD may play an important role.

  9. Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatom Skeletonema marinoi.

    Science.gov (United States)

    Smerilli, Arianna; Orefice, Ida; Corato, Federico; Gavalás Olea, Antonio; Ruban, Alexander V; Brunet, Christophe

    2017-02-01

    Photosynthesis is known to produce reactive oxygen species together with the transformation of light into biochemical energy. To fill the gap of the knowledge on the protective antioxidant network of microalgae, a series of experiments to explore the role of spectral composition and intensity of light in the modulation of the photodefence mechanisms developed by the coastal diatom Skeletonema marinoi were performed. The modulation of the total phenolic content, ascorbic acid and the enzymes glutathione reductase, catalase, ascorbate peroxidase and superoxide dismutase together with xanthophyll cycle and non-photochemical quenching in response to variations in the light environment were analysed. Most of the enzymes' activity was promptly affected by the red light. Yet, the monochromatic high intensity blue light enhanced the synthesis of total phenolic content and ascorbic acid in parallel to the xanthophyll cycle activity. This study reveals the dual effects of spectral composition and intensity of light on the modulation of photoprotective mechanisms. Diatoms developed a complementary and/or alternative tuning processes to cope with the variable light environment they experience in the water column. They also provided valuable insights into light manipulation regimes for diatom cultivation that will help to maximize production of bioactive molecules. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Light colour and intensity alters reproductive/seasonal responses in Japanese quail.

    Science.gov (United States)

    Yadav, Suneeta; Chaturvedi, Chandra Mohini

    2015-08-01

    An extensive literature is available on the photoperiodic responses of avian species but studies on light colour and wavelength from light emitting diode (LED) sources on reproduction are limited. Hence, an experiment was designed to study the effect of different colours and intensities of light on the reproductive responses of Japanese quail. Three-week old quail were exposed to five different light conditions with a long photoperiod (LD 16:8): WT (white fluorescent light 100 lux as control), W LED (white light emitting diode, 30 lux), B LED (blue LED, 30 lux), G LED (green LED, 30 lux) and R-LED (red LED, 30 lux). The cloacal gland size, an indicator of androgenic activity, was monitored weekly. The results indicated an early initiation of gonadal growth in WT quail which continued and maintained a plateau throughout the period of study. On the other hand, in general low intensity light, there was a decreased amplitude of the reproductive cycle and the quail exposed to different colour lights (green, red and blue lights) used different incubation times to initiate their gonadal growth and exhibited a gonadal cycle of a different duration up to 15.5 weeks. Thereafter, the gonad of quail of all the LED groups started developing again (including the blue LED exposed quail which remained undeveloped until this age) and attained the increased degree of growth until 26.5 weeks of age. During the second cycle, gonads of green and red light exposed quail continued to increase and maintained a plateau of development similar to WT exposed control while white and blue LED exposed quail exhibited spontaneous regression and attained complete sexual quiescence. Based on our study, it is suggested that long term exposure to blue LED light of low intensity may induce gonadal regression even under long-day conditions (LD 16:8), while exposure to green and red lights appears to maintain a constant photosensitivity after one complete gonadal cycle.

  11. EFFECT OF LIGHT INTENSITY ON THE TOTAL LIPID AND FATTY ACID COMPOSITION OF SIX STRAINS OF

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of light intensity (1500 lx and 5000 lx) on the total lipid and fatty acid composition of six strains of marine diatoms Cylindrotheca fusiformis (B211), Phaeodactylum tricornutum (B114, B118 and B221) Nitzschia closterium (B222) and Chaetoceros gracilis (B13) was investigated. The total lipids of B13, B114, and B211 grown at 5000 lx were lower than those grown at 1500 lx. No evident changes were observed in B118, B221 and B222. Fatty acid composition changed considerably at different light intensity although no consistent correlation between the relative proportion of a single FA and light intensity. The major fatty acids of the 6 strains were 14:0, 16:0, 16:1(n-7) and 20:5(n-3). Cylindrotheca fusiformis had high percentage of 20:4n-6 (9.2-10.9%). The total polyunsaturated fatty acid in all 6 strains decreased with increasing light intensity. The percentage of the highly unsaturated fatty acid eicosapentaenoic acid (EPA) decreased with increasing light intensity in all strains except Chaetoceros gracilis.

  12. Two Cyanobacterial Photoreceptors Regulate Photosynthetic Light Harvesting by Sensing Teal, Green, Yellow, and Red Light.

    Science.gov (United States)

    Wiltbank, Lisa B; Kehoe, David M

    2016-02-09

    The genomes of many photosynthetic and nonphotosynthetic bacteria encode numerous phytochrome superfamily photoreceptors whose functions and interactions are largely unknown. Cyanobacterial genomes encode particularly large numbers of phytochrome superfamily members called cyanobacteriochromes. These have diverse light color-sensing abilities, and their functions and interactions are just beginning to be understood. One of the best characterized of these functions is the regulation of photosynthetic light-harvesting antenna composition in the cyanobacterium Fremyella diplosiphon by the cyanobacteriochrome RcaE in response to red and green light, a process known as chromatic acclimation. We have identified a new cyanobacteriochrome named DpxA that maximally senses teal (absorption maximum, 494 nm) and yellow (absorption maximum, 568 nm) light and represses the accumulation of a key light-harvesting protein called phycoerythrin, which is also regulated by RcaE during chromatic acclimation. Like RcaE, DpxA is a two-component system kinase, although these two photoreceptors can influence phycoerythrin expression through different signaling pathways. The peak responsiveness of DpxA to teal and yellow light provides highly refined color discrimination in the green spectral region, which provides important wavelengths for photosynthetic light harvesting in cyanobacteria. These results redefine chromatic acclimation in cyanobacteria and demonstrate that cyanobacteriochromes can coordinately impart sophisticated light color sensing across the visible spectrum to regulate important photosynthetic acclimation processes. The large number of cyanobacteriochrome photoreceptors encoded by cyanobacterial genomes suggests that these organisms are capable of extremely complex light color sensing and responsiveness, yet little is known about their functions and interactions. Our work uncovers previously undescribed cooperation between two photoreceptors with very different light

  13. Photolysis of Caged-GABA Rapidly Terminates Seizures In Vivo: Concentration and Light Intensity Dependence.

    Science.gov (United States)

    Wang, Dan; Yu, Zhixin; Yan, Jiaqing; Xue, Fenqin; Ren, Guoping; Jiang, Chenxi; Wang, Weimin; Piao, Yueshan; Yang, Xiaofeng

    2017-01-01

    The therapy of focal epilepsy remains unsatisfactory for as many as 25% of patients. The photolysis of caged-γ-aminobutyric acid (caged-GABA) represents a novel and alternative option for the treatment of intractable epilepsy. Our previous experimental results have demonstrated that the use of blue light produced by light-emitting diode to uncage ruthenium-bipyridine-triphenylphosphine-c-GABA (RuBi-GABA) can rapidly terminate paroxysmal seizure activity both in vitro and in vivo. However, the optimal concentration of RuBi-GABA, and the intensity of illumination to abort seizures, remains unknown. The aim of this study was to explore the optimal anti-seizure effects of RuBi-GABA by using implantable fibers to introduce blue light into the neocortex of a 4-aminopyridine-induced acute seizure model in rats. We then investigated the effects of different combinations of RuBi-GABA concentrations and light intensity upon seizure. Our results show that the anti-seizure effect of RuBi-GABA has obvious concentration and light intensity dependence. This is the first example of using an implantable device for the photolysis of RuBi-GABA in the therapy of neocortical seizure, and an optimal combination of RuBi-GABA concentration and light intensity was explored. These results provide important experimental data for future clinical translational studies.

  14. The effect of low light intensity on the maintenance of circadian synchrony in human subjects

    Science.gov (United States)

    Winget, C. M.; Lyman, J.; Beljan, J. R.

    1977-01-01

    The light-intensity threshold for humans is not known. In past space flights owing to power restrictions, light intensities have been minimal and reported to be as low as 15 ft. c. This study was conducted to determine whether the light (L)/dark (D) environment of 16L : 8D at the relatively low light intensity of 15 ft. c. was adequate for the maintenance of circadian synchrony in human subjects. Six healthy male subjects aged 20-23 years were exposed for 21 days to a 16L : 8D photoperiod. During the first 7 days the light intensity was 100 ft. c.; it was reduced to 15 ft. c. during the next 7 days and increased again to 100 ft. c. during the last 7 days of the study. Rectal temperature (RT) and heart rate (HR) were recorded continuously throughout the 21 days of the study. In the 100 ft. c. 16L : 8D the RT and HR rhythms remained stable and circadian throughout. When the light intensity was decreased to 15 ft. c. the periodicity of the HR rhythm was significantly decreased and this rhythm showed marked instability. In contrast the period of the RT rhythm did not change but a consistent phase delay occurred due to a delay in the lights-on associated rise in RT. These divergent effects on these two rhythms in internal desynchronization and performance decrement during the 15 ft. c. exposure. The data emphasize the need for establishing accurately the minimal lighting requirements for the maintenance of circadian rhythms of humans in confined environments.

  15. Methodology for assessing the lighting of pedestrian crossings based on light intensity parameters

    Directory of Open Access Journals (Sweden)

    Tomczuk Piotr

    2017-01-01

    Full Text Available One of the possible preventive measures that could improve safety at crossings is to assess the state of illumination of the lighting installation located in the transition area for pedestrians. The City of Warsaw has undertaken to comprehensively assess the pedestrian crossings to determine the level of road safety and the condition of lighting. The lighting conditions related to pedestrian crossings without traffic lights in three central districts of the city were investigated. The conducted field research and the work of the team of experts lead to the development of tools to assess the level of risk due to the lighting conditions measured at night. The newly developed and used method of assessment and the experience gained should provide a valuable contribution to the development of uniform risk assessment rules for pedestrian crossings in Poland. The authors of this paper have attempted to systematize the description of the method of evaluation of the lighting installed in the area of pedestrian crossings.

  16. Inactivation of microalgae in ballast water with pulse intense light treatment.

    Science.gov (United States)

    Feng, Daolun; Shi, Jidong; Sun, Dan

    2015-01-15

    The exotic emission of ballast water has threatened the coastal ecological environment and people's health in many countries. This paper firstly introduces pulse intense light to treat ballast water. 99.9 ± 0.09% inactivation of Heterosigma akashiwo and 99.9 ± 0.16% inactivation of Pyramimonas sp. are observed under treatment conditions of 350 V pulse peak voltage, 15 Hz pulse frequency, 5 ms pulse width and 1.78 L/min flow rate. The energy consumption of the self-designed pulse intense light treatment system is about 2.90-5.14 times higher than that of the typical commercial UV ballast water treatment system. The results indicate that pulse intense light is an effective technique for ballast water treatment, while it is only a competitive one when drastic decreasing in energy consumption is accomplished. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effect of light intensity on ovarian gene expression, reproductive performance and body weight of rabbit does.

    Science.gov (United States)

    Sun, Liangzhan; Wu, Zhenyu; Li, Fuchang; Liu, Lei; Li, Jinglin; Zhang, Di; Sun, Chaoran

    2017-08-01

    The objective of the experiment was to find the minimum light intensity which could improve reproduction by examining its effect on ovarian gene expression, reproductive performance and body weight of rabbit does with three different light intensities: 60 (L), 80 (M), and 100 (H)lx. A total of 144 Rex-rabbits submitted to a 49-day reproductive regimen were used in this study. Ovaries were collected and relative abundance of mRNA for ovarian proteins of interest was examined with real-time PCR. Amount of protein for proteins of interest was examined by immunohistochemistry. Reproductive performance and doe bodyweight of the first three consecutive reproductive periods after initiation of the light intensity treatments were evaluated. The results provided evidence that light intensity had no effect on relative abundance of estradiol receptor-α (ER-α), follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), gonadotropin releasing hormone receptor 1 (GnRHR1) and progesterone receptor (PGR) mRNA. The relative abundance of growth hormone receptor (GHR) mRNA was, however, greater in Group L than M and H (P0.05). The bodyweight of the does in Group L was greater than the other two groups at first insemination, second insemination and the second postpartum period (P0.05). These observations suggest that light intensity between 60 and 100lx has no effect on the reproductive performance of rabbit does, however, the amounts of GHR mRNA and growth hormone (GH) protein were affected and the greater light intensity had a negative effect on bodyweight between the time of the first insemination and the second partum period. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Photon counting range-intensity image strategy in low-light level environments.

    Science.gov (United States)

    Zhang, Zijing; Xu, Yuannan; Wu, Long; Zhang, Yong; Zhao, Yuan; Su, Jianzhong

    2014-04-15

    We present a photon counting range-intensity image strategy based on a single-photon detector in low-light level environments. In this Letter, a composite modulation method over the pulse sequence was used for the first time, to the best of our knowledge, which combined pulse-position modulation and pulse-intensity modulation. This composite modulation method could obtain range and intensity of the detected target at the same time. Besides, angle-angle information could be provided from the scanner or detector array. Thus, a range-intensity image of the target became feasible. For demonstrating this photon counting range-intensity image strategy, a proof-of-principle laboratory system was established. In low-light level environments, a range-intensity image of multiple similar targets was obtained successfully with the range accuracy of centimeter level and intensity error of 1%. Compared with the range image, a range-intensity image could better reorganize and identify similar targets.

  19. Light intensity of 5 or 20 lux on broiler behavior, welfare and productivity.

    Science.gov (United States)

    Rault, Jean-Loup; Clark, Katie; Groves, Peter J; Cronin, Greg M

    2017-04-01

    Light intensity can influence broiler behavior, but discrepancies in the scientific literature remain. Furthermore, few studies have investigated the welfare implications induced by varying light intensity. We investigated the effects of providing 5 or 20 lux light intensity on broiler behavior, welfare and productivity. A total of 1,872 Ross 308 broilers of mixed sex were studied across 2 replicates. Treatments began on d 8 with one of 2 light intensity levels: 5 lux or 20 lux, using LED lights on a 16L:8D photoperiod with 30 min sunrise and sunset periods. Production data, behavioral activity, and plasma samples for corticosterone concentration analysis were collected weekly from 8 to 46 d of age. Eye weight was collected at 42 d of age. Leg strength was assessed at 35, 42 and 45 d of age using the latency to lie test and leg and foot conditions (foot pad dermatitis, hock burn, leg straightness) were assessed at 46 d. Live weight differed between light treatments, with broilers kept at 20 lux being lighter than broilers kept at 5 lux at 46 d of age (males: -5.1%, females: -2.8%, P lux were more active during the photophase than broilers kept at 5 lux throughout the rearing period (P lux compared to 5 lux (P = 0.001). Nonetheless, there was no significant effect of light intensity on other measures of broiler welfare: mortality and culls, plasma corticosterone concentrations, or latency to lie reflective of leg strength. Hence, broilers kept at 20 lux compared to 5 lux were found to be more active, had slower growth, and had lighter eye weight, but other welfare measures reflective of biological functioning or leg health did not show significant changes.

  20. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    Science.gov (United States)

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  1. Light fields with an axially expanded intensity distribution for stable three-dimensional optical trapping.

    Science.gov (United States)

    Zwick, Susanne; Schaub, Christian; Haist, Tobias; Osten, Wolfgang

    2010-09-13

    We introduce a new kind of light field to improve and simplify the trapping process of axially displaced particles. To this end we employ a light field with an axially expanded intensity distribution, which at the same time enables stable axial trapping. We present simulations of the axial intensity distribution of the novel trapping field and first experimental results, which demonstrate the improvement of the reliability of the axial trapping process. The method can be used to automate trapping of particles that are located outside of the focal plane of the microscope.

  2. Performance of amorphous and microcrystalline silicon pin solar cells under variable light intensity

    Energy Technology Data Exchange (ETDEWEB)

    Nath, M.; Chakraborty, S.; Chatterjee, P. [Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Kim, K.H.; Johnson, E.V.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, CNRS, 91128 Palaiseau (France)

    2010-04-15

    We have studied the solar cell behaviour under variable light intensity (VLI) of a standard a-Si:H pin solar cell with a wide band gap a-SiC:H emitter layer, and microcrystalline ({mu}c)-Si:H solar cells of different degrees of crystallinity, using experiments in conjunction with detailed electrical-optical modelling. Both experiments and modelling reveal that whereas the fill factor (FF) of the a-Si:H pin cell decreases with increasing light intensity, starting from a low applied light bias, that of the {mu}c-Si:H cells increases with light intensity over a major part of this range. This fact enables one to attain the maximum of the open-circuit voltage - fill factor product (V{sub oc} x FF) at 1 to 2 suns intensity for the latter case; however this is not achieved for the a-Si:H cell. Using modelling we try to understand this difference in behaviour of the FF under VLI for the two types of cells. We also predict under what conditions it would be possible to shift the (V{sub oc} x FF){sub max} for the a-Si:H cell towards one sun intensity. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Fractional CO2laser versus intense pulsed light in treating striae distensae

    Directory of Open Access Journals (Sweden)

    Moustafa Adam El Taieb

    2016-01-01

    Full Text Available Context: Striae distensae are linear atrophic dermal scars covered with flat atrophic epidermis. They may cause disfigurement, especially in females. Many factors may cause striae distensae such as steroids, obesity, and pregnancy. Although there is no standard treatment for striae; many topical applications, peeling, and light and laser systems have been tried. Aims: To evaluate and compare the efficacy of fractional CO2laser with intense pulse light in treating striae distensae. Subjects and Methods: Forty patients with striae distensae were recruited. Twenty of them were treated by fractional CO2laser and 20 were treated with intense pulse light. Length and width of the largest striae were measured pre- and post-treatment. Patient satisfaction was also evaluated and graded. Patients were photographed after each treatment session and photos were examined by a blinded physician who had no knowledge about the cases. Results: Both groups showed significant improvement after treatments (P 0.05. Conclusions: The current study has provided supportive evidence to the effectiveness of both fractional CO2laser and intense pulse light as treatments for striae distensae. Fractional CO2laser was found to be more effective in the treatment of striae distensae compared with intense pulse light.

  4. Contrast in light intensity, rather than day length, influences the behavior and health of broiler chickens.

    Science.gov (United States)

    Blatchford, R A; Archer, G S; Mench, J A

    2012-08-01

    Day length and intensity are commonly manipulated aspects of the light environment in commercial broiler production. Both influence circadian rhythms, but it is unclear if they do this independently or synergistically. The effect of light:dark (20L:4D, 16L:8D) and intensity contrasts (1 lx:0.5 lx, 200 lx:0.5 lx) on broiler behavior and health (n=1,004, 4 replicates/treatment) was evaluated. Activity was measured using passive infrared detection, and feeding activity was measured by the amount of feed consumed/h over one 24-h period each week. Broilers were gait scored and weighed at 6 wk of age. Following euthanasia, eyes were dissected from 30 birds/treatment. Behavior and performance were analyzed using the GLM, gait score using the Kruskal-Wallis test, and eye measures using a MANOVA. The 200 lx birds were more active (P=0.03) and fed more (P=0.001) during the photophase but were less active (P=0.02) and fed less (Plight:dark, with 16:8 having greater back-to-front eye diameters than 20:4 (13.30±0.10 mm vs. 13.00±0.10 mm, P=0.02). There were no interactions. These results indicated that light intensity, not day length, was the major factor affecting broiler behavior and health under these lighting conditions. Low contrast light intensity dampened behavioral rhythms and had possible health effects.

  5. Light intensity alters the extent of arsenic toxicity in Helianthus annuus L. seedlings.

    Science.gov (United States)

    Yadav, Geeta; Srivastava, Prabhat Kumar; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2014-06-01

    The present study is aimed at assessing the extent of arsenic (As) toxicity under three different light intensities-optimum (400 μmole photon m(-2) s(-1)), sub-optimum (225 μmole photon m(-2) s(-1)), and low (75 μmole photon m(-2) s(-1))-exposed to Helianthus annuus L. var. DRSF-113 seedlings by examining various physiological and biochemical parameters. Irrespective of the light intensities under which H. annuus L. seedlings were grown, there was an As dose (low, i.e., 6 mg kg(-1) soil, As1; and high, i.e., 12 mg kg(-1) soil, As2)-dependent decrease in all the growth parameters, viz., fresh mass, shoot length, and root length. Optimum light-grown seedlings exhibited better growth performance than the sub-optimum and low light-grown seedlings; however, low light-grown plants had maximum root and shoot lengths. Accumulation of As in the plant tissues depended upon its concentration used, proximity of the plant tissue, and intensity of the light. Greater intensity of light allowed greater assimilation of photosynthates accompanied by more uptake of nutrients along with As from the medium. The levels of chlorophyll a, b, and carotenoids declined with increasing concentrations of As. Seedlings acquired maximum Chl a and b under optimum light which were more compatible to face As1 and As2 doses of As, also evident from the overall status of enzymatic (SOD, POD, CAT, and GST) and non-enzymatic antioxidant (Pro).

  6. Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Teramoto, Haruhiko; Nakamori, Akira; Minagawa, Jun; Ono, Taka-aki

    2002-09-01

    Excessive light conditions repressed the levels of mRNAs accumulation of multiple Lhc genes encoding light-harvesting chlorophyll-a/b (LHC) proteins of photosystem (PS)II in the unicellular green alga, Chlamydomonas reinhardtii. The light intensity required for the repression tended to decrease with lowering temperature or CO(2) concentration. The responses of six LhcII genes encoding the major LHC (LHCII) proteins and two genes (Lhcb4 and Lhcb5) encoding the minor LHC proteins of PSII (CP29 and CP26) were similar. The results indicate that the expression of these Lhc genes is coordinately repressed when the energy input through the antenna systems exceeds the requirement for CO(2) assimilation. The Lhc mRNA level repressed under high-light conditions was partially recovered by adding the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, suggesting that redox signaling via photosynthetic electron carriers is involved in the gene regulation. However, the mRNA level was still considerably lower under high-light than under low-light conditions even in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Repression of the Lhc genes by high light was prominent even in the mutants deficient in the reaction center(s) of PSII or both PSI and PSII. The results indicate that two alternative processes are involved in the repression of Lhc genes under high-light conditions, one of which is independent of the photosynthetic reaction centers and electron transport events.

  7. Effects of plant size, temperature, and light intensity on flowering of Phalaenopsis hybrids in Mediterranean greenhouses.

    Science.gov (United States)

    Paradiso, Roberta; De Pascale, Stefania

    2014-01-01

    Mediterranean greenhouses for cultivation of Phalaenopsis orchids reproduce the warm, humid, and shaded environment of tropical underbrush. Heating represents the highest production cost, due to the high thermal requirements and the long unproductive phase of juvenility, in which plants attain the critical size for flowering. Our researches aimed to investigate the effect of plant size, temperature, and light intensity, during the phase of flower induction, on flowering of modern genotypes selected for Mediterranean greenhouses. Three experiments were carried out to compare (i) plant size: reduced size versus size considered optimal for flowering (hybrids "Sogo Yukidian," "Chain Xen Diamond," and "Pinlong"); (ii) temperature: moderate reduction of temperature versus standard thermal regime (hybrid "Premium"); (iii) light intensity: supplemental lighting versus reference light intensity (hybrid "Premium"). The premature exposure of plants to the inductive treatment delayed the beginning of flowering and reduced the flower stem quality, in all the tested hybrids. In "Premium," the lower temperature did not affect flowering earliness and commercial quality of flower stems compared to the standard regime, whereas it promoted stem branching. In the same hybrid, supplemental lighting anticipated flowering and promoted the emission of the second stem and the stem branching, compared to the reference light regime.

  8. Changes of alternative oxidase activity, capacity and protein content in leaves of Cucumis sativus wild-type and MSC16 mutant grown under different light intensities.

    Science.gov (United States)

    Florez-Sarasa, Igor; Ostaszewska, Monika; Galle, Alexander; Flexas, Jaume; Rychter, Anna M; Ribas-Carbo, Miquel

    2009-12-01

    In vitro studies demonstrated that alternative oxidase (AOX) is biochemically regulated by a sulfhydryl-disulfide system, interaction with alpha-ketoacids, ubiquinone pool redox state and protein content among others. However, there is still scarce information about the in vivo regulation of the AOX. Cucumis sativus wild-type (WT) and MSC16 mutant plants were grown under two different light intensities and were used to analyze the relationship between the amount of leaf AOX protein and its in vivo capacity and activity at night and day periods. WT and MSC16 plants presented lower total respiration (V(t)), cytochrome oxidase pathway (COP) activity (v(cyt)) and alternative oxidase pathway (AOP) activity (v(alt)) when grown at low light (LL), although growth light intensity did not change the amount of cytochrome oxidase (COX) nor AOX protein. Changes of v(cyt) related to growing light conditions suggested a substrate availability and energy demand control. On the other hand, the total amount of AOX protein present in the tissue does not play a role in the regulation neither of the capacity nor of the activity of the AOP in vivo. Soluble carbohydrates were directly related to the activity of the AOP. However, although differences in soluble sugar contents mostly regulate the capacity of the AOP at different growth light intensities, additional regulatory mechanisms are necessary to fully explain the observed results.

  9. Temporal intensity correlation of light scattered by a hot atomic vapor

    CERN Document Server

    Dussaux, A; Guerin, W; Alibart, O; Tanzilli, S; Vakili, F; Kaiser, R

    2016-01-01

    We present temporal intensity correlation measurements of light scattered by a hot atomic vapor. Clear evidence of photon bunching is shown at very short time-scales (ns) imposed by the Doppler broadening of the hot vapor. Moreover, we demonstrate that some relevant information about the scattering process, such as the ratio of single to multiple scattering, can be deduced from the measured intensity correlation function. These measurements confirm the interest of temporal intensity correlation measurements to access non-trivial spectral features, with potential applications in astrophysics.

  10. Low-intensity treadmill exercise and/or bright light promote neurogenesis in adult rat brain

    Institute of Scientific and Technical Information of China (English)

    Sung Jin Kwon; Jeongsook Park; So Yun Park; Kwang Seop Song; Sun Tae Jung; So Bong Jung; Ik Ryeul Park; Wan Sung Choi; Sun Ok Kwon

    2013-01-01

    The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 lx, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.

  11. INFLUENCE OF HIGH LIGHT INTENSITY ON THE CELLS OF CYANOBACTERIA ANABAENA VARIABILIS SP. ATCC 29413

    Directory of Open Access Journals (Sweden)

    OPRIŞ SANDA

    2012-12-01

    Full Text Available In this article is presented the result of research regardind the effect of high light intensity on the cells of Anabaena variabilis sp. ATCC 29413, the main objective is to study the adaptation of photosynthetic apparatus to light stress. Samples were analyzed in the present of herbicide diuron (DCMU which blocks electron flow from photosystem II and without diuron. During treatment maximum fluorescence and photosystems efficiency are significantly reduced, reaching very low values compared with the blank, as a result of photoinhibition installation. Also by this treatment is shown the importance of the mechanisms by which cells detect the presence of light stress and react accordingly.

  12. Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities.

    Science.gov (United States)

    Ware, Maxwell A; Belgio, Erica; Ruban, Alexander V

    2015-12-01

    Arabidopsis plants grown at low light were exposed to a gradually increasing actinic light routine. This method allows for the discerning of the photoprotective component of NPQ, pNPQ and photoinhibition. They exhibited lower values of Photosystem II (PSII) yield in comparison to high-light grown plants, and higher calculated dark fluorescence level (F'o calc.) than the measured one (F'o act.). As a result, in low-light grown plants, the values of qP measured in the dark appeared higher than 1. Normally, F'o act. and F'o calc. match well at moderate light intensities but F'o act. becomes higher at increasing intensities due to reaction centre (RCII) damage; this indicates the onset of photoinhibition. To explain the unusual increase of qP in the dark in low-light grown plants, we have undertaken an analysis of PSII antenna size using biochemical and spectroscopic approaches. Sucrose gradient separation of thylakoid membrane complexes and fast fluorescence induction experiments illustrated that the relative PSII cross section does not increase appreciably with the rise in PSII antenna size in the low-light grown plants. This suggests that part of the increased LHCII antenna is less efficiently coupled to the RCII. A model based upon the existence of an uncoupled population LHCII is proposed to explain the discrepancies in calculated and measured values of F'o.

  13. Light intensity on growth, leaf micromorphology and essential oil production of Ocimum gratissimum

    Directory of Open Access Journals (Sweden)

    Valéria Ferreira Fernandes

    2013-06-01

    Full Text Available Light conditions can promote the growth and development of plants and contribute to increase the essential oil production of commercially cultivated medicinal and aromatic species. In view of the great importance of Ocimum gratissimum L., Lamiaceae, as an aromatic plant, the objective of this work was to determine the effect of light intensities (approximately 4, 7, 11 and 20 mol m-2 d-1 on growth, foliar micromorphology, essential oil content, yield and chemical composition of O. gratissimum. Biomass production of different organs, root:shoot ratio and leaf mass per area were found to linearly increase with increased light availability, whereas stem dry matter fraction, number of leaves, leaf area and plant height have increased up to 10 mol m-2 d-1 and decreased from this value. The tector trichomes density increased with increased light availability, but there was no effect of light treatments on the glandular trichomes density and essential oil content. Regardless of the light level, the major component of the essential oil was eugenol. The essential oil yield per plant increased linearly with light intensity as a direct effect of increased leaf biomass under similar conditions.

  14. Genetic analysis of biomass and photosynthetic parameters in wheat grown in different light intensities

    Institute of Scientific and Technical Information of China (English)

    Hongwei Li; Gui Wang; Qi Zheng; Bin Li; Ruilian Jing; Zhensheng Li

    2014-01-01

    Growth light intensities largely determine photo-synthesis, biomass, and grain yield of cereal crops. To explore the genetic basis of light responses of biomass and photosynthetic parameters in wheat (Triticum aestivum L.), a quantitative trait locus (QTL) analysis was carried out in a doubled haploid (DH) population grown in low light (LL), medium light (ML), and high light (HL), respectively. The results showed that the wheat seedlings grown in HL produced more biomass with lower total chlorophyll content (Chl), carotenoid content, and maximum photochemical efficiency of photosystem II (Fv/Fm) while the wheat seed-lings grown in LL produced less biomass with higher Chl compared with those grown in ML. In total, 48 QTLs were identified to be associated with the investigated parameters in relation to growth light intensities. These QTLs were mapped to 15 chromosomes which individually explained 6.3%-36.0% of the phenotypic variance, of which chromo-somes 3A, 1D, and 6B were specifically involved in LL response, 5D and 7A specifically involved in ML response, and 4B specifically involved in HL response. Several light-responsive QTLs were co-located with QTLs for photosyn-thetic parameters, biomass, and grain weight under various conditions which may provide new hints to uncover the genetic control of photosynthesis, biomass, and grain weight.

  15. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.

    Science.gov (United States)

    Sazgarnia, Ameneh; Shanei, Ahmad; Shanei, Mohammad Mahdi

    2014-01-01

    One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400-500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Light Intensity and Carbon Dioxide Availability Impact Antioxidant Activity in Green Onions (Allium fistulosumm L)

    Science.gov (United States)

    Levine, Lanfang; Bisbee, Patricia; Pare, Paul

    The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.

  17. Influence of ammonium chloride feeding time and light intensity on the cultivation of Spirulina (Arthrospira) platensis.

    Science.gov (United States)

    Bezerra, Raquel Pedrosa; Matsudo, Marcelo Chuei; Converti, Attilio; Sato, Sunao; de Carvalho, João Carlos Monteiro

    2008-06-01

    This study dealt with the influence of both the feeding time and light intensity on the fed-batch culture of the cyanobacterium Spirulina (Arthrospira) platensis using ammonium chloride as a nitrogen source. For this purpose, a 2(2) plus star central composite experimental design combined with response surface methodology was employed, and the maximum cell concentration (X(m)), the cell productivity (P(X)), and the yield of biomass on nitrogen (Y(X/N)) were selected as the response variables. The optimum values of X(m) (1,833 mg L(-1)) and Y(X/N) (5.9 g g(-1)) estimated by the model at light intensity of 13 klux and feeding time of 17.2 days were very close to those obtained experimentally under these conditions (X(m) = 1,771 +/- 41 mg L(-1); Y(X/N) = 5.7 +/- 0.17 g g(-1)). The cell productivity was a decreasing function of the ammonium chloride feeding time and a quadratic function of the light intensity. The protein and lipid contents of dry biomass collected at the end of cultivations were shown to decrease with increasing light intensity.

  18. Intense pulsed light therapy (IPL) induced iritis following treatment for a medial canthal capillary malformation.

    Science.gov (United States)

    Crabb, Matthew; Chan, Weng Onn; Taranath, Deepa; Huilgol, Shyamala C

    2014-11-01

    The popularity of intense pulsed light (IPL) therapy continues to increase due to its relative safety, high skin coverage rate and ability to treat both vascular and pigmented lesions. An often-overlooked risk is the potential for IPL-induced ocular damage. The damage sustained can cause significant, persistent morbidity and can occur even with very limited IPL exposure to the eye.

  19. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  20. An evaluation of light intensity functions for determination of shaded reference stream metabolism.

    Science.gov (United States)

    Zell, Chris; Hubbart, Jason A

    2012-04-30

    The performance of three single-station whole stream metabolism models were evaluated within three shaded, seasonally hypoxic, Missouri reference streams using high resolution (15-minute) dissolved oxygen (DO), temperature, and light intensity data collected during the summers (July-September) of 2006-2008. The model incorporating light intensity data consistently achieved a lower root mean square error (median RMSE = 0.20 mg L(-1)) relative to models assuming sinusoidal light intensity functions (median RMSE = 0.28 mg L(-1)) and constant diel temperature (median RMSE = 0.53 mg L(-1)). Incorporation of site-specific light intensity into metabolism models better predicted morning DO concentrations and exposure to hypoxic conditions in shaded study streams. Model choice significantly affected (p streams. Quantifying these process combinations in best-available or least-disturbed (i.e., reference) systems advances our understanding of regional dissolved oxygen expectations and informs environmental management policy. Additional research is warranted to better link landscape processes with distributed sources that contribute to community respiration.

  1. The intense pulsed light systems : new treatment possibilities for vascular, pigmented lesions and hair removal

    NARCIS (Netherlands)

    C.A. Schroeter (Careen)

    2004-01-01

    textabstractGiven all of the differences in between laser and IPLS devices and the need for additional information in IPLS treatment applications, the aim of this study was to evaluate new treatment possibilities using Intense Pulsed Light Sources and to address the following questions: 1. What are

  2. Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis.

    Science.gov (United States)

    Markou, Giorgos; Chatzipavlidis, Iordanis; Georgakakis, Dimitris

    2012-08-01

    This paper presents the effects of various phosphorus concentrations (10, 50, 250 and 500 mg l(-1) K(2)HPO(4)) on the biomass production and composition of Arthrospira (Spirulina) platensis in relation to light intensity (24, 42 and 60 μE m(-2) s(-1)). The maximum biomass production was 3,592 ± 392 mg l(-1) and this was observed in 250 mg l(-1) K(2)HPO(4) at 60 μE m(-2) s(-1) light intensity after 32 days of cultivation. A maximum specific growth rate (μ(max)) of 0.55 d(-1) was obtained in 500 mg l(-1) K(2)HPO(4) at 60 μE m(-2) s(-1). The protein, lipid and chlorophyll contents of the biomass varied from 33.59 to 60.57 %, 5.34 to 13.33 % and 0.78 to 2.00 %, respectively. The most significant finding was that phosphorus limitation (10 mg l(-1) K(2)HPO(4)) caused a drastic increase of the carbohydrate content (59.64 %). The effect of phosphorus limitation on the carbohydrate content was independent of the light intensity. The accumulated carbohydrates are proposed to be used as substrate for biofuel generation via one of the appropriate biomass energy conversion technologies. Also, it was observed that phosphorus removal is a function of biomass density, phosphorus concentration and light intensity.

  3. Associations of Low- and High-Intensity Light Activity with Cardiometabolic Biomarkers.

    Science.gov (United States)

    Howard, Bethany; Winkler, Elisabeth A H; Sethi, Parneet; Carson, Valerie; Ridgers, Nicola D; Salmon, J O; Healy, Genevieve N; Owen, Neville; Dunstan, David W

    2015-10-01

    Light-intensity physical activity (LIPA) accounts for much of adults' waking hours (≈40%) and substantially contributes to overall daily energy expenditure. Encompassing activity behaviors of low intensity (standing with little movement) to those of higher intensity (slow walking), LIPA is ubiquitous, yet little is known about how associations with health may vary depending on its intensity. We examined the associations of objectively assessed LIPA (categorized as either low LIPA [LLPA] or high LIPA [HLPA]) and moderate- to vigorous-intensity activity with cardiometabolic risk biomarkers. Cardiometabolic biomarkers were measured in 4614 US adults (47 ± 17 yr) who participated in the 2003-2004 and 2005-2006 National Health and Nutrition Examination Survey cycles. Multiple linear regression analyses examined the associations of three accelerometer-derived physical activity (SD increment per day) intensity categories (LLPA, 100-761 counts per minute; HLPA, 762-1951 counts per minute; moderate-intensity physical activity [MPA], 1952-5724 counts per minute; vigorous-intensity physical activity [VPA], ≥5725 counts per minute) with cardiometabolic biomarkers, adjusting for potential sociodemographic, behavioral, and medical confounders. All intensities of physical activity were beneficially associated with waist circumference, C-reactive protein, triglycerides, fasting insulin, β-cell function, and insulin sensitivity (P activity intensities showed significant associations with systolic blood pressure (LLPA), body mass index, HDL cholesterol, fasting glucose, and 2-h plasma glucose (HLPA, MPA, and VPA). Generally, effect size increased with intensity of physical activity. Overall, further adjustment for waist circumference attenuated associations with MPA and VPA to a greater extent than associations with LLPA and HLPA. The cross-sectional findings provide novel evidence for the potential benefits of increasing both LLPA and HLPA. They further reinforce the

  4. A high-fidelity photon gun: intensity-squeezed light from a single molecule

    CERN Document Server

    Chu, Xiao-Liu; Sandoghdar, Vahid

    2016-01-01

    A two-level atom cannot emit more than one photon at a time. As early as the 1980s, this quantum feature was identified as a gateway to "single-photon sources", where a regular excitation sequence would create a stream of light particles with photon number fluctuations below the shot noise. Such an intensity squeezed beam of light would be desirable for a range of applications such as quantum imaging, sensing, enhanced precision measurements and information processing. However, experimental realizations of these sources have been hindered by large losses caused by low photon collection efficiencies and photophysical shortcomings. By using a planar metallo-dielectric antenna applied to an organic molecule, we demonstrate the most regular stream of single photons reported to date. Measured intensity fluctuations reveal 2.2 dB squeezing limited by our detection efficiency, equivalent to 6.2 dB intensity squeezing right after the antenna.

  5. Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures.

    Directory of Open Access Journals (Sweden)

    Jacob A Nelson

    Full Text Available Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.

  6. Reflected light intensity profile of two-layer tissues: phantom experiments.

    Science.gov (United States)

    Ankri, Rinat; Taitelbaum, Haim; Fixler, Dror

    2011-08-01

    Experimental measurements of the reflected light intensity from two-layer phantoms are presented. We report, for the first time, an experimental observation of a typical reflected light intensity behavior for the two-layer structure characterized by two different slopes in the reflected light profile of the irradiated tissue. The point in which the first slope changes to the second slope, named as the crossover point, depends on the upper layer thickness as well as on the ratio between the absorption coefficients of the two layers. Since similar experiments from one-layer phantoms present a monotonic decay behavior, the existence and the location of the crossover point can be used as a diagnostic fingerprint for two-layer tissue structures. This pertains to two layers with greater absorptivity in the upper layer, which is the typical biological case in tissues like skin.

  7. Image quality in double- and triple-intensity ghost imaging with classical partially polarized light

    CERN Document Server

    Kellock, Henri; Shirai, Tomohiro; Friberg, Ari T

    2012-01-01

    Classical ghost imaging is a correlation-imaging technique in which the image of the object is found through intensity correlations of light. We analyze three different quality parameters, namely the visibility, the signal-to-noise ratio (SNR), and the contrast-to-noise ratio (CNR), to assess the performance of double- and triple-intensity correlation-imaging setups. The source is a random partially polarized beam of light obeying Gaussian statistics and the image quality is evaluated as a function of the degree of polarization (DoP). We show that the visibility improves when the DoP and the order of imaging increase, while the SNR behaves oppositely. The CNR is for the most part independent of DoP and the imaging order. The results are important for the development of new imaging devices using partially polarized light.

  8. Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers

    CERN Document Server

    Kim, KyungDuk; Lee, KyeoReh; Park, YongKeun

    2016-01-01

    Here, we present a concept based on the realization that a complex medium can be used as a simple interferometer. Changes in the wavefront of an incident coherent beam can be retrieved by analyzing changes in speckle patterns when the beam passes through a light diffuser. We demonstrate that the spatial intensity correlations of the speckle patterns are independent of the light diffusers, and are solely determined by the phase changes of an incident beam. With numerical simulations using the random matrix theory, and an experimental pressure-driven wavefront-deforming setup using a microfluidic channel, we theoretically and experimentally confirm the universal sensitivity of speckle intensity correlations, which is attributed to the conservation of optical field correlation despite multiple light scattering. This work demonstrates that a complex media is a simple interferometer, and presents opportunities to replace complicated reference-beam-assisted interferometers with a simple and compact scattering layer...

  9. Effects of Light Intensity and Color on the Biomass, Extracellular Red Pigment, and Citrinin Production of Monascus ruber.

    Science.gov (United States)

    Wang, Liling; Dai, Yang; Chen, Wanping; Shao, Yanchun; Chen, Fusheng

    2016-12-21

    Light is a crucial environmental signal for fungi. In this work, the effects of different light intensities and colors on biomass, Monascus pigments (MPs) and citrinin production of Monascus ruber M7 were investigated. We have demonstrated that low intensity of blue light (500 lx) decreased Monascus biomass, increased MPs accumulation via upregulation of MpigA, MpigB, and MpigJ genes expression, but had no significant influence on citrinin production. High intensity of blue light (1500 lx) decreased citrinin accumulation but had no significant influence on biomass and MPs production after 14 days cultivation. Low intensity of green light (500 lx) stimulated citrinin production via upregulation of pksCT, mrl1, mrl2, and ctnA genes expression. One putative red light photoreceptor and two putative green light photoreceptors were identified in M. ruber M7. These observations will not only guide the practical production of Monascus but also contribute to our understanding light effects on Monascus.

  10. Response to variable light intensity in photoacclimated algae and cyanobacteria exposed to atrazine

    Energy Technology Data Exchange (ETDEWEB)

    Deblois, Charles P.; Dufresne, Karine [Department of Biological Sciences-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Universite du Quebec a Montreal, Succ. Centre-Ville, Montreal, Quebec (Canada); Juneau, Philippe, E-mail: juneau.philippe@uqam.ca [Department of Biological Sciences-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Universite du Quebec a Montreal, Succ. Centre-Ville, Montreal, Quebec (Canada)

    2013-01-15

    Atrazine is frequently detected in freshwater ecosystems exposed to agricultural waste waters and runoffs worldwide and it can affect non-target organisms (mainly photoautotrophic) and modify community structure. Meanwhile, light environment is known to vary between aquatic ecosystems, but also before and during the exposure to atrazine and these variations may modify the sensitivity to atrazine of photoautotroph organisms. In this study, 10 species of phytoplankton (chlorophytes, baccilariophytes and cyanophytes) acclimated to low or high light intensities were exposed to atrazine and light of different intensities to compare their combined effect. Our data showed that chlorophytes and baccilariophytes were more resistant to atrazine compared to cyanophytes for all light conditions. Atrazine was found to inhibit {Phi}{sup Prime }{sub M}, {Psi}{sub 0}, P{sub M} and non-photochemical quenching for all species indicating an effect on electron transport, primary production and photoregulation processes. These data also indicate a higher sensitivity of {Psi}{sub 0} (average {Psi}{sub 0}-EC{sub 50} of 91 {+-} 11 nM or 19.6 {+-} 0.9 {mu}g L{sup -1}) compared to {Phi}{sup Prime }{sub M} (average {Phi}{sup Prime }{sub M}-EC{sub 50} of 217 {+-} 19 nM or 46.8 {+-} 4.1 {mu}g L{sup -1}) and suggest that photoregulation processes activated in presence of light decrease the effect of atrazine. We also showed that increasing light intensity decreased {Phi}{sup Prime }{sub M}-EC{sub 50} in both low (except baccilariophytes) and high light acclimated conditions. Despite this similarity, most species acclimated to high light were found to have higher or similar {Phi}{sup Prime }{sub M}-EC{sub 50} compared to low light acclimated cells and thus, were less sensitive to atrazine in low light and high light environments. We concluded that an increase in the plastoquinone pool induced by acclimation to high light decreased the sensitivity to atrazine in phytoplankton and we hypothesized

  11. Impact of light intensity on flowering time and plant quality of Antirrhinum majus L.cultivar Chimes White

    Institute of Scientific and Technical Information of China (English)

    MUNIR Muhammad; JAMIL Muhammad; BALOCH Jalal-ud-din; KHATTAK Khalid Rehman

    2004-01-01

    Shades of different light intensities (29%, 43%, 54%, 60% or 68%) along with control (no shade) were studied to observe their effects on the flowering time and plant quality. A hyperbolic relationship was observed between different light intensities under shade, and time to flowering. The total number of flower buds showed a curvilinear relationship with light intensities. Growth parameters related to the plant characteristics such as plant height, leaf area and plant fresh weight were improved under shading treatments at the expense of flowering time and number of flower buds. However, both linear and polynomial models applied assumed that cultivar Chimes White was equally sensitive to light intensity throughout development.

  12. Sub-high Temperature and High Light Intensity Induced Irreversible Inhibition on Photosynthesis System of Tomato Plant (Solanum lycopersicum L.)

    Science.gov (United States)

    Lu, Tao; Meng, Zhaojuan; Zhang, Guoxian; Qi, Mingfang; Sun, Zhouping; Liu, Yufeng; Li, Tianlai

    2017-01-01

    High temperature and high light intensity is a common environment posing a great risk to organisms. This study aimed to elucidate the effects of sub-high temperature and high light intensity stress (HH, 35°C, 1000 μmol⋅m-2⋅s-1) and recovery on the photosynthetic mechanism, photoinhibiton of photosystem II (PSII) and photosystem I (PSI), and reactive oxygen (ROS) metabolism of tomato seedlings. The results showed that with prolonged stress time, net photosynthetic rate (Pn), Rubisco activity, maximal photochemistry efficiency (Fv/Fm), efficient quantum yield and electron transport of PSII [Y(II) and ETR(II)] and PSI [Y(I) and ETR(I)] decreased significantly whereas yield of non-regulated and regulated energy dissipation of PSII [Y(NO) and Y(NPQ)] increased sharply. The donor side limitation of PSI [Y(ND)] increased but the acceptor side limitation of PSI [Y(NA)] decreased. Content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were increased while activity of superoxide dismutase (SOD) and peroxidase (POD) were significantly inhibited compared with control. HH exposure affected photosynthetic carbon assimilation, multiple sites in PSII and PSI, ROS accumulation and elimination of Solanum lycopersicum L.

  13. Effects of light intensity and temperature on Cryptomonas ovata (Cryptophyceae) growth and nutrient uptake rates

    Science.gov (United States)

    Cloern, James E.

    1977-01-01

    Specific growth rate of Cryptomonas ovata var. palustris Pringsheim was measured in batch culture at 14 light-temperature combinations. Both the maximum growth rate (μm) and optimum light intensity (Iopt) fit an empirical function that increases exponentially with temperature up to an optimum (Topt), then declines rapidly as temperature exceeds Topt. Incorporation of these functions into Steele's growth equation gives a good estimate of specific growth rate over a wide range of temperature and light intensity. Rates of phosphate, ammonium and nitrate uptake were measured separately at 16 combinations of irradiance and temperature and following a spike addition of all starved cells initially took up nutrient at a rapid rate. This transitory surge was followed by a period of steady, substrate-saturated uptake that persisted until external nutrient concentration fell. Substrate-saturated NO3−-uptake proceeded at very slow rates in the dark and was stimulated by both increased temperature and irradiance; NH4+-uptake apparently proceeded at a basal rate at 8 and l4 C and was also stimulated by increased temperature and irradiance. Rates of NH4−-uptake were much higher than NO3−-uptake at all light-temperature combinations. Below 20 C, PO4−3-uptake was more rapid in dark than in light, but was light enhanced at 26 C.

  14. Improvement of photosynthetic CO2 fixation at high light intensity through reduction of chlorophyll antenna size.

    Science.gov (United States)

    Lee, James W; Mets, Laurens; Greenbau, Elias

    2002-01-01

    At elevated light intensities (greater than approximately 200 microE/[m2 x s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 microE/(m2 x s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 micromol/[h x mg of chl]) than that of the wild type, DES15 (95 micromol/[h x mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency.

  15. [Effects of light intensity on Quercus liaotungensis seed germination and seedling growth].

    Science.gov (United States)

    Yan, Xing-fu; Wang, Jian-li; Zhou, Li-biao

    2011-07-01

    This paper studied the effects of different shading (55.4%, 18.9%, 5.5%, 2.2%, 0.5% , and 0.3% natural sunlight) on the seed germination and seedling growth of Quercus liaotungensis. The seed germination rate and germination index were the highest (72.5% and 0.22, respectively) at 55.4% natural sunlight, declined with decreasing light intensity, and were the lowest (42.5% and 0.11, respectively) at 0.3% natural sunlight. Strong light had definite delaying effect on the germination. The index of germination vigor increased with decreasing light intensity, being the maximum at 0.5% natural sunlight. The delay of seed germination under strong light could be the selective tradeoff on varied seed fates. Strong light benefited the basal stem diameter and root system growth and dry mass accumulation of Q. liaotunensis seedling, but resulted in the minimum seedlings height (6.06 cm). Greater morphological plasticity was observed for the seedlings under different shading, which lent support to the higher adaptability of the seedlings to light environment. For example, the specific leaf area, specific shoot length, specific root length, and chlorophyll b and total chlorophyll contents were the maximum at 0.5% natural sunlight, being 142.57 cm2 x g(-1), 156.86 cm x g(-1), 271.87 cm x g(-1), 0.07 g x cm(-2), and 0.24 g x cm(-2), respectively, and the minimum at 55.4% natural sunlight, being 44.89 cm2 x g(-1), 52.84 cm x g(-1), 101.98 cm x g(-1), 0.04 g x cm(-2), and 0.15 g x cm(-2), respectively. The variation of the root/shoot ratio of Q. liaotungensis seedlings under different shading could be the effects of the combination of light intensity and water availability.

  16. Is light deflected by light ? A proposal to observe a vacuum refractive index gradient induced by intense laser pulses

    CERN Document Server

    Couchot, F; Guilbaud, O; Kazamias, S; Pittman, M; Sarazin, X; Urban, M

    2016-01-01

    In very intense electromagnetic fields, the vacuum refractive index is expected to be modified due to non linear QED properties. Up to now, these predictions are tested by searching phase shifts in the propagation of polarized light through uniform magnetic fields. We propose a new approach which consists in producing a vacuum index gradient and send a light beam trough it in order to detect its angular deviation. The vacuum index gradient, similar to a "prismatic vacuum", is created by the interaction of two very intense and ultra short laser pulses, used as pump pulses. At the maximum of the index gradient, the deflection angle of the probe pulse is estimated to be $2 \\ 10^{-13} \\times (\\frac{w_0}{10 \\mu\\mathrm{m}})^{-3} \\times \\frac{I}{1 \\mathrm{J}}$ radians, where $I$ is the total energy of the two pump pulses and $w_0$ is the minimum waist (fwhm) at the interaction area of the two pump pulses. Assuming the most intense laser pulses attainable by the LASERIX facility ($I = 25$ J, 30 fs fwhm duration, 800 ...

  17. The regulation of light sensing and light harvesting impacts the use of cyanobacteria as biotechnology platforms

    Directory of Open Access Journals (Sweden)

    Beronda L Montgomery

    2014-07-01

    Full Text Available Light is harvested in cyanobacteria by chlorophyll-containing photosystems embedded in the thylakoid membranes and phycobilisomes (PBSs, photosystem-associated light-harvesting antennae. Light absorbed by the PBSs and photosystems can be converted to chemical energy through photosynthesis. Photosynthetically-fixed carbon pools, which are constrained by photosynthetic light capture versus the dissipation of excess light absorbed, determine the available organismal energy budget. The molecular bases of the environmental regulation of photosynthesis, photoprotection and photomorphogenesis are still being elucidated in cyanobacteria. Thus, the potential impacts of these phenomena on the efficacy of developing cyanobacteria as robust biotechnological platforms require additional attention. Current advances and persisting needs for developing cyanobacterial production platforms that are related to light sensing and harvesting include the development of tools to balance the utilization of absorbed photons for conversion to chemical energy and biomass versus light dissipation in photoprotective mechanisms. Such tools can be used to direct energy to more effectively support the production of desired bioproducts from sunlight.

  18. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.).

    Science.gov (United States)

    Muneer, Sowbiya; Kim, Eun Jeong; Park, Jeong Suk; Lee, Jeong Hyun

    2014-03-17

    The objective of this study was to investigate the response of light emitting diodes (LEDs) at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m-2 s-1 for blue LEDs) at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm), red (639 nm) and blue (470 nm) LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m-2 s-1) and was lowered with decreased light intensity (70-80 μmol m-2 s-1). The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment.

  19. The effects of light intensity on the growth of Japanese Gambierdiscus spp. (Dinophyceae).

    Science.gov (United States)

    Yoshimatsu, Takamichi; Tie, Chaoyu; Yamaguchi, Haruo; Funaki, Hiroshi; Honma, Chiho; Tanaka, Kouki; Adachi, Masao

    2016-12-01

    Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R>0.92 (p<0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μmax values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208μmol photons m(-2)s(-1) and 91-422μmol photons m(-2)s(-1), respectively; (2) those of G. scabrosus were 252 and 120-421μmol photons m(-2)s(-1), respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75-430μmol photons m(-2)s(-1), respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73-427μmol photons m(-2)s(-1), respectively. All four Gambierdiscus species/phylotypes required approximately 10μmol photons m(-2)s(-1) to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer's Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058-0.119m(-1). The values 1700

  20. Light-regulated asexual reproduction in Paecilomyces fumosoroseus.

    Science.gov (United States)

    Sánchez-Murillo, Rosa Icela; de la Torre-Martínez, Mayra; Aguirre-Linares, Jesús; Herrera-Estrella, Alfredo

    2004-02-01

    The entomopathogenic fungus Paecilomyces fumosoroseus has been successfully used in the control of several insect pests. Asexually produced spores (conidia) are the means for dispersal and transmission of the entomopathogen; upon contact with the insect cuticle they germinate and penetrate the host. In model fungal systems it has been found that phototropism, resetting of the circadian rhythm, the induction of carotenogenesis and the development of reproductive structures are controlled by blue light. The effect of light quality on conidial yield of P. fumosoroseus was investigated. Incubation in total darkness resulted in continued vegetative growth and lack of reproductive structures. In contrast, growth of the fungus in continuous illumination or under a night-day regime resulted in prolific formation of conidiophores bearing abundant mature conidia. Conidiation was photoinduced in competent mycelia by a single pulse of blue light and colonies were competent only after they had grown at least 72 h under total darkness. The fluence-response curves generated with blue light indicated that the minimal fluence required for the photomorphogenetic response was 180 micro mol m(-2) and the half-maximal response was at 400 micro mol m(-2). A fluence of 540 micro mol m(-2) was enough to saturate the system, inducing the maximum production of 2.12x10(8) conidia per colony. Higher light intensities markedly decreased conidiation, suggesting the occurrence of a process of adaptation. The authors propose the existence of a dual light-perception system with at least two photoreceptors in P. fumosoroseus, one promoting and one inhibiting conidiation.

  1. Study on the backscattered light intensity to airborne laser range-gated imaging

    Science.gov (United States)

    Wang, Ling; Yu, Lei; Kou, Tian; Wu, Xueming

    2016-10-01

    Based on the range-gated technology in the application of airborne laser detection imaging system, sequence relations of the parameters in the model of range gating in detail was analyzed. The effective scope of atmospheric backscatter and the moment before or after pulsing of the unit section was obtained. Horizontal range-gated imaging model was established and the calculation method of backscattered light intensity was given. Then slant distance detection of airborne laser active imaging was revised. By the object-image relation of points on the scattering section, the light path diagram of imaging detection system was built and the corresponding relation of light intensity between scattering points and receiving points was given. The variation regularity and distribution of light intensity on the detector under horizontal and slant detection were gained. Under the idea, the outfield testing platform was set up, and the relative error of data between measured and simulated results was controlled within 5%. The two kinds of data achieved a good coincident, which demonstrated the effectiveness of the built model. The two kinds of data achieved a good coincident, which demonstrated the effectiveness of the built model.

  2. Continuous cultures of spirulina platensis under photoautotrophic conditions with change in light intensity

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, S. [Osaka Univ., Suita (Japan)532600; Taya, M.; Tone, S. [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1998-08-01

    In continuous cultures of Spirulina platensis under photoautotrophic conditions, the operation mode to maintain constant cell concentration is examined using culture apparatuses with light path lengths of 0.02 and 0.156 m. The values of dilution rates in the continuous cultures are determined by employing specific growth rates of the cells corresponding to light intensity distribution in liquid medium. When incident light intensity is fixed at 25, 50 or 400 W m{sup minus2}, it is found that the cell concentration in the continuous culture is kept almost constant, and agrees fairly well with the prescribed value of the cell concentration in the range of 0.09 to 2.43 kg m{sup minus3}. It is also demonstrated that the operation mode is valid to obtain stable cell concentrations in the continuous cultures associated with the change in incident light intensity ranging from 25 to 400 W m{sup minus2} during the cultures. 7 refs., 3 figs., 1 tabs.

  3. Effects of soil moisture and light intensity on ecophysiological characteristics of Amorpha fruticosa seedlings

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiu-ru; TAN Xiang-feng; WANG Ren-qing; XU Nan-nan; GUO Wei-hua

    2013-01-01

    We investigated the combined effects of soil moisture and light intensity on the growth,development and ecophysiological characteristics of one-year old Amorpha fruticosa seedlings.Soil moisture and light intensity influenced the ecophysiological characteristics of Amorphafruticosa seedlings.Soil moisture resulted in the decreases of growth rate,individual size,net photosynthetic rate,transpiration rate,leaf water loss rate (WLR),and biomass accumulation of plant parts,and led to increased leaf water saturation deficit (WSD).Under water stress,more photosynthetic products were allocated to root growth.With decreasing light intensity,net photosynthetic rate,transpiration rate,chla/b,water saturation deficit,water use efficiency,water loss rate and biomass accumulation declined,while Chla,Chlb,Chla+b and carotenoids (Car)increased and more photosynthetic products were allocated to stem and leaf growth.Maximum growth vigor,net photosynthetic rate and total biomass accumulation in Amorpha fruticosa seedlings was recorded at 75-80% soil water-holding capacity and 100% light density in greenhouse environments.

  4. Effects of light intensity of photosynthesis and dark respiration in six species of marine phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G.; Owens, T.G.

    1978-01-01

    Using an oxygen polarographic electrode, the shapes of photosynthetic curves and the effects of light on dark respiration in 6 species of marine phytoplankton were examined. The species used were Skeletonema costatum, Ditylum brightwellii, Cyclotella nana (Thalassiosira pseudonana) (all Bacillariophyceae), Dunaliella tertiolecta (Chlorophyceae), Isochrysis galbana (Haptophyceae), and Gonyaulax tamarensis (Dinophyceae). A hysteresis was observed in all species examined with respect to increasing and decreasing light. Compensation light intensities varied by over 4 orders of magnitude, suggesting that the 1% light depth is an ambiguous measure of the euphotic zone. The data suggest that dark respiration accounts for ca. 25% of gross photosynthesis, but is species-dependent. In addition, respiration versus cell size does not describe an inverse exponential function over the size scales examined.

  5. Antioxidant capacity reduced in scallions grown under elevated CO 2 independent of assayed light intensity

    Science.gov (United States)

    Levine, Lanfang H.; Paré, Paul W.

    2009-10-01

    Long-duration manned space missions mandate the development of a sustainable life support system and effective countermeasures against damaging space radiation. To mitigate the risk of inevitable exposure to space radiation, cultivation of fresh fruits and vegetables rich in antioxidants is an attractive alternative to pharmacological agents. However it has yet to be established whether antioxidant properties of crops can be preserved or enhanced in a space environment where environmental conditions differ from that which plants have acclimated to on earth. Scallion ( Allium fistulosum) rich in antioxidant vitamins C and A, and flavonoids was used as a model plant to study the impact of a range of CO 2 concentrations and light intensities that are likely encountered in a space habitat on food quality traits. Scallions were hydroponically grown in controlled environmental chambers under a combination of 3 CO 2 concentrations of 400, 1200 and 4000 μmol mol -1 and 3 light intensity levels of 150, 300, 450 μmol m -2 s -1. Total antioxidant activity (TAA) of scallion extracts was determined using a radical cation scavenging assay. Both elevated CO 2 and increasing light intensity enhanced biomass accumulation, but effects on TAA (based on dry weight) differed. TAA was reduced for plants grown under elevated CO 2, but remained unchanged with increases in light intensity. Elevated CO 2 stimulated greater biomass production than antioxidants, while an increase in photosynthetic photo flux promoted the synthesis of antioxidant compounds at a rate similar to that of biomass. Consequently light is a more effective stimulus than CO 2 for antioxidant production.

  6. Development of terminal hair following skin lesion treatments with an intense pulsed light source.

    Science.gov (United States)

    Vlachos, Spiros P; Kontoes, Paraskevas P

    2002-01-01

    Laser and other light sources have been used to treat vascular and pigmented skin lesions and to remove tattoos and unwanted hair, with varying degrees of success and various side effects. It has not yet been reported that hair growth can occur as a side effect of such treatments. In this paper two cases are presented, one port wine stain and one tattoo, that were each treated several times with an intense pulsed light source (IPLS) for removal. Terminal hair, not present before treatment, partially developed in treated areas of both lesions. Local inflammatory reactions are believed to trigger such outcomes.

  7. Relationship between caffeine content and flavor with light intensity of several coffee Robusta clones

    Directory of Open Access Journals (Sweden)

    Novie Pranata Erdiansyah

    2012-05-01

    Full Text Available Coffee is a refreshing beverage product and its price is determined by physical quality and flavor. An excellent coffee flavor is resulted only from qualified coffee beans, produced by well managed plantation. The objective of this experiment was to study the effect of sunlight intensity entering coffee farm on flavor profiles and caffeine content of Robusta coffee. The experiment was conducted at the field experimental Kaliwining Estate of Indonesian Coffee and Cocoa Research Institute (ICCRI during 2009–2011. Treatments were Robusta coffee clones and sunlight intensity. Experimental design was split plot design with three replications. Robusta clones used were BP 409, BP 534, BP 936 and BP 939, planted in 2002. The sunligt intensity treatments were 100% (without shade tree, 50—60% (Leucaena leucocephala shade, and 20—30% (Hibiscus macrophyllus and Melia azedarach L. shades. Only red coffee cherries were harvested for flavor and caffeine analysis. Coffee cherries were washed, depulped and sundried until moisture content of less than 12%. The green coffee bean samples were roasted at medium level (Agtron Scale at 65# for cupping test which involved five expert panelists by using ICCRI protocol. Caffeine content was determined by spectrophotometric method. The experiment result indicated that high sunlight intensity resulted in strong aroma of Robusta coffee, while good flavor coffee need medium light intensity. Cafein content had positive correlation with light intensity entering the coffee farm, whereas cafein content had no direct effect on Robusta coffee flavor.Key words: Coffea canephora, clone, sunlight intensity, flavor, caffeine. 

  8. A coordinate transformation method for calculating the 3D light intensity distribution in ICF hohlraum

    Science.gov (United States)

    Lin, Zhili; Li, Xiaoyan; Zhao, Kuixia; Chen, Xudong; Chen, Mingyu; Pu, Jixiong

    2016-06-01

    For an inertial confinement fusion (ICF) system, the light intensity distribution in the hohlraum is key to the initial plasma excitation and later laser-plasma interaction process. Based on the concept of coordinate transformation of spatial points and vector, we present a robust method with a detailed procedure that makes the calculation of the three dimensional (3D) light intensity distribution in hohlraum easily. The method is intuitive but powerful enough to solve the complex cases of random number of laser beams with arbitrary polarization states and incidence angles. Its application is exemplified in the Shenguang III Facility (SG-III) that verifies its effectiveness and it is useful for guiding the design of hohlraum structure parameter.

  9. A comparative study of hair removal at an NHS hospital: Luminette intense pulsed light versus electrolysis.

    Science.gov (United States)

    Harris, Karen; Ferguson, Janice; Hills, Samantha

    2014-04-01

    Twenty-five women, referred for hair removal by electrolysis, were enrolled in a split face study to treat facial hirsutism. Each patient was treated on six occasions: one-half of the face with electrolysis and the other side with an intense pulsed light source. Patients were evaluated with respect to reduction in hair counts, side effects and discomfort during treatment. Re-growth was assessed at 3, 6 and 9 months following treatment. All patients, except one with very sparse, fair hair growth, preferred treatment with the Intense Pulsed Light and rated their average hair reduction with this method as 77% after five treatments. The overall patient satisfaction rates as determined by visual analogue scales were 8.3 out of 10 for IPL and 5.4 out of 10 for electrolysis.

  10. Chronic neuropathic facial pain after intense pulsed light hair removal. Clinical features and pharmacological management

    Science.gov (United States)

    Párraga-Manzol, Gabriela; Sánchez-Torres, Alba; Moreno-Arias, Gerardo

    2015-01-01

    Intense Pulsed Light (IPL) photodepilation is usually performed as a hair removal method. The treatment is recommended to be indicated by a physician, depending on each patient and on its characteristics. However, the use of laser devices by medical laypersons is frequent and it can suppose a risk of damage for the patients. Most side effects associated to IPL photodepilation are transient, minimal and disappear without sequelae. However, permanent side effects can occur. Some of the complications are laser related but many of them are caused by an operator error or mismanagement. In this work, we report a clinical case of a patient that developed a chronic neuropathic facial pain following IPL hair removal for unwanted hair in the upper lip. The specific diagnosis was painful post-traumatic trigeminal neuropathy, reference 13.1.2.3 according to the International Headache Society (IHS). Key words:Neuropathic facial pain, photodepilation, intense pulse light. PMID:26535105

  11. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light

    Science.gov (United States)

    Chu, Xiao-Liu; Götzinger, Stephan; Sandoghdar, Vahid

    2017-01-01

    A two-level atom cannot emit more than one photon at a time. As early as the 1980s, this quantum feature was identified as a gateway to 'single-photon sources', where a regular excitation sequence would create a stream of light particles with photon number fluctuations below the shot noise. Such an intensity-squeezed beam of light would be desirable for a range of applications, such as quantum imaging, sensing, enhanced precision measurements and information processing. However, experimental realizations of these sources have been hindered by large losses caused by low photon-collection efficiencies and photophysical shortcomings. By using a planar metallodielectric antenna applied to an organic molecule, we demonstrate the most regular stream of single photons reported to date. The measured intensity fluctuations were limited by our detection efficiency and amounted to 2.2 dB squeezing.

  12. Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method

    DEFF Research Database (Denmark)

    Barnkob, Rune; Iranmanesh, Ida; Wiklund, Martin;

    2012-01-01

    We present a simple and rapid method for measuring the acoustic energy density in microchannel acoustophoresis based on light-intensity measurements of a suspension of particles. The method relies on the assumption that each particle in the suspension undergoes single-particle acoustophoresis....... It is validated by the single-particle tracking method, and we show by proper re-scaling that the re-scaled light intensity plotted versus re-scaled time falls on a universal curve. The method allows for analysis of moderate-resolution images in the concentration range encountered in typical experiments......, and it is an attractive alternative to particle tracking and particle image velocimetry for quantifying acoustophoretic performance in microchannels....

  13. The use of lasers and intense pulsed light sources for the treatment of pigmentary lesions.

    Science.gov (United States)

    Chan, H H L; Kono, T

    2004-10-01

    Lasers and intense pulsed light sources are frequently used for the treatment of pigmented lesions, and the appropriate selection of devices for different lesions is vital to achieving satisfactory clinical outcomes. In dark-skinned patients, the risk of post-inflammatory hyperpigmentation is of particular importance. In general, long-pulse laser and intense pulsed light sources can be effective with a low risk of post-inflammatory hyperpigmentation (PIH) when used for the treatment of lentigines. However, for dermal pigmentation and tattoo, Q-switched lasers are effective, with a lower risk of complications. In the removal of melanocytic nevi, a combined approach with a long-pulse pigmented laser and a Q-switched laser is particularly applicable.

  14. Ethylene Signaling Influences Light-Regulated Development in Pea.

    Science.gov (United States)

    Weller, James L; Foo, Eloise M; Hecht, Valérie; Ridge, Stephen; Vander Schoor, Jacqueline K; Reid, James B

    2015-09-01

    Plant responses to light involve a complex network of interactions among multiple plant hormones. In a screen for mutants showing altered photomorphogenesis under red light, we identified a mutant with dramatically enhanced leaf expansion and delayed petal senescence. We show that this mutant exhibits reduced sensitivity to ethylene and carries a nonsense mutation in the single pea (Pisum sativum) ortholog of the ethylene signaling gene ETHYLENE INSENSITIVE2 (EIN2). Consistent with this observation, the ein2 mutation rescues the previously described effects of ethylene overproduction in mature phytochrome-deficient plants. In seedlings, ein2 confers a marked increase in leaf expansion under monochromatic red, far-red, or blue light, and interaction with phytochromeA, phytochromeB, and long1 mutants confirms that ein2 enhances both phytochrome- and cryptochrome-dependent responses in a LONG1-dependent manner. In contrast, minimal effects of ein2 on seedling development in darkness or high-irradiance white light show that ethylene is not limiting for development under these conditions. These results indicate that ethylene signaling constrains leaf expansion during deetiolation in pea and provide further evidence that down-regulation of ethylene production may be an important component mechanism in the broader control of photomorphogenic development by phytochrome and cryptochrome.

  15. Long-pulsed dye laser vs. intense pulsed light for the treatment of facial telangiectasias: a randomized controlled trial

    DEFF Research Database (Denmark)

    Nymann, Peter; Hedelund, Lene; Haedersdal, M

    2010-01-01

    This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias.......This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias....

  16. Co-regulation of dark and light reactions in three biochemical subtypes of C(4) species.

    Science.gov (United States)

    Kiirats, Olavi; Kramer, David M; Edwards, Gerald E

    2010-08-01

    Regulation of light harvesting in response to changes in light intensity, CO(2) and O(2) concentration was studied in C(4) species representing three different metabolic subtypes: Sorghum bicolor (NADP-malic enzyme), Amaranthus edulis (NAD-malic enzyme), and Panicum texanum (PEP-carboxykinase). Several photosynthetic parameters were measured on the intact leaf level including CO(2) assimilation rates, O(2) evolution, photosystem II activities, thylakoid proton circuit and dissipation of excitation energy. Gross rates of O(2) evolution (J(O)₂'), measured by analysis of chlorophyll fluorescence), net rates of O(2) evolution and CO(2) assimilation responded in parallel to changes in light and CO(2) levels. The C(4) subtypes had similar energy requirements for photosynthesis since there were no significant differences in maximal quantum efficiencies for gross rates of O(2) evolution (average value = 0.072 O(2)/quanta absorbed, approximately 14 quanta per O(2) evolved). At saturating actinic light intensities, when photosynthesis was suppressed by decreasing CO(2), ATP synthase proton conductivity (g (H) (+)) responded strongly to changes in electron flow, decreasing linearly with J(O)₂', which was previously observed in C(3) plants. It is proposed that g (H) (+) is controlled at the substrate level by inorganic phosphate availability. The results suggest development of nonphotochemical quenching in C(4) plants is controlled by a decrease in g (H) (+), which causes an increase in proton motive force by restricting proton efflux from the lumen, rather than by cyclic or pseudocyclic electron flow.

  17. Shedding light on bioluminescence regulation in Vibrio fischeri.

    Science.gov (United States)

    Miyashiro, Tim; Ruby, Edward G

    2012-06-01

    The bioluminescence emitted by the marine bacterium Vibrio fischeri is a particularly striking result of individual microbial cells co-ordinating a group behaviour. The genes responsible for light production are principally regulated by the LuxR-LuxI quorum-sensing system. In addition to LuxR-LuxI, numerous other genetic elements and environmental conditions control bioluminescence production. Efforts to mathematically model the LuxR-LuxI system are providing insight into the dynamics of this autoinduction behaviour. The Hawaiian squid Euprymna scolopes forms a natural symbiosis with V. fischeri, and utilizes the symbiont-derived bioluminescence for certain nocturnal behaviours, such as counterillumination. Recent work suggests that the tissue with which V. fischeri associates not only can detect bioluminescence but may also use this light to monitor the V. fischeri population. © 2012 Blackwell Publishing Ltd.

  18. Simultaneous Effects of Light Intensity and Phosphorus Supply on the Sterol Content of Phytoplankton

    OpenAIRE

    Maike Piepho; Dominik Martin-Creuzburg; Alexander Wacker

    2010-01-01

    Sterol profiles of microalgae and their change with environmental conditions are of great interest in ecological food web research and taxonomic studies alike. Here, we investigated effects of light intensity and phosphorus supply on the sterol content of phytoplankton and assessed potential interactive effects of these important environmental factors on the sterol composition of algae. We identified sterol contents of four common phytoplankton genera, Scenedesmus, Chlamydomonas, Cryptomonas ...

  19. Effect of oxygen at low and high light intensities on the growth of Neochloris oleoabundans

    NARCIS (Netherlands)

    Sousa, C.A.; Compadre, A.; Vermuë, M.H.; Wijffels, R.H.

    2013-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at near-saturating light intensity in a fully-controlled photobioreactor. At the partial oxygen pressures tested (PO2=0.24; 0.42; 0.63; 0.84 bar), the specific growth rate was 1.36; 1.16; 0.93 and 0.68 day-1,

  20. Effect of oxygen at low and high light intensities on the growth of Neochloris oleoabundans

    NARCIS (Netherlands)

    Sousa, C.A.; Compadre, A.; Vermuë, M.H.; Wijffels, R.H.

    2013-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at near-saturating light intensity in a fully-controlled photobioreactor. At the partial oxygen pressures tested (PO2=0.24; 0.42; 0.63; 0.84 bar), the specific growth rate was 1.36; 1.16; 0.93 and 0.68 day-1, resp

  1. Sedentary behaviors and light-intensity activities in relation to colorectal cancer risk.

    Science.gov (United States)

    Keum, NaNa; Cao, Yin; Oh, Hannah; Smith-Warner, Stephanie A; Orav, John; Wu, Kana; Fuchs, Charles S; Cho, Eunyoung; Giovannucci, Edward L

    2016-05-01

    A recent meta-analysis found that sedentary behaviors are associated with an increased colorectal cancer (CRC) risk. Yet, the finding on TV viewing time, the most widely used surrogate of sedentary behaviors, was based on only two studies. Furthermore, light-intensity activities (e.g., standing and slow walking), non-sedentary by posture but close to sedentary behaviors by Metabolic Equivalent Task values, have not been investigated in relation to CRC risk. Thus, we prospectively analyzed the relationships based on 69,715 women from Nurses' Health Study (1992-2010) and 36,806 men from Health Professionals Follow-Up Study (1988 - 2010). Throughout follow-up, time spent on sedentary behaviors including sitting watching TV and on light-intensity activities were assessed repeatedly; incidence of CRC was ascertained. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models from each cohort. A total of 1,119 and 913 incident cases were documented from women and men, respectively. The multivariable HR comparing ≥ 21 versus sedentary and physically less active had an approximately 41% elevated risk of CRC (95% CI = 1.03 to 1.92) compared with those less sedentary and physically more active. The other sedentary behaviors and light-intensity activities were not related to CRC risk in women or men. In conclusion, we found that prolonged sitting time watching TV was associated with an increased CRC risk in women but not in men.

  2. Effect of Light Intensity and Photoperiod on Growth and Biochemical Composition of a Local Isolate of Nostoc calcicola.

    Science.gov (United States)

    Khajepour, Fateme; Hosseini, Seyed Abbas; Ghorbani Nasrabadi, Rasoul; Markou, Giorgos

    2015-08-01

    A study was conducted to investigate the effect of light intensity (21, 42, and 63 μmol photons m(-2) s(-1)) and photoperiod (8:16, 12:12, and 16:8 h light/dark) on the biomass production and its biochemical composition (total carotenoids, chlorophyll a, phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC), total protein, and carbohydrates) of a local isolate of Nostoc calcicola. The results revealed that N. calcicola prefers dim light; however, the most of the levels of light intensity and photoperiod investigated did not have a significant impact on biomass production. Increasing light intensity biomass content of chlorophyll a, PE, PC, APC, and total protein decreased, while total carotenoids and carbohydrate increased. The same behavior was observed also when light duration (photoperiod) increased. The interaction effect of increasing light intensity and photoperiod resulted in an increase of carbohydrate and total carotenoids, and to the decrease of chlorophyll a, PE, PC, APC, and total protein content. The results indicate that varying the light regime, it is capable to manipulate the biochemical composition of the local isolate of N. calcicola, producing either valuable phycobiliproteins or proteins under low light intensity and shorter photoperiods, or producing carbohydrates and carotenoids under higher light intensities and longer photoperiods.

  3. INDUCTION OF ANTIMICROBIAL ACTIVITY OF SOME MACROMYCETES BY LOW-INTENSITY LIGHT

    Directory of Open Access Journals (Sweden)

    N. L. Poyedinok

    2015-02-01

    Full Text Available The aim of the work was to study the induction of antimicrobial activity of macromycetes by low-intensity light of different wavelengths and coherence. The objects of investigation were the strains of Flammulina velutipes 3923, Pleurotus ostreatus 531, Ganoderma lucidum 1908 and G. applanatum 1552 from Mushrooms Collection of the Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, the test-cultures from Cultural Collections of the Gause Institute of New Antibiotics, All-Union Research Institute of Antibiotics and the All-Russian Collection of Industrial microorganisms. Helium-neon laser with a wavelength of 632.8 nm and an argon ion laser with wavelengths of 488.0 nm and 514.5 nm were used as a source of coherent visible light lasers. For obtaining incoherent light LEDs with emission at a wavelength of 490.0, 520.0 and 634.0 nm were used. It was found that short-term exposure of sowing mycelium by low intensity light with the energy density of 230 MJ/cm2 in the red and blue wavelength ranges reduced the cultivation period before the appearance of antimicrobial activity and induced the increasing of the culture fluid inhibitory activity against different test-cultures from 20 to 238%. Selected modes of antimicrobial activity photostimulation could be used in biotechnology of submerged cultivation of macromycetes for intensification of technological stages and increasing the yield of the final product.

  4. Influence of the excitation light intensity on the rate of fluorescence quenching reactions: pulsed experiments.

    Science.gov (United States)

    Angulo, Gonzalo; Milkiewicz, Jadwiga; Kattnig, Daniel; Nejbauer, Michał; Stepanenko, Yuriy; Szczepanek, Jan; Radzewicz, Czesław; Wnuk, Paweł; Grampp, Günter

    2017-02-22

    The effect of multiple light excitation events on bimolecular photo-induced electron transfer reactions in liquid solution is studied experimentally. It is found that the decay of fluorescence can be up to 25% faster if a second photon is absorbed after a first cycle of quenching and recombination. A theoretical model is presented which ascribes this effect to the enrichment of the concentration of quenchers in the immediate vicinity of fluorophores that have been previously excited. Despite its simplicity, the model delivers a qualitative agreement with the observed experimental trends. The original theory by Burshtein and Igoshin (J. Chem. Phys., 2000, 112, 10930-10940) was created for continuous light excitation though. A qualitative extrapolation from the here presented pulse experiments to the continuous excitation conditions lead us to conclude that in the latter the order of magnitude of the increase of the quenching efficiency upon increasing the light intensity of excitation, must also be on the order of tens of percent. These results mean that the rate constant for photo-induced bimolecular reactions depends not only on the usual known factors, such as temperature, viscosity and other properties of the medium, but also on the intensity of the excitation light.

  5. Computer analysis of environmental temperature, light and noise in intensive care: chaos or chronome nurseries?

    Science.gov (United States)

    Ardura, J; Andrés, J; Aldana, J; Revilla, M A; Cornélissen, G; Halberg, F

    1997-09-01

    Lighting, noise and temperature were monitored in two perinatal nurseries. Rhythms of several frequencies were found, including prominent 24-hour rhythms with acrophases around 13:00 (light intensity) and 16:00 (noise). For light and noise, the ratio formed by dividing the amplitude of a 1-week (circaseptan) or half-week (circasemiseptan) fitted cosine curve by the amplitude of a 24-hour fitted cosine curve is smaller than unity, since 24-hour rhythms are prominent for these variables. The amplitude ratios are larger than unity for temperature in the newborns' unit but not in the infants' unit. Earlier, the origin of the about-7-day rhythms of neonatal physiologic variables was demonstrated to have, in addition to a major endogenous, also a minor exogenous component. Hence, the possibility of optimizing maturation by manipulating environmental changes can be considered, using, as gauges of development, previously mapped chronomes (time structures of biologic multifrequency rhythms, trends and noise).

  6. Effect of photoperiod, light intensity and carbon sources on biomass and lipid productivities of Isochrysis galbana.

    Science.gov (United States)

    Babuskin, Srinivasan; Radhakrishnan, Kesavan; Babu, Packirisamy Azhagu Saravana; Sivarajan, Meenakshisundaram; Sukumar, Muthusamy

    2014-08-01

    Biomass and lipid productivities of Isochrysis galbana were optimized using nutrients of molasses (4, 8, 12 g l(-1)), glucose (4, 8, 12 g l(-1)), glycerol (4, 8, 12 g l(-1)) and yeast extract (2 g l(-1)). Combinations of carbon sources at different ratios were evaluated in which the alga was grown at three different light intensities (50, 100 and 150 μmol m(-2) s(-1)) under the influence of three different photoperiod cycles (12/12, 18/6 and 24/0 h light/dark). A maximum cell density of 8.35 g l(-1) with 32 % (w/w) lipid was achieved for mixotrophic growth at 100 μmol m(-2) s(-1) and 18/6 h light/dark with molasses/glucose (20:80 w/w). Mixotrophic cultivation using molasses, glucose and glycerol was thus effective for the cultivation of I. galbana.

  7. The effect of intense light pulses on the sensory quality and instrumental color of meat from different animal breeds

    OpenAIRE

    Tomašević I.

    2015-01-01

    Intense light pulses (ILP) are an emerging processing technology, which has a potential to decontaminate food products. The light generated by ILP lamps consists of a continuum broadband spectrum from deep UV to the infrared, especially rich in UV range below 400 nm, which is germicidal. Evaluation of the effect of intense light pulses (ILP) on sensory quality of meat, game and poultry was performed using two kinds of red meat (beef and pork), two kinds of ...

  8. Effects of Light Intensity on the Growth, Photosynthetic Characteristics, and Flavonoid Content of Epimedium pseudowushanense B.L.Guo

    Directory of Open Access Journals (Sweden)

    Junqian Pan

    2016-11-01

    Full Text Available Epimedium pseudowushanense B.L.Guo is used in traditional medicine as an aphrodisiac and to strengthen muscles and bones. Several recent reports have shown that flavonoids from Epimedium also significantly affect the treatment of breast cancer, liver cancer, and leukemia. However, few studies have examined the medicinal-ingredient yield of Epimedium, a light-demanding shade herb, under different light intensities. To investigate the effects of light intensity on medicinal-ingredient yields, Epimedium was exposed to five levels of light intensity until harvest time. Leaf dry biomass under L4 was the highest among different light treatments. L4 was also associated with the highest net photosynthetic rate. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that L3 produced the highest amount of epimedin C, and that flavonoid content responded to light levels differently. Results indicated that L3 and L4 were the optimal light levels for medicinal-ingredient yield.

  9. The efficiency, energy intensity and visual impact of the accent lighting in the retail grocery stores

    Directory of Open Access Journals (Sweden)

    Ľudmila Nagyová

    2014-11-01

    Full Text Available Over the last few years, topics of displaying, presentation, lighting, energy saving and issues related to the environment while selling the fresh food (fruits, vegetable, bakery products, meat are becoming an important matter among traders. However, just bigger companies with transnational capital have devoted their attention to this issue yet. Generally, the energy costs make up 70% of operating costs in retail stores where the cooling system and lighting are the most energy consuming. Accent lighting in modern retails is largely involved in the overall design and atmosphere in shops and plays a crucial role in presenting the goods as well. Using of accent lighting can draw the customer's attention to a specific part of the sales area and achieve the overall harmonization in the store. With the rational using of combination of energy saving and effective accent lighting retailers can achieve not only attractive presentation of displayed products but also appreciable savings in the operation of their stores. It is the only factor that can be exactly measured and controlled. Using a Colour and Lux Meters we found out the intensity and color temperature of accent lighting used in domestic and foreign retail chains for the different kinds of fresh food products. Based on the obtained values we have compiled graphs, which are showing visual comfort. We also identified different types of accent lighting, which we assigned to their impact on emotional involvement of consumers. The starting points were the tests we conducted in simulated laboratory conditions. While searching of a compromise between effective and energy efficient accent lighting we take into consideration consumers' emotional response as well as the annual electricity consumption of different types of light sources. At the end we recommend options for energy-efficient, effective and spectacular lighting while using the optimal number of light sources and their logical organization

  10. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    Science.gov (United States)

    Frank, Alan M.; Edwards, William R.

    1983-01-01

    A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

  11. Intensity-dependent change in polarization state of light in normal incidence on an isotropic nonlinear Kerr medium

    Indian Academy of Sciences (India)

    Hari Prakash; Devendra K Singh

    2010-03-01

    It is shown that all optical polarization states of light except plane and circular polarization states undergo an intensity-dependent change in normal incidence of light in an isotropic nonlinear Kerr medium. This effect should be detectable and we propose an experiment for detecting nonlinear susceptibility involved in that part of nonlinear polarization, which depends on the polarization state of light also.

  12. The influence of low intensities of light pollution on bat communities in a semi-natural context.

    Directory of Open Access Journals (Sweden)

    Aurelie Lacoeuilhe

    Full Text Available Anthropogenic light pollution is an increasingly significant issue worldwide. Over the past century, the use of artificial lighting has increased in association with human activity. Artificial lights are suspected to have substantial effects on the ecology of many species, e.g., by producing discontinuities in the territories of nocturnal animals. We analyzed the potential influence of the intensity and type of artificial light on bat activity in a semi-natural landscape in France. We used a species approach, followed by a trait-based approach, to light sensitivity. We also investigated whether the effect of light could be related to foraging traits. We performed acoustic surveys at sites located along a gradient of light intensities to assess the activity of 15 species of bats. We identified 2 functional response groups of species: one group that was light-tolerant and one group that was light-intolerant. Among the species in the latter group that appear to be disadvantaged by lighting conditions, many are rare and threatened in Europe, whereas the species from the former group are better able to thrive in disturbed habitats such as lighted areas and may actually benefit from artificial lighting. Finally, several methods of controlling light pollution are suggested for the conservation of bat communities. Recommendations for light management and the creation of dim-light corridors are proposed; these strategies may play an important role in protecting against the impact of light pollution on nocturnal animals.

  13. Parameter study for polymer solar modules based on various cell lengths and light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Burgers, A.R.; Bende, E.E.; Kroon, J.M. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Veenstra, S.C. [ECN Solar Energy, Solliance, High Tech Campus 5, P63, 5656AE Eindhoven (Netherlands)

    2013-10-15

    Polymer solar cells may be applied in portable electronic devices, where light intensity and spectral distribution of the illuminating source can be very different compared to outdoor applications. As the power output of solar cells depends on temperature, light intensity and spectrum, the design of the module must be optimized for the specific illumination conditions in the different applications. The interconnection area between cells in a module must be as narrow as possible to maximize the active area, also called geometrical fill factor, of the module. Laser scribing has the potential to realize this. The optimal width of the interconnection zone depends both on technological limitations, e.g. laser scribe width and the minimal distance between scribes, and electrical limitations like resistive losses. The latter depends on the generated current in the cell and thus also on illumination intensity. Besides that, also the type of junction, i.e. a single or tandem junction, will influence the optimal geometry. In this paper a calculation model is presented that can be used for electrical modeling of polymer cells and modules in order to optimize the performance for the specific illumination conditions.

  14. Pigment-targeted light wavelength and intensity promotes efficient photoautotrophic growth of Cyanobacteria.

    Science.gov (United States)

    Bland, Erik; Angenent, Largus T

    2016-09-01

    A consensus is lacking whether monochromatic rather than broad-spectrum illumination is more efficient for photosynthetic microbe production platforms. Light wavelength and intensity were tuned to pigment composition for growth of the Cyanobacterium Synechocystis PCC 6803. Phycocyanin (PC)-targeting LEDs (620nm) provided more than 6times the peak efficiency of white LEDs, with peak efficiency growth rates of 0.063h(-1) at 81μEm(-2)s(-1) and 0.039h(-1) at 126μEm(-2)s(-1) for red and white LEDs, respectively. Chlorophyll a (Chl a)-targeting LEDs (680- and 440-nm) performed poorly. Indeed, 10 times greater mass abundance was observed for PC than Chl a. PC levels did not change while Chl a levels decreased when Synechocystis transitioned from white light at 50μEm(-2)s(-1) to 250μEm(-2)s(-1) with 620nm, 680nm, or white LEDs. This work demonstrates that light wavelengths and intensity need to be optimized for each strain.

  15. Dependence of parameters of silicon-type photoelectric converters on temperature and light intensity

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, S.N.; Gorodetskiy, S.M.; Grigoreva, G.M.; Zvyagina, K.N.; Kasymakhunova, A.M.

    The performance of silicon-type photoelectric converters with 1 ohm cm nominal electrical resistivity of the material were measured at +20/sup 0/C, using a variable-intensity solar radiation simulator as a light source and keeping the device temperature constant. The data yielded current-voltage curves for various levels of the photocurrent; the total current is equal to the sum of the photocurrent and diode current, also the dependence of current and voltage as well as efficiency on the density of incident radiation power. The current-voltage curves were found to flatten out with increasing light intensity. The results are used for an evaluation of the equivalent-circuit series resistance and its leakage component. The former is calculated from the ideal current-voltage characteristics with correction for a real device. The latter is calculated on the basis of Ohm's law and current balance in a thin front layer, taking into account the presence of a substrate as well as of metal contact tabs on both front and back sides. The current dependence of the resistance thus established indicates that the series resistance consists almost solely of its leakage component under light loads, but becomes increasingly larger than this component under heavier loads. 5 references, 4 figures.

  16. Low intensity ultrasound induces apoptosis via MPT channel on mitochondrial membrane: Target for regulating cancer therapy or not?

    Science.gov (United States)

    Feng, Yi; Wan, Mingxi

    2017-03-01

    To discuss how the mitochondrion is involved in low intensity ultrasound induced apoptosis, HepG2 cells were irradiated by low intensity focused ultrasound (ISPTA = 3W/cm2, 1 min) and then cultured from 3-12 h post irradiation in the study. The morphological alteration was examined by light and fluorescent microscopy respectively. Cell viability and apoptosis were examined by trypan blue staining and flow cytometry with double staining of FITC-labelled Annexin-V/PI. Key proteins responded to irradiation were screened out by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and shotgun proteomic methods with Agilent 1100 HPLC-Chip-MS technology. Representative apoptotic morphological characteristics and increased percentage of apoptotic cells were achieved. Six important proteins (4 up-regulated and 2 down-regulated) were selected and analyzed. It revealed low intensity focused ultrasound could induce apoptosis in HepG2 cells and the US-induced apoptosis was mitochondria-dependent and caspases-dependent. Moreover, mitochondrial membrane permeability transition (MPT) is related to ultrasound induced apoptosis, but VDAC may be not the main MPT channel. Understanding it could help to assist the cancer therapy by regulating the MPT as the target.

  17. Tissue- and isoform-specific phytochrome regulation of light-dependent anthocyanin accumulation in Arabidopsis thaliana

    OpenAIRE

    2011-01-01

    Phytochromes regulate light- and sucrose-dependent anthocyanin synthesis and accumulation in many plants. Mesophyll-specific phyA alone has been linked to the regulation of anthocyanin accumulation in response to far-red light in Arabidopsis thaliana. However, multiple mesophyll-localized phytochromes were implicated in the photoregulation of anthocyanin accumulation in red-light conditions. Here, we report a role for mesophyll-specific phyA in blue-light-dependent regulation of anthocyanin l...

  18. Effects of different green light intensities on the growth performance and endocrine properties of barfin flounder Verasper moseri.

    Science.gov (United States)

    Takahashi, Akiyoshi; Kasagi, Satoshi; Murakami, Naoto; Furufuji, Sumihisa; Kikuchi, Shigeto; Mizusawa, Kanta; Andoh, Tadashi

    2017-04-17

    We previously reported that the somatic growth of barfin flounder, Verasper moseri, was effectively stimulated by the green light compared to the blue and red lights. Herein, we report the effects of different green light intensities on the growth and endocrine system of the fish. Fish were reared in a dark room with light from a light-emitting diode (LED) at a peak wavelength of 518nm under controlled photoperiod (10.5:13.5h, light:dark cycle; 06:00-16:30, light) with three levels of photon flux density (PFD)-2 (low), 7 (medium), or 21 (high) μmol·m(-2)·s(-1) at the water surface. The average water temperature was 10.2°C, and the fish were fed until satiety. The fish reared under high PFD of green light showed the highest specific growth rates, followed by the medium PFD group. Under high PFD, the fish showed the highest amount of melanin-concentrating hormone mRNA in their brains and insulin in plasma, while the lowest amount of growth hormone was observed in their pituitary glands. These results suggest that the green light stimulated the growth of barfin flounders in a light intensity-dependent manner in association with their central and peripheral endocrine systems. However, when the fish were reared in an ordinary room where they received both ambient and green LED lights, the fish under LED and ambient light grew faster than those under ambient light only (control). Moreover, no difference was observed in the specific growth rate of the fish reared under the three different green LED light intensities, suggesting that the growth was equally stimulated by the green light within a certain range of intensities under ambient light. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. High-Intensity Discharge Industrial Lighting Design Strategies for the Minimization of Energy Usage and Life-Cycle Cost

    OpenAIRE

    Flory IV, Isaac L.

    2008-01-01

    Worldwide, the electrical energy consumed by artificial lighting is second only to the amount consumed by electric machinery. Of the energy usage attributed to lighting in North America, approximately fifteen percent is consumed by those lighting products that are classified as High-Intensity Discharge (HID). These lighting products, which are dominated by Metal-Halide and High-Pressure Sodium technologies, range in power levels from 35 to 2000 watts and are used in both indoor and outdoor ...

  20. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing.

    Science.gov (United States)

    Ma, Rui; Lu, Fan; Bi, Yonghong; Hu, Zhengyu

    2015-08-01

    To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides). Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m(-2) s(-1) than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a. White light at 90 μmol m(-2) s(-1) or blue light 30 μmol m(-2) s(-1) were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.

  1. LED (Light-Emitting Diode Road Lighting in Practice: An Evaluation of Compliance with Regulations and Improvements for Further Energy Savings

    Directory of Open Access Journals (Sweden)

    Annika K. Jägerbrand

    2016-05-01

    Full Text Available Light-emitting diode (LED road lighting has been widely implemented in recent years, but few studies have evaluated its performance after installation. This study investigated whether LED road lighting complies with minimum regulations in terms of traffic safety and whether improvements for energy efficiency are possible. Average road surface luminance (L, overall luminance uniformity (Uo, longitudinal luminance uniformity (UI, power density (PD and normalised power density (PN were evaluated for 14 roads (seven designed for vehicular traffic and seven for pedestrians and bicycles. Energy savings were calculated as the percentage reduction to the minimum level of the existing lighting class or a lower lighting class and by applying a dimming schedule. The results showed that LED road lighting for vehicular traffic roads generally fulfilled the requirements, whereas that for pedestrian and bicycle roads generally corresponded to the lowest lighting class for L, and often did not meet the statutory requirements for Uo and UI. By adapting lighting levels to the minimum requirement of the existing lighting class or by dropping to a lower lighting class, vehicular traffic roads could save 6%–35% on L to lighting class M5 and 23%–61% on L to lighting class M6. A dimming schedule could lead to energy savings of 49%. There is little potential for savings on pedestrian and bicycle roads, except by implementing a dimming schedule. Thus, in general, for vehicular, pedestrian and bicycle roads, a dimming schedule can save more energy than can be achieved in general by reducing lighting class. Furthermore, since a dimming schedule can be adjusted to traffic intensity, any potential risk of compromising traffic safety is minimised.

  2. A simple method for correcting spatially resolved solar intensity oscillation observations for variations in scattered light

    Science.gov (United States)

    Jefferies, S. M.; Duvall, T. L., Jr.

    1991-01-01

    A measurement of the intensity distribution in an image of the solar disk will be corrupted by a spatial redistribution of the light that is caused by the earth's atmosphere and the observing instrument. A simple correction method is introduced here that is applicable for solar p-mode intensity observations obtained over a period of time in which there is a significant change in the scattering component of the point spread function. The method circumvents the problems incurred with an accurate determination of the spatial point spread function and its subsequent deconvolution from the observations. The method only corrects the spherical harmonic coefficients that represent the spatial frequencies present in the image and does not correct the image itself.

  3. The effects of light emitting diode therapy following high intensity exercise.

    Science.gov (United States)

    Denis, Romain; O'Brien, Christopher; Delahunt, Eamonn

    2013-05-01

    To determine the effects of light emitting diode therapy (LEDT) irradiation on blood lactate concentration ([La]) clearance, peak power output and fatigue index (FI) following high intensity fatiguing exercise. Single-blinded randomised cross-over placebo controlled trial. University College Dublin, Institute for Sport and Health, Human performance laboratory. Eighteen healthy male athletes were recruited from field-based sports (including soccer, hockey and rugby union) and participated in the present study. Dependent variables were the peak power output elicited during the Wingate Anaerobic Test (WAnT), FI and [La] before and after each exercise. WAnT performance was measured prior to high intensity fatiguing exercise (Yo-Yo IR2), prior to LEDT or placebo, and following LEDT or placebo. [La] was measured at baseline, immediately after the Yo-Yo IR2, and in the 3rd, 9th, and 15th min following LEDT or placebo condition. No significant group by treatment interactions were observed for any outcome measures (P > 0.05). We conclude that LEDT irradiation applied following high intensity exercise was not effective and has no immediate effect on [La] clearance, peak power and FI, and thus has no significant effect on muscle recovery in athletes at the intensity and irradiation parameters used in the present study. Further research using different parameters is required to determine how LEDT may contribute to post-exercise recovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Intense Pulsed Light Sintering of CH3NH3PbI3 Solar Cells.

    Science.gov (United States)

    Lavery, Brandon W; Kumari, Sudesh; Konermann, Hannah; Draper, Gabriel L; Spurgeon, Joshua; Druffel, Thad

    2016-04-06

    Perovskite solar cells utilizing a two-step deposited CH3NH3PbI3 thin film were rapidly sintered using an intense pulsed light source. For the first time, a heat treatment has shown the capability of sintering methylammonium lead iodide perovskite and creating large crystal sizes approaching 1 μm without sacrificing surface coverage. Solar cells with an average efficiency of 11.5% and a champion device of 12.3% are reported. The methylammonium lead iodide perovskite was subjected to 2000 J of energy in a 2 ms pulse of light generated by a xenon lamp, resulting in temperatures significantly exceeding the degradation temperature of 150 °C. The process opens up new opportunities in the manufacturability of perovskite solar cells by eliminating the rate-limiting annealing step, and makes it possible to envision a continuous roll-to-roll process similar to the printing press used in the newspaper industry.

  5. Light-induced regulation of ligand-gated channel activity.

    Science.gov (United States)

    Bregestovski, Piotr; Maleeva, Galyna; Gorostiza, Pau

    2017-08-31

    The control of ligand-gated receptors with light using photochromic compounds has evolved from the first handcrafted examples to accurate, engineered receptors, whose development is supported by rational design, high-resolution protein structures, comparative pharmacology and molecular biology manipulations. Photoswitchable regulators have been designed and characterized for a large number of ligand-gated receptors in the mammalian nervous system, including nicotinic acetylcholine, glutamate and GABA receptors. They provide a well-equipped toolbox to investigate synaptic and neuronal circuits in all-optical experiments. This focused review discusses the design and properties of these photoswitches, their applications and shortcomings and future perspectives in the field. © 2017 The British Pharmacological Society.

  6. Influence of NaNO3 concentration and incident light intensity on Nannochloropsis oculata lipid accumulation

    OpenAIRE

    Lara Regina Soccol Gris; Anderson de Campos Paim; Marcelo Farenzena; Jorge Otávio Trierweiler

    2013-01-01

    This study aimed at evaluating the best conditions for lipid accumulation in the marine microalga Nannochloropsis oculata in an airlift photobioreactor. Experiments were carried out following a central composite design with the following variables: temperature (19 to 29°C), sodium nitrate concentration (NaNO3) in the culture medium (f/2) (25 to 125 mg.L-1) and incident light intensity (49 to 140 µE.m-2s-1). The maximum lipid production was 132.4 mg.L-1 under the following conditions: 27°C, Na...

  7. Thermo chemical stability of cadmium sulfide nanoparticles under intense pulsed light irradiation and high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Colorado, H.A., E-mail: hcoloradolopera@ucla.edu [Materials Science and Engineering Department, University of California, Los Angeles, CA 90095 (United States); Universidad de Antioquia, Mechanical Engineering, Medellin (Colombia); Dhage, S.R. [International Advanced Research Center for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005 (India); Hahn, H.T. [Materials Science and Engineering Department, University of California, Los Angeles, CA 90095 (United States); Mechanical and Aerospace Engineering Department, University of California, Los Angeles (United States)

    2011-09-15

    Highlights: > In this paper is about the thermochemical stability of CdS nanoparticles under Intense Pulsed Light (IPL) irradiation. > After few irradiation shots over the nano-particles, CdS pillars appeared without phase transformation. > No oxidation was observed during the treatment process. > CdS nanoparticles are thermally stable until around 400 deg. C and 600 deg. C for air and argon atmospheres respectively. > It has been studied and demonstrated the stability of CdS nanoparticles under intense pulsed light and under high temperature conditions. - Abstract: Thermo chemical stability of CdS nanoparticles under an Intense Pulsed Light from a xenon flash lamp and high temperature X-ray Diffraction (XRD) were investigated. The CdS nanoparticles were obtained with a chemical bath method. The CdSO{sub 4} (0.16 M) solution was added to an NH{sub 3} (7.5 M) solution under constant stirring. Afterwards, a thiourea (0.6 M) solution was added. The bath temperature and pH were maintained at 65 deg. C and 10, respectively and the mixture was stirred constantly until a solid precipitate of yellow CdS was produced. Its microstructure was investigated with Scanning Electron Microscopy, and its electronic properties were determined by UV-visible and Photo luminescence Spectroscopy. The microstructure of the sintered CdS nanoparticles, obtained the high temperature XRD, was investigated with EDAX and X-ray micro Tomography. In addition, high temperature XRD and Themogravimetric Analysis tests were conducted over the samples. The CdS nanoparticles' crystallinity increased with the irradiation exposure and they were thermally stable until 600 deg. C in argon atmosphere. However new phases start to appear after annealing at 400 deg. C for 30 min in air atmosphere. The main contribution of this paper was to investigate the stability of CdS nanoparticles under intense light and high temperature conditions. It was found that the number of irradiation shots conducted with the

  8. Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.

    Science.gov (United States)

    Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang

    2013-09-20

    A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.

  9. Effects of light intensity on the morphology and CAM photosynthesis of Vanilla planifolia Andrews

    Directory of Open Access Journals (Sweden)

    María Claudia Díez

    2017-01-01

    Full Text Available Vanilla planifolia is a neotropical orchid, whose fruits produce the natural vanilla, a fundamental ingredient for the food and cosmetic industry. Because of its importance in the world market, it is cultivated in many tropical countries and recently its cultivation has started in Colombia. This species requires shade for its development; however, the optimal of light conditions are unknown. This work evaluates the effect of different light intensities on CAM photosynthesis, physiology, morphology, and growth of this species. For this, vanilla seedlings were subjected to four treatments of relative illumination (RI (T1=8%, T2=17%, T3=31% and T4=67%. Most CO2 assimilation occurred along night in all treatments, which confirms that vanilla is a strong CAM species. Plants grown under high lighting (67% RI had almost half of the photosynthesis in treatments of intermediate lighting (17 and 31%, which is consistent with the lower nocturnal acid accumulation in that treatment. Likewise, the photochemical efficiency of photosystem II (Fv / Fm showed that in plants of the 67% RI occurred high radiation stress. On the other hand, vanilla plants reached greater length, leaf area, and total biomass when grown under intermediate radiation (17 and 31% RI. These results suggest that high radiation alters the functioning of vanilla plants, inhibiting photosynthesis and growth, and that highly shaded environments not significantly affected the CAM photosynthesis of vanilla; however, in the long-term this species showed higher photosynthesis and growth under intermediate levels of radiation

  10. Phenotypic plasticity of Neonotonia wightii and Pueraria phaseoloidesgrown under different light intensities

    Directory of Open Access Journals (Sweden)

    LEONARDO D.T. SANTOS

    2015-03-01

    Full Text Available Plants have the ability to undergo morphophysiological changes based on availability of light. The present study evaluated biomass accumulation, leaf morphoanatomy and physiology of Neonotonia wightii andPueraria phaseoloides grown in full sunlight, as well as in 30% and 50% shade. Two assays were performed, one for each species, using a randomized block design with 10 replicates. A higher accumulation of fresh mass in the shoot of the plants was observed for both species under cultivation in 50% shade, while no differences were detected between the full sunlight and 30% shade. N. wightii and P. phaseoloides showed increase in area and reduction in thickness leaf when cultivated in 50% shade. There were no changes in photosynthetic rate, stomatal conductance, water use efficiency and evapotranspiration of P. phaseoloidesplants because growth environment. However, the shade treatments caused alterations in physiological parameters of N. wightii. In both species, structural changes in the mesophyll occurred depending on the availability of light; however, the amount of leaf blade tissue remained unaltered. Despite the influence of light intensity variation on the morphophysiological plasticity ofN. wightiiand P. phaseoloides, no effects on biomass accumulation were observed in response to light.

  11. Detection of internal structure by scattered light intensity: Application to kidney cell sorting

    Science.gov (United States)

    Goolsby, C. L.; Kunze, M. E.

    1985-01-01

    Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.

  12. Ultrasound modulated light blood flow measurement using intensity autocorrelation function: a Monte-Carlo simulation

    Science.gov (United States)

    Tsalach, A.; Metzger, Y.; Breskin, I.; Zeitak, R.; Shechter, R.

    2014-03-01

    Development of techniques for continuous measurement of regional blood flow, and in particular cerebral blood flow (CBF), is essential for monitoring critical care patients. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133 Xe SPECT1 and laser Doppler2. Coherent light is introduced into the tissue concurrently with an Ultrasound (US) field. Displacement of scattering centers within the sampled volume induced by Brownian motion, blood flow and the US field affects the photons' temporal correlation. Hence, the temporal fluctuations of the obtained speckle pattern provide dynamic information about the blood flow. We developed a comprehensive simulation, combining the effects of Brownian motion, US and flow on the obtained speckle pattern. Photons trajectories within the tissue are generated using a Monte-Carlo based model. Then, the temporal changes in the optical path due to displacement of scattering centers are determined, and the corresponding interference pattern over time is derived. Finally, the light intensity autocorrelation function of a single speckle is calculated, from which the tissue decorrelation time is determined. The simulation's results are compared with in-vitro experiments, using a digital correlator, demonstrating decorrelation time prediction within the 95% confidence interval. This model may assist in the development of optical based methods for blood flow measurements and particularly, in methods using the acousto-optic effect.

  13. Effect of light intensity on respiration rate of Spirulina plantensis; Spirulina no kokyu sokudo no oyobosu shodo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Y.; Obata, E.; Kuga, Y.; Ando, K. [Muroran Institute of Technology, Hokkaido (Japan)

    1997-07-10

    Effects of light intensity and irradiation time on respiration rate in the dark period after irradiating are discussed. The specific respiration rate of S. platensis in the dark is a constant value Q1, up to 15-30 minutes, and then rapidly decreases to Q2 after 30 minutes. The specific respiration rate Q1 increases with light intensity. No significant effect of Q1 on irradiation time and Q2 on light intensity is observed. The respiration rate for a long dark time, Q0(=1.2 mg-O2{center_dot}kg-Spirulina{sup -1}centre dots{sup -1}), is almost the same as Q2. The effect of the logarithmic mean light intensity I{sub 1m}[klx] on Q1 is described by the following equation. Q1-Q0 = 13 and I{sub 1m}/(15+I{sub 1m}) 12 refs., 11 figs.

  14. Impact of light intensity on flowering time and plant quality of Antirrhinum majus L. cultivar Chimes White

    Institute of Scientific and Technical Information of China (English)

    MUNIRMuhammad; JAMILMuhammad[; BALOCHJalal-ud-din; KHATTAKKhalidRehman

    2004-01-01

    Shades of different light intensities (29%, 43%, 54%,60% or 68%) along with control (no shade) were studied to observe their effects on the flowering time and plant quality. A hyperbolic relationship was observed between different light intensities under shade,and time to flowering.The total number of flower buds showed a curvilinear relationship with light intensities. Growth parameters related to the plant characteristics such as plant height,leaf area and plant fresh weight were improved under shading treatments at the expense of flowering time and number of flower buds.However,both linear and polynomial models applied assumed that cultivar Chimes White was equally sensitive to light intensity throughout development.

  15. Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris.

    Science.gov (United States)

    Atta, Madiha; Idris, Ani; Bukhari, Ataullah; Wahidin, Suzana

    2013-11-01

    Light quality and the intensity are key factors which render microalgae as a potential source of biodiesel. In this study the effects of various intensities of blue light and its photoperiods on the growth and lipid content of Chlorella vulgaris were investigated by using LED (Light Emitting Diode) in batch culture. C. vulgaris was grown for 13 days at three different light intensities (100, 200 and 300 μmol m(-2)s(-1)). Effect of three different light and dark regimes (12:12, 16:08 and 24:00 h Light:Dark) were investigated for each light intensity at 25°C culture temperature. Maximum lipid content (23.5%) was obtained due to high efficiency and deep penetration of 200 μmol m(-2)s(-1) of blue light (12:12 L:D) with improved specific growth (1.26 d(-1)) within reduced cultivation time of 8 days. White light could produce 20.9% lipid content in 10 days at 16:08 h L:D.

  16. Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities

    Institute of Scientific and Technical Information of China (English)

    Hongguang Xiao; Congyan Wang; Jun Liu; Lei Wang; Daolin Du

    2015-01-01

    Many plants exhibit heterophylly; the spatially and temporally remarkable ontogenetic differences in leaf morphology may play an adaptative role in their success under diverse habitats. Thus, this study aimed to gain insights into differences in leaf functional traits of heterophyllous Syringa oblata Lindl., which has been widely used as an ornamental tree around the world under different light intensities in East China. No significant differences existed in specific leaf area (SLA) between lanceolate-and heart-shaped leaves. Differ-ences in the investment per unit of light capture surface area deployed between lanceolate-and heart-shaped leaves may be not obvious. This may be attributing to the fact that single leaf wet and dry weight of heart-shaped leaves were significantly higher than those of lanceolate leaves but leaf length and leaf thickness of heart-shaped leaves were significantly lower than those of lanceolate leaves. The SLA of shade trees was sig-nificantly higher than that of sun trees. The investment per unit of light capture surface of shade trees was lower than that of sun trees, making it possible to increase light capture and use efficiency in low-light environments. The phenotypic plas-ticity of most leaf functional traits of lanceolate leaves was higher than those of heart-shaped leaves because the former is the juvenile and the latter is the adult leaf shape during the process of phylogenetic development of S. oblate. The higher range of phenotypic plasticity of leaf thickness and leaf moisture for sun trees may be beneficial to obtain a more efficient control of water loss and nutrient deprivation in high-light environments, and the lower range of phenotypic plas-ticity of single leaf wet and dry weight, and SLA for shade trees may gain an advantage to increase resource (especially light) capture and use efficiency in low-light environments. In brief, the successfully ecological strategy of plants is to find an optimal mode for the trade

  17. Productivity of duckweed (Lemna minor as alternative forage feed for livestock in different light intensities

    Directory of Open Access Journals (Sweden)

    Uti Nopriani

    2015-12-01

    Full Text Available Duckweed (Lemna minor is a small aquatic plant that grow and float in water and spread extensively. Lemna minor is potential as a source of high quality forage. This study aimed to determine optimal light intensity on Lemna minor to generate maximum productivity. Parameters observed were physical-biological and chemical characteristics of the media (pH value, temperature, cover area, decreased of media volume, BOD, COD, nitrate, nitrite and phosphate, plant growth acceleration (number of shoots, leaf diameter and chlorophyll-a, biomass production, doubling time of cover area and the number of daughters. This study was done based on a completely randomized design with 4 levels of shading. While treatment was: without shading, shading 30%, shading 50% and shading 70% using paranet shade. Each treatment consisted of 4 replications. Result showed that the productivity of Lemna minor included the number of daughters, chlorophyll-a, biomass production, cover area, absorbed phosphate and doubling time the number of daughters reached the highest level without shading treatment (1007,21-2813,57 lux. The decrease of intensity of light, the increase the diameter of leaf. Decrease of media volume was positively correlated to size of cover area. Biomass production influenced by a wide doubling time of cover area and number of daughters.

  18. Effect of intense pulsed light on immature burn scars: A clinical study

    Directory of Open Access Journals (Sweden)

    Arindam Sarkar

    2014-01-01

    Full Text Available Introduction: As intense pulsed light (IPL is widely used to treat cutaneous vascular malformations and also used as non-ablative skin rejunuvation to remodel the skin collagen. A study has been undertaken to gauze the effect of IPL on immature burn scars with regard to vascularity, pliability and height. Materials and Methods: This study was conducted between June 2013 and May 2014, among patients with immature burn scars that healed conservatively within 2 months. Photographic evidence of appearance of scars and grading and rating was done with Vancouver Scar Scale parameters. Ratings were done for both case and control scar after the completion of four IPL treatment sessions and were compared. Results: Out of the 19 cases, vascularity, pliability and height improved significantly (P < 0.05 in 13, 14 and 11 scars respectively following IPL treatment. Conclusions: Intense pulsed light was well-tolerated by patients, caused good improvement in terms of vascularity, pliability, and height of immature burn scar.

  19. Characterization of material ablation driven by laser generated intense extreme ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Nozomi, E-mail: tanaka-n@ile.osaka-u.ac.jp; Masuda, Masaya; Deguchi, Ryo; Murakami, Masakatsu; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sunahara, Atsushi [Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-09-14

    We present a comparative study on the hydrodynamic behaviour of plasmas generated by material ablation by the irradiation of nanosecond extreme ultraviolet (EUV or XUV) or infrared laser pulses on solid samples. It was clarified that the difference in the photon energy deposition and following material heating mechanism between these two lights result in the difference in the plasma parameters and plasma expansion characteristics. Silicon plate was ablated by either focused intense EUV pulse (λ = 9–25 nm, 10 ns) or laser pulse (λ = 1064 nm, 10 ns), both with an intensity of ∼10{sup 9 }W/cm{sup 2}. Both the angular distributions and energy spectra of the expanding ions revealed that the photoionized plasma generated by the EUV light differs significantly from that produced by the laser. The laser-generated plasma undergoes spherical expansion, whereas the EUV-generated plasma undergoes planar expansion in a comparatively narrow angular range. It is presumed that the EUV radiation is transmitted through the expanding plasma and directly photoionizes the samples in the solid phase, consequently forming a high-density and high-pressure plasma. Due to a steep pressure gradient along the direction of the target normal, the EUV plasma expands straightforward resulting in the narrower angular distribution observed.

  20. Nutritional quality of ten leafy vegetables harvested at two light intensities.

    Science.gov (United States)

    Colonna, Emma; Rouphael, Youssef; Barbieri, Giancarlo; De Pascale, Stefania

    2016-05-15

    The nutritional composition of ten leafy vegetables (chicory, green lettuce, lamb's lettuce, mizuna, red chard, red lettuce, rocket, spinach, Swiss chard, and tatsoi) and quality traits of the selected leafy vegetables in relation to the light intensity (low and high Photosynthetically Active Radiation; PAR) at time of harvest were determined. Irrespective of the light intensity at time of harvest, the highest leaf dry matter (DM), proteins, nitrate, P, K and Ca contents were observed in rocket followed by mizuna. The highest lipophilic antioxidant activity (LAA) was recorded in red lettuce and rocket, whereas ascorbic acid (AA) and total phenolic (TP) contents of red lettuce were higher compared to the other leafy vegetables. When leafy vegetables were harvested at low as opposed to high PAR, the leaf content was higher in DM, protein, K, Ca and Mg, hydrophilic antioxidant activity (HAA), and LAA by 12.5%, 10.0%, 12.6%, 23.7%, 14.1%, 11.9%, and 18.5%, respectively. The highest values in TP for chicory, green lettuce, lamb's lettuce, mizuna, red chard, and red lettuce, were observed under high PAR.

  1. Timing and intensity of light correlate with body weight in adults.

    Directory of Open Access Journals (Sweden)

    Kathryn J Reid

    Full Text Available Light exposure can influence sleep and circadian timing, both of which have been shown to influence weight regulation. The goal of this study was to evaluate the relationship between ambient light, sleep and body mass index. Participants included 54 individuals (26 males, mean age 30.6, SD = 11.7 years. Light levels, sleep midpoint and duration were measured with wrist actigraphy (Actiwatch-L for 7 days. BMI was derived from self-reported height and weight. Caloric intake was determined from 7 days of food logs. For each participant, light and activity data were output in 2 minute epochs, smoothed using a 5 point (10 minute moving average and then aggregated over 24 hours. The mean light timing above 500 lux (MLiT500 was defined as the average clock time of all aggregated data points above 500 lux. MLiT500 was positively correlated with BMI (r = 0.51, p<0.001, and midpoint of sleep (r = 0.47, p<0.01. In a multivariable linear regression model including MLiT500 and midpoint of sleep, MLiT500 was a significant predictor of BMI (B = 1.26 SE = 0.34, β = 0.53 p = 0.001, r2Δ = 0.22. Adjusting for covariates, MLiT500 remained an independent predictor of BMI (B = 1.28 SE = 0.36, β = 0.54, p = 0.002, r2Δ = 0.20. The full model accounted for 34.7% of the variance in BMI (p = 0.01. Exposure to moderate levels of light at biologically appropriate times can influence weight, independent of sleep timing and duration.

  2. Light quantity affects the regulation of cell shape in Fremyella diplosiphon

    Directory of Open Access Journals (Sweden)

    Bagmi ePattanaik

    2012-05-01

    Full Text Available In some cyanobacteria, the color or prevalent wavelengths of ambient light can impact the protein or pigment composition of the light-harvesting complexes. In some cases, light color or quality impacts cellular morphology. The significance of changes in pigmentation is associated strongly with optimizing light absorption for photosynthesis, whereas the significance of changes in light quality-dependent cellular morphology is less well understood. In natural aquatic environments, light quality and intensity change simultaneously at varying depths of the water column. Thus, we hypothesize that changes in morphology that also have been attributed to differences in the prevalent wavelengths of available light may largely be associated with changes in light intensity. Fremyella diplosiphon shows highly reproducible light-dependent changes in pigmentation and morphology. Under red light (RL, F. diplosiphon cells are blue-green in color, due to the accumulation of high levels of phycocyanin, a RL- absorbing pigment in the light-harvesting complexes or phycobilisomes (PBSs, and the shape of cells are short and rounded. Conversely, under green light (GL, F. diplosiphon cells are red in color due to accumulation of GL- absorbing phycoerythrin in PBSs, and are longer and brick-shaped. GL is enriched at lower depths in the water column, where overall levels of light also are reduced, i.e., to 10% or less of the intensity found at the water surface. We hypothesize that longer cells under low light intensity, which is generally enriched in green wavelengths, are associated with greater levels of total photosynthetic pigments in the thylakoid membranes. To test this hypothesis, we grew F. diplosiphon under increasing intensities of GL and observed whether the length of cells diminished due to reduced pressure to maintain larger cells and the associated increased photosynthetic membrane capacity under high light intensity, independent of whether it is light of

  3. Light Quantity Affects the Regulation of Cell Shape in Fremyella diplosiphon.

    Science.gov (United States)

    Pattanaik, Bagmi; Whitaker, Melissa J; Montgomery, Beronda L

    2012-01-01

    In some cyanobacteria, the color or prevalent wavelengths of ambient light can impact the protein or pigment composition of the light-harvesting complexes. In some cases, light color or quality impacts cellular morphology. The significance of changes in pigmentation is associated strongly with optimizing light absorption for photosynthesis, whereas the significance of changes in light quality-dependent cellular morphology is less well understood. In natural aquatic environments, light quality and intensity change simultaneously at varying depths of the water column. Thus, we hypothesize that changes in morphology that also have been attributed to differences in the prevalent wavelengths of available light may largely be associated with changes in light intensity. Fremyella diplosiphon shows highly reproducible light-dependent changes in pigmentation and morphology. Under red light (RL), F. diplosiphon cells are blue-green in color, due to the accumulation of high levels of phycocyanin, a RL-absorbing pigment in the light-harvesting complexes or phycobilisomes (PBSs), and the shape of cells are short and rounded. Conversely, under green light (GL), F. diplosiphon cells are red in color due to accumulation of GL-absorbing phycoerythrin in PBSs, and are longer and brick-shaped. GL is enriched at lower depths in the water column, where overall levels of light also are reduced, i.e., to 10% or less of the intensity found at the water surface. We hypothesize that longer cells under low light intensities at increasing depths in the water column, which are generally also enriched in green wavelengths, are associated with greater levels of total photosynthetic pigments in the thylakoid membranes. To test this hypothesis, we grew F. diplosiphon under increasing intensities of GL and observed whether the length of cells diminished due to reduced pressure to maintain larger cells and the associated increased photosynthetic membrane capacity under high light intensity

  4. Transition from coherent to incoherent acceleration of nonthermal relativistic electron induced by an intense light pulse

    Science.gov (United States)

    Liu, Y. L.; Kuramitsu, Y.; Moritaka, T.; Chen, S. H.

    2017-03-01

    Nonthermal acceleration of relativistic electrons due to the wakefield induced by an intense light pulse is investigated. The spectra of the cosmic rays are well represented by power-law. Wakefield acceleration has been considered as a candidate for the origins of cosmic rays. The wakefield can be excited by an intense laser pulse as large-amplitude precursor waves in collisionless shocks in the universe. National Central University (NCU) 100-TW laser facility in Taiwan is able to provide high-repetition rate and short intense laser. To experimentally study the wakefield acceleration for the spectrum of the cosmic rays, particle-in-cell simulations are performed to calculate the energy distribution functions of electrons in fixed laser conditions with various plasma densities. The transitions of wakefields from coherent to inherent are observed as the plasma density increases. The distribution functions indicate that the smooth nonthermal power-law spectra with an index of -2 appear when the incoherent wakefields are excited. In contrast, the mono-peak appear in the spectra when the coherent wakefields are excited. The incoherent wakefields yielding the power-law spectra imply the stochastic accelerating of electrons. To explain the universal nonthermal power-law spectra with an index of -2, we described and extended the stochastic acceleration model based on Fokker-Planck equation by assuming the transition rate as an exponential function.

  5. A NUMERICAL MODEL OF THE LASER LIGHT INTENSITY TRANSVERSAL DISTRIBUTION INTO UNDEFORMED/DEFORMED OPTICAL FIBERS

    Directory of Open Access Journals (Sweden)

    Paula COPĂESCU

    2009-12-01

    Full Text Available Preliminary results obtained in developing a numerical model of laser light intensity transversedistribution into undeformed/deformed step index optical fiber are presented. The main purpose ofthe presented preliminary numerical modelling results consists in developing a simple method offiber optical sensors interrogation, especially concerning strain and pressure measurements. It is apotential important matter for aeronautical research and industry because of the more extendeduse of fibre optic sensors in aircraft manufacturing. The developed numerical model relies onsolving the equations of electromagnetic waves propagation into optical fibers by using the finiteelement method technique (FEM. The results of numerical simulation obtained by consideringsingle mode or multimode and various laser wavelengtsh are presented. One importantachievement reported in this paper consists in preliminary experimental results concerning themodification of laser intensity transverse distribution observed for multimode optical fiber with andwithout perpendicular mechanical load. The reported preliminary experimental results confirm tosome extent the predictions of numerical simulations regarding laser intensity distribution underlow and medium transverse mechanical load. One important conclusion of this paper consists inthe future development of fiber optic sensor interrogation techniques based on the reportedpreliminary experimental and numerical simulation results.

  6. Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study.

    Science.gov (United States)

    Ribeiro, Martha Simões; Da Silva, Daniela De Fátima Teixeira; De Araújo, Carlos Eugênio Nabuco; De Oliveira, Sérgio Ferreira; Pelegrini, Cleusa Maria Raspantini; Zorn, Telma Maria Tenório; Zezell, Denise Maria

    2004-02-01

    This study was carried out to investigate the influence of low-intensity polarized visible laser radiation on the acceleration of skin wound healing. Low-level laser therapy (LLLT) at adequate wavelength, intensity, and dose can accelerate tissue repair. However, there is still unclear information about light characteristics, such as coherence and polarization. Some studies indicate that linearly polarized light can survive through long propagation distance in biological tissue. Three burns about 6 mm in diameter were created on the back of rats with liquid N(2). Lesion "L(//)" was irradiated by He-Ne laser (lambda = 632.8 nm), D= 1.0 J/cm(2), with linear polarization parallel to the spinal column of the rat. Lesion "L(inverted v)" was irradiated using the same laser and dose, but the light polarization was aligned perpendicularly to the relative orientation. Lesion "C" was not irradiated in order to be considered as control. The animals were sacrificed at day 3-17 after lesion creation. Samples were collected and prepared for histological analysis. Histological analysis showed that the healing of irradiated wounds was faster than that of non-irradiated wounds. Moreover, it was observed that skin wound repair is dependent on polarization orientation with respect to a referential axis as the animal's spinal column. Consequently, "L(//)" was completely healed after 17 days, whereas "L (perpendicular) " showed a moderate degree of healing after the same period. These results indicate that the relative direction of the laser polarization plays an important role in the wound healing process when highly coherent He-Ne laser is used.

  7. Influence of iron precipitated condition and light intensity on microalgae activated sludge based wastewater remediation.

    Science.gov (United States)

    Anbalagan, Anbarasan; Schwede, Sebastian; Lindberg, Carl-Fredrik; Nehrenheim, Emma

    2017-02-01

    The indigenous microalgae-activated sludge (MAAS) process during remediation of municipal wastewater was investigated by studying the influence of iron flocculation step and light intensity. In addition, availability of total phosphorous (P) and photosynthetic activity was examined in fed-batch and batch mode under northern climatic conditions and limited lighting. This was followed by a semi-continuous operation with 4 d of hydraulic retention time and mean cell residence time of 6.75 d in a photo-bioreactor (PBR) with varying P availability. The fed-batch condition showed that P concentrations of 3-4 mg L(-1) were effective for photosynthetic chl. a development in iron flocculated conditions. In the PBR, the oxygen evolution rate increased with increase in the concentration of MAAS (from 258 to 573 mg TSS L(-1)) at higher surface photosynthetic active radiation (250 and 500 μmol m(-2) s(-1)). Additionally, the rate approached a saturation phase at low MAAS (110 mg L(-1)) with higher light intensities. Semi-continuous operation with luxury P uptake and effective P condition showed stable average total nitrogen removal of 88 and 92% respectively, with residual concentrations of 3.77 and 2.21 mg L(-1). The corresponding average P removal was 68 and 59% with residual concentrations of 2.32 and 1.75 mg L(-1). The semi-continuous operation produced a rapidly settleable MAAS under iron flocculated condition with a settling velocity of 92-106 m h(-1) and sludge volume index of 31-43 ml g(-1) in the studied cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping [Research Center of Combustion and Environmental Technology, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Liu, Zhenyan [Research Center of Combustion and Environmental Technology, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)]. E-mail: yanglp@sjtu.edu.cn

    2007-03-15

    The light intensity, one of the most important factors for photocatalysis, directly influences the photocatalytic reaction rate and the utilization ratio of energy. Its rational selection has vital significance for saving energy. In the present paper, light energy losses in the heterogeneous photocatalysis process were analyzed. A method was presented to determine appropriate light intensities for the photocatalytic degradation of indoor gaseous volatile organic compounds (VOCs) based on the degradation mechanism. For simplifying the method, an excess coefficient of light intensity was defined based on the assumption of complete utilization of excited electron-hole pairs. The excess coefficients and the appropriate light intensities for degrading formaldehyde were determined according to the data from a titania-coated glass plate reactor and a titania-coated reticular foam nickel reactor. The results showed that the derived light intensities according to our method were appropriate. Good degradation performance and high utilization ratio of light energy can be attained simultaneously when the excess coefficient was 1.3-1.5 for formaldehyde with the concentration from 20.45 {mu}mol/m{sup 3} (0.5 ppm) to 81.8 {mu}mol/m{sup 3} (2 ppm), which is the concentration range of formaldehyde in 'sick buildings'.

  9. Profiling of Indoor Plant to Deteriorate Carbon Dioxide Using Low Light Intensity

    Directory of Open Access Journals (Sweden)

    Suhaimi Shamsuri Mohd Mahathir

    2016-01-01

    Full Text Available Reasonable grounds that human needs the plants because their abilities reduce carbon dioxide (CO2. However, it is not constantly human with the plants, especially in the building. This paper intends to study the abilities of seven plants (Anthurium, Dumb Cane, Golden Pothos, Prayer Plants, Spider Plant, and Syngonium to absorb CO2 gas. The research was conducted in chambers (one cubic meter with temperature, lux intensity and CO2 concentration at 25±10C, 300 lux, and 450±10 ppm. Before experimental were carried out, all plants selected should be assimilated with an indoor setting for performance purpose, and the experiment was conducted during daytime (9 am-5 pm. The experiments run in triplicate. Based on the results that are using extremely low light that ever conducted on plants, only Spider Plants are not capable to absorb CO2, instead turn up the CO2 rate during respiration. Meanwhile, Prayer Plant is the most plant performed with CO2 reduction is 7.62%, and this plant also has equivalent results in triplicate study based on an ANOVA test with significant value at 0.072. The conclusions of this research, only Spider Plant cannot survive at indoor condition with extremely low light for plants live and reduce CO2 concentration for indoor air quality (IAQ. The rate of 300 lux is a minimum light at indoor that are set by the Department of Occupational Safety and Health (DOSH, Malaysia.

  10. Intense pulsed light treatment of cadmium telluride nanoparticle-based thin films.

    Science.gov (United States)

    Dharmadasa, Ruvini; Lavery, Brandon; Dharmadasa, I M; Druffel, Thad

    2014-04-09

    The search for low-cost growth techniques and processing methods for semiconductor thin films continues to be a growing area of research; particularly in photovoltaics. In this study, electrochemical deposition was used to grow CdTe nanoparticulate based thin films on conducting glass substrates. After material characterization, the films were thermally sintered using a rapid thermal annealing technique called intense pulsed light (IPL). IPL is an ultrafast technique which can reduce thermal processing times down to a few minutes, thereby cutting production times and increasing throughput. The pulses of light create localized heating lasting less than 1 ms, allowing films to be processed under atmospheric conditions, avoiding the need for inert or vacuum environments. For the first time, we report the use of IPL treatment on CdTe thin films. X-ray diffraction (XRD), optical absorption spectroscopy (UV-Vis), scanning electron microscopy (SEM) and room temperature photoluminescence (PL) were used to study the effects of the IPL processing parameters on the CdTe films. The results found that optimum recrystallization and a decrease in defects occurred when pulses of light with an energy density of 21.6 J cm(-2) were applied. SEM images also show a unique feature of IPL treatment: the formation of a continuous melted layer of CdTe, removing holes and voids from a nanoparticle-based thin film.

  11. How diffusivity, thermocline and incident light intensity modulate the dynamics of deep chlorophyll maximum in Tyrrhenian Sea.

    Science.gov (United States)

    Valenti, Davide; Denaro, Giovanni; Spagnolo, Bernardo; Conversano, Fabio; Brunet, Christophe

    2015-01-01

    During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time-dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environmental variables, such as light intensity, thickness of upper mixed layer and profiles of vertical turbulent diffusivity, obtained starting from experimental findings. Theoretical distributions of phytoplankton cell concentration was converted in chlorophyll concentration, and compared with the experimental profiles measured in a site of the Tyrrhenian Sea at four different times (seasons) of the year, during four different oceanographic cruises. As a result we find a good agreement between theoretical and experimental distributions of chlorophyll concentration. In particular, theoretical results reveal that the seasonal changes of environmental variables play a key role in the phytoplankton distribution and determine the properties of the deep chlorophyll maximum. This study could be extended to other marine ecosystems to predict future changes in the phytoplankton biomass due to global warming, in view of devising strategies to prevent the decline of the primary production and the consequent decrease of fish species.

  12. Angular intensity of nonequilibrium interfacial dynamic light scattering: Succinonitrile and naphthalene

    Science.gov (United States)

    Williams, L. M.; Cummins, H. Z.; Ladeira, L. O.; Mesquita, O. N.

    1992-03-01

    We have investigated the phenomenon of intense dynamic light scattering at the nonequilibrium crystal-melt interface in succinonitrile and naphthalene, in order to resolve the ongoing controversy over its origin. Of the several models that have been proposed to explain this phenomenon, the microbubble model of H. Z. Cummins et al. [Solid State Commun. 60, 857 (1986)] and the mesophase model proposed by J. Bilgram and co-workers [P. Boni, J. H. Bilgram, and W. Kanzig, Phys. Rev. A 28, 2953 (1983)] are the only two still considered to be consistent with most of the experimental observations. In these experiments the angular dependence of the scattered light was investigated. In the mesophase model the angular dependence of the scattered light is described by the Ornstein-Zernike form I(q)=I0(1+q2ξ2)-1, whereas light scattered by bubbles can be modeled by the Mie scattering theory. The data for both materials were found to be incompatible with the Ornstein-Zernike form, but could be reasonably well fit by the Mie theory. The behavior of the onset of scattering was also investigated, and it was found that the product R0t0v2g was a constant, where R0 is the onset radius, t0 the onset time, and vg the crystal growth velocity. This result is consistent with the analysis of Mesquita et al. [Phys. Rev. B 38, 1550 (1988)], in which the onset of the scattering was modeled by considering the rate of buildup of dissolved gas at the advancing crystal-melt interface. The time taken for the disappearance of the scattering after growth was terminated was also investigated. Lastly, the gases dissolved in our samples of succinonitrile were identified by mass spectroscopy and found to have a composition similar to air.

  13. Modeling the interaction of light intensity, nutrient concentration and uranium toxicity in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, E.; Horemans, N.; Vandenhove, H. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Cedergreen, N. [University of Copenhagen (Denmark); Jager, T. [Vrije Universiteit Amsterdam (Netherlands)

    2014-07-01

    Radioecology aims at assessing the effect of radionuclides and radiation on the environment. Since we cannot test every possible environmental situation in the laboratory, we need modeling approaches to extrapolate the results of toxicity assays to environmentally relevant scenarios. Therefore, it is of crucial importance to understand the effect of relevant environmental factors, such as nutrients, temperature and light on the toxicity of the test. Radionuclides are often found to induce the production of reactive oxygen species (ROS). In plants, an overload of ROS can lead to disturbances of the photosynthetic system. Since the light intensity determines the efficiency of the photo-systems in plants, it can be expected to interact with the effect of radionuclides. The nutrient concentration of the test medium determines the physiological state of the plant, affecting in turn the plant's capability of dealing with stress and hence influences the toxicity of the contaminant. To study the interaction of stressors with environmental conditions, mechanistic effect modeling is promoted widely in ecotoxicology. In principle, the modelling aims at a mechanistic understanding of the different processes causing the stress individually, and integrating them in one framework to study their joint effect and possible interaction. We here present a mechanistic effect model for Lemna minor (common duckweed), which is based on Dynamic Energy Budget (DEB) theory. Models based on DEB have been used widely to study the effects of compounds on animals. Due to its general applicability to all types of organisms, it holds potential to be used for comparison of species and compounds in a broad context. Energy uptake from the environment is modeled explicitly, and metabolic rates are set to depend on temperature in DEB models. Therefore, they can be used to extrapolate effects to a wide range of environmentally relevant scenarios. Until now, the DEB research in ecotoxicology has

  14. Clinical application of intense pulsed light depilation technology in total auricular reconstruction.

    Science.gov (United States)

    Guo, Ying; Shan, Jing; Zhang, Tianyu

    2017-08-01

    Although ear reconstruction technology has been highly developed in recent years, hair growth on the reconstructed ear has plagued both surgeons and patients. In this paper, the authors introduce a clinical application of intense pulsed light depilation in total auricular reconstruction. From August 2012 to August 2013, 27 patients (28 ears) suffering from congenital microtia were treated by intense pulsed light depilation (650-950-nm filter, initial fluence of 14-16 J/cm(2) and gradually increased, pulse width of 30-50 ms, spot size of 20 × 30 mm(2), intervals of 6-8 weeks, a total of four sessions) either before or after auricular reconstruction. According to the treatment situation at diagnosis, the patients were divided into two groups: the preoperative group and the postoperative group. There were no differences between the two groups in terms of age or initial fluence for hair removal; however, there were less treatments in the former than in the latter group (preoperative group 4.1 ± 0.3, postoperative group 4.7 ± 0.7, F = 9.10, P = 0.006), and the maximum fluence used for hair removal was lower in the former than in the latter group (preoperative group 18-20 J/cm(2), postoperative group 19-22 J/cm(2), F = 22.31, P < 0.001). After follow-up for ≥4-6 months, the effective rate was 100% in the preoperative group, and the effective rate was 80% in the postoperative group. Intense pulsed light depilation technology is a reasonable complementary approach to total auricular reconstruction. And preoperative depilation is recommended over postoperative depilation. The non-invasive modern photonic technology can resolve the problem of postoperative residual hair on the reconstructed auricle, improving auricular shape and increasing patient satisfaction. In addition, an adequately set preoperative hair removal area can provide surface skin that is most similar to normal auricle skin for auricular reconstruction.

  15. Ill-lighting syndrome: prevalence in shift-work personnel in the anaesthesiology and intensive care department of three Italian hospitals

    Directory of Open Access Journals (Sweden)

    Zanatta Paolo

    2009-03-01

    Full Text Available Abstract Background Light is one of the most important factors in our interaction with the environment; it is indispensable to visual function and neuroendocrine regulation, and is essential to our emotional perception and evaluation of the environment. Previous studies have focussed on the effects of prolonged anomalous exposure to artificial light and, in the field of work-related illness. Studies have been carried out on shift-work personnel, who are obliged to experience alterations in the physiological alternation of day and night, with anomalous exposure to light stimuli in hours normally reserved for sleep. In order to identify any signs and symptoms of the so-called ill-lighting syndrome, we carried out a study on a sample of anaesthesiologists and nurses employed in the operating theatres and Intensive Care Departments of three Italian hospitals. We measured the subjective emotional discomfort (stress experienced by these subjects, and its correlation with environmental discomfort factors, in particular the level of lighting, in their workplace. Methods We used a questionnaire developed by the Scandinavian teams who investigated Sick-Building Syndrome, that was self-administered on one day in the environments where the degree of illumination was measured according to UNIEN12464-1 regulations. Results Upon comparison of the types of exposure with the horizontal luminance values (lux measured ( 1500 lux and the degree of stress reported, (Intensive Care: mean stress = 55.8%, high stress = 34.6%; Operating Theatres: mean stress = 51.5%, high stress = 33.8%, it can be observed that the percentage of high stress was reduced as the exposure to luminance was increased, although this finding was not statistically significant. Conclusion We cannot share other authors' enthusiasm regarding the effects on workers well-being correlated to the use of fluorescent lighting. The stress level of our workers was found to be more heavily influenced by

  16. A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity.

    Science.gov (United States)

    Caine, Nancy G; Osorio, Daniel; Mundy, Nicholas I

    2010-02-23

    Most New World monkey species have both dichromatic and trichromatic individuals present in the same population. The selective forces acting to maintain the variation are hotly debated and are relevant to the evolution of the 'routine' trichromatic colour vision found in catarrhine primates. While trichromats have a foraging advantage for red food compared with dichromats, visual tasks which dichromats perform better have received less attention. Here we examine the effects of light intensity on foraging success among marmosets. We find that dichromats outperform trichomats when foraging in shade, but not in sun. The simplest explanation is that dichromats pay more attention to achromatic cues than trichromats. However, dichromats did not show a preference for foraging in shade compared with trichromats. Our results reveal several interesting parallels with a recent study in capuchin monkeys (Cebus capucinus), and suggest that dichromat advantage for certain tasks contributes to maintenance of the colour vision polymorphism.

  17. Light intensity simulation in real space by viewing locations for autostereoscopic display design

    Science.gov (United States)

    Jo, Jungguen; Lee, Kwang-Hoon; Lee, Dong-Su; Park, Min-Chul; Son, Jung-Young; Ju, Byeong-Kwon

    2013-05-01

    Autostereoscopy is a common method for providing 3D perception to viewers without glasses. They produce 3D images with a wide perspective, and can achieve the effect of observing different images visible on the same plane from difference point of view. In autostereoscopic displays, crosstalk occurs when incomplete isolation of the left and right images so that one leakage into the other. This paper addresses a light intensity simulator that can calculate crosstalk according to variable viewing positions by automatically tracking heads of viewers. In doing so, we utilize head tracking technique based on infrared laser sensors to detect the observers' viewing positions. Preliminary results show that the proposed system was appropriate to be operated in designing the autostereoscopic displays ensuring human safety.

  18. Recent Developments in UV Optics for Ultra-Short, Ultra-Intense Coherent Light Sources

    Directory of Open Access Journals (Sweden)

    Daniele Cocco

    2015-01-01

    Full Text Available With the advent of Free Electron Lasers and general UV ultra-short, ultra-intense sources, optics needed to transport such radiation have evolved significantly to standard UV optics. Problems like surface damage, wavefront preservation, beam splitting, beam shaping, beam elongation (temporal stretching pose new challenges for the design of beam transport systems. These problems lead to a new way to specify optics, a new way to use diffraction gratings, a search for new optical coatings, to tighter and tighter polishing requirements for mirrors, and to an increased use of adaptive optics. All these topics will be described in this review article, to show how optics could really be the limiting factor for future development of these new light sources.

  19. Investigation of super-resolution processing algorithm by target light-intensity search in digital holography

    Science.gov (United States)

    Neo, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2017-04-01

    Digital holography is expected to be useful in the analysis of moving three-dimensional (3D) image measurement. In this technique, a two-dimensional interference fringe recorded using a 3D image is captured with an image sensor, and the 3D image is reproduced on a computer. To obtain the reproduced 3D images with high spatial resolution, a high-performance image sensor is required, which increases the system cost. We propose an algorithm for super-resolution processing in digital holography that does not require a high-performance image sensor. The proposed algorithm wherein 3D images are considered as the aggregation of object points improves spatial resolution by performing a light-intensity search of the reproduced image and the object points.

  20. High-resolution and wide-bandwidth light intensity fiber optic displacement sensor for MEMS metrology.

    Science.gov (United States)

    Orłowska, Karolina; Świątkowski, Michał; Kunicki, Piotr; Kopiec, Daniel; Gotszalk, Teodor

    2016-08-01

    We report on the design, properties, and applications of a high-resolution and wide-bandwidth light intensity fiber optic displacement sensor for microelectromechanical system (MEMS) metrology. There are two types of structures that the system is dedicated to: vibrating with both high and low frequencies. In order to ensure high-frequency and high-resolution measurements, frequency down mixing and selective signal processing were applied. The obtained effective measuring bandwidth ranges from single hertz to 1 megahertz. The achieved resolution presented here is 116  pm/Hz1/2 and 138  pm/Hz1/2 for low-frequency and high-frequency operation modes, respectively, whereas the measurement of static displacement is 100 μm.

  1. Lighting up the Christmas tree: high-intensity laser interactions with a nano-structured target

    CERN Document Server

    Gonoskov, A; Ilderton, A; Mackenroth, F; Marklund, M

    2014-01-01

    We perform a numerical study of the interaction of a high-intensity laser pulse with a nano-structured target. In particular, we study a target where the nano-structuring increases the absorption rate as compared to the flat target case. The transport of electrons within the target, and in particular in the nano-structure, is analysed. It is shown that it is indeed possible, using a terawatt class laser, to light up a nano-scale Christmas tree. Due to the form of the tree we achieve very strong edge fields, in particular at the top where the star is located. Such edge fields, as here located at ion rich spots, makes strong acceleration gradients possible. It also results in a nice, warm glow suitable for the holiday season.

  2. Laser-induced photo emission detection: data acquisition based on light intensity counting

    Science.gov (United States)

    Yulianto, N.; Yudasari, N.; Putri, K. Y.

    2017-04-01

    Laser Induced Breakdown Detection (LIBD) is one of the quantification techniques for colloids. There are two ways of detection in LIBD: optical detection and acoustic detection. LIBD is based on the detection of plasma emission due to the interaction between particle and laser beam. In this research, the changing of light intensity during plasma formations was detected by a photodiode sensor. A photo emission data acquisition system was built to collect and transform them into digital counts. The real-time system used data acquisition device National Instrument DAQ 6009 and LABVIEW software. The system has been tested on distilled water and tap water samples. The result showed 99.8% accuracy by using counting technique in comparison to the acoustic detection with sample rate of 10 Hz, thus the acquisition system can be applied as an alternative method to the existing LIBD acquisition system.

  3. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  4. Electromagnetic Coupling Between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System

    CERN Document Server

    Andreazza, W; Bravin, E; Caspers, F; Garlasch`e, M; Gras, J; Goldblatt, A; Lefevre, T; Jones, R; Metral, E; Nosych, A; Roncarolo_, F; Salvant, B; Trad, G; Veness, R; Vollinger, C; Wendt, M

    2013-01-01

    The CERN LHC is equipped with two Synchrotron Radiation Monitor (BSRT) systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.

  5. Different roles of cyclic electron flow around photosystem I under sub-saturating and saturating light intensities in tobacco leaves

    Directory of Open Access Journals (Sweden)

    Wei eHuang

    2015-10-01

    Full Text Available In higher plants, the generation of proton gradient across the thylakoid membrane (pH through cyclic electron flow (CEF has mainly two functions: 1 to generate ATP and balance the ATP/NADPH energy budget, and 2 to protect photosystems I and II against photoinhibition. The intensity of light under which plants are grown alters both CEF activity and the ATP/NADPH demand for primary metabolic processes. However, it is unclear how the role of CEF is affected by the level of irradiance that is applied during the growth and measurement periods. We studied the role of CEF at different light intensities in leaves from sun- and shade-grown plants. At 849 μmol photons m-2 s-1, both types of leaves had nearly the same degree of CEF activation. Modeling of the ATP/NADPH demand revealed that, at this light intensity, the contribution of CEF toward supplying ATP was much higher in the sun leaves. Meanwhile, the shade leaves showed higher levels of non-photochemical quenching and the P700 oxidation ratio. Therefore, at 849 μmol photons m-2 s-1, CEF mainly helped in the synthesis of ATP in the sun leaves, but functioned in photoprotection for the shade leaves. When the light intensity increased to 1976 μmol photons m-2 s-1, CEF activation was greatly enhanced in the sun leaves, but its contribution to supplying ATP changed slightly. These results indicate that the main role of CEF is altered flexibly in response to light intensity. In particular, CEF mainly contributes to balancing the ATP/NADPH energy budget under sub-saturating light intensities. When exposed to saturating light intensities, CEF mainly protects photosynthetic apparatus against photoinhibition.

  6. Contributions of DPOR at Low Light Intensity to Chlorophyll Biosynthesis and Growth in the Synechocystis sp.PCC 6803

    Institute of Scientific and Technical Information of China (English)

    黄卫; 吴庆余; 余久久

    2004-01-01

    The chlL gene encoding one component of light-independent (dark) protochlorophyllide oxido reductase (DPOR) was deleted in cyanobacterium Synechocystis sp. PCC 6803 (S.6803). The resulting chlL mutant lost DPOR activity. No significant differences of chlorophyll (Chi) content and growth rate were observed between the wild and the mutant strains grown at 50 μE · m-2· s-1 light intensity for photomixtrophic and photoautotrophic growth. However, differences were observed at 1 μE · m-2 · s-1 light intensity. For photomixtrophic growth, the mutant Chi content was 50% of the wild content with continuous light and 35.7% of the wild content with a 10 h light/14 h dark cycle. For photoautotriphic growth, the mutant Chi level was 76.3% of the wild content with continuous light and 63.2% with a 10 h light/14 h dark cycle. The results indicate that DPOR contributes to Chi synthesis and increases the growth rate in cyanobacteria phototrophically cultured at 1μE · m-2 ·s-1 light intensity. In contrast, the photosynthetic capacity on a per-cell basis of the mutant is 5% higher than that of the wild strain with continuous light and 27% higher than that of the wild strain with a 10 h light/14 h dark cycle at 1 μE · m-2 · s-1 light intensity for photoautotrophic growth. With the low Chi content, the cyanobacteria have the ability to improve their photosynthetic capacity by decreasing the ratio of PSI to PSII by unknown morphological or physiological means.

  7. [Species-dependence of the pattern of plant photosynthetic rate response to light intensity transition from saturating to limiting one].

    Science.gov (United States)

    Chen, Yue; Xu, Da-Quan

    2007-12-01

    By observing the photosynthetic responses of leaves to changes in light intensity and CO(2) concentration it was found that among the more than 50 plant species examined 32 species and 25 species showed respectively the V pattern and L pattern of the photosynthetic response to light intensity transition from saturating to limiting one (Figs.1 and 2 and Table 1). The pattern of photosynthetic response to light intensity transition is species-dependent but not leaf developmental stage-dependent (Fig.3). The species-dependence was not related to classification in taxonomy because the photosynthetic response might display the two different patterns (V and L) in plants of the same family, for example, rice and wheat (Gramineae), soybean and peanut (Leguminosae). It seemed to be related to the pathway of photosynthetic carbon assimilation because all of the C(4) plants examined (maize, green bristlegrass and thorny amaranth) displayed the L pattern. It might be related to light environment where the plants originated. The V pattern of photosynthetic response to light intensity transition was often observed in some plants grown in shade habitats, for example, sweet viburnum and Japan fatsia, while the L pattern was frequently observed in those plants grown in sunny habitats, for example, ginkgo and cotton. Furthermore, the ratio of electron transport rate to carboxylation rate in vivo measured at limiting light was far higher in the V pattern plants (mostly higher than 10) than in the L pattern plants (mostly lower than 5), but the ratio measured at saturating light had no significant difference between the two kinds of plants (Table 2). These results can be explained in part by that the V pattern plant species have larger light-harvesting complex (LHCII) and at saturating light the reversible dissociation of some LHCIIs from PSII reaction center complex occurs. The pattern of photosynthetic response to light intensity transition and the ratio of electron transport rate

  8. A blue-light photoreceptor mediates the feedback regulation of photosynthesis.

    Science.gov (United States)

    Petroutsos, Dimitris; Tokutsu, Ryutaro; Maruyama, Shinichiro; Flori, Serena; Greiner, Andre; Magneschi, Leonardo; Cusant, Loic; Kottke, Tilman; Mittag, Maria; Hegemann, Peter; Finazzi, Giovanni; Minagawa, Jun

    2016-09-22

    In plants and algae, light serves both as the energy source for photosynthesis and a biological signal that triggers cellular responses via specific sensory photoreceptors. Red light is perceived by bilin-containing phytochromes and blue light by the flavin-containing cryptochromes and/or phototropins (PHOTs), the latter containing two photosensory light, oxygen, or voltage (LOV) domains. Photoperception spans several orders of light intensity, ranging from far below the threshold for photosynthesis to values beyond the capacity of photosynthetic CO2 assimilation. Excess light may cause oxidative damage and cell death, processes prevented by enhanced thermal dissipation via high-energy quenching (qE), a key photoprotective response. Here we show the existence of a molecular link between photoreception, photosynthesis, and photoprotection in the green alga Chlamydomonas reinhardtii. We show that PHOT controls qE by inducing the expression of the qE effector protein LHCSR3 (light-harvesting complex stress-related protein 3) in high light intensities. This control requires blue-light perception by LOV domains on PHOT, LHCSR3 induction through PHOT kinase, and light dissipation in photosystem II via LHCSR3. Mutants deficient in the PHOT gene display severely reduced fitness under excessive light conditions, indicating that the sensing, utilization, and dissipation of light is a concerted process that plays a vital role in microalgal acclimation to environments of variable light intensities.

  9. Front versus rear side light-ion acceleration from high-intensity laser-solid interactions

    Science.gov (United States)

    Willingale, L.; Petrov, G. M.; Maksimchuk, A.; Davis, J.; Freeman, R. R.; Matsuoka, T.; Murphy, C. D.; Ovchinnikov, V. M.; Van Woerkom, L.; Krushelnick, K.

    2011-01-01

    The source of ions accelerated from high-intensity laser interactions with thin foil targets is investigated by coating a deuterated plastic layer either on the front, rear or both surfaces of thin foil targets. The originating surface of the deuterons is therefore known and this method is used to assess the relative source contributions and maximum energies using a Thomson parabola spectrometer to obtain high-resolution light-ion spectra. Under these experimental conditions, laser intensity of (0.5-2.5) × 1019 W cm-2, pulse duration of 400 fs and target thickness of 6-13 µm, deuterons originating from the front surface can gain comparable maximum energies as those from the rear surface and spectra from either side can deviate from Maxwellian. Two-dimensional particle-in-cell simulations model the acceleration and show that any presence of a proton rich contamination layer over the surface is detrimental to the deuteron acceleration from the rear surface, whereas it is likely to be less influential on the front side acceleration mechanism.

  10. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms.

    Science.gov (United States)

    Hazell, Tom J; Islam, Hashim; Townsend, Logan K; Schmale, Matt S; Copeland, Jennifer L

    2016-03-01

    The physiological control of appetite regulation involves circulating hormones with orexigenic (appetite-stimulating) and anorexigenic (appetite-inhibiting) properties that induce alterations in energy intake via perceptions of hunger and satiety. As the effectiveness of exercise to induce weight loss is a controversial topic, there is considerable interest in the effect of exercise on the appetite-regulating hormones such as acylated ghrelin, peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and pancreatic polypeptide (PP). Research to date suggests short-term appetite regulation following a single exercise session is likely affected by decreases in acylated ghrelin and increases in PYY, GLP-1, and PP. Further, this exercise-induced response may be intensity-dependent. In an effort to guide future research, it is important to consider how exercise alters the circulating concentrations of these appetite-regulating hormones. Potential mechanisms include blood redistribution, sympathetic nervous system activity, gastrointestinal motility, cytokine release, free fatty acid concentrations, lactate production, and changes in plasma glucose and insulin concentrations. This review of relevant research suggests blood redistribution during exercise may be important for suppressing ghrelin, while other mechanisms involving cytokine release, changes in plasma glucose and insulin concentrations, SNS activity, and muscle metabolism likely mediate changes in the anorexigenic signals PYY and GLP-1. Overall, changes in appetite-regulating hormones following acute exercise appear to be intensity-dependent, with increasing intensity leading to a greater suppression of orexigenic signals and greater stimulation of anorexigenic signals. However, there is less research on how exercise-induced responses in appetite-regulating hormones differ between sexes or different age groups. A better understanding of how exercise intensity and workload affect appetite across the sexes and life

  11. Intense pulsed light: A promising therapy in treatment of acne vulgaris

    Directory of Open Access Journals (Sweden)

    Manjunatha Puttaiah

    2017-01-01

    Full Text Available Background: Medical treatment of acne vulgaris includes a variety of topical and oral medications. Poor compliance, lack of durable remission, potential side effects are common drawbacks to these treatment. Therefore, there is a growing demand for a fast, safe and side effect free novel therapy. Light-based therapies are an attractive alternative acne therapy because they potentially offer more rapid onset and better patient compliance with a low incidence of adverse events. Aim: To study the efficacy of intense pulsed light in treatment of acne vulgaris. Materials and Methods: Twenty five patients with acne vulgaris were subjected to IPL. Baseline grading of acne was done. IPL was administered every 2weeks for 4 sessions. Grading was done after the end of treatment. Clinical photographs were taken for evaluation. Results: All patients showed a reduction in the number of acne lesions after 4 sessions of IPL. No significant side effects were noted. Patients also noted an improvement in skin texture. Conclusion: IPL showed beneficial effects in the treatment of acne.

  12. Treatment of Persistent Facial Postinflammatory Hyperpigmentation With Novel Pulse-in-Pulse Mode Intense Pulsed Light.

    Science.gov (United States)

    Park, Ji-Hye; Kim, Jung-In; Kim, Won-Serk

    2016-02-01

    Postinflammatory hyperpigmentation (PIH) is an acquired hypermelanosis induced by various causes including inflammatory dermatoses, injury, or cosmetic procedures, such as lasers or chemical peels, and it tends to affect dark-skinned people with greater frequency and severity. There are a variety of treatment options for PIH, including topical agents, chemical peels, laser, and light therapy. However, the results are not up to expectation. The purpose of this study was to examine the clinical efficacy and safety of novel pulse-in-pulse mode intense pulsed light (IPL) for the treatment of persistent facial PIH in Korean patients. Twenty-five Korean female patients (Fitzpatrick skin types III-V) with persistent facial PIH were enrolled in the study. The patients were treated with novel pulse-in-pulse mode IPL for 4 sessions at 1-week interval and 4 sessions at 2-week intervals. Treatment efficacy and patient satisfaction were evaluated using photographs and questionnaires. After 2 months of all treatments, 23 patients (92%) had more than 50% improvement and 22 patients (88%) were satisfied with the treatments. No adverse effects or aggravations were reported. The pulse-in-pulse mode IPL treatment is effective and safe for persistent facial PIH in dark-skinned patients.

  13. Photodissociation dynamics of weakly bound He H2 + in intense light fields

    Science.gov (United States)

    Szidarovszky, Tamás; Yamanouchi, Kaoru

    2016-12-01

    Photoinduced dynamics of a weakly bound triatomic molecule He H2 + exposed to electromagnetic radiation is investigated by time-dependent quantum wave-packet propagation. Adopting a two-dimensional linear H-H-He model, the three lowest-lying potential energy surfaces (PESs) and corresponding dipole moment surfaces are constructed. One of the two characteristic excited PESs of He H2 + leads to the charge-transfer reaction H2 ++He → H2+H e+ and the other corresponds to the first excited state of H2 + perturbed by the presence of He. When He H2 + is exposed to a femtosecond intense ultraviolet light pulse (I =4 ×1014W c m-2 , λ =400 nm ), both of the two excited PESs are found to be coupled with the light field and a variety of reaction pathways become opened so that HeH, He H+ , H2, H2 +,H , H+ , He, and H e+ are produced. Simulations also show that the anharmonic coupling between the two stretching vibrational modes in He H2 + leads to the stabilization of the H2 + moiety against the decomposition into H + H+ compared with bare H2 +. The theoretical findings of the formation of He H+ composed of the most abundant elements in the universe are also discussed in view of the theoretical modeling of the chemical reactions proceeding in the primordial gas and in the interstellar medium.

  14. Periodic Variations in the Coronal Green Line Intensity and their Connection with the White-light Coronal Structures

    Indian Academy of Sciences (India)

    Milan Minarovjech; Milan Rybansky; Vojtech Rusin

    2000-09-01

    We present an analysis of short time-scale intensity variations in the coronal green line as obtained with high time resolution observations. The observed data can be divided into two groups. The first one shows periodic intensity variations with a period of 5 min. the second one does not show any significant intensity variations. We studied the relation between regions of coronal intensity oscillations and the shape of whitelight coronal structures. We found that the coronal green-line oscillations occur mainly in regions where open white-light coronal structures are located.

  15. Substance use to regulate intense posttraumatic shame in individuals with childhood abuse and neglect.

    Science.gov (United States)

    Holl, Julia; Wolff, Sebastian; Schumacher, Maren; Höcker, Anja; Arens, Elisabeth A; Spindler, Gabriela; Stopsack, Malte; Südhof, Jonna; Hiller, Philipp; Klein, Michael; Schäfer, Ingo; Barnow, Sven

    2016-06-13

    Childhood abuse and neglect (CAN) is considered as a risk factor for substance use disorder (SUD). Based on the drinking to cope model, this study investigated the association of two trauma-relevant emotions (shame and sadness) and substance use. Using ecological momentary assessment we compared real-time emotion regulation in situations with high and low intensity of shame and sadness in currently abstinent patients with CAN and lifetime SUD (traumaSUD group), healthy controls with CAN (traumaHC group), and without CAN (nontraumaHC group). Multilevel analysis showed a positive linear relationship between high intensity of both emotions and substance use for all groups. The traumaSUD group showed heightened substance use in low, as well as in high, intensity of shame and sadness. In addition, we found an interaction between type of emotion, intensity, and group: the traumaHC group exhibited a fourfold increased risk for substance use in high intense shame situations relative to the traumaSUD group. Our findings provide evidence for the drinking to cope model. The traumaSUD group showed a reduced distress tolerance for variable intensity of negative emotions. The differential effect of intense shame for the traumaHC group emphazises its potential role in the development of SUD following CAN. In addition, shame can be considered a relevant focus for therapeutic preinterventions and interventions for SUD after CAN.

  16. Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts

    Science.gov (United States)

    Wu, Li; Lei, Yaping; Lan, Shubin; Hu, Chunxiang

    2017-01-01

    As an important successional stage and main type of biological soil crusts (BSCs) in Shapotou region of China (southeastern edge of Tengger Desert), lichen soil crusts (LSCs) often suffer from many stresses, such as desiccation and excess light intensity. In this study, the chlorophyll fluorescence and CO2 exchange in the rehydrated LSCs were detected under a series of photosynthetically active radiation (PAR) gradients to study the photosynthetic acclimation of LSCs. The results showed that although desiccation leaded to the loss of photosynthetic activity in LSCs, the fluorescence parameters including Fo, Fv and Fv/Fm of LSCs could be well recovered after rehydration. After the recovery of photosynthetic activity, the effective photosynthetic efficiency ΦPSII detected by Imaging PAM had declined to nearly 0 within both the lichen thallus upper and lower layers when the PAR increased to 200 μE m-2 s-1, however the net photosynthesis detected by the CO2 gas analyzer in the LSCs still appeared when the PAR increased to 1000 μE m-2 s-1. Our results indicate that LSCs acclimating to high PAR, on the one hand is ascribed to the special structure in crust lichens, making the incident light into the lichen thallus be weakened; on the other hand the massive accumulation of photosynthetic pigments in LSCs also provides a protective barrier for the photosynthetic organisms against radiation damage. Furthermore, the excessive light energy absorbed by crust lichens is also possibly dissipated by the increasing non-photochemical quenching, therefore to some extent providing some protection for LSCs. PMID:28257469

  17. Eutrophication and algal blooms in channel type reservoirs: A novel enclosure experiment by changing light intensity

    Institute of Scientific and Technical Information of China (English)

    Chengjin Cao; Binghui Zheng; Zhenlou Chen; Minsheng Huang; Jialei Zhang

    2011-01-01

    To explore eutrophication and algal bloom mechanisms in channel type reservoirs,a novel enclosure experiment was conducted by changing light intensity (LI) in the Daning River of the Three Gorges Reservoir (TGR).Square enclosures (side 5.0 m) were covered on the surface with shading materials of different thickness,and with their bases open to the river.Changes and characteristics of the main eutrophication factors under the same water quality and hydrodynamic conditions but different LI were evaluated.All experimental water samples were neutral and alkalescent,with high nitrogen and phosphate concentrations,low potassium permanganate index,stable water quality,and different LI.At the same water depth,LI decreased with increasing shade material,while dissolved oxygen and water temperature were both stable.The growth peak of phytoplankton was with light of 345-4390 lux underwater or 558-7450lux above the water surface,and water temperature of 25.6-26.5℃.Algae were observed in all water samples,accounting for 6 phylum and 57 species,with algal density changing frequently.The results showed that significantly strong or weak light was unfavorable for phytoplankton growth and the function together with suitable temperature and LI and ample sunshine encouraged algal blooms under the same water quality and hydrodynamic conditions.Correlation analysis indicated that algae reduced gradually lengthwise along water depth in the same enclosure while pH became high.The power exponent relationship between chlorophyll a (Chl-a) and LI was found by curve fitting,that is Chi-a =K(LI)n.

  18. Influence of Light Intensity on Growth and Pigment Production by Monascus ruber in Submerged Fermentation.

    Science.gov (United States)

    Bühler, Rose Marie Meinicke; Müller, Bruna Luíse; Moritz, Denise Esteves; Vendruscolo, Francielo; de Oliveira, Debora; Ninow, Jorge Luiz

    2015-07-01

    To reduce environmental problems caused by glycerine accumulation and to make the production of biodiesel more profitable, crude glycerin without treatment was used as substrate for obtaining higher value-added bioproducts. Monascus ruber is a filamentous fungus that produces pigments, particularly red ones, which are used for coloring foods (rice wine and meat products). The interest in developing pigments from natural sources is increasing due to the restriction of using synthetic dyes. The effects of temperature, pH, microorganism morphology, aeration, nitrogen source, and substrates have been studied in the cultivation of M. ruber. In this work, it was observed that light intensity is also an important factor that should be considered for understanding the metabolism of the fungus. In M. ruber cultivation, inhibition of growth and pigment production was observed in Petri dishes and blaffed flasks exposed to direct illumination. Growth and pigment production were higher in Petri dishes and flasks exposed to red light and in the absence of light. Radial growth rate of M. ruber in plates in darkness was 1.50 mm day(-1) and in plates exposed to direct illumination was 0.59 mm day(-1). Maximum production of red pigments (8.32 UA) and biomass (8.82 g L(-1)) were obtained in baffled flasks covered with red film and 7.17 UA of red pigments, and 7.40 g L(-1) of biomass was obtained in flasks incubated in darkness. Under conditions of 1248 lux of luminance, the maximum pigment production was 4.48 UA, with production of 6.94 g L(-1) of biomass, indicating that the fungus has photoreceptors which influence the physiological responses.

  19. Influence of light intensity on surface free energy and dentin bond strength of core build-up resins.

    Science.gov (United States)

    Shimizu, Y; Tsujimoto, A; Furuichi, T; Suzuki, T; Tsubota, K; Miyazaki, M; Platt, J A

    2015-01-01

    We examined the influence of light intensity on surface free energy characteristics and dentin bond strength of dual-cure direct core build-up resin systems. Two commercially available dual-cure direct core build-up resin systems, Clearfil DC Core Automix with Clearfil Bond SE One and UniFil Core EM with Self-Etching Bond, were studied. Bovine mandibular incisors were mounted in acrylic resin and the facial dentin surfaces were wet ground on 600-grit silicon carbide paper. Adhesives were applied to dentin surfaces and cured with light intensities of 0 (no irradiation), 200, 400, and 600 mW/cm(2). The surface free energy of the adhesives (five samples per group) was determined by measuring the contact angles of three test liquids placed on the cured adhesives. To determine the strength of the dentin bond, the core build-up resin pastes were condensed into the mold on the adhesive-treated dentin surfaces according to the methods described for the surface free energy measurement. The resin pastes were cured with the same light intensities as those used for the adhesives. Ten specimens per group were stored in water maintained at 37°C for 24 hours, after which they were shear tested at a crosshead speed of 1.0 mm/minute in a universal testing machine. Two-way analysis of variance (ANOVA) and a Tukey-Kramer test were performed, with the significance level set at 0.05. The surface free energies of the adhesive-treated dentin surfaces decreased with an increase in the light intensity of the curing unit. Two-way ANOVA revealed that the type of core build-up system and the light intensity significantly influence the bond strength, although there was no significant interaction between the two factors. The highest bond strengths were achieved when the resin pastes were cured with the strongest light intensity for all the core build-up systems. When polymerized with a light intensity of 200 mW/cm(2) or less, significantly lower bond strengths were observed. CONClUSIONS: The

  20. EFFECT OF LIGHT INTENSITY ON THE TOTAL LIPID AND FATTY ACID COMPOSITION OF SIX STRAINS OF MARINE DIATOMS

    Institute of Scientific and Technical Information of China (English)

    梁英; 麦康森; 孙世春; 于道展

    2001-01-01

    The effect of light intensity ( 1500 Ix and 5000 Ix) on the total lipid and fatty acid composition of six strains of marine diatoms Cylindrotheca fusiformis (B211 ), Phaeodactylum tricornutum (Bl14, Bl18 and B221) Nitzschia closterium (B222) and Chaetoceros gracilis (B13) was investigated.The total lipids of B13, Bl14, and B211 grown at 5000 Ix were lower than those grown at 1500 Ix. No evident changes were observed in Bl18, B221 and B222. Fatty acid composition changed considerably at different light intensity although no consistent correlation between the relative proportion of a single FA and light intensity. The major fatty acids of the 6 strains were 14:0, 16:0, 16:l(n- 7) and 20:5(n-3) . Cylindrothecafusiformis had high percentage of 20:4n - 6 (9.2 - 10.9% ) . The total polyunsaturated fatty acid /rl all 6 strains decreased with increasing light intensity. The percentage of the highly unsaturated fatty acid eicosapentaenoic acid (EPA) decreased with increasing light intensity in all strains except Chaetoceros gracilis.

  1. Cystic acne improved by photodynamic therapy with short-contact 5-aminolevulinic acid and sequential combination of intense pulsed light and blue light activation.

    Science.gov (United States)

    Melnick, Stuart

    2005-01-01

    Photodynamic therapy with short-contact 5-aminolevulinic acid (Levulan Kerastick, Dusa Pharmaceuticals, Inc.) and activation by intense pulsed light in an initial treatment and blue light in 3 subsequent treatments has resulted in significant improvement in severity of acne, reduction in the number of lesions, improvement in skin texture, and smoothing of scar edges in an Asian patient with severe (class 4) facial cystic acne and scarring.

  2. Purifying Synthetic High-Strength Wastewater by Microalgae Chlorella Vulgaris Under Various Light Emitting Diode Wavelengths and Intensities

    Directory of Open Access Journals (Sweden)

    Zhigang Ge

    2013-06-01

    Full Text Available The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity.

  3. New technologies in lighting systems for high-speed film and photography regarding high-intensity and heat problems

    Science.gov (United States)

    Severon, Burkhard

    1991-04-01

    Increasing frame rates and the heat sensibility of test objects forced the development of new lighting systems. For example at the automotive industry, where continuous light sources are indispensable for the high speed photography of car crash tests and automobile components tests, the further development of high efficient safety systems, so as Air-Bag systems, needs very datailed analysis of the accelerated motions. Frame rates from 2.000 up to 10.000 frames per second are requested and beside adequate camera systems and film material, this also means high intensive lighting systems. The need for high intensity could be easy achieved by the use of additional light fixtures but the request for more intensity comes along with the problem of heat. The test objects and the auxiliary materials become more and more temperature- sensitive. Very offen they have to be used under strict climate conditions. Mainly there where the test objects are already placed inside the illuminated area, the heat radiation of the light sources to the test objects have to be reduced. So high intensive, flicker free and less heat are today's requirements of light performance. This paper will present solutions to meet those demands.

  4. Effect of light intensity on food detection in captive great fruit-eating bats, Artibeus lituratus (Chiroptera: Phyllostomidae).

    Science.gov (United States)

    Gutierrez, Eduardo de A; Pessoa, Valdir F; Aguiar, Ludmilla M S; Pessoa, Daniel M A

    2014-11-01

    Bats are known for their well-developed echolocation. However, several experiments focused on the bat visual system have shown evidence of the importance of visual cues under specific luminosity for different aspects of bat biology, including foraging behavior. This study examined the foraging abilities of five female great fruit-eating bats, Artibeus lituratus, under different light intensities. Animals were given a series of tasks to test for discrimination between a food target against an inedible background, under light levels similar to the twilight illumination (18lx), the full moon (2lx) and complete darkness (0lx). We found that the bats required a longer time frame to detect targets under a light intensity similar to twilight, possibly due to inhibitory effects present under a more intense light level. Additionally, bats were more efficient at detecting and capturing targets under light conditions similar to the luminosity of a full moon, suggesting that visual cues were important for target discrimination. These results demonstrate that light intensity affects foraging behavior and enables the use of visual cues for food detection in frugivorous bats. This article is part of a Special Issue entitled: Neotropical Behaviour.

  5. A clinical survey of the output intensity of 200 light curing units in dental offices across Maharashtra

    Directory of Open Access Journals (Sweden)

    Hegde Vivek

    2009-01-01

    Full Text Available Aim: The purpose of this study is to examine the intensity of light curing units and factors affecting it in dental offices. Materials and Methods: The output intensity of 200 light curing units in dental offices across Maharashtra were examined. The collection of related information (thenumber of months of use of curing unit, the approximate number of times used in a day, and presence or absence of composite build-ups and measurement of the intensity was performed by two operators. L.E.D Radiometer (Kerr was used for measuring the output intensity. The average output intensity was divided into three categories (< 200 mW/cm 2 , 200-400 mW/ cm 2 and> 400 mW/cm 2 . Results: Among the 200 curing units examined, 81 were LED units and 119 were QTH units. Only 10% LED machines and 2% QTH curing units had good intensities (>400 mW/cm 2 . Conclusion: Most of the examined curing lights had low output intensity ranging from 200 to 400 mW/cm 2 , and most of the curing units had composite build-ups on them.

  6. [Effects of forest gap size and light intensity on herbaceous plants in Pinus koraiensis-dominated broadleaved mixed forest].

    Science.gov (United States)

    Duan, Wen-Biao; Wang, Li-Xia; Chen, Li-Xin; Du, Shan; Wei, Quan-Shuai; Zhao, Jian-Hui

    2013-03-01

    1 m x 1 m fixed quadrats were parallelly arranged with a space of 2 m in each of six forest gaps in Pinus koraiensis-dominated broadleaved mixed forest, taking the gap center as the starting point and along east-west and south-north directions. In each quadrat, the coverage and abundance of herbaceous plants at different height levels were investigated by estimation method in June and September 2011, and the matrix characteristics within the quadrats were recorded. Canopy analyzer was used to take fish-eye photos in the selected overcast days in each month from June to September, 2011, and the relative light intensity was calculated by using Gap Light Analyzer 2.0 software. The differences in the relative light intensity and herbaceous plants coverage and richness between different gaps as well as the correlations between the coverage of each species and the direct light, diffuse light, and matrix were analyzed. The results showed that in opening areas and under canopy, the relative light intensity in large gaps was higher than that in small gaps, and the variation ranges of diffuse light and direct light from gap center to gap edge were bigger in large gaps than in small gaps. The direct light reaching at the ground both in large gaps and in small gaps was higher in the north than in the south direction. In the Z1, Z2, Z3, and Z4 zones, both the coverage and the richness of herbaceous plants were larger in large gaps than in small gaps, and the differences of species richness between large and small gaps reached significant level. The coverage of the majority of the herbaceous plants had significant correlations with diffuse light and matrix, and only the coverage of a few herbaceous plants was correlated with direct light.

  7. ZEITLUPE positively regulates hypocotyl elongation at warm temperature under light in Arabidopsis thaliana.

    Science.gov (United States)

    Miyazaki, Yuji; Takase, Tomoyuki; Kiyosue, Tomohiro

    2015-01-01

    Hypocotyl cell elongation has been studied as a model to understand how cellular expansion contributes to plant organ growth. Hypocotyl elongation is affected by multiple environmental factors, including light quantity and light quality. Red light inhibits hypocotyl growth via the phytochrome signaling pathways. Proteins of the flavin-binding KELCH repeat F-box 1 / LOV KELCH protein 2 / ZEITLUPE family are positive regulators of hypocotyl elongation under red light in Arabidopsis. These proteins were suggested to reduce phytochrome-mediated inhibition of hypocotyl elongation. Here, we show that ZEITLUPE also functions as a positive regulator in warmth-induced hypocotyl elongation under light in Arabidopsis.

  8. Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris.

    Science.gov (United States)

    Markou, Giorgos; Muylaert, Koenraad

    2016-09-01

    Herein the effect of increasing light intensity on the degree of ammonia toxicity and its impact on the photosynthetic performance of Arthrospira and Chlorella was investigated using Chl fluorescence as a technique to characterize their photosystem II (PSII) activity. The results revealed that the increase of light intensity amplifies the ammonia toxicity on PSII. Chl fluorescence transients shown that at a given free ammonia (FA) concentration (100mg-N/L), the photochemistry potential decreased by increasing light intensity. The inhibition of the PSII was not reversible either by re-incubating the cells under dark or under decreased FA concentration. Moreover, the decrease of photochemical and non-photochemical quenching (NPQ) of fluorescence suggest that ammonia toxicity decreases the open available PSII centers, as well the inability of PSII to transfer the generated electrons beyond QA. The collapse of NPQ suggests that ammonia toxicity inhibits the photoprotection mechanism(s) and hence renders PSII more sensitive to photoinhibition.

  9. The Effect of Shaking, CO2 Concentration and Light Intensity on Biomass Growth of Green Microalgae Desmodesmus communis

    Directory of Open Access Journals (Sweden)

    J. Vanags

    2015-01-01

    Full Text Available There are many factors that can affect microalgae growth. In this research, four different groups of experiments were set up in order to determine the influence of different mixing conditions, CO2 concentration and light intensities on Desmodesmus communis growth. The range of CO2 concentration in the air - CO2 mixture was 0–16 v/v%, light intensities ranged between 100 µmol m-2s-1 and 300 µmol m-2s-1. The best biomass productivity and biomass yield of 0.54 g d-1 and 3.53 g l-1 respectively were achieved when mixing was provided by using shaker as well as gas bubbling with air - CO2 mixture of 96:4 v/v% and light intensity of 300 µmol m-2s-1. DOI: http://dx.doi.org/10.5755/j01.erem.70.4.8437

  10. [Effects of light intensity on associated enzyme activity and gene expression during callus formation of Vitis vinifera].

    Science.gov (United States)

    Liu, Rong; Yang, Guowei; Wu, Yueyan; Rao, Huiyun; Li, Xuefu; Li, Meiqin; Qian, Pingxian

    2015-08-01

    We analyzed the best light intensity for callus induction and maintenance in Vitis vinifera and explored the mechanism of grape callus browning. Tender stem segments of grape cultivar "gold finger" were used to study the effects of different light intensities (0, 500, 1 000, 1 500, 2 000, 2 500, 3 000 and 4 000 Lx) on the induction rate, browning rate and associated enzyme activity and gene expression during Vitis vinifera callus formation. The callus induction rate under 0, 500, 1 000 and 1 500 Lx was more than 92%, significantly higher than in other treatments (P Vitis vinifera was 1 000-1 500 Lx, higher or lower light intensities significantly impaired normal callus growth.

  11. Effects of strain and light intensity on growth performance and carcass characteristics of broilers grown to heavy weights.

    Science.gov (United States)

    Olanrewaju, H A; Miller, W W; Maslin, W R; Collier, S D; Purswell, J L; Branton, S L

    2014-08-01

    Effects of genetic strain and light intensity on growth performance and carcass characteristics of broilers grown to heavy weights were investigated. The experimental design was a randomized complete block design. Treatment structure was a 2 × 5 factorial arrangement with the main factors being strain (Ross × Ross 308, Ross × Ross 708) and light intensity (25, 10, 5, 2.5, and 0.2 lx) with trial as replicates. In each of the 5 trials, chicks of 2 different strains of the same commercial hatchery were equally and randomly distributed into 10 environmentally controlled rooms (5 rooms/strain) at 1 d of age at 50% RH. Each room was randomly assigned 1 of 5 light intensities from 22 to 56 d of age. Feed and water were provided ad libitum. Birds and feed were weighed on 0, 14, 28, 42, and 56 d of age for growth performance. Humoral immune response was determined on d 28, whereas ocular and blood samples were performed on d 42 and 55, respectively. On d 56, 20 (10 males and 10 females) birds/strain from each room were processed to determine weights and yields. Genetic strain was significant (P ≤ 0.05) for most of the examined variables, where Ross × Ross 308 had better growth performance and meat yield in comparison with Ross × Ross 708. Although, there was no main effect of light intensity on growth performance and meat yield, results indicated that birds under 10 and 5 lx intensities showed slightly better growth performance and meat yield compared with birds under 25, 2.5, and 0.2 lx in both strains. There was no effect of strain and light intensity on ocular indices, immune response, plasma corticosterone levels, and mortality. This study shows the positive influence on profits to commercial poultry facilities that are using a low lighting environment to reduce energy cost, optimize feed conversion, and maximize production without compromising the welfare of the broilers.

  12. Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer.

    Science.gov (United States)

    Duan, Lihong; Fang, Jiancheng; Li, Rujie; Jiang, Liwei; Ding, Ming; Wang, Wei

    2015-12-14

    The fluctuations of the probe light intensity seriously affect the performance of the sensitive atomic magnetometer. Here we propose a novel method for the intensity stabilization based on the second harmonic component of the photoelastic modulator (PEM) detection in the atomic magnetometer. The method not only could be used to eliminate the intensity fluctuations of the laser source, but also remove the fluctuations from the optical components caused by the environment. A relative fluctuation of the light intensity of 0.035% was achieved and the corresponding fluctuation of the output signal of the atomic magnetometer has decreased about two orders of magnitude from 4.06% to 0.041%. As the scheme proposed here only contains optical devices and does not require additional feedback controlled equipments, it is especially suitable for the integration of the atomic magnetometer.

  13. Regulation of PDH in human arm and leg muscles at rest and during intense exercise

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Birk, Jesper Bratz; Damsgaard, Rasmus

    2008-01-01

    To test the hypothesis that pyruvate dehydrogenase (PDH) is differentially regulated in specific human muscles, regulation of PDH was examined in triceps, deltoid, and vastus lateralis at rest and during intense exercise. To elicit considerable glycogen use, subjects performed 30 min of exhaustive...... arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P

  14. Light mediated regulation of cell division, endoreduplication and cell expansion

    NARCIS (Netherlands)

    Okello, R.C.; Visser, de P.H.B.; Heuvelink, E.; Marcelis, L.F.M.; Struik, P.C.

    2016-01-01

    Cell division, endoreduplication and cell expansion are key processes for plant growth and development. Light is the main source of energy for plants and as such has a strong effect on plant growth and development. Insight into the role of light in cellular processes is important for our

  15. Intense light pulses decontamination of minimally processed vegetables and their shelf-life.

    Science.gov (United States)

    Gómez-López, V M; Devlieghere, F; Bonduelle, V; Debevere, J

    2005-08-15

    Intense light pulses (ILP) is a new method intended for decontamination of food surfaces by killing microorganisms using short time high frequency pulses of an intense broad spectrum, rich in UV-C light. This work studied in a first step the effect of food components on the killing efficiency of ILP. In a second step, the decontamination of eight minimally processed (MP) vegetables by ILP was evaluated, and thirdly, the effect of this treatment on the shelf-life of MP cabbage and lettuce stored at 7 degrees C in equilibrium modified atmosphere packages was assessed by monitoring headspace gas concentrations, microbial populations and sensory attributes. Proteins and oil decreased the decontamination effect of ILP, whilst carbohydrates and water showed variable results depending on the microorganism. For this reason, high protein and fat containing food products have little potential to be efficiently treated by ILP. Vegetables, on the other hand, do not contain high concentrations of both compounds and could therefore be suitable for ILP treatment. For the eight tested MP vegetables, log reductions up to 2.04 were achieved on aerobic mesophilic counts. For the shelf-life studies, respiration rates at 3% O2 and 7 degrees C were 14.63, 17.89, 9.17 and 16.83 ml O2/h kg produce for control and treated cabbage, and control and treated lettuce respectively; used packaging configurations prevented anoxic conditions during the storage times. Log reductions of 0.54 and 0.46 for aerobic psychrothrophic count (APC) were achieved after flashing MP cabbage and lettuce respectively. APC of treated cabbage became equal than that from control at day 2, and higher at day 7, when the tolerance limit (8 log) was reached and the panel detected the presence of unacceptable levels of off-odours. Control never reached 8 log in APC and were sensory acceptable until the end of the experiment (9 days). In MP lettuce, APC of controls reached rejectable levels at day 2, whilst that of treated

  16. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array

    Science.gov (United States)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zhang, Zhao; Zhang, Yan; Zuo, Chao

    2017-08-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of ±37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ∼0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  17. Performance of photoperiod and light intensity on biogas upgrade and biogas effluent nutrient reduction by the microalgae Chlorella sp.

    Science.gov (United States)

    Yan, Cheng; Zheng, Zheng

    2013-07-01

    Biogas is an environment-friendly fuel but that must be upgraded before being utilized. The method about removing CO2 from biogas by microalgal culturing using biogas effluent as nutrient medium in this study could effectively upgrade biogas and simultaneously reduce the biogas effluent nutrient. Results showed that the optimum parameters for microalgal growth and biogas effluent nutrient reduction was moderate light intensity with middle photoperiod. While low light intensity with long photoperiod and moderate light intensity with middle photoperiod obtained the best biogas CO2 removal and biogas upgrade effects. Therefore, the optimal parameters were moderate light intensity 350 μmol m(-2)s(-1) with middle photoperiod 14 h light:10h dark. Under this condition, the microalgal dry weight, CH4 concentration, reduction efficiency of chemical oxygen demand, total nitrogen, and total phosphorus was 615.84 ± 33.07 mg L(-1), 92.16 ± 2.83% (v/v), 88.74 ± 3.45%, 83.94 ± 3.51%, and 80.43 ± 4.17%, respectively.

  18. THE CYTOTOXIC EFFECTS OF LOW INTENSITY VISIBLE AND INFRARED LIGHT ON HUMAN BREAST CANCER (MCF7 CELLS

    Directory of Open Access Journals (Sweden)

    P Peidaee

    2013-03-01

    Full Text Available A concept of using low intensity light therapy (LILT as an alternative approach to cancer treatment is at early stages of development; while the therapeutic effects of LILT as a non-invasive treatment modality for localized joint and soft tissue wound healing are widely corroborated. The LEDs-based exposure system was designed and constructed to irradiate the selected cancer and normal cells and evaluate the biological effects induced by light exposures in visible and infrared light range. In this study, human breast cancer (MCF7 cells and human epidermal melanocytes (HEM cells (control were exposed to selected far infrared light (3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm and visible and near infrared wavelengths (466nm, 585nm, 626nm, 810nm, 850nm and 950nm. The optical intensities of LEDs used for exposures were in the range of 15µW to 30µW. Cellular morphological changes of exposed and sham-exposed cells were evaluated using light microscopy. The cytotoxic effects of these low intensity light exposures on human cancer and normal cell lines were quantitatively determined by Lactate dehydrogenase (LDH cytotoxic activity and PrestoBlueTM cell viability assays. Findings reveal that far-infrared exposures were able to reduce cell viability of MCF7 cells as measured by increased LDH release activity and PrestoBlueTM assays. Further investigation of the effects of light irradiation on different types of cancer cells, study of possible signaling pathways affected by electromagnetic radiation (EMR and in vivo experimentation are required in order to draw a firm conclusion about the efficacy of low intensity light as an alternative non-invasive cancer treatment.

  19. The Cytotoxic Effects of Low Intensity Visible and Infrared Light on Human Breast Cancer (MCF7 cells

    Directory of Open Access Journals (Sweden)

    P Peidaee

    2013-03-01

    Full Text Available A concept of using low intensity light therapy (LILT as an alternative approach to cancer treatment is at early stages of development; while the therapeutic effects of LILT as a non-invasive treatment modality for localized joint and soft tissue wound healing are widely corroborated. The LEDs-based exposure system was designed and constructed to irradiate the selected cancer and normal cells and evaluate the biological effects induced by light exposures in visible and infrared light range. In this study, human breast cancer (MCF7 cells and human epidermal melanocytes (HEM cells (control were exposed to selected far infrared light (3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm and visible and near infrared wavelengths (466nm, 585nm, 626nm, 810nm, 850nm and 950nm. The optical intensities of LEDs used for exposures were in the range of 15µW to 30µW. Cellular morphological changes of exposed and sham-exposed cells were evaluated using light microscopy. The cytotoxic effects of these low intensity light exposures on human cancer and normal cell lines were quantitatively determined by Lactate dehydrogenase (LDH cytotoxic activity and PrestoBlueTM cell viability assays. Findings reveal that far-infrared exposures were able to reduce cell viability of MCF7 cells as measured by increased LDH release activity and PrestoBlueTM assays. Further investigation of the effects of light irradiation on different types of cancer cells, study of possible signaling pathways affected by electromagnetic radiation (EMR and in vivo experimentation are required in order to draw a firm conclusion about the efficacy of low intensity light as an alternative non-invasive cancer treatment.

  20. Measuring the fusion cross-section of light nuclei with low-intensity beams

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T.K.; Rudolph, M.J.; Gosser, Z.Q.; Brown, K.; Floyd, B.; Hudan, S. [Department of Chemistry and Center for Exploration of Energy and Matter, Indiana University, 2401 Milo B. Sampson Lane, Bloomington, IN 47408 (United States); Souza, R.T. de, E-mail: desouza@indiana.edu [Department of Chemistry and Center for Exploration of Energy and Matter, Indiana University, 2401 Milo B. Sampson Lane, Bloomington, IN 47408 (United States); Liang, J.F.; Shapira, D. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN 37831 (United States); Famiano, M. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2014-04-11

    We demonstrate an approach to measure the total fusion cross-section for beams of low-intensity light nuclei. Fusion residues resulting from the fusion of {sup 20,16}O+{sup 12}C are directly measured and distinguished from unreacted beam particles on the basis of their energy and time-of-flight. The time-of-flight is measured between a microchannel plate (MCP) detector, which serves as a start, and a segmented silicon detector, which provides a stop. The two main difficulties associated with the initial implementation of this approach are charge trapping in the silicon detector and slit scattering in the MCP detector. Both these obstacles have been characterized and overcome. To reduce atomic slit scattering in the measurement we have eliminated wires from the beam path by developing a gridless MCP detector. The total fusion cross-section for {sup 16}O+{sup 12}C in the energy range E{sub CM}=8.0–12.0 MeV has been measured in agreement with established literature values (down to the 100 mb level)

  1. Reconstructing the fractal dimension of granular aggregates from light intensity spectra.

    Science.gov (United States)

    Tang, Fiona H M; Maggi, Federico

    2015-12-21

    There has been growing interest in using the fractal dimension to study the hierarchical structures of soft materials after realising that fractality is an important property of natural and engineered materials. This work presents a method to quantify the internal architecture and the space-filling capacity of granular fractal aggregates by reconstructing the three-dimensional capacity dimension from their two-dimensional optical projections. Use is made of the light intensity of the two-dimensional aggregate images to describe the aggregate surface asperities (quantified by the perimeter-based fractal dimension) and the internal architecture (quantified by the capacity dimension) within a mathematical framework. This method was tested on control aggregates of diffusion-limited (DLA), cluster-cluster (CCA) and self-correlated (SCA) types, stereolithographically-fabricated aggregates, and experimentally-acquired natural sedimentary aggregates. Statistics of the reconstructed capacity dimension featured correlation coefficients R ≥ 98%, residuals NRMSE ≤ 10% and percent errors PE ≤ 4% as compared to controls, and improved earlier approaches by up to 50%.

  2. Radioprotective Action of Low-Intensity Light into the Red Absorption Band of Endogenous Molecular Oxygen

    Science.gov (United States)

    Ivanov, A. V.; Mashalov, A. A.; Zakharov, S. D.

    2016-08-01

    Application of ionizing radiation in oncology (radiation therapy) is a widespread way to eliminate malignant tumors. Normal tissues are inevitable included in any radiation field, and their reliable protection is actual till now. All attempts to solve the problem are based on search of effective radioprotectors, i.e. chemical compounds of various classes, which should be entered into the patient. To date about 50,000 compounds with some radioprotection properties had been tested, but the most effective of them have been simultaneously the most toxic. Here the preliminary results of researches devoted to development of an optical technique on basis of the light-oxygen effect for the protection of women with breast cancer from side effects of the radiation therapy are presented. A low intensity emission of the semiconductor laser in a red spectral interval was used to excite a very small quantity of endogenous molecular oxygen in O2(1Δg) state. It is shown, that application of the method at occurrence of earliest signs of radiation injury allows notably reducing dangerous breaks in radiation therapy course.

  3. The Retrospective Evaluation of the Efficacy and Safety of IPL (Intense Pulse Light in Hair Removal

    Directory of Open Access Journals (Sweden)

    İlgen Ertam

    2012-06-01

    Full Text Available Background and Design: There are numerous therapeutic methods for hair removal with various success rates. The aim of this study was to evaluate the efficacy of Intense Pulse Light (IPL method for hair removal.Materials and Methods: Ninety patients, who applied for their unwanted hair, were included in the study. IPL was applied to the face, neck, axillary areas, bikini line, sternal area, periareolar areas, and upper and lower extremities. An IPL device (L900 A&M, France was used for hair removal. The results were evaluated according to the clinical improvement (0-25%, 25-50%, 50-75%, 75% and more and patients? satisfaction (very satisfied, satisfied, less satisfied, not satisfied. All results were analyzed using Chi-square test and statistical analysis was performed by SPSS 15.0 for Windows. Results: There were eighty-eight female (97.8% and two male (2.2% patients. The mean age of the patients was 33.62±11.11 (15- 55 years. 13.3% of patients had polycystic ovary syndrome. The mean number of treatments was 6.5 (min-max= 2-11. 53.2% of patients had 50-75% clinical response and 53.2% of patients were satisfied. There were no side effects except mild erythema. Conclusion: We observed that IPL for hair removal was safe and moderately effective in our patients.

  4. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity

    KAUST Repository

    Cheng, Tuoyuan

    2017-05-29

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14 μmol/m2/s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50 mg/L, initial phosphate phosphorus 2-10 mg/L and microalgal seed 40 mg/L. Maximum microalgal biomass and minimum generation time were 370.9 mg/L and 2.5 d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2 mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5 mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5 L/m2/h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent.

  5. Audit Risk Assessment in the Light of Current European Regulations

    OpenAIRE

    Ciprian-Costel Munteanu

    2015-01-01

    Recent European reforms on audit regulations have been motivated by efforts to increase audit quality, functioning and performance. We believe the adoption of Directive 2014/56 and Regulation 537/2014 strengthened the role of independent audit and risk committees, which will positively contribute towards audit quality. This paper aims to critically assess the status quo of audit risk assessment in current European standards and regulations, by conducting a theoretical analysis of ...

  6. Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light-dark cycles on growth, productivity, and biochemical composition.

    Science.gov (United States)

    Gris, Barbara; Morosinotto, Tomas; Giacometti, Giorgio M; Bertucco, Alberto; Sforza, Eleonora

    2014-03-01

    One of the main parameters influencing microalgae production is light, which provides energy to support metabolism but, if present in excess, can lead to oxidative stress and growth inhibition. In this work, the influence of illumination on Scenedesmus obliquus growth was assessed by cultivating cells at different light intensities in a flat plate photobioreactor. S. obliquus showed a maximum growth rate at 150 μmol photons m(-2) s(-1). Below this value, light was limiting for growth, while with more intense illumination photosaturation effects were observed, although cells still showed the ability to duplicate. Looking at the biochemical composition, light affected the pigment contents only while carbohydrate, lipid, and protein contents remained stable. By considering that in industrial photobioreactors microalgae cells are subjected to light-dark cycles due to mixing, algae were also grown under pulsed illumination (5, 10, and 15 Hz). Interestingly, the ability to exploit pulsed light with good efficiency required a pre-acclimation to the same conditions, suggesting the presence of a biological response to these conditions.

  7. Regulation of Ribulose Bisphosphate Carboxylase Activity in Intact Wheat Leaves by Light, CO2, and Temperature

    OpenAIRE

    MÄCHLER, F.; NÖSBERGER, J.

    2017-01-01

    The activity of the enzyme ribulose bisphosphate carboxylase (RuBPCase) was estimated after rapidly extracting it from intact wheat leaves pretreated under different light and CO2 levels. No HCO3− was added to the extraction buffer since it is shown to inhibit RuBPCase. The activity increased as light intensity or CO2 concentration during pretreatment was increased. Enzyme activity increased as temperature during pretreatment was decreased. Light activation did not affect the affinity of RuBP...

  8. Emotional Intensity and Emotion Regulation in Response to Autobiographical Memories During Dysphoria

    DEFF Research Database (Denmark)

    del Palacio Gonzalez, Adriana; Berntsen, Dorthe; Watson, Lynn Ann

    2017-01-01

    Retrieving personal memories may provoke different emotions and a need for emotion regulation. Emotional responses have been studied scarcely in relation to autobiographical memory retrieval. We examined the emotional response to everyday involuntary (spontaneously arising) and voluntary...... (strategically retrieved) memories, and how this response may be different during dysphoria. Participants (20 dysphoric and 23 non-depressed) completed a structured diary where the intensity of basic emotions and regulation strategies employed upon retrieval of memories were rated. Brooding, memory suppression......, and emotional suppression were higher for all individuals’ involuntary memories than voluntary memories. Negative emotions and regulation strategies were greater for dysphoric individuals for both involuntary and voluntary memories after controlling for the valence of the remembered events. The results provide...

  9. Improving the statistical detection of regulated genes from microarray data using intensity-based variance estimation

    Directory of Open Access Journals (Sweden)

    Natarajan Sripriya

    2004-02-01

    Full Text Available Abstract Background Gene microarray technology provides the ability to study the regulation of thousands of genes simultaneously, but its potential is limited without an estimate of the statistical significance of the observed changes in gene expression. Due to the large number of genes being tested and the comparatively small number of array replicates (e.g., N = 3, standard statistical methods such as the Student's t-test fail to produce reliable results. Two other statistical approaches commonly used to improve significance estimates are a penalized t-test and a Z-test using intensity-dependent variance estimates. Results The performance of these approaches is compared using a dataset of 23 replicates, and a new implementation of the Z-test is introduced that pools together variance estimates of genes with similar minimum intensity. Significance estimates based on 3 replicate arrays are calculated using each statistical technique, and their accuracy is evaluated by comparing them to a reliable estimate based on the remaining 20 replicates. The reproducibility of each test statistic is evaluated by applying it to multiple, independent sets of 3 replicate arrays. Two implementations of a Z-test using intensity-dependent variance produce more reproducible results than two implementations of a penalized t-test. Furthermore, the minimum intensity-based Z-statistic demonstrates higher accuracy and higher or equal precision than all other statistical techniques tested. Conclusion An intensity-based variance estimation technique provides one simple, effective approach that can improve p-value estimates for differentially regulated genes derived from replicated microarray datasets. Implementations of the Z-test algorithms are available at http://vessels.bwh.harvard.edu/software/papers/bmcg2004.

  10. Exercise Intensity Self-Regulation using the OMNI Scale in Children with Cystic Fibrosis

    Science.gov (United States)

    Higgins, Linda W.; Robertson, Robert J.; Kelsey, Sheryl F.; Olson, Marian B.; Hoffman, Leslie A.; Rebovich, Paul J.; Haile, Luke; Orenstein, David M.

    2012-01-01

    Summary Prescribing exercise at intensities that improve fitness is difficult in children with cystic fibrosis (CF) due to ventilatory limitations and fluctuating health status. Our aim was to determine if children with CF could regulate the intensity of cycle ergometer and treadmill exercise using target ratings of perceived exertion (RPE) derived from the Children’s OMNI Scale. We examined prescription congruence [similar oxygen consumption (VO2) and heart rate (HR) for target RPE] and intensity discrimination (different VO2 and HR for different RPEs), from cycle to cycle and cycle to treadmill. Subjects were 24 children (12 male, 12 female), aged 10–17 years with varying disease severity. Each child participated in one orientation, one estimation trial (graded maximal exercise test), and two production trials (cycle and treadmill, alternating between RPE 4 and 7). At RPE 4, congruence was evident for both VO2 and HR on the treadmill. On the cycle at RPE 4, VO2 was significantly higher only in the first production trial, although HRs tended to be higher in the production trials than the estimation trial. Prescription congruence was also supported at RPE 7, with no significant differences in VO2 or HR between estimation and production trials on cycle or treadmill. Results fully supported intensity discrimination, with significant differences between VO2 and HR at RPE 4 and 7 (p<0.0001). Children with CF appear capable of using the OMNI Scale to regulate cycle and treadmill exercise intensity. Training using this methodology has the potential to promote fitness in children with CF of varying severity. PMID:22997144

  11. Light-Intensity-Induced Characterization of Elastic Constants and d33 Piezoelectric Coefficient of PLZT Single Fiber Based Transducers

    Directory of Open Access Journals (Sweden)

    Jiri Erhart

    2013-02-01

    Full Text Available Enhanced functionality of electro-optic devices by implementing piezoelectric micro fibers into their construction is proposed. Lanthanum-modified lead zirconate titanate (PLZT ceramics are known to exhibit high light transparency, desirable electro-optic properties and fast response. In this study PLZT fibers with a diameter of around 300 microns were produced by a thermoplastic processing method and their light-induced impedance and piezoelectric coefficient were investigated at relatively low light intensity (below 50 mW/cm2. The authors experimentally proved higher performance of light controlled microfiber transducers in comparison to their bulk form. The advantage of the high surface area to volume ratio is shown to be an excellent technique to design high quality light sensors by using fibrous materials. The UV absorption induced change in elastic constants of 3% and 4% for the piezoelectric coefficient d33.

  12. Light-intensity-induced characterization of elastic constants and d33 piezoelectric coefficient of PLZT single fiber based transducers.

    Science.gov (United States)

    Kozielski, Lucjan; Erhart, Jiri; Clemens, Frank Jörg

    2013-02-12

    Enhanced functionality of electro-optic devices by implementing piezoelectric micro fibers into their construction is proposed. Lanthanum-modified lead zirconate titanate (PLZT) ceramics are known to exhibit high light transparency, desirable electro-optic properties and fast response. In this study PLZT fibers with a diameter of around 300 microns were produced by a thermoplastic processing method and their light-induced impedance and piezoelectric coefficient were investigated at relatively low light intensity (below 50 mW/cm2). The authors experimentally proved higher performance of light controlled microfiber transducers in comparison to their bulk form. The advantage of the high surface area to volume ratio is shown to be an excellent technique to design high quality light sensors by using fibrous materials. The UV absorption induced change in elastic constants of 3% and 4% for the piezoelectric coefficient d(33).

  13. Light-activation through indirect ceramic restorations: does the overexposure compensate for the attenuation in light intensity during resin cement polymerization?

    Directory of Open Access Journals (Sweden)

    Albano Luis Novaes Bueno

    2011-02-01

    Full Text Available OBJECTIVES: This study evaluated the effects of light exposure through simulated indirect ceramic restorations (SICR on hardness (KHN of dual-cured resin cements (RCs, immediately after light-activation and 24 h later. MATERIAL AND METHODS: Three dual-cured RCs were evaluated: Eco-Link (Ivoclar Vivadent, Rely X ARC (3M ESPE, and Panavia F (Kuraray Medical Inc.. The RCs were manipulated in accordance to the manufacturers' instructions and were placed into cylindrical acrylic matrixes (1-mm-thick and 4-mm diameter. The RC light-activation (Optilux 501; Demetron Kerr was performed through a glass slide for 120 s (control group, or through 2-mm or 4-mm thick SICRs (IPS Empress II; Ivoclar Vivadent. The specimens were submitted to KHN analysis immediately and 24 h after light-activation. The data obtained at the 2 evaluation intervals were submitted to 2-way ANOVA repeated measures and post-hoc Tukey's test (pre-set alpha of 5%. RESULTS: Lower KHN was observed when light-activation was performed through SICRs for Eco-Link at all evaluation intervals and for Rely X ARC 24 h later. For Panavia F, no significant difference in KHN was observed between control and experimental groups, regardless of evaluation interval. Most groups exhibited higher KHN after 24 h than immediately after light-activation, with the exception of Rely X ARC light-activated through SICR, as no significant difference in KHN was found between evaluation intervals. CONCLUSIONS: Light overexposure did not compensate for light intensity attenuation due to the presence of SICR when Rely X and Eco-Link were used. Although hardness of such RCs increased over a 24-h interval, the RCs subjected to light overexposure did not reach the hardness values exhibited after direct light exposure.

  14. The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Brotosudarmo, Tatas H. P. [Univ. of Glasgow, Scotland (United Kingdom). Inst. of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences; Collins, Aaron M. [Washington Univ., St. Louis, MO (United States). Depts. of Biology and Chemistry; Gall, Andrew [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France). Inst. de Biologie et Technologies de Saclay et CNRS; Roszak, Aleksander W. [Univ. of Glasgow, Scotland (United Kingdom). Dept. of Chemistry, WestChem; Gardiner, Alastair T. [Univ. of Glasgow, Scotland (United Kingdom). Inst. of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences; Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States). Depts. of Biology and Chemistry; Cogdell, Richard J. [Univ. of Glasgow, Scotland (United Kingdom). Inst. of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences

    2011-11-15

    The differing composition of LH2 (peripheral light-harvesting) complexes present in Rhodopseudomonas palustris 2.1.6 have been investigated when cells are grown under progressively decreasing light intensity. Analysis of the absorption spectra reveals there must be more than two types of LH2 complexes present. Purified HL (high-light) and LL (low-light) LH2 complexes have mixed apoprotein compositions. The HL complexes contain PucABa and PucABb apoproteins. The LL complexes contain PucABa, PucABd and PucBb-only apoproteins. This mixed apoprotein composition can explain their resonance Raman spectra.

  15. The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium.

    Science.gov (United States)

    Brotosudarmo, Tatas H P; Collins, Aaron M; Gall, Andrew; Roszak, Aleksander W; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2011-11-15

    The differing composition of LH2 (peripheral light-harvesting) complexes present in Rhodopseudomonas palustris 2.1.6 have been investigated when cells are grown under progressively decreasing light intensity. Detailed analysis of their absorption spectra reveals that there must be more than two types of LH2 complexes present. Purified HL (high-light) and LL (low-light) LH2 complexes have mixed apoprotein compositions. The HL complexes contain PucAB(a) and PucAB(b) apoproteins. The LL complexes contain PucAB(a), PucAB(d) and PucB(b)-only apoproteins. This mixed apoprotein composition can explain their resonance Raman spectra. Crystallographic studies and molecular sieve chromatography suggest that both the HL and the LL complexes are nonameric. Furthermore, the electron-density maps do not support the existence of an additional Bchl (bacteriochlorophyll) molecule; rather the density is attributed to the N-termini of the α-polypeptide.

  16. Versatile microscope-coupled high-intensity pulsed light source for high-speed cine photomicrography of microactuators

    Science.gov (United States)

    Krehl, Peter; Engemann, Stephan; Rembe, Christian; Hofer, Eberhard P.

    1997-05-01

    A compact high-intensity pulsed light source has been developed in order to match a microdynamic test facility for high-speed motion analysis of micromechanical components. The test stand encompasses a universal microscope Zeiss Axioplan, the new light source and an electronic ultra high- speed multiple framing camera Hadland Imacon 468. The light source consists of a narrow cylindrical Xe-filled discharge tube, thus providing a locally stable emission. Since the small-size flashlamp easily fits into a standard microscope lamphousing, it allows to maintain the advantages of Koehler illumination as well as switching to other types of lamphousings. The flash tube is operated via an artificial asymmetric transmission line and delivers a square light pulse with a flash duration of 110 microsecond(s) FWHM and a peak intensity of 50 Med. The light source illuminates the object uniformly within the interesting time window; image shuttering is provided in the camera by gated micro-channel- plate intensifiers. To test the efficiency of the total system for various standard visualization methods (transmitted light, reflected light and differential interference contrast), microscopic still images have been taken at magnification up to 500X and with exposure times down to 10 ns. In addition, two microscopic darkfield methods which provide a high contrast but a low light intensity of the image, have been selected to test their applicability down to an exposure time of 100 ns. Two examples for real-time cinematography of high-speed phenomena in microactuators are shown: the bouncing behavior of an electro-magnetic microrelay and the bubble/jet formation of a thermal ink jet printhead.

  17. Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.; Trejo, Nancy D.; Francis, Lorraine F., E-mail: francis@umn.edu; Aydil, Eray S., E-mail: aydil@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)

    2016-09-15

    A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur

  18. Effectiveness of Intense Pulsed Light treatment in solar lentigo: a retrospective study

    Directory of Open Access Journals (Sweden)

    İlgen Ertam

    2014-03-01

    Full Text Available Intense Pulsed Light (IPL; is a light system of 500-1200 nm wavelength which is used for the treatment of hair removal, hyperpigmentation, non-ablative skin resurfacing and superficial vascular lesions. The mechanism of action is thought to be the focal epidermal coagulation due to selective photothermolysis in the epidermal keratinocytes and melanocytes. A variety of laser systems can be used in the treatment of lsolar entigo. The aim of this study is to investigate the effectiveness of IPL in solar lentigo. Materials and Methods: The archives of Cosmetology Unit retrospectively reviewed for the patients with the diagnosis of solar lentigo from March 2007 to November 2010. There were 139 files of patients who were diagnosed as solar lentigo clinically and dermoscopically and treated by IPL (L900 a & m IPL. Informed consent was taken from all patients. Among them, 42 patients who had come to controls regularly and had photographed before and after treatment included into the study. Results: A total of 52 lesions of 42 female and 1 male patient included into the study. Patients’ mean age was 42±9.6 years, ranging between 33 to 88. Of the lesions, 27 lesions(51.9% were on cheek, 7 lesions (13.5% were on zygoma, 6 lesions (11.5% were on chin, 4 lesions (7.7% were on hands, 4 lesions (7.7% were on forehead, 2 lesions(3.8% were on nose, 2 lesions (3.8% were on forearm. The mean number of sessions was 3.28 ranging between 1 and 7. After treatment, improvement was over 75% in 57,7% lesions, 50-75% in 17.3% of the lesions, 25-50% in 17.3% of the lesions, under 25% in 7.7% of the lesions. Conclusion: According to the results of our work, IPL can be accepted as an effective, cheap and safety method in terms of its side effects in treatment of solar lentigo.

  19. Generation of two-lobe light fields with a rotating intensity distribution under propagation for single emitter spectroscopy

    Science.gov (United States)

    Volostnikov, V. G.; Vorontsov, E. N.; Kotova, S. P.; Losevsky, N. N.; Prokopova, D. V.; Razueva, E. V.; Samagin, S. A.

    2016-12-01

    The paper outlines the results of studies on the generation of two-lobe light fields with the intensity distribution rotating during the field propagation. Such fields are needed to determine the depth of bedding of single emitters in spectral studies of substance properties. On the base of the spiral beam optics, the phase distributions were obtained for the synthesis of two-lobe fields with different speeds of rotation of the intensity distribution. The light fields have been formed by using a liquid-crystal spatial phase modulator HOLOEYE HEO-1080P. The influence of the illuminating beam parameters and the aberrations of the system on the quality of the formed light field was also studied.

  20. Generation of two-lobe light fields with a rotating intensity distribution under propagation for single emitter spectroscopy

    Directory of Open Access Journals (Sweden)

    Volostnikov V.G.

    2017-01-01

    Full Text Available The paper outlines the results of studies on the generation of two-lobe light fields with the intensity distribution rotating during the field propagation. Such fields are needed to determine the depth of bedding of single emitters in spectral studies of substance properties. On the base of the spiral beam optics, the phase distributions were obtained for the synthesis of two-lobe fields with different speeds of rotation of the intensity distribution. The light fields have been formed by using a liquid-crystal spatial phase modulator HOLOEYE HEO-1080P. The influence of the illuminating beam parameters and the aberrations of the system on the quality of the formed light field was also studied.

  1. Gibberellins negatively regulate light-induced nitrate reductase activity in Arabidopsis seedlings.

    Science.gov (United States)

    Zhang, Yongqiang; Liu, Zhongjuan; Liu, Rongzhi; Wang, Liguang; Bi, Yurong

    2011-12-15

    In the present study, the role of phytohormone gibberellins (GAs) on regulating the nitrate reductase (NR) activity was tested in Arabidopsis seedlings. The NR activity in light-grown Col-0 seedlings was reduced by exogenous GA₃ (an active form of GAs), but enhanced by exogenous paclobutrazol (PAC, a gibberellin biosynthesis inhibitor), suggesting that GAs negatively regulate the NR activity in light-grown seedlings. Light is known to influence the NR activity through both photosynthesis and phytochromes. When etiolated seedlings were transferred to white or red light, both exogenously applied GA₃ and PAC were found to function on the NR activity only in the presence of sucrose, implying that GAs are not involved in light signaling-induced but negatively regulate photoproducts-induced NR activity. NR is regulated by light mainly at two levels: transcript level and post-translational level. Our reverse transcription (RT)-PCR assays showed that GAs did not affect the transcript levels of NIA1 and NIA2, two genes that encode NR proteins. But the divalent cations (especially Mg²⁺) were required for GAs negative regulation of NR activity, in view of the importance of divalent cations during the process of post-translational regulation of NR activity, which indicates that GAs very likely regulate the NR activity at the post-translational level. In the following dark-light shift analyses, GAs were found to accelerate dark-induced decrease, but retard light-induced increase of the NR activity. Furthermore, it was observed that application of G₃ or PAC could impair diurnal variation of the NR activity. These results collectively indicate that GAs play a negative role during light regulation of NR activity in nature.

  2. The effects of taurine on vigabatrin, high light intensity and mydriasis induced retinal toxicity in the pigmented rat.

    Science.gov (United States)

    Rasmussen, Allan D; Truchot, Nathalie; Pickersgill, Nigel; Thale, Zia Irene; Rosolen, Serge G; Botteron, Catherine

    2015-01-01

    The overall purpose of this study was to establish a model that may be used for examining the effect of Vigabatrin-induced retinal toxicity in pigmented rats, and subsequently examine the possible effects of taurine on the retinal toxicity. In the first part of the study, pigmented Long Evans rats were subjected to combinations of induced mydriasis, low/high light intensities (40/2000 lx) and oral administration of near-MTD (Maximum Tolerated Dose) doses (200 mg/kg/day) of Vigabatrin for up to 6 weeks. The combination of mydriasis and high light intensity applied to Long Evans rats resulted in retinal damage that was increased by the administration of Vigabatrin. In the second part of the study Long Evans rats were subjected to combinations of induced mydriasis and high/low light intensity (40/2000 lx) while being orally administered low (30 mg/kg/day) or high (200 mg/kg/day) doses of Vigabatrin for up to 6 weeks. In addition, selected groups of animals were administered taurine via the drinking water (20 mg/ml), resulting in systemic taurine concentrations of approximately threefold the endogenous concentration. The combined results of the studies demonstrate that retinal damage can be induced in pigmented animals when combining mydriasis and high light intensity. Retinal damage was functionally evaluated by electroretinography (ERG), then confirmed by histopathology. While depending on mydriasis and high light intensity, administration of Vigabatrin increased the retinal toxicity and resulted in the formation of rosette-like structures in the retina in a dose-related manner. Administration of taurine did not alleviate the Vigabatrin-induced retinal toxicity, as demonstrated either functionally by ERG or morphologically, although systemic concentrations of 3-fold the endogenous levels were reached, and it was thus not possible to demonstrate a protective effect of taurine in these pigmented animals. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. The impact of different intensities of green light on the bacteriochlorophyll homologue composition of the Chlorobiaceae Prosthecochloris aestuarii and Chlorobium phaeobacteroides.

    Science.gov (United States)

    Massé, Astrid; Airs, Ruth L; Keely, Brendan J; de Wit, Rutger

    2004-08-01

    Members of the Chlorobiaceae and Chloroflexaceae are unique among the phototrophic micro-organisms in having a remarkably rich chlorophyll pigment diversity. The physiological regulation of this diversity and its ecological implications are still enigmatic. The bacteriochlorophyll composition of the chlorobiaceae Prosthecochloris aestuarii strain CE 2404 and Chlorobium phaeobacteroides strain UdG 6030 was therefore studied by both HPLC with photodiode array (PDA) detection and liquid chromatography-mass spectrometry (LC-MS). These strains were grown in liquid cultures under green light (480-615 nm) at different light intensities (0.2-55.7 micromol photons m(-2) s(-1)), simulating the irradiance regime at different depths of the water column of deep lakes. The specific growth rates of Ptc. aestuarii under green light achieved a maximum of 0.06 h(-1) at light intensities exceeding 6 micromol photons m(-2) s(-1), lower than the maximum observed under white light (approx. 0.1 h(-1)). The maximal growth rates of Chl. phaeobacteroides under green light were slightly higher (0.07 h(-1)) than observed for Ptc. aestuarii and were achieved at 3.5 and 4.3 micromol photons m(-2) s(-1). LC-MS/MS analysis of pigment extracts revealed most (>90 %) BChl c homologues of Ptc. aestuarii to be esterified with farnesol. The homologues differed in mass by multiples of 14 Da, reflecting different alkyl subsituents at positions C-8 and C-12 on the tetrapyrrole macrocycle. The relative proportions of the individual homologues varied only slightly among different light intensities. The specific content of BChl c was maximal at 3-5 micromol photons m(-2) s(-1) [400+/-150 nmol BChl c (mg protein)(-1)]. In the case of Chl. phaeobacteroides, the specific content of BChl e was maximal at 4.3 micromol photons m(-2) s(-1) [115 nmol BChl e (mg protein)(-1)], and this species was characterized by high carotenoid (isorenieratene) contents. The major BChl e forms were esterified with a range of

  4. Absolute phase recovery in structured light illumination systems: Sinusoidal vs. intensity discrete patterns

    Science.gov (United States)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos

    2016-09-01

    Structured light illumination is a well-established technology for noncontact 3D surface measurements. A common challenge in those systems is to obtain the absolute surface information using few measurement frames. This work discusses techniques based on the projection of multiple sinusoidal fringe patterns with different fringe period, as well as the projection of intensity discrete Gray Code and grey-level coded patterns. The use of sinusoidal multi-frequency techniques has been since years an on-going area of research, where various algorithms have been developed based on beats, look-up tables, or number-theoretical approaches. This work shows that a related technique, the so-called algebraic reconstruction technique that is borrowed from the area of multi-wavelength interferometry can be used for this purpose. This approach provides a robust analytical solution to the phase-unwrapping problem. However, this work argues that despite these advances, the acquisition of additional phase maps obtained with different fringe periods requires too many measurement frames, and hence is inefficient. Motivated by that, this work proposes a new grey level coding scheme that uses only few measurement frames, overcomes typical defocus errors, and has an error detecting feature. The latter feature makes the need of separate error detecting algorithms obsolete. This so-called closed-loop space filling curve can be implemented with an arbitrary number of N grey-levels enabling to code up to (2N) code-words. The performance of this so-called closed-loop space filling curve is demonstrated using experimental data.

  5. The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature

    Directory of Open Access Journals (Sweden)

    Sylvia Bonilla

    2016-06-01

    Full Text Available Toxic cyanobacterial blooms in freshwaters are thought to be a consequence of the combined effects of anthropogenic eutrophication and climate change. It is expected that climate change will affect water mixing regimes that alter the water transparency and ultimately the light environment for phytoplankton. Blooms of the potentially toxic cyanobacterium Cylindrospermopsis raciborskii are expanding from tropical towards temperate regions. Several hypotheses have been proposed to explain this expansion, including an increase in water temperature due to climate change and the high phenotypic plasticity of the species that allows it to exploit different light environments. We performed an analysis based on eight lakes in tropical, subtropical and temperate regions to examine the distribution and abundance of C. raciborskii in relation to water temperature and transparency. We then conducted a series of short-term factorial experiments that combined three temperatures and two light intensity levels using C. raciborskii cultures alone and in interaction with another cyanobacterium to identify its growth capacity. Our results from the field, in contrast to predictions, showed no differences in dominance (>40% to the total biovolume of C. raciborskii between climate regions. C. raciborskii was able to dominate the phytoplankton in a wide range of light environments (euphotic zone = 1.5 to 5 m, euphotic zone/mixing zone ratio <0.5 to >1.5. Moreover, C. raciborskii was capable of dominating the phytoplankton at low temperatures (<15°C. Our experimental results showed that C. raciborskii growing in interaction was enhanced by the increase of the temperature and light intensity. C. raciborskii growth in high light intensities and at a wide range of temperatures, suggests that any advantage that this species may derive from climate change that favors its dominance in the phytoplankton is likely due to changes in the light environment rather than changes in

  6. The impact of architectural design upon the environmental sound and light exposure of neonates who require intensive care: an evaluation of the Boekelheide Neonatal Intensive Care Nursery.

    Science.gov (United States)

    Stevens, D C; Akram Khan, M; Munson, D P; Reid, E J; Helseth, C C; Buggy, J

    2007-12-01

    To evaluate the differences in environmental sound, illumination and physiological parameters in the Boekelheide Neonatal Intensive Care Unit (BNICU), which was designed to comply with current recommendations and standards, as compared with a conventional neonatal intensive care unit (CNICU). Prospectively designed observational study. Median sound levels in the unoccupied BNICU (37.6 dBA) were lower than the CNICU (42.1 dBA, P<0.001). Median levels of minimum (6.4 vs 48.4 lux, P<0.05) and maximum illumination (357 vs 402 lux, P<0.05) were lower in the BNICU. A group of six neonates delivered at 32 weeks gestation showed significantly less periodic breathing (14 vs 21%) and awake time (17.6 vs 29.3%) in the BNICU as compared to the CNICU. Light and sound were both significantly reduced in the BNICU. Care in the BNICU was associated with improved physiological parameters.

  7. Regulating explosive resistance training intensity using the rating of perceived exertion.

    Science.gov (United States)

    Row, Brandi S; Knutzen, Kathleen M; Skogsberg, Nikolaus J

    2012-03-01

    Explosive resistance training (ERT) improves older adults' strength and power, and methods to make this form of training more accessible and useful to older adults are needed. The purpose of this study was to evaluate whether the rating of perceived exertion (RPE) scale would predict a broad range of ERT intensities on the leg press with older adults. If successful, then a load-RPE relationship could be used to regulate the intensity of training loads for ERT with older adults, allowing the elimination of maximal strength testing. Twenty-one older adults (≥65 years) with resistance training experience took part in 2 testing sessions. Session 1: Subjects performed high-velocity repetitions on the leg press for up to 9 loads (from 60 to 140% body weight) presented in quasi-randomized order, and then reported their RPE for each load. Session 2: A 1 repetition maximum (1RM) strength test was conducted. Regression analysis revealed that the average RPE across subjects for each load strongly predicted the average %1RM across subjects (R2 = 99.5%; p < 0.001). This allows the establishment of a load-RPE relationship for use in selecting ERT loads for older adults on the leg press. For example, high-intensity loads (70-90% 1RM) that would elicit both strength and power gains when used with ERT aligned with an RPE of 14-16. Lighter loads that may be useful for training for power, but not strength (<70% 1RM), were identified with RPE scores of 13 and lower. The load-RPE relationship may simplify the regulation of intensity of ERT with older adults on the leg press, where the exercising older adult could be guided to select loads according to their RPE.

  8. Pacing Profiles in Competitive Track Races: Regulation of Exercise Intensity Is Related to Cognitive Ability

    Science.gov (United States)

    Van Biesen, Debbie; Hettinga, Florentina J.; McCulloch, Katina; Vanlandewijck, Yves

    2016-01-01

    Pacing has been defined as the goal-directed regulation of exercise intensity over an exercise bout, in which athletes need to decide how and when to invest their energy. The purpose of this study was to explore if the regulation of exercise intensity during competitive track races is different between runners with and without intellectual impairment, which is characterized by significant limitations in intellectual functioning (IQ ≤ 75) and adaptive behavioral deficits, diagnosed before the age of 18. The samples included elite runners with intellectual impairment (N = 36) and a comparison group of world class runners without impairment (N = 39), of which 47 were 400 m runners (all male) and 28 were 1500 m-runners (15 male and 13 female). Pacing was analyzed by means of 100 m split times (for 400 m races) and 200 m split times (for 1500 m races). Based on the split times, the average velocity was calculated for four segments of the races. Velocity fluctuations were defined as the differences in velocity between consecutive race segments. A mixed model ANOVA revealed significant differences in pacing profiles between runners with and without intellectual impairment (p 100 m (7.2 ± 0.1 m/s), slowly decelerated in the second race segment (−0.6 ± 0.1 m/s), and finished with an end sprint (+0.9 ± 0.1 m/s); the 1500 m runners with intellectual impairment started slower (6.1 ± 0.3 m/s), accelerated in the second segment (+0.2 ± 0.7 m/s), and then slowly decreased until the finish (F = 6.8, p < 0.05). Our findings support the hypothesis that runners with intellectual impairment have difficulties to efficiently self-regulate their exercise intensity. Their limited cognitive resources may constrain the successful integration of appropriate pacing strategies during competitive races. PMID:28066258

  9. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness

    Science.gov (United States)

    Cajochen, C.; Zeitzer, J. M.; Czeisler, C. A.; Dijk, D. J.

    2000-01-01

    Light can elicit both circadian and acute physiological responses in humans. In a dose response protocol men and women were exposed to illuminances ranging from 3 to 9100 lux for 6.5 h during the early biological night after they had been exposed to dose response curve. Half of the maximum alerting response to bright light of 9100 lux was obtained with room light of approximately 100 lux. This sensitivity to light indicates that variations in illuminance within the range of typical, ambient, room light (90-180 lux) can have a significant impact on subjective alertness and its electrophysiologic concomitants in humans during the early biological night.

  10. Transcriptional analysis of rat photoreceptor cells reveals daily regulation of genes important for visual signaling and light damage susceptibility.

    Science.gov (United States)

    Kunst, Stefanie; Wolloscheck, Tanja; Hölter, Philip; Wengert, Alexander; Grether, Markus; Sticht, Carsten; Weyer, Veronika; Wolfrum, Uwe; Spessert, Rainer

    2013-03-01

    Photoreceptor cells face the challenge of adjusting their function and, possibly, their susceptibility to light damage to the marked daily changes in ambient light intensity. To achieve a better understanding of photoreceptor adaptation at the transcriptional level, this study aimed to identify genes which are under daily regulation in photoreceptor cells using microarray analysis and quantitative PCR. Included in the gene set obtained were a number of genes which up until now have not been shown to be expressed in photoreceptor cells, such as Atf3 (activating transcription factor 3) and Pde8a (phosphodiesterase 8A), and others with a known impact on phototransduction and/or photoreceptor survival, such as Grk1 (G protein-coupled receptor kinase 1) and Pgc-1α (peroxisome proliferator-activated receptor γ, coactivator 1alpha). According to their daily dynamics, the genes identified could be clustered in two groups: those with peak expression during the second part of the day which are uniformly promoted to cycle by light/dark transitions and those with peak expression during the second part of the night which are predominantly driven by a clock. Since Grk1 and Pgc-1α belong in the first group, the present results support a concept in which transcriptional regulation of genes by ambient light contributes to the functional adjustment of photoreceptor cells over the 24-h period.

  11. The effect of visible-light intensity on shape evolution and antibacterial properties of triangular silver nanostructures

    Science.gov (United States)

    Ashkarran, Ali Akbar

    2016-08-01

    Triangular silver nanostructures represent a novel class of nanomaterials with tunable surface plasmon resonance (SPR). By controlling the size and geometry of these structures, their SPR peaks could be tuned from the visible to the near-infrared region with numerous applications in optoelectronic, sensors, nanomedicine and specially cancer diagnosis and treatment. In this study, triangular silver nanostructures were prepared by photoinducing of spherical silver nanoparticles (NPs) with an average diameter of 10 nm. Transmission electron microscopy (TEM) and ultra violet visible (UV-Vis) spectroscopy were used to characterize silver triangles. We have found that uniform triangular silver nanostructures can be obtained using an appropriate visible-light illumination to the primary spherical silver NPs. TEM images indicated that formation of triangular structures depends on the intensity of light source. The effect of intensity of visible-light source on the geometry and size distribution of silver triangles was investigated. It was found that formation of triangular structures in addition to their size and shape evolution strongly depends on the intensity of the light illumination. Furthermore, a comparative study on the antibacterial activities of silver triangles of different sizes reveals that silver triangles experience a size-dependent interaction with the gram-negative Escherichia coli bacteria.

  12. Blood flow regulation and oxygen uptake during high intensity forearm exercise.

    Science.gov (United States)

    Nyberg, Stian Kwak; Berg, Ole Kristian; Helgerud, Jan; Wang, Eivind

    2017-01-05

    The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25±2yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO2diff) during 6-minutes bouts of 60, 80 and 100% of maximal work rate (WRmax), respectively. Blood flow and oxygen uptake increased (pBlood velocity (49.5±11.5 cm∙sec(-1) to 58.1±11.6 cm∙sec(-1)) and brachial diameter (0.49±0.05cm to 0.50±0.06 cm) showed concomitant increases (pblood flow from 60% to 80%WRmax, while no differences were observed in a-vO2diff Shear rate also increased (pblood flow (60%WRmax:50±22s; 80%WRmax:51±20s; 100%WRmax:51±23s) than a-vO2diff (60%WRmax:29±9s; 80%WRmax:29±5s; 100%WRmax:20±5s), but not different from oxygen uptake (60%WRmax:44±25s; 80%WRmax:43±14s; 100%WRmax:41±32s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WRmax and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations.

  13. Audit Risk Assessment in the Light of Current European Regulations

    Directory of Open Access Journals (Sweden)

    Ciprian-Costel Munteanu

    2015-06-01

    Full Text Available Recent European reforms on audit regulations have been motivated by efforts to increase audit quality, functioning and performance. We believe the adoption of Directive 2014/56 and Regulation 537/2014 strengthened the role of independent audit and risk committees, which will positively contribute towards audit quality. This paper aims to critically assess the status quo of audit risk assessment in current European standards and regulations, by conducting a theoretical analysis of different aspects of audit risk. Our main objective is to stress the importance of detecting inherent and control risk, which lead to material misstatement at the assertion level. They need to be assessed so as to determine the nature, timing and extent of further audit procedures necessary to obtain sufficient appropriate audit evidence. These pieces of evidence enable the auditor to express an opinion on the financial statements at an acceptably low level of audit risk. Therefore, we point to the fact that researchers as well as practitioners and policymakers have to be careful when using audit tools and assessing risk levels, as their conclusions continuously shape the regulations.

  14. We see the light: chemical-genetic protein regulation.

    Science.gov (United States)

    Farber, Steven A; Zeituni, Erin M

    2012-03-23

    The challenge of studying complex protein networks in whole animals has driven the development of new methods for manipulating protein function with spatial and temporal precision. A novel combination of chemical and genetic protein regulation (Rodriguez and Wolfgang, in this issue of Chemistry & Biology) achieves levels of control that will revolutionize the study of protein function.

  15. THE METHOD OF CAR HEADLIGHTS LUMINOUS INTENSITY MEASURING FOR NON-POINT SOURCES OF LIGHT

    Directory of Open Access Journals (Sweden)

    A. Kupko

    2015-12-01

    Full Text Available It is shown that the measurements of luminous intensity of car headlights luminous intensity for non-point sources have pecularities. A simplified method for correction the luminous intensity at various distances is developed. The applicability of the given method with possible measurement errors is studied. The results were obtained, using a stand of the National Scientific Center “Institute of Metroligy”.

  16. Effects of age, strain, and illumination intensity on activity and self-selection of light-dark schedules in mice.

    Science.gov (United States)

    Wax, T M

    1977-02-01

    Young and senescent albino A/J mice, pigmented C57BL/6J pure inbred mice, and their hybrid F1S were tested under low or high illumination intensities to observe differences in self-selected wheel running, bar pressing, and durations of light and dark over time. The animals (N = 120) were always allowed ad lib access to food, water, running wheel, and bar-press levers. During the pre- and postexperimental phases, the mice were kept under a standard 12:12 hr light/dark cycle; during the experimental phase, however, they were allowed to select their own light and dark schedules by pressing on either of two accessible bars, one light contingent and the other dark contingent. Measures of general running and bar-pressing activities, motivational aspects of illumination change and intensity preferences, time-series analyses of periodicities, power ratios, and significant other multiples were obtained from the subjects during a total of three experimental phases. Age differences were found for most of the measures studied and in general showed declines in activity levels, inccreases in motivation to change illumination conditions, lengthening of activity cycles (slower periods), and decreases in the strengths of the oscillations underlying these behaviors as well as an increase in the number of other periodic components in old mice relative to young. Genetic group and illumination-intensity differences were also found, and the results are discussed in light of theories concerning illumination preference and stimulus change, earlier work involving voluntary light selection behavior, and aging studies.

  17. Intensity of bitterness of processed yerba mate leaves originated in two contrasted light environments

    Directory of Open Access Journals (Sweden)

    Miroslava Rakocevic

    2008-06-01

    Full Text Available The bitterness intensity of beverage prepared from the leaves produced on the males and females of yerba mate (Ilex paraguariensis, grown in the forest understory and monoculture, was evaluated. The leaves were grouped by their position (in the crown and on the branch tips and by the leaf age. The leaf gas exchange, leaf temperature and photosynthetic photon flux density were observed. Inter and intra-specific competition for light and self-shading showed the same effect on yerba mate beverage taste. All the shading types resulted in bitterer taste of the processed yerba mate leaves compared to the leaves originated under the direct sun exposure. The leaves from the plants grown in the monoculture showed less bitterness than those grown in the forest understory. This conclusion was completely opposite to the conventionally accepted paradigm of the yerba mate industries. The leaves from the tips (younger leaves of the plants grown in the monoculture resulted a beverage of softer taste; the males produced less bitter leaves in any light environment (forest understory or in the crown in monoculture. The taste was related to the photosynthetic and transpiration rate, and leaf temperature. Stronger bitterness of the leaves provided from the shade conditions was related to the decreased leaf temperature and transpiration in the diurnal scale.Mediu-se a intensidade de amargor da bebida preparada a partir de folhas da erva-mate (Ilex paraguariensis de diversas idades, situadas em duas posições na copa (interior e ponteiras, produzidas por plantas masculinas e femininas cultivadas na floresta antropizada e em monocultura. As trocas gasosas foliares, a temperatura de folhas e a densidade de fluxo de fótons fotossinteticamente ativos também foram medidas. Com isso verificou-se que a idéia corrente de que o sombreamento está diretamente relacionado ao sabor suave do chimarrão é completamente equivocada, já que as competições inter- e intra

  18. Improvement of luminous intensity of InGaN light emitting diodes grown on hemispherical patterned sapphire

    Science.gov (United States)

    Lee, Jae-Hoon; Oh, Jeong-Tak; Park, Jin-Sub; Kim, Je-Won; Kim, Yong-Chun; Lee, Jeong-Wook; Cho, Hyung-Koun

    2006-06-01

    To improve the external quantum efficiency, high quality GaN film was grown on hemispherical patterned sapphire by controlling the V/III ratio during the initial growth stage. The luminous intensity of white flash light emitting diode (LED) grown on hemispherical patterned sapphire (HPS) was estinated to be 5.8 cd at a forward current of 150 mA, which is improved by 20% more than that of LED grown on conventional sapphire substrate. The improvement of luminous intensity was explained by considering not only an increase of the extraction efficiency via the suppressed total internal reflection at the corrugated interface but also a decrease of dislocation density.

  19. RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis.

    Science.gov (United States)

    Behnke, Katja; Kaiser, Andreas; Zimmer, Ina; Brüggemann, Nicolas; Janz, Dennis; Polle, Andrea; Hampp, Rüdiger; Hänsch, Robert; Popko, Jennifer; Schmitt-Kopplin, Philippe; Ehlting, Barbara; Rennenberg, Heinz; Barta, Csengele; Loreto, Francesco; Schnitzler, Jörg-Peter

    2010-09-01

    In plants, isoprene plays a dual role: (a) as thermo-protective agent proposed to prevent degradation of enzymes/membrane structures involved in photosynthesis, and (b) as reactive molecule reducing abiotic oxidative stress. The present work addresses the question whether suppression of isoprene emission interferes with genome wide transcription rates and metabolite fluxes in grey poplar (Populus x canescens) throughout the growing season. Gene expression and metabolite profiles of isoprene emitting wild type plants and RNAi-mediated non-isoprene emitting poplars were compared by using poplar Affymetrix microarrays and non-targeted FT-ICR-MS (Fourier transform ion cyclotron resonance mass spectrometry). We observed a transcriptional down-regulation of genes encoding enzymes of phenylpropanoid regulatory and biosynthetic pathways, as well as distinct metabolic down-regulation of condensed tannins and anthocyanins, in non-isoprene emitting genotypes during July, when high temperature and light intensities possibly caused transient drought stress, as indicated by stomatal closure. Under these conditions leaves of non-isoprene emitting plants accumulated hydrogen peroxide (H(2)O(2)), a signaling molecule in stress response and negative regulator of anthocyanin biosynthesis. The absence of isoprene emission under high temperature and light stress resulted transiently in a new chemo(pheno)type with suppressed production of phenolic compounds. This may compromise inducible defenses and may render non-isoprene emitting poplars more susceptible to environmental stress.

  20. Effect of illumination intensity and light application time on secondary organic aerosol formation from the photooxidation of α-pinene

    Institute of Scientific and Technical Information of China (English)

    LIU Xianyun; ZHANG Weijun; HUANG Mingqiang; WANG Zhenya; HAO Liqing; ZHAO Wenwu

    2009-01-01

    Secondary organic aerosol (SOA) formation from hydroxyl radical (OH·) initiated photooxidation of α-pinene was investigated in a home-made smog chamber. The size distribution of SOA particles was measured using aerodynamic particle sizer spectrometer. The effect of illumination intensity and light application time on SOA formation for α-pinene was evaluated. Experimental results show that the concentration of SOA particles increased significantly with the increasing of illumination intensity, and the light application time, the concentration, and the size of SOA particals were also increased. The factors influencing the formation of SOA were also discussed. This atricle compared the effect of α-pinene with that of toluene, and discussed the contribution of α-pinene to SOA formation.

  1. High-intensity urban light installation dramatically alters nocturnal bird migration.

    Science.gov (United States)

    Van Doren, Benjamin M; Horton, Kyle G; Dokter, Adriaan M; Klinck, Holger; Elbin, Susan B; Farnsworth, Andrew

    2017-10-02

    Billions of nocturnally migrating birds move through increasingly photopolluted skies, relying on cues for navigation and orientation that artificial light at night (ALAN) can impair. However, no studies have quantified avian responses to powerful ground-based light sources in urban areas. We studied effects of ALAN on migrating birds by monitoring the beams of the National September 11 Memorial & Museum's "Tribute in Light" in New York, quantifying behavioral responses with radar and acoustic sensors and modeling disorientation and attraction with simulations. This single light source induced significant behavioral alterations in birds, even in good visibility conditions, in this heavily photopolluted environment, and to altitudes up to 4 km. We estimate that the installation influenced ≈1.1 million birds during our study period of 7 d over 7 y. When the installation was illuminated, birds aggregated in high densities, decreased flight speeds, followed circular flight paths, and vocalized frequently. Simulations revealed a high probability of disorientation and subsequent attraction for nearby birds, and bird densities near the installation exceeded magnitudes 20 times greater than surrounding baseline densities during each year's observations. However, behavioral disruptions disappeared when lights were extinguished, suggesting that selective removal of light during nights with substantial bird migration is a viable strategy for minimizing potentially fatal interactions among ALAN, structures, and birds. Our results also highlight the value of additional studies describing behavioral patterns of nocturnally migrating birds in powerful lights in urban areas as well as conservation implications for such lighting installations.

  2. The sensory quality of meat, game, poultry, seafood and meat products as affected by intense light pulses: a systematic review

    OpenAIRE

    2015-01-01

    The effect of intense light pulses (ILP) on sensory quality of 16 different varieties of meat, meat products, game, poultry and seafood are reviewed. Changes induced by ILP are animal species, type of meat product and fluences applied dependent. ILP significantly deteriorates sensory quality of cooked meat products. It causes less change in the sensory properties of dry cured than cooked meat products while fermented sausage is least affected. The higher fluence applied significantly changes ...

  3. Photo-enhanced toxicity of fluoranthene to Gulf of Mexico marine organisms at different larval ages and ultraviolet light intensities.

    Science.gov (United States)

    Finch, Bryson E; Stubblefield, William A

    2016-05-01

    Significant increases in toxicity have been observed as a result of polycyclic aromatic hydrocarbon (PAH) absorption of ultraviolet (UV) radiation in aquatic organisms. Early life stage aquatic organisms are predicted to be more susceptible to PAH photo-enhanced toxicity as a result of their translucence and tendency to inhabit shallow littoral or surface waters. The objective of the present study was to evaluate the sensitivity of varying ages of larval mysid shrimp (Americamysis bahia), inland silverside (Menidia beryllina), sheepshead minnow (Cyprinodon variegatus), and Gulf killifish (Fundulus grandis) to photo-enhanced toxicity and to examine the correlation between photo-enhanced toxicity and organism pigmentation. Organisms were exposed to fluoranthene and artificial UV light at different larval ages and results were compared using median lethal concentrations (LC50s) and the lethal time-to-death (LT50s). In addition, a high UV light intensity, short-duration (4-h) experiment was conducted at approximately 24 W/m(2) of ultraviolet radiation A (UV-A) and compared with a low-intensity, long-duration (12-h) experiment at approximately 8 W/m(2) of UV-A. The results indicated decreased toxicity with increasing age for all larval organisms. The amount of organism pigmentation was correlated with observed LC50 and LT50 values. High-intensity short-duration exposure resulted in greater toxicity than low-intensity long-duration UV treatments for mysid shrimp, inland silverside, and sheepshead minnow. Data from these experiments suggest that toxicity is dependent on age, pigmentation, UV light intensity, and fluoranthene concentration.

  4. Circadian and Light Regulated Expression of CBFs and their Upstream Signalling Genes in Barley

    Science.gov (United States)

    Novák, Aliz; Ahres, Mohamed; Gulyás, Zsolt; Monostori, István; Galiba, Gábor; Vágújfalvi, Attila

    2017-01-01

    CBF (C-repeat binding factor) transcription factors show high expression levels in response to cold; moreover, they play a key regulatory role in cold acclimation processes. Recently, however, more and more information has led to the conclusion that, apart from cold, light—including its spectra—also has a crucial role in regulating CBF expression. Earlier, studies established that the expression patterns of some of these regulatory genes follow circadian rhythms. To understand more of this complex acclimation process, we studied the expression patterns of the signal transducing pathways, including signal perception, the circadian clock and phospholipid signalling pathways, upstream of the CBF gene regulatory hub. To exclude the confounding effect of cold, experiments were carried out at 22 °C. Our results show that the expression of genes implicated in the phospholipid signalling pathway follow a circadian rhythm. We demonstrated that, from among the tested CBF genes expressed in Hordeum vulgare (Hv) under our conditions, only the members of the HvCBF4-phylogenetic subgroup showed a circadian pattern. We found that the HvCBF4-subgroup genes were expressed late in the afternoon or early in the night. We also determined the expression changes under supplemental far-red illumination and established that the transcript accumulation had appeared four hours earlier and more intensely in several cases. Based on our results, we propose a model to illustrate the effect of the circadian clock and the quality of the light on the elements of signalling pathways upstream of the HvCBFs, thus integrating the complex regulation of the early cellular responses, which finally lead to an elevated abiotic stress tolerance. PMID:28829375

  5. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics.

    Science.gov (United States)

    Hwang, Yeon-Taek; Chung, Wan-Ho; Jang, Yong-Rae; Kim, Hak-Sung

    2016-04-06

    In this work, an intensive plasmonic flash light sintering technique was developed by using a band-pass light filter matching the plasmonic wavelength of the copper nanoparticles. The sintering characteristics, such as resistivity and microstructure, of the copper nanoink films were studied as a function of the range of the wavelength employed in the flash white light sintering. The flash white light irradiation conditions (e.g., wavelength range, irradiation energy, pulse number, on-time, and off-time) were optimized to obtain a high conductivity of the copper nanoink films without causing damage to the polyimide substrate. The wavelength range corresponding to the plasmonic wavelength of the copper nanoparticles could efficiently sinter the copper nanoink and enhance its conductivity. Ultimately, the sintered copper nanoink films under optimal light sintering conditions showed the lowest resistivity (6.97 μΩ·cm), which was only 4.1 times higher than that of bulk copper films (1.68 μΩ·cm).

  6. Effect of Light Intensity for Optimum Biomass and Lipid Production from Scenedesmus dimorphus (Turpin) Kützing

    Science.gov (United States)

    Kurniawati, F. N.; Mahajoeno, E.; Sunarto; Sari, S. L. A.

    2017-07-01

    One source of alternative energy substitute for petroleum raw materials is renewable vegetable oils known as biodiesel. Biodiesel can be produced from microalgae, since it was more efficient and environmentally friendly. Scenedesmus dimorphus (Turpin) Kützing was developed as a source of biodiesel since it had potential of high lipid production. The aims of this research were to know the rate of growth of Scenedesmus dimorphus in different lighting and the optimimum light intensity for biomass and lipid production. This research used a completely randomized design consisting of 3 treatments with 3 replications. Treatments in this research were the light intensity, i.e. 7,500, 10,000, and 12,500 lux. Scenedesmus dimorphus was grew in Bold’s Basal Medium (BBM). Parameters observed in this research were the cell number, biomass and lipid production of S. dimorphus. Data were analyzed by ANOVA followed by DMRT 5%. The results showed that the optimum growth rate of S. dimorphus was in the intensity of 12,500 lux that was 100.80 x 106 cells.ml-1. The optimum production of biomass and lipids was in treatment 12,500 lux i.e; 1.1407 g.L-1 and 0.2520 g.L-1 (22.28% dry weight).

  7. High light intensity plays a major role in emergence of population level variation in Arabidopsis thaliana along an altitudinal gradient.

    Science.gov (United States)

    Tyagi, Antariksh; Yadav, Amrita; Tripathi, Abhinandan Mani; Roy, Sribash

    2016-05-23

    Environmental conditions play an important role in the emergence of genetic variations in natural populations. We identified genome-wide patterns of nucleotide variations in the coding regions of natural Arabidopsis thaliana populations. These populations originated from 700 m to 3400 m a.m.s.l. in the Western Himalaya. Using a pooled RNA-Seq approach, we identified the local and global level population-specific SNPs. The biological functions of the SNP-containing genes were primarily related to the high light intensity prevalent at high-altitude regions. The novel SNPs identified in these genes might have arisen de novo in these populations. In another approach, the FSTs of SNP-containing genes were correlated with the corresponding climatic factors. 'Radiation in the growing season' was the only environmental factor found to be strongly correlated with the gene-level FSTs. In both the approaches, the high light intensity was identified as the primary abiotic stress associated with the variations in these populations. The differential gene expression analysis between field and controlled condition grown plants also showed high light intensity as the primary abiotic stress, particularly for the high altitude populations. Our results provide a genome-wide perspective of nucleotide variations in populations along altitudinal gradient and their putative role in emergence of these variations.

  8. Removal of Low-Molecular Weight Aldehydes by Selected Houseplants under Different Light Intensities and CO2 Concentrations

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-11-01

    Full Text Available The removal of five low-molecular weight aldehydes by two houseplants (Schefflera octophylla (Lour. Harms and Chamaedorea elegans were investigated in a laboratory simulation environment with short-term exposure to different low light intensities and CO2 concentrations. Under normal circumstances, the C1–C5 aldehyde removal rates of Schefflera octophylla (Lour. Harms and Chamaedorea elegans (Lour. Harms ranged from 0.311 μmol/m2/h for valeraldehyde to 0.677 μmol/m2/h for formaldehyde, and 0.526 μmol/m2/h for propionaldehyde to 1.440 μmol/m2/h for formaldehyde, respectively. However, when the light intensities varied from 0 to 600 lx, a significant correlation between the aldehyde removal rate and the light intensity was found. Moreover, the CO2 experiments showed that the total aldehyde removal rates of Schefflera octophylla (Lour. Harms and Chamaedorea elegans (Lour. Harms decreased 32.0% and 43.2%, respectively, with increasing CO2 concentrations from 350 ppmv to 1400 ppmv. This might be explained by the fact that the excessive CO2 concentration decreased the stomatal conductance which limited the carbonyl uptake from the stomata.

  9. Pacing Profiles in Competitive Track Races: Regulation of Exercise Intensity is related to Cognitive Ability

    Directory of Open Access Journals (Sweden)

    Debbie Van Biesen

    2016-12-01

    Full Text Available Pacing has been defined as the goal-directed regulation of exercise intensity over an exercise bout, in which athletes need to decide how and when to invest their energy. The purpose of this study was to explore if the regulation of exercise intensity during competitive track races is different between runners with and without intellectual impairment, which is characterized by significant limitations in intellectual functioning (IQ≤75 and adaptive behavioral deficits, diagnosed before the age of 18. The samples included elite runners with intellectual impairment (N= 36 and a comparison group of world class runners without impairment (N= 39, of which 47 were 400m runners (all male and 28 were 1500m-runners (15 male and 13 female. Pacing was analysed by means of 100m split times (for 400m races and 200m split times (for 1500m races. Based on the split times, the average velocity was calculated for four segments of the races. Velocity fluctuations were defined as the differences in velocity between consecutive race segments. A mixed model ANOVA revealed significant differences in pacing profiles between runners with and without intellectual impairment (p<.05. Maximal velocity of elite 400m runners with intellectual impairment in the first race segment (7.9 ± 0.3 m/s was well below the top-velocity reached by world level 400m runners without intellectual impairment (8.9 ±0.2 m/s, and their overall pace was slower (F=120.7, p<.05. In addition, both groups followed a different pacing profile and inter-individual differences in pacing profiles were larger, with differences most pronounced for 1500m races. Whereas male 1500m-runners without intellectual impairment reached a high velocity in the first 100m (7.2±0.1 m/s, slowly decelerated in the second race segment (-0.6±0.1 m/s, and finished with an end sprint (+0.9±0.1 m/s; the 1500m runners with intellectual impairment started slower (6.1±0.3 m/s, accelerated in the second segment (+ 0.2±0

  10. The Comparison of Experimental and Analytical Study of the Gaussian IntensityDistribution for Light Emitting Diodes Beam

    Directory of Open Access Journals (Sweden)

    Harry Ramza

    2012-01-01

    Full Text Available Problem statement: Wireless communication using white Light Emitting Diodes (LEDs is the latest research field for next-generation communication. This study studies the comparison of Gaussian intensity distribution of the white LED using experimental and analytical method. The white LEDs are conducted to transmit an audio signal to the receiver. The receiver circuit consist of solar cell connected to the speaker to recover the audio signal. From the comparison of experimental and analytical data, the Gaussian plot of experimental data is steeper than the analytical data, meaning that the LED has small-divergence beam. Conclusion/Recommendations: The output voltage of experimental works decrease exponentially with the distance whiles the Full Width Half Maximum (FWHM value increase exponentially with the distance. The gradual increment and decrement of the analytical signal can be applicable to visible light communication implementation as such light source can cover wide area for signal transmission.

  11. Regulation of lipid peroxidation in the retina under the effect of bright light.

    Science.gov (United States)

    Dzhafarov, A I; Kasimov, E M; Mamedov, Sh Y

    2011-04-01

    Changes in LPO intensity under the effect of exposure to bright light and the possibility of their correction with antioxidants were studied on rabbits with diabetic retinopathy. It was found that enhanced LPO caused by exposure to bright light in rabbits with diabetic retinopathy can be corrected with antioxidants. Phenosan potassium salt, α-tocopherol, and oxypyridine were more effective than SOD and taurine in preventing MDA accumulation. A complex of natural and synthetic antioxidants was most efficient in correcting LPO under conditions of exposure to bright light.

  12. Differential regulation of two sucrose transporters by defoliation and light conditions in perennial ryegrass.

    Science.gov (United States)

    Furet, Pierre-Maxime; Berthier, Alexandre; Decau, Marie-Laure; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Noiraud-Romy, Nathalie; Meuriot, Frédéric

    2012-12-01

    Sucrose transport between source and sink tissues is supposed to be a key-step for an efficient regrowth of perennial rye-grass after defoliation and might be altered by light conditions. We assessed the effect of different light regimes (high vs low light applied before or after defoliation) on growth, fructans and sucrose mobilization, as well as on sucrose transporter expression during 14 days of regrowth. Our results reported that defoliation led to a mobilization of C reserves (first sucrose and then fructans), which was parallel to an induction of LpSUT1 sucrose transporter expression in source and sink tissues (i.e. leaf sheaths and elongating leaf bases, respectively) irrespective to light conditions. Light regime (high or low light) had little effects on regrowth and on C reserves mobilization during the first 48 h of regrowth after defoliation. Thereafter, low light conditions, delaying the recovery of photosynthetic capacities, had a negative effect on C reserves re-accumulation (especially sucrose). Surprisingly, high light did not enhance sucrose transporter expression. Indeed, while light conditions had no effect on LpSUT1 expression, LpSUT2 transcripts levels were enhanced for low light grown plants. These results indicate that two sucrose transporter currently identified in Lolium perenne L. are differentially regulated by light and sucrose.

  13. Effect of high wavelengths low intensity light during dark period on physical exercise performance, biochemical and haematological parameters of swimming rats.

    Science.gov (United States)

    Beck, W; Gobatto, C

    2016-03-01

    Nocturnal rodents should be assessed at an appropriate time of day, which leads to a challenge in identifying an adequate environmental light which allows animal visualisation without perturbing physiological homeostasis. Thus, we analysed the influence of high wavelength and low intensity light during dark period on physical exercise and biochemical and haematological parameters of nocturnal rats. We submitted 80 animals to an exhaustive exercise at individualised intensity under two different illuminations during dark period. Red light (> 600 nm; experiments.

  14. Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities

    Science.gov (United States)

    2013-01-01

    Background Excess light conditions induce the generation of reactive oxygen species (ROS) directly in the chloroplasts but also cause an accumulation and production of ROS in peroxisomes, cytosol and vacuoles. Antioxidants such as ascorbate and glutathione occur in all cell compartments where they detoxify ROS. In this study compartment specific changes in antioxidant levels and related enzymes were monitored among Arabidopsis wildtype plants and ascorbate and glutathione deficient mutants (vtc2-1 and pad2-1, respectively) exposed to different light intensities (50, 150 which was considered as control condition, 300, 700 and 1,500 μmol m-2 s-1) for 4 h and 14 d. Results The results revealed that wildtype plants reacted to short term exposure to excess light conditions with the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol and an increased activity of catalase in the leaves. Long term exposure led to an accumulation of ascorbate and glutathione mainly in chloroplasts. In wildtype plants an accumulation of ascorbate and hydrogen peroxide (H2O2) could be observed in vacuoles when exposed to high light conditions. The pad2-1 mutant reacted to long term excess light exposure with an accumulation of ascorbate in peroxisomes whereas the vtc2-1 mutant reacted with an accumulation of glutathione in the chloroplasts (relative to the wildtype) and nuclei during long term high light conditions indicating an important role of these antioxidants in these cell compartments for the protection of the mutants against high light stress. Conclusion The results obtained in this study demonstrate that the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol is an important reaction of plants to short term high light stress. The accumulation of ascorbate and H2O2 along the tonoplast and in vacuoles during these conditions indicates an important route for H2O2 detoxification under these conditions. PMID

  15. Genetically modified organisms in light of domestic and world regulations

    Directory of Open Access Journals (Sweden)

    Nikolić Zorica

    2007-01-01

    Full Text Available At the same time as development and registration of new genetic modification of plant species have intensified, the number of countries in which they are grown has also increased considerably. Genetically modified crops were grown in 22 countries in 2006, six of which were in European Union. Protocol on Biosafety, known as Cartagena protocol was adopted at the international level in February, 2000. Presence, but not growing of GMO in food is allowed in many countries, while in some others labeling of food origination from GMO is obligatory. Labeling is obligatory in European Union, Australia, New Zealand, Japan, Norway, Switzerland and some others. In our country the Law on GMO and sub-law acts were conceived according to EU regulative. The terms for limited use, production, trade of GMO and GMO products have been prescribed. Validation and standardization of GMO testing methods are now being implemented. It is expected that the analytical GMO methods will soon be harmonized at the international level. .

  16. A Bloch equation approach to intensity dependent optical spectra of light harvesting complex II: excitation dependence of light harvesting complex II pump-probe spectra.

    Science.gov (United States)

    Richter, Marten; Renger, Thomas; Knorr, Andreas

    2008-01-01

    On the basis of the recent progress in the resolution of the structure of the antenna light harvesting complex II (LHC II) of the photosystem II, we propose a microscopically motivated theory to predict excitation intensity-dependent spectra. We show that optical Bloch equations provide the means to include all 2( N ) excited states of an oligomer complex of N coupled two-level systems and analyze the effects of Pauli Blocking and exciton-exciton annihilation on pump-probe spectra. We use LHC Bloch equations for 14 Coulomb coupled two-level systems, which describe the S (0) and S (1) level of every chlorophyll molecule. All parameter introduced into the Hamiltonian are based on microscopic structure and a quantum chemical model. The derived Bloch equations describe not only linear absorption but also the intensity dependence of optical spectra in a regime where the interplay of Pauli Blocking effects as well as exciton-exciton annihilation effects are important. As an example, pump-probe spectra are discussed. The observed saturation of the spectra for high intensities can be viewed as a relaxation channel blockade on short time scales due to Pauli blocking. The theoretical investigation is useful for the interpretation of the experimental data, if the experimental conditions exceed the low intensity pump limit and effects like strong Pauli Blocking and exciton-exciton annihilation need to be considered. These effects become important when multiple excitations are generated by the pump pulse in the complex.

  17. Effects of the El Chichon volcanic cloud in the stratosphere on the intensity of light from the sky.

    Science.gov (United States)

    Coulson, K L

    1983-08-01

    This is the second of two papers dealing with the effects of volcanic debris from the eruption of El Chichon on light from the sunlit sky. The polarization of skylight was considered in the first of the two, whereas this one is devoted to skylight intensity. It is shown here that the magnitude of the skylight intensity is modified very significantly from its clear sky value by the volcanic cloud, as is its change with solar depression angle during twilight and its distribution over the sky during the day. Emphasis is on measurements at a wavelength of 0.07 microm. Generally the volcanic cloud produces a diminution of zenith intensity during twilight with a considerable enhancement of intensity over the sky throughout the main part of the day. The solar aureole is not as sharp as it is in normally clear conditions, but the volcanic cloud causes a very diffuse type of aureole which covers a large portion of the sky. The preferential scattering of the longer wavelengths of sunlight, which is made evident by brilliant red and yellow colors in the sunrise period, causes a pronounced change of longwave/shortwave color ratios during twilight from their values in clear atmospheric conditions. The combination of intensity data shown here with polarization data in the previous paper should give a relatively complete picture of the effects of volcanic debris on solar radiation in the atmosphere and be useful in the verification of radiative transfer models of atmospheric turbidity.

  18. Determination of eye safety filter protection factors associated with retinal thermal hazard and blue light photochemical hazard for intense pulsed light sources

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, D McG [Department of Clinical Physics and Bioengineering, Arden Cancer Centre, Walsgrave Hospital, UHCW NHS Trust, Coventry, CV2 2DX (United Kingdom)

    2006-02-21

    An assessment is provided of protection factors afforded for retinal thermal hazard and blue light photochemical hazard for a range of filters used with intense pulsed light sources (IPLs). A characteristic IPL spectrum based on black body radiation at 5000 K with a low cut filter at 515 nm was identified as suitable for such estimations. Specific filters assessed included types with idealized transmission properties and also a range of types whose transmission characteristics were measured by means of a Bentham DMc150 spectroradiometer. Predicted behaviour based on these spectra is outlined which describes both the effectiveness of protection and the level of luminous transmittance afforded. The analysis showed it was possible to describe a figure of merit for a particular filter material relating the degree of protection provided and corresponding value of luminous transmittance. This consideration is important for providing users of IPL equipment with safety eyewear with adequate level of visual transmittance. (note)

  19. Measuring anisotropy ellipse of atmospheric turbulence by intensity correlations of laser light.

    Science.gov (United States)

    Wang, Fei; Toselli, Italo; Li, Jia; Korotkova, Olga

    2017-03-15

    An experimental study has been performed of a laser beam propagating horizontally through the near-ground atmosphere above a grassy field at the University of Miami (UM) Coral Gables campus. The average intensity, scintillation index, and intensity correlation function are measured in the receiver plane for three channels with different turbulent conditions and at three different heights above the ground. Our results reveal that along short links (210 m) only the intensity correlation function captures the anisotropic information of turbulence, corresponding to the refractive index anisotropy ellipse of atmospheric fluctuations. In addition, we report an interesting phenomenon relating to turbulence eddy orientation near the ground. We confirmed that the experimental results are in agreement with the numerical simulations based on the multiple phase-screen method. Our findings provide an efficient method of determining the anisotropic parameters of atmospheric turbulence.

  20. Measurement of Concentration Distribution of Hydrogen Gas Flow by Measuring the Intensity of Raman Scattering Light

    Science.gov (United States)

    Asahi, Ippei; Ninomiya, Hideki

    An experimental study to visualize and measure the concentration distribution of hydrogen gas flow using the Raman scattering was performed. A Nd:YAG laser of wavelength at 355 nm was used, and the beam pattern was transformed into a rectangle and a sheet beam was formed. The Raman scattered light was observed at a right angle with respect to the laser beam axis using a gated ICCD camera and an interference filter. Shadowgraph images were obtained at the same condition. The Raman scattering light image from atmospheric nitrogen was first acquired and the function of Raman scattering light acquisition and the background light suppression was confirmed. Next, images of the Raman scattering light image and shadowgraph of hydrogen gas discharged from a nozzle into the atmosphere were acquired. The two obtained Raman images were compared and the spatial concentration distribution of the flow of the hydrogen gas at different flow rates was calculated. This method is effective for visualizing the gas flow and measuring the concentration distribution of the Raman active molecules, such as hydrogen gas.

  1. Chromoselective Photocatalysis: Controlled Bond Activation through Light-Color Regulation of Redox Potentials.

    Science.gov (United States)

    Ghosh, Indrajit; König, Burkhard

    2016-06-27

    Catalysts that can be regulated in terms of activity and selectivity by external stimuli may allow the efficient multistep synthesis of complex molecules and pharmaceuticals. Herein, we report the light-color regulation of the redox potential of a photocatalyst to control the activation of chemical bonds. Light-color control of the redox power of a photocatalyst introduces a new selectivity parameter to photoredox catalysis: Instead of changing the catalyst or ligand, alteration of the color of the visible-light irradiation adjusts the selectivity in catalytic transformations. By using this principle, the selective activation of aryl-halide bonds for C-H arylation and the sequential conversion of functional groups with different reduction potentials is possible by simply applying different colors of light for excitation of the photocatalyst.

  2. LIGHT/TNFSR14 can regulate hepatic lipase expression by hepatocytes independent of T cells and Kupffer cells.

    Directory of Open Access Journals (Sweden)

    Bijoy Chellan

    Full Text Available LIGHT/TNFSF14 is a costimulatory molecule expressed on activated T cells for activation and maintenance of T cell homeostasis. LIGHT over expressed in T cells also down regulates hepatic lipase levels in mice through lymphotoxin beta receptor (LTβR signaling. It is unclear whether LIGHT regulates hepatic lipase directly by interacting with LTβR expressing cells in the liver or indirectly by activation of T cells, and whether Kupffer cells, a major cell populations in the liver that expresses the LTβR, are required. Here we report that LIGHT expression via an adenoviral vector (Ad-LIGHT is sufficient to down regulate hepatic lipase expression in mice. Depletion of Kupffer cells using clodronate liposomes had no effect on LIGHT-mediated down regulation of hepatic lipase. LIGHT-mediated regulation of hepatic lipase is also independent of LIGHT expression by T cells or activation of T cells. This is demonstrated by the decreased hepatic lipase expression in the liver of Ad-LIGHT infected recombination activating gene deficient mice that lack mature T cells and by the Ad-LIGHT infection of primary hepatocytes. Hepatic lipase expression was not responsive to LIGHT when mice lacking LTβR globally or only on hepatocytes were infected with Ad-LIGHT. Therefore, our data argues that interaction of LIGHT with LTβR on hepatocytes, but not Kupffer cells, is sufficient to down regulate hepatic lipase expression and that this effect can be independent of LIGHT's costimulatory function.

  3. Regulation of Light Energy Utilization and Distribution of Photosynthesis in Five Subtropical Woody Plants

    Institute of Scientific and Technical Information of China (English)

    Nan Liu; Chang-Lian Peng; Zhi-Fang Lin; Gui-Zhu Lin; Xiao-Ping Pan

    2007-01-01

    The adaptations and responses of photosynthesis to long- and short-term growth light gradient treatments were investigated in five subtropical forest plants, namely Pinus massoniana Lamb., Schima superba Gardn. et Champ.,Castanopsis fissa (Champ. ex Benth.) Rehd. et Wils., Acmena acuminatissima (BI.) Merr et Perry, and Cryptocarya concinna Hance. With diurnal changes in sunlight and air temperature, the de-epoxidation state and lutein content in the five woody plants under three light intensifies first increased and then decreased during the day. However,maximal photochemical efficiency (Fv/Fm; where Fm is the maximum fluorescence yield and Fv is variable fluorescence) and the photochemical quantum yields of photosystem (PS) Ⅱ (ΦPSII) of the species examined changed in the opposite manner, with those in plants grown under 100% natural light changing the most. After long-term treatment (21 months), anti-oxidant capacity (1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging capacity) and utilization of excitation energy showed differences in modulation by different light intensities. It was shown that A.acuminatissima and C. concinna, as dominant species in the late succession stage of a subtropical forest in Dinghu mountain, South China, were better able to adapt to different light environments. However, P. massoniana, the pioneer species of this forest, exhibited less adaptation to Iow light intensity and was definitely eliminated by the forest successlon process.

  4. Ponderomotive dressing of doubly-excited states with intensity-controlled laser light

    Directory of Open Access Journals (Sweden)

    Ding Thomas

    2013-03-01

    Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.

  5. Describing the light intensity dependence of polymer : fullerene solar cells using an adapted Shockley diode model

    NARCIS (Netherlands)

    Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Verhees, W.; Koster, L. J. A.; Galagan, Y.

    2014-01-01

    Solar cells are generally optimised for operation under AM1.5 100 mW cm(-2) conditions. This is also typically done for polymer solar cells. However, one of the entry markets for this emerging technology is portable electronics. For this market, the spectral shape and intensity of typical illuminati

  6. Reduced irradiation time in slow-curing of resin composite using an intensity-changeable light source.

    Science.gov (United States)

    Abo, Tomoko; Uno, Shigeru; Tagami, Junji

    2005-06-01

    Possibility to shorten the total irradiation time in slow-curing with an intensity-changeable light source, Curetron 7 (CT-7), was investigated for four hybrid-type resin composites. Irradiation condition with CT-7 was assigned as 10 or 20 seconds at low light intensity (230 mW/cm2) and followed by 20 or 10 seconds at high intensity (600 mW/cm2) respectively (i.e., a total of 30 seconds). For a reference, irradiation was carried out for 30 seconds using a halogen lamp (900 mW/cm2). After irradiation, mechanical properties of the cured composites--in terms of microhardness and flexural strength--were evaluated. Also, cavity adaptation was examined in standardized, cylindrical dentin cavities treated with an adhesive system. Compared to the reference irradiation, slow-curing with CT-7 produced acceptable mechanical properties and better adaptation. These results suggested that total exposure time of slow-curing with CT-7 could be shortened to 30 seconds.

  7. Myogenic response of human skeletal muscle to 12 weeks of resistance training at light loading intensity

    DEFF Research Database (Denmark)

    Mackey, Abigail; Holm, L; Reitelseder, S

    2011-01-01

    There is strong evidence for enhanced numbers of satellite cells with heavy resistance training. The satellite cell response to very light muscle loading is, however, unknown. We, therefore, designed a 12-week training protocol where volunteers trained one leg with a high load (H) and the other leg....... A significant main effect of time was observed (Pinduce an increase in the number of satellite...

  8. Interactive effect of light colours and temporal synergism of circadian neural oscillations in reproductive regulation of Japanese quail.

    Science.gov (United States)

    Yadav, Suneeta; Chaturvedi, Chandra Mohini

    2016-09-01

    Avian literature reports the modulation of 'photoperiodic gonadal responses' by the temporal phase relation of serotonergic and dopaminergic oscillations in Japanese quail. But, the modulation of 'light colour responses' by the temporal synergism of neural oscillations is not yet known. Hence the present study was designed to investigate the interaction of the light colour (blue, red) and the phase relation of neural oscillations in the reproductive regulation of Japanese quail. Three week old male Japanese quail were divided into two groups and maintained under a long day length condition (16L:8D) and were exposed to a 30 lux intensity of blue LED (light emitting diode) (B LED) and a red LED light (R LED). At the age of 15.5weeks, quail of one subgroup of B LED were injected with serotonin precursor (5-HTP) and dopamine precursor (l-DOPA) 12hrs apart (B LED+12-hr) and those of the R LED group were injected with the same drugs (5mg/100g body weight over a period of thirteen days) but 8hrs apart (R LED+8-hr). The remaining subgroups of both the light colour groups (B LED & R LED) received normal saline twice daily and served as controls. Cloacal gland volume was recorded weekly until 35.5weeks of age when the study was terminated and reproductive parameters (testicular volume, GSI, seminiferous tubule diameter and plasma testosterone) were assessed. Results indicate that the 8-hr temporal phase relation of neural oscillations suppresses reproductive activity even during the photosensitive phase of the red light exposed quail (R LED+8-hr) compare to the R LED controls. On the other hand, the 12-hr temporal phase relation stimulates the gonadal development of the B LED+12-hr quail compared to the B LED controls which after completing one cycle entered into a regressive phase and remained sexually quiescent. These experiments suggest that the temporal phase relations of circadian neural oscillations, in addition to modulating the classical photoperiodic responses, may

  9. Translational regulation of protein synthesis, in response to light, at a critical stage of Volvox development

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, M.M.; Kirk, D.L.

    1985-06-01

    In Volvox cultures synchronized by a light-dark cycle, juveniles containing presumptive somatic and reproductive cells are produced during the dark, but their cells do not differentiate until after the lights come on. The pattern of protein synthesis changes rapidly after the lights come on. Action spectra and effects of photosynthesis inhibitors indicate that this protein synthetic change is not simply a consequence of renewed flow of energy from illuminated chloroplasts. Actinomycin, at a level adequate to block the response to heat shock, has virtually no effect on the response of the same cells to light; furthermore, RNAs isolated from unilluminated and illuminated juveniles yield indistinguishable in vitro translation products. The authors conclude, therefore, that this effect of light is exerted almost exclusively at the translational level, generating one of the most striking examples of translational regulation yet described.

  10. Differential Regulation of Duplicate Light-Dependent Protochlorophyllide Oxidoreductases in the Diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Heather M Hunsperger

    Full Text Available Diatoms (Bacilliariophyceae encode two light-dependent protochlorophyllide oxidoreductases (POR1 and POR2 that catalyze the penultimate step of chlorophyll biosynthesis in the light. Algae live in dynamic environments whose changing light levels induce photoacclimative metabolic shifts, including altered cellular chlorophyll levels. We hypothesized that the two POR proteins may be differentially adaptive under varying light conditions. Using the diatom Phaeodactylum tricornutum as a test system, differences in POR protein abundance and por gene expression were examined when this organism was grown on an alternating light:dark cycles at different irradiances; exposed to continuous light; and challenged by a significant decrease in light availability.For cultures maintained on a 12h light: 12h dark photoperiod at 200μE m-2 s-1 (200L/D, both por genes were up-regulated during the light and down-regulated in the dark, though por1 transcript abundance rose and fell earlier than that of por2. Little concordance occurred between por1 mRNA and POR1 protein abundance. In contrast, por2 mRNA and POR2 protein abundances followed similar diurnal patterns. When 200L/D P. tricornutum cultures were transferred to continuous light (200L/L, the diurnal regulatory pattern of por1 mRNA abundance but not of por2 was disrupted, and POR1 but not POR2 protein abundance dropped steeply. Under 1200μE m-2 s-1 (1200L/D, both por1 mRNA and POR1 protein abundance displayed diurnal oscillations. A compromised diel por2 mRNA response under 1200L/D did not impact the oscillation in POR2 abundance. When cells grown at 1200L/D were then shifted to 50μE m-2 s-1 (50L/D, por1 and por2 mRNA levels decreased swiftly but briefly upon light reduction. Thereafter, POR1 but not POR2 protein levels rose significantly in response to this light stepdown.Given the sensitivity of diatom por1/POR1 to real-time light cues and adherence of por2/POR2 regulation to the diurnal cycle, we suggest

  11. The Effect of the Cool Intense Pulsed Light (CIPL on Hair Removal of Chin Area in Hirsute Women

    Directory of Open Access Journals (Sweden)

    SH Njafei Dolatabadi

    2012-12-01

    Full Text Available Abstract Background & aim: Hirsutism can esthetically cause significant psychosocial consequences in hirsute women. Different methods, so far, have been applied for hair removal, and the Cool Intense Pulsed Light (CIPL system is one of them. The aim of this study was to determine the effect and side effects of the CIPL method on removing the hairs of the chin area in hirsute women. Methods: This is a interventional study in which 30 women suffering from hirsutism referred to a dermatologist's clinic in Yasuj, Iran were participated during 2009-2010. A convenience sampling method was used for data collection. Subjects underwent the Cool Intense Pulsed Light method over 6 months, one session per month . To compare the effect of the applied intervention, number of hair on the chin area were compared before and after the intervention Collected data were analyzed by the SPSS software using descriptive and analytic statistics such as t-test, paired t-test and ANOVA, considering α=0.05. Results: The duration of affliction with hirsutism was 1-15 year. The mean number of hairs of the chin area before and after the intervention were 288.2± 229.2 and 56.4± 43.8 respectively. Paired T-test analysis revealed that the difference is significant (p=0.001. None of the participants reported any specific problems related to the applied intervention. Conclusion: treatment efficacy of CIPL for hirsutism was 80 percent. However, we suggest further studies to confirm these findings. Key words: Cool Intense Pulsed Light, Hirsutism, Hair removal

  12. Efficacy and safety of intense pulsed light in the treatment of mild-to-moderate acne vulgaris

    Directory of Open Access Journals (Sweden)

    Waheed Zaman Khan

    2017-04-01

    Full Text Available Acne vulgaris is a very common chronic inflammatory disease of pilosebaceous units. It can be associated with considerable loss of self-esteem and psychological morbidity when left untreated. With the emergence of lasers and intense pulsed light, long-term reduction of acne lesions is now possible. The success of these optical devices depends on the selected parameters and biologic variables of patient. The objective of this study is to determine the efficacy and safety of intense pulsed light (IPL in the treatment of mild-to-moderate acne vulgaris. This interventional study was conducted for a period of one year after approval of synopsis. A total of 75 patients of mild-to-moderate acne vulgaris were included through non-probability, convenience sampling. Patients were subjected to intense pulsed light (IPL therapy once a week for four weeks. Digital photography was done at the baseline and at the sixth week. Follow-up was done after two weeks of completion of four sessions. Repeated measurement ANOVA was used for significance of IPL at six weeks of follow-up. The p value 50% reduction with therapy. Percentage reduction was observed as 49 ± 20% at final follow-up. Papules count was reduced from 11.95 ± 2.89 to 6.69 ± 2.96, pustules count was reduced from 2.55 ± 1.54 to 0.79 ± 1.02 from baseline to final follow-up visit. 16 subjects showed mild erythema that resolved within 24 h. None of the patients showed any severe side effects at final follow-up visit. We conclude from the results of this study that IPL is safe and efficacious in more than half of the patients in the treatment of mild and moderate acne vulgaris. A long-term follow-up is required to determine long-term safety on skin following such procedures.

  13. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.

    Science.gov (United States)

    Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana

    2016-09-01

    Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments.

  14. EFFECT OF Cu AND Mn TOXICITY ON CHLOROPHYLL FLUORESCENCE AND GAS EXCHANGE IN RICE AND SUNFLOWER UNDER DIFFERENT LIGHT INTENSITIES

    Directory of Open Access Journals (Sweden)

    Hajiboland R.

    2007-06-01

    Full Text Available Copper (Cu and manganese (Mn are essential micronutrients for plants, but toxic at high concentrations. Responses of rice (Oryza sativa L. and sunflower (Helianthus annuus L. to toxic concentrations of Mn and Cu (up to 100 μM were studied under three light intensities including low (LL, PPFD=100, intermediate (IL, PPFD=500 and high (HL, PPFD=800 light intensities in hydroponic medium. Rice plants showed higher susceptibility than sunflower to both heavy metals concerning dry matter of shoot and root. Growing under higher light intensity strengthened the effect of Cu toxicity while ameliorated that of Mn, the latter was attributed to the lower Mn accumulation of HL plants in both shoot and root. Chlorophyll content of leaves was influenced negatively only by Cu treatment and that at the highest concentration in the medium (100 μM. Similar with growth results, reduction of net assimilation rate (A was higher in HL than LL plants treated by excess Cu, but in contrast to growth response, reduction was more prominent in sunflower than rice. Excess Mn-induced reduction of A was similar between LL and HL plants and was greater in sunflower than rice. Reduction of A was partly attributable to stomatal limitation, but non-stomatal mechanisms were also involved in this reduction. Copper and Mn treatment did not change the optimal quantum efficiency of PSII in dark-adapted chloroplasts (Fv/Fm ratio, but Fv/F0 was influenced particularly by Cu treatment, the reduction was higher in rice than sunflower and in HL compared to LL plants. Regarding excess Cu and Mn-mediated alterations in chlorophyll concentration, Fv/F0 and Tm values, it was suggested that, Cu and Mn toxicity depress the leaf photosynthetic capacity primarily by causing a significant alteration of the composition and functional competence of the photosynthetic units rather a reduction in the number of photosynthetic units (PSUs per unit leaf area.

  15. Relationship between caffeine content and flavor with light intensity of several coffee Robusta clones

    OpenAIRE

    Novie Pranata Erdiansyah; Yusianto Yusianto

    2012-01-01

    Coffee is a refreshing beverage product and its price is determined by physical quality and flavor. An excellent coffee flavor is resulted only from qualified coffee beans, produced by well managed plantation. The objective of this experiment was to study the effect of sunlight intensity entering coffee farm on flavor profiles and caffeine content of Robusta coffee. The experiment was conducted at the field experimental Kaliwining Estate of Indonesian Coffee and Cocoa Research Institute (ICCR...

  16. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D.; Hastings, J.B. [eds.

    1990-12-31

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  17. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D.; Hastings, J.B. (eds.)

    1990-01-01

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  18. Interplay between radiation pressure force and scattered light intensity in the cooperative scattering by cold atoms

    CERN Document Server

    Bienaime, Tom; Chabe, Julien; Rouabah, Mohamed-Taha; Bellando, Louis; Courteille, Philippe W; Piovella, Nicola; Kaiser, Robin

    2013-01-01

    The interplay between the superradiant emission of a cloud of cold two-level atoms and the radiation pressure force is discussed. Using a microscopic model of coupled atomic dipoles driven by an external laser, the radiation field and the average radiation pressure force are derived. A relation between the far-field scattered intensity and the force is derived, using the optical theorem. Finally, the scaling of the sample scattering cross section with the parameters of the system is studied.

  19. 3D PIC simulations of electron beams created via reflection of intense laser light from a water target

    CERN Document Server

    Ngirmang, Gregory K; Feister, Scott; Morrison, John T; Chowdhury, Enam A; Frische, Kyle; Roquemore, W M

    2015-01-01

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory (AFRL) using the PIC code LSP. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. These 3D PIC simulation results are compared to results from 2D(3$v$) PIC simulations for both $5.4\\cdot10^{17}$ W cm$^{-2}$ and $3\\cdot10^{18}$ W cm$^{-2}$ intensities. Comparing the 2D(3$v$) and 3D simulation results, the laser-energy-to-ejected-electron-energy conversion efficiencies were comparable, but the angular distribution of ejected electrons show interesting differences with qualitative differences at higher intensity. An analytic plane-wave model is provided that provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3$v$) simulations. We also performed a 3D simulation with circular...

  20. Light regulation on growth, development, and secondary metabolism of marine-derived filamentous fungi.

    Science.gov (United States)

    Cai, Menghao; Fang, Zhe; Niu, Chuanpeng; Zhou, Xiangshan; Zhang, Yuanxing

    2013-11-01

    Effects of different light conditions on development, growth, and secondary metabolism of three marine-derived filamentous fungi were investigated. Darkness irritated sexual development of Aspergillus glaucus HB1-19, while white, red, and blue lights improved its asexual behavior. The red and blue lights improved asexual stroma formation of Xylaria sp. (no. 2508), but the darkness and white light inhibited it. Differently, development of Halorosellinia sp. (no. 1403) turned out to be insensitive to any tested light irradiation. Upon the experimental data, no regularity was observed linking development with secondary metabolism. However, fungal growth showed inversely correlation with productions of major bioactive compounds (aspergiolide A, 1403C, and xyloketal B) from various strains. The results indicated that aspergiolide A biosynthesis favored blue light illumination, while 1403C and xyloketal B preferred red light irradiation. With the favorite light sensing conditions, productions of aspergiolide A, 1403C, and xyloketal B were enhanced by 32.9, 21.9, and 30.8 % compared with those in the dark, respectively. The phylogenetic analysis comparing the light-responding proteins of A. glaucus HB 1-19 with those in other systems indicated that A. glaucus HB 1-19 was closely related to Aspergillus spp. especially A. nidulans in spite of its role of marine-derived fungus. It indicated that marine fungi might conserve its light response system when adapting the marine environment. This work also offers useful information for process optimization involving light regulation on growth and metabolism for drug candidate production from light-sensitive marine fungi.

  1. Organic dyes with intense light absorption especially suitable for application in thin-layer dye-sensitized solar cells.

    Science.gov (United States)

    Dessì, Alessio; Calamante, Massimo; Mordini, Alessandro; Peruzzini, Maurizio; Sinicropi, Adalgisa; Basosi, Riccardo; Fabrizi de Biani, Fabrizia; Taddei, Maurizio; Colonna, Daniele; Di Carlo, Aldo; Reginato, Gianna; Zani, Lorenzo

    2014-11-21

    Three new thiazolo[5,4-d]thiazole-based organic dyes have been designed and synthesized for employment as DSSC sensitizers. Alternation of the electron poor thiazolothiazole unit with two propylenedioxythiophene (ProDOT) groups ensured very intense light absorption in the visible region (ε up to 9.41 × 10(4) M(-1) cm(-1) in THF solution). The dyes were particularly suitable for application in transparent and opaque thin-layer DSSCs (TiO2 thickness: 5.5-6.5 μm, efficiencies up to 7.71%), thus being good candidates for production of solar cells under simple fabrication conditions.

  2. Prediction of the Bandgap of a Core-Shell Microsphere via Light Intensity Fluctuations

    Directory of Open Access Journals (Sweden)

    Moon Kyu Choi

    2011-01-01

    Full Text Available It has been experimentally observed that in the case of microspheres irradiated by light, the absorption wavelength shift occurs, known as the blueshift, with changing shell materials (i.e., by decreasing the refractive index of the shell. In the present investigation, we want to demonstrate it numerically by using the boundary element method. The material used for the simulation is a core-shell (SiO2 and another material of a larger refractive index microsphere and it is irradiated by unpolarized monochromatic light wave. This paper intends to demonstrate that it is possible to predict the bandgap of a core-shell microsphere resulting from two different bandgap materials and that the numerical simulation employed produces the blueshift.

  3. Optical coherence tomography imaging of telangiectasias during intense pulsed light treatment

    DEFF Research Database (Denmark)

    Ring, Hans Christian; Mogensen, Mette; Banzhaf, Christina

    2013-01-01

    Vascular malformations commonly occur in the facial region, and can be associated with significant stigma and embarrassment. Studies have shown that even recommended light-based treatments do not always result in complete clearance. This indicates the need for more accurate pre-treatment assessment...... and minutes after IPL treatment. OCT images of the telangiectasias before treatment were displayed as hyporeflective/signal poor bands clearly demarcated from the surrounding tissue. Minutes after treatment, OCT images demonstrated two different reactions. (1) Narrow hyperreflective bands surrounding...... the vessels, which may indicate edema or insufficient coagulation. (2) Hyperreflective signals within the lumen of the vessels, compatible with the expected irreversible microthrombus formation in the vessels. OCT imaging is capable of real-time assessment of tissue damage during light and laser treatment...

  4. Laser Heating of Solid Matter by Light-Pressure-Driven Shocks at Ultrarelativistic Intensities

    Energy Technology Data Exchange (ETDEWEB)

    Akli, K.U.; Hansen, S.B.; Kemp, A.J.; Freeman, R.R.; Beg, F.N.; Clark, D.C.; Chen, S.D.; Hey, D.; Hatchett, S.P.; Highbarger, K.; Giraldez, E.; Green, J.S.; Gregori, G.; Lancaster, K.L.; Ma, T.; MacKinnon, A.J.; Norreys, P.; Patel, N.; Pasley, J.; Shearer, C.; Stephens, R.B.; Stoeckl, C.; Storm, M.; Theobald, W.; Van Woerkom, L.D.; Weber, R.; Key, M.H.

    2008-04-29

    The heating of solid targets irradiated by 5 x 10^20 W cm^-2, 0.8 ps, 1.05 um wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V. A surface layer is heated to ~5 keV with an axial temperature gradient of 0.6 um scale length. Images of Ni Ly sub-alpha show the hot region has <25 um diameter. These data are consistent with collisional particle-in-cell simulations using preformed plasma density profiles from hydrodynamic modeling which show that the >100 Gbar light pressure compresses the preformed plasma and dries a shock into the solid, heating a thin layer.

  5. Effects of nutrients and light intensity on the growth and biochemical composition of a marine microalga Odontella aurita

    Science.gov (United States)

    Xia, Song; Wan, Linglin; Li, Aifen; Sang, Min; Zhang, Chengwu

    2013-11-01

    Algal biotechnology has advanced greatly in the past three decades. Many microalgae are now cultivated to produce bioactive substances. Odontella aurita is a marine diatom industrially cultured in outdoor open ponds and used for human nutrition. For the first time, we have systematically investigated the effects of culture conditions in cylindrical glass columns and flat-plate photobioreactors, including nutrients (nitrogen, phosphorus, silicon, and sulfur), light intensity and light path, on O. aurita cell growth and biochemical composition (protein, carbohydrate, β-1,3-glucan, lipids, and ash). The optimal medium for photoautotrophic cultivation of O. aurita contained 17.65 mmol/L nitrogen, 1.09 mmol/L phosphorus, 0.42 mmol/L silicon, and 24.51 mmol/L sulfur, yielding a maximum biomass production of 6.1-6.8 g/L and 6.7-7.8 g/L under low and high light, respectively. Scale-up experiments were conducted with flat-plate photobioreactors using different light-paths, indicating that a short light path was more suitable for biomass production of O. aurita. Analyses of biochemical composition showed that protein content decreased while carbohydrate (mainly composed of β-1,3-glucan) increased remarkably to about 50% of dry weight during the entire culture period. The highest lipid content (19.7% of dry weight) was obtained under 0.11 mmol/L silicon and high light conditions at harvest time. Fatty acid Profiles revealed that 80% were C14, C16, and C20, while arachidonic acid and eicosapentaenoic acid (EPA) accounted for 1.6%-5.6% and 9%-20% of total fatty acids, respectively. High biomass production and characteristic biochemical composition Profiles make O. aurita a promising microalga for the production of bioactive components, such as EPA and β-1,3-glucan.

  6. The Intensity of the Light Diffraction by Supersonic Longitudinal Waves in Solid

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-04-01

    Full Text Available First, we predict existence of transverse electromagnetic field created by supersonic longitudinal waves in solid. This electromagnetic wave with frequency of ultrasonic field is moved by velocity of supersonic field toward of direction propagation of one. The average Poynting vector of superposition field is calculated by presence of the transverse electromagnetic and the optical fields which in turn provides appearance the diffraction of light.

  7. Myogenic response of human skeletal muscle to 12 weeks of resistance training at light loading intensity.

    Science.gov (United States)

    Mackey, A L; Holm, L; Reitelseder, S; Pedersen, T G; Doessing, S; Kadi, F; Kjaer, M

    2011-12-01

    There is strong evidence for enhanced numbers of satellite cells with heavy resistance training. The satellite cell response to very light muscle loading is, however, unknown. We, therefore, designed a 12-week training protocol where volunteers trained one leg with a high load (H) and the other leg with a light load (L). Twelve young healthy men [mean age 25 ± 3 standard deviation (SD) years] volunteered for the study. Muscle biopsies were collected from the m. vastus lateralis of both legs before and after the training period and satellite cells were visualized by CD56 immunohistochemistry. A significant main effect of time was observed (Pfiber (L: from 0.11 ± 0.02 to 0.13 ± 0.03; H: from 0.12 ± 0.03 to 0.15 ± 0.05, mean ± SD). The finding that 12 weeks of training skeletal muscle even with very light loads can induce an increase in the number of satellite cells reveals a new aspect of myogenic precursor cell activation and suggests that satellite cells may play a role in skeletal muscle adaptation over a broad physiological range.

  8. Light Intensity Affects Chlorophyll Synthesis During Greening Process by Metabolite Signal from Mitochondrial Alternative Oxidase in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Dawei; YUAN; Shu; 徐飞; ZHU; Feng; YUAN; Ming; YE; Huaxun; GUO; Hongqing; LV; Xin; YIN; Yanhai; 林宏辉

    2015-01-01

    Although mitochondrial alternative oxidase(AOX)has been proposed to play essential roles in high light stress tolerance,the effects of AOX on chlorophyll synthesis are unclear.Previous studies indicated that during greening,chlorophyll accumulation was largely delayed in plants whose mitochondrial cyanide-resistant respiration was inhibited by knocking out nuclear encoded AOX gene.Here we show that this delay of chlorophyll accumulation was more significant under high light condition.Inhibition of cyanide-resistant respiration was also accompanied by the increase of plastid NADPH/NADP~+ratio,especially under high light treatment which subsequently blocked the import of multiple plastidial proteins,such as some components of the photosynthetic electron transport chain,the Calvin-Benson cycle enzymes and malate/oxaloacetate shuttle components.Over expression of AOXla rescued the aoxla mutant phenotype,including the chlorophyll accumulation during greening and plastidial protein import.It thus suggests that light intensity affects chlorophyll synthesis during greening process by a metabolic signal,the AOX-derived plastidial NADPH/NADP~+ratio change.And our results thus revealed a molecular mechanism of chloroplast-mitochondria interactions.

  9. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions.

    Science.gov (United States)

    Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki

    2014-04-01

    The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns.

  10. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor.

    Science.gov (United States)

    Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong

    2016-05-21

    Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.

  11. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  12. Regulation and Levels of the Thylakoid K+/H+ Antiporter KEA3 Shape the Dynamic Response of Photosynthesis in Fluctuating Light.

    Science.gov (United States)

    Armbruster, Ute; Leonelli, Lauriebeth; Correa Galvis, Viviana; Strand, Deserah; Quinn, Erica H; Jonikas, Martin C; Niyogi, Krishna K

    2016-07-01

    Crop canopies create environments of highly fluctuating light intensities. In such environments, photoprotective mechanisms and their relaxation kinetics have been hypothesized to limit photosynthetic efficiency and therefore crop yield potential. Here, we show that overexpression of the Arabidopsis thylakoid K(+)/H(+) antiporter KEA3 accelerates the relaxation of photoprotective energy-dependent quenching after transitions from high to low light in Arabidopsis and tobacco. This, in turn, enhances PSII quantum efficiency in both organisms, supporting that in wild-type plants, residual light energy quenching following a high to low light transition represents a limitation to photosynthetic efficiency in fluctuating light. This finding underscores the potential of accelerating quenching relaxation as a building block for improving photosynthetic efficiency in the field. Additionally, by overexpressing natural KEA3 variants with modification to the C-terminus, we show that KEA3 activity is regulated by a mechanism involving its lumen-localized C-terminus, which lowers KEA3 activity in high light. This regulatory mechanism fine-tunes the balance between photoprotective energy dissipation in high light and maximum quantum yield in low light, likely to be critical for efficient photosynthesis in fluctuating light conditions.

  13. Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment

    Science.gov (United States)

    Bielawski, Joseph P.; Dunn, Katherine A.; Sabehi, Gazalah; Béjà, Oded

    2004-01-01

    Proteorhodopsin, a retinal-binding protein, represents a potentially significant source of light-driven energy production in the world's oceans. The distribution of photochemically divergent proteorhodopsins is stratified according to depth. Here, we present evidence that such photochemical diversity was tuned by Darwinian selection. By using a Bayesian method, we identified sites targeted by Darwinian selection and mapped them to three-dimensional models of proteorhodopsins. We suggest that spectral fine-tuning results from the combined effect of amino acids that directly interact with retinal and those that influence the confirmation of the retinal-binding pocket. PMID:15466697

  14. Response of vegetable organisms to quasi-monochromatic light of different duration, intensity and wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Budagovsky, A V; Solovykh, N V [I.V.Michurin All-Russian Recearch Institute of Fruit Crops Genetics and Breeding (Russian Federation); Budagovskaya, O N [I.V.Michurin All-Russia Research and Development Institute of Gardening, Michurinsk, Tambov region (Russian Federation); Budagovsky, I A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    By the example of vegetable organisms differing in structure and functional properties it is shown that their response to the action of quasi-monochromatic light from laser sources does not obey the Bunsen – Roscoe dose law. The dependence of biological effect on the irradiation time has the multimodal (multiextremal) form with alternating maxima and minima of the stimulating effect. Such a property manifests itself in the spectral ranges, corresponding to photoinduced conversion of chromoproteins of photocontrol systems and is probably related to the cyclic variations of metabolic activity in vegetable cells. (biophotonics)

  15. Photosynthetic response of seagrasses to ultraviolet-a radiation and the influence of visible light intensity.

    Science.gov (United States)

    Trocine, R P; Rice, J D; Wells, G N

    1982-02-01

    Inhibition of photosynthesis by ultraviolet-A radiation (UV-A, 315-380 nanometers) was examined in three marine angiosperms: Halophila engelmannii Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz. Sensitivity to UV-A and photosensitization to UV-A by photosynthetically active radiation (PAR, 380-700 nanometers) were characterized.Net photosynthesis by Halodule and Syringodium was unaffected by UV-A irradiation in the absence of PAR. Irradiation of Syringodium by a combined beam of UV-A and PAR resulted in photosynthetic inhibition. The depression of net photosynthesis was found to be a function of PAR intensity at a fixed level of UV-A irradiation. Inhibition of photosynthesis in Halodule by the combined beam was minimal and suggests adaptation to environmental irradiation levels.Halophila was the only species examined, subject to photosynthetic inhibition by UV-A in the absence of PAR. Irradiation with PAR intensities characteristic to Halophila in the natural system as the combined beam, appeared to negate the inhibition. Increasing the PAR component of the combined beam above environmental norms resulted in photosynthetic inhibition greater than that observed for UV-A alone.

  16. Weakened negative effect of Au/TiO2 photocatalytic activity by CdS quantum dots deposited under UV-vis light illumination at different intensity ratios.

    Science.gov (United States)

    Song, Kang; Wang, Xiaohong; Xiang, Qun; Xu, Jiaqiang

    2016-10-26

    Herein, we demonstrate experimentally the coexistence of photocatalytic dual opposite roles of Au nanoparticles in a UV-vis light irradiated Au/TiO2 system. We have investigated that the photocatalytic performance curves of Au/TiO2 and CdS/Au/TiO2 for degradation of methylene blue (MB) all present a V-shape with different radiation power ratios. However, through the comparison of photocatalytic activities of Au/TiO2 and CdS/Au/TiO2 by statistics and mathematical simulation, we propose qualitatively that the deposition of CdS used as a photosensitizer could extend the Au/TiO2 light absorption range and weaken the negative effect of Au/TiO2. Compared with Au/TiO2, it is proven indirectly that the photo-excited electrons of CdS/Au/TiO2 transfer from CdS to Au, and then to TiO2. Furthermore, we discuss the photocatalytic dual opposite roles of Au nanoparticles between CdS and TiO2, the positive effect includes localized surface plasmon resonance (LSPR) and Schottky barrier (SB), and the negative effect is that Au nanoparticles can be used as a new charge-carrier recombination center. In addition, we have analyzed that the dual opposite relationship of Au/TiO2 under the irradiation of mixed-light could be regulated by changing the intensity ratio of visible to UV light as well.

  17. Interplay of sugar, light and gibberellins in expression of Rosa hybrida vacuolar invertase 1 regulation.

    Science.gov (United States)

    Rabot, Amélie; Portemer, Virginie; Péron, Thomas; Mortreau, Eric; Leduc, Nathalie; Hamama, Latifa; Coutos-Thévenot, Pierre; Atanassova, Rossitza; Sakr, Soulaiman; Le Gourrierec, José

    2014-10-01

    Our previous findings showed that the expression of the Rosa hybrida vacuolar invertase 1 gene (RhVI1) was tightly correlated with the ability of buds to grow out and was under sugar, gibberellin and light control. Here, we aimed to provide an insight into the mechanistic basis of this regulation. In situ hybridization showed that RhVI1 expression was localized in epidermal cells of young leaves of bursting buds. We then isolated a 895 bp fragment of the promoter of RhVI1. In silico analysis identified putative cis-elements involved in the response to sugars, light and gibberellins on its proximal part (595 bp). To carry out functional analysis of the RhVI1 promoter in a homologous system, we developed a direct method for stable transformation of rose cells. 5' deletions of the proximal promoter fused to the uidA reporter gene were inserted into the rose cell genome to study the cell's response to exogenous and endogenous stimuli. Deletion analysis revealed that the 468 bp promoter fragment is sufficient to trigger reporter gene activity in response to light, sugars and gibberellins. This region confers sucrose- and fructose-, but not glucose-, responsive activation in the dark. Inversely, the -595 to -468 bp region that carries the sugar-repressive element (SRE) is required to down-regulate the RhVI1 promoter in response to sucrose and fructose in the dark. We also demonstrate that sugar/light and gibberellin/light act synergistically to up-regulate β-glucuronidase (GUS) activity sharply under the control of the 595 bp pRhVI1 region. These results reveal that the 127 bp promoter fragment located between -595 and -468 bp is critical for light and sugar and light and gibberellins to act synergistically.

  18. Staring at the cold sun: blue light regulation is distributed within the genus Acinetobacter.

    Directory of Open Access Journals (Sweden)

    Adrián Golic

    Full Text Available We previously showed that the opportunistic nosocomial pathogen Acinetobacter baumannii is able to sense and respond to light via BlsA, a BLUF (Blue-Light-sensing Using FAD-domain photoreceptor protein. Here, we extend our previous studies showing that light regulation is not restricted to A. baumannii, but rather widespread within the genus Acinetobacter. First, we found that blue light modulates motility and biofilm formation in many species of the genus, including members of the Acinetobacter calcoaceticus-A. baumannii complex. In many of these species blue light acts as a key factor guiding the decision between motility or sessility at 24°C, whereas in A. baumannii, light inhibits both motility and biofilm formation. We also show that light regulation of motility occurred not only at 24°C but also at 37°C in non-A. baumannii species, contrasting the situation of A. baumannii which only shows photoregulation at 24°C. Second, we show that Acinetobacter baylyi (strain ADP1 BLUF-photoreceptors can functionally replace in vivo the A. baumannii 17978 BlsA protein and that the pathways leading to biofilm formation are inversely regulated at 24°C between these two microorganisms. Finally, we found the presence of predicted genes coding BLUF-containing proteins in all Acinetobacter sequenced genomes, even though the copy number is variable among them. Phylogenetic analysis suggests a common origin for all BLUF domains present in members of this genus, and could distinguish well-differentiated clusters that group together BLUF homologs from different species, a situation particularly clear for members of the ACB complex. Despite a role played by these BLUF domain-containing proteins in the photoregulation observed in the members of the genus Acinetobacter is a likely scenario given our findings in A. baumannii and A. baylyi, further research will contribute to confirm this possibility.

  19. Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity.

    Science.gov (United States)

    Cui, Jianjun; Zhang, Jianheng; Huo, Yuanzi; Zhou, Lingjie; Wu, Qing; Chen, Liping; Yu, Kefeng; He, Peimin

    2015-12-30

    In this study, the influence of temperature and light intensity on the growth of seedlings and adults of four species of green tide algae (Ulvaprolifera, Ulvacompressa, Ulva flexuosa and Ulvalinza) from the Yellow Sea was evaluated. The results indicated that the specific growth rate (SGR) of seedlings was much higher than that of adults for the four species. The adaptability of U. prolifera is much wider: Adult daily SGRs were the highest among the four species at 15-20 °C with 10-600 μmol · m(-2) · s(-1) and 25-30 °C with 200-600 μmol · m(-2) · s(-1). SGRs were 1.5-3.5 times greater than the other three species at 15-25 °C with 200-600 μmol · m(-2) · s(-1). These results indicate that U. prolifera has better tolerance to high temperature and light intensity than the other three species, which may in part explain why only U. prolifera undergoes large-scale outbreaks and floats to the Qingdao coast while the other three species decline and disappear at the early stage of blooming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Using antibrowning agents to enhance quality and safety of fresh-cut avocado treated with intense light pulses.

    Science.gov (United States)

    Ramos-Villarroel, Ana Y; Martín-Belloso, Olga; Soliva-Fortuny, Robert

    2011-01-01

    The effect of antibrowning compounds on the color and firmness of fresh-cut avocado treated with intense light pulses (ILP), as well as their impact on the survival of Listeria innocua, was investigated in this study. Dipping solutions containing 2% (w/v) L-cysteine without ascorbic acid and combined with 1% (w/v) citric acid and 1% w/v calcium lactate most effectively preserved the initial color and texture of ILP-treated fresh-cut avocado. On the other hand, ILP treatments caused a reduction of more than 3 log cycles in the populations of L. innocua inoculated on fresh-cut avocado. Log reduction levels increased when antibrowning agents were combined with ILP treatments. In conclusion, the use of quality-stabilizing agents is a good option to guarantee both the microbiological safety of fresh-cut avocado treated with ILP as well as to improve its physical and chemical quality. Intense light pulses (ILP) have received considerable attention during the last years after its approval by the U.S. Food and Drug Administration (FDA) in 1996 as a decontamination method for food or food surfaces. This article presents relevant information regarding the effect of ILP treatments combined with quality-stabilizing compounds as a feasible alternative to improve the physical and chemical quality of fresh-cut avocado as well as to guarantee its microbiological safety. © 2011 Institute of Food Technologists®

  1. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp.

    Science.gov (United States)

    Guo, Xiaoyi; Su, Gaomin; Li, Zheng; Chang, Jingyu; Zeng, Xianhai; Sun, Yong; Lu, Yinghua; Lin, Lu

    2015-09-01

    In this study, different light intensities (80, 160, 240 and 320 μmol/m(2) s) and various mediums including control medium (CM), N/P rich medium (NPM), N rich medium (NM), and P rich medium (PM) were applied for cultivation of Chlorella sp. It was revealed that cultivation of Chlorella sp. in CM under the light intensity of 320 μmol/m(2) s led to a lipid content up to 30% enhancement, which was higher than the results of other cases. A rather high unsaturated fatty acid (UFA) content of 7.5% and unsaturated fatty acid/total fatty acid (UFA/TFA) ratio of 0.73 were obtained under 320 μmol/m(2) s in CM, indicating that the CM-320 system was applicable for the generation of UFA. Moreover, Chlorella sp. cultivated in PM under 320 μmol/m(2) s provided higher TFA content (7.3%), which was appropriate for biofuel production.

  2. [Effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash].

    Science.gov (United States)

    Du, She-ni; Bai, Gang-shuan; Liang, Yin-li

    2011-04-01

    A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.

  3. Studies on Changes of Phenolics in the Apple Fruit Peel in Response to Light Intensity

    Institute of Scientific and Technical Information of China (English)

    HAO Yan-yan; HUANG Wei-dong; ZHANG Wen-he

    2004-01-01

    Fruits from 9-year-old apple trees (Malus domestic Borkh. cv. Fuji) were wrappedby two-layer bag in middle of June, and bags were removed in middle of September. The bag-removed treatment was performed in following three ways: once-removing all inner and outer bags; twice-removing bag (removing inner bag 3 d after removing outer bag); dipping 5 s in 1 mM salicylic acid (SA)after once-removing all bags. Changes of phenolic compounds in fruit peel in response to light environment were studied before or after removing bag. The results showed that the bagged treatment could significantly decrease the contents of UV (ultraviolet) absorbing compounds,rutin and anthocyanins of the fruit peel, but increased chlorogenic acid level. After removal of bag, the level of SA and quercetin in the fruit peel appeared peak 1 d after bag-removed,except that quercetin was decreased in SA-treated fruits. UVabsorbing compounds, anthocyanins and rutin were kept increasing all along after the removal of bag, except that chlorogenic acid was decreased during being retained inner bag in the treatment of twice removing bag. The positive correlations existed between changes of UV absorbing compounds and changes of anthocyanins or rutin. It was suggested that light played an important role in phenolics metabolism.

  4. Toward efficient light diffraction and intensity variations by using wide bandwidth surface acoustic wave

    Science.gov (United States)

    Lee, Young Ok; Chen, Fu; Lee, Kee Keun

    2016-06-01

    We have developed acoustic-optic (AO) based display units for implementing a handheld hologram display by modulating light deflection through wide bandwidth surface acoustic wave (SAW). The developed AO device consists of a metal layer, a ZnS waveguide layer, SAW inter digital transducers (IDTs), and a screen for display. When RF power with a particular resonant frequency was applied to IDTs, SAW was radiated and interfered with confined beam propagating along ZnS waveguide layer. The AO interacted beam was deflected laterally toward a certain direction depending on Bragg diffraction condition, exited out of the waveguide layer and then directed to the viewing screen placed at a certain distance from the device to form a single pixel. The deflected angles was adjusted by modulating the center frequency of the SAW IDT (SAW grating), the RF power of SAW, and the angles between propagating light beam path along waveguide and radiating SAW. The diffraction efficiency was also characterized in terms of waveguide thickness, SAW RF input power, and aperture length. Coupling of mode (COM) modeling was fulfilled to find optimal device parameters prior to fabrication. All the parameters affecting the deflection angle and efficiency to form a pixel for a three-dimensional (3D) hologram image were characterized and then discussed.

  5. Continuous ultra-low-intensity artificial daylight is not as effective as red LED light in photodynamic therapy of multiple actinic keratoses

    DEFF Research Database (Denmark)

    Wiegell, Stine Regin; Heydenreich, Jakob; Fabricius, Susanne;

    2011-01-01

    Daylight-mediated photodynamic therapy (PDT) is a simple and tolerable treatment of nonmelanoma skin cancer. It is of interest which light intensity is sufficient to prevent accumulation of protoporphyrin IX (PpIX) and effectively treat actinic keratoses (AKs). We compared the efficacy of PDT...... with light-emitting diode (LED) to daylight-mediated PDT with very low-intensity artificial daylight ('daylight') in the treatment of multiple AKs in the face or scalp....

  6. The development and characterization of an exogenous green-light-regulated gene expression system in marine cyanobacteria.

    Science.gov (United States)

    Badary, Amr; Abe, Koichi; Ferri, Stefano; Kojima, Katsuhiro; Sode, Koji

    2015-06-01

    A green-light-regulated gene expression system derived from Synechocystis sp. PCC 6803 was constructed and introduced into the marine cyanobacterial strain Synechococcus sp. NKBG 15041c. The regulation system was evaluated using gfp uv as a reporter gene under red-light illumination and under simultaneous red- and green-light illumination. Expression of the reporter gene was effectively repressed under red-light illumination and increased over 10-fold by illuminating with green light. Control vectors missing either the ccaS sensor histidine kinase gene or the ccaR response regulator gene showed no detectable induction of GFPuv expression. Green-light induction of gfp uv expression was further confirmed by quantitative reverse transcription PCR. The constructed system was effective at regulating the recombinant expression of a target gene using green light in a marine cyanobacterial strain that does not naturally possess such a green-light regulation system. Thus, constructed green-light-regulated gene expression system may be used as a core platform technology for the development of marine cyanobacterial strains in which bioprocesses will be regulated by light.

  7. Polychromatic Supplemental Lighting from underneath Canopy Is More Effective to Enhance Tomato Plant Development by Improving Leaf Photosynthesis and Stomatal Regulation

    Science.gov (United States)

    Song, Yu; Jiang, Chengyao; Gao, Lihong

    2016-01-01

    Light insufficient stress caused by canopy interception and mutual shading is a major factor limiting plant growth and development in intensive crop cultivation. Supplemental lighting can be used to give light to the lower canopy leaves and is considered to be an effective method to cope with low irradiation stress. Leaf photosynthesis, stomatal regulation, and plant growth and development of young tomato plants were examined to estimate the effects of supplemental lighting with various composite spectra and different light orientations. Light-emitting diodes (LEDs) of polychromatic light quality, red + blue (R/B), white + red + blue (W/R/B), white + red + far-red (W/R/FR), and white + blue (W/B) were assembled from the underneath canopy or from the inner canopy as supplemental lighting resources. The results showed that the use of supplemental lighting significantly increased the photosynthetic efficiency, and reduced stomatal closure while promoting plant growth. Among all supplemental lighting treatments, the W/R/B and W/B from the underneath canopy had best performance. The different photosynthetic performances among the supplemental lighting treatments are resulted from variations in CO2 utilization. The enhanced blue light fraction in the W/R/B and W/B could better stimulate stomatal opening and promote photosynthetic electron transport activity, thus better improving photosynthetic rate. Compared with the inner canopy treatment, the supplemental lighting from the underneath canopy could better enhance the carbon dioxide assimilation efficiency and excessive energy dissipation, leading to an improved photosynthetic performance. Stomatal morphology was highly correlated to leaf photosynthesis and plant development, and should thus be an important determinant for the photosynthesis and the growth of greenhouse tomatoes. PMID:28018376

  8. Polychromatic supplemental lighting from underneath canopy is more effective to enhance tomato plant development by improving leaf photosynthesis and stomatal regulation

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-12-01

    Full Text Available Light insufficient stress caused by canopy interception and mutual shading is a major factor limiting plant growth and development in intensive crop cultivation. Supplemental lighting can be used to give light to the lower canopy leaves and is considered to be an effective method to cope with low irradiation stress. Leaf photosynthesis, stomatal regulation and plant growth and development of young tomato plants were examined to estimate the effects of supplemental lighting with various composite spectra and different light orientations. Light-emitting diodes (LEDs of polychromatic light quality, red + blue (R/B, white + red + blue (W/R/B, white + red + far-red (W/R/FR, and white + blue (W/B were assembled from the underneath canopy or from the inner canopy as supplemental lighting resources. The results showed that the use of supplemental lighting significantly increased the photosynthetic efficiency, and reduced stomatal closure while promoting plant growth. Among all supplemental lighting treatments, the W/R/B and W/B from the underneath canopy had best performance. The different photosynthetic performances among the supplemental lighting treatments are resulted from variations in CO2 utilization. The enhanced blue light fraction in the W/R/B and W/B could better stimulate stomatal opening and promote photosynthetic electron transport activity, thus better improving photosynthetic rate. Compared with the inner canopy treatment, the supplemental lighting from the underneath canopy could better enhance the carbon dioxide assimilation efficiency and excessive energy dissipation, leading to an improved photosynthetic performance. Stomatal morphology was highly correlated to leaf photosynthesis and plant development, and should thus be an important determinant for the photosynthesis and the growth of greenhouse tomatoes.

  9. Flash kinetics and light intensity dependence of oxygen evolution in the blue-green alga Anacystis nidulans.

    Science.gov (United States)

    Ley, A C; Babcock, G T; Sauer, K

    1975-05-15

    Patterns of oxygen evolution in flashing light for the glue-green alga Anacystis nidulans are compared with those for broken spinach chloroplasts and whole cells of the green alga Chlorella pyrenoidosa. The oscillations of oxygen yield with flash number that occur in both Anacystis and Chlorella, display a greater degree of damping than do those of isolated spinach chloroplasts. The increase in damping results from a two- to threefold increase in the fraction (alpha) of reaction centers "missed" by a flash. The increase in alpha cannot be explained by non-saturing flash intensities or by the dark reduction of the oxidized intermediates formed by the flash. Anaerobic conditions markedly increase alpha in Anacystis and Chlorella but have no effect on alpha in broken spinach chloroplasts. The results signify that the mechanism of charge separation and water oxidation involved in all three orgainsms is the same, but that the pool of secondary electron acceptors between Photosystem II and Photosystem I is more reduced in the dark, in the algal cells, than in the isolated spinach chloroplasts. Oxygen evolution in flashing light for Anacystis and Chlorella show light saturation curves for the oxygen yield of the third flash (Y3) that differ markedly from those of the steady-state flashes(YS). In experiments in which all flashes are uniformly attenuated, Y3 requires nearly twice as much light as YS to reach half-saturation. Under these conditions Y3 has a sigmoidal dependence on intensity, while that of YS is hyperbolic. These differences depend on the number of flashes attenuated. When any one of the first three flashes is attenuated, the variation of Y3 with intensity resembles that of YS. When two of the first three flashes are attenuated, Y3 is intermediate in shape between the two extremes. A quantitative interpretation of these results based on the model of Kok et al. (Kik, B., Forbush, B.and McGloin, M. (1970) Photochem. Photobiol. 14, 307-321) fits the experimental

  10. Regulating the Energy Flow in a Cyanobacterial Light-Harvesting Antenna Complex.

    Science.gov (United States)

    Eisenberg, Ido; Caycedo-Soler, Felipe; Harris, Dvir; Yochelis, Shira; Huelga, Susana F; Plenio, Martin B; Adir, Noam; Keren, Nir; Paltiel, Yossi

    2017-02-16

    Photosynthetic organisms harvest light energy, utilizing the absorption and energy-transfer properties of protein-bound chromophores. Controlling the harvesting efficiency is critical for the optimal function of the photosynthetic apparatus. Here, we show that the cyanobacterial light-harvesting antenna complex may be able to regulate the flow of energy to switch reversibly from efficient energy conversion to photoprotective quenching via a structural change. We isolated cyanobacterial light-harvesting proteins, phycocyanin and allophycocyanin, and measured their optical properties in solution and in an aggregated-desiccated state. The results indicate that energy band structures are changed, generating a switch between the two modes of operation, exciton transfer and quenching, achieved without dedicated carotenoid quenchers. This flexibility can contribute greatly to the large dynamic range of cyanobacterial light-harvesting systems.

  11. Rewriting the rules governing high intensity interactions of light with matter

    Science.gov (United States)

    Borisov, Alex B.; McCorkindale, John C.; Poopalasingam, Sankar; Longworth, James W.; Simon, Peter; Szatmári, Sándor; Rhodes, Charles K.

    2016-04-01

    The trajectory of discovery associated with the study of high-intensity nonlinear radiative interactions with matter and corresponding nonlinear modes of electromagnetic propagation through material that have been conducted over the last 50 years can be presented as a landscape in the intensity/quantum energy [I-ħω] plane. Based on an extensive series of experimental and theoretical findings, a universal zone of anomalous enhanced electromagnetic coupling, designated as the fundamental nonlinear domain, can be defined. Since the lower boundaries of this region for all atomic matter correspond to ħω ~ 103 eV and I  ≈  1016 W cm-2, it heralds a future dominated by x-ray and γ-ray studies of all phases of matter including nuclear states. The augmented strength of the interaction with materials can be generally expressed as an increase in the basic electromagnetic coupling constant in which the fine structure constant α  →  Z 2 α, where Z denotes the number of electrons participating in an ordered response to the driving field. Since radiative conditions strongly favoring the development of this enhanced electromagnetic coupling are readily produced in self-trapped plasma channels, the processes associated with the generation of nonlinear interactions with materials stand in natural alliance with the nonlinear mechanisms that induce confined propagation. An experimental example involving the Xe (4d105s25p6) supershell for which Z  ≅  18 that falls in the specified anomalous nonlinear domain is described. This yields an effective coupling constant of Z 2 α  ≅  2.4  >  1, a magnitude comparable to the strong interaction and a value rendering as useless conventional perturbative analyses founded on an expansion in powers of α. This enhancement can be quantitatively understood as a direct consequence of the dominant role played by coherently driven multiply-excited states in the dynamics of the coupling. It is also

  12. Enhancement of x-ray yields from heteronuclear cluster plasmas irradiated by intense laser light

    Energy Technology Data Exchange (ETDEWEB)

    Jha, J; Mathur, D; Krishnamurthy, M [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India)

    2005-09-28

    We report a new method to enhance the x-ray emission from nano-cluster plasmas formed upon irradiation by intense femtosecond-duration laser pulses. Our experiments demonstrate that when Ar clusters are doped with H{sub 2}O the time-integrated yield of Ar K x-ray emission is enhanced by approximately 12-fold in comparison to that obtained from pure Ar clusters under otherwise identical experimental conditions. A significant alteration in the time-dependent electron density is achieved by the presence of an H{sub 2}O dopant, and this could be the possible reason for the enhancement that is observed. (letter to the editor)

  13. The Series Connected Buck Boost Regulator Concept for High Efficiency Light Weight DC Voltage Regulation

    Science.gov (United States)

    Birchenough, Arthur G.

    2003-01-01

    Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.

  14. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controled environment conditions

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Gribovskaya, I. A.; Tirranen, L. S.; Manukovsky, N. S.; Zolotukhin, I. G.; Karnachuk, R. A.; Gros, J.-B.; Lasseur, Ch.

    To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 μmol·m -2·s -1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m -2) of the wheat crops was attained at the irradiance of 920 μmol·m -2·s -1. Light intensity of 1150 μmol·m -2·s -1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m 2) as compared to 920 μmol·m -2·s -1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 μmol·m -2·s -1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of

  15. Modeling and simulation of a 3D-CMOS silicon photodetector for low-intensity light detection

    Science.gov (United States)

    Sabri Alirezaei, Iman; Burte, Edmund P.

    2016-03-01

    This paper presents a design and simulation of a novel high performance 3D-silicon photodetector for implementing in the low intensity light detection at room temperature (300K). The photodetector is modeled by inspiration of general MEMS fabrication to make a 3D- structure in the silicon substrate using a bulk micromachining process, and based on a complementary metal-oxide semiconductor (CMOS) technology. The design includes a vertical n+/p junction as an optical window for lateral illumination. The simulation is carried out using COMSOL Multiphysics relying on theoretical and physical concepts, and then, the assessment of the results is done by the numerical analysis with SILVACO (Atlas) device simulator. Light is regarded as a monochromatic beam with a wavelength of 633nm that is placed 1μm far from the optical window. The simulation is considered under the reverse bias dc voltage in the steadystate. We present photocurrent-voltage (Iph-V) characteristics under different light intensities (2… 10[mW/cm2]), and dark current-voltage (Id-V) characteristics. Comparative studies of sensitivity dependence on the dopant concentration in the substrate as an intrinsic region are accomplished utilizing two different p-type silicon substrates with 1×1015 [1/cm3] and 4×1012 [1/cm3] doping concentration. Moreover, the sensitivity is evaluated with respect to the active substrate thickness. The simulated results confirmed that the high optical sensitivity of the photodetector with low dark current can be realized in this model.

  16. An Identifiable State Model To Describe Light Intensity Influence on Microalgae Growth.

    Science.gov (United States)

    Bernardi, A; Perin, G; Sforza, E; Galvanin, F; Morosinotto, T; Bezzo, F

    2014-04-23

    Despite the high potential as feedstock for the production of fuels and chemicals, the industrial cultivation of microalgae still exhibits many issues. Yield in microalgae cultivation systems is limited by the solar energy that can be harvested. The availability of reliable models representing key phenomena affecting algae growth may help designing and optimizing effective production systems at an industrial level. In this work the complex influence of different light regimes on seawater alga Nannochloropsis salina growth is represented by first principles models. Experimental data such as in vivo fluorescence measurements are employed to develop the model. The proposed model allows description of all growth curves and fluorescence data in a reliable way. The model structure is assessed and modified in order to guarantee the model identifiability and the estimation of its parametric set in a robust and reliable way.

  17. Thermal analysis of high intensity organic light-emitting diodes based on a transmission matrix approach

    Science.gov (United States)

    Qi, Xiangfei; Forrest, Stephen R.

    2011-12-01

    We use a general transmission matrix formalism to determine the thermal response of organic light-emitting diodes (OLEDs) under high currents normally encountered in ultra-bright illumination conditions. This approach, based on Laplace transforms, facilitates the calculation of transient coupled heat transfer in a multi-layer composite characteristic of OLEDs. Model calculations are compared with experimental data on 5 cm × 5 cm green and red-emitting electrophosphorescent OLEDs under various current drive conditions. This model can be extended to study other complex optoelectronic structures under a wide variety of conditions that include heat removal via conduction, radiation, and convection. We apply the model to understand the effects of using high-thermal- conductivity substrates, and the transient thermal response under pulsed-current operation.

  18. LIPID PRODUCTION BY DUNALIELLA SALINA IN BATCH CULTURE: EFFECTS OF NITROGEN LIMITATION AND LIGHT INTENSITY

    Energy Technology Data Exchange (ETDEWEB)

    Weldy, C.S.; Huesemann, M.

    2007-01-01

    Atmospheric carbon dioxide (CO2) concentrations are increasing and may cause unknown deleterious environmental effects if left unchecked. The Intergovernmental Panel on Climate Change (IPCC) has predicted in its latest report a 2°C to 4°C increase in global temperatures even with the strictest CO2 mitigation practices. Global warming can be attributed in large part to the burning of carbon-based fossil fuels, as the concentration of atmospheric CO2 is directly related to the burning of fossil fuels. Biofuels which do not add CO2 to the atmosphere are presently generated primarily from terrestrial plants, i.e., ethanol from corn grain and biodiesel from soybean oil. The production of biofuels from terrestrial plants is severely limited by the availability of fertile land. Lipid production from microalgae and its corresponding biodiesel production have been studied since the late 1970s but large scale production has remained economically infeasible due to the large costs of sterile growing conditions required for many algal species. This study focuses on the potential of the halophilic microalgae species Dunaliella salina as a source of lipids and subsequent biodiesel production. The lipid production rates under high light and low light as well as nitrogen suffi cient and nitrogen defi cient culture conditions were compared for D. salina cultured in replicate photobioreactors. The results show (a) cellular lipid content ranging from 16 to 44% (wt), (b) a maximum culture lipid concentration of 450mg lipid/L, and (c) a maximum integrated lipid production rate of 46mg lipid/L culture*day. The high amount of lipids produced suggests that D. salina, which can be mass-cultured in non-sterile outdoor ponds, has strong potential to be an economically valuable source for renewable oil and biodiesel production.

  19. Light-Dependent Regulation of Sleep and Wake States by Prokineticin 2 in Zebrafish.

    Science.gov (United States)

    Chen, Shijia; Reichert, Sabine; Singh, Chanpreet; Oikonomou, Grigorios; Rihel, Jason; Prober, David A

    2017-07-05

    Light affects sleep and wake behaviors by providing an indirect cue that entrains circadian rhythms and also by inducing a direct and rapid regulation of behavior. While circadian entrainment by light is well characterized at the molecular level, mechanisms that underlie the direct effect of light on behavior are largely unknown. In zebrafish, a diurnal vertebrate, we found that both overexpression and mutation of the neuropeptide prokineticin 2 (Prok2) affect sleep and wake behaviors in a light-dependent but circadian-independent manner. In light, Prok2 overexpression increases sleep and induces expression of galanin (galn), a hypothalamic sleep-inducing peptide. We also found that light-dependent, Prok2-induced sedation requires prokineticin receptor 2 (prokr2) and is strongly suppressed in galn mutants. These results suggest that Prok2 antagonizes the direct wake-promoting effect of light in zebrafish, in part through the induction of galn expression in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis.

    Science.gov (United States)

    Peers, Graham; Truong, Thuy B; Ostendorf, Elisabeth; Busch, Andreas; Elrad, Dafna; Grossman, Arthur R; Hippler, Michael; Niyogi, Krishna K

    2009-11-26

    Light is necessary for photosynthesis, but its absorption by pigment molecules such as chlorophyll can cause severe oxidative damage and result in cell death. The excess absorption of light energy by photosynthetic pigments has led to the evolution of protective mechanisms that operate on the timescale of seconds to minutes and involve feedback-regulated de-excitation of chlorophyll molecules in photosystem II (qE). Despite the significant contribution of eukaryotic algae to global primary production, little is known about their qE mechanism, in contrast to that in flowering plants. Here we show that a qE-deficient mutant of the unicellular green alga Chlamydomonas reinhardtii, npq4, lacks two of the three genes encoding LHCSR (formerly called LI818). This protein is an ancient member of the light-harvesting complex superfamily, and orthologues are found throughout photosynthetic eukaryote taxa, except in red algae and vascular plants. The qE capacity of Chlamydomonas is dependent on environmental conditions and is inducible by growth under high light conditions. We show that the fitness of the npq4 mutant in a shifting light environment is reduced compared to wild-type cells, demonstrating that LHCSR is required for survival in a dynamic light environment. Thus, these data indicate that plants and algae use different proteins to dissipate harmful excess light energy and protect the photosynthetic apparatus from damage.

  1. Invasive submerged freshwater macrophytes are more plastic in their response to light intensity than to the availability of free CO2 in air-equilibrated water

    DEFF Research Database (Denmark)

    Eller, Franziska; Alnoee, Anette B.; Boderskov, Teis

    2015-01-01

    compensation point, and with higher concentrations of photosynthetic pigments and quantum yield. The bicarbonate uptake capacity was generally highest at the high light intensity and high concentrations of free CO2. Plasticity indices for light intensity were consistently higher than for CO2 availability......L, c. 150 lmol m 2 s 1) or low (LowL, c. 21 lmol m2 s 1) light intensity in a 2 9 2 factorial experiment. We compared the relative growth rate (RGR), several morphological traits, the photosynthetic response to light intensity and the bicarbonate uptake capacity of the four species. For every trait...... measured, we established plasticity indices for light and CO2 availability. 3. Light intensity had a greater effect than CO2 concentration on all species. The RGR of all four species was higher at high light intensity, and photosynthetic light responses acclimated to low light with a lower light...

  2. Invasive submerged freshwater macrophytes are more plastic in their response to light intensity than to the availability of free CO2 in air-equilibrated water

    DEFF Research Database (Denmark)

    Eller, Franziska; Alnoee, Anette B.; Boderskov, Teis

    2015-01-01

    compensation point, and with higher concentrations of photosynthetic pigments and quantum yield. The bicarbonate uptake capacity was generally highest at the high light intensity and high concentrations of free CO2. Plasticity indices for light intensity were consistently higher than for CO2 availability......L, c. 150 lmol m 2 s 1) or low (LowL, c. 21 lmol m2 s 1) light intensity in a 2 9 2 factorial experiment. We compared the relative growth rate (RGR), several morphological traits, the photosynthetic response to light intensity and the bicarbonate uptake capacity of the four species. For every trait...... measured, we established plasticity indices for light and CO2 availability. 3. Light intensity had a greater effect than CO2 concentration on all species. The RGR of all four species was higher at high light intensity, and photosynthetic light responses acclimated to low light with a lower light...

  3. Pacing and decision making in sport and exercise : The roles of perception and action in the regulation of exercise intensity

    NARCIS (Netherlands)

    Smits, Benjamin L. M.; Pepping, Gert-Jan; Hettinga, Florentina J.

    In pursuit of optimal performance, athletes and physical exercisers alike have to make decisions about how and when to invest their energy. The process of pacing has been associated with the goal-directed regulation of exercise intensity across an exercise bout. The current review explores divergent

  4. Individual differences in the effects of emotion regulation strategies : The role of personality and trait affect intensity

    NARCIS (Netherlands)

    Karreman, A.; Laceulle, O.; Hanser, W.E.; Vingerhoets, A.J.J.M.

    2016-01-01

    This experimental study examined if (1) emotion experience can be manipulated by applying an emotion regulation strategy (suppression, giving in, neutral) when listening to a well-known rock music fragment, and if (2) personality and trait affect intensity can predict individual differences in effec

  5. Effects of light sources and intensity on broilers grown to heavy weights. Part 1: growth performance, carcass characteristics, and welfare indices

    Science.gov (United States)

    This study investigated the effects of light sources and light intensity on growth performance, carcass characteristics, and welfare indices of heavy broilers (> 3.0 kg) in 4 trials with 2 replications per trial. A total of 960 1-d-old Ross × Ross 708 chicks (30 males/30 females/room) were randomly ...

  6. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight

    Directory of Open Access Journals (Sweden)

    Wei eHuang

    2015-08-01

    Full Text Available Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m-2 s-1. Compared with leaves exposed to a constant light of 1200 μmol photons m-2 s-1, both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m-2 s-1 under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m-2 s-1 under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m-2 s-1 under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow.

  7. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight.

    Science.gov (United States)

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao

    2015-01-01

    Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m(-2) s(-1). Compared with leaves exposed to a constant light of 1200 μmol photons m(-2) s(-1), both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m(-2) s(-1) under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m(-2) s(-1) under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m(-2) s(-1) under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow.

  8. Light- and metabolism-related regulation of the chloroplast ATP synthase has distinct mechanisms and functions.

    Science.gov (United States)

    Kohzuma, Kaori; Dal Bosco, Cristina; Meurer, Jörg; Kramer, David M

    2013-05-01

    The chloroplast CF0-CF1-ATP synthase (ATP synthase) is activated in the light and inactivated in the dark by thioredoxin-mediated redox modulation of a disulfide bridge on its γ subunit. The activity of the ATP synthase is also fine-tuned during steady-state photosynthesis in response to metabolic changes, e.g. altering CO2 levels to adjust the thylakoid proton gradient and thus the regulation of light harvesting and electron transfer. The mechanism of this fine-tuning is unknown. We test here the possibility that it also involves redox modulation. We found that modifying the Arabidopsis thaliana γ subunit by mutating three highly conserved acidic amino acids, D211V, E212L, and E226L, resulted in a mutant, termed mothra, in which ATP synthase which lacked light-dark regulation had relatively small effects on maximal activity in vivo. In situ equilibrium redox titrations and thiol redox-sensitive labeling studies showed that the γ subunit disulfide/sulfhydryl couple in the modified ATP synthase has a more reducing redox potential and thus remains predominantly oxidized under physiological conditions, implying that the highly conserved acidic residues in the γ subunit influence thiol redox potential. In contrast to its altered light-dark regulation, mothra retained wild-type fine-tuning of ATP synthase activity in response to changes in ambient CO2 concentrations, indicating that the light-dark- and metabolic-related regulation occur through different mechanisms, possibly via small molecule allosteric effectors or covalent modification.

  9. The effect of nitrogen nutrition on growth and on plant hormones content in Scots pine (Pinus silvestris L. seedlings grown under light of different intensity

    Directory of Open Access Journals (Sweden)

    Marian Michniewicz

    2014-02-01

    Full Text Available Pine seedlings were cultivated in the Ingested nutrient solution containing N as NH4Cl at concentrations of 0 and 500 ppm, under a 16-hr day, at a light intensity of 1500 and 500 lx and temperature ± 20°C. Measurements of seedlings and determination of plant hormones were performed 8 weeks after sowing. It was found that more intensive light stimulated initiation of needles and lateral roots as well as elongation of needles and roots, and increased the fresh weight and dry matter of these organs. Growth stimulation of needles was correlated with an increase in free gibberellins, cytokinins, an ABA-like inhibitor and with a decrease in auxins and water content of tissues. A similar effect of light on plant hormones (except ABA was also observed in roots. The level of this inhibitor depended on N nutrition. Nitrogen bad a similar effect as light on the growth and initiation of needles and lateral roots. However, it strongly inhibited elongation of roots and increased the water content of the tissues. In needles N increased the level of GAs and auxins, under both light variants, as well as the level of cytokinins, under more intensive light. It decreased the amount of ABA-like inhibitor. In roots the effect of N nutrition on the level of plant hormones depended upon the light intensity. Under light of low intensity N decreased the level of GAs and ABA, increased the level of auxins and had nonsignificant influence on the level of cytokinins. Under more intensive light it had no effect on the GAs and auxin levels and increased the level of cytoikinins and the ABA-like inhibitor.

  10. Generation of intense circularly polarized attosecond light bursts from relativistic laser plasmas

    CERN Document Server

    Ma, Guangjin; Yu, M Y; Shen, Baifei; Veisz, Laszlo

    2016-01-01

    We have investigated the polarization of attosecond light bursts generated by nanobunches of electrons from relativistic few-cycle laser pulse interaction with the surface of overdense plasmas. Particle-in-cell simulation shows that the polarization state of the generated attosecond burst depends on the incident-pulse polarization, duration, carrier envelope phase, as well as the plasma scale length. Through laser and plasma parameter control, without compromise of generation efficiency, a linearly polarized laser pulse with azimuth $\\theta^i=10^\\circ$ can generate an elliptically polarized attosecond burst with azimuth $|\\theta^r_{\\rm atto}|\\approx61^\\circ$ and ellipticity $\\sigma^r_{\\rm atto}\\approx0.27$; while an elliptically polarized laser pulse with $\\sigma^i\\approx0.36$ can generate an almost circularly polarized attosecond burst with $\\sigma^r_{\\rm atto}\\approx0.95$. The results propose a new way to a table-top circularly polarized XUV source as a probe with attosecond scale time resolution for many a...

  11. PSB27: A thylakoid protein enabling Arabidopsis to adapt to changing light intensity

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xin [Univ. of California, Berkeley, CA (United States). Dept of Plant and Microbial Biology; Garcia, Veder J. [Univ. of California, Berkeley, CA (United States). Dept of Plant and Microbial Biology; Buchanan, Bob B. [Univ. of California, Berkeley, CA (United States). Dept of Plant and Microbial Biology; Luan, Sheng [Univ. of California, Berkeley, CA (United States). Dept of Plant and Microbial Biology

    2016-08-22

    Project Title: Immunophilins in the assembly and maintenance of photosynthetic electron transport chain in Arabidopsis Applicant: The Regents of the University of California PI: Sheng Luan, University of California at Berkeley Photosynthetic light energy conversion entails coordinated function of complex molecular machines that capture and convert light energy into chemical forms through photosynthetic electron transport chain. Each molecular machine, such as photosystem II (PSII), may consist of dozens of protein subunits and small molecule cofactors. Despite advanced understanding of the structure and function of these complexes, little is known about “How individual proteins and cofactors assemble into a functional machine and how do these molecular machines maintain their structure and function under a highly hazardous lumenal environment.” Our studies on immunophilins have unexpectedly contributed to the understanding of this question. Originally defined as cellular receptors for immunosuppressants, immunophilins have been discovered in a wide range of organisms from bacteria, fungi, plants, to animals. Immunophilins function in protein folding processes as chaperones and foldases. Arabidopsis genome encodes ca. 50 immunophilins. The most striking finding is that 16 immunophilin members are targeted to chloroplast thylakoid lumen, by far the largest group in the lumenal proteome. What is the function of immunophilins in the thylakoid lumen? Our studies have demonstrated critical roles for several immunophilins in the biogenesis and maintenance of photosynthetic complexes such as PSII. These studies have made a critical link between immunophilins and the assembly of photosynthetic machines and thus opened up a new area of research in photosynthesis. Our goal is to dissect the roles of immunophilins and their partners in the assembly and maintenance of the photosynthetic electron transport chain. The specific objectives for this funding period will be: 1. To

  12. A new high dynamic range ROIC with smart light intensity control unit

    Science.gov (United States)

    Yazici, Melik; Ceylan, Omer; Shafique, Atia; Abbasi, Shahbaz; Galioglu, Arman; Gurbuz, Yasar

    2017-05-01

    This journal presents a new high dynamic range ROIC with smart pixel which consists of two pre-amplifiers that are controlled by a circuit inside the pixel. Each pixel automatically decides which pre-amplifier is used according to the incoming illumination level. Instead of using single pre-amplifier, two input pre-amplifiers, which are optimized for different signal levels, are placed inside each pixel. The smart circuit mechanism, which decides the best input circuit according to the incoming light level, is also designed for each pixel. In short, an individual pixel has the ability to select the best input amplifier circuit that performs the best/highest SNR for the incoming signal level. A 32 × 32 ROIC prototype chip is designed to demonstrate the concept in 0.18 μ m CMOS technology. The prototype is optimized for NIR and SWIR bands. Instead of a detector, process variation optimized current sources are placed inside the ROIC. The chip achieves minimum 8.6 e- input referred noise and 98.9 dB dynamic range. It has the highest dynamic range in the literature in terms of analog ROICs for SWIR band. It is operating in room temperature and power consumption is 2.8 μ W per pixel.

  13. Morphologic Changes of Zebrafish Melanophore after Intense Pulsed Light and Q-Switched Nd:YAG Laser Irradiation

    Science.gov (United States)

    Ryu, Hwa Jung; Lee, Ji Min; Jang, Hee Won; Park, Hae Chul; Rhyu, Im Joo

    2016-01-01

    Background Recently, the pulse-in-pulse mode of intense pulsed light (IPL) has been used increasingly for the treatment of melasma. Objective To observe the morphologic changes in the melanophore in adult zebrafish after irradiation with conventional and pulse-in-pulse IPL and Q-switched Nd:YAG (QSNY) laser. Methods Adult zebrafish were irradiated with conventional and pulse-in-pulse mode of IPL. The conditions for conventional IPL were 3 mJ/cm2, 560 nm filter, and pulse widths of 7, 20, and 35 msec. The pulse-in-pulse conditions were 3 mJ/cm2 and on-time 1/off-time 2. The QSNY laser was used with the settings of 1,064 nm, 0.4 J/cm2, a 7 mm spot size, and one shot. Specimens were observed using a light microscope, a transmission electron microscope (TEM), a scanning electron microscope (SEM) and a confocal microscope. Results After conventional IPL irradiation with a 7 msec pulse width, melanophore breakage was observed using light microscopy. Under TEM, irradiation with conventional IPL for 7 msec and pulse-in-pulse IPL induced melanophore thermolysis with vacuolization. However, changes in the melanophore were not observed with 35 msec IPL. Under SEM, unlike the control and QSNY groups, IPL-irradiated zebrafish showed finger-like fusion in the protein structure of scales. Specimens examined by a confocal microscope after conventional IPL irradiation showed a larger green-stained area on TUNEL staining than that after pulse-in-pulse mode IPL irradiation. Conclusion Zebrafish irradiated with long pulse-IPL showed no morphologic changes using light microscopy, while morphological changes in melanophores were evident with use of TEM. Pulse-in-pulse mode IPL caused less damage than conventional IPL. PMID:27904270

  14. Comparative genomic analysis of light-regulated transcripts in the Solanaceae

    Directory of Open Access Journals (Sweden)

    Yanovsky Marcelo J

    2009-02-01

    Full Text Available Abstract Background Plants use different light signals to adjust their growth and development to the prevailing environmental conditions. Studies in the model species Arabidopsis thaliana and rice indicate that these adjustments are mediated by large changes in the transcriptome. Here we compared transcriptional responses to light in different species of the Solanaceae to investigate common as well as species-specific changes in gene expression. Results cDNA microarrays were used to identify genes regulated by a transition from long days (LD to short days (SD in the leaves of potato and tobacco plants, and by phytochrome B (phyB, the photoreceptor that represses tuberization under LD in potato. We also compared transcriptional responses to photoperiod in Nicotiana tabacum Maryland Mammoth (MM, which flowers only under SD, with those of Nicotiana sylvestris, which flowers only under LD conditions. Finally, we identified genes regulated by red compared to far-red light treatments that promote germination in tomato. Conclusion Most of the genes up-regulated in LD were associated with photosynthesis, the synthesis of protective pigments and the maintenance of redox homeostasis, probably contributing to the acclimatization to seasonal changes in irradiance. Some of the photoperiodically regulated genes were the same in potato and tobacco. Others were different but belonged to similar functional categories, suggesting that conserved as well as convergent evolutionary processes are responsible for physiological adjustments to seasonal changes in the Solanaceae. A β-ZIP transcription factor whose expression correlated with the floral transition in Nicotiana species with contrasting photoperiodic responses was also regulated by photoperiod and phyB in potato, and is a candidate gene to act as a general regulator of photoperiodic responses. Finally, GIGANTEA, a gene that controls flowering time in Arabidopsis thaliana and rice, was regulated by

  15. Matrix formalism for calculation of the light beam intensity in stratified multilayered films, and its use in the analysis of emission spectra.

    Science.gov (United States)

    Ohta, K; Ishida, H

    1990-06-01

    Matrix formulation to describe the light propagation in stratified multilayered films has been extended to a system with phase incoherence. Several equations for the reflectance, transmittance, and light beam intensity in the film system are derived from the formulation. Some formulas previously proposed are corrected in reference to the present method. The beam intensity description is used for the calculation of light emissive power from multilayered films having a temperature gradient. It is found that the equations derived here are exactly equivalent to those derived from the radiative transfer equation. However, the present method is more tractable, and can be readily used for a film system with any number of layers.

  16. Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation

    Science.gov (United States)

    Zhong, Zhaoyang; Woo, Kyoohee; Kim, Inhyuk; Hwang, Hyewon; Kwon, Sin; Choi, Young-Man; Lee, Youngu; Lee, Taik-Min; Kim, Kwangyoung; Moon, Jooho

    2016-04-01

    Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced

  17. A gain regulation system for a large set of photomultipliers using light-emitting diodes and optical filters

    CERN Document Server

    De Palma, M; Sacchetti, A; Spirelli, P; Waldner, F

    1979-01-01

    Describes the solution adopted for the on-line gain regulation with a PDP 11/60 of the 480 photomultipliers of the calorimeter of the experiment NA5 (at CERN) by means of light emitting diodes (LEDs) and polymer optical fibers. The regulation of the light yield of the LEDs is obtained comparing it to the light pulse of a NaI scintillator doped with /sup 241/Am. (6 refs).

  18. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  19. Light intensity at the return place and encirclement power ratio for the distorted reflected beam based on cat-eye effect

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-zhong; SUN Hua-yan; ZHANG Lai-xian; ZHENG Yong-hui

    2011-01-01

    Based on the definition of second order moment and the approximate three-dimensional analytical formula for probe detected laser beam passing through a cat-eye optical lens with center shelter and oblique detector,the analytical expression of the encirclement power ratio of the cat-eye effect reflected light under far-field condition has been deduced.Variable laws of light intensity at the return place and encirclement power ratio are performed by numerical calculation,and are analyzed physically.The results show that the light intensity at the return place decreases monotonically with the increases of the diameter,incidence angle,tilted angle of the detector and the center shelter ratio,but the relationships between these parameters and the encirclement power ratio are all nonmonotonic.The reasonable choice of the focal shift size would result in the largest light intensity at the return place and the largest erirclenent power ratio.

  20. Effect of kinetin and chloramphenicol on chlorophyll synthesis and chloroplast development in detached lupin cotyledons under low light intensity

    Directory of Open Access Journals (Sweden)

    Fortunat Młodzianowski

    2015-01-01

    Full Text Available Chlorophyll synthesis in detached lupin cotyledons under low light intensity was stimulated by kinetin at 20 mg/l and inhibited by chloramphenicol at 50 mg/1. Kinetin not only conteracted the inhibitory effect of chloramphenicol, but stimulated1 the chlorophyll syntesis to a greater level than in the control material. Kinetin accelerated the starch degradation and the development of chloroplast; its prolonged, action, however, produced some abnormalities, such as an excessive growth of plastids resulting in some cases in bursting of their envelopes, the formation and release f r om plastids of numerous membrane - bound bodies and the accumulation in released and swollen thylakoids of electron - dense substance. In the presence of chloramphenicol, some disturbances in structure of the stroma thylakoids and the appearance of vesicular structures in the stroma and the enlargement of grana and swelling of their thylakoids were observed. Kinetin prevented some of these abnormalities.

  1. An intense reddish-orange emitting Eu2SiS4:Er3+ for light emitting diodes

    Science.gov (United States)

    Zhang, Gongguo; Lu, Xifeng; Hu, Ang

    2017-09-01

    An intense reddish-orange phosphor, Eu2SiS4:Er3+, was developed. The photoluminescence excitation and emission spectra, the lifetime, and the concentration effect are investigated. The results show that an efficient energy transfer occurs from Eu2+ to Er3+, and its efficiency is about 81.0%. The phosphors exhibit an efficient broad absorption band and give reddish-orange emitting light with higher color purity. These results demonstrate that Er3+ ion with low 4f - 4f absorption efficiency can play a role of activator in narrow reddish-orange emitting phosphor, potentially useful in n-UV/blue GaN-based LED through efficient energy feeding by a strong excitation band of Eu2+.

  2. Optical coherence photoacoustic microscopy (OC-PAM) with an intensity-modulated continuous-wave broadband light source

    Science.gov (United States)

    Liu, Xiaojing; Wen, Rong; Li, Yiwen; Jiao, Shuliang

    2016-06-01

    We developed an optical coherence photoacoustic microscopy system using an intensity-modulated continuous-wave superluminescent diode with a center wavelength of 840 nm. The system can accomplish optical coherence tomography (OCT) and photoacoustic microscopy (PAM) simultaneously. Compared to the system with a pulsed light source, this system is able to achieve OCT imaging with quality as high as conventional spectral-domain OCT. Since both of the OCT and PAM images are generated from the same group of photons, they are intrinsically registered in the lateral directions. The system was tested for multimodal imaging the vasculature of mouse ear in vivo by using gold nanorods as contrast agent for PAM, as well as excised porcine eyes ex vivo. The OCT and PAM images showed complimentary information of the sample.

  3. Dimer formation in radiation-irradiated aqueous solution of lysozyme studied by light-scattering-intensity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S.; Masuda, T.; Kondo, M. (Institute of Physical and Chemical Research, Wako, Saitama (Japan); Tokyo Metropolitan Univ. (Japan). Faculty of Science); Seki, H.; Imamura, M. (Institute of Physical and Chemical Research, Wako, Saitama (Japan))

    1981-07-01

    The reaction of lysozyme with OH radical, Br/sub 2/ anion radical, and e/sup -/sub(aq), produced in an aqueous solution by pulsed electrons and ..gamma..-rays, were investigated. Irradiated enzymes showed an increase in the light scattering intensity (LSI) which is proportional to the absorbed dose. Results obtained from SDS gel electrophoresis confirm dimerization of lysozyme, which is considered to be responsible for the increase in LSI. It was found that the rate constant of the dimerization of protein radicals produced in the reaction with OH radical is 2k = (1.0+-0.3) x 10/sup 6/M/sup -1/s/sup -1/ and the yield of the dimerization is 0.6 in G. The enzymatic activity of the dimer is shown to be reduced to about 30 per cent of that of the intact enzyme. It is concluded that the radiation-induced inactivation of lysozyme is largely due to dimerization.

  4. Dimer formation in radiation-irradiated aqueous solution of lysozyme studied by light-scattering-intensity measurement.

    Science.gov (United States)

    Hashimoto, S; Seki, H; Masuda, T; Imamura, M; Kondo, M

    1981-07-01

    The reaction of lysozyme with OH., Br.-2 and e-aq, produced in an aqueous solution by pulsed electrons and gamma-rays, were investigated. Irradiated enzymes showed an increase in the light scattering intensity (LSI) which is proportional to the absorbed dose. Results obtained from SDS gel electrophoresis confirm dimerization of lysozyme, which is considered to be responsible for the increase in LSI. It was found that the rate constant of the dimerization of protein radicals produced in the reaction with OH. is 2K=(1.0 +/- 0.3) X 10(6)M-1 s-1 and the yield of the dimerization is 0.6 in G. The enzymatic activity of the dimer is shown to be reduced to about 30 per cent of that of the intact enzyme. It is concluded that the radiation-induced inactivation of lysozyme is largely due to dimerization.

  5. The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light

    Directory of Open Access Journals (Sweden)

    A. A. Kokhanovsky

    2010-07-01

    Full Text Available Remote sensing of aerosol from space is a challenging and typically underdetermined retrieval task, requiring many assumptions to be made with respect to the aerosol and surface models. Therefore, the quality of a priori information plays a central role in any retrieval process (apart from the cloud screening procedure and the forward radiative transfer model, which to be most accurate should include the treatment of light polarization and molecular-aerosol coupling. In this paper the performance of various algorithms with respect to the of spectral aerosol optical thickness determination from optical spaceborne measurements is studied. The algorithms are based on various types of measurements (spectral, angular, polarization, or some combination of these. It is confirmed that multiangular spectropolarimetric measurements provide more powerful constraints compared to spectral intensity measurements alone, particularly those acquired at a single view angle and which rely on a priori assumptions regarding the particle phase function in the retrieval process.

  6. Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria.

    Science.gov (United States)

    Bussell, Adam N; Kehoe, David M

    2013-07-30

    Photoreceptors are biologically important for sensing changes in the color and intensity of ambient light and, for photosynthetic organisms, processing this light information to optimize food production through photosynthesis. Cyanobacteria are an evolutionarily and ecologically important prokaryotic group of oxygenic photosynthesizers that contain cyanobacteriochrome (CBCR) photoreceptors, whose family members sense nearly the entire visible spectrum of light colors. Some cyanobacteria contain 12 to 15 different CBCRs, and many family members contain multiple light-sensing domains. However, the complex interactions that must be occurring within and between these photoreceptors remain unexplored. Here we describe the regulation and photobiology of a unique CBCR called IflA (influenced by far-red light), demonstrating that a second CBCR called RcaE strongly regulates IflA abundance and that IflA uses two distinct photosensory domains to respond to four different light colors: blue, green, red, and far-red. The absorption of red or far-red light by one domain affects the conformation of the other domain, and the rate of relaxation of one of these domains is influenced by the conformation of the other. Deletion of iflA results in delayed growth at low cell density, suggesting that IflA accelerates growth under this condition, apparently by sensing the ratio of red to far-red light in the environment. The types of complex photobiological interactions described here, both between unrelated CBCR family members and within photosensory domains of a single CBCR, may be advantageous for species using these photoreceptors in aquatic environments, where light color ratios are influenced by many biotic and abiotic factors.

  7. High-efficiency voltage regulator and stabilizer for outdoor lighting installations

    OpenAIRE

    Blánquez, F.R.; Rebollo López, Emilio; Blázquez García, Francisco; Platero Gaona, Carlos Antonio; Frías Marín, Pablo

    2012-01-01

    This paper presents a high performance system of regulation and stabilization of luminous flux for public street lighting installations. Its purpose is to reduce the luminous flux of the luminaries efficiently by reducing their voltage supply, resulting in the improvement of energy efficiency in the installation. The system is basically composed of electromagnetic components which provide robustness and high-performance to the device, as well as minimum maintenance requirements. However, the ...

  8. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  9. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.

    Science.gov (United States)

    Ahn, Tae Kyu; Avenson, Thomas J; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K; Bassi, Roberto; Fleming, Graham R

    2008-05-01

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). We found evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can "tune" the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  10. cis-regulatory elements involved in ultraviolet light regulation and plant defense.

    Science.gov (United States)

    Wingender, R; Röhrig, H; Höricke, C; Schell, J

    1990-10-01

    An elicitor-regulated transient expression system was established in soybean protoplasts that allowed the identification of cis-regulatory elements involved in plant defense. The 5' region of an ultraviolet (UV) light-inducible and elicitor-inducible chs gene (chs1) of soybean was subjected to deletion analysis with the help of chimeric chs-nptII/gus gene constructs. This analysis delimited the sequences necessary for elicitor inducibility to -175 and -134 of the chs1 promoter. The same soybean sequences were able to direct elicitor inducibility in parsley protoplasts, suggesting a conserved function of cis-acting elements involved in plant defense. In addition, this region of the soybean promoter also promotes UV light inducibility in parsley protoplasts. However, in contrast to the elicitor induction, correct regulation was not observed after UV light induction when sequences downstream of -75 were replaced by a heterologous minimal promoter. This result indicates that at least two cis-acting elements are involved in UV light induction.

  11. Effects of Light Intensity and Fertilization on the Growth of Andean Oak Seedlings at Nursery

    Directory of Open Access Journals (Sweden)

    Yira Lucia Sepúlveda

    2014-03-01

    Full Text Available Quercus humboldtii is a native plant species of great importance in Colombia for use in reforestation and restoration of degraded Andean highlands. The species is highly threatened and it is necessary to establish programs of propagation and planting. However, little is known about their nutritional and light requirements. The aim of this study was to determine the effects of single and combined relative illumination (IR and fertilization on the growth of seedlings of  Q. humboldtii at nursery. For this purpose three contrasting IR regimes (high, medium, and low IR and nine fertilization treatments were established: complete (TC, a missing nutrient (-N,-P,-K,-Ca,-Mg, -S,-B and a control without fertilization (T0. The best development of seedlings was showed in the medium IR condition. All treatments with a lacking nutrient showed decreases in seedling development regarding TC, except in the –B treatment. Nitrogen was the most limiting nutrient yielding biomass similar to that of T0. The impact of nutrient limitation on seedling performance was in the following order:-N>-Ca,-K,-P>-Mg,-S>-B. No significant interaction IR x Fertilization was detected on seedling development.EFECTOS DE LA ILUMINACIÓN RELATIVA Y LA FERTILIZACIÓN SOBRE EL CRECIMIENTO DE PLÁNTULAS DE ROBLE ANDINO EN VIVEROQuercus humboldtii es una especie vegetal nativa de mucha importancia en Colombia por su uso en repoblamiento forestal y restauración de tierras altoandinas degradadas. La especie se encuentra fuertemente amenazada y es necesario establecer programas de propagación de la misma. Sin embargo, poco se conoce sobre sus exigencias nutricionales y lumínicas. El objetivo de este estudio fue determinar los efectos simples y combinados de la iluminación relativa (IR y la fertilización sobre el crecimiento de plántulas de  Q. humboldtii en vivero. Para esto se establecieron en combinación tres condiciones contrastantes de iluminación relativa (alta, media y baja

  12. Emerging Perspectives on the Mechanisms,Regulation, and Distribution of Light Color Acclimation in Cyanobacteria

    Institute of Scientific and Technical Information of China (English)

    Andrian Gutu; David M. Kehoe

    2012-01-01

    Chromatic acclimation (CA) provides many cyanobacteria with the ability to tailor the properties of their lightharvesting antennae to the spectral distribution of ambient light.CA was originally discovered as a result of its dramatic cellular phenotype in red and green light.However,discoveries over the past decade have revealed that many pairs of light colors,ranging from blue to infrared,can trigger CA responses.The capacity to undergo CA is widespread geographically,occurs in most habitats around the world,and is found within all major cyanobacterial groups.In addition,many other cellular activities have been found to be under CA control,resulting in distinct physiological and morphological states for cells under different light-color conditions.Several types of CA appear to be the result of convergent evolution,where different strategies are used to achieve the final goal of optimizing light-harvesting antenna composition to maximize photon capture.The regulation of CA has been found to occur primarily at the level of RNA abundance.The CA-regulatory pathways uncovered thus far are two-component systems that use phytochrome-class photoreceptors with sensor-kinase domains to control response regulators that function as transcription factors.However,there is also at least one CAregulatory pathway that operates at the post-transcriptional level.It is becoming increasingly clear that large numbers of cyanobacterial species have the capacity to acclimate to a wide variety of light colors through the use of a range of different CA processes.

  13. On the light intensity transmitted through water and aqueous supersaturated ammonium dihydrogen phosphate solutions containing different antisolvents

    Science.gov (United States)

    Sangwal, Keshra

    2017-02-01

    Experimental data of the dependence of transmitted laser light intensity I of aqueous ADP solutions saturated at 303.15 K on feeding time t of three antisolvents (i.e. acetone, methanol and ethanol) are analyzed using mathematical equations based on two approaches. The first approach is based on exponential decrease in I with increasing t whereas the second one is based on the concept of adsorption of antisolvent molecules onto solvent and solute molecules. It was found that: (1) the latter approach is superior to the former one for explaining the observed dependence of transmitted laser-beam intensities of pure solvent and aqueous saturated ADP solutions, (2) the parameter A of the second approach provides better insight into the processes of adsorption of antisolvents in terms of the differential heat Qdiff of adsorption, and (3) the trends of changes in the values Qdiff for different antisolvents in water and aqueous solutions are associated with the dielectric constants of different antisolvents and are directly connected with the chemical constitution of the methanol, ethanol and acetone molecules.

  14. Clock and light regulation of the CREB coactivator CRTC1 in the suprachiasmatic circadian clock.

    Science.gov (United States)

    Sakamoto, Kensuke; Norona, Frances E; Alzate-Correa, Diego; Scarberry, Daniel; Hoyt, Kari R; Obrietan, Karl

    2013-05-22

    The CREB/CRE transcriptional pathway has been implicated in circadian clock timing and light-evoked clock resetting. To date, much of the work on CREB in circadian physiology has focused on how changes in the phosphorylation state of CREB regulate the timing processes. However, beyond changes in phosphorylation, CREB-dependent transcription can also be regulated by the CREB coactivator CRTC (CREB-regulated transcription coactivator), also known as TORC (transducer of regulated CREB). Here we profiled both the rhythmic and light-evoked regulation of CRTC1 and CRTC2 in the murine suprachiasmatic nucleus (SCN), the locus of the master mammalian clock. Immunohistochemical analysis revealed rhythmic expression of CRTC1 in the SCN. CRTC1 expression was detected throughout the dorsoventral extent of the SCN in the middle of the subjective day, with limited expression during early night, and late night expression levels intermediate between mid-day and early night levels. In contrast to CRTC1, robust expression of CRTC2 was detected during both the subjective day and night. During early and late subjective night, a brief light pulse induced strong nuclear accumulation of CRTC1 in the SCN. In contrast with CRTC1, photic stimulation did not affect the subcellular localization of CRTC2 in the SCN. Additionally, reporter gene profiling and chromatin immunoprecipitation analysis indicated that CRTC1 was associated with CREB in the 5' regulatory region of the period1 gene, and that overexpression of CRTC1 leads to a marked upregulation in period1 transcription. Together, these data raise the prospect that CRTC1 plays a role in fundamental aspects of SCN clock timing and entrainment.

  15. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  16. 1,213 Cases of Treatment of Facial Acne Using Indocyanine Green and Intense Pulsed Light in Asian Skin

    Directory of Open Access Journals (Sweden)

    Kui Young Park

    2015-01-01

    Full Text Available Background. Photodynamic therapy (PDT has been used for acne, with various combinations of photosensitizers and light sources. Objective. We evaluated the effectiveness and safety of indocyanine green (ICG and intense pulsed light (IPL in the treatment of acne. Materials and Methods. A total of 1,213 patients with facial acne were retrospectively reviewed. Patients received three or five treatments of ICG and IPL at two-week intervals. Clinical response to treatment was assessed by comparing pre- and posttreatment clinical photographs and patient satisfaction scores. Results. Marked to excellent improvement was noted in 483 of 1,213 (39.8% patients, while minimal to moderate improvement was achieved in the remaining 730 (60.2% patients. Patient satisfaction scores revealed that 197 (16.3% of 1,213 patients were highly satisfied, 887 (73.1% were somewhat satisfied, and 129 (10.6% were unsatisfied. There were no significant side effects. Conclusion. These results suggest that PDT with ICG and IPL can be effectively and safely used in the treatment of acne.

  17. 1,213 Cases of Treatment of Facial Acne Using Indocyanine Green and Intense Pulsed Light in Asian Skin.

    Science.gov (United States)

    Park, Kui Young; Kim, Ji Young; Hyun, Moo Yeol; Oh, Won Jong; Jeong, Se Yeong; Han, Tae Young; Ahn, Ji Young; Kim, Beom Joon; Kim, Myeung Nam

    2015-01-01

    Photodynamic therapy (PDT) has been used for acne, with various combinations of photosensitizers and light sources. We evaluated the effectiveness and safety of indocyanine green (ICG) and intense pulsed light (IPL) in the treatment of acne. A total of 1,213 patients with facial acne were retrospectively reviewed. Patients received three or five treatments of ICG and IPL at two-week intervals. Clinical response to treatment was assessed by comparing pre- and posttreatment clinical photographs and patient satisfaction scores. Marked to excellent improvement was noted in 483 of 1,213 (39.8%) patients, while minimal to moderate improvement was achieved in the remaining 730 (60.2%) patients. Patient satisfaction scores revealed that 197 (16.3%) of 1,213 patients were highly satisfied, 887 (73.1%) were somewhat satisfied, and 129 (10.6%) were unsatisfied. There were no significant side effects. These results suggest that PDT with ICG and IPL can be effectively and safely used in the treatment of acne.

  18. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air.

    Science.gov (United States)

    Ding, Su; Jiu, Jinting; Tian, Yanhong; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki

    2015-12-14

    Copper nanowire transparent electrodes have received increasing interest due to the low price and nearly equal electrical conductivity compared with other TEs based on silver nanowires and indium tin oxide (ITO). However, a post-treatment at high temperature in an inert atmosphere or a vacuum environment was necessary to improve the conductivity of Cu NW TEs due to the easy oxidation of copper in air atmosphere, which greatly cancelled out the low price advantage of Cu NWs. Here, a high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate these Cu NWs into a highly conductive network at room temperature in air. The strong light absorption capacity of Cu NWs enabled the welding of the nanowires at contact spots, as well as the removal of the thin layer of residual organic compounds, oxides and hydroxide of copper even in air. The Cu NW TE with a sheet resistance of 22.9 Ohm sq(-1) and a transparency of 81.8% at 550 nm has been successfully fabricated within only 6 milliseconds exposure treatment, which is superior to other films treated at high temperature in a hydrogen atmosphere. The HIPL process was simple, convenient and fast to fabricate easily oxidized Cu NW TEs in large scale in an air atmosphere, which will largely extend the application of cheap Cu NW TEs.

  19. [Effects of light intensity heterogeneity in gaps of broadleaved Korean pine forest in Changbai Mountains on Pinus koraiensis seedings growth].

    Science.gov (United States)

    Wang, Zhuo; Fan, Xiu-Hua

    2009-05-01

    By using a Li-6400 portable photosynthesis system, this paper studied the heterogeneity of light intensity in four different size gaps of a broadleaved Korean pine forest in Changbai Mountains, and analyzed the diurnal change of the photosynthesis of Pinus koraiensis saplings in the gaps. In the nine orientations within the gaps, the peak value of the photosynthetically active radiation (PAR) varied in the sequence of west of actual gap, north of extended gap, gap center > south of actual gap, south of extended gap, east of extended gap, east of actual gap > west of extended gap, north of actual gap. Light distribution was dissymmetry in the orientations of east-west and south-north, with the variation in west and north being more significant than that in other orientations. There was no significant difference in the average PAR among the positions within specific orientations. The average PAR of the four gaps from I to IV was 21.85, 45.57, 66.02, and 23.48 micromol x m(-2) x s(-1), respectively, and the difference was statistically significant (P < 0.05). PAR had a significant positive correlation with net photosynthetic rate (P(n)), and the correlation coefficient increased with increasing PAR. With the increase of gap size, both the PAR and the P(n) of P. koraiensis saplings increased first and decreased then, with the maximum values appeared at 267 m2 of gap size.

  20. Circadian and seasonal responses in Indian weaver bird: subjective interpretation of day and night depends upon both light intensity and contrast between illuminations.

    Science.gov (United States)

    Pandey, Rohit Kumar; Bhardwaj, Sanjay Kumar

    2011-11-01

    This study investigated whether changes in illumination modify perception of day and night conditions in a diurnal species, the Indian weaver bird. Birds were initially subjected to a 12-h light:12-h dark regime (12L:12D; L=20 lux, D =0.5 lux). After every 2 wks, the combinations of light illumination in L and D phases were changed as follows: 20:2 lux, 20:5 lux, 20:10 lux, 20:20 lux, 20:100 lux, and 20:200 lux. Finally, birds were released into dim constant light (0.5 lux) for 2 wks to determine the phase and period of the circadian activity rhythm. They were also laparotomized at periodic intervals to examine the effects of the light regimes on the seasonal testicular cycle. All individuals showed a consistently similar response. As evident by the activity pattern under these light regimes, both in total activity during contrasting light phases and during the 2?h in the beginning and end of first light phase, birds interpreted the period of higher light intensity as day, and the period of lower intensity as the night. During the period of similar light intensity, i.e., under LL, birds free-ran with a circadian period ( ~ 24 h). In bright LL (20 lux), the activity rhythm was less distinct, but periodogram analysis revealed the circadian period for the group as 24.46 (+/-) 0.41 h (mean???SE). However, in dim LL at the end of the experiment, all birds exhibited a circadian pattern with average period of 25.52 (+/-) 0.70 h. All birds also showed testicular growth and regression during the 16-wks study. It is suggested that weaver birds interpret day and night subjectively based on both the light intensity and contrast between illuminations during two phases over the 24 h.

  1. Design of regulated ford on the roads of low traffic intensity at the crossing of torrential flows

    Directory of Open Access Journals (Sweden)

    Đeković Vojislav

    2002-01-01

    Full Text Available Regulation works in small torrential streams disturb the natural flow regime and the structure of banks and riparian area. The streams are crossed by bridges and culverts. However, at places of low traffic intensity, natural fords are often used for crossing. A regulated ford is constructed by lining and protection of the natural ford, where due to reduced roughness in the ford zone, hydraulic characteristics of the stream show a series of specificities This paper presents the method of calculation of hydraulic factors, which determine the conditions of regulated ford. The construction of regulated ford, as a civil engineering structure, is designed in the conditions enabling a safe traffic at low and medium discharges, while at high water levels there are no obstacles to the flow of water and torrential sediment .

  2. Application of immobilized TiO2 photocatalysis to improve the inactivation of Heterosigma akashiwo in ballast water by intense pulsed light.

    Science.gov (United States)

    Feng, Daolun; Xu, Shihong; Liu, Gang

    2015-04-01

    Ballast water exotic discharge has been identified as a leading vector for marine species invasion. Here immobilized TiO2 photocatalysis is introduced to improve the performance of intense pulsed light. For intense pulsed light/TiO2 photocatalysis, a typical inactivation of 99.89±0.46% can be achieved under treatment condition of 1.78 L min(-1) flow rate, 300 V pulse peak voltage, 15 Hz pulse frequency and 5 ms pulse width. Moreover, within tested 220-260 V peak voltage, 18.37-40.51% elevation in inactivation is observed in comparison with intense pulsed light treatment alone. The rough energy consumption of the tested intense pulsed light/TiO2 treatment system is about 1.51-2.51 times higher than that of the typical commercial UV ballast water treatment system. The stability of the photocatalytic reactivity and intactness of loaded TiO2 film is proved within 20-d's test, while local erosion on stainless steel support is observed after 30-d's test. The results indicate that intense pulsed light/TiO2 photocatalysis is likely to be a competitive ballast water treatment technique, while further measures is needed to reduce the energy consumption and ensure the performance of TiO2 film in a long run.

  3. Sub-lambda gratings, surface plasmons, hotter electrons and brighter x-ray sources- enhanced absorption of intense, ultrashort laser light by tiny surface modulations

    CERN Document Server

    Kahaly, S; Kahaly, Subhendu

    2007-01-01

    We observe near 100 % absorption of light in intense ultrashort laser plasma interaction in a metal coated (Au on glass) sub-lambda grating structure under suitable conditions and the subsequent 'hot' electron generation from the grating plasma. In the low intensity regime we determine the conditions in which a monochromatic infrared light (lambda = 800nm corresponding to the central wavelength of the ultrashort laser that we used in subsequent experiments) efficiently excites surface plasmon in the grating. Then we study how the surface plasmon resonance condition changes when we excite them using low intensity ultrashort pulses. We look at the reflectivity of light varying the incident light intensity over a wide range (2x10e12Wcm-2-2x10e15Wcm-2). The reflectivity of grating with the resonance condition satisfied is the lowest over the whole range of intensity. We compare the data with those obtained from highly polished (lambda/5) Au mirror target under identical conditions. At high intensities we look at ...

  4. Fast algal eco-toxicity assessment: Influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU.

    Science.gov (United States)

    Camuel, Alexandre; Guieysse, Benoit; Alcántara, Cynthia; Béchet, Quentin

    2017-06-01

    In order to develop a rapid assay suitable for algal eco-toxicity assessments under conditions representative of natural ecosystems, this study evaluated the short-term (atrazine and DCMU using oxygen productivity measurements. When Chlorella vulgaris was exposed to these herbicides under 'standard' low light intensity (as prescribed by OECD201 guideline), the 20min-EC50 values recorded via oxygen productivity (atrazine: 1.32±0.07μM; DCMU: 0.31±0.005μM) were similar the 96-h EC50 recorded via algal growth (atrazine: 0.56μM; DCMU: 0.41μM), and within the range of values reported in the literature. 20min-EC50 values increased by factors of 3.0 and 2.1 for atrazine and DCMU, respectively, when light intensity increased from 60 to 1400μmolm(-2)s(-1) of photosynthetically active radiation, or PAR. Further investigation showed that exposure time significantly also impacted the sensitivity of C. vulgaris under high light intensity (>840μmolm(-2)s(-1) as PAR) as the EC50 for atrazine and DCMU decreased by up to 6.2 and 2.1 folds, respectively, after 50min of exposure at a light irradiance of 1400μmolm(-2)s(-1) as PAR. This decrease was particularly marked at high light intensities and low algae concentrations and is explained by the herbicide disruption of the electron transfer chain triggering photo-inhibition at high light intensities. Eco-toxicity assessments aiming to understand the potential impact of toxic compounds on natural ecosystems should therefore be performed over sufficient exposure times (>20min for C. vulgaris) and under light intensities relevant to these ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Integration of light and temperature in the regulation of circadian gene expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Catharine E Boothroyd

    2007-04-01

    Full Text Available Circadian clocks are aligned to the environment via synchronizing signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we found that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcript levels appear to be modified broadly by changes in temperature, there is a specific set of temperature-entrained circadian mRNA profiles that continue to oscillate in constant conditions. There are marked differences in the biological functions represented by temperature-driven or circadian regulation. The set of temperature-entrained circadian transcripts overlaps significantly with a previously defined set of transcripts oscillating in response to a photocycle. In follow-up studies, all thermocycle-entrained circadian transcript rhythms also responded to light/dark entrainment, whereas some photocycle-entrained rhythms did not respond to temperature entrainment. Transcripts encoding the clock components Period, Timeless, Clock, Vrille, PAR-domain protein 1, and Cryptochrome were all confirmed to be rhythmic after entrainment to a daily thermocycle, although the presence of a thermocycle resulted in an unexpected phase difference between period and timeless expression rhythms at the transcript but not the protein level. Generally, transcripts that exhibit circadian rhythms both in response to thermocycles and photocycles maintained the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases of these transcripts indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. This interpretation is further supported by comparative analysis of the circadian phases observed for temperature-entrained and light-entrained circadian locomotor behavior. Taken

  6. Cardiac autonomic regulation during exposure to auditory stimulation with classical baroque or heavy metal music of different intensities

    OpenAIRE

    Amaral, Joice Anaize Tonon do; Nogueira, MArcela Leme; Roque, Adriano L. [UNESP; Guida, Heraldo Lorena; de Abreu, Luiz Carlos; Raimundo, Rodrigo Daminello; Vanderlei, Luiz Carlos Marques; Ribeiro, Vivian F.; Ferreira, Celso; Valenti, Vitor Engrácia

    2014-01-01

    Objectives: The effects of chronic music auditory stimulation on the cardiovascular system have been investigated in the literature. However, data regarding the acute effects of different styles of music on cardiac autonomic regulation are lacking. The literature has indicated that auditory stimulation with white noise above 50 dB induces cardiac responses. We aimed to evaluate the acute effects of classical baroque and heavy metal music of different intensities on cardiac autonomic regulatio...

  7. Effects of light radiation intensity on photosynthetic characteristics and water use efficiency of Platycladus orientalis and Pinus tabulaeformis seedlings

    Institute of Scientific and Technical Information of China (English)

    ZHANG Weiqiang; HE Kangning; WANG Yunqi; WANG Baitian; DENG Juntao; ZHOU Yi; ZHONG Xijun; LI Zhaoqing

    2007-01-01

    In order to offer a scientific basis for cultivation and management of forests,effects of light radiation intensity on photosynthetic characteristics and water use efficiency of Platycladus orientalis and Pinus tabulaeformis were studied under different soil moisture contents.By adopting artificial control methods to soil moisture,and under simulated photosynthetic radiation (SPR),the net photosynthetic rate (PN),transpiration rate (Tr),water use efficiency (WUE) and intercellular CO2 concentration (Ci,) of Platycladus orientalis and Pinus tabulaeformis in the semi-arid region of the Loess Plateau,were studied.Results are as follows:within the photon range of 0-2,200 μmol/(m2·s),PN,Tr and WUE were enhanced with an increase in SPR in both species.PN and WUE of Platycladus orientalis and Pinus tabulaeformis,however,declined with continued increase in SPR.PN,Tr,WUE and light saturation point (LSP) of Platycladus orientalis were higher than those of Pinus tabulaeformis,while light compensation point (LCP) of Platycladus orientalis was lower than that of Pinus tabulaeformis at the same soil moisture content.The efficiency of light energy utilization of Platycladus orientalis was higher than that of Pinus tabulaeformis;PN,Tr and Ci of Platycladus orientalis and Pinus tabulaeformis were enhanced by increasing soil moisture content,whereas WUE declined.At soil moistures of 7.90%,13.00% and 19.99%,LSP of Platycladus orientalis LCP was 42,25 and 13 μmol/(m2·s) respectively,with corresponding maximal net CO2 photosynthetic rates (Pmax)of 3.04,4.06 and 5.53 μmol(m2·s).At soil moistures of 7.83%,13.04% and 20.15%, the LSP of Pinus tabulaeformis was 1,100, 1,325 and 1,500 μmol/(m2·s) respectively and LCP was 60,30 and 23μmol/(m2·s), with Pmas of 1.08, 3.35 and 4.36 μmol/(m2·s)respectively.

  8. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens

    Science.gov (United States)

    Multi-layer vertical production systems using sole-source (SS) lighting can be used for microgreen production; however, traditional SS lighting can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources including: high photoelec...

  9. Light intensity, photoperiod duration, daily light flux and coral growth of Galaxea fascicularis in an aquarium setting: a matter of photons?

    NARCIS (Netherlands)

    Schutter, M.; Ven, R.M.; Janse, M.; Verreth, J.A.J.; Wijffels, R.H.; Osinga, R.

    2012-01-01

    Light is one of the most important abiotic factors influencing the (skeletal) growth of scleractinian corals. Light stimulates coral growth by the process of light-enhanced calcification, which is mediated by zooxanthellar photosynthesis. However, the quantity of light that is available for daily

  10. Light intensity, photoperiod duration, daily light flux and coral growth of Galaxea fascicularis in an aquarium setting: a matter of photons?

    NARCIS (Netherlands)

    Schutter, M.; Ven, R.M.; Janse, M.; Verreth, J.A.J.; Wijffels, R.H.; Osinga, R.

    2012-01-01

    Light is one of the most important abiotic factors influencing the (skeletal) growth of scleractinian corals. Light stimulates coral growth by the process of light-enhanced calcification, which is mediated by zooxanthellar photosynthesis. However, the quantity of light that is available for daily co

  11. Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture.

    Directory of Open Access Journals (Sweden)

    So-Hyun Kim

    Full Text Available Time-course variation of lipid and carotenoid production under high light (300 μE/m²s and nitrogen starvation conditions was determined in a Dunaliella tertiolecta strain. Nanoelectrospray (nanoESI chip based direct infusion was used for lipid analysis and ultra-performance liquid chromatography (UPLC coupled with a photodiode array (PDA or atmospheric chemical ionization mass spectrometry (APCI-MS was used for carotenoid analysis. A total of 29 lipids and 7 carotenoids were detected. Alterations to diacylglyceryltrimethylhomoserine (DGTS and digalactosyldiacylglycerol (DGDG species were significant observations under stress conditions. Their role in relation to the regulation of photosynthesis under stress condition is discussed in this study. The total carotenoid content was decreased under stress conditions, while ã-carotene was increased under nitrate-deficient cultivation. The highest productivity of carotenoid was attained under high light and nitrate sufficiency (HLNS condition, which result from the highest level of biomass under HLNS. When stress was induced at stationary phase, the substantial changes to the lipid composition occurred, and the higher carotenoid content and productivity were exhibited. This is the first report to investigate the variation of lipids, including glycerolipid, glycerophospholipid, and carotenoid in D. tertiolecta in response to stress conditions using lipidomics tools.

  12. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.

    Science.gov (United States)

    Chang, Hai-Xing; Huang, Yun; Fu, Qian; Liao, Qiang; Zhu, Xun

    2016-04-01

    Understanding and optimizing the microalgae growth process is an essential prerequisite for effective CO2 capture using microalgae in photobioreactors. In this study, the kinetic characteristics of microalgae Chlorella vulgaris growth in response to light intensity and dissolved inorganic carbon (DIC) concentration were investigated. The greatest values of maximum biomass concentration (Xmax) and maximum specific growth rate (μmax) were obtained as 2.303 g L(-1) and 0.078 h(-1), respectively, at a light intensity of 120 μmol m(-2) s(-1) and DIC concentration of 17 mM. Based on the results, mathematical models describing the coupled effects of light intensity and DIC concentration on microalgae growth and CO2 biofixation are proposed. The models are able to predict the temporal evolution of C. vulgaris growth and CO2 biofixation rates from lag to stationary phases. Verification experiments confirmed that the model predictions agreed well with the experimental results.

  13. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network.

    Science.gov (United States)

    Martín, Guiomar; Leivar, Pablo; Ludevid, Dolores; Tepperman, James M; Quail, Peter H; Monte, Elena

    2016-05-06

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation.

  14. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis.

    Science.gov (United States)

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G; González-Reyes, Acaimo; Martín-Bermudo, María D

    2016-01-01

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies.

  15. Multiple ketolases involved in light regulation of canthaxanthin biosynthesis in Nostoc punctiforme PCC 73102.

    Science.gov (United States)

    Schöpf, Lotte; Mautz, Jürgen; Sandmann, Gerhard

    2013-05-01

    In the genome of Nostoc punctiforme PCC 73102, three functional β-carotene ketolase genes exist, one of the crtO and two of the crtW type. They were all expressed and their corresponding enzymes were functional inserting 4-keto groups into β-carotene as shown by functional pathway complementation in Escherichia coli. They all synthesized canthaxanthin but with different efficiencies. Canthaxanthin is the photoprotective carotenoid of N. punctiforme PCC 73102. Under high-light stress, its synthesis was enhanced. This was caused by up-regulation of the transcripts of two genes in combination. The first crtB-encoding phytoene synthase is the gate way enzyme of carotenogenesis resulting in an increased inflow into the pathway. The second was the ketolase gene crtW148 which in high light takes over β-carotene conversion into canthaxanthin from the other ketolases. The other ketolases were down-regulated under high-light conditions. CrtW148 was also exclusively responsible for the last step in 4-keto-myxoxanthophyll synthesis.

  16. Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae1[W

    Science.gov (United States)

    Kaňa, Radek; Kotabová, Eva; Lukeš, Martin; Papáček, Štěpán; Matonoha, Ctirad; Liu, Lu-Ning; Prášil, Ondřej; Mullineaux, Conrad W.

    2014-01-01

    Red algae represent an evolutionarily important group that gave rise to the whole red clade of photosynthetic organisms. They contain a unique combination of light-harvesting systems represented by a membrane-bound antenna and by phycobilisomes situated on thylakoid membrane surfaces. So far, very little has been revealed about the mobility of their phycobilisomes and the regulation of their light-harvesting system in general. Therefore, we carried out a detailed analysis of phycobilisome dynamics in several red alga strains and compared these results with the presence (or absence) of photoprotective mechanisms. Our data conclusively prove phycobilisome mobility in two model mesophilic red alga strains, Porphyridium cruentum and Rhodella violacea. In contrast, there was almost no phycobilisome mobility in the thermophilic red alga Cyanidium caldarium that was not caused by a decrease in lipid desaturation in this extremophile. Experimental data attributed this immobility to the strong phycobilisome-photosystem interaction that highly restricted phycobilisome movement. Variations in phycobilisome mobility reflect the different ways in which light-harvesting antennae can be regulated in mesophilic and thermophilic red algae. Fluorescence changes attributed in cyanobacteria to state transitions were observed only in mesophilic P. cruentum with mobile phycobilisomes, and they were absent in the extremophilic C. caldarium with immobile phycobilisomes. We suggest that state transitions have an important regulatory function in mesophilic red algae; however, in thermophilic red algae, this process is replaced by nonphotochemical quenching. PMID:24948833

  17. HFR1 is crucial for transcriptome regulation in the cryptochrome 1-mediated early response to blue light in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Xiao-Ning Zhang

    Full Text Available Cryptochromes are blue light photoreceptors involved in development and circadian clock regulation. They are found in both eukaryotes and prokaryotes as light sensors. Long Hypocotyl in Far-Red 1 (HFR1 has been identified as a positive regulator and a possible transcription factor in both blue and far-red light signaling in plants. However, the gene targets that are regulated by HFR1 in cryptochrome 1 (cry1-mediated blue light signaling have not been globally addressed. We examined the transcriptome profiles in a cry1- and HFR1-dependent manner in response to 1 hour of blue light. Strikingly, more than 70% of the genes induced by blue light in an HFR1-dependent manner were dependent on cry1, and vice versa. High overrepresentation of W-boxes and OCS elements were found in these genes, indicating that this strong cry1 and HFR1 co-regulation on gene expression is possibly through these two cis-elements. We also found that cry1 was required for maintaining the HFR1 protein level in blue light, and that the HFR1 protein level is strongly correlated with the global gene expression pattern. In summary, HFR1, which is fine-tuned by cry1, is crucial for regulating global gene expression in cry1-mediated early blue light signaling, especially for the function of genes containing W-boxes and OCS elements.

  18. Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS

    Science.gov (United States)

    Dong, Chen; Fu, Yuming; Liu, Guanghui; Liu, Hong

    2014-06-01

    Minimizing energy consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. As a primary source of energy, light is one of the most important environmental factors for plant growth. The purpose of this study is to investigate the effects of low light intensity at different stages on growth, pigment composition, photosynthetic efficiency, biological production and antioxidant defence systems of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 3 intensity-controlled stages according to growth period (a total of 65 days): seedling stage (first 20 days), heading and flowering stage (middle 30 days) and grain filling stage (last 15 days). Initial light condition of the control was 420 μmol m-2 s-1 and the light intensity increased with the growth of wheat plants. The light intensities of group I and II at the first stage and the last stage were adjusted to the half level of the control respectively. For group III, the first and the last stage were both adjusted to half level of the control. During the middle 30 days, all treatments were kept the same intensity. The results indicated that low-light treatment at seedling stage, biomass, nutritional contents, components of inedible biomass and healthy index (including peroxidase (POD) activity, malondialdehyde (MDA) and proline content) of wheat plants have no significant difference to the control. Furthermore, unit kilojoule yield of group I reached 0.591 × 10-3 g/kJ and induced the highest energy efficiency. However, low-light treatment at grain filling stage affected the final production significantly.

  19. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.

    Science.gov (United States)

    Dornbusch, Tino; Michaud, Olivier; Xenarios, Ioannis; Fankhauser, Christian

    2014-10-01

    In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits.

  20. The role of classroom acoustics on vocal intensity regulation and speakers’ comfort

    DEFF Research Database (Denmark)

    Pelegrin Garcia, David

    Teachers are one of the professional groups with the highest risk of suffering from voice disorders. Teachers point out classroom acoustics among the potential hazards affecting their vocal health, together with air dryness, background noise, and other environmental factors. The present project has...... investigated the relationships between the classroom acoustic condition and teachers’ voice, focusing on their vocal intensity, and between the classroom acoustic condition and the sensation of acoustic comfort for a speaker. In the presence of low background noise levels, teachers were found to adjust...... their vocal intensity according to the room gain or voice support of the classroom, which are equivalent objective measures that quantify the amplification of one’s own voice in a room due to the reflections at the room boundaries. Most of the vocal intensity variation among classrooms was due to differences...